BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

CHART BUILDER FOR ANSIBLE
AUTOMATION ANALYTICS

VIZUALIZACE DAT PRO ANSIBLE AUTOMATION ANALYTICS

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR LEVENTE BERKY
AUTOR PRACE
SUPERVISOR doc. Mgr. ADAM ROGALEWICZ, Ph.D.

VEDOUCI PRACE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Master's Thesis Specification |||||\”ll!|!ﬂ!\||||||\|

Student: Berky Levente, Bc.
Programme: Information Technology

Field of Bioinformatics and Biocomputing

study:

Title: Chart Builder Ansible Automation Analytics
Category: Information Systems

Assignment:

1. Study the Open API definition and the Ansible Automation Analytics (AAA) tool with a special
attention on client-server communication API.

2. Propose a way of processing a data from client-server communication of AAA tool. The
intention is a data visualization (by various type of chars) with a subsequent automated
processing of the visualized data.

3. Design a plugin into the client part of AAA, which allows one to visualize data from client-
server communication for a user as well as for a machine processing. A user can customize
the visualization using various filters and aggregations.

4. Implement the proposed plugin.

5. Validate the plugin from point 5 using unit tests and demonstrate that your solution can be
used as an anomaly detection for a computation cluster managed by AAA.

6. Discuss possible improvements and future directions of your solution.

Recommended literature:

Ansible Automation Analytics project: https://www.ansible.com/products/automation-
analytics

* Open API documentation: https://swagger.io/specification/

Requirements for the semestral defence:
* |[tems 1 and 2.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Rogalewicz Adam, doc. Mgr., Ph.D.
Head of Department: ~ Hanacek Petr, doc. Dr. Ing.

Beginning of work: November 1, 2020

Submission deadline: May 19, 2021

Approval date: November 11, 2020

Master's Thesis Specification/24178/2020/xberky02 Page 1/1

Abstract

This thesis focuses on creating a web component to render charts from a structured data
format (schema for short), and creating an user facing interface for editing and creating the
schema for the Ansible Automation Analytics. The thesis explores the current implemen-
tation of the Ansible Automation Analytics and the corresponding API, researches similar
charting libraries and describes the fundamentals of used technologies. The practical part
describes the requirements for the component and describes the development and the im-
plementation of the plugin. Furthermore, the thesis describes the process of testing and
the future development plans of the plugin.

Abstrakt

Tato prace se zaméruje na vytvoreni webové komponenty k vykresleni grafi ze struktur-
ovanyho datovyho formatu (déle jen schéma) a vytvoreni uzivatelského rozhrani pro editaci
schématu pro Ansible Automation Analytics. Price zkoumd aktudlni implementaci Ansible
Automation Analytics a odpovidajici API. Déle zkoumé vhodné knihovny pro vykreslovani
grafu a popisuje zédklady pouzitych technologii. Praktickd ¢ast popisuje pozadavky na kom-
ponentu a popisuje vyvoj a implementaci pluginu. Ddéle prace popisuje proces testovani
a plany budouciho vyvoje pluginu.

Keywords

web, web component, web application, data visualization, chart rendering, React frame-
work, Ansible Automation Analytics

Klicova slova

web, web komponenty, web aplikace, vizualizace dat, vykreslovani grafu, React framework,
Ansible Automation Analytics

Reference

BERKY, Levente. Chart Builder for Ansible Automation Analytics. Brno, 2021. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor doc.
Mgr. ADAM Rogalewicz, Ph.D.

Rozsireny abstrakt

Tato prace se zabyva tvorbou webové komponenty pro vytvareni grafl ze strukturovaného
datového formatu (dél jen schéma) a pro poskytnuti webového UX pro editaci schématu.
Komponenta byla vytvorena pro project Ansilble Automation Analytics (dal jen AAA),
ktery je vyvijen spole¢nosti RedHat.

Nejprve bylo zapottfebi stanovit technologie, které budou pfi vyvoji vyuzity. Nejznaméjsi
je framework React, ktery je pouzivan i v AAA a podporuje vytvareni komponent. Proto je
nejjednodussi na integraci do AAA, a proto tato prace bude vyuzivat tento framework. Déle
vyuzivd TypeScript pro statickou kontrolu typu, ktery zjednodusuje manudlni vytvoreni
schématu. TypeScript je JavaScriptova ndstavba kompilovand do JavaScriptu. Vyhodou
je, ze zavadi typy do JavaScriptu a upozorni na typovou nespravnost piri kompilaci, coz
zvysuje kvalitu kédu a usnadnuje ladéni.

Pfed vyvojem byly prozkoumany AAA a AAA Application Programming Interface
(AAA API). AAA API pouziva OpenAPI standard a poskytuje data pro AAA. Tato préace
vyuziva data z tohoto API. Nejvétsi duraz byl kladen na formét dat, na které ma vliv
seskupovani dat podle ¢asu nebo podle jinych parametri. Déle byly prezkouméany parame-
try pro kazdy koncovy bod API. API rovnéz poskytuje koncové body pro validni nastaveni
datovych koncovych bodu.

Pred vyvojem byly dale prozkoumany dalsi aplikace pro vizualizaci dat: Grafana a
Chartlog a byly stanoveny pozadované funkce pro stavbu grafii. Tyto aplikace pro vytvareni
grafi by mély byt schopny vytvorit skupované, skladané, vysecovy, Carové, sloupcové,
bodové a plosné grafy, pricemz datovy format bude limitovat vybér grafi. Formular pro ed-
itaci by nemél nechat uzivatele vybrat nevalidni konfiguraci nebo konfigurace které nedavaji
smysl.

Pro vykresleni samotnych graft byly prozkoumany knihovny které vytvareji grafy. Duraz
byl kladen na jednoduchost pouziti, poskytnuté funkce a ¢innost vyvojovych tymu. Nakonec
byl vybran Victory Charts kvili modularité komponentti, pohotovosti tymu a velkémy
vybéru funkénosti.

Victory Charts poskytuje komponenty bez stylingu. Jelikoz se prace integruje do AAA
musel byt vytvorena styl kompatibilini s AAA. Déale byla vyuzita knihovna Patternfly
Charts, kterd je tenkou vrstvou nad Victory Charts a nastavuje style komponenty aniz
by limitoval anebo zménil jejich funkcionalitu.

Pred samotnym vyvojem bylo tfeba nastavit vyvojové prostiedi. Pro vyvoj byl pouzit
verzovaci nastroj git, ktery je hostovan na GitHub platformé. Komponenta je distribuovana
jako knihovna pomoci NPM pod jménem ’react-data-explorer’. Scematic-release je pouzivan
pro aktualizaci dané verze a NPM knihovny po zménach v kédu. Daéle prace obsahuje demo
aplikaci, ktera je hostovana lokalné pomoci nastroje webpack. Demo aplikace se vyuziva
na vyvoj a jako ukazkovy kod.
je schopna ze schématu vytvorit grafy. Schéma je limitovano na zakladni datové typy, které
jsou serializovatelné. Tato limitace je ddna tim, Ze schéma bude uklddano i v databazi.
To znamena Ze kdyz je potreba ukladat funkci v schématu, pak se ukladaji jen jména
funkci, a samotné funkce jsou predany jako dalsi parametr komponenty. Schéma je plocha
struktura, aby sa dalo zpracovat a editovat snadnéji. Komponenta obdrzi data z API
a transformuje je tak aby se dala pouzivat v grafech. Komponenta je schopna vytvorit
pozadované grafy: skupinovy graf, skladany graf, vysecové grafy nebo jednoduché grafy.
Daéle se ve schématu da prizpisobit kazda c¢ast grafu. Komponenta podporuje popisky
dvéma ruznymi zpusoby: bud jako popisek k jednotlivym datovym bodim, nebo jako

popisek ke vsem bodim na svislé ose. Grafy podporuji rizné udélosti, napriklad kliknuti
na urcitou cast grafu. Komponenta také poskytuje jednoduchy zptsob pro pridani legend
ke graftim vcéetné interaktivity, ktera umoznuje schovani jednotlivych datovych sérii.

Druha komponenta nabizi formulai pro editaci schématu. Dulezitou ¢asti formulaie byl
pozadavek, aby se uzivatel za zadnych okolnosti nedostal do neplatné konfigurace. Formular
proto ziskdva moznosti pro nékteré parametry z API a na jejich zakladé v kazdé konfig-
uraci zabezpec¢i spravnost. Moznosti pro nékteré parametry z API jesté nejsou dostupné
(napriklad typy grafii). Uzivatelské rozhrani editoru se sklada ze dvou ¢asti: vytvoreného
grafu a formulafe. Uzivatel po nastaveni hodnoty ve formulafi rovnou uvidi zmény v grafu.

Treti komponentou je panel grafti ktera pouziva drive popsané dvé komponenty a pridava
dvé tlacitka pro otevreni a zavreni editoru. Kazda komponenta sa da pouzivat samostatné.

Unit testy byly provedeny pomoci knihoven Jest, fetch-mock a react-testing-library.
Tyto nastroje umoznily modelovat odpovédi z API a testovat vyrendrované grafy pomoci
snapshotti. Unit testy byly provedeny hlavné na komponenté, kterd vytvari grafy. Vyvoj
dalsich dvou komponent dédle pokracuje.

Tento dalsi vyvoj zahrnuje navrhy a implementace vylepseného API pro grafy, UX
navrh pro formular pro panel grafi. Béhem vyvoje se v knihovné Patternfly Charts nasly
dva problémy, a bylo navrhnuto jeji vylepseni. V budoucnosti se tato prace bude déle
vyvijet tak, aby se daly zpracovat i datové streamy pro zivé data. Knihovna bude dale
rozsitena o podporu 3D grafti a plné integrovan do AAA.

Chart Builder for Ansible Automation Analytics

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Rogalewicz Adam, doc. Mgr., Ph.D. The supplementary
information was provided by Ing. Ben Thomasson. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Levente Berky
May 12, 2021

Acknowledgements

I wish to express my thanks to my supervisor Rogalewicz Adam, doc. Mgr., Ph.D. and
Ing. Ben Thomasson who helped to create a more professional work. I also want to express
my gratitude to Kia Lam, the Ansible Automation Analytics team and Red Hat for their
professional technical help and suggestions while programming the component.

Contents

1 Introduction

2 Utilized tools

2.1 Theory Basis e
2.2 Glossaryo
2.3 React e
2.3.1 State, propsand Events L.
2.3.2 JSX o
2.3.3 Rendering
2.3.4 Components
2.4 TypeScript e
2.4.1 Basic types e e
2.4.2 Interfaces e
2.4.3 Functions L
2.4.4 Unions and Intersection Types
2.4.5 Classes
2.4.6 Generics e e
2.4.7 Enumerations Lo Lo

3 Red Hat Ansible Automation Platform

3.1 REST APl and OpenAPI
3.1.1 OpenAPI Format and Structure
3.1.2 OpenAPI Object

3.2 Automation Analytics L o
3.2.1 Ansible Automation Analytics APT

4 Charts

4.1 Charting Library
4.1.1 Typeofcharts
4.1.2 Required features
4.1.3 Existing charting Libraries

4.2 Chart Dashboard
4.2.1 Existing Chart Dashboards
4.2.2 Required features

5 Design and Implementation
5.1 Utilized libraries e
5.2 Data Driven Chart Rendering

001 IO OO O OO U w

[e g ey
= O O O o

12
12
12
14
14
16

19
19
19
21
21
24
25
27

5.2.1 Features,

limitations

5.2.2 Theinterface
5.2.3 Data fetching from the APT
5.2.4 Chart creation
5.2.5 Toplevel elements
5.2.6 Anomaly Detection L
5.3 Chart Editor e
5.3.1 Features and limitations
5.3.2 Interface
5.3.3 Data format from the API.
5.3.4 TImplementation Lo
5.4 Data Driven Dashboard
5.5 Development Setup
6 Testing
6.1 Libraries e e
6.2 Testing the library L

7 Future development

8 Conclusion

Bibliography

48
48
49

51

52

53

Chapter 1

Introduction

In the last decade, the World Wide Web has become a remarkably huge system for storing
information. People use it all around the world daily. The browser is the main gateway to
the web and it has become more and more sophisticated over time. The web is used for
creating documents, playing games, watching videos, or running different programs on far
away and powerful computers. Thus, the data which is collected from the web increases
exponentially.

As more and more data is collected, it is increasingly important to understand how this
data is represented to the user on those web pages. Presenting a huge amount of data to the
user via graphs and charts is one of the most efficient and used forms. We can find charts
everywhere on the web, from flight prices to displaying which pages people tend to spend
the most amount of time. Because of this, charts are a crucial part of the user experience.

This work focuses on creating a chart dashboard plugin for a Red Hat Insights for
Red Hat Ansible Automation Platform system (referred to as Automation Analytics for
simplicity) and a user friendly chart editor. The charting library will provide the charts
for the dashboard. The dashboard will allow users to display a huge amount of data by
visualising it in different types of charts. The plugin will allow the user to select, aggregate,
and then display the data in various charts. After the initial setup, the dashboard will
allow the users to have all of their important information displayed at glance in the form
of charts.

It is important to be able to test the generated charts. Testing generated vector images
is not a trivial task. Therefore, this work will develop a charting library which allows the
developers to automate processing the generated charts with ease. This functionality is
crucial for writing unit tests and for test driven development.

The thesis first describes the tools used and the background theory for web development.
Next, Automation Analytics and the Automation Analytics API will be discussed. The
following chapter introduces the chart, and describes the research done on the charting
libraries and the chart dashboards.

The last three chapters describes the implementation of the plugin, including the unit
tests and the future development.

Tt = W N =

Chapter 2

Utilized tools

This chapter aims to introduce the tools used and the technologies required to understand
the program. The chapter will not describe the JavaScript programming language or any
of its revision.

2.1 Theory Basis

In 1991, the Hypertext Transfer Protocol (HTTP) foundation of the World Wide Web
(WWW) was introduced. Not long after, the Hypertext Markup Language (HTML) was
introduced. HTML elements are the building blocks of a structured document. These
elements and their nesting allowed the creation of the first static pages. With the introduc-
tion of Cascading Style Sheets (CSS), the ability to style the web pages has been extended.
However, the pages were still static and served rather representing a document rather than
offering any interactions with the user.

In 1995, Netscape, the dominating browser at the time, developed Mocha script. This
language, after a few changes, is currently known as JavaScript. JavaScript is a prototype
based, object oriented, interpreted scripting language. These three technologies together:
HTML, CSS, and JavaScript are the core technologies of World Wide Web content engi-
neering.

JavaScript was initially designed to write short scripts and sometimes behaved differ-
ently than the programmer would anticipate. Over time, it became the most used language;
however, it also has the reputation of being the worst programming language in existence.

let i = 1;

i + ||1|| = "11”;

i . ||1|| = O;

o+0-=r".

[0 + {> = "[object Object]"

Listing 2.1: Counter intuitive JavaScript example

JavaScript has no integer type. All numeric values are double precision floating points
(represented as numbers). This can cause unexpected behaviors when comparing two num-
bers. Also, the type NaN (which is not a number) is represented as a number. The loose
typing also can cause problems. Just to name a few: concatenating two empty arrays re-
sults in an empty string. Accessing an empty array element does not throw an error but
returns ,undefined“. The operator + and the operator - results in different types of values

when used with integer and string listing 2.1. JavaScript as C or Java uses semicolons to
divide lines. Not using a semicolon at the end of the line is not a problem, however, as it
fills them in. But in doing so, this can cause subtle bugs in the code.

JavaScript is highly dependent on global variables. Implied global variables are the most
problematic of them all. When JavaScript doesn’t find a name for a variable assignment,
it implicitly creates a new global variable. This makes it especially hard to detect typos in
the code. The language does not makes debugging code any easier with silently failing.

The last problem, which is becoming more and more relevant, is the asynchronous
programming. JavaScript’s callback functions are messy and hard to track. The scopes of
the functions are difficult to figure out. There are some new structures to solve this issue
(such as the Promise), however, they are not perfect solutions.

As mentioned above, sometimes unexpected and counter intuitive behaviour allows the
programmers to abuse the language. Therefore, libraries written in JavaScript often go
against good practices. Programmers abuse the language to write workarounds for various
problems. These workarounds are immensely complex and cumbersome to understand.

These problems were not so apparent before 2009. After introducing Node.js, a server
side JavaScript framework, and multiple client side user interface building frameworks, it
was used to manipulate smaller changes on the page and provided minimal interactions
with the site. These days, it is not a surprise when the whole page is written in JavaScript.
HTML and CSS have more and more become a part of the JavaScript program, rather than
the JavaScript scripts being an extension to the HT'ML page.

When looking at maintainability, a good code structure is necessary. JavaScript is a
typeless language, in that you don’t have to specify what type of information will be stored
in a variable ahead of time. Therefore, the developer has to understand the code very well.
Most of the libraries are thoroughly documented but the code itself is poorly commented.
The code should be well commented and structured in this project to be easily maintainable
later on.

To help solve the maintainability problems, there are superset languages for JavaScript.
The superset language means that the language compiles to JavaScript with additional
features. One of the most popular of these languages is TypeScript [18] from Microsoft.
TypeScript provides type checking, interfaces, and much more. On compile, it can check
the code structure and create warnings if it is not the expected one. For example, the class
member order can be defined or you could define warnings about logging and non-typed
variables. The comments can be made as obligatory as needed. It is true that defining the
comment section does not mean the code is properly commented, but at least it inspires
developers to do it. As a result, anyone working with the code has to follow these rules,
and they stay consistent and readable for the other developers.

2.2 Glossary

This section provides a glossary of terms and abbreviations to assist in the reading and
understanding of this thesis topic.

1. HTML DOM - (referenced simply as DOM) is a standard object model and program-
ming inter-face for HTML. It defines:

(a) The HTML elements as objects
(b) The properties of all HTML elements

(¢) The methods to access all HTML elements
(d) The events for all HTML elements

2. JavaScript - is a client side scripting language which is able to manipulate the DOM.
3. JSON file - stores data in JavaScript object notation.

4. CSS - describes how HTML elements are to be displayed on screen, paper, or in other
media. They consist of rules. These rules can be stored in separate CSS files.

2.3 React

React[12] is a JavaScript framework for building user interfaces and is developed by Face-
book Inc. This framework is declarative and component based. React also has an effective
re-rendering method.

2.3.1 State, props and Events

The state variable contains the components data. The difference between the props and
the states is that the props are passed to the component and they should not change it.
Unlike the state variable, which represents the state of the component, and the component
can change its own state, depending on a user’s input or other events. As data follows a
waterfall model to synchronize the data between the components, the closest ancestor has
to be found. This ancestor should store the data in question and it then becomes the ,jonly
source of truth®.

Event handlers help to modify the data stored in the child components in a one way
binding model and are passed to the child component. When the child component’s data is
changed, the passed event handler is called, which should modify the state which is passed
to the child as prop in the parent component.

2.3.2 JSX

JSX is a syntax extension for JavaScript and looks like HTML but accepts JavaScript
code. JSX elements are compiled to JavaScript expressions and objects. It is cheaper than
creating DOM elements; therefore, in React, all modifications are made on JSX elements
and React takes care of the synchronization with the DOM.

2.3.3 Rendering

It is necessary to specify at least one root element to render React content. The element
rendering is done with a render function in which it is necessary to specify the JSX element
(what to render) and the DOM element (where to render the defined element). When
updating an element, React updates only what is necessary in the DOM. Conditional ren-
dering is done with the help of JavaScript conditions, using if - then - else blocks. Making
it easier to decide which elements to render and which to not.

2.3.4 Components

There are two types of components: functional and class components. In the latest versions
of the React framework, functional components are pushed as the preferred style. Both

functional and class components have the same capability. The difference is in the code style.
While the class components use class methods and variables, the functional components use
hooks.

Hooks are basically functions, returning variables and other functions to modifying
them. The basic hooks supplied by the React framework are useState and useEffect. useS-
tate is for storing and modifying the component’s state. useEffect is for hooking into the
component’s life cycle event and firing functions on changes.

The user has the ability to write their own hook functions, since it is a function. The
user defined hooks can use other hooks as well, allowing them to bundle more complicated
logic into one function. Which results in quite elegant solutions.

2.4 TypeScript

As mentioned in section 2.1, JavaScript, like other languages, has its own quirks and odd-
ities. Since JavaScript was designed for quick uses and then grew into a full fledged pro-
gramming language, there are many of these oddities.

As an example, we could show the ‘=="‘ operator, which compares without type check,
and throws some very interesting but mostly counter intuitive results. Most other languages
would throw an error when trying to compare different types, whether at runtime or at
compile time.

TypeScript[18] is trying to fix some of these problems with JavaScript by introducing
types and static checking to JavaScript. At times, TypeScript can feel limiting for the
programmer; however, it is a superset to JavaScript. Meaning that it can do anything that
JavaScript can do. Typescript never changes the runtime behaviour of JavaScript code.

The next few sections will introduce a few crucial parts of the TypeScript language.
They will describe the basic types, classes, and functions. They should also provide enough
insight to understand the succeeding chapters.

2.4.1 Basic types

JavaScript[16], since ECMAScript 6, has had the ability to declare variables in four different
ways. The variables can be declared without a keyword before the variable, or with one
of the following three keywords: war, let, const. When a variable is declared without any
keyword or with the var keyword, the variable becomes a global variable, no matter where
it was declared. The var keyword allows users to declare a variable without an initial value.

The let and const keywords limit the scope of the variable to the current scope. They
also allow the of shadowing variables from other scopes, instead of rewriting them. In
addition, the const keyword requires the variable to be initialized with a value and prevents
changes to this variable. However, it does not prevents the mutation of the variable.

The basic types in Typescript correspond to the basic types in JavaScript, with an
addition of the enumeration type. The basic types are: boolean, number, string and array.
They all work as expected. Boolean accepts true or false values. Number accepts any
integer or float value, be it positive or negative. String accepts literals. For the array, the
programmer has to decide what type of variables it will hold and it will only accept that
type. The basic variable examples are shown in the listing 2.2.

1 let a: boolean = false;
2 let b: number = 42;
3 let c: string = "I am a string"

4
5

D O s W N

1
2
3

let d: Array<number> = [1, 2, 3];
let d2: number[] = [1, 2, 3];

Listing 2.2: Basic types in TypeScript

There is a more interesting type called tuple. It is basically a fixed sized array where
each entry can be of a different type. Enumerations does not exist in plain JavaScript. The
way TypeScript adds them is similarly to a map. Every name maps to a value (implicitly
to a unique number in that enumeration type).

There are two additional keywords: unknown and any. The type unknown comes in
handy when the type becomes dynamic context, like user input. The any allows any type
to be assigned to the variable, which is the default in plain JavaScript; however, using it is
not recommended.

The wvoid keyword is the opposite of any. It signals that there is no type at all, and
nothing should be returned. The types null and undefined are subtypes of all other types.
Not really usable by themselves.

And last, but not least, there is the object keyword. Object represents non primitive
types. Generally there is no need to use the object keyword, since the interface takes care
most of the non primitive types.

2.4.2 Interfaces

TypeScript focuses on the shapes that the values have. This is called sometimes ,structural
subtyping“. This role is filled by interfaces in TypeScript. They are a tool for defining
contracts inside the code as well as contracts external to the code.

interface PropType {
requiredValue: string;
optionalValue?: number;
readonly value: number;
[key: string]: any;

Listing 2.3: Interface example in TypeScript

Listing 2.3 shows a basic interface definition. It defines an object with one required key,
one optional key, and allows users to add any other key. This interface can be used in the
same ways as the types.

The interface also has a property labelled readonly. This keyword works similarly as
the keyword const for variables. It allows the property to be initialized when the object is
first created. Every other modification to this property would result in a compiler error.

There is a way to prevent arrays from mutating, too. It is achieved by creating the
array with the help of ReadonlyArray<type>, where the type is a valid type or interface.
Since this project does not use classes, this part will not cover the interfaces for classes.

Lastly is the indexables. It models a map where the keys can be numbers or strings.
This allows for the mapping of values to these indexes. In one map it is impossible to mix
keys with numbers and strings. The listing 2.4 shows an example of the indexable type.

interface IndexableType {
[index: number]: string;

}
Listing 2.4: Indexable interface example in TypeScript

© 00 N O Utk W N

— =
= o

o N O Ut = W N

2.4.3 Functions

Functions are the fundamental building blocks in JavaScript. They build up abstractions
and hide information. On top of that, React is pushing to replace all their classes with
functions; therefore, the functions are used instead of classes and namespaces most of the
time as well.

The TypeScript documentation focuses on the two approaches of the functions used
in JavaScript. However, with ECMAScript 6[16], a modification of the second approach
overtook most of the use cases. The examples and description provided here will focus
mainly on the arrow functions.

// Without types
const funcName = (param)

> {
return param > O;

}
// With types
const funcName = (param: number): boolean

Il
Vv
~

return param > 0O;

//Shorthand with types
const funcName = (param: number): boolean => param > 0;

Listing 2.5: Arrow function example

Listing 2.5 demonstrates a trivial arrow function. In the typed examples, it is shown
that every parameter has defined its type (one param is the type of number) and the return
value of the function (boolean in this case).

const funcName = (param: number, optional?: string): string => {

// Interface for the previous function
interface FuncType {
(param: number, optional?: string): string;

)

Listing 2.6: Arrow function with optional argument example

The listing 2.6 shows a function with an optional parameter. To declare the interface
for that function, we use an identical declaration. After an optional parameter no other
required parameters can follow. If the function can have more parameters passed to it, it
can be captured with ...rest: type[], where the rest is the name of the array where we can
access the parameters and the type is an existing type or interface.

In JavaScript, this is a variable that is set when a function is called. Because it is set
automatically, the user always has to understand the context in which the current function
is executed. In TypeScript, arrow functions allow us to bind the this variable to the place
where it was declared — not to the context where it is used. Furthermore, the this type can
be set in functions. This way the compiler can check if the variable has the correct type and
warn about it. Note that setting the this variable to void in functions makes it unusable.

Overwriting the function is done with multiple declarations. The compiler selects the
first matching functions, so declarations should go from specific to more generic.

2.4.4 Unions and Intersection Types

Intersection and union types are one of the ways in which a user is allowed to compose
types. For example, a parameter can either be a number or a string. The union type can
help by defining the type with a | character, as in: string | number. If two interface are
used in a union, it is possible to access members of the interface which are common to all
types in the union.

However, when using the union in a switch statement where the exact type can be
derived, the other fields become accessible as well. This is particularly useful for state
management and automation. It is called the discriminating unions.

To make the code more future proof, the compiler can be set to check for a strict null
return. This makes sure we covered all cases of a union in a certain switch block. When
there is no need to cover all the options, the default case should be used.

Intersection[18] types are closely related to union types, but they are used very dif-
ferently. An intersection type combines multiple types into one. This allows the adding
together of existing types to get a single type that has all the features. For example, Person
& Serializable & Loggable is a type comprised of Person and Serializable and Loggable.
That means an object of this type will have all members of all three types.

2.4.5 Classes

Typescript allows us to use an object oriented approach to classes where classes are inher-
iting functionally and objects are built up from classes. The inheritance is done with the
extends keyword and calling the parent method is done with super, like with Java.

Classes have private, protected, and public instances. When nothing is explicitly de-
fined, instances are public by default. Of course, the readonly option works here too. When
using readonly, the variables have to be set in the constructor.

TypeScript supports getters and setters. The assigning and retrieving values schematics
are the same with these functions, only there is a function where some advanced rules can
be defined. These functions are created with the keywords get and set. When extending
an abstract class, the child class must declare those abstract functions which do not have
definitions.

2.4.6 Generics

Generics allow users to write a function with not one data type, but with a variety of data
types. For this, there is a "type variable’ which works on types rather than variables. Once
set, the type variable can be used as another data type. The type in the function argument
can be set both explicitly and implicitly. Type variables can hold every kind of type which
is available for normal variables.

The type variable works similarly to functions in the generic interface. When creating
an interface, the type is passed. In classes, the type variable cannot be used to create static
members, otherwise it works like an interface.

If there is a need to constraint a type variable, we can extend an interface or class. This
ensures that properties defined in the interface will be available in the type and it will be
checked on compilation. Further constraints can be placed between two type variables. As
an example, the 'K’ type variable has to be the ’key of T’ type variable. This ensures that
whatever the "T” will be, the 'K’ will contain a key from it. The only restrictions are that
generics are not available for enumerations and namespaces.

10

2.4.7 Enumerations

Enumerations can be numeric, a string, or heterogeneous, but the last one is not recom-
mended. The numeric value of an element is initialized with 0 when it comes first and
it increments by one if it comes after an initialized value. They can be set to be com-
puted members, but after a computed member a constant value has to be set. The string
enumerations have to be explicitly initialized.

TypeScript provides reverse mapping to each enumeration, but if it is not desired then
a constant enumeration can be used. Another property of constant enumeration is that it
cannot have computed member. In ambient enumerations, a special case, the members are
always considered as computed, but we do not have to define them at initialization, just
later.

11

Chapter 3

Red Hat Ansible Automation
Platform

This chapter introduces the Red Hat Ansible Automation Platform. The chapter also
describes, in short, all the technologies which are important to understand the API which
is used in the Automation Analytics client-server communication. At the end of the chapter,
the Automation Analytics API is described in detail.

3.1 REST API and OpenAPI

A REST API [7] is a web service which uses the REST (Representational Transfer State)
architecture to handle a request. Applications on the World Wide Web that use the REST
APT are called RESTful applications. REST APIs use HTTP (Hypertext Transfer Protocol)
to process data requests. There are four types of request:

1. GET - to retrieve a resource from a database
2. POST - to create a resource

3. PUT - to update a resource

4. DELETE - to remove a resource

The OpenAPI Specification defines a standard, language-agnostic interface to RESTful
APIs which allows both humans and computers to discover and understand the capabilities
of the service without access to source code, documentation, or through network traffic
inspection. When properly defined, a consumer can understand and interact with the
remote service with a minimal amount of implementation logic [23].

3.1.1 OpenAPI Format and Structure

An OpenAPI document is itself a JSON (JavaScript Object Notation) object which can also
be represented in a YAML (,,YAML Ain’t Markup Language“) format. All field names are
case sensitive, except when otherwise stated. The schema contains fixed fields which have
a declared name and patterned fields which are declared with the help of regex (regular
expression) patterns.

The OpenAPI document can be divided into multiple parts. When it is not a single file,
the other parts of the document must be referenced in the $ref‘ object.

12

© 00 N O Ut ks W N

LW W W W W W W W RN NIEIDNINLININLIRNLDLD R = ke e e e
[T 3T E XN RS S ®I0 AR WNR, O © 010 Gk W~ O

The OpenAPI Specification (OAS) supports all primitive data types, which are sup-
ported by the JSON Schema Specification [25]. Namely: boolean, object, array, number,
and string. The OpenAPI Specification adds a format property to the primitive types. The
format property may be any required format not specified in the OpenAPI Specification. As
an example: if the field type is a ,,number*, but this number is a double precision floating
number, the ,format“ property can hold the keyword ,double* to make it explicit. Some
of the defined formats in OpenAPI are byte, binary, date, date-time, and password.

A very basic example of the OpenAPI document is showed in listing 3.1.

openapi: "3.0.0"
info:
version: 1.0.0
title: Swagger Petstore
license:
name: MIT
servers:
- url: http://petstore.swagger.io/vl
paths:
/pets:
get:
summary: List all pets
operationld: listPets
parameters:
- name: limit
in: query
description: How many items to return at one time (max 100)
required: false
schema:
type: integer
format: int32
responses:
200:
description: An paged array of pets
headers:
x-next:
description: A link to the next page of responses
schema:
type: string
content:
application/json:
schema: $ref: "#/components/schemas/Pets"
default:
description: unexpected error
content:
application/json:
schema: $ref: "#/components/schemas/Error"

Listing 3.1: OpenAPI example document

13

3.1.2 OpenAPI Object

The OpenAPI object is the root document object of the OpenAPI document. It can contain
several fields. The required fields are:

1. openapi - string representing the used OpenAPI semantic version number
2. info - an object providing the metadata of the document
3. paths - an object containing all the paths and operations for the API

There are other optional fields which are not listed here. Furthermore, the OpenAPI
object can be extended with extensions that are described in the OpenAPI Specification.

3.2 Automation Analytics

Automation Analytics, also referred to as Red Hat Insights for Red Hat Ansible Automa-
tion Platform, is an online service provided within the Automation Platform. [20]. The
Automation Platform allows for easily managing cloud infrastructures, including: systems,
hosts, instances, virtual machines, containers, or devices. Automation Analytics can be
used to analyze, aggregate, and report on data for the Automation Platform deployments
running in the user’s infrastructure.

Automation Analytics is a web application. Therefore, it runs in all four major browsers
with JavaScript enabled. With the release of the version 1.1.0, the Automation Analyt-
ics application can be divided into 4 bigger parts: visual dashboard for clusters and for
organizations, health notifications, automation calculator, and the job explorer.

RedHat

Automation Analytics | ciusters

Y Filter All clusters v Pastmonth v

g
2
g
S

Figure 3.1: Visual dashboard screen in AAA
Figure 3.1 shows the visual dashboard screen. The main parts of the dashboard are

the filter and the chart, which changes when filtered. The bar chart shows the failed and
successful job count by date through all clusters. If one specific cluster is selected in the

14

RedHat

1300)

866800806

18 20) 921 3 3) 102 104 106 108 1000 102 1024 106 o

Job Runs by Organization Usage by Organization (Tasks)

997 [e 350601
20 nozo
20 ez
20 626
7 1080
£ 1289

Figure 3.2: Visual dashboard for organisations screen in AAA

filter, the chart changes to a line chart with multiple lines. Each line represents successful
or failed jobs.

Figure 3.2 shows the visual dashboard for organizations screen. This part shows the
user different statistics across their organizations. The data is represented in pie charts and
a special grouped bar chart.

RedHat

Automation Analytics | Jobsexplorer

Vstatus v Filterbyjobstatus 2 v gnore nested workflows and jobs @

SortBy Cresteddescendng X Status Successfol X Foled X Type Werkfowjob X Plajbocknn X Date Lest30dwys X Clear allfilters
1-50121673 >
Id/Name [Status. Cluster Organization Type

> 39403 Cluster - Schedule Scan Job © Successhul jmarshall-clb-397232900us-west 2 lb.amazonaw... Cluster Mgmt Playbook run
> 39401 Cluster- Schedule Sean Job © Successiul jmarshall-elb-397232900us-west-2.elbamazonaw... Cluster Mamt Playbookrun
> 39399 - Cluster - Schedule Scan Job © Successiul Jmarshall-elb-397232900 s-west 2 elbamazonaw... Cluster Mamt Playbook run
> 39397~ Cluster - Schedule Scan Job © Successful jmarshall-clb-397232900us-west 2.lb.amazonaw... Cluster Mgmt Playbook run
> 324-Satlite Buid © Successiul 1082970 Defautt Playbookrun

1-50121673

ofazss > »

O

Figure 3.3: Job Explorer screen in AAA
Figure 3.3 shows the job explorer screen. This part of the application allows for the

filtering of clusters in real-time, or through historical data, to see where specific jobs are
failing or which job logs need further debugging. The queried data is displayed in a table.

15

The goal of this work is to allow the the data represented currently in the table to also be
represented as a chart dashboard.

= RedHat

Automation Analytics | Automation calculator

Automation savings Total savings

$14,225,992.60

Calculate your automation

Savings per template ($)

Templates

Ma f all hosts across alljob runs)) * cost per hour
tal elopsed hours for a template

Figure 3.4: Automation Calculator screen in AAA

Figure 3.4 shows the automation calculator screen. This screen gives an understanding
of what automation success looks like, how much time and money is saved by automating,
and converts automation job costs into real-world currency.

The health notification screen displays different kinds of information about clusters.
These notifications could be a warning about expiring clusters, a service outage, or too
many pending jobs.

3.2.1 Ansible Automation Analytics API

The Automation Platform API specification is not publicly available yet. The API is built
on the OpenAPI specification and currently offers thirteen endpoints. Some endpoints
have both a POST and a GET request, bit they are the always the same. To simplify
things, when both GET and POST requests are available, only the POST endpoints will
be described here.

The first endpoint is the /authorized endpoint. It takes no parameters and returns an
error message if the client is not authorized to use the API. If the user is authorized, it
returns an empty response and the status code 200 OK.

The other endpoints can be divided into two groups. The endpoints which return data
and the endpoints which return the valid options for their respective endpoints. All the
endpoints have the same query and request body parameters; however, the field values may
be different. The option endpoints always provide the valid values for their parameters
as well as for their corresponding endpoint for data. An example of one set of endpoints
is job__explorer, which returns data, and job__explorer_options, its corresponding options
endpoint.

The endpoints can have two query parameters: the limit and the offset. These two
parameters allow the user to paginate in the data. The maximum limit is 25. The other
parameters the endpoint accepts are passed in the request body. Such parameters are the:

16

org_id, inventory id, template id, quick _date range, start_date, end_ date, job__ type,
status, attributes, include others, group by, group by time and granularity. With the
help of these parameters it is possible to filter the data, or change the grouping of the data
in the endpoints for data, and they may change the valid options returned from the options
endpoint.

Format of the returned data from the option endpoints

The options endpoint returns an object where the keys are the attributes, which can be
passed to the request body. Fach of these keys holds an array of objects, which are the
options themselves. The option object consists of two attributes: the key and the wvalue.
The key holds the value, which the API accepts as a value in the request, while the value
is the user friendly representation of the key. Such an example is shown in listing 3.2.

© 00 N O Ut s W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

{

"group_by": [
{
"key": "cluster",
"value": "Cluster"
I
g
"quick_date_range": [
{
"key": "last_62_days",
"value": "Past 62 days"
Ir,
{
"key": "custom",
"value": "Custom"
+
g
"status": [
{
"key": "new",
"value": "New"
Ir,
{
"key": "pending",
"value": "Pending"
I
g

Listing 3.2: Example of the returned data from the options endpoint

17

Format of the returned data from the endpoints for data

The object returned by the endpoints contains four attributes. The response_ type attribute
is a string describing what is returned. The links attribute contains pagination links to the
first page, last page, next page, and previous page. The meta key contains an object with
additional information to the data, such as the count of the returned elements, and the
counts for each groups when the data is grouped.

The fourth attribute can be the dates attribute when the data is grouped by time or
the items attribute when the data is not grouped. The dates contains an array of objects
which has two attributes — date, which represents the value by which the data is grouped,
and the items array.

The items array contains objects which are the entries in the data. Each of these objects
always have an id, name, and the attributes which were specified in the request body under
the attributes parameter. An example of the returned data is shown in listing 3.3.

© 00 N O Ut s W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

{

"group_by": [
{
"key": "cluster",
"value": "Cluster"
X,
1,
"quick_date_range": [
{
"key": "last_62_days",
"value": "Past 62 days"
X,
{
"key": "custom",
"value": "Custom"
X
1,
"status": [
{
"key": "new",
"value": "New"
X,
{
"key": "pending",
"value": "Pending"
3,
1,

Listing 3.3: Example of the returned data from an endpoint for data

18

Chapter 4

Charts

This chapter introduces the charts and charting dashboards. Furthermore, it discusses
the existing solutions, their strengths, and their shortcomings. It also details the required
features of both the charting library and the chart dashboard. At the end of the chapter,
the reader should have a strong understanding of what the final solution should be capable
of and what differences it has when compared to other charting dashboards.

4.1 Charting Library

The charting libraries main task is to turn data into charts. These charts usually display
data in two dimensions. There are different types of charts. The most widely known and
used charts are line charts, pie charts, bar charts, histograms, and their variations. There
are of course a wide range of other chart types, like the radar chart, but they are not
important for understanding the charting libraries [24].

Figure 4.1: Line chart example

4.1.1 Type of charts

Line charts show continuous data over time. They consist of points which are connected,
and of an x-axis and a y-axis. Usually, the x-axis represents the time variable. They are
used to show trends and to help with predictions. Another usage of the line charts is to
compare multiple variables over the same time period. Figure 4.1 shows an example of the
line chart.

Bar charts display categorized data in the form of bars. The x-axis represents the
category, while the y-axis represents the measured value. The width and height of the
bars are proportional to the data they represent. They are ideal for comparing large data
changes over time or comparing differences between multiple categories. Figure 4.2 shows
an example of the bar chart.

19

Axis title

Figure 4.2: Bar chart example

100

©
o

o}
o

N
o

N}
o

03/24 03/26 03/28 03/30 04/01 04/03 04/05 04/07 04/09 04/1 04/13 04/15 04/177 04/19 04/21

Figure 4.3: Stacked bar chart example

The stacked bar chart is a variant of the bar chart. It can split each bar into multiple
smaller bars on top of one another. The stacked bar chart can display multiple measured
values of a category. An example is shown in fig. 4.3.

category 3: 12.50%

category 1: 50.00%

category 2: 37.50%

Figure 4.4: Pie chart example

Pie charts are great at displaying numerical proportions. Each slice’s size is relative to
the size of a particular category in a given group as a whole. Figure 4.1 shows an example
of the pie chart.

The legend is one of the most significant parts of the chart. It shows which colour
represents which category and gives additional information about the displayed data. This
information can be an exact value of the measured data or any other calculated measure-
ment. An interactive legend can allow the user to change the displayed data in the chart.

20

4.1.2 Required features

Automation Analytics uses the React framework and the TypeScript superset language.
This fact is taken into consideration when searching for charting libraries to be used within
Automation Analytics. The library should be easy to use within the React framework.
The typing information is a bonus, as it would allow for static type checking of the used
components from the library. When looking at a charting library, there are additional
criteria to evaluate them by.

The first, most obvious criterion is the capability of the charting library. Automation
Analytics requires that the charting library be capable of drawing at least a bar chart, a
line chart, a stacked bar chart, a grouped bar chart, a multi-line chart, and a pie chart.
The labels for each axis and the data should be customizable, and the scales of each axis
should be modifiable.

The library should have an option to select colour options for the represented data set.
It should also provide per data point colour options, which would allow colouring some
parts of the chart differently from others. The next required functionality is to have an
on-hover help toolbar option with an on-click handler for each data point represented.

For future development considerations, a nice feature would be having multiple charts
under each other with the same values on the x-axis while representing different data. Then,
in these charts, the on-hover option would fire the on-hover effect on both charts. Having
some kind of ,portal“ functionality is not a hard requirement, rather a welcomed addition.

Web pages in our current era are highly responsive and it is often a requirement that
the page be usable on a range of displays from 4K monitors to smartphones. Therefore,
it is important that each component of the page is responsive. Most of the charts are
just generated images, which are, by definition, not responsive. The library which handles
resizing charts internally would be favoured.

Obviously, the interface of the library will play a key role. It is important that the
library’s interface is easy to use and well documented. The interface should be modular
while following good practices for a React application.

A well-known problem of JavaScript libraries is the dependency tree. The more depen-
dencies a library has, the more active the maintaining team has to be. It can also introduce
a problem when trying to use libraries with different versions of the same dependencies.

For cases where a library does not meet expectations, the library should be updated
and extended. Because of this, the library should be open source, actively maintained, and
have a responsible team behind it.

4.1.3 Existing charting Libraries

There are several charting libraries out there. This section analyzes the most popular charts
for the React framework. The popularity behind them gives a basic level of assurance
that the library is usable and maintained. The three most popular charting libraries are:
Rechart, Victory, and Nivo

Recharts

Recharts[11] is a charting library built on top of D3 (Data Driven Documents). Recharts
charts are built with the help of reusable React components. The charts are composed
SVG elements. The customization is done with tweaking component props and passing in
custom components. The listing 4.1 shows a basic example of the chart hierarchy.

21

1
2
3
4
5
6
7
8
9

<BarChart width={730} height={250} data={datal}>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="name" />
<YAxis />
<Tooltip />
<Legend />
<Bar dataKey="pv" fill="#8884d8" />
<Bar dataKey="uv" fill="#82ca9d" />
</BarChart>

Listing 4.1: Recharts Bar chart example

The top level component is the responsive container which takes care of the resizing.
This component is not required. Then, there are a variety of chart components: area chart,
bar chart, line chart, pie chart, radar chart, scatter chart, funnel chart, and treemap. This
chart component, most importantly, has the data passed to it. Also, this component can
have some customizations like margins, width, and height.

All the other customization is done in the child components. The part of the chart,
the axes, the legend, and toolbar are passed as a child component to the chart component.
For example, to create a grouped bar chart, two bar components have to be passed to the
corresponding chart component. The same applies to the other types of charts, too.

The axis component can have a nested label component for creating and customizing
labels. There is an option for passing a label to the bar and line components too. This
option allows labelling inside the chart.

The library also has the ability to draw different shapes in the chart. These components
need the coordinates where they should be drawn. There is an option for passing a custom
component to the chart; however, this option is not documented in more breath.

The library has 10 dependencies and two peer dependencies. On their GitHub page[14],
there are lots of open issues and they are actively searching for contributors. This indicates
that, even though the library is actively maintained, they do not have enough resources to
keep up with new demands.

The documentation is readable and has multiple examples. One of its shortcomings
is that there is no existing documentation on the topic of how to create custom wrapper
components.

Victory

Victory[9] is a set of modular charting components for React and React Native. The library
makes it easy to get started without sacrificing flexibility. Victory styles and behaviors are
fully customizable. The components are highly modular and the library has no dependen-
cies.

22

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<VictoryChart
domainPadding={20%}
>
<VictoryAxis
tickValues={[1, 2, 3, 4]}
tickFormat={["Quarter 1", "Quarter 2", "Quarter 3", "Quarter 4"]}
/>
<VictoryAxis dependentAxis />
<VictoryBar
data={data}
x="quarter"
y="earnings"
/>
</VictoryChart>

Listing 4.2: Victory Bar chart example

The listing 4.2 shows the basic concept of the charts. First, the chart component has
to be defined. It is responsible for the generated SVG image without the elements in it. It
has different props like padding, margins, or dimensions. The other elements to the SVG
are added within the child component.

The library supports line, bar, and pie charts, vornoi diagrams, and histograms. Addi-
tionally, it has components for stacking and grouping the charts. This allows the combina-
tion of multiple charts into one. Each of the components has its own props for customizing
the look of the SVG element. The components also have options for events and the charts
support animations.

The axis component is the same for both of the axes. The axis component allows the
specification of the domain, tick values, formatting, and more. If not specified, the default
value for the domain comes from the data passed to the charts.

The library legend component can be used to display the legend. To move the legend
around, the positioning props x and y can be used. The legend functions as a standalone
box, so it can be placed anywhere. The charts also can have labels. When the labels need
to be customized, a label component can be passed to the chart component.

If the components from the library do not provide enough customization, there is always
an option to write a custom component and use it. On one hand, writing custom compo-
nents is not trivial; however, on the other hand, it has to render its own SVG elements. All
in all, it is a great feature.

The GitHub[15] page confirms that it has no dependencies. The library has a broad
user base, few maintainers, and lots of contributors. It has a larger issue backlog, but most
of them are questions.

Their documentation provides good examples of usage. The examples are interactive
and the props are explained well.

Nivo

Nivo[1] is built on top of D3 (Data Driven Documents) and Reactjs. Each Nivo chart is a
separate component. These components are highly customizable with the help of a variety
of props. Nivo charts do not use component hierarchy for customizing the charts. The
listing 4.3 shows a basic bar chart example.

23

1
2
3

© 00 N O Ut

10
11
12
13
14

const keys = [’hot dogs’, ’burgers’, ’sandwich’, ’kebab’, ’fries’, ’donut’]
const commonProps = {
width: 900,
height: 500,
margin: { top: 60, right: 80, bottom: 60, left: 80 },
data: generateCountriesData(),
indexBy: ’country’,
keys,
padding: 0.2,
labelTextColor: ’inherit:darker(1.4)’,
labelSkipWidth: 16,
labelSkipHeight: 16,
+

<Bar {...commonProps} />
Listing 4.3: Nivo Bar chart example

Nivo has multiple packages. The ’core’ package provides the core functionality. Then,
another package has to be loaded with the exact type of the chart. Each chart has a large
amount of props through which the given chart can be customized. There are common
options like width, height, and argins. Each chart has a responsive version, too.

The on-hover can be turned on and off from the props. It can display one value or a
range of values. The colour options of the chart support different colour schemas or exact
colours. The props allow four different axis representations on the four sides of the chart.
Each axis can have its own label, scale, and range.

Most of the items have an effect object, in which different event handlers can be set
as on-click or on-hover. The legend has a variety of styling options, including dimensions,
position, and padding. Labels can also be displayed inside the chart.

The library supports a range of animations for the charts and translations between data
sets. What is different in this library is that the grouped bar chart and the stacked bar
chart is the same bar chart, but that the group option has to be changed accordingly.

From looking at the Nivo repository[13], we can see that it has twelve dependencies
and heavily relies on D3. The library seems to only have one active maintainer and a few
contributors. While the library is actively maintained, there is a long backlog of issues
waiting to be solved.

Their documentation is extensive and interactive. Sadly, the library does not allow
custom components or more in depth customization.

4.2 Chart Dashboard

A chart dashboard is a page where multiple charts are displayed. These charts usually
contain data which are in some sense connected. The chart dashboards are great at showing
a huge amount of data to the user. It can be used to visualise the same data in different
types of charts or, on the contrary, visualise different data in the same chart format.

The dashboards allow a broader understanding of the monitored data displayed in it.
The user then may make assumptions or deduce useful information from the variety of
charts. However, displaying information in a bunch of charts is not enough. This informa-
tion should be curated, useful in the context, and has to be visualised in an appropriate type
of chart. Otherwise, the information could be hard to understand or completely misleading.

24

In some cases, these chart dashboards are set up by a group of experts, especially if
the data is presented to users who are less knowledgeable in the given field. However, in
some cases, the user has enough knowledge of the given field and may want to customize
or change the format and the displayed data in the dashboard. Therefore, the dashboard
needs to be able to accept user input.

These inputs from the user can be a variety of displayed attributes: changes in the data,
the option to change the chart’s type, changing the data source, adding or removing charts,
reorganizing the charts, and much more. These dynamic chart dashboards should expose
these options in the most user-friendly way. Most of the use cases for these custom chart
dashboards are utilized by non-programmers, so the user interface should adjust.

The rest of this section analyzes and takes inspiration from similar existing solutions.
Thus establishing ideal requirements for the dashboard.

4.2.1 Existing Chart Dashboards

When searching for some kind of chart dashboard, there are two well known web applications
which have chart dashboards — Chartlog and Grafana.

Chartlog

Chartlog[5] is an analytics and journaling platform for active day traders. The software is
browser based. An account is needed to try out Chartlog; therefore, all the information
provided further is gained from external review|[22].

The software does not currently have fully customizable chart dashboards. It provides
different types of charts with predefined data-sets. The user has some options to set the
colours of the chart, and change views, which display different charts. Chartlog relies heavily
on line charts and multi-line charts as the data they display is mostly time dependent and
continuous. The software is also using a bar and a box chart. The charts show a small hint
window when hovering on the data point in the chart. These hints show the exact value at
that point.

Chartlog is a piece of software which relies heavily on graphs but it does not provide
any means to the user to truly customize and build a chart dashboard.

Grafana

Grafana[l7] is a multi-platform open source analytics and interactive visualization web
application. It allows the user to connect external data sources from various web services.
Grafana has a huge variety of charts and styles for each chart. The charts are highly
customizable, as is the data they are representing.

The user can create multiple chart dashboards and save them. The charts can be
reordered on the dashboard as well as resized. It can be done easily by dragging the window
or the corner of the window around. The fig. 4.5 shows an example of the dashboard with
five different charts on it.

Hovering on the charts creates a tooltip window next to the cursor, displaying the exact
values of the data point. The line charts have a coloured area under them and the hover
works even when the cursor is in this area. This makes it less painful to hover over the line
chart.

The tooltips are also interactive. They display the colour and the name of the measured
value, but clicking on them hides all of the other values from the chart. The top of the

25

Memory / CPU

client side full page load

Figure 4.5: Grafana Dashboard Example

charts have a dropdown menu which allows additional views of the chart. The first one is
a simple view, which opens the chart on full screen.

The second option is the edit. The edit option opens up a new window, which the
chart is the part of, but which includes many panels and options from which to choose.
Figure 4.6 shows these options. Right under the chart there are three main options: query
the data endpoint, transform the dat,a and to set up alerts. The query allows users to select
the endpoint from which the chart will retrieve the data. Additionally, there are various
parameters which can edit the query, like maximum value, time frame, interval, and so
forth.

& Grafana Play Home / Edit Panel

client side full page load

m’} . I
oo -
1830

1835

1840 1845 1850 1855 190 1905 1910 1915
m 8 Aert

8 query

Figure 4.6: Grafana Edit Chart Example

When setting up an endpoint, the query panel shows the options for the series. Here, the
user can select the attributes to display in the chart, along with some predefined functions
which can modify the data structure, so the chart can display it correctly.

The visual customization of the chart can be found in the right panel. The first chart
customization item is the settings, where the title and the description of the chart can be
set. The next menu item is the visualization. Listed under this item are all of the different
types of charts. The display menu item has all the customization options for the body of

26

the chart. The graph has the option to display bars and lines in the same chart. When
lines are enabled, there are additional options to fill the area under the lines, to set the
transparency, and the width of the lines. The tooltip options are limited to show one series
in the tooltip or all of them.

Under the axes menu item are options to customize each of the axes. Users are able to
set a unit, scale, minimum value, maximum value, and label for each of the axis separately.
The x-axis can be set to display different data type: time, series, or a histogram.

The legend can be customized under the legend menu item. It offers a visual customiza-
tion of the legend, along with the ability to choose the placement of the legend. The legend
can be displayed under the chart or next to it. There are options to show additional data
in the legend as the minimum, maximum, and average of the displayed series.

4.2.2 Required features

The chart dashboard should be customizable by the user. Therefore, part of its interface
should allow the user to configure it. There are two configurable parts — the data source
and the visualisation options.

The data source should be composed of two parts — the source and the parameters.
For each source, there are different sets of allowed parameters and allowed values of these
parameters. The user should not be able to select an invalid configuration. To achieve this,
the user interface should not allow the user to create this configuration.

The visualisation options directly affect the shape of the displayed data. The first
obvious option is to select which type of chart should be used for data visualisation. Then
the user should be able to selects which attributes of the received data should be visualised
and in which part of the chart.

Depending on the selected data type, the user can get a single series or a multi-series.
The single series data can be viewed by time or by some other attribute. When the single
series data is grouped by time, then it is expected that the data should be visualised by
time, meaning that time will be showed on the x-axis. Then the data can be visualised by
a simple line, bar, or area chart. However, if multiple attributes are needed to be visualised
from the data set, the stacked chart can be used. When the single series is grouped by
something else than time, a more appropriate chart to display the data in is the pie chart.
Multi-series data is expected to be grouped by time and some other attribute. To visualise
multi-series data, a grouped bar chart should be used.

Then the user should be able to select and assign different colours for different attributes.
Another important step in the customization is setting the labels and the title of the chart.
The title and the labels are crucial to understanding the data displayed in the chart.

The chart dashboard should allow the user to interactively compose his charts. This
would mean that the edited chart is updated every time the user changes a value in the
configuration. The user also should be able to add multiple charts and be able to remove
or edit added charts.

27

Chapter 5

Design and Implementation

This chapter describes the three main components of this library as well as the develop-
ment setup for the project. For each component, its features and restriction are described
along with their interface. This chapter provides a good understanding of the usage of the
components as well as the data structure they need, and the challenges which were solved
during the development.

5.1 Utilized libraries

In the section 4.1.3 the existing charting libraries were analyzed in depth. Nivo unfortu-
natelly has only one mantainer and a long backlog of issue which can be limiting when
changes are required from the charting library. This leaves open the two other options:
Victory Charts and Recharts. They are similar to use and they have very similar function-
alities.

The choice of using Victory Charts over Recharts is affected by two factors: Rechart
is using D3 (Data Driven Documents) for chart rendering, which is a heavy library, not
optimized for React, leaving the charts hard to test. The other reason is the existence of
the Patternfly Charts, which is a thin layer over the Victory Charts. Patternfly Charts is
reexporting the Victory Charts while giving a default styling to the charts. This design
mostly aligns with the AAA design guide. This makes the resulting chart rendering library
more lightweight as it does not have to deal with designing each of the components.

5.2 Data Driven Chart Rendering

One of the most complicated and most important parts of the project is the ability to render
a chart from a schema. This component has its own input into the schema of the charts,
along with an object containing functions, and generates the described charts.

The section discusses the features and the limitations of the library. It also dives into
the interface of the library, describing the schema and the function object in more depth.
The data fetching subsection discusses the issues with the current data format returned by
the API and the parsing of this data. Toward the end, the structure of the components is
described, along with the explanation behind each important trade-off and decision.

28

5.2.1 Features, limitations

The chart renderer is capable of rendering the following charts: line chart, bar chart, area
chart, scatter chart, and pie chart. Additionally, with the exception of the pie chart, the
chart renderer is capable of rendering grouped charts and stacked charts. Both the grouped
chart and the stacked chart support grouping and respectively stacking different types of
the chart. The stacked bar chart and stacked line chart examples are shown in fig. 5.1.

Moob @ O
S © o o o

Jobs across all clusters

02/28 03/02 03/04 03/06 03/08 03/10 03/12 03/14 03/16 03/18 03/20 03/22 03/24 03/26 03/28
Date

Job runs
w
o

02/28 03/02 03/04 03/06 03/08 0310 0312 0314 0316 03/18 03/20 03/22 03/24 03/26 03/28
Date

Figure 5.1: Stacked bar and stacked line chart

Stacked and grouped charts

Stacking charts where the two charts are using the same single series requires the schema to
explicitly define the charts. This means that there is no option to render a variable amount
of charts from a single series. The same limitation is applicable for the grouped charts.
Dynamic chart generation is possible when the received data is a multi-series. In this case,
a chart can be rendered for each series from a template. Then, each chart receives one
series from the multi-series and the count of the series matches the count of the rendered
charts in the group. This feature is useful when the user wants to set their custom limit
for the API call. An example of a chart generated by the template is shown in fig. 5.2.

@
=]

W No Name

organization_0
B organization_]
I | organization_3
27 Others
sl o 0 o 0 s H = NV & | N = BN

03/16 0317 03/18 03419 03/20 03/21 03/22 03/23 03/24 03/25 03/26 03/27 03/28 03/29

=]
=1

w
=}

Jobs across organizations

Date

Figure 5.2: Dynamic grouped bar chart

The following feature is also connected to chart rendering. When rendering a grouped
bar chart, each bar chart has to have its own width and the group itself has to have the

29

offset for spacing the charts. The chart renderer is capable of calculating both the width
and the offset for the bar charts. Since the dynamic rendering is not applicable for the
stacked bar charts, the offset for the bar stacks has to be specified in the schema. If only
one bar chart is being rendered, the chart renderer is capable of setting the offset again.

Legend

The most integral part of the charts is the legend. The chart renderer can create legends
for the charts. From the limitations of the used charting library, the legends can be located
below the chart or on the right side of the chart. In either position, it is possible to orient
the legend horizontally or vertically. The legend then has a colour and a name, which aligns
with the chart colors.

organization_0
Mo Name
organization_]
organization_3

27 Others

Figure 5.3: Pie chart with interactive legend

A really useful feature for the chart renderer is the capability to render an interactive
legend. By setting one boolean value to true, the legend becomes interactive and, when
clicked, the chart renderer hides or shows the associated series to the legend entry. This is
illustrated in the fig. 5.3.

The implementation here is limiting. While having a mutli-series, the chart renderer
toggles a whole series to hide or show a chart. In the pie chart, the legend toggles entries
in the series to hide or show that value in the chart. However, when using a single series
in multiple charts, like a stacked chart with a single series, there is no deterministic way to
get which attributes should be hidden or shown; therefore, the interactive legend will not
work.

By default, the PatternFly 4 Charts comes with helper functions to make creating the
interactive legend easier. However, their implementation does not work in some cases, like
with the pie chart. After some discussions, the PatternFly team will consider changing the
event handling for their helper function. In the meantime, the interactive legend is custom
implemented in the library using the basic Victory Chart events functionality.

Hover and click event

When hovering the mouse over a chart entry, the user may want to see additional informa-
tion or more exact values tied to that point. The chart renderer supports these tooltips in
two different forms.

30

The first format is to display the tooltip for a single value, when hovering over a specific
point in the chart. This mode is useful when having lots of charts grouped together. In the
schema, it can be generated automatically by specifying the attribute name it should display
in the tooltip, else a custom function can be passed for advanced styling and processing.
This function receives all the data associated with the concrete point in the chart. A
renderer example of this tooltip is fig. 5.4.

]
]

o)
o

60

IN
o

N
o

Jobs across all clusters

||||||||||||m|||||||||

02/28 03/02 03/04 03/06 03/08 03/10 03/12 03/14 03/16 03/18 03/20 03/22 03/24 03/26 03/28
Date

Figure 5.4: Stacked bar chart with a single value tooltip

The other option is to enable the tooltip for the chart wrapper. The tooltips are still
defined for each chart, but, when hovering over the chart, the displayed tooltip contains all
the chart tootlips over the x-axis. This tooltip is shown in the fig. 5.5.

Failed: 24
ha Successful count: 53

Job runs
[RENEN
o o

%

2>

02/28 03/02 03/04 03/06 03/08 03/10 03/12 03/l4 03/16 03/18 03/20 03/22 03/24 03/26 03/28
Date

Figure 5.5: Stacked line chart with a tooltip

The most important event the chart can have is an on-click event. This is useful for
drilling down into the data entry. Multiple on-click functions can be defined for the chart
builder. Fach chart, defined in the schema, and can have its own function for handling the
on-click event. These functions receive all the data tied to the entry of the clicked point in
the chart, as well as all the data tied to the on-click event in the browser. This allows the
developers to have full control over what should happen when a click event is fired.

5.2.2 The interface

The interface consist of two objects. The first object is the schema of the chart and the
second is an object containing functions. The need of the functions object is tied to the fact
that the schema will be stored in a server-side database. This means that, in the schema,
functions cannot be stored. However, there is a need for passing functions to the chart,
which will be discussed later. One use case for these functions is on-click events or axis
formatting. The chart rendering components take a functions object as it input and these
functions are referenced in the schema by their name and are stored as a string.

This approach also increases the security of the code. Since the schema will be composed
by the end user, the ability to inject a function into the code would extend the customization

31

capabilities of the component. At the same time, it would also allow the user to inject and
execute malicious code.

To avoid the security risk just described, the functions object is not exposed to the user.
It is up to the developer to write their custom function and then give the user the ability to
choose from these functions. This ensures that the only one who can write executable code
is the developer, while keeping the customization on a high level. This also means that the
developer does not depend on the library when new functions are required on their side.

Schema

Using TypeScript[18] has clear advantages when creating an interface. When creating the
schema for the chart, the interface can be defined using the type, interface, and the enum
features from TypeScript. This allows other developers to know exactly what type(s) and
what structure is needed as an input for the chart renderer. This section only describes the
types in the schema which are needed for the chart renderer to function. The structure of
the required data from the API is described in section 5.2.3.

The schema is an array of objects. The top level objects describe chart elements. By
default, there are two types of elements:

e Top level chart elements, like chart wrapper and pie chart. These elements have to
fetch the data, handle resizing, and they have no parent.

e Child chart elements, like grouped chart or simple charts. These elements always have
a parent.

There are three common fields for all top level objects in the schema — id, kind, parent.
The id is an unique id of that element. This id is used for reference in the parent field to
indicate the parent-children relationship. The kind property indicates what type of chart
element the object is describing. The kind property can have currently four values:

o wrapper - indicates that the object is a top level chart element without a parent and
also indicates the presence of a new chart.

e group and stack - these indicating ,,middle level“ elements. These types usually have
more than one child and they are grouping or stacking them. Their parent is always
a wrapper.

e simple - this indicates that the object is describing a simple chart element. This
element can render different types of simple charts — one series visualised in a line,
bar, area, or scatter chart. The simple object’s parent can be both the wrapper or
the group/stack elements.

All elements also have a props field, which is different for each element. This field is
directly passed to the component which is rendered from this object as its props. This allows
the developer to have full control over the component. The prop field is overwritten only
in cases where a prop could break the chart renderer. A basic stacked bar chart example
is shown in listing 5.1. In the example, the ChartKind and the ChartType are imported
constants from the library.

L

id: 1000,

32

© 00 N O Ut

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

kind: ChartKind.wrapper,
type: ChartTopLevelType.chart,
parent: null,

props: {
height: 300
3,
xAxis: {
label: ’Date’
X,
yAxis: {
label: ’Jobs across all clusters’
X,
api: {...}
X,
{
id: 1100,
kind: ChartKind.stack,
parent: 1000,
props: {}
X,
{
id: 1002,
kind: ChartKind.simple,
type: ChartType.bar,
parent: 1100,
props: {}
X,
{
id: 1001,
kind: ChartKind.simple,
type: ChartType.bar,
parent: 1100
props: {}
3,

Listing 5.1: Simple stacked bar chart schema

In the example listing 5.1, the api field is hidden. This object describes the API end-
point, which returns the data the chart renderer uses to populate the charts. The interface
is straightforward, it has a url field, which points to the endpoint, and a params field, which
is a key-value object passed directly to the API in the POST request body. The data which
is received from the API is converted into a more robust structure, which is described in
the section 5.2.3.

The axes of the chart are described on the wrapper object as is shown in the listing 5.1.
The x and y axis are defined separately. Each of the axes can have a label, which shows up
as text next to the axis. The axis fields are aligned with the Victory Chart’s axis props,
with one exception. The tickFormat field controls how the axis values should be formatted.

33

© 00 N O Ut ks W N

—= e = s e
T W N = O

© 00 N O Uk W N

— =
= o

In the Victory Chart library, this prop is a function; in the schema, it is a function named
as a string and should exist in the functions object passed to the chart renderer.

The tooltip can be defined on two levels. If the tooltip should be individualized for
each chart, then it has to be defined in the simple chart element. The tooltip field accepts
the type of the tooltip. Right now, only the default tooltip is supported, which creates a
tooltip with ’Label: value’ format. This component can be customized by passing options
in the props field. These props are passed directly to the tooltip component. To further
customize the tooltip, labelName can be set. This changes the label part of the tooltip.
The customFnc can be used to generate a custom tooltip content from the data. When it
is passed, it takes precedence over the default 'Label: value’ format. This type of tooltip
for a single chart is shown in listing 5.2.

id: 2,

kind: ChartKind.simple,

type: ChartType.line,

parent: 1,

tooltip: {
type: ChartTooltipType.default,
props: {...},
labelName: ’custom name’,
customFnc: null

X

3,

Listing 5.2: Schema for a single tooltip on a line chart

The other type of tooltip approach is to combine all the tooltips over a point on the
x-axis and display all the tooltips at once. This tooltip can be achieved by defining the
tooltip on the wrapper component. The chart components can still be customized in the
same way as before, but they will be rendered under each other in one tooltip. The tooltip
field on the wrapper can have a customFnc, which behaves the same as on the single chart
tooltip. There is one customization option right now and that is the cursor field. If set to
true, the chart renders a horizontal line in the chart, following the mouse, and displays the
tooltip next to it. A basic example of the chart tooltip with the enabled cursor option is
demonstrated on listing 5.3.

[

id: 1,
kind: ChartKind.wrapper,
type: ChartTopLevelType.chart,
parent: null,
tooltip: {
cursor: true

b

34

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

© 00 N O U ke W N

— =
w N = O

Listing 5.3: Schema for the wrapper tooltip

The legend has to be defined on the wrapper component. The two required fields for
the legend are position and orientation. The position can be bottom or right, while the
orientation can be vertical or horizontal. An optional field is interactive, which is set to
false by default. When set to true, this makes the chart legend interactive and clicking on
the legend entry toggles the series in the chart. A simple example is shown in listing 5.4.

14

© 00 N O U ke W N

[y
o

Listing 5.4: Simple legend example

The on-click function is passed to the simple chart as a string, representing a function
name. After that, a function from the passed functions object should have a function with
the same name.

Functions

The functions object is much more straightforward than the schema object. The idea is to
have a key for each type of functionality and that these keys hold another object, where
the key is the name of the function and the value associated with the key is a JavaScript
function. This format is readable for developers, easy to work with, and really easy to
extend.

Currently, three types of functions are used in the chart renderer. The onClick key is
for the functions which can handle on-click events. The azisFormat key contains functions
for formatting the axes, like transforming dates, or converting high and low values to more
readable formats. The fetchFnc key holds a single function. This function is used to
fetch the data from the API. This function allows greater control over the data fetching.
Especially useful when the application has to authenticate before the fetch can be made.

const functions = {
onClick: {
’doNothing’: () => {},
’myFunction’: (data) => { console.log(data); }
b
axisFormat: {
formatDateAsDays: (i) => (i && i.split(’-’)[2]);
I
fetchFnc: (url) => fetch(url);

Listing 5.5: Example of the functions object for the chart renderer

In the example listing 5.5 four functions are defined, two for the on-click events, one for
formatting the axis, and one for the fetch function. The supplied functions are using the
arrow function format, but any kind of function can be supplied. If the ‘myFunction‘ is to
be executed when a chart element is clicked, then it must be saved in the schema under the
string ‘myFunction‘ in the appropriate field. Then, the chart renderer will search for this
function and call it with parameters for the on-click event. Since JavaScript has no type
checks, the function can accept fewer parameters than is passed to it.

The chart renderer component ships with a few predefined functions. They can be
imported to the code and then modified, or just passed to the chart renderer.

5.2.3 Data fetching from the API

Developing the API is not part of this scope of work and is handled by other people. This
means that the chart builder needs to use the API that is made available to make the
component usable for Automation Analytics and accommodate any changes made to the
API. The current API which supplies the data to the chart renderer is still missing some
features, which will be further discussed at the end of this section.

36

© 00 N O Utk W N

e e
=~ W NN = O

0 N S Ot = W N

The basic schema of the API is described in Section 3.2.1. To be more readable, the
returned objects from the API will be organized by charts.

Single series

The most basic structure is a single series, which can be visualised via line, bar, area, and
scatter charts. The object contains an items array. The items array contain objects, such as
where the created__date is usually on the x-axis, and other attributes that can be visualised
on the y-axis of the chart. This also allows for the composition of a stacked or a grouped
chart, where we display two attributes in two different charts, in the series with just one
call to the API. An example of this type of object returned by the API can be found in
listing 5.6.

{
items: [
{
successful_count: 34,
failed_count: 34,
created_date: "2021-02-23"
} Aq
successful_count: 60,
failed count: 24,
created_date: "2021-02-24"
I
]
}

Listing 5.6: The single series object returner by the AAA API

The pie chart uses also a single series, but no is date supplied, just the attributes. This
means it should be handled differently when rendering; however, from the fetching and
parsing perspective, it is still the same as the previous single series.

Multiple series

The other type of series that the API can return is the multiple series. This happens when
the data is grouped by an attribute. This kind of data can be visualised perfectly in a
grouped bar chart. There is an example in the listing 5.7. It is basically what it says, a
single series nested inside another array. The extra information outside of the series is the
attribute by which the data is grouped. In the example, the series are grouped by date
(time).

{
dates: [
{
date: "2021-03-11",
items: [
{

total_count: 12,
total_org count: 1,

37

10
11
12
13
14
15
16
17

© 00 N O Ut ks W N

e e e
DD UL A W N~ O

17

id: 1,
name: "organization_2"

g

Listing 5.7: The multi series object returner by the AAA API

Parsing

The charts require a different format of data than the API returns, therefore all the data
received from the API has to be parsed. Additionally, there is some extra information
that needs to be stored. This extra information is a hidden field, which is required for the
interactive legend, and a name field, which contains a unique id for the chart that displays
the data. This data structure is described in listing 5.8.

{
data: [
{
serie: [
{
attrl: valuel,
attr2: value2,
Irg
e
hidden: false,
name: ’unique-string-identifier’
I
]
}

Listing 5.8: The internal data structure for the charts

As it is shown in listing 5.8, the data is always an array of the series. This means that
even if the API returns a single series, it is stored as an element of the data array. This
step unifies the data structure for any data returned from the API and enables the data to
be more uniform processed.

Legend

The legend is an integral part for most of the charts. However, the API does not returning
the legend entries. This means, after parsing the data, the legend entries have to be
derived from the data itself. This method of extracting the legend entries from the data is
not bulletproof, but works with the current API.

38

N O U e W NN

The process is the following:
o If there is only one series:

— Iterate over all the objects in the series and return the name attribute in an
array.

o If there are multiple series:

— Iterate over each series.

— From each, series get the first entry and return its name in an array.

Future API work

The development behind the API is still ongoing and there will be discussions on how to
deal with the format for the charts; however, here are some of the proposed features.

e Send the tooltip with the data as an attribute.
e Send the legend with the data in the meta field.
e Create a placeholder when the name attribute is empty in the data.

e Add a chart flag to the request to make the API return the data in a format which
can be supplied to the charts directly.

5.2.4 Chart creation

The chart renderer uses the Victory Charts library to create charts. The Victory Charts
library is discussed more depth in section 4.1. The chart renderer should follow the UX
design for the Automation Analytics. This could have been done by styling the charts to fit
into the UX explicitly; however, there is already an existing styling for the Victory Charts
which fits the UX design the Ansible Automation Platform is following, called PatternFly
4 Charts [21].

PatternFly 4 Charts is a thin layer over the Victory Charts. The library reexports the
same components which already exist in the Victory Charts, with default styling and, in
some cases, with extra configuration, while keeping the Victory Chart components still fully
configurable. Using the PatternFly 4 Charts instead of the Victory Charts eliminates the
need for most of the custom styling of the components, but also makes the development
more challenging, since now there are two libraries to work with.

There are two types of components provided in the PatternFly 4 Charts. The first type
is the single component chart. An example of this chart type is the pie chart. The basic
usage of the chart is shown in listing 5.9. It has a data prop, for passing the series, as well
as props for sizing, labels, tooltips, and more.

<ChartPie
data={[
{ x: ’Cats’, y: 35 },
{ x: ’Dogs’, y: 565 }
13
height={230}
labels={({ datum }) => ‘${datum.x}: ${datum.y}‘}

39

10
11
12
13
14
15
16

© 00 N O Utk W N

N N = s = e e e e e
= O © 0 I O U = W N = O

legendData={[
{ name: ’Cats: 35’ },
{ name: ’Dogs: 55’ }
1}
legendOrientation="vertical"
legendPosition="right"
padding={{ bottom: 20, left: 20, right: 140, top: 20 }}
width={3502}
/>

Listing 5.9: Pie chart component example

The other type of charts are the charts with x and y axes, like line, bar, area, or scatter
charts and their stacked or grouped versions. From the basic example shown in listing 5.10,
it can be seen that this format is more complex. The sizing and labels live in the top
element chart, while it has axis components as child components as well as the charts it is
displaying. In the example, the chart contains a group component which renders groups
of charts. The groups in this case are bar charts. The bar charts have the data passed to
them and the series they render.

<Chart
containerComponent={<ChartVoronoiContainer
labels={({ datum }) => ‘${datum.name}: ${datum.y}‘}
/>}
legendData={[
{ name: ’Cats’ },
{ name: ’Dogs’ }
1}
legendOrientation="vertical"
legendPosition="right"
height={250%}
padding={{ bottom: 50, left: 50, right: 200, top: 50 }}
width={600%}

<ChartAxis />
<ChartAxis dependentAxis showGrid />
<ChartGroup offset={11}>
<ChartBar data={datal} />
<ChartBar data={data2} />
</ChartGroup>
</Chart>

Listing 5.10: Grouped bar chart component composition

Victory Charts does some background calculations from the data, even in the higher
level components. This means that the top level Chart component has access to the data
passed to the nested ChartBar child component. In React, this is only possible by passing
down callback functions to the child component. This poses a problem when trying to
wrap their components into a custom component. Their guidance on how to wrap the
components is not working.

40

To overcome the challenge of not being able to wrap the component, but have separated
logic for handling the render for each component, the chart renderer has basic functions
which return already rendered React elements. In this way, there is no extra component
layer on top of the Victory Charts, but the functions are able to pass custom props to the
PatternFly components and do calculations on their own.

This approach has its own limitations. If there are only functions and no components,
then the React hook cannot be used, making it impossible to watch for data changes or run
asynchronous code. This also causes the whole chart to re-render, not just a sub-component
of the chart when any of the input changes.

5.2.5 Top level elements

As described, there are multiple top level chart elements, like Chart and ChartPie. Their
interfaces differ slightly, but there are common props and settings. These top level compo-
nents also have to have extra logic for handling the resize event and handling the interactive
legend event.

Responsiveness

To have a responsive charting library usable both on wide screens and on smartphones, it
is necessary to handle the resize event and to adjust the chart to different screen widths.
The chart itself is a picture composed of SVG elements. This means that Victory Chart’s
responsiveness is the same as a picture. This has multiple problems, but the most notable
is the change of text size in the chart. When scaling the chart down, at some point the text
will get so small that it becomes unreadable. When scaling up, the text becomes too big
and unwieldy.

The solution to this scaling is to set the text size dynamically. Fortunately, the Pat-
ternFly 4 Charts can handle the resize. However, it comes at the cost of out of the box
resizing. This means that every chart has to have a width and height defined as a number
in pixels. This also means that if the chart is meant to be responsive, these numbers have
to be variables, which then have to be recalculated when the resize event is fired.

In React, the solution is to create a wrapper div element around the charts and get its
reference. Then, when the resize event is fired, the width of the wrapper div element is
read and the width of the chart is set to this new value.

Fetching the data from the API

Each top element component must handle fetching the data from the API and passing down
to the child components to render as a chart. The process is the same in every chart: set
the loading variable to true, then start fetching the data. After the request is resolved, set
loading to false and set the data to display the error.

All of the required information for fetching the data is passed down in the api field in
each top level schema element. The api object consists of three fields: params, url, and
method. This object is then passed to fetchFnc, which is the part of the functions passed
to the component. By default, the fetchFnc function uses the 'POST’ method, if it is not
defined differently in the method field, and passes the params to the body of the request. If
method is set to "GET’, then a GET request is fired without sending the parameters. This
is great for local testing with mockup data. For more advanced fetching, the user should
create their fetchFnc which works with the api object and returns the data.

41

Since the default responsiveness and the data fetching logic are the same for all the
top level components, they can be offloaded into another component. This component is
called Responsive Container. This component creates the required div wrappers for the
chart. It hooks into the resize event and, on change, returns the new width to the parent
component. The component also handles the fetching from the API. This means that it
renders the child components passed to it (the pie chart and the chart wrapper) only when
the loading is finished. When fetching data from the API, errors should also be handled.
The component catches any errors returned from the call to the API and displays a simple
error message instead of rendering the chart. This container component makes it easier to
add new top level chart types, as well as modifying the existing logic.

5.2.6 Anomaly Detection

In data analysis, anomaly detection is the identification of rare items, events, or observations
which raise suspicions by differing significantly from the majority of the data. One of the
easiest methods to detect anomalies in huge data sets is with the help of charts. There are
two options for spotting an anomaly in the charts. One is to display the correct data, and
spot in the chart the deviant values and strange behaviours. The other one is to have some
automated function which highlights the possible anomalies in the data.

The first use case does not require any special functionality on top of what the chart
renderer is already capable of. The second use case requires the chart renderer to be able
to highlight some values in a chart. This can be done by overlapping a line chart and a
scatter chart, where the scatter chart has null data at the entries which are not anomalies
and the anomaly value at points where the anomaly is detected.

N J\
25
20 \\ /
10
10/31 11701 1702 1/03 1/04 11/05 11/06 1/07 1/08 11/09 1710
Date

Total jobs
a

Figure 5.6: Anomaly detection example

In the chart renderer, the anomaly can be appended to a single series. The Automation
Analytics API does not currently support the anomaly detection, so the in the example,
fig. 5.6, the chart is supplied with custom mockup data. This data contains the values for
the line chart, and each data entry has an anomaly field, which is a null value if that entry
is considered an anomaly. The styling in the example is minimal and custom, since there
is no UX design available yet for it.

5.3 Chart Editor

The other main part of the project is the editor, which allows the user to create or edit
charts by clicking through a form. The usage of this form is similar to the chart renderer.
If the chart needs editing, then the existing chart schema should be passed. Then, the
component needs the endpoints from which to get the option values and, finally, it has

42

a callback function, which is called each time the schema is changed. First, this section
discusses the features and limitations of the form. Then, the API format will be described,
which is needed for the form to display the options correctly. In the end, the implementation
details are described.

5.3.1 Features and limitations

Right now the editor is in its first iteration. A proper UX design is under way while the
current version version is based on wireframes. The editor features a window with the
currently edited chart and a draw in window, which can be toggled. This window, when
visible, contains the form elements for editing the chart. The form in its current state has
only few options to chose from, but they are the most important options. An example of
adding a new chart can be seen in fig. 5.7.

Toggle Editor
200
1
10
1-04-10 2021-04-12

Sources X

Job Explorer v
Edit APl request Params
1-04-14

@
o

Label Y

View by

o

Time v

ar
o

Group by

None v
2021-04-08 2021-04-

2021-04-

Chart Type
Label X P

Bar chart v

Attribues

1 -

X axis label

Label X

Y axis label

Label Y

Apply Settings

Figure 5.7: Chart Editor with open editor

The sources field allows the user to choose from different endpoints, from which the
data for the chart will be fetched. In a future release, the button under it will open another
field which will allow the user to send extra parameters to the endpoint. In the current
version of the Automation Analytics API, the four endpoints have slightly different settings;
therefore, this extra option may become available in the next version of the API. These two
settings do not change the form of the chart, only the data in the chart.

The View by field allows the user to chose the attribute under which the data is grouped.
This is a crucial option since it can change the chart type. If the data is grouped by time,
the editor allows for the selection of another grouping option (the Group by field) and the
chart type, a simple, stacked or grouped chart. On the x-axis of this charts, the time is
displayed. However, if the View by option is set to something other than time, then the
other grouping option is disabled, and the chart type can be only a pie chart.

The Group by option is only enabled if the View by option is set to time. Then the user
can group the data by some other attribute (other than time). This causes the chart type

43

to change to grouped bar chart, since this is the most reasonable option to display this kind
of data set in a chart.

Currently, the chart type field is primarily controlled by the other options. The user
can only select between different charts when the data is grouped by time. Then, the user
can select between line, area, and bar charts.

When the chart type is pie chart or grouped bar chart, the attribute options allows one
attribute to be selected. This attribute is represented from the data series. However, in the
stacked charts, multiple attributes can be selected. Each attribute is displayed in its own
chart, where the type is determined by the chart type field.

The last two options are text fields for customizing the labels. These options are not
displayed when the chart type is a pie chart, since it has no labels. In the future, additional
customization options may be added, which would allow users to completely change the
look and feel of the charts.

To avoid invalid configurations and unnecessary re-renders in the end of the form, there
is an Apply button which makes the displayed chart re-render with the new settings.

From the features, it is evident that the editor highly limits the possibilities of the
chart creation. The chart renderer library can render a much higher variety of charts. The
limitation, however, is caused by the fact that the end user may not have the knowledge
to create a meaningful chart from all the options; therefore, the editor creates a more
simplified view, where the user is not lost and all of the possible combinations of settings
yield a meaningful chart.

5.3.2 Interface

The interface of the component consists of four props. The schema prop provides the default
schema of the chart when editing a chart. However, the schema can contain multiple charts;
therefore, the id prop specifies which top level element from the schema should be used as
the starting point for editing the chart. If the ¢d prop is not defined, then the editor creates
a new chart.

The apis prop accepts an array of objects, where each object has the following keys
defined: url, options url, label. The apis prop is used to render the options for the sources
in the form. The url attribute defines the endpoint for the chart data, while the options url
defines the endpoint from where the chard editor gets its options for the form. The label is
the readable name displayed in the select box for the given source.

The last prop is the onSchemaChange callback function. This function is called each
time the chart is changed with the new value. The new value is created by merging the
new or edited chart with the rest of the passed charts in the schema prop.

5.3.3 Data format from the API

Some of the form options are hard coded, as is the case with chart type. The source comes
from the props. All the other form options are populated from the Automation Analytics
API. The accepted format is an object having a key attribute, which is the value of the
option, and the wvalue attribute, which is the displayed string for the given option. Then
,to populate the select field, an array of these option is required.

The Automation Analytics API returns these options in an another object, where the
the keys in the top level objects are the names for the given attribute. When the same
parameters are passed to the options endpoint and to the endpoint for the data, the options
endpoint only returns valid options for the data endpoint. This makes the verification

44

© 00 N O U B W N

— = =
o= O

13

process for correct inputs obsolete. An example of the data returned by the option endpoint
is illustrated in listing 5.11.

{
granularity: [
{key: "daily", value: "Daily"},
{key: "monthly", value: "Monthly"},
P
group_by: [
{key: "cluster", value: "Cluster"},
{key: "org", value: "Organization"},
1,
Iy

Listing 5.11: Data returned by the option endpoint

5.3.4 Implementation

There are multiple challenges when working with schema creation and user input limitation.
The logic behind it is not too complicated, but the implementation can get unreadable easily.

Chart IDs

The first challenge encountered was ID generation for new elements in the schema. The
whole schema should be passed to the editor; therefore, for new charts, the highest ID is
found and this number is incremented for each chart element. However, when editing the
chart, the top element ID should not change. The editor is saving the top element ID when
it is initialized. If a new chart is created, the editor saves the highest incremented ID in
the chart. Whenever a new top element is created, this ID is assigned to this element. The
editor cannot keep the IDs of the sub elements, because the number of elements depends on
the chart. Therefore, all other chart elements, except the top level element, have different
IDs after editing, even if the chart is returned to its previous state.

Limiting the form element values

When an input field’s value changes, it can cause other input fields to change the type, value,
or options. To make it more readable, each input field is rendered in its own function, where
the function has to do three things:

e Generate the valid options for the input field.

e Set the value of the input field if the new options do not contain anymore than the
original value.

e Render the correct type of input field with valid options.

To do this, all of the functions have access to all of the current values of the form. There
is, however, one drawback to this approach. When an input field changes, a re-render is

45

fired. This calls the other functions to render the other input fields; however, if one or
more of the input fields does not have their selected option as a valid option, it sets the
newly selected option. This action fires another re-render. If someone created a circular
dependency, it would be able to cause infinite re-render cycles. However, these errors are
easy to spot, since they break the entire application.

Rendering the correct chart

The chart renderings should reflect the settings from the form. Therefore, the single source
of truth is from the form options. While the form is limited, some options should be filled
automatically by default values. Then, the function for generating the form can have its
own decision tree to select the correct elements to return, where each element can use
different options from the form.

This approach is rather limiting when editing a chart. If the chart was not created
with the chart editor, there could be loss of information when reading data in, causing, for
example, styling to use the default value. However, the expectation is that only charts are
eligible for edits which were created by the chart editor.

Summary

The single source of truth is the form options. When editing the chart the form options
are set from the schema. The form and the chart are always changing, depending on the
current values in the form. This approach allows the code to be split into multiple functions
and the data to be edited independently from one another.

5.4 Data Driven Dashboard

The Data Drive Dashboard component is the most trivial of all. Also, this component does
not have wireframes yet. Currently, its purpose is to call the chart renderer and pass the
schema to it. It also features a button which creates a new chart with the chart editor and
saves the created chart when the editor is closed. The component has four props, which
are, excluding the schema, directly passed down to the chart renderer or the chart editor.
The apis prop contains the sources for the chart editor. The functions prop is passed down
to the chart renderer, too. The schema prop contains the the default schema, while the
onSchemaChange contains a function which is called whenever a new chart is saved or a
chart is edited.

In the future, this component will be responsible for custom buttons for reorganiz-
ing, hiding, enabling, adding, and removing the charts, as well as giving context or extra
information to the user about the other two components.

5.5 Development Setup

This section describes the setup of the project. Information on the code and the package
versioning, as well as the plugin which automates the process of publishing the package,
will be provided here. Furthermore, this section describes the testing setup for the library
and the demo application setup, which showcases some of the library’s features.

46

Workflow and versioning

Before setting up the programming environment, a git repository is needed. Using git helps
to manage changes in the project over time. This project’s git repository is hosted on
GitHub[10]. The source code of the project can be found at:
https://github.com/brumik/React-data-explorer

Hosting the git repository on GitHub can also leverage the Issues feature which allows
other developers to report issues and makes the code more visible for later contributions.

The project is using the NPM package manager[19] for publishing the library. The
package is available at https://www.npmjs.com/package/React-data-explorer. To publish
the package to the NPM registry, the source code needs to be compiled from source and
the version number should be set in the package.json file.

To make releases more consistent, more automatic, and emotion-free, the project has set
up the semantic-release[3] plugin. This plugin fires when there is a new commit in the main
branch (formerly master branch). From the commit messages, it determines which version
number should be incremented depending on whether its a bugfix, feature, or breaking
change. It automatically compiles the source, runs the tests, and increments the version
number. After all of that is done, with a help of token, it publishes the new version to the
NPM registry. Using a semantic release approach requires discipline from the developers
when creating commit messages to work properly.

Testing

The project is set up such that, before publishing a new version of the library, all test have
to pass. For unit testing React components, the most widespread tool is Jest[8]. However,
Jest itself cannot test the DOM (Document Object Model), but rather works with the React
DOM with React components. To extend the functionality and be able to test the DOM
which is rendered in the browser, the React Testing Library[6] was added to the project.

There are few other libraries used for setting up complete testing environments to deal
with CSS (Cascading Style Sheet), icons, and other static assets. In addition, since the
project uses TypeScript, the tests need to be able to run on TypeScript. This requires
additional plugins like ts-jest and transformation settings to be able to run the tests.

The last important piece of testing was the ability to test asynchronous fetch requests.
The fetch-mock[2] library makes it easy to catch requests to different URLs and return
mocked up data, making the tests deterministic and giving more control over the data.
This library also returns various kinds of errors in the response, allowing us to test for API
failures.

A more in depth explanation of the testing tools is provided in chapter 6.

Demo application

The project also has a demo application to showcase some of the features of the library and
to allow other developers to see the library in use. For compiling the library, as well as the
demo application, and hosting the application on localhost, the Webpack|[4] library is used.

However, the demo application uses real data from the Automation Analytics API.
Since the demo app is not the part of the Automation Platform, the authentication is not
available in the demo app for the API. Therefore serving the API has to be local too.
Unfortunately, as it currently stands, the Automation Analytics back-end repository is not
public and access is restricted to Red Hat associates.

47

https://github.com/brumik/React-data-explorer
https://www.npmjs.com/package/React-data-explorer

Chapter 6

Testing

This chapter is dedicated to unit testing. During the development process, testing is one
of the most important parts, because properly tested code means less maintenance time.
Automated tests discover a lot of bugs when the code is modified.

6.1 Libraries

This section introduces the most important libraries used for testing. It provides how they
work independently and describes their capabilities which were used to test the library.

Jest

The Jest testing library [8] was used for our testing purposes. This library was developed
to easily and effectively test JavaScript code. A unit test can be created by the test or it
functions. These two functions are equivalent to each other. The it keyword fits better,
not only because it is shorter, but because the test should be defined as the it (,should
do something®, function()). This makes the tests more readable. The ezpect() function
should appear at least once in the function to match values. If all of the expect() functions
are passed, then the whole test passes, otherwise the test ends with a failure.

The need of asynchronous testing arises when the lazy loading function must be tested.
Jest provides it in multiple ways. In the end, the ’asynch’ and ’await’ keywords were chosen
to wait while the promise became fulfilled, and then tested if the tree was corresponding to
the correct form.

The Jest testing library also provides snapshot comparisons. This can be done with the
help of expect(container WithTheRenderedElements).toMatchSnapshot(). On the first run,
when the snapshot does not yet exist, it gets created in a separate file for each test suite.
Then, all the subsequent test run snapshots are compared to the saved one. If they match,
the test passes. If there is a difference, the test fails. When the snapshot changes because
the implementation is changed, there is an option to update the saved snapshot.

An additional tool of the library is the ability to mock functions. By mocking functions,
it is possible to return controlled or dummy values. A mocked function can additionally be
tested in different ways as stored information about the number of calls and the about call
arguments.

48

react-testing-library

The snapshots require rendered DOM and the react-testing-library[6] is built to supply this.
It provides a render function, which renders a react component into a variable in the jsdom
format. The jsdom format is the simpler representation of the true DOM, which means it
is missing some advanced functions which are not required for testing.

Additionally, the react-testing-library provides addition functions for search elements in
the DOM — by text, role, type, and many others. This helps when the tests need to verify
if an element is represented in the rendered component or not.

For interacting with the rendered React component, the react-testing-library provides a
handy fireEvent function. It needs the element as it’s parameter on which the event should
be fired and the event type to use. This allows users to click on elements or use keyboard
inputs for input fields.

When rendering asynchronous React components or components which fetch asyn-
chronous data, it is necessary that the element has finished the request before the tests
are run. For this use case, the waitFor asynchronous function can be used. It waits until
the supplied function returns true or fails with a timeout.

fetch-mock

The fetch-mock library provides an easy interface to mock-up fetch calls to different URLs.
Mocking up API requests allows testing without an actual API and, furthermore, it gives
full control over the data. This makes easier writing tests, since the exact data is defined
and it is then supplied to the components. The fetch-mock library is capable of returning
data or different error types with custom messages.

It uses a similar interface to the Jest function mock-ups. It has methods for checking
the number of calls made and call parameters. This capability is extremely useful when the
tests need to verify if the component is passing the right parameters when fetching from
the APIL.

6.2 Testing the library

The goal of the testing is always to reach the highest coverage possible. However, the
project is made up from two main parts: the chart renderer and the chart editor. The
chart renderer can be considered to be stable, but the rendered elements are not due to big
changes. The chart editor is still missing a proper UX design and will eventually undergo
a lot of changes. Testing the Ul for the chart editor would become obsolete in no time at
all. Therefore, the testing focuses mainly on the chart renderer. The final coverage of the
chart renderer is around 92% as shown in fig. 6.1. Some functionalities, like resizing the
browser window, were not testable by Jest unit tests.

Some functions can be tested as standalone pieces, while other functions are tied to the
underlying charting library. These functions are tested through the components using the
charting library.

The easiest parts to test are the functions without asynchronous calls. These functions
are followed by the functions which make asynchronous calls to the API, like the default
fetch function. All of the functions are tested independently — the asynchronous ones with
the fetch-mock library.

49

Figure 6.1: Unit test coverage

A bigger challenge was was the testing of the React components. These are tested
mostly with snapshots. The jsdom format does not support selecting svg image elements
and inspecting them. Therefore, all the data is mocked up with the fetch-mock function,
allowing different charts to be rendered. The rendered charts are checked manually and, if
they look as they should, a snapshot is created. The chart on-hover functions are currently
impossible to test.

The interactive legend for the chart is tested by interacting with the rendered compo-
nent. It is done with the fireFvent function. Then, the tests wait for to be re-rendered.
When the re-rendering is done, a snapshot is created in the same fashion as the other
snapshots.

In the future, tests will be updated and extended as the charting library continues to
evolve with user feedback, UX design, and unexpected bug fixes.

50

Chapter 7

Future development

The library developed within this thesis is a first version, which is planned to be developed
in the future. The library is currently being migrated into Asnible Automation Analytics.
Since it is a bigger system, it takes more time. Future development will be an iterative
process involving other developers and, eventually, the end users too. There is a possibility
that the library will be used platform-wide on the Red Hat Ansible Automation Platform.

The library currently lacks a proper UX design. The Ul mocks will be created with
the UX team and the Automation Analytics developers. It is foreseeable that the library
will be able to organize the charts into a grid like pattern and store this information in the
schema.

The chart renderer will eventually have to work with continuous data streams, too. This
is especially important when the user should request to see live data about his/her virtual
machines or servers. This feature will require internal optimization and probably external
optimizations in the underlying library, too.

Currently, there are two new open discussions with the PatternFly 4 Charts team. One
of the discussions is around trying to make the interactive legend more consistent to use
across different chart types. The other one is a possible bug where the PatternFly 4 pie
chart is passing an invalid option to the Victory chart, which creates warnings when running
the tests. Neither of them is a blocking issue for the created library, but they can make the
code base more simple if solved.

The exact APT is still under discussion for the charts. Soon, the API will provide the
legend for each chart in the meta field. This will make parsing the legend obsolete and will
ensure the correctness of the legend for any chart. Furthermore, the API will provide an
endpoint where the charts schema can be uploaded and saved in permanent storage. There
are also ongoing discussions on how to make the returned data format more convenient for
the charts. In the future, the API may also allow more options and multi grouping, which
could require 3D chart support from the charting library.

51

Chapter 8

Conclusion

The goal of this thesis was to design and implement a charting library in React capable
of rendering charts from a schema, and provide a user interface for creating and editing
the schema for Automation Analytics. The library was implemented with the help of
TypeScript and the React framework, and built upon the Victory charts charting library.

When developing the library, the Automation Analytics API was taken into consider-
ation as well as the feedback for the format of the schema from other developers. When
problems were encountered with the underlying libraries, the respective developer teams
were contacted and fixes or features were proposed.

The resulting library is shipped as an NPM package and it is available through the
NPM registry for public use. The package contains three React components, which can be
used together or as standalone components. The primary feature of these components is
the fully customizable and editable chart rendering from schema. The schema only contains
serializable objects, which makes it possible to store the schema in a database. The user
interface for the chart editor allows for the creation and addition of the following chart
types: simple line, bar, area or scatter chart, stacked charts, grouped bar charts, and pie
charts. The data for the charts and for the options in the chart editor are provided by
the API. The chart renderer also makes it possible to visualise and detect anomalies in the
data.

The charts are unit tested with the Jest testing library and additional plugins, like
react-testing-library and fetch-mock. The unit tests over the more stable chart renderer
reached 92%-+ coverage.

As the component is required by Automation Analytics, the development will continue
after this thesis. The library will receive a UX design and, with the help of user and
developer feedback, it will be iterated over. The API providing the data for the charts will
be improved upon, too, which will mean new features for the chart renderer, like continuous
data stream processing.

52

Bibliography

[1] Nivo [online]. 2020 [cit. 2020-12-16]. Available at: https://nivo.rocks/.

[2] Fetch-mock [online]. 2021 [cit. 2021-04-20]. Available at:
http://wuw.wheresrhys.co.uk/fetch-mock/.

[3] Semantic Release [online]. 2021 [cit. 2021-04-20]. Available at:
https://semantic-release.gitbook.io/semantic-release/.

[4] Webpack [online]. 2021 [cit. 2021-04-20]. Available at: https://webpack.js.org/.

[5] CHARTLOG, I. Chartlog [online]. 2020 [cit. 2020-12-17]. Available at:
https://www.chartlog.com/product/dashboard/.

[6] DopDs, K. C. React Testing Library [online]. 2021 [cit. 2021-04-20]. Available at:
https://testing-library.com/.

[7] EpUCATION, I. C. REST APIs [online]. 2020 [cit. 2020-10-17]. Available at:

https://www.ibm.com/cloud/learn/rest-apis.
[8] FACEBOOK, 1. Jest [online]. 2021 [cit. 2021-04-20]. Available at: https://jestjs.io.

[9] FORMIDABLE LABS, L. Victory [online]. 2020 [cit. 2020-12-16]. Available at:
https://formidable.com/open-source/victory/.

[10] GrTHUB, I. GitHub [online]. 2021 [cit. 2021-04-20]. Available at: https://github.com/.

[11] GrOuP, R. Recharts [online]. 2020 [cit. 2020-12-16]. Available at:
http://recharts.org/.

[12] INC., F. React, A JavaScript library for building user interfaces [online]. 2020 [cit.
2020-12-09]. Available at: https://reactjs.org/.

[13] INC., G. Nivo GitHub Reprository [online|. 2020 [cit. 2020-12-20]. Available at:
https://github.com/plouc/nivo.

[14] INC., G. Recharts GitHub Reprository [online]. 2020 [cit. 2020-12-20]. Available at:
https://github.com/recharts/recharts.

[15] INcC., G. Victory GitHub Reprository [online]. 2020 [cit. 2020-12-20]. Available at:
https://github.com/FormidableLabs/victory.

[16] INTERNATIONAL, E. Standard ECMA-262 [online]. Ecma International, july 2018 [cit.
2020-12-12]. Available at:
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

53

https://nivo.rocks/
http://www.wheresrhys.co.uk/fetch-mock/
https://semantic-release.gitbook.io/semantic-release/
https://webpack.js.org/
https://www.chartlog.com/product/dashboard/
https://testing-library.com/
https://www.ibm.com/cloud/learn/rest-apis
https://jestjs.io
https://formidable.com/open-source/victory/
https://github.com/
http://recharts.org/
https://reactjs.org/
https://github.com/plouc/nivo
https://github.com/recharts/recharts
https://github.com/FormidableLabs/victory
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[17] LaBs, G. Grafana [online]. 2020 [cit. 2020-12-17]. Available at: https://grafana.com/.

[18] MICROSOFT. TypeScript [online]. 2020 [cit. 2020-12-12]. Available at:
https://www.typescriptlang.org/.

[19] NpM, I. NPM Library [online]. 2021 [cit. 2021-04-20]. Available at:
https://www.npmjs.com/.

[20] RED HAT, I. Ansible Automation Platform [online]. 2020 [cit. 2020-10-20]. Available
at: https://www.ansible.com/products/automation-platform.

[21] RED HAT, I. Patternfly Charts [online]. 2021 [cit. 2021-03-26]. Available at:
https://www.patternfly.org/v4/charts/about/.

[22] REVIEWERS, T. Chartlog Review — Best Day Trading Software for Analytics?
[online]. 2020 [cit. 2020-12-20]. Available at:

https://www.tradingreviewers.com/chartlog-review/.

[23] SWAGGER. OpenAPI Specification [online]. 2020 [cit. 2020-10-17]. Available at:
https://swagger.io/specification/.

[24] VALCHEVA, S. Types of Graphs and Charts And Their Uses [online]. 2020 [cit.
2020-11-08]. Available at: http://www.intellspot.com/types-graphs-charts/.

[25] WRIGHT, A. JSON Schema: A Media Type for Describing JSON Documents [online].
2020 [cit. 2020-10-17]. Available at:
https://tools.ietf.org/html/draft-wright-json-schema-00#section-4.2.

54

https://grafana.com/
https://www.typescriptlang.org/
https://www.npmjs.com/
https://www.ansible.com/products/automation-platform
https://www.patternfly.org/v4/charts/about/
https://www.tradingreviewers.com/chartlog-review/
https://swagger.io/specification/
http://www.intellspot.com/types-graphs-charts/
https://tools.ietf.org/html/draft-wright-json-schema-00#section-4.2

	Introduction
	Utilized tools
	Theory Basis
	Glossary
	React
	State, props and Events
	JSX
	Rendering
	Components

	TypeScript
	Basic types
	Interfaces
	Functions
	Unions and Intersection Types
	Classes
	Generics
	Enumerations

	Red Hat Ansible Automation Platform
	REST API and OpenAPI
	OpenAPI Format and Structure
	OpenAPI Object

	Automation Analytics
	Ansible Automation Analytics API

	Charts
	Charting Library
	Type of charts
	Required features
	Existing charting Libraries

	Chart Dashboard
	Existing Chart Dashboards
	Required features

	Design and Implementation
	Utilized libraries
	Data Driven Chart Rendering
	Features, limitations
	The interface
	Data fetching from the API
	Chart creation
	Top level elements
	Anomaly Detection

	Chart Editor
	Features and limitations
	Interface
	Data format from the API
	Implementation

	Data Driven Dashboard
	Development Setup

	Testing
	Libraries
	Testing the library

	Future development
	Conclusion
	Bibliography

