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Abstract
Anumber of programming languages havemanaged to greatly improve their performance
by replacing their custom runtime systemwith general platforms that use just-in-time opti-
mizing compilers likeGraalVMorRPython. This thesis evaluateswhether such a transition
would also benefit dependently-typed programming languages or theorem provers.
This thesis introduces the type-theoretic notion of dependent types and the algorithms
involved in working with them, specifies a minimal dependently-typed language on the
𝜆Π-calculus, and presents the implementation two interpreters for this language: a sim-
ple interpreter written in Kotlin, and a second interpreter, also written in Kotlin, that uses
the Truffle language implementation framework on the GraalVM platform, which is a par-
tial evaluation-based just-in-time compiler based on the Java Virtual Machine. The per-
formance of these two interpreters is then compared on a number of normalization and
elaboration tasks.
The results are strongly negative, however, the influence of JIT compilation is not noticeable
given the large overhead of the JVM platform. This thesis concludes with a number of
alternative projects that would use the capabilities of Truffle better.
Abstrakt
Řada programovacích jazyků byla schopna zvýšit svoji rychlost výměnou běhových sys-
témů stavěných na míru za obecné platformy, které pro optimalizaci používají just-in-time
překlad, jako jsouGraalVMneboRPython. V této práci vyhodnocuji, zda je použití takovýchto
platforem vhodné i pro jazyky se závislymi typy nebo důkazovými systémy.
Tato práce představuje koncepty 𝜆-kalkulu a teorie typů potřebné pro úvod do závislých
typů s relevantními algoritmy, specifikuje malý závisle typovaný jazyk založený na 𝜆Π
kalkulu, a prezentuje dva interpretery tohoto jazyka. Tyto interpretery jsou psané v jazyce
Kotlin, první je jednoduchý, psaný ve funkcionálním stylu a druhý používá platformu
GraalVM a Truffle. GraalVM je platforma založená na virtuálním stroji Javy (JVM), která
přidává just-in-timepřekladač založenýna částečnémvyhodnocení (partial evaluation) a Truf-
fle je knihovna pro tvorbu programovacích jazyků využívající tento překladač. Závěr práce
vyhodnocuje běhové charakteristiky těchto interpreterů na různých zátěžových testech.
Závěry práce jsou ale silně negativní. Vliv JIT překladu není znatelný ani přes snahu op-
timalizovat běžné algoritmy z teorie typů, které jsou zjevně nevhodné pro platformu JVM.
Práce končí návrhy několika navazujících projektů, které by lépe využily možnosti Truffle
a které by byly vhodnější pro implementaci závisle typovaných jazyků.
Keywords
Truffle, JVM, just-in-time compilation, compiler construction, dependent types
Klíčová slova
Truffle, Virtuální stroj JVM, just-in-time překlad, tvorba překladačů, závislé typy
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Rozšířený abstrakt
Systémy používající závislé typy umožňují programátorům vytvářet programy, které jsou
zaručeně správné vzhledemk vlastnostemuložených v typech. Tyto systémy je takémožné
použít pro logické nebo matematické důkazy, nebo pro dokazování správnosti celých sys-
témů. Poslední roky přinesly mnoho pokroků v teorii typů, na níž jsou tyto systémy za-
ložené, jako např. kvantitativní nebo homotopické teorie typů. Vysoké nároky na důka-
zové schopnosti systémů s sebou ale přináší problémy s výkonem, konkrétně rychlostí
kontroly typů (type-checking, elaboration). V této práci zhodnocuji vhodnost just-in-time
překladu pro takové systémy, což je jeden z přístupů pro optimalizaci rychlosti výpočet-
ních systémů obecně.
V první části vysvětluji principy typovaného 𝜆-kalkulu, na němž jsou systémy se závislými
typy založené, základy teorie typů a konkrétní specifikace několika rozšíření, které poté
používám pro specifikaci malého jazyka.
V druhé sekci pokračuji představením algoritmů nezbytných pro práci se závislými typy:
normalization-by-evaluation a bidirectional typing. Tyto implementuji a následně používám
pro vytvoření funkčního interpreteru tohoto jazyka.
Třetí sekce představuje detaily platformy GraalVM a knihovny Truffle, které používám pro
implementaci druhého interpreteru využívajícího just-in-time překladu, založeném na in-
terpreteru prvním s nezbytnými úpravami. V závěru práce vyhodnocuji běhové charakter-
istiky těchto dvou interpreterů pomocí sady zátěžových testů.
Výsledky této práce jsou ale silně negativní: charakteristiky implementace běžných algo-
ritmů teorie typů nejsou vhodné pro platformu JVM, a bylo by je zřejmě nutné od základů
přepracovat, aby správně využívaly možnosti platformy JVM. i přes negativní výsledky
tato práce představuje dobrý výchozí bod pro další práci v oblasti implementace závisle
typovaných jazyků i jazyků založených na platformě Truffle.
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Chapter 1

Introduction

Dependently-typed languages allow programmers to write correct-by-construction code,
and they can be used as theorem provers, or proof assistants. Programs written in such
languages can encode more properties than those written without dependent types, and
they are considered to be one approach to formal software verification [40]: a well-known
example is the computational proof of the four-color theorem in the theorem prover Coq
in 2005 [20].
However, dependently-typed languages rely on their compilers or interpreters to verify, or
prove, all invariants (properties) encoded in a program, which involves significant com-
putational effort. When applied to problems or systems on a large-enough scale, type-
checking performance becomes the primary obstacle to their use [23, 24]. While many of
the performance issues are fundamentally algorithmic [37], a better runtime systemwould
improve the rest.
In recent years, there have been several investigations into the performance of dependently-
typed languages: Jason Gross’s work on improving the performance of Coq [23, 24]; the
work of András Kovács on performant Haskell-based interpreters [31, 33]; Edwin Brady’s
work on the Idris 2 runtime system based on Chez Scheme [9]. Kovacs, in particular, man-
ages to outperform both Coq and Agda by a large margin in the SmallTT project [32].
However, custom runtime systems or capable optimizing compilers are time-consuming
to build and maintain. This thesis seeks to answer the question of whether just-in-time
compilation can help to improve the performance of such systems. Moving from custom
runtime systems to general language platforms like e.g., the Java Virtual Machine (JVM)
or RPython [7], has improved the performance of several dynamic languages: projects
like TruffleRuby, FastR, or PyPy. It has allowed these languages to re-use the optimization
machinery provided by these platforms, improve their performance, and simplify their
runtime systems.
The platform to be evaluated is GraalVM and the Truffle language implementation frame-
work, which reuse and improve upon the JIT capabilities of the Java Virtual Machine. Truf-
fle has been used to implement an improved runtime system for a number of general-
purpose languages, the most prominent of which are TruffleRuby and FastR. In both cases,
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replacing a custom runtime systemwith a JIT-based one resulted in significant performance
improvements1, 2.
In the final stages of this thesis, I have encountered a single project that attempts to apply
JIT compilation to dependent types, there were no other before this one to the best of my
knowledge. This project is Enso [38], a visual programming languagewithmulti-language
polyglot capabilities, that uses dependent types at its core. I have been able to incorporate
and evaluate some of its improvements into the practical parts of this thesis, despite the
time constraints, as it would otherwise serve as one of my primary sources.
Other than Enso, closest to this project is Cadenza [30] by Edward Kmett, who also sug-
gested the topic of this thesis. Cadenza is an implementation of the simply-typed lambda
calculus on the Truffle framework. While it is unfinished and did not show as promis-
ing performance compared to other simply-typed lambda calculus implementations as its
author hoped, this thesis applies similar ideas to the dependently-typed lambda calculus,
where the presence of compile-time computation should lead to larger gains.
In this thesis, I will evaluate the effect of JIT compilation on the runtime performance of
the type-checking (elaboration) of a dependently-typed language based on the typed λ-
calculus. In particular, the goal is to investigate the performance of β-normalization and
βη-conversion checking. Those are among themain computational tasks in the elaboration
process and they are also the tasks can most likely benefit from JIT compilation. The ob-
tained results will be compared between JIT and non-JIT implementations, but also against
state-of-the-art proof assistants: Coq, Agda, Idris.
As there are no standard benchmarks for dependently-typed languages, the first task is to
design a small, dependently-typed core language, followed by an implementation of an
interpreter for this language. Proof assistants use languages based on the typed λ-calculus
at their core, so it is a sufficient basis for the goals of this thesis.
Trufflemakes it possible to incrementally add JIT compilation to an existing interpreter, us-
ing partial evaluation to turn slow interpreter code into efficient machine code [55]. During
partial evaluation, an interpreter is specialized together with the source code of a program,
yielding executable code: parts of the interpreter could be specialized, some optimized,
and some could be left off entirely, which often results in performance gains of several or-
ders of magnitude. Having a language interpreter based on Truffle also brings other ben-
efits: seamless interoperability with Java or JVM-based languages [47], or automatically
derived language tooling [50]. Regardless of the outcome of the performance evaluation,
using Truffle would benefit dependently-typed or experimental languages.
Starting from basic λ-calculus theory and building up to the systems of the λ-cube, we
specify the syntax and semantics of a small language (Chapter 2). Continuing with the
principles of λ-calculus evaluation, type-checking and elaboration, we implement an inter-
preter for Montuno in a functional style (Chapter 3). In the second part of the thesis, we
evaluate the capabilities offered by Truffle and the peculiarities of Truffle languages, and
implement a Truffle interpreter for Montuno (Chapter 4). After designing a set of bench-
marks to evaluate the language’s performance and discussing then results, we close with
a large list of possible follow-up work (Chapter 5).

1Unfortunately, there are no officially published benchmarks, but a number of articles claim that TruffleRuby
is 10-30x faster than the official C implementation. [46]

2FastR is between 50 to 85x faster than GNU R, depending on the source. [19]
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Chapter 2

Language specification: λ⋆-calculus
with extensions

2.1 Introduction

Proof assistants like Agda or Idris are built around a fundamental principle called the
Curry-Howard correspondence that connects type theory and mathematical logic, demon-
strated in Figure 2.1. In simplified terms it says that given a language with a self-consistent
type system, writing a well-typed program is equivalent to proving its correctness [5]. It
is often shown on the correspondence between natural deduction and the simply-typed λ-
calculus, as in Figure 2.2. Proof assistants often have a small core language around which
they are built: e.g. Coq is built around the Calculus of Inductive Constructions, which
is a higher-order typed λ-calculus.

Mathematical logic Type theory
⊤

true
()

unit type
⊥

false
∅

empty type
𝑝 ∧ 𝑞

conjunction
𝑎 × 𝑏

product type
𝑝 ∨ 𝑞

disjunction
𝑎 + 𝑏

sum type
𝑝 ⇒ 𝑞

implication
𝑎 → 𝑏

exponential (function) type

∀𝑥 ∈ 𝐴, 𝑝
universal quantification

Π𝑥∶𝐴𝐵(𝑥)
dependent product type

∃𝑥 ∈ 𝐴, 𝑝
existential quantification

Σ𝑥∶𝐴𝐵(𝑥)
dependent sum type

Figure 2.1: Curry-Howard correspondence between mathematical logic and type theory
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Sequent calculus λ→-calculus

Γ1, 𝛼, Γ2 ⊢ 𝛼
axiom

Γ1, 𝑥 ∶ 𝛼, Γ2 ⊢ 𝑥 ∶ 𝛼
variable

Γ, 𝛼 ⊢ 𝛽
Γ ⊢ 𝛼 ⇒ 𝛽

implication introduction

Γ, 𝑥 ∶ 𝛼 ⊢ 𝑡 ∶ 𝛽
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝛼 ⇒ 𝛽

abstraction
Γ ⊢ 𝛼 ⇒ 𝛽 Γ ⊢ 𝛼

Γ ⊢ 𝛽
modus ponens

Γ ⊢ 𝑡 ∶ 𝛼 → 𝛽 Γ ⊢ 𝑢 ∶ 𝛼
Γ ⊢ 𝑡𝑢 ∶ 𝛽
application

Figure 2.2: Curry-Howard correspondence between sequent calculus and λ→-calculus

Compared to the type systems in languages like Java, dependent type systems can encode
much more information in types. We can see the usual example of a list with a known
length in Listing 2.1: the type Vect has two parameters, one is the length of the list, the
other is the type of its elements. Using such a type we can define safe indexing operators
like head, which is only applicable to non-empty lists, or index, where the index must be
in the list (Fin len). List concatenation uses arithmetic on the type level, and it is possible
to explicitly prove that concatenation preserves list length.

data Vect : (len : Nat) -> (elem : Type) -> Type where
Nil : Vect Z elem
(::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem

-- Definitions elided
head : Vect (S len) elem -> elem
index : Fin len -> Vect len elem -> elem
(++) : (xs : Vect m elem) -> (ys : Vect n elem) -> Vect (m + n) elem
proofConcatLength

: {m, n : Nat} -> {A : Type} -> (xs : Vect n A) -> (ys : Vect m A)
-> length (xs ++ ys) = length xs + length ys

Listing 2.1: Vectors with explicit length in the type1

On the other hand, these languages are often restricted in some ways. General Turing-
complete languages allow non-terminating programs: non-termination leads to an incon-
sistent type system, so proof assistants use various ways of keeping the logic sound and
consistent. Idris, for example, requires that functions are total and finite. It uses a termina-
tion checker, checking that recursive functions use only structural or primitive recursion
in order to ensure that type-checking stays decidable.
This chapter aims to introduce the concepts required to specify the syntax and semantics of
a small dependently-typed language and use these to produce such a specification, a neces-
sary prerequisite so that we can create interpreters for this language in later chapters. This
chapter, however, does not attempt to be a complete reference in the large field of type
theory.

1Adapted from the Idris base library: https://github.com/idris-lang/Idris-dev/blob/
master/libs/base/Data/Vect.idr
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2.2 Languages

Type theories with dependent types are based on typed λ-calculi. To introduce them well,
we first need to go through the syntax and semantics of simpler languages, startingwith the
untyped λ-calculus. This section summarizes the necessary concepts, drawing primarily
from Barendregt [6].

2.2.1 λ-calculus

Introduced in the 1930s by Alonzo Church, the untyped λ-calculus was intended as a sim-
ple model of computation. It is a Turing-complete system, but only consists of three con-
structions: abstraction, application, and variables. Figure 2.3 demonstrates two possible
notations for the untyped λ-calculus. We will use the standard Church notation, with
right associativity of abstraction, and left associativity of application, application binding
stronger than abstraction: in any following examples, an expression like 𝜆𝑥.𝜆𝑦.𝑥 𝑦 𝑧 would
be parenthesized to 𝜆𝑥.(𝜆𝑦.((𝑥 𝑦) 𝑧)).

𝑒 ∶∶= 𝑣 variable
| 𝑀 𝑁 application
| 𝜆𝑣. 𝑀 abstraction

(a) Standard (Church) notation

𝑒 ∶∶= 𝑣
| (𝑁) 𝑀
| [𝑣] 𝑀

(b) De Bruijn notation

Figure 2.3: Syntax of the λ-calculus using Church and de Bruijn notation

β-reduction A λ-abstraction corresponds to the common notion of a function in program-
ming languages. The λ-abstraction 𝜆𝑥.𝑡 consists of a binder 𝜆𝑥, and a body 𝑡. Applying
a λ-abstraction to an argument, e.g., (𝜆𝑥.𝑥) 𝑡, corresponds to evaluating a function, and re-
turns the result of evaluating the body. In λ-calculus, evaluating the body of a function
is called substitution. It is written 𝑡[𝑥 ≔ 𝑇] and means that all occurrences of the variable
𝑥 are replaced with the term 𝑇 inside a term 𝑡. The application of a λ-abstraction to a term
is called a β-reduction, and it is the basic rewrite rule of λ-calculus.

(𝜆𝑥. 𝑡) 𝑢 ⟶𝛽 𝑡[𝑥 ≔ 𝑢]

α-conversion If a variable inside the body of a λ-abstraction is mentioned in any binders,
it is called bound, e.g., the variable 𝑥 is bound in 𝜆𝑥.𝜆𝑦.𝑥. Conversely, all unbound variables
are called free, e.g., the variable 𝑧 is a free variable 𝜆𝑥.𝑧. When performing a substitution,
no free variable can become bound, as the term would change its meaning. We need to
ensure that the variable names in the terms do not overlap and rename them if they do.
The process of renaming variables is called α-conversion (α-renaming) and, in general, may
need to happen before each β-reduction.

(𝜆𝑥. 𝑡) ⟶𝛼 (𝜆𝑦. 𝑡[𝑥 ≔ 𝑦])

10



η-conversion Reducing a λ-abstraction that directly applies its argument to a term or
equivalently, rewriting a term in the form of 𝜆𝑥.𝑓  𝑥 to 𝑓 is called η-reduction. The opposite
rewrite rule, from 𝑓 to 𝜆𝑥.𝑓  𝑥 is ̄𝜂-expansion, and because the rewriting works in both ways,
they are together called the η-conversion.

𝜆𝑥.𝑓  𝑥 ⟶𝜂 𝑓

𝑓 ⟶�̄� 𝜆𝑥.𝑓  𝑥

δ-reduction β-reduction together with α-renaming are sufficient to specify λ-calculus,
but there are three other rewriting rules that we will need later: δ-reduction is the replace-
ment of a constant with its definition, e.g., given a constant 𝑖𝑑 with the definition 𝜆𝑥.𝑥, the
expression 𝑖𝑑 𝑡 would be δ-reduced to (𝜆𝑥.𝑥) 𝑡.

𝑖𝑑 𝑡 ⟶𝛿 (𝜆𝑥.𝑥) 𝑡

ζ-reduction If we extend the syntax of the language with a 𝑙𝑒𝑡 − 𝑖𝑛 construct that defines
a local variable, equivalent process to δ-reduction applied to local variable is called the
ζ-reduction.

𝑙𝑒𝑡 𝑖𝑑 = 𝜆𝑥.𝑥 𝑖𝑛 𝑖𝑑 𝑡 ⟶𝜁 (𝜆𝑥.𝑥) 𝑡

ι-reduction Later, we will also use other types of objects than just functions. Applying
a function that extracts a value from an object is called the ι-reduction. In this example, the
object is a pair of values, and the function 𝜋1 is a primitive operation that extracts the first
value of the pair.

𝜋1(𝑎, 𝑏) ⟶𝜄 𝑎

Normal form Applying a reduction until a term can no longer be reduced produces
a normal form: β-reduction leads to a β-normal form, β- and δ-reductions produce the
βδ-normal form. All of these reduction together: applying functions to their arguments,
replacing constants and local variables with their definitions, evaluating objects, and α-
converting variables if necessary are called βδιζ-reduction, and produce a βδιζ-normal
form, or just normal form for short. Every term of the λ-calculus has only a single unique
normal form (up to α-conversion), according to the Church-Rossier theorem.

let 𝑝𝑎𝑖𝑟 = 𝜆𝑚.(𝑚,𝑚) in 𝜋1 (𝑝𝑎𝑖𝑟 (𝑖𝑑 5))
⟶𝜁 𝜋1 ((𝜆𝑚.(𝑚,𝑚)) (𝑖𝑑 5))
⟶𝛽 𝜋1 (𝑖𝑑 5, 𝑖𝑑 5)
⟶𝜄 𝑖𝑑 5
⟶𝛿 (𝜆𝑥.𝑥) 5
⟶𝛽 5
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Reduce under abstraction
Yes No

Re
du

ce
ar
gs Yes

𝐸 ≔ 𝜆𝑥.𝐸 | 𝑥 𝐸1...𝐸𝑛 𝐸 ≔ 𝜆𝑥.𝑒 | 𝑥 𝐸1...𝐸𝑛

Normal form Weak normal form

No
𝐸 ≔ 𝜆𝑥.𝐸 | 𝑥 𝑒1...𝑒𝑛 𝐸 ≔ 𝜆𝑥.𝑒 | 𝑥 𝑒1...𝑒𝑛
Head normal form Weak head normal form

Figure 2.4: Normal forms in λ-calculus

Other normal forms A full normal form has all sub-terms of a term fully reduced. There
are also other normal forms that differ in the treatment of bodies of λ-abstractions. If we
have an expression and repeatedly only use the β-reduction, we end up with a function, or
a variable applied to some free variables. These other normal forms specify what happens
in such a “stuck” case. In Figure 2.4, 𝑒 is an arbitrary λ-term and 𝐸 is a term in the rele-
vant normal form [45]. Closely related to the concept of a normal form are normalization
strategies that specify the order in which sub-expressions are reduced.

Strong normalization An important property of a model of computation is termination,
the question of whether there are expressions for which computation does not stop. In
the context of λ-calculus it means whether there are terms, where repeatedly applying
rewriting rules does not produce a unique normal form in a finite sequence steps. While for
some expressions this may depend on the selected rewriting strategy, the general property
is as follows: if for all well-formed terms 𝑎 there does not exist any infinite sequence of
reductions 𝑎 ⟶𝛽 𝑎′ ⟶𝛽 𝑎″ ⟶𝛽 ⋯, then such a system is called strongly normalizing.
The untyped λ-calculus is not a strongly normalizing system, though, and there are expres-
sions that do not have a normal form. When such expressions are reduced, they do not get
smaller, but they diverge. The ω combinator:

𝜔 = 𝜆𝑥.𝑥 𝑥

is one such example that produces an infinite term. Applying ω to itself produces a diver-
gent term whose reduction cannot terminate:

𝜔 𝜔 ⟶𝛿 (𝜆𝑥.𝑥 𝑥)𝜔 ⟶𝛽 𝜔 𝜔

The fixed-point function, the Y combinator, is also notable:

𝑌 = 𝜆𝑓 .(𝜆𝑥.𝑓 (𝑥 𝑥)) (𝜆𝑥.𝑓 (𝑥 𝑥))

This is one possible way of encoding general recursion in λ-calculus, as it reduces by ap-
plying 𝑓 to itself:

𝑌 𝑓 ⟶𝛿𝛽 𝑓 (𝑌 𝑓 ) ⟶𝛿𝛽 𝑓 (𝑓 (𝑌 𝑓 )) ⟶𝛿𝛽 ...
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This, as wewill see in the following chapter, is impossible to encode in the typed λ-calculus
without additional extensions.
As simple as λ-calculus may seem, it is a Turing-complete system that can encode logic,
arithmetic, or data structures. Some examples include Church encoding of booleans, pairs,
or natural numbers (Figure 2.5).

0 = 𝜆𝑓 .𝜆𝑥. 𝑥
1 = 𝜆𝑓 .𝜆𝑥. 𝑓 𝑥

(a) Natural numbers

𝑠𝑢𝑐𝑐 = 𝜆𝑛.𝜆𝑓 .𝜆𝑥.𝑓 (𝑛 𝑓 𝑥)
𝑝𝑙𝑢𝑠 = 𝜆𝑚.𝜆𝑛.𝑚 𝑠𝑢𝑐𝑐 𝑛

(b) Simple arithmetic

𝑡𝑟𝑢𝑒 = 𝜆𝑥.𝜆𝑦.𝑥
𝑓 𝑎𝑙𝑠𝑒 = 𝜆𝑥.𝜆𝑦.𝑦
𝑛𝑜𝑡 = 𝜆𝑝.𝑝 𝑓 𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒
𝑎𝑛𝑑 = 𝜆𝑝.𝜆𝑞.𝑝 𝑞 𝑝

𝑖𝑓 𝐸𝑙𝑠𝑒 = 𝜆𝑝.𝜆𝑎.𝜆𝑏.𝑝 𝑎 𝑏

(c) Logic

𝑐𝑜𝑛𝑠 = 𝜆𝑓 .𝜆𝑥.𝜆𝑦.𝑓 𝑥 𝑦
𝑓 𝑠𝑡 = 𝜆𝑝.𝑝 𝑡𝑟𝑢𝑒
𝑠𝑛𝑑 = 𝜆𝑝.𝑝 𝑓 𝑎𝑙𝑠𝑒

(d) Pairs

Figure 2.5: Church encoding of various concepts

2.2.2 λ→-calculus

It is often useful to describe the kinds of objects we work with, though. Already, in Fig-
ure 2.5 we could see that reading such expressions can get confusing: a boolean is a func-
tion of two parameters, whereas a pair is a function of three arguments, of which the first
one needs to be a boolean and the other two contents of the pair.
The untyped λ-calculus defines a general model of computation based on functions and
function application. Now we will restrict this model using types that describe the values
that can be computed with.
The simply typed λ-calculus introduces the concept of types. There are two separate lan-
guages: the language of terms, and the language of types. These languages are connected
by a type judgment, or type assignment 𝑥 ∶ 𝑇 that asserts that the term 𝑥 has the type 𝑇 [25].
It also called the λ→-calculus, as “→” is the connector used in types. We have a set of basic
types that are connected into terms using the arrow →, and type annotation or assignment
𝑥 ∶ 𝐴.

Church- and Curry-style There are twoways of formalizing the simply-typed λ-calculus:
λ→-Church, and λ→-Curry. Church-style is also called system of typed terms, or the ex-
plicitly typed λ-calculus, as λ-abstractions directly include the type of the argument in the
binder, and we say:

𝜆𝑥 ∶ 𝐴.𝑥 ∶ 𝐴 → 𝐴,
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or using parentheses to clarify the precedence

𝜆(𝑥 ∶ 𝐴).𝑥 ∶ (𝐴 → 𝐴).

Curry-style is also called the system of typed assignment, or the implicitly typed λ-calculus
as we assign types to untyped λ-terms that do not carry type information by themselves,
and we say 𝜆𝑥.𝑥 ∶ 𝐴 → 𝐴 [6].
There are systems that are not expressible in Curry-style, and vice versa. Curry-style is in-
teresting for programming, we want to omit type information; and we will see how to
manipulate programs specified in this way in Chapter 3. We will use Church-style in this
chapter, but our language will be Curry-style, so that we incorporate elaboration into the
interpreter.

Well-typed terms Before we only needed evaluation rules to fully specify the system,
but specifying a system with types also requires typing rules that describe what types are
allowed. We will also need to distinguish well-formed terms from well-typed terms: well-
formed terms are syntactically valid, whereas well-typed terms also obey the typing rules.
Terms that are well-formed but not yet known to be well typed are called pre-terms (pre-
syntax).
These properties are ensured by type-checking algorithms that will be described in detail
in the next chapter. In brief: given a pre-term and a type, type checking verifies if the term
can be assigned the type; given just a pre-term and no type, type inference computes the
type of an expression; and finally type elaboration is the process of converting a partially
specified pre-term into a complete, well-typed term using the previous two [17].

𝑒 (terms)
≔ 𝑣 variable
| 𝑀 𝑁 application
| 𝜆𝑥. 𝑡 abstraction
| 𝑥 ∶ 𝜏 annotation

𝜏 (types)
≔ 𝛽 base types
| 𝜏 → 𝜏′ composite type

Γ (typing context)
≔ ∅ empty context
| Γ, 𝑥 ∶ 𝜏 type judgement

𝑣 (values)
≔ 𝜆𝑥. 𝑡 closure

Figure 2.6: λ→-calculus syntax

Types and context The complete syntax of the λ→-calculus is in Figure 2.6. This time,
we also include the notion of values, which are the result of fully reducing an expression.
As there are only functions in this variant, the only possible value is a closure: a partially-
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evaluated function. Reduction operations are the same as in the untyped lambda calculus,
but wewill need to add the language of types to the previously specified language of terms.
The language of types consists of a set of base types which can consist of, e.g., natural num-
bers or booleans, and composite types, which describe functions between them. We also
need a way to store the types of terms that are known, a typing context, which consists of
a list of type judgments in the form 𝑥 ∶ 𝑇, which associate variables to their types.

𝑥 ∶ 𝐴 ∈ Γ (Var)Γ ⊢ 𝑥 ∶ 𝐴

Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
(App)Γ ⊢ 𝑓 𝑎 ∶ 𝐵

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 (Abs)Γ ⊢ 𝜆𝑥 ∶ 𝐴.𝑏 ∶ 𝐴 → 𝐵
Figure 2.7: λ→-calculus typing rules

Typing rules The simply-typed λ-calculus can be completely specified by the typing rules
in Figure 2.7 [43]. These rules are read similarly to logic proof trees: as an example, the
rule App can be read as “if we can infer 𝑓 with the type 𝐴 → 𝐵 and 𝑎 with the type 𝐴 from
the context Γ, then we can also infer that function application 𝑓  𝑎 has the type 𝐵”. Given
these rules and the formula

𝜆𝑎 ∶ 𝐴.𝜆𝑏 ∶ 𝐵.𝑎 ∶ 𝐴 → 𝐵 → 𝐴

we can also produce a derivation tree that looks similar to logic proofs and, as mentioned
before, its semantics corresponding to the logic formula “if 𝐴 and 𝐵, then 𝐴” as per the
Curry-Howard equivalence.

𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ 𝑎 ∶ 𝐴
𝑎 ∶ 𝐴 ⊢ 𝜆𝑏 ∶ 𝐵.𝑎 ∶ 𝐵 → 𝐴

⊢ 𝜆𝑎 ∶ 𝐴.𝜆𝑏 ∶ 𝐵.𝑎 ∶ 𝐴 → 𝐵 → 𝐴

We brieflymentioned the problem of termination in the previous section; the simply-typed
λ-calculus is strongly normalizing: the reduction of anywell-typed termof the λ→-calculus
will terminate, and produce a unique normal form. In other words, there is no way of
writing a divergent term that is also well-typed; the Y combinator is impossible to type in
λ→ and any of the systems in the next chapter [8].

2.2.3 λ-cube

The λ→-calculus restricts the types of arguments to functions; types are static and descrip-
tive. When evaluating a well-typed term, the types can be erased altogether without any
effect on the computation. In other words, terms can only depend on other terms.
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Generalizations of the λ→-calculus can be organized into a cube called the Barendregt cube,
or the λ-cube [6] (Figure 2.8). In λ→ only terms depend on terms, but there are also three
other combinations represented by the three dimensions of the cube: types depending
on types (□,□), or also called type operators; types depending on terms (□, ⋆), called
polymorphism; and terms depending on types (⋆,□), representing dependent types.

𝜆𝜔 𝜆Π𝜔

𝜆2 𝜆Π2

𝜆𝜔 𝜆Π𝜔

𝜆 → 𝜆Π

(□,□)

(□, ⋆)

(⋆,□)
Figure 2.8: Barendregt cube (also λ-cube)

Sorts To formally describe the cube, wewill need to introduce the notion of sorts. In brief,

𝑡 ∶ 𝑇 ∶ ⋆ ∶ □.

Themeaning of the symbol ∶ is same as before, “x has type y”. The type of a term 𝑡 is a type
𝑇, the type of a type 𝑇 is a kind ∗, and the type of kinds is the sort □. The symbols ⋆ and □
are called sorts. As with types, sorts can be connected using arrows, e.g. (⋆ → ⋆) → ⋆. To
contrast the syntaxes of the following languages, the syntax of λ→ is here:

𝑡𝑦𝑝𝑒𝑠 ≔ 𝑇 | 𝐴 → 𝐵
𝑡𝑒𝑟𝑚𝑠 ≔ 𝑣 | 𝜆𝑥 ∶ 𝐴.𝑡 | 𝑎 𝑏
𝑣𝑎𝑙𝑢𝑒𝑠 ≔ 𝜆𝑥 ∶ 𝐴.𝑡

λω-calculus Higher-order types or type operators generalize the concepts of functions to
the type level, adding λ-abstractions and applications to the language of types.

𝑡𝑦𝑝𝑒𝑠 ≔ 𝑇 | 𝐴 → 𝐵 | 𝐴 𝐵 | Λ𝐴.𝐵(𝑎)
𝑡𝑒𝑟𝑚𝑠 ≔ 𝑣 | 𝜆𝑥 ∶ 𝐴.𝑡 | 𝑎 𝑏
𝑣𝑎𝑙𝑢𝑒𝑠 ≔ 𝜆𝑥 ∶ 𝐴.𝑡

λ2-calculus The dependency of terms on types adds polymorphic types to the language
of types: ∀𝑋 ∶ 𝑘.𝐴(𝑋), and type abstractions (Λ-abstractions) and applications to the lan-
guage of terms. It is also called System F, and it is equivalent to propositional logic [6].

𝑡𝑦𝑝𝑒𝑠 ≔ 𝑇 | 𝐴 → 𝐵 | ∀𝐴.𝐵
𝑡𝑒𝑟𝑚𝑠 ≔ 𝑣 | 𝜆𝑥 ∶ 𝐴.𝑡 | 𝑎 𝑏 | Λ𝐴.𝑡
𝑣𝑎𝑙𝑢𝑒𝑠 ≔ 𝜆𝑥 ∶ 𝐴.𝑡 | Λ𝐴.𝑡
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λΠ-calculus Allowing types to depend on terms means that type of a function can de-
pend on its term-level arguments, hence dependent types, represented by the type Π𝑎 ∶
𝐴.𝐵(𝑎). This dependency is the reason for the name of dependently-typed languages. This
system is well-studied as the Logical Framework (LF) [6].

𝑡𝑦𝑝𝑒𝑠 ≔ 𝑇 | 𝐴 → 𝐵 | Π𝑎 ∶ 𝐴.𝐵
𝑡𝑒𝑟𝑚𝑠 ≔ 𝑣 | 𝜆𝑥 ∶ 𝐴.𝑏 | 𝑎 𝑏 | Π𝑎 ∶ 𝐴.𝑏
𝑣𝑎𝑙𝑢𝑒𝑠 ≔ 𝜆𝑥 ∶ 𝐴.𝑏 | Π𝑥 ∶ 𝐴.𝑏

Pure type system These systems can all be described by one set of typing rules instanti-
ated with a triple (𝑆, 𝐴, 𝑅). Given the set of sorts 𝑆 = {⋆,□} we can define relations 𝐴 and
𝑅 where, for example, 𝐴 = {(⋆,□)} is translated to the axiom ⊢ ⋆ ∶ □ by the rule Start, and
𝑅 = {(⋆,□)}2 means that a kind can depend on a type using the rule Product.

𝑆 ≔ {⋆,□} set of sorts
𝐴 ⊆ 𝑆 × 𝑆 set of axioms
𝑅 ⊆ 𝑆 × 𝑆 × 𝑆 set of rules

The typing rules in Figure 2.9 apply to all the above-mentioned type systems. The set
𝑅 exactly corresponds to the dimensions of the λ-cube, so instantiating this type system
with 𝑅 = {(⋆, ⋆)}would produce the λ→-calculus, whereas including all the dependencies
𝑅 = {(⋆, ⋆), (□, ⋆), (⋆,□), (□,□)} produces the λΠω-calculus. If we also consider that the
function arrow 𝐴 → 𝐵 is exactly equivalent to the type Π𝑎 ∶ 𝐴.𝐵(𝑎) if the variable 𝑎 is not
used in the expression 𝐵(𝑎), the similarity to Figure 2.7 should be easy to see.

(𝑠1, 𝑠2) ∈ 𝐴⊢ 𝑠1 ∶ 𝑠2 (Start)

Γ ⊢ 𝐴 ∶ 𝑠 𝑠 ∈ 𝑆Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 (Var)

Γ ⊢ 𝑥 ∶ 𝐴 Γ ⊢ 𝐵 ∶ 𝑠 𝑠 ∈ 𝑆Γ, 𝑦 ∶ 𝐵 ⊢ 𝑥 ∶ 𝐴 (Weaken)

Γ ⊢ 𝑓 ∶ Π𝑥∶𝐴𝐵(𝑥) Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑓 𝑎 ∶ 𝐵[𝑥 ≔ 𝑎]

(App)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 Γ ⊢ Π𝑥∶𝐴𝐵(𝑥) ∶ 𝑠
𝑠 ∈ 𝑆Γ ⊢ (𝜆𝑥 ∶ 𝐴.𝑏) ∶ Π𝑥∶𝐴𝐵(𝑥)

(Abs)

Γ ⊢ 𝐴 ∶ 𝑠1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠2 (𝑠1, 𝑠2, 𝑠3) ∈ 𝑅Γ ⊢ Π𝑥∶𝐴𝐵(𝑥) ∶ 𝑠3
(Product)

Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝐴′ ∶ 𝑠 𝐴 ⟶𝛽 𝐴′
𝑠 ∈ 𝑆Γ ⊢ 𝑎 ∶ 𝐴′ (Conv)

Figure 2.9: Typing rules of a pure type system

2The elements of 𝑅 are written as (𝑠1, 𝑠2), which is equivalent to (𝑠1, 𝑠2, 𝑠2).
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Universes The notion of sorts and axioms can be generalized even more. Instantiating
this system with an infinite set of sorts 𝑆 = {𝑇𝑦𝑝𝑒0, 𝑇𝑦𝑝𝑒1, ...} instead of the set {⋆,□} and
setting 𝐴 to {(𝑇𝑦𝑝𝑒0, 𝑇𝑦𝑝𝑒1), (𝑇𝑦𝑝𝑒1, 𝑇𝑦𝑝𝑒2), ...} leads to an infinite hierarchy of type uni-
verses. Proof assistants commonly use such a hierarchy [8].

Type in Type Going the other way around, simplifying 𝑆 to 𝑆 = {⋆} and setting 𝐴 to
{(⋆, ⋆)}, lead to an inconsistent logic system called λ⋆, also called a system with a Type in
Type rule. This leads to paradoxes similar to the Russel’s paradox in set theory.
In many pedagogic implementations of dependently-typed λ-calculi I saw, though, this
was simply acknowledged: separating universes introduces complexity but the distinction
is not as important for many purposes.
For the goal of this thesis–testing the characteristics of a runtime system–the distinction
is unimportant. In the rest of the text we will use the inconsistent λ⋆-calculus, but with
all the constructs mentioned in the preceding type systems. We will now formally define
these constructs, together with several extensions to this system that will be useful in the
context of just-in-time compilation using Truffle, e.g., (co)product types, booleans, natural
numbers.
Proof assistants and other dependently-typed programming languages use systems based
on λΠω-calculus, which is called theCalculus of Constructions. They addmore extensions:
induction and subtyping are common ones. We will discuss only a subset of them in the
following section, as many of these are irrelevant to the goals of this thesis.

2.3 Types

With the basic concepts introduced, we canmove on to specifying the syntax and semantics
of the language that will be used for the implementation and evaluation part of this thesis.
While it is possible to derive any types using only three constructs: Π-types (dependent
product), Σ-types (dependent sum), and𝑊-types (inductive types), that we have not seen
so far; we will define specific “wired-in” types in addition to the Π- and Σ-types, as they are
more straightforward to both use and implement.
We will specify the syntax and semantics of each type at the same time. For syntax, we
will define the terms and values, for semantics we will use four parts: type formation,
a way to construct new types; term introduction (constructors), ways to construct terms
of these types; term elimination (destructors), ways to use them to construct other terms;
and computation rules that describe what happens when an introduced term is eliminated.
The algorithms to normalize and type-check these termswill bementioned in the following
chapter. In this section we will solely focus on the syntax and semantics.

2.3.1 Π-types

As mentioned above, the type Π𝑎 ∶ 𝐴.𝐵, also called the dependent product type or the depen-
dent function type, is a generalization of the function type 𝐴 → 𝐵. Where the function type
simply asserts that its corresponding function will receive a value of a certain type as its
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argument, the Π-type makes the value available in the rest of the type. Figure 2.10 intro-
duces its semantics; they are similar to the typing rules of λ→-calculus function application,
except for the substitution in the type of 𝐵 in rule Elim-Pi.

Γ ⊢ 𝐴 ∶ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆ (Type-Pi)Γ ⊢ Π𝑥 ∶ 𝐴.𝐵

Γ, 𝑎 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 (Intro-Pi)Γ ⊢ 𝜆𝑥.𝑏  ∶  Π𝑥 ∶ 𝐴.𝐵
Γ ⊢ 𝑓   ∶  Π𝑥 ∶ 𝐴.𝐵 Γ ⊢ 𝑎 ∶ 𝐴

(Elim-Pi)Γ ⊢ 𝑓  𝑎 ∶ 𝐵[𝑥 ≔ 𝑎]
Γ, 𝑎 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 Γ ⊢ 𝑎 ∶ 𝐴 (Eval-Pi)Γ ⊢ (𝜆𝑥 ∶ 𝐴.𝑏)𝑎 ⟶𝛽 𝑏[𝑥 ≔ 𝑎]

Figure 2.10: Π-type semantics

While a very common example of aΠ-type is the length-indexed vectorΠ(𝑛 ∶ ℕ).𝑉𝑒𝑐(ℝ, 𝑛),
it is also possible to define a function with a “dynamic” number of arguments like in the
following listing. It is a powerful language feature also for its programming uses, as it
makes it possible to, e.g., implement a well-typed function printf that, e.g., produces
the function 𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝑆𝑡𝑟𝑖𝑛𝑔 when called as printf "%d%d". The following is an
example of a function, whose number of arguments changes based on the value of the first
argument.

𝑠𝑢𝑐𝑐𝑂𝑟𝑍𝑒𝑟𝑜 ∶ Π(𝑏 ∶ 𝐵𝑜𝑜𝑙). 𝑖𝑓  𝑏 𝑡ℎ𝑒𝑛 (𝑁𝑎𝑡 → 𝑁𝑎𝑡) 𝑒𝑙𝑠𝑒 𝑁𝑎𝑡
𝑠𝑢𝑐𝑐𝑂𝑟𝑍𝑒𝑟𝑜 = Π(𝑏 ∶ 𝐵𝑜𝑜𝑙). 𝑖𝑓  𝑏 𝑡ℎ𝑒𝑛 (𝜆𝑥. 𝑥 + 1) 𝑒𝑙𝑠𝑒 0

𝑠𝑢𝑐𝑐𝑂𝑟𝑍𝑒𝑟𝑜 𝑡𝑟𝑢𝑒 0 ⟶𝛽𝛿 1
𝑠𝑢𝑐𝑐𝑂𝑟𝑍𝑒𝑟𝑜 𝑓 𝑎𝑙𝑠𝑒 ⟶𝛽𝛿 0

Implicit arguments The type-checker can infer many type arguments. Agda adds the
concept of implicit function arguments [8] to ease the programmer’s work and mark in-
ferrable type arguments in a function’s type signature. Such arguments can be specified
when calling a function using a special syntax, but they are not required [33]. We will do
the same, and as such we will split the syntax of a Π-type back into three separate con-
structs, which can be seen in Figure 2.11.

𝑡𝑒𝑟𝑚 ≔ 𝑎 → 𝑏 | (𝑎 ∶ 𝐴) → 𝑏 | {𝑎 ∶ 𝐴} → 𝑏 (abstraction)
| 𝑓  𝑎 | | 𝑓  {𝑎} (application)

𝑣𝑎𝑙𝑢𝑒 ≔ Π𝑎 ∶ 𝐴.𝑏
Figure 2.11: Π-type syntax

The plain function type 𝐴 → 𝐵 is simple to type but does not bind the value provided as the
argument 𝐴. The explicit Π-type (𝑎 ∶ 𝐴) → 𝐵 binds the value 𝑎 and makes it available to use
inside 𝐵, and the implicit Π-type {𝑎 ∶ 𝐴} → 𝐵 marks the argument as one that type elabora-
tion should be able to infer from the surrounding context. The following is an example of
the implicit argument syntax, a polymorphic function 𝑖𝑑.

𝑖𝑑 ∶ {𝐴 ∶ ⋆} → 𝐴 → 𝐴 ≔ Π(𝑥 ∶ 𝐴).𝑥
𝑖𝑑 {𝑁𝑎𝑡} ∶ 𝑁𝑎𝑡 → 𝑁𝑎𝑡 ⟶𝛽𝛿 𝜆(𝑥 ∶ 𝑁𝑎𝑡).𝑥

𝑖𝑑 1 ∶ 𝑁𝑎𝑡 ⟶𝛽𝛿 1
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Γ ⊢ 𝐴 ∶ ⋆ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆ (Type-Sigma)Γ ⊢ Σ𝑥∶𝐴𝐵 ∶ ⋆
Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆ Γ ⊢ 𝑏 ∶ 𝐵[𝑥 ≔ 𝑎] (Intro-Sigma)Γ ⊢ (𝑎, 𝑏) ∶ Σ𝑥∶𝐴𝐵

Γ ⊢ 𝑝 ∶ Σ𝑥∶𝐴𝐵 (Elim-Sigma1)Γ ⊢ 𝜋1 𝑝 ∶ 𝐴
Γ ⊢ 𝑝 ∶ Σ𝑥∶𝐴𝐵 (Elim-Sigma2)Γ ⊢ 𝜋2 𝑝 ∶ 𝐵[𝑥 ≔ 𝑓 𝑠𝑡 𝑝]

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆ Γ ⊢ 𝑏 ∶ 𝐵[𝑥 ≔ 𝑎] (Eval-Sigma1)Γ ⊢ 𝜋1 (𝑎, 𝑏) ⟶𝜄 𝑎 ∶ 𝐴
Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆ Γ ⊢ 𝑏 ∶ 𝐵[𝑥 ≔ 𝑎] (Eval-Sigma2)Γ ⊢ 𝜋2 (𝑎, 𝑏) ⟶𝜄 𝑏 ∶ 𝐵

Figure 2.12: Σ-type semantics

2.3.2 Σ-types

The Σ-type is also called the dependent pair type, or alternatively the dependent tuple, de-
pendent sum, or even the dependent product type. Like the Π-type was a generalization of
the function type, the Σ-type is a generalization of a product type, or simply a pair. Seman-
tically, the Σ-type is similar to the tagged union in C-like languages: the type Σ(𝑎 ∶ 𝐴).𝐵(𝑎)
corresponds to a value (𝑎, 𝑏), only the type 𝐵(𝑎) can depend on the first member of the pair.
This is illustrated in Figure 2.12, where the dependency can be seen in rule Intro-Sigma, in
the substitution 𝐵[𝑥 ≔ 𝑎].
Above, we had a function that could accept different arguments based on the value of the
first argument. Below, we have a type that simply uses Σ in place of Π in the type: based
on the value of the first member, the second member can be either a function or a value,
and still be a well-typed term.

𝐹𝑢𝑛𝑐𝑂𝑟𝑉𝑎𝑙 ∶ Σ(𝑏 ∶ 𝐵𝑜𝑜𝑙). 𝑖𝑓  𝑏 𝑡ℎ𝑒𝑛 (𝑁𝑎𝑡 → 𝑁𝑎𝑡) 𝑒𝑙𝑠𝑒 𝑁𝑎𝑡
(𝑡𝑟𝑢𝑒, 𝜆𝑥. 𝑥 + 1) ∶ 𝐹𝑢𝑛𝑐𝑂𝑟𝑉𝑎𝑙

(𝑓 𝑎𝑙𝑠𝑒, 0) ∶ 𝐹𝑢𝑛𝑐𝑂𝑟𝑉𝑎𝑙

Pair Similar to the function type, given the expression Σ(𝑎 ∶ 𝐴).𝐵(𝑎), if 𝑎 does not occur
in the expression 𝐵(𝑎), then it is the non-dependent pair type. The pair type is useful to
express an isomorphism also used in general programming practice: a conversion between
a function of two arguments, and a function of one argument that returns a function of one
argument:

𝐴 × 𝐵 → 𝐶 ⇔ 𝐴 → 𝐵 → 𝐶
𝑐𝑢𝑟𝑟𝑦 ≔ 𝜆(𝑓 ∶ 𝐴 × 𝐵 → 𝐶). 𝜆(𝑥 ∶ 𝐴).𝜆(𝑦 ∶ 𝐵). 𝑓  (𝑥, 𝑦)

𝑢𝑛𝑐𝑢𝑟𝑟𝑦 ≔ 𝜆(𝑓 ∶ 𝐴 → 𝐵 → 𝐶). 𝜆(𝑥 ∶ 𝐴 × 𝐵). 𝑓  (𝜋1 𝑥) (𝜋2 𝑦)

Tuple The n-tuple is a generalization of the pair, a non-dependent set of an arbitrary num-
ber of values, otherwise expressible as a set of nested pairs: commonlywritten as (𝑎1, ..., 𝑎𝑛).
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Record A record type is similar to a tuple, only its members have unique labels. In Fig-
ure 2.13, we see the semantics of a general record type, using the notation {𝑙𝑖 = 𝑡𝑖}  ∶  {𝑙𝑖 ∶ 𝑇𝑖}
and a projection 𝑟𝑒𝑐𝑜𝑟𝑑.𝑚𝑒𝑚𝑏𝑒𝑟.

∀𝑖 ∈ {1..𝑛} Γ ⊢ 𝑇𝑖 ∶ ⋆ (Type-Rec)
Γ ⊢ {𝑙𝑖 ∶ 𝑇𝑖∈{1..𝑛}

𝑖 } ∶ ⋆
∀𝑖 ∈ {1..𝑛} Γ ⊢ 𝑡𝑖 ∶ 𝑇𝑖 (Intro-Rec)

Γ ⊢ {𝑙𝑖 = 𝑡𝑖∈{1..𝑛}
𝑖 } ∶ {𝑙𝑖 ∶ 𝑇𝑖∈{1..𝑛}

𝑖 }

Γ ⊢ 𝑡 ∶ {𝑙𝑖 ∶ 𝑇𝑖∈{1..𝑛}
𝑖 }

(Elim-Rec)Γ ⊢ 𝑡.𝑙𝑖 ∶ 𝑇𝑖

∀𝑖 ∈ {1..𝑛} Γ ⊢ 𝑡𝑖 ∶ 𝑇𝑖 Γ ⊢ 𝑡 ∶ {𝑙𝑖 ∶ 𝑇𝑖∈{1..𝑛}
𝑖 }

(Eval-Rec)
Γ ⊢ {𝑙𝑖 = 𝑡𝑖∈{1..𝑛}

𝑖 }.𝑙𝑖 ⟶𝜄 𝑡𝑖 ∶ 𝐵

Figure 2.13: Record semantics

In Figure 2.14, we have a syntax that unifies all of these concepts: a Σ-type, a pair, an n-
tuple, a named record. A non-dependent n-tuple type is written as 𝐴 × 𝐵 × 𝐶 with values
(𝑎, 𝑏, 𝑐). Projections of non-dependent tuples use numbers, e.g., 𝑝.1, 𝑝.2, … A dependent
sum type is written in the same way as a named record: (𝑎 ∶ 𝐴) × 𝐵 binds the value 𝑎 ∶ 𝐴 in
the rest of the type 𝐵, and on the value-level enables the projection 𝑜𝑏𝑗.𝑎.

𝑡𝑒𝑟𝑚 ≔ 𝑇1 ×⋯ × 𝑇𝑛 | (𝑙1 ∶ 𝑇1) × ⋯ × (𝑙𝑛 ∶ 𝑇𝑛) × 𝑇𝑛+1 (types)
| 𝑡.𝑖 | 𝑡.𝑙𝑛 (destructors)
| (𝑡1,⋯, 𝑡𝑛) (constructor)

𝑣𝑎𝑙𝑢𝑒 ≔ (𝑡1,⋯, 𝑡𝑛)

Figure 2.14: Σ-type syntax

Coproduct The sum type or the coproduct 𝐴+𝐵 can have values from both types 𝐴 and
𝐵, often written as 𝑎 ∶ 𝐴 ⊢ 𝑖𝑛𝑙 𝐴 ∶ 𝐴 + 𝐵, where 𝑖𝑛𝑙 means “on the left-hand side of the sum
𝐴+𝐵”. This can be generalized to the concept of variant types, with an arbitrary number of
named members; shown below, using Haskell syntax:

𝑑𝑎𝑡𝑎 𝑀𝑎𝑦𝑏𝑒 𝑎 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 | 𝐽𝑢𝑠𝑡 𝑎

For the purposes of our language, a binary sum type is useful, but inductive variant types
would require more involved constraint checking, so we will ignore those, only using sim-
ple sum types in the form of 𝐴+𝐵. This type can be derived using a dependent pair where
the first member is a boolean.

𝐶ℎ𝑎𝑟 + 𝐼𝑛𝑡  ≃  Σ(𝑥 ∶ 𝐵𝑜𝑜𝑙). 𝑖𝑓  𝑥 𝐶ℎ𝑎𝑟 𝐼𝑛𝑡
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2.3.3 Value types

Finite sets Pure type systems mentioned in the previous chapter often use types like 0, 1,
and 2 with a finite number of inhabitants, where the type 0 (with zero inhabitants of the
type) is the empty or void type. Type 1 with a single inhabitant is the unit type, and the
type 2 is the boolean type. Also, the infinite set of natural numbers can be defined using
induction over 2. For our purposes, it is enough to define a fixed number of types, though.

Unit The unit type 1, or commonlywritten as the 0-tuple “()”, is sometimes used as a uni-
versal return value. As it has no evaluation rules, though, we can simply add a new type
𝑈𝑛𝑖𝑡 and a new value and term 𝑢𝑛𝑖𝑡, with the rule 𝑢𝑛𝑖𝑡 ∶ 𝑈𝑛𝑖𝑡.

Booleans The above-mentioned type 2has two inhabitants and can be semanticallymapped
to the boolean type. In Figure 2.15, we introduce the values 𝑡𝑟𝑢𝑒 and 𝑓 𝑎𝑙𝑠𝑒, and a simple
eliminator 𝑐𝑜𝑛𝑑 that returns one of two values based on the truth value of its argument.

(Type-Nat)⊢ 𝐵𝑜𝑜𝑙 ∶ ⋆
(Intro-True)⊢ 𝑡𝑟𝑢𝑒 ∶ 𝐵𝑜𝑜𝑙 (Intro-False)⊢ 𝑓 𝑎𝑙𝑠𝑒 ∶ 𝐹𝑎𝑙𝑠𝑒

Γ ⊢ 𝑎1 ∶ 𝐴 Γ ⊢ 𝑎2 ∶ 𝐴 (Elim-Bool)Γ, 𝑥 ∶ 𝐵𝑜𝑜𝑙 ⊢ 𝑖𝑓  𝑥 𝑎1 𝑎2 ∶ 𝐴
Γ ⊢ 𝑎1 ∶ 𝐴 Γ ⊢ 𝑎2 ∶ 𝐴 (Eval-True)Γ ⊢ 𝑐𝑜𝑛𝑑 𝑡𝑟𝑢𝑒 𝑎1 𝑎2 ⟶𝜄 𝑎1 ∶ 𝐴

Γ ⊢ 𝑎1 ∶ 𝐴 Γ ⊢ 𝑎2 ∶ 𝐴 (Eval-False)𝑐𝑜𝑛𝑑 𝑓 𝑎𝑙𝑠𝑒 𝑎1 𝑎2 ⟶𝜄 𝑎2 ∶ 𝐴

Figure 2.15: Bool semantics

Natural numbers The natural numbers form an infinite set, unlike the above value types.
On their own, adding natural numbers to a type system does not produce non-termination,
as the recursion involved in theirmanipulation can be limited to primitive recursion as, e.g.,
used in Gödel’s System T [8]. The constructions introduced in Figure 2.16 are simply the
constructors 𝑧𝑒𝑟𝑜 and 𝑠𝑢𝑐𝑐, and the destructor 𝑛𝑎𝑡𝐸𝑙𝑖𝑚 unwraps at most one layer of 𝑠𝑢𝑐𝑐.

(Type-Nat)⊢ 𝑁𝑎𝑡 ∶ ⋆

(Intro-Zero)⊢ 𝑧𝑒𝑟𝑜 ∶ 𝑁𝑎𝑡
Γ ⊢ 𝑛 ∶ 𝑁𝑎𝑡 (Intro-Succ)Γ ⊢ 𝑠𝑢𝑐𝑐 𝑛 ∶ 𝑁𝑎𝑡

Γ ⊢ 𝑎1 ∶ 𝐴 Γ, 𝑛 ∶ 𝑁𝑎𝑡 ⊢ 𝑎2 ∶ 𝐴 (Elim-Nat)Γ, 𝑥 ∶ 𝑁𝑎𝑡 ⊢ 𝑛𝑎𝑡𝐸𝑙𝑖𝑚 𝑥 𝑎1 (𝜆𝑥.𝑎2)
Γ ⊢ 𝑎1 ∶ 𝐴 Γ, 𝑛 ∶ 𝑁𝑎𝑡 ⊢ 𝑎2 ∶ 𝐴 (Eval-Zero)Γ ⊢ 𝑛𝑎𝑡𝐸𝑙𝑖𝑚 𝑧𝑒𝑟𝑜 𝑎1 (𝜆𝑥.𝑎2) ⟶𝜄 𝑎1 ∶ 𝐴

Γ ⊢ 𝑎1 ∶ 𝐴 Γ, 𝑛 ∶ 𝑁𝑎𝑡 ⊢ 𝑎2 ∶ 𝐴 Γ ⊢ 𝑛 ∶ 𝑁𝑎𝑡 (Eval-Succ)𝑛𝑎𝑡𝐸𝑙𝑖𝑚 (𝑠𝑢𝑐𝑐 𝑛) 𝑎1 (𝜆𝑥.𝑎2) ⟶𝜄 𝑎2[𝑥 ≔ 𝑛] ∶ 𝐴

Figure 2.16: Nat semantics
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2.4 Remaining constructs

These constructs together forma complete core language capable of forming and evaluating
expressions. Already, this would be a usable programming language. However, the surface
language is still missing: the syntax for defining constants and variables, and interacting
with the compiler.

Local definitions The λ-calculus is, to use programming language terminology, a purely
functional programming language: without specific extensions, any language construct
is an expression. We will use the syntax of Agda, and keep local variable definition as an
expression as well, using a let-in construct, with the semantics given in Figure 2.17.

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 (Type-Let)Γ ⊢ let 𝑥 = 𝑎 in 𝑏 ∶ 𝐵

Γ ⊢ 𝑣 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑒 ∶ 𝐵 (Eval-Let)let 𝑥 = 𝑣 in 𝑒 ⟶𝜁 𝑒[𝑥 ≔ 𝑣]

Figure 2.17: let-in semantics

Global definitions Global definitions are not strictly necessary, as with local definitions
and the fixed-point combinator we could emulate them. However, global definitions will
be useful later in the process of elaborations, when global top-level definitions will sep-
arate blocks that we can type-check separately. We will add three top-level expressions:
a declaration that only assigns a name to a type, and a definition with and without type.
Definitions without types will have them inferred.

𝑡𝑜𝑝 ≔ 𝑖𝑑 ∶ 𝑡𝑒𝑟𝑚
| 𝑖𝑑 ∶ 𝑡𝑒𝑟𝑚 = 𝑡𝑒𝑟𝑚
| 𝑖𝑑 = 𝑡𝑒𝑟𝑚

Holes A construct that serves solely as information to the compiler and will not be used
at runtime is a hole. It can take the place of a term in an expression and marks the missing
term as one to be inferred (“filled in”) during elaboration3. In fact, the syntax for a global
definition without a type will use a hole in place of its type. The semantics of a hole are
omitted on purpose as they would also require specifying the type inference algorithm.

𝑡𝑒𝑟𝑚 ≔ _

Interpreter directives Another type of top-level expressions is a pragma, a direct com-
mand to the compiler. We will use these when evaluating the time it takes to normalize or
elaborate an expression, or when enabling or disabling the use of “wired-in” types, e.g., to

3Proof assistants also use the concept of a metavariable, often with the syntax ?𝛼.
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compare the performance impact of using a Church encoding of numbers versus a natural
type that uses hardware integers. We will once again use the syntax of Agda:

𝑡𝑜𝑝 ≔ {−# 𝐵𝑈𝐼𝐿𝑇𝐼𝑁 𝑖𝑑 #−}
| {−# 𝐸𝐿𝐴𝐵𝑂𝑅𝐴𝑇𝐸 𝑡𝑒𝑟𝑚 #−}
| {−# 𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸 𝑡𝑒𝑟𝑚 #−}

The syntax and semantics presented here altogether comprise a working programming
language. A complete listing of the syntax and semantics is included in Appendix A.
This syntax now needs to be translated into a recognizer (a parser and a lexer), and the
semantics into a type-checker and an evaluator for the language. A simplified grammar,
translated from the syntax, is included in Listing 2.2. Compared to the previous syntax
specifications, the grammar also needs to encode the precedence and associativity of each
construct.
With this, the language specification is complete, and we can move on to the next part,
implementing a type-checker and an interpreter for this language.

FILE : STMT (STMTEND STMT)* ;
STMT : '{-#' ID+ '#-}'

| ID ':' EXPR
| ID (':' EXPR)? '=' EXPR
;

EXPR : 'let' ID ':' EXPR '=' EXPR 'in' EXPR
| 'λ' LAM_BINDER '.' EXPR
| PI_BINDER+ '→' EXPR
| ATOM ARG*
;

LAM_BINDER
: ID | '_' | '{' (ID | '_') '}' ;

PI_BINDER
: ATOM ARG*
| '(' ID+ ':' EXPR ')'
| '{' ID+ ':' EXPR '}'
;

ARG
: ATOM
| '{' ID ('=' TERM)? '}'
;

ATOM : '(' ID ':' EXPR ')' '×' EXPR
| EXPR '×' EXPR
| '(' EXPR (',' EXPR)+ ')'
| '(' EXPR ')'
| ID '.' ID
| ID | NAT | 'Unit' | | '_'
;

STMTEND : ('\n' | ';')+ ;
ID : [a-zA-Z] [a-zA-Z0-9] ;
SKIP : [ \t] | '--' [^\r\n]* | '{-' [^#] .* '-}' ;

Listing 2.2: A simplified version of the grammar (written using ANTLR syntax)
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Chapter 3

Language implementation: Montuno

3.1 Introduction

Now with a complete language specification, we can move onto the next step: writing an
interpreter. In this chapter, we will introduce the algorithms at the core of an interpreter
and build a tree-based interpreter for the language, elaborating on key implementation
decisions. The algorithms involved can be translated from specification to code quite natu-
rally, at least in the style of interpreter we will create in this chapter. The second interpreter
in Truffle will require a quite different programming paradigm and deciding onmany low-
level implementation details, e.g., how to implement actual function calls.
These algorithms presented here are state-of-the-art algorithms that are also used in other
dependently-typed languages. In particular, normalization-by-evaluation as presented by
Christiansen [10]; bidirectional typing as formalized by Dunfield and Krishnaswami [12];
and pattern unification presented in the thesis of Ulf Norell [39]. Several key implementa-
tion decisions: laziness, choice of meta-context, and the specifics of unification, were based
on Kovács’ SmallTT project [32].
The Kotlin implementation is fully my work. Most implementations of dependently-typed
languages are in (purely) functional languages, with Haskell being the most common,
so while it would simplify this part of the thesis, it would be impossible to extend an exist-
ing implementation. The reasoning behind picking Kotlin as the implementation language
will be explained momentarily. The interpreter created in this chapter will be referred to
using the working name Montuno1.

Language The choice of a programming language is mostly decided by the eventual tar-
get platformTruffle, aswewill be able to share parts of the implementation between the two
interpreters. The language of GraalVM and Truffle is Java, although other languages that
run on the Java Virtual Machine can be used2. My personal preference lies with more func-

1Montuno, as opposed to the project Cadenza, to which this project is a follow-up. Both are music terms,
cadenza being a “long virtuosic solo section”, whereasmontuno is a “faster, semi-improvised instrumental part”.

2Even though Kotlin seems not to be recommended by Truffle authors, there are several languages imple-
mented in it, which suggests there are no severe problems. (from https://github.com/oracle/graal/
issues/1228)
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tional languages like Scala or Kotlin, as the code is often cleaner and more concise3, so in
the end, after comparing the languages, I have selected Kotlin due to its multi-paradigm
nature: Truffle requires the use of annotated classes, but this first interpreter can be written
in a more natural functional style.

Libraries Truffle authors recommend against using many external libraries in the inter-
nals of the interpreter, as the techniques the libraries use may not work well with Truffle:
the JIT compiler relies on inlining and whole-function optimization, and any external call
to, e.g., a logging service, might be inlined and cause compilation slow-downs.
Therefore, we will need to design our own supporting data structures based on the funda-
mental data structures provided directly by Kotlin. Only two external libraries would be
too complicated to reimplement, and both of these were chosen because they are among
the most widely used in their field:

• a parser generator, ANTLR, to process input into an abstract syntax tree,

• a terminal interface library, JLine, to implement the interactive interface.

For the build and test system, the recommended choices of Gradle and JUnit were used.

REPL

CLI

File

Driver Elaboration Evaluation

Frontend

Backend

Figure 3.1: Interpreter component overview

3.1.1 Program flow

A typical interpreter takes in the user’s input, processes it, and outputs a result. In this way,
we can divide the interpreter into a frontend, a driver, and a backend, to reuse compiler
terminology. A frontend handles user interaction, be it from a file or from an interactive
environment, a backend implements the language semantics, and a driver connects them,
illustrated in Figure 3.1.

Frontend The frontend is intended to be a simple way to execute the interpreter, offering
two modes: a batch processing mode that reads from a file, and an interactive terminal

3Kotlin authors claim 40% reduction in the number of lines of code, compared to imperative code in Java
(from https://kotlinlang.org/docs/faq.html)
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environment that receives user input and prints out the result of the command. Proof
assistants like Agda offer deeper integration with editors like tactics-based programming
or others, similar to the refactoring tools offered in development environments for object-
oriented languages, but that is unnecessary for the purposes of this thesis.

Backend The components of the backend, here represented as elaboration and evaluation,
implement the data transformation algorithms that are further illustrated in Figure 3.2. In
brief, the elaboration process turns user input in the form of partially-typed, well-formed pre-
terms into fully-annotated well-typed terms. Evaluation converts between a term and a value:
a term can be compared to program data, it can only be evaluated, whereas a value is the
result of such evaluation and can be, e.g., compared for equality.

String Pre-term Term ValueParse Infer
Check

Eval

Quote
Pretty-print

Unify

Figure 3.2: Data flow overview. Cyan is elaboration, red is normalization-by-evaluation

Data flow This interpreter can be called an AST (abstract syntax tree) interpreter, as the
principal parts all consist of tree traversals and transformations, as all of the main data
structures involved are trees: pre-terms, terms, and values are recursive data structures.
The main algorithms to be discussed are: evaluation, normalization, and elaboration, all of
them can be translated to tree traversals in a straightforward way.
In Figure 3.2, Infer and Check correspond to type checking and type inference, two parts of
the bidirectional typing algorithm that we will use. Unification (Unify) forms a major part of
the elaboration process, as that is how we check whether two values are equal. Eval corre-
sponds to the previously described βδζι-reduction implemented using the normalization-by-
evaluation style, whereasQuote builds a term back up from an evaluated value. To complete
the description, Parse and Pretty-print convert between the user-readable, string representa-
tion of terms and the data structures of their internal representation. For the sake of clarity,
the processes are illustrated using their simplified function signatures in Listing 3.1.

fun parse(input: String): PreTerm;
fun pretty(term: Term): String;
fun infer(pre: PreTerm): Pair<Term, Val>;
fun check(pre: PreTerm, wanted: Val): Term;
fun eval(term: Term): Val;
fun quote(value: Val): Term;
fun unify(left: Val, right: Val): Unit;

Listing 3.1: Simplified signatures of the principal functions

We will first define the data types in this chapter, especially focusing on closure represen-
tation. Then, we will specify and implement two algorithms: normalization-by-evaluation,
and bidirectional type elaboration, and lastly, we finish the interpreter by creating its driver
and frontend.
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3.2 Data structures

In the previous chapter, we have specified the syntax of the language, whichwe first need to
translate to concrete data structures before trying to implement the semantics. Sometimes,
the semantics impose additional constraints on the design of the data structures, but in this
case, the translation is quite straight-forward.

Properties Terms and values form recursive data structures. Wewill also need a separate
data structure for pre-terms as the result of parsing user input. All of these structures
represent only well-formed terms and in addition, terms and values represent the well-
typed subset of well-formed terms. Well-formedness should be ensured by the parsing
process, whereas type-checking will take care of the second property.

Pre-terms As pre-terms are mostly just an encoding of the parse tree without much fur-
ther processing, the complete data type is only included in Appendix A.4. The PreTerm
class hierarchy mostly reflects the Term classes with a few key differences, like the addi-
tion of compiler directives or variable representation, so in the rest of this section, we will
discuss terms and values only.

Location A key feature that we will also disregard in this chapter is term location that
maps the position of a term in the original source expression, mostly for the purpose of
error reporting. As location is tracked in a field that occurs in all pre-terms, terms, and
values, it will only be included in the final listing of classes in Appendix A.4.

𝑡𝑒𝑟𝑚 ≔ 𝑣 | 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
| 𝑎 𝑏 | 𝑎 {𝑏}
| 𝑎 → 𝑏 | (𝑎 ∶ 𝐴) → 𝑏 | {𝑎 ∶ 𝐴} → 𝑏
| 𝑎 × 𝑏 | (𝑙 ∶ 𝐴) × 𝑏 | 𝑎.𝑙
| let 𝑥 = 𝑣 in 𝑒
| _

𝑣𝑎𝑙𝑢𝑒 ≔ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
| 𝜆𝑥 ∶ 𝐴.𝑏 | Π𝑥 ∶ 𝐴.𝑏
| (𝑎1,⋯, 𝑎𝑛)
| _

Figure 3.3: Terms and values in Montuno (revisited)

The terms and values that were specified in Chapter 2 are revisited in Figure 3.3, there
are two main classes of terms: those that represent computation (functions and function
application), and those that represent data (pairs, records, constants).

Data classes Most data terms can be represented in a straight-forward way, as they map
directly to features of the host language, Kotlin in our case. Kotlin recommends a standard
way of representing primarily data-oriented structures using data classes4. These are

4https://kotlinlang.org/docs/idioms.html
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classes whose primary purpose is to hold data, so-called Data Transfer Objects (DTOs). In
Listing 3.2 we have the base classes for terms and values, and a few examples of structures
mapped from the syntax to code.

sealed class Term
data class TLocal(val ix: Ix) : Term()
data class TPair(val left: Term, val right: Term) : Term()
data class TPi(val id: String?, val bound: Term, val body: Term) : Term()
data class TSg(val id: String?, val bound: Term, val body: Term) : Term()

sealed class Val
data class VLocal(val lvl: Lvl) : Val()
data class VPair(val left: Val, val right: Val) : Val()
data class VPi(val id: String?, val bound: Val, val cl: Closure) : Val()
data class VSg(val id: String?, val bound: Val, val cl: Closure) : Val()

Listing 3.2: Data classes representing some of the terms and values in the language

Some constructs are straightforward to map, but terms that encode computation, whether
delayed (λ-abstraction) or not (application) are more involved. Variables can be repre-
sented in a straightforwardwayusing the variable name, but a string-based representations
is not the most optimal way. We will look at these three constructs in turn.

3.2.1 Functions

Closure Languages, in which functions are first-class values, all use the concept of a clo-
sure. A closure is, in brief, a function in combination with the environment in which it
was created. The body of the function can refer to variables other than its immediate ar-
guments, which means that the surrounding environment needs to be stored as well. The
simplest example is the 𝑐𝑜𝑛𝑠𝑡 function 𝜆𝑥.𝜆𝑦.𝑥, which, when partially applied to a single
argument, e.g., let 𝑝𝑙𝑢𝑠𝐹𝑖𝑣𝑒 = 𝑝𝑙𝑢𝑠 5, needs to store the value 5 until it is eventually applied
to the remaining second argument: 𝑝𝑙𝑢𝑠𝐹𝑖𝑣𝑒 15 ⟶ 20.

HOAS As Kotlin supports closures on its own, it would be possible to encode λ-terms
directly as functions in the host language. This is possible, and it is one of the ways of
encoding functions in interpreters. This encoding is called the higher-order abstract syntax
(HOAS), which means that functions5 in the language are equal to functions in the host
language. Representing functions using HOAS produces very readable code, and in some
cases, e.g., in the Haskell compiler GHC, it produces code an order of magnitude faster
than using other representations [31]. An example of what it looks like is in Listing 3.3.

data class HOASClosure<T>(val body: (T) -> T)

val constFive = HOASClosure<Int> { (n) -> 5 }

Listing 3.3: Higher-order abstract syntax encoding of a closure

5In descriptions of the higher-order abstract syntax, the term binders is commonly used instead of function
or λ-abstractions, as these constructs bind a value to a name.
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Explicit closures However, we will need to perform some operations on the AST that
need explicit access to environments and the arguments of a function. The alternative to
reusing functions of the host language is a defunctionalized representation, also called explicit
closure representation. We will need to use this representation later, when creating the
Truffle version: function calls will need to be objects, nodes in the program graph, as we
will see in Chapter 4. In this encoding, demonstrated in Listing 3.4, we store the term of the
function body together with the state of the environment when the closure was created.

data class ExplicitClosure<T>(val env: Map<Name, Val>, val body: Term)

val constFive = ExplicitClosure<Int>(mapOf("x" to VNat(5)), TLocal("x"))

Listing 3.4: Defunctionalized function representation

3.2.2 Variables

Variable representation can be simple, as in Listing 3.4: a variable can be a simple string
containing the name of the variable. This is also what our parser produces in the pre-
term representation. Also, when describing reduction rules and substitution, we have also
referred to variables by their names. That is not the best way of representing variables.

Named Often, when specifying a λ-calculus, the process of substitution 𝑡[𝑥 ≔ 𝑒] is kept
vague, as a concern of the meta-theory in which the λ-calculus is encoded. When us-
ing variable names (strings), the terms themselves and the code that manipulates them
are easily understandable. Function application, however, requires variable renaming (α-
conversion), which involves traversing the entire argument term and replacing each vari-
able occurrence with a fresh name that does not yet occur in the function body. However,
this is a very slow process, and it is not used in any real implementation of dependent types
or λ-calculus.

Nameless An alternative to string-based variable representation is a nameless representa-
tion, which uses numbers in place of variable names [28]. These numbers are indices that
point to the current variable environment, offsets from either end of the environment stack.
The numbers are assigned, informally, by counting the lambdas, as each λ-abstraction corre-
sponds to one entry in the environment. The environment can be represented as a stack
to which a variable is pushed with every function application, and popped when leaving
a function. The numbers then point to these entries. These two approaches can be seen
side-by-side in Figure 3.4.

𝑓 𝑖𝑥 𝑠𝑢𝑐𝑐
Named (𝜆𝑓 .(𝜆𝑥.𝑓  (𝑥 𝑥)) (𝜆𝑥.𝑓  (𝑥 𝑥))) 𝑔 𝜆𝑥.𝑥 (𝜆𝑦.𝑥 𝑦)
Indices (𝜆(𝜆1 (0 0) (𝜆1 (0 0)) 𝑔 𝜆0 (𝜆1 0)
Levels (𝜆(𝜆0 (1 1) (𝜆0 (1 1)) 𝑔 𝜆0 (𝜆0 1)

Figure 3.4: Named and nameless variable representations
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deBruijn indices The firstway of addressing, de Bruijn indexing, is ratherwell-known. It
is a way of counting from the top of the stack, meaning that the argument of the innermost
(most recent) lambda has the lowest number. It is a “relative” way of counting, relative
to the top of the stack, which is beneficial during, e.g., δ-reduction, in which a reference to
a function is replaced by its definition: using indices, the variable references in the function
body do not need to be adjusted after such substitution.

de Bruijn levels The second way is also called the “reversed de Bruijn indexing” [35],
as it counts from the bottom of the stack. This means that the argument of the innermost
lambda has the highest number. In the entire term, one variable is only ever addressed
by one number, meaning that this is an “absolute” way of addressing, as opposed to the
“relative” indices.

Locally nameless There is a third alternative that combines both named and nameless
representations, and it has been used in e.g., the Lean proof assistant [13]. De Bruijn indices
are used for bound variables and string-based names for free variables. This also avoids
any need for bound variable substitution, but free variables still need to be resolved later
during the evaluation of a term.

Our choice We will use a representation that has been used in recent type theory imple-
mentations [14, 21]: de Bruijn indices in terms, and de Bruijn levels in values. Such a rep-
resentation avoids any need for substitution: “relative” indices do not need to be adjusted
based on the size of the environment, whereas the “absolute” addressing of levels in values
means that values can be directly compared. This combination of representations means
that we can avoid doing any substitution at all, as any adjustment of variables is performed
during the evaluation from term to value and back.

Implementation Kotlin makes it possible to construct type-safe wrappers over basic data
types that are erased at runtime but that support custom operations. Representing indices
and levels as inline classes means that we can increase and decrease them using the
natural syntax e.g. ix + 1, which we will use when manipulating the environment in the
next section. The final representation of variables in our interpreter is in Listing 3.5.

3.2.3 Class structure

Variables and λ-abstractions were the two non-trivial parts of the mapping between our
syntax and Kotlin values. With these two pieces, we can fill out the remaining parts of the
class hierarchy. The full class listing is in Appendix A.4, here only a direct comparison of
the data structures is shown on the 𝑐𝑜𝑛𝑠𝑡 function in Figure 3.5, and the most important
differences between them are in Figure 3.6.
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inline class Ix(val it: Int) {
operator fun plus(i: Int) = Ix(it + i)
operator fun minus(i: Int) = Ix(it - i)
fun toLvl(depth: Lvl) = Lvl(depth.it - it - 1)

}

inline class Lvl(val it: Int) {
operator fun plus(i: Int) = Lvl(it + i)
operator fun minus(i: Int) = Lvl(it - i)
fun toIx(depth: Lvl) = Ix(depth.it - it - 1)

}

data class VLocal(val it: Lvl) : Val()
data class TLocal(val it: Ix) : Term()

Listing 3.5: Variable representation

PLam("x", Expl,
PLam("y", Expl,

PVar("x")))

TLam("x", Expl,
TLam("y", Expl,

TLocal(1)))

VLam("x", Expl,
VCl([valX], VLam("y", Expl,

VCl([valX, valY], VLocal(0)))))

Figure 3.5: Direct comparison of PreTerm, Term, and Value objects

3.3 Normalization

Normalization is a series of βδζι-reductions, as defined in Chapter 2. While there are sys-
tems that implement normalization as an exact series of reduction rules, it is an inefficient
approach that is not common in the internals of state-of-the-art proof assistants.

Normalization-by-evaluation An alternativeway of bringing terms to normal form is the
so-called normalization-by-evaluation (NbE) [42]. The main principle of this technique is in-
terpretation from the syntactic domain of terms into a computational, semantic domain of
values and back. In brief, we look at terms as an executable program that can be evaluated,
the result of such evaluation is then a normal form of the original term. NbE is total and
provably confluent [3] for any abstract machine or computational domain.

Neutral values If we consider only closed terms that reduce to a single constant, we could
simply define an evaluation algorithmover the terms defined in the previous chapter. How-
ever, normalization-by-evaluation is an algorithm to bring any term into a full normal form,
which means evaluating terms inside function bodies and constructors. NbE introduces
the concept of “stuck” values that cannot be reduced further. In particular, free variables
in a term cannot be reduced, and any terms applied to a stuck variable cannot be further

Variables Functions Properties
PreTerm String names PreTerm AST well-formed

Term de Bruijn index Term AST well-typed
Value de Bruijn level Closure: Term + Value context head-normal form

Figure 3.6: Important distinctions between PreTerm, Term, and Value objects
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reduced and are “stuck” as well. These stuck values are called neutral values, as they are
inert with regards to the evaluation algorithm.

Semantic domain Proof assistants use abstract machines like Zinc or STG; any way to
evaluate a term into a final value is viable. This is also the reason to use Truffle, as we
can translate a term into an executable program graph, which Truffle will later optimize
as necessary. In this first interpreter, however, the computational domain will be a simple
tree-traversal algorithm.
The set of neutral values in Montuno is rather small (Figure 3.7): an unknown variable,
function application with a neutral head and arbitrary terms in the spine, and a projection
eliminator.

𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ≔ 𝑣𝑎𝑟 | 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎1 ...𝑎𝑛 | 𝑛𝑒𝑢𝑡𝑟𝑎𝑙.𝑙𝑛

Figure 3.7: Neutral values

Specification The NbE algorithm is fully formally specifiable using four operations: the
above-mentioned evaluation and quoting, reflection of a neutral value (NeVal) into a value,
and reification of a value into a normal value (NfVal) that includes its type, schematically
shown in Figure 3.8. In this thesis, though, we will only describe the relevant parts of the
specification in words, and say that NbE (as we will implement it) is a pair of functions
𝑛𝑓 = 𝑞𝑢𝑜𝑡𝑒(𝑒𝑣𝑎𝑙(𝑡𝑒𝑟𝑚)).

Term NfTerm NeTerm

NfValue NeValue

Value

Syntactic domain

Semantic domain

Eval

Reify Reflect

Quote Quote

⊆⊆

Figure 3.8: Syntactic and semantic domains in NbE [2]

3.3.1 Normalization strategies

Normalization-by-evaluation is, however, at its core inefficient for our purposes [29]. The
primary reason to normalize terms in the interpreter is for type-checking and inference and
that, in particular, needs normalized terms to checkwhether two terms are equivalent. NbE
is an algorithm to get a full normal form of a term, whereas to compare values for equality,
we only need the weak head-normal form. To illustrate: to compare whether a pair is equal
to another term, we do not need to compare two fully-evaluated values, but only to find
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out whether that term is a pair of terms, which is given by the outermost constructor, the
head.
In Chapter 2 we saw an overview of normal forms of λ-calculus. To briefly recapitulate,
a normal form is a fully evaluated term with all sub-terms also fully evaluated. A weak
head-normal form is a form where only the outermost construction is fully evaluated, be it
a λ-abstraction or an application of a variable to a spine of arguments.

Reduction strategy Normal forms are associated with a reduction strategy, a set of small-
step reduction rules that specify the order in which subexpressions are reduced. Each
strategy brings an expression to their corresponding normal form. Common ones are ap-
plicative order in which we first reduce sub-terms left-to-right, and then apply functions to
them; and normal order in which we first apply the leftmost function, and only then reduce
its arguments. In Figure 3.9 there are two reduction strategies that we will emulate.

𝑥 𝑛𝑎𝑚𝑒−−−→ 𝑥

(𝜆𝑥.𝑒) 𝑛𝑎𝑚𝑒−−−→ (𝜆𝑥.𝑒)

𝑒1
𝑛𝑎𝑚𝑒−−−→ (𝜆𝑥.𝑒) 𝑒[𝑥 ≔ 𝑒2]

𝑛𝑎𝑚𝑒−−−→ 𝑒′

(𝑒1 𝑒2)
𝑛𝑎𝑚𝑒−−−→ 𝑒′

𝑒1
𝑛𝑎𝑚𝑒−−−→ 𝑒′1 ≢ 𝜆𝑥.𝑒

(𝑒1 𝑒2)
𝑛𝑎𝑚𝑒−−−→ (𝑒′1 𝑒2)

(a) Call-by-name to weak head normal form

𝑥 𝑛𝑜𝑟𝑚−−−→ 𝑥

𝑒 𝑛𝑜𝑟𝑚−−−→ 𝑒′
(𝜆𝑥.𝑒) 𝑛𝑜𝑟𝑚−−−→ (𝜆𝑥.𝑒′)

𝑒1
𝑛𝑎𝑚𝑒−−−→ (𝜆𝑥.𝑒) 𝑒[𝑥 ≔ 𝑒2]

𝑛𝑜𝑟𝑚−−−→ 𝑒′

(𝑒1 𝑒2)
𝑛𝑜𝑟𝑚−−−→ 𝑒′

𝑒1
𝑛𝑎𝑚𝑒−−−→ 𝑒′1 ≢ 𝜆𝑥.𝑒 𝑒′1

𝑛𝑜𝑟𝑚−−−→ 𝑒″1 𝑒2
𝑛𝑜𝑟𝑚−−−→ 𝑒′2

(𝑒1 𝑒2)
𝑛𝑜𝑟𝑚−−−→ (𝑒″1 𝑒2)

(b) Normal order to normal form

Figure 3.9: Reduction strategies for λ-calculus [45]

In general programming language theory, a concept closely related to reduction strategies
is an evaluation strategy. These also specify when an expression is evaluated into a value,
but in our case, they apply to our host language Kotlin.

Call-by-value Call-by-value, otherwise called eager evaluation, corresponds to applica-
tive order reduction strategy [4]. Specifically, when executing a statement, its sub-terms
are evaluated inside-out and immediately reduced to a value. This leads to predictable
program performance (the program will execute in the order that the programmer wrote
it, evaluating all expressions in order), but this may lead to unnecessary computations per-
formed: given an expression const 5 (ackermann 4 2), the value of ackermann 4
2 will be computed but immediately discarded, in effect wasting processor time.

Call-by-need Call-by-need, also lazy evaluation, is the opposite paradigm. An expres-
sionwill be evaluated onlywhen its result is first accessed, not when it is created or defined.
Using call-by-need, the previous example will terminate immediately as the calculation
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ackermann 4 2 will be deferred and then discarded. However, it also has some draw-
backs, as the performance characteristics of programs may be less predictable or harder to
debug.
Call-by-value is the prevailing paradigm, used in themajority of commonly used languages.
However, it is sometimes necessary to defer the evaluation of an expression, however, and
in such cases lazy evaluation is emulated using closures or zero-argument functions: e.g.,
in Kotlin a variable can be initialized using the syntax val x by lazy { ackermann(4,
2) }, and the value will only be evaluated if it is ever needed.

Call-by-push-value There is also an alternative paradigm, called call-by-push-value, that
subsumes both call-by-need and call-by-value as they can be directly translated to CBPV–
in the context of λ-calculus specifically. It defines additional operators delay and force to
accomplish this, one to create a thunk that contains a deferred computation, one to evaluate
the thunk. Also notable is that it distinguishes between values and computations: values
can be passed around, but computations can only be executed, or deferred.

Emulation We can emulate normalization strategies by implementing the full normal-
ization by evaluation algorithm, and varying the evaluation strategy. Kotlin is by default
a call-by-value language, though, and evaluation strategy is an intrinsic property of a lan-
guage so, in our case, this means that we need to insert lazy annotations in the correct
places, so that no values are evaluated other than those that are actually used. In the case
of the later Truffle implementation, we will need to implement explicit delay and force oper-
ations of call-by-push-value, which is why we introduced all three paradigms in one place.

3.3.2 Implementation

The basic outline of the implementation is based on Christiansen [10]. In essence, it im-
plements the obvious evaluation algorithm: evaluating a function captures the current en-
vironment in a closure, evaluating a variable looks up its value in the environment, and
function application inserts the argument into the environment and evaluates the body of
the function.

Environments The brief algorithm description used a concept we have not yet translated
into Kotlin: the environment, or evaluation context. When presenting the λ→-calculus, we
have seen the typing context Γ, to which we add a value context.

Γ ≔ ∙ | Γ, 𝑥 ∶ 𝑡

The environment, following the above definition, is a stack: defining a variable pushes
a pair of a name and a type to the top, which is then popped off when the variable goes out
of scope. An entry is pushed and popped whenever we enter and leave a function context,
and the entire environment needs to be captured in its current state whenever we create
a closure. When implementing closures in Truffle, we will also need to take care about
which variables are actually used in a function. That way, we can capture only those that
need to be captured and not the entire environment.
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Linked list The natural translation of the environment definition is a linked list. It would
also be the most efficient implementation in a functional language like Haskell, as append-
ing to an immutable list is very cheap there. In Kotlin, however, we need to take care about
not allocating toomany objects andwill need to consider mutable implementations as well.

Mutable/immutable In Kotlin and other JVM-based languages, an ArrayDeque is a fast
data structure, a mutable implementation of the stack data structure. In general, array-
backed data structures are faster than recursive ones on the JVM, which we will use in
the Truffle implementation. In this first interpreter, however, we can use the easier-to-use
immutable linked list implementation. It is shown in Listing 3.6, a linked list specialized
for values; an equivalent structure is also implemented for types.

data class VEnv(val value: Val, val next: VEnv?)

fun VEnv?.len(): Int = if (this == null) 0 else 1 + next.len()
operator fun VEnv?.plus(v: Val): VEnv = VEnv(v, this)
operator fun VEnv?.get(n: Ix): Val

= if (n.it == 0) this!!.value else this!!.next[n - 1]

Listing 3.6: Environment data structure as an immutable linked list

Environment operations We need three operations from an environment data structure:
insert (bind) a value, look up a bound value by its level or index, and unbind a variable
that leaves the scope. In Listing 3.6, we see two of them: the operator plus, used as env +
value, binds a value, and operator get, used as env[ix], looks a value up. Unbinding
a value is implicit, because this is an immutable linked list: the reference to the list used in
the outer scope is not changed by any operations in the inner scope. These operations are
demonstrated in Listing 3.7, on the eval operations of a variable and a let-in binding.
There we also see the basic structure of the evaluation algorithm. Careful placement of
lazy has been omitted, as it splits the algorithm into two: parts that need to be evaluated
lazily and those that do not, but the basic structure should be apparent. The snippet uses
the Kotlin when-is construct, which checks the class of the argument, in this casewe check
if this is a TLocal, TLet, etc.
fun eval(ctx: Context, term: Term, env: VEnv): Val = when (term) {

is TLocal ->
env[term.ix] ?: VLocal(Lvl(ctx.lvl - term.ix - 1), spineNil)

is TLet -> eval(ctx, term.body, env + eval(ctx, term.defn, env))
is TLam -> VLam(term.name, VClosure(env, term.body))
is TApp -> when (fn := eval(ctx, term.lhs, env)) {

is VLam -> eval(ctx, fn.cl.term, fn.cl.env + eval(ctx, term.rhs, env))
is VLocal -> VLocal(fn.head, fn.spine + term.right)

}
// ...

}

Listing 3.7: Demonstration of the eval algorithm
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Eval In Listing 3.7, a variable is looked up in the environment, and considered a neutral
value if the index is bigger than the size of the current environment. In TLet we see how
an environment is extended with a local value. A λ-abstraction is converted into a closure.
Function application, if the left-hand side is a VLam, evaluates the body of this closure,
and if the left-hand side is a neutral expression, then the result is also neutral value and
its spine is extended with another argument. Other language constructs are handled in
a similar way.

Quote In Listing 3.8, we see the second part of the algorithm. In the domain of values,
we do not have plain variable terms, or let-in bindings, but unevaluated functions and
“stuck” neutral terms. A λ-abstraction, in order to be in normal form, needs to have its
body also in normal form, therefore we insert a neutral variable into the environment in
place of the argument, and eval/quote the body. A neutral term, on the other hand, has
at its head a neutral variable. This variable is converted into a term-level variable, and the
spine reconstructed as a tree of nested TApp applications.

fun quote(ctx: Context, v: Val): Term = when (v) {
is VLocal -> {

x = TLocal(Ix(ctx.depth - v.head - 1))
for (vSpine in v.spine.reversed()) {

x = TApp(x, quote(ctx, vSpine))
}
x

}
is VLam -> TLam(v.name,

quote(ctx, eval(ctx, v.cl.body, v.cl.env + VLocal(ctx.lvl)))
)
// ...

}

Listing 3.8: Demonstration of the quote algorithm

These two operations work together, to fully quote a value, we need to also lazily eval its
sub-terms. The main innovation of the normalization-by-evaluation approach is the intro-
duction of neutral terms, which have the role of a placeholder value in place of a value that
has not yet been supplied. As a result, the expression 𝑞𝑢𝑜𝑡𝑒(𝑒𝑣𝑎𝑙(𝑡𝑒𝑟𝑚, 𝑒𝑚𝑝𝑡𝑦𝐸𝑛𝑣)) produces
a lazily evaluated normal form of a term in a weak head-normal form, with its sub-terms
being evaluated whenever accessed. Printing out such a term would print out the fully
normalized normal form.

Primitive operations Built-in language constructs like 𝑁𝑎𝑡 or 𝑓 𝑎𝑙𝑠𝑒 that have not been
shown in the snippet aremostly inserted into the initial context as values that can be looked
up by their name. In general, though, constructs with separate syntax, e.g. Σ-types, consist
of three parts:

• their type is bound in the initial context;

• the term constructor is added to the set of terms and values, and added in eval();
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• the eliminator is added as a term and as a spine constructor, i.e., an operation to be
applied whenever the neutral value is provided.

The full listing is provided in the supplementary source code, as it is too long to be included
in text.

3.4 Elaboration

The second part of the internals of the compiler is type elaboration. Elaboration is the trans-
formation of a partially-specified, well-formed program submitted by a user into a fully-
specified, well-typed internal representation [17]. In particular, we will use elaboration to
infer types of untyped Curry-style λ-terms, and to infer implicit function arguments that
were not provided by the user, demonstrated in Figure 3.10.

function signature: 𝑖𝑑 ∶ {𝐴} → 𝐴 → 𝐴
provided expression: 𝑖𝑑 𝑖𝑑 5

elaborated expression: (𝑖𝑑 {𝑁𝑎𝑡 → 𝑁𝑎𝑡} 𝑖𝑑) {𝑁𝑎𝑡} 5
Figure 3.10: Demonstration of type elaboration

Bidirectional typing Programmers familiar with statically-typed languages like Java are
familiar with type checking, in which all types are provided by the user, and therefore are
inputs to the type judgment Γ ⊢ 𝑒 ∶ 𝑡. Omitting parts of the type specification means that
the type systemnot only needs to check the types for correctness, but also infer (synthesize)
types: the type 𝑡 in Γ ⊢ 𝑒 ∶ 𝑡 is produced as an output. In some systems, it is possible to omit
all type annotations and rely only on the type constraints of built-in functions and literals.
Bidirectional systems that combine both input and outputmodes of type judgment are now
a standard approach [37], often used in combination with constraint solving.

Judgments The type system is composed of two additional type judgments we have not
seen yet that describe the two directions of computation in the type system:

• Γ ⊢ 𝑒 ⇒ 𝑡 is “given the context Γ and term 𝑒, infer (synthesize) its type 𝑡”, and

• Γ ⊢ 𝑒 ⇐ 𝑡 is “given the context Γ, term 𝑒 and type 𝑡, check that 𝑡 is a valid type for 𝑡”.

The entire typing system described in Chapter 2 can be rewritten using these type judg-
ments. The main principle is that language syntax is divided into two sets of constructs:
those that constrain the type of a term and can be checked against an inferred term, and
those that do not constrain the type and need to infer it entirely.

Bidirectional λ→-typing In Figure 3.11, this principle is demonstrated on the simply-
typed λ-calculus with only variables, λ-abstractions and function application. The first
four rules correspond to rules that we have introduced in Chapter 2, with the exception of
the constant rule that we have not used there. The two new rules are (ChangeDir) and
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𝑎 ∶ 𝑡 ∈ Γ (Var)Γ ⊢ 𝑎 ⇒ 𝑡
𝑐 is a constant of type 𝑡

(Const)Γ ⊢ 𝑐 ⇒ 𝑡
Γ, 𝑥 ∶ 𝑡 ⊢ 𝑒 ⇐ 𝑢 (Abs)Γ ⊢ 𝜆𝑥.𝑒 ⇐ 𝑡 → 𝑢

Γ ⊢ 𝑓 ⇒ 𝑡 → 𝑢 Γ ⊢ 𝑎 ⇒ 𝑡
(App)Γ ⊢ 𝑓  𝑎 ⇒ 𝑢

Γ ⊢ 𝑎 ⇒ 𝑡 Γ ⊢ 𝑎 = 𝑏 (ChangeDir)Γ ⊢ 𝑎 ⇐ 𝑏
Γ ⊢ 𝑎 ⇐ 𝑡 (Ann)Γ ⊢ (𝑎 ∶ 𝑡) ⇒ 𝑡

Figure 3.11: Bidirectional typing rules for the λ→-calculus

(Ann): (ChangeDir) says that if we know that a term has an already inferred type, then
we can satisfy any rule that requires that the term checks against a type equivalent to this
one. It is also sometimes called the “conversion rule”, as it checks whether the terms can
be converted into one another. (Ann) says that to synthesize the type of an annotated term
𝑎 ∶ 𝑡, the term first needs to check against that type.
Rules (Var) and (Const) produce an assumption, if a term is already in the context or
a constant, then we can synthesize its type. In rule (App), if we have a function with an
inferred type then we check the type of its argument, and if it holds then we can synthesize
the type of the application 𝑓  𝑎. To check the type of a function in rule (Abs), we first need
to check whether the body of a function checks against the type on the right-hand side of
the arrow.
While slightly complicated to explain, this description produces a provably sound and com-
plete type-checking system [17] that, as a side effect, synthesizes any types that have not
been supplied by the user. Extending this system with other language constructs is not
complex: the rules used in Montuno for local and global definitions are in Figure 3.12.

Γ ⊢ 𝑡 ⇐ ⋆ Γ ⊢ 𝑎 ⇐ 𝑡 Γ, 𝑥 ∶ 𝑡 ⊢ 𝑏 ⇒ 𝑢 (Let-In)Γ ⊢ let 𝑥 ∶ 𝑡 = 𝑎 in 𝑏 ⇒ 𝑢

Γ ⊢ 𝑡 ⇐ ⋆ Γ ⊢ 𝑎 ⇐ 𝑡 (Defn)Γ ⊢ 𝑥 ∶ 𝑡 = 𝑎 ⇒ 𝑡

Figure 3.12: Bidirectional typing rules for let-in and top-level definitions

Meta-context One concern was not mentioned in the previous description: when infer-
ring a type, we may not know all its component types: in rule (Abs), the type of the func-
tion we check may only be constrained by the way it is called. Implicit function arguments
{𝐴 𝐵} → 𝐴 → 𝐵 → 𝐴 also only become specific when the function is actually called. The
solution to this problem is a meta-context that contains meta-variables.
These stand for yet undetermined terms [41], either as placeholders to be filled in by the
user in interactive proof assistants (written with a question mark, e.g. as ?𝛼), or terms that
can be inferred from other typing constraints using unification. These meta-variables can
be either inserted directly by the user in the form of a hole "_", or implicitly, when inferring
the type of a λ-abstraction or an implicit function argument [33].
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There are several ways of implementing this context depending on the scope of meta-
variables, or whether it should be ordered or the order of meta-variables does not mat-
ter. A simple-to-implement but sufficiently useful for our purposes is a globally-scoped
meta-context divided into blocks placed between top-level definitions.

id : {A} → A → A = λx.x
?α = Nat
?β = ?α → ?α
five = (id ?β id) ?α 5

Listing 3.9: Meta-context for the expression id id 5

The meta-context implemented in Montuno is demonstrated in Listing 3.9. When process-
ing a file, we process top-level expressions sequentially. The definition of the 𝑖𝑑 function
is processed, and in the course of processing 𝑓 𝑖𝑣𝑒, we encounter two implicit arguments,
which are inserted on the top-level as the meta-variables ?𝛼 and ?𝛽.

3.4.1 Unification

Returning to the rule (ChangeDir) in Figure 3.11, a critical piece of the algorithm is how
the equivalence of two types is checked. To check a term against a type Γ ⊢ 𝑎 ⇐ 𝑡, we first
infer a type for the term Γ ⊢ 𝑎 ⇒ 𝑢, and then test its equivalence to the wanted type 𝑡 = 𝑢.
The usual notion of equivalence in λ-calculus is α-equivalence of β-normal forms, that we dis-
cussed in Chapter 2, and it corresponds to structural equality of the two terms. Conversion
checking is the algorithm that determines if two terms are convertible using a set of conver-
sion rules.
As we also use meta-variables in the type elaboration process, these variables need to
be solved in some way. This process of conversion checking together with solving meta-
variables is called unification [26], and is a well-studied problem in the field of type theory.

Pattern unification In general, solving meta-variables is undecidable [1]. Given the con-
straint ?𝛼 5 = 5, we can produce two solutions: ?𝛼 = 𝜆𝑥.𝑥 and ?𝛼 = 𝜆𝑥.5. There are several
possible approaches and heuristics: first-order unification solves for base types and cannot
produce functions as a result; higher-order unification can produce functions but is unde-
cidable; pattern unification is a middle ground and with some restrictions, it can produce
functions as solutions.
In this thesis, I have chosen to reuse an existing algorithm [36]which, in brief, assumes that
ameta-variable is a functionwhose arguments are all local variables in scope at themoment
of its creation. Then, when unifying the meta-variable with another (non-variable) term,
it builds up a list of variables the term uses, and stores such a solution as a renaming that
maps the meta-variable arguments to the variables in the term which it was unified with.
As the algorithm is rather involved but tangential to the goals of this thesis, I will omit
a detailed description and instead point an interested reader at the original source [36].
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3.4.2 Implementation

As with the implementation of normalization-by-evaluation, we will look at the most il-
lustrative parts of the implementation. This time, the comparison can be made directly
side-by-side, between the bidirectional typing algorithm and its implementation.
What was not mentioned explicitly so far is that the type elaboration algorithm has as its
input PreTerms, and produces Terms in the case of type checking, and pairs of Terms and
Values (the corresponding types) in the case of type inference. Unification (not demon-
strated here) is implemented as parallel structural recursion over two Value objects.
In Figure 3.13, we see the previously described rule that connects the checking and synthe-
sis parts of the algorithm and uses unification. Unification solves meta-variables as a side-
effect, here it is only in the role of a guard as it does not produce a value. The code exactly
follows the typing rule: the type of the pre-term is inferred, resulting in a well-typed term
and its type. The type is unified with the “wanted” type and, if the unification successful,
the rule produces the inferred term.

Γ ⊢ 𝑎 ⇒ 𝑡 Γ ⊢ 𝑎 = 𝑏 (ChangeDir)Γ ⊢ 𝑎 ⇐ 𝑏
fun LocalContext.check(pre: PreTerm, wanted: Value): Term = when (pre) {

// ...
else -> {

val (t, actual) = infer(pre.term)
unify(actual, wanted)
t

}
}

Figure 3.13: Side-by-side comparison of the ChangeDir rule

Figure 3.14 shows the exact correspondence between the rule and its implementation, one
read left-to-right, the other top-to-bottom. Checking of the type and value are straight-
forward, translation of Γ, 𝑥 ∶ 𝑡 ⊢ 𝑏 ⇒ 𝑢 binds a local variable in the environment, so the
body of the let-in expression can be inferred, and the result is a term containing the
inferred body and type, wrapped in a TLet.

Γ ⊢ 𝑡 ⇐ ⋆ Γ ⊢ 𝑎 ⇐ 𝑡 Γ, 𝑥 ∶ 𝑡 ⊢ 𝑏 ⇒ 𝑢 (Let-In)Γ ⊢ let 𝑥 ∶ 𝑡 = 𝑎 in 𝑏 ⇒ 𝑢
fun LocalContext.infer(pre: PreTerm): Pair<Term, Value> = when (pre)

is RLet -> {
val t = check(pre.type, VStar)
val a = check(pre.defn, t)
val (b, u) = localDefine(pre.name, a, t).infer(pre.body)
TLet(pre.name, t, a, b) to u

} // ...
}

Figure 3.14: Side-by-side comparison of the Let-in rule
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Lastly, the rule for a term-level λ-abstraction is demonstrated in Figure 3.15. This rule
demonstrates the creation of a new meta-variable as without a placeholder, so we are not
able to infer the type of the body of the function. This meta-variable might be solved in the
course of inferring the body.

Γ, 𝑥 ∶ 𝑡 ⊢ 𝑒 ⇐ 𝑢 (Abs)Γ ⊢ 𝜆𝑥.𝑒 ⇐ Π𝑡 ∶ ∗.𝑢
fun LocalContext.infer(pre: PreTerm): Pair<Term, Value> = when (pre)

is RLam -> {
val a = newMeta()
val (b, t) = localBind(pre.name, a).infer(pre.body)
TLam(pre.name, b) to VPi(pre.name, a, VCl(env, t.quote()))

} // ...
}

Figure 3.15: Side-by-side comparison of the Abs rule

3.5 Driver

This concludes the complex part of the interpreter, what follows are rather routine concerns.
Next part of the implementation is the driver that wraps the backend, and handles its inter-
action with the surrounding world. In particular, this includes the parser, pretty-printer,
and state management.

Figure 3.16: Parse tree of the id function

Parser Lexical and syntactic analysis is not the focus of this work, so simply I chose the
most prevalent parsing library in Java-based languages, which seems to be ANTLR6. It
comes with a large library of languages and protocols from which to take inspiration7,
so creating the parser was a rather simple matter.

6https://www.antlr.org/
7https://github.com/antlr/grammars-v4/
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The grammar from the previous chapter is translated intoANTLRgrammar almost directly,
as it also uses syntax that reminds the Backus-Naur form. The result of parsing the id
function 𝑖𝑑 ∶ 𝐴 → 𝐴 → 𝐴 = 𝜆𝑥.𝑥 is shown in Figure 3.16. This tree includesmany redundant
contexts, and needs to be translated to a simpler representation of a PreTerm, which can
then be directly used as input for elaboration.
ANTLR provides two recommended ways of consuming the result of parsing using clas-
sical object-oriented design patterns: a listener and a visitor. I used neither as they were
needlessly verbose or limiting8. Instead of these, a custom recursive-descent AST transfor-
mation was used that is demonstrated in Listing 3.10. This directly transforms the Par-
seContext objects created by ANTLR into our PreTerm data type.

fun TermContext.toAst(): PreTerm = when (this) {
is Let -> RLet(id.toAst(), type.toAst(), defn.toAst(), body.toAst())
is Lam -> rest.foldRight(binder.toAst()) { l, r -> RLam(l.toAst(), r) }
is Pi -> rest.foldRight(binder.toAst()) { l, r -> l.toAst()(r) }
is App -> spine.fold(head.toAst()) { l, r -> r.toAst()(l) }
else -> throw UnsupportedOperationException(javaClass.canonicalName)

}

Listing 3.10: Parser to PreTerm transformation as a depth-first traversal

The data type itself is shown in Listing 3.11. As with terms and values, it is a recursive data
structure, presented here in a slightly simplified manner compared to the actual imple-
mentation, as it omits the part that tracks the position of a term in the original source. The
grammar that is used as the source for the parser generator ANTLRwas already presented
once in the conclusion of Chapter 2, so the full listing is only included in Appendix A.

sealed class TopLevel
class RDecl(val n: String, val type: Pre) : TopLevel()
class RDefn(val n: String, val type: Pre?, val term: Pre) : TopLevel()
class RTerm(val cmd: Pragma?, val term: Pre) : TopLevel()

sealed class Pre
object RU : Pre()
class RVar(val n: String) : Pre()
class RApp(val lhs: Pre, val rhs: Pre) : Pre()
class RLam(val n: String?, val body: Pre) : Pre()
class RPi(val n: String?, val type: Pre, val body: Pre) : Pre()

Listing 3.11: Snippet of the data type PreTerm (abbreviated to Pre for type-setting)

Pretty-printer A so-called pretty-printer is a transformation from an internal represen-
tation of a data structure to a user-readable string representation. The implementation of
such a transformation is mostly straight-forward, complicated only by the need to correctly
handle operator precedence and therefore parentheses.
This part is implemented using the Kotlin library kotlin-pretty, which is itself inspired
by the Haskell library prettyprinter which, among other things, handles correct block

8In particular, ANTLR-provided visitors require that all return values share a common super-class. Listen-
ers do not allow return values and would require explicit parse tree manipulation.
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indentation and ANSI text coloring: that functionality is also used in error reporting in the
terminal interface.
An excerpt from this part of the implementation is included in Listing 3.12, which demon-
strates the pretty-printing of function application, and some constructions of the kotlin-
pretty library.

fun Term.pretty(ns: NameEnv?, parens: Boolean): Doc = when (this) {
is TVar -> ns[ix].text()
is TApp -> par(parens, lhs.pretty(ns, true) + " ".text() + when (icit) {

Icit.Impl -> "{".text() + rhs.pretty(ns, false) + "}".text()
Icit.Expl -> rhs.pretty(ns, true)

})
is TLet -> {

val d = listOf(
":".text() spaced ty.pretty(ns, false),
"=".text() spaced bind.pretty(ns, false),

).vCat().align()
val r = listOf(

"let $n".text() spaced d,
"in".text() spaced body.pretty(ns + n, false)

).vCat().align()
par(parens, r)

} // ...
}

Listing 3.12: Pretty-printer written using kotlin-pretty

State management Last component of the driver code is global interpreter state, which
consists mainly of a table of global names. This table is required for handling incremental
interpretation or suggestions (tab-completion) in the interactive environment. The global
context also contains the meta-context, and tracks the position of the currently evaluated
term in the original source file for error reporting.
Overall, the driver receives user input in the formof a string, parses it, supplies it expression
by expression to the backend, receiving back a global name, or an evaluated value, which
it pretty-prints and returns back to the user-facing frontend code.

3.6 Frontend

Wewill consider only two forms of user interaction: batch processing of a file via a command-
line interface, and a terminal environment for interactive use. Later, with the Truffle inter-
preter, we can also add an option to compile a source file into an executable using Truffle’s
capability to produce Native Images.

CLI Wewill reuse the entry point of Truffle languages, a Launcher class, so that integra-
tion of the Truffle interpreter is easier later, and then we are able to create single executable
that is able to use both interpreters.
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Launcher handles pre-processing command-line arguments for us, a feature for which
we would otherwise use an external library like JCommander. In the Truffle interpreter,
we will also use the execution context it prepares using various JVM options but for now, we
will only use Launcher for argument processing.
Twomodes of execution are implemented, onemode that processes a single expression pro-
vided on the command line and --normalizes it, --elaborates it, or find its --type.
The second mode is sequential batch processing mode that reads source code either from
a file or from standard input, and processes all statements and commands in it sequentially.
As we need to interact with the user we encounter another problem, that of error reporting.
It has been mentioned in passing several times, and in this implementation of the inter-
preter, it is handled only partially. To report an error well, we need its cause and location.
Did the user forget to close a parenthesis, or is there a type error and what can they do
to fix it? Syntactic errors are reported well in this interpreter, but elaboration errors only
sometimes.
Error tracking pervades the entire interpreter, position records are stored in all data struc-
tures, location of the current expression is tracked in all evaluation and elaboration contexts,
and requires careful placement of update commands and throwing and catching of excep-
tions. As error handling is implemented only passably and is not the focus of this thesis, it
is only mentioned briefly here.
In Listing 3.13, a demonstration of the command-line interface is provided: normalization
of an expression, batch processing of a file, and finally, starting up of the REPL.

$> cat demo.mt
id : {A} -> A -> A = \x. x
const : {A B} -> A -> B -> A = \x y. x
{-# TYPE id #-}
{-# NORMALIZE id const #-}

$> montuno demo.mt
{A} → A → A
λ x _. x
$> montuno --type id
{A} → A → A

Listing 3.13: Example usage of the CLI interface

REPL Read-Eval-Print Loop is the standard way of implementing interactive terminal
interfaces to programming languages. The interpreter receives a string input, processes it,
and writes out the result. There are other concerns, e.g., implementing name completion,
different REPL-specific commands or, in our case, switching the backend of the REPL at
runtime.
From my research, JLine is the library of choice for interactive command-line applications
in Java, so that is what I used. Its usage is simple, and implementing a basic interface takes
only 10s of lines. The commands reflect the capabilities of the command-line interface:
(re)loading a file, printing out an expression in normalized or fully elaborated forms, and
printing out the type of an expression. These are demonstrated in a simple way in Listing
3.14.
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$> montuno
Mt> :load demo.mt
Mt> <TAB><TAB>
id const true false cond
Mt> :normalize id const
λ x _. x
Mt> :type id
{A} -> A -> A
Mt> :quit

Listing 3.14: REPL session example
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Chapter 4

Adding JIT compilation to Montuno:
MontunoTruffle

4.1 Introduction

In the first part of this thesis, we introduced the theory of dependent types, specified
a small, dependently typed language, and introduced some of the specifics of creating an in-
terpreter for this language, under the name Montuno. The second part is concerned with
the Truffle language implementation framework: we will introduce the framework itself
and the features it provides to language designers, and use it to build a second interpreter.
To reiterate the goal of this thesis, the intent is to create a vehicle for evaluating whether
adding just-in-time compilation produces visible improvements in the performance of de-
pendently typed languages. Type elaboration is often a performance bottleneck [24], and
because it involves evaluation of terms, it should be possible to improve it using JIT com-
pilation; as optimizing AST evaluation is a good candidate for JIT compilation. We have
designed a language that uses features and constructs that are representative of state-of-
the-art proof assistants and dependently typed languages, so that such evaluation may be
used as a guideline for further work.
This chapter is concerned with building a second interpreter based on Truffle. First, how-
ever, we need to introduce the idea of just-in-time compilation in general, and see how
Truffle implements the concept.

4.2 Just-in-time compilation

Just-in-time (JIT) compilation, in general, is a technique that combines an interpreter and
a compiler into a single runtime. A program is first interpreted, and later compiled dur-
ing its runtime. The JIT compiler often observes the behavior of the interpreted program,
so that it can compile it more efficiently. While a program is running, the JIT compiler op-
timizes the parts that run often; using an electrical engineering metaphor, such parts are
sometimes called “hot loops”.
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The optimizations often rely on assumption that, when executing a program, its functions
(and the functions in the libraries it uses) are only called in a specific pattern, configuration,
or with a specific type of data. When talking about specific optimizations, the terms slow
path and fast path are often used. The fast path is the one for which the program is currently
optimized, whereas the slow paths are all the other ones, e.g., function calls or branches
that were not used during the specific program execution.
There are several approaches to JIT compilation: meta-tracing and partial evaluation are the
two most common ones.

Meta-tracing A JIT compiler based on meta-tracing records a trace of the path taken dur-
ing program execution. Often used paths are then optimized: either rewritten, or directly
compiled to machine code. Tracing, however, adds some overhead to the runtime of the
program, so only some paths are traced. While the programmer can provide hints to the
compiler, meta-tracing may result in unpredictable peak performance. This technique has
been successfully used in projects like PyPy, that is built using the RPython JIT compiler
[7], or on GHC with mixed results [44].

Partial evaluation The second approach to JIT compilation is called partial evaluation, also
called the Futamura projection. The main principle is as follows: (fully) evaluating a pro-
gram using an interpreter produces some output, whereas partially evaluating a program
using an interpreter produces a specialized executable. The specializer assumes that the
program is constant and can, e.g., eliminate parts of the interpreter that will not be used
by the program. This is the approach taken by Truffle [34].

Figure 4.1: Partial evaluation with constant folding1

The basic principle is demonstrated in Figure 4.1, on actual code produced by Truffle. In
its vocabulary, a CompilationFinal value is assumed to be unchanging for a single in-
stance of the program graph node (the field flag in the figure), and so the JIT compiler can
transform a conditional if statement into an unconditional one, eliminating the second
branch.

1Source: Graal: High Performance Compilation for Managed Languages [52]
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There are, in fact, three Futamura projections, referred to by their ordinals: the first Fu-
tamura projection specializes an interpreter with regards to a program, producing an exe-
cutable. The second Futamura projection combines the specializer itself with an interpreter,
producing a compiler. The third projection uses the specializer on itself, producing a com-
piler maker. As we will see in later sections, Truffle and GraalVM implement both the first
and second projections [34].

4.3 Truffle and GraalVM

I have mentioned Truffle several times already in previous chapters. To introduce it prop-
erly, we first need to take a look at the Java Virtual machine (JVM). The JVM is a complex
platform that consists of several components: a number of compilers, a memory manager,
a garbage collector, etc., and the entire purpose of this machinery is to execute .class files
that contain the bytecode representation of Java, or other languages that run on the JVM
platform. During the execution of a program, code is first translated into generic executable
code using a fast C1 compiler. When a specific piece of code is executed enough times, it
is further compiled by a slower C2 compiler that performs more expensive optimizations,
but also produces more performant code.
The HotSpotVM is one such implementation of this virtual machine. The GraalVM project,
of which Truffle is a part, consists of several components and themain one is the Graal com-
piler. It is an Oracle research project that replaces the C2 compiler inside HotSpotVM, to
modernize an aging code base written in C++, and replace it with amodern one built with
Java [11]. The Graal compiler is used in other ways, though, some of which are illustrated
in Figure 4.2. We will now look at the main ones.

Figure 4.2: GraalVM components and Truffle2

Graal Graal itself is at its core a graph optimizer applied to program graphs. It processes
Java bytecode into a graph of the entire program, spanning across function calls, and re-
orders, simplifies, and overall optimizes it.

2Source: https://www.graalvm.org/community/assets
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It actually builds two graphs in one: a data-flow graph, and an instruction-flow graph.
Data-flow describes what data is required for which operation, which can be reordered or
optimized away, whereas the instruction-flow graph stores the actual order of instructions
that will happen on the processor. Figure 4.3 shows the output of a graph visualization
tool provided by Graal. This specific graph is the execution path of a CounterNode that
simply reads its internal field, adds a one to it, and stores the result; more complex program
graphs are often very large and hard to read.

Figure 4.3: Graal program graph, visualized using IGV3

SubstrateVM As Graal is a standalone Java library, it can also be used in contexts other
than the HotSpotVM. SubstrateVM is an alternative virtual machine that executes Graal-
optimized code. It does not perform just-in-time optimizations, though, but uses Graal
as an ahead-of-time compiler. The result is a small stand-alone executable file that does
not depend on a JVM being installed on a machine, called a Native Image. By replacing
JIT compilation with ahead-of-time, these binaries start an order-of-magnitude faster than
regular Java programs, and can be freely copied between machines, similar to Go or Rust
binaries [55].

Truffle The Graal program graph, Graal IR, is a directed graph structure in static single
assignment form. As it is implemented in Java itself, the graph structure is extensible [11].
Truffle exposes this extensibility of the program to developers. In essence, it is a graph
manipulation library and a set of utilities for creating these graphs. These graphs are the
abstract syntax tree of a language: each node has an execute method; calling the method
returns the result of evaluating the expression it represents.

3Source: Graal: High Performance Compilation for Managed Languages [52]
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Interpreter/compiler When creating a programming language, there is a trade-off be-
tween writing an interpreter and a compiler. An interpreter is usually simpler to imple-
ment and each function in the host language directly encodes the semantics of a language
construct, but the result can be rather slow: compared to the language in which the inter-
preter is written, it can often be slower by a factor to 10x to 100x [55]. A compiler, on the
other hand, does not execute a program directly, but instead translates its semantics onto
the semantics of a different virtual machine, be it the JVM, LLVM, or x86 assembly.
Truffle attempts to side-step this trade-off bymaking it possible to create an interpreter that
can be compiled on-demand via JITwhen interpreted or ahead-of-time into aNative Image;
the result should be an interpreter-based language implementation with the performance
of a compiled language and access to all JVM capabilities (e.g. memory management). In-
stead of running an interpreter inside a host language like Java, the interpreter is embedded
one layer lower, into a program graph that runs directly on the JVM and is manipulated by
the Truffle runtime that runs next to it.

Polyglot Truffle languages can all run next to one another on the JVM. As a side-effect,
communication between languages is possiblewithout the need for usual FFI (foreign func-
tion interface) complications. As all values are JVM objects, access to object properties
uses the same mechanisms across languages, as does function invocation. In effect, any
language from Figure 4.2 can access libraries and values from any other such language.

TruffleDSL Truffle is a runtime library that manages the program graph and a number of
other concerns like variable scoping, or the object storage model that allows objects from
different languages to share the same layout. TruffleDSL is a user-facing library in the
form of a domain-specific language (DSL) that aids in simplified construction specialized
Truffle node classes, inline caches, language type systems, and other specifics. This DSL
is in the form of Java annotations that give additional information to classes, methods, or
fields, so that a DSL processor can later use them to generate the actual implementation
details.

Instrumentation The fact that all Truffle languages share the same basis, the program
graph,means that a shared suite of tooling could be built on top of it: a profiler (VisualVM),
a stepping debugger (Chrome Debugger), program graph inspector (IGV), a language
server (Graal LSP). We will use some of these tools in further sections.

4.4 Truffle in detail

Concluding the general introduction to Truffle and GraalVM, we will now look at the
specifics of how a Truffle language differs from the type of interpreter we created previ-
ously.
The general concept is very similar to the previously created AST interpreter: there is again
a tree data structure at the core, where each node corresponds to one expression that can
be evaluated. Themain differences are in a number of details that were previously implicit,
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though, like the simple action of “calling a function”, which in Truffle involves the interplay
of, at a minimum, five different classes.
Figure 4.4 shows the components involved in the execution of a Truffle language. Most of
our work will be in the parts labeled “AST”, “AST interpreter”, and “AST rewriting”. All
of these involve the contents of the classes that form the abstract syntax tree, as individual
graph nodes contain their data, but also their interpretation and rewriting specifics.

Figure 4.4: Architecture of a Truffle language, arrows denote program execution flow4

Overall, the implementation of a Truffle language can be divided into a few categories.
Some of the classes to be sub-classed andmethods to be implemented are included in paren-
theses to give a brief idea of the terminology we will use, although we will expand on each
one momentarily. These blocks are:

• language execution (Launcher),

• language registration (Language, Context, ParsingRequest),

• program entry point (RootNode, CallTarget),

• node execution (VirtualFrame, execute, call),

• node specialization (Specialization, Profile, Assumption),

• value types (TypeSystem, ValueType),

• compiler directives (transferToInterpreter, TruffleBoundary),
4Source: Graal: High Performance Compilation for Managed Languages [52]
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• function calls (InvokeNode, DispatchNode, CallNode),

• object model (Layout, Shape, Object), and

• others (instrumentation, TruffleLibrary interfaces, threads).

Launcher The entry point to a Truffle language is a Launcher (Listing 4.1). This com-
ponent handles processing command-line arguments, and uses them to build a language
execution context. A language can be executed from Java directly without a Launcher,
but it handles all GraalVM-specific options and switches, many of which we will use later,
and correctly builds a language execution environment, including all debugging and other
tools that the user may decide to use.

class MontunoLauncher : AbstractLanguageLauncher() {
companion object {

@JvmStatic fun main(args: Array<String>) = Launcher().launch(args)
}
override fun getDefaultLanguages() = arrayOf("montuno");
override fun launch(contextBuilder: Context.Builder) {

contextBuilder.arguments(getLanguageId(), programArgs)
Context context = contextBuilder.build()
Source src = Source.newBuilder(getLanguageId(), file).build()
Value returnVal = context.eval(src)
return returnVal.execute().asInt()

}
}

Listing 4.1: A minimal language Launcher

Language registration The programming language is represented by a Language object,
whose primary purpose is to answer ParsingRequests with the corresponding program
graphs, and to manage execution Contexts that contain global state of a single language
process. It also specifies general language properties like support for multi-threading, or
the MIME type and file extension, and decides which functions and objects are exposed to
other Truffle languages.

@TruffleLanguage.Registration(
id = "montuno", defaultMimeType = "application/x-montuno"

)
class Language : TruffleLanguage<MontunoContext>() {

override fun createContext(env: Env) = MontunoContext(this)
override fun parse(request: ParsingRequest): CallTarget {

CompilerAsserts.neverPartOfCompilation()
val root = ProgramRootNode(parse(request.source))
return Truffle.getRuntime().createCallTarget(root)

}
}

Listing 4.2: A minimal Language registration
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Program entry point Listing 4.2 demonstrates both a language registration and the cre-
ation of a CallTarget. A call target represents the general concept of a callable object, be it
a function or a program, and as we will see later, a single call to a call target corresponds to
a single stack VirtualFrame. It points to the RootNode at the entry point of a program
graph, as shown in Figure 4.5.
A CallTarget is also the basic optimization unit of Truffle: the runtime tracks howmany
times a CallTarget was entered (called), and triggers optimization (partial evaluation)
of the program graph as soon as a threshold is reached.

Figure 4.5: Combination of regular and partially-evaluated code5

Node execution A RootNode is a special case of a Truffle Node, the basic building block
of the programgraph. Each node has a singleway of evaluating the expression it represents,
the execute method. We may see nodes with multiple execute methods later, but they
are all ultimately translated by the Truffle DSL processor into a single method: Truffle will
pick the most appropriate one based on the methods’ return type, arguments types, or
user-provided guard expressions.
Listing 4.3 contains an example of two nodes. They share a parent class, LanguageNode,
whose only method is the most general version of execute: one that takes a virtual frame
and returns anything. An IntLiteralNode has only one way of providing a result, it
returns the literal value it contains. AddNode, on the other hand, can add either integers or
strings, so it uses another TruffleDSL option, a@Specialization annotation, which then
generates the appropriate logic for choosing between the methods addInt, addString,
and typeError.

Specialization Node specialization is one of the main optimization capabilities of Truffle.
The AddNode in Listing 4.3 can handle strings and integers both, but if it only ever receives
integers, it does not need to check whether its arguments are strings on the fast path (the

5Source: Graal: High Performance Compilation for Managed Languages [52]
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abstract class LanguageNode : Node() {
abstract fun execute(frame: VirtualFrame): Any

}
class IntLiteralNode(private val value: Long) : LanguageNode() {

override fun execute(frame: VirtualFrame): Any = value
}
abstract class AddNode(

@Child val left: LanguageNode, @Child val right: LanguageNode,
) : LanguageNode() {

@Specialization fun addInt(l: Int, r: Int) = l + r
@Specialization fun addString(l: String, r: String) = l + r
@Fallback fun typeError(l: Any?, r: Any?): Unit

= throw TruffleException("type error")
}

Listing 4.3: Addition with type specialization

currently optimized path). Using node specialization, the AddNode can be in one of four
states: uninitialized, integers-only, strings-only, and both generic. Whenever it encounters
a different combination of arguments, a specialization is activated. Overall, the states of
a node form a directed acyclic graph: a node can only ever become more general, as the
Truffle documentation emphasizes.

Figure 4.6: Node optimization and deoptimization in Truffle6

(De)optimization Node specialization combined with the optimization of a CallTar-
get when called enough times are sufficient to demonstrate the process of JIT compilation
in Truffle. Figure 4.6 demonstrates this process on a node type with several more state
transitions. When all nodes in a program graph reach a stable state where no more special-

6Source: One VM to Rule Them All [55]
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izations take place, it is may be partially evaluated. This produces efficient machine code
instead of slow interpreter-based code, specialized for the nodes’ current states.
However, this compilation is speculative, it assumes that nodes will not encounter different
values, and this is encoded in explicit assumption objects. When these assumptions are
invalidated, the compiledmachine code is discarded, and the nodes revert back to their non-
optimized form. This process is called deoptimization [53], and can be explicitly invoked
using the Truffle method transferToInterpreter.
After a deoptimization, the states of nodes should again stabilize, so that they may be par-
tially evaluated into efficient machine code once more. Often, this (de)optimization pro-
cess repeats multiple times during the execution of a single program: the period from the
start of a program until a stable state is called the warm-up phase.

Value types Nodes can be specialized based on various criteria, but the above-mentioned
specialization with regards to the type of arguments requires that these types are all de-
clared and aggregated into a TypeSystem object and annotation. These are again pro-
cessed by TruffleDSL into a class that can check the type of a value (isUnit), and perform
implicit conversion between them (asBoolean, castLong). Listing 4.4 demonstrates
a TypeSystem with a custom type Unit and the corresponding required TypeCheck, and
with an implicit type-cast in which an integer is implicitly convertible into a long integer.

@CompilerDirectives.ValueType
object Unit

@TypeSystem(Unit::class, Boolean::class, Int::class, Long::class)
open class Types {

companion object {
@ImplicitCast
fun castLong(value: Int): Long = value.toLong()
@TypeCheck(Unit::class)
fun isUnit(value: Any): Boolean = value === Unit

}
}

Listing 4.4: A TypeSystem with an implicit cast and a custom type

Function invocation An important part of the implementation of any Truffle language
consists of handling function calls. A common approach in multiple Truffle is as follows:
Given an expression like fibonacci(5). This expression is evaluated in multiple steps: an
InvokeNode resolves the function that the expression refers to (fibonacci) into a Call-
Target, and evaluates its arguments (5). A DispatchNode creates a CallNode for the
specific CallTarget and stores it in a cache. Finally, a CallNode is what actually per-
forms the switch from one part of the program graph to another, building a stack Frame
with the function’s arguments, and entering the RootNode referred to by the CallTar-
get.

Stack frames Frames were mentioned several times already: they are Truffle’s abstrac-
tion of a stack frame. In general, stack frames contain variables and values in the local
scope of a function, those that were passed as its arguments and those declared in its body.
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In Truffle, this is encoded as a Frame object, and passed as an argument to all execute
functions. Frame layout is set by a FrameDescriptor object, which contains FrameS-
lots that refer to parts of the frame. Listing 4.5 demonstrates two nodes that interact with
a Frame: a reference to a local variable, and a local variable declaration.
class ReadLocalVarNode(val name: String) : Node {

fun execute(frame: VirtualFrame): Any {
val slot: FrameSlot = frame.getFrameDescriptor().findFrameSlot(name)
return frame.getValue(slot ?: throw TruffleException("not found"));

} }
class WriteLocalVarNode(val name: String, val body: Node) : Node {

fun execute(frame: VirtualFrame): Unit {
val slot: FrameSlot = frame.getFrameDescriptor().addFrameSlot(name)
frame.setObject(slot, body.execute(frame));

} }

Listing 4.5: Basic operations with a Frame

There are two kinds of a Frame, virtual and materialized frames. A VirtualFrame is,
as its name suggests, virtual, and its values can be freely optimized by Truffle, reorganized,
or even passed directly in registers without being allocated on the heap (using a technique
called Partial Escape Analysis). A MaterializedFrame is not virtual, it is an object at the
runtime of a program, and it can be stored in program’s values or nodes. A virtual frame
is preferable in almost all cases, but e.g., implementing closures requires a materialized
frame, as it needs to be stored in a Closure object. This is shown in Listing 4.6, where
frame.materialize() captures a virtual frame and stores it in a closure.

@CompilerDirectives.ValueType
data class Closure(

val callTarget: CallTarget,
val frame: MaterializedFrame,

)
class ClosureNode(val ct: CallTarget) : Node {

fun executeClosure(frame: VirtualFrame) {
return Closure(ct, frame.materialize())

}
}

Listing 4.6: A closure value with a MaterializedFrame

Caching These were the main features required for writing a Truffle language, but there
are several more tools for their optimization, the first one being inline caching. This is an old
concept that originated in dynamic languages, where it is impossible to statically determine
the call target in a function invocation, so it is looked up at runtime. Most function call sites
use only a limited number of call targets, so these can be cached. As the cache is a local one,
placed at the call site itself, it is called an inline cache. This concept is used for a number of
other purposes, e.g., caching the FrameSlot in an assignment operator, or the Property
slot in an object access operation.
In the case of function dispatch, a DispatchNode goes through the following stages: unini-
tialized;monomorphic, when it is specialized to a single call target; polymorphic, when it stores
a number of call targets small enough that the cost of searching the cache is smaller than
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the cost of function lookup; and megamorphic, when the number of call targets exceeds the
size of the cache, and every function call is looked up again. Listing 4.7 demonstrates this
on a DispatchNode, adding a polymorphic cache with size 3, and also demonstrates the
Truffle DSL annotations Cached. The cache key is the provided CallTarget, based on
which a DirectCallNode is created and cached as well. The megamorphic case uses
an IndirectCallNode: in a DirectCallNode, the call target can be inlined by the JIT
compiler, whereas in the indirect version it can not.

abstract class DispatchNode : Node {
abstract fun executeDispatch(

frame: VirtualFrame, callTarget: CallTarget, args: Array<Any>): Any

@Specialization(limit="3", guards="callTarget == cachedCallTarget")
fun doDirect(

frame: VirtualFrame, callTarget: CallTarget, args: Array<Any>,
@Cached("callTarget") cachedCallTarget: CallTarget,
@Cached("create(cachedCallTarget)") callNode: DirectCallNode

) = callNode.call(args)

@Specialization(replaces="doDirect")
fun doIndirect(

frame: VirtualFrame, callTarget: CallTarget, args: Array<Any>,
@Cached("create()") callNode: IndirectCallNode

) = callNode.call(callTarget, args)
}

Listing 4.7: Polymorphic and megamorphic inline cache on a DispatchNode

Guards Listing 4.7 also demonstrates another optimization feature, a generalization of
nodes specializing themselves based on types or arguments. A Specialization annota-
tion can have arbitrary user-provided guards. These are often used in tandem with a cache,
or with complex type specializations. In general, using a Specialization makes it possi-
ble to choose themost optimal node implementation based on its situation or configuration.

Profiles Another tool for optimization are profiles. These are objects that the developer
can use to track whether a conditional statement was executed: in the implementation of
an if statement, or when handling an exception. The compiler will use the information
collected during optimization, e.g., when a ConditionProfile tracks that the condition
in an if statement was true every time, the compiler will omit the else branch during
compilation.

Assumptions Assumptions are the last tool that a developer can use to providemore infor-
mation to the compiler. Unlike profiles and specializations that are local to a node, assump-
tions are global objects whose value can be changed from any part of a program graph. An
assumption is valid when created, and it can be invalidated, which triggers deoptimization
of any code that relies on it. A typical use of assumptions is shown in Listing 4.8 [46],
where TruffleRuby relies on the fact that global variables are only seldom changed and can
be cached. A ReadGlobalVarNode reads the value of the global variable only the first
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time, and relies on two assumptions afterwards, which are invalidated whenever the value
of the variable changes, and the cached value is discarded.

@Specialization(assumptions = [
"storage.getUnchangedAssumption()",
"storage.getValidAssumption()"

])
fun readConstant(

@Cached("getStorage()") storage: GlobalVariableStorage,
@Cached("storage.getValue()") value: Any

) = value

Listing 4.8: Cached reading of a global variable using assumptions [46]

Inlining During optimization, the Graal compiler replaces DirectCallNodes with the
contents of the call target they refer to, performing function inlining [54]. Often, this is the
optimization with the most impact, as replacing a function call with the body of the callee
means that many other optimizations can be applied. For example, if a for loop contains
only a function call and the function is inlined, then the optimizer could further analyze
the data flow, and potentially either reduce the loop to a constant, or to a vector instruction.
There are potential drawbacks, andTruffledocumentationwarns developers to placeTruf-
fleBoundary annotations on functions that would be expanded to large program graphs,
like printf, as Graal will not ever inline a function through a TruffleBoundary.

Splitting Related to inlining, a call target can also be split into a number of monomorphic
call targets. Previously, we saw an AddNode that could add either integers or strings. If
this was a global or built-in function that was called from different places with different
configurations of arguments, then this node could be split into two: one that only handles
integers and one for strings. Only the monomorphic version would then be inlined at a call
site, leading to even better possibility of optimizations.
Both of these two techniques, inlining and splitting, are guided by Graal heuristics, and
they are generally one of the last optimization techniques to be checked when there are no
more gains to be gained from caching or specializations.

Object model Truffle has a standard way of structuring data with fixed layout, called
the Object Storage Model [22]. It is primarily intended for class instances that have a user-
defined data layout, but e.g., the meta-interpreter project DynSem [51] uses it for variable
scopes, and TruffleRuby uses it to make C structs accessible from Ruby as if they were
objects. Similar to Frames, an empty DynamicObject is instantiated from a Shape (cor-
responds to a FrameDescriptor) that contains several instances of a Property (corre-
sponds to a FrameSlot). Listing 4.9 shows the main method of a node that accesses an
object property, also utilizing a polymorphic cache.

Interop As previously mentioned, it is possible to evaluate foreign code from other lan-
guages using functions like eval, referred to as polyglot. However, Truffle also makes it
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@Specialization(guards=[
"addr.key() == keyCached",
"shapeCached.check(addr.frame())"

], limit="20")
fun doSetCached(

addr: FrameAddr, value: Any,
@Cached("addr.key()") keyCached: Occurrence,
@Cached("addr.frame().getShape()") shapeCached: Shape,
@Cached("shapeCached.getProperty(keyCached)") slotProperty: Property

): Unit {
slotProperty.set(addr.frame(), value, shapeCached)

}

Listing 4.9: Accessing an object property using a Shape and a Property [51]

possible to use other languages’ values: to define a foreign function and use it in the orig-
inal language, to import a library from a different language and use it as if it was native.
This is referred to as an interoperability message protocol or interop, for short.
Truffle uses libraries to accomplish this. They play a role similar to interfaces in object-
oriented languages [22], and describe capabilities of ValueTypes. A library message is an
operation that a value type can support, and it is implemented as a special node in the
program graph, as a nested class inside the value type. The ValueTypes of a foreign lan-
guage then need to be mapped based on these libraries into a language: a value that imple-
ments an ArrayLibrary can be accessed using array syntax, see Listing 4.10. Libraries
are also used for polymorphic operations inside a language if there is a large amount of
value types, to remove duplicate code that would otherwise be spread over multiple Spe-
cializations.
class ArrayReadNode : Node {

@Specialization(guards="arrays.isArray(array)", limit="2")
fun doDefault(

array: Object, index: Int,
@CachedLibrary("array") arrays: ArrayLibrary

): Int = arrays.read(array, index)
}

Listing 4.10: Array access using a Library interface7

4.5 Mapping concepts to Truffle

Where to use Truffle? Truffle uses JIT compilation, and optimizes repeatedly executed
parts of a program. Many parts of the previously implemented interpreter are only one-off
computations, though, e.g., the elaboration process itself that processes a pre-term once
and produces a corresponding term, while discarding the pre-term. Only the evaluation
of terms to values runs multiple times, as (top-level) functions are stored in the form of
terms. It is possible that the elaboration process might benefit as well, by implementing
infer, check, and unify as Truffle nodes and using those in place of functions.

7Source: https://www.graalvm.org/graalvm-as-a-platform/language-implementation-
framework/TruffleLibraries/
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Inspiration For inspiration, I have looked at a number of other functional languages that
use Truffle: several theses (TruffleClojure [16], TrufflePascal [18], Mozart-Oz [27]), two
Oracle projects (FastR [49], TruffleRuby [46]), and other projects (Cadenza [30], DynSem
[51], Mumbler [15], Truffled PureScript [48]).
In the last phases ofwriting this thesis, I have encountered the project Enso [38] that was re-
leased April 13th, a month before my thesis deadline. It is a visual programming language
that uses dependent types at its core. In particular, compared to my previous approach, it
strictly delineates between elaboration, compilation, and evaluation, introducing a special
compiler component. This allows them to apply optimizations in the spirit of a compiled lan-
guage, gradually performing optimization passes, and refining the code that is transformed
into a Truffle graph in the end.
After comparing their approach to mine, I have found theirs significantly more viable with
regards to optimization: my original approach was to transform the entire elaboration al-
gorithm into a Truffle graph containing nodes like QuoteNode, InferNode, etc. The entire
system contained a large amount of components, and the program graph did not usually
manage to stabilize enough that it would be compiled.
I have adopted this separation of elaboration and evaluation, meaning that only closures
are compiled into machine code. This significantly simplifies both the implementation and
any optimization efforts (profiling and reading of Truffle graphs), and this is the approach
that I will describe in this section. This approach is very similar to the implementations of
other proof assistants that also use an evaluation platform other than the host language for
evaluation, e.g., Coq supports several backends (native_compute, vm_compute),

4.5.1 Approach

Out of the many changes that are required, the largest one is in the encoding of functions
and closures, and replacing closure implementation with call targets. Environments and
variable references need to be rewritten to use explicit stack frames, and lazy evaluation
cannot use Kotlin’s lazy abstraction, but instead needs to be encoded as an explicit Thunk
object.

REPL

CLI

File

Launcher
Language

Elaboration

Evaluation

Truffle

Frontend
Backend

Figure 4.7: Component overview of the Truffle interpreter

Figure 4.7 demonstrates the components of the new interpreter. The Launcher is the
same as in the previous interpreter, only now we use the Context that it prepares based
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on user-provided options. The Language object initializes a different Context object,
aMontunoContext, which is an internal object containing the top-level variable scope, the
meta-variable scope, and other global state variables. Language then dispatches parsing
requests to the parser, and the pre-terms it produces are then wrapped into a Program-
RootNode.
Executing the ProgramRootNode starts the elaboration process, calling into the code of
the original interpreter. During evaluation of a term into a value, any closures produced
are compiled into a Truffle graph, saving the current environment in the form of an array.
The closure is then evaluated when supplied with an argument into a value, which can
again be compared, unified, or built back up into a Term using quote.
Elaboration and evaluation both access the MontunoContext object to resolve top-level
variables and meta-variables into the corresponding Terms. The REPL needs to obtain
lists of bound variables to produce suggestions and process other REPL commands from
the context as well, but all interaction between the host code of the Launcher and the
internals of the language need to happen via the polyglot interface. This means that any
REPL commands that need to access the language context now need to be implemented
as language pragmas: e.g., to reset the language state, we nowneed the pragma{-# RESET
#-}, which is then also accessible in user-provided code as well.
The data flow in Figure 4.8, if compared with the previous data flow diagram, only adds
the data representation Code, and the operation Close, which represents the construction
of a closure that closes over the current environment. Otherwise, other parts of the system
can stay the same, at least on first glance.

String Pre-term Term Value

Code

Parse Infer
Check

Eval

Close
Eval

Quote
Pretty-print

Unify

Figure 4.8: Data flow overview. Cyan is elaboration, red normalization-by-evaluation

4.5.2 Implementation notes

While I have sketched the changes that would be required when creating a new Truffle
interpreter based on the previous, non-Truffle one, the actual implementation process was
slightly different. Instead of creating a entirely separate interpreter that would share some
library code, as with my first attempts at creating a Truffle interpreter for Montuno, the
effort to incorporate the improvements of Enso resulted in the two codebases merging.
Unlike my previous implementations, the non-Truffle and Truffle versions share the entire
elaboration component. The only difference is in a single pluggable component, a Com-
piler. This is an interface with a single method, buildClosure, that produces the origi-
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nal VClosure value in the non-Truffle version, and in the Truffle version it transforms the
body of a closure into a Truffle graph.

4.5.3 Values

@TypeSystem(
VUnit::class, VThunk::class,
VLam::class, VPi::class,
VPair::class, VSg::class,
VMeta::class, VLocal::class, VTop::class,
VNat::class, VBool::class,

)
class Types {

@TypeCheck(VUnit::class)
fun isVUnit(value: Any) = value === VUnit

}

@ValueType
object VUnit : TruffleObject
@ValueType
class VPair(val left: Any, val right: Any) : TruffleObject

Listing 4.11: A TypeSystem and two simple ValueTypes from the Truffle interpreter

Not including constants, we have only two main value types: a Π-type (equivalent to a λ-
abstraction), and a Σ-type. AΠ-typemaps onto a closure andwill be discussedmomentar-
ily. A Σ-type can be expressed as a pair, or a linked list of nested pairs, to use the simplest
representation. Then there are neutral terms, unresolved variables that accumulate a spine
of unapplied operands and projections: these are expressed as a head containing a variable
reference, and a spine with an array of spine values.
Each of these values needs to be a separate ValueType class, and an entry in the Truffle
type system. A snippet in Listing 4.11 shows the TypeSystem and two simple value types.
Other than the above-mentioned types of values, there is a number of literal types, and
a type VThunk. This type needs to be explicitly mentioned here, so that we can implement
lazy evaluation in Truffle; its interface is exactly the same as a Kotlin lazy, but a VThunk
inherits from the class TruffleObject so that it can be used inside compiled code.

4.5.4 Closures

A closure needs to store the function to execute, which was a Term in the non-Truffle imple-
mentation, togetherwith the execution environment. The Truffle version replaces the Term
with a CallTarget that points to a Truffle graph. A CallTarget can only be called with
an array of objects, so this is what a Closure stores in the place of an environment. The
CallTarget points to a ClosureRootNode, which first copies the array of arguments
it was given into the local scope, and then executes the body. Reports from the Cadenza
project [30] show that this is more efficient than simply accessing the environment as an
array, as the virtual frame can be optimized by Truffle. The closure object itself can be seen
in Listing 4.12. Notably, it also uses the InteropLibrary mentioned in the previous
chapter, meaning that it can also be invoked from outside of the interpreter internals.
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@CompilerDirectives.ValueType
@ExportLibrary(InteropLibrary::class)
data class TruffleClosure(

val env: VEnv, val callTarget: CallTarget
) : TruffleObject {

override val arity: Int = 1
@ExportMessage fun isExecutable() = true
@ExportMessage override fun execute(vararg args: Any?): Val {

return callTarget.call(*concat(env, args))
}

}

Listing 4.12: Sketch of the closure implementation

Changing the definition of a closure also means that all VPi or VLam values now contain
a closure that was processed by the previously mentioned Compiler component. My
original intent was to compile only top-level definitions (globally defined functions or
constants) and meta-variables, but the processes of meta-variable solving and elaborating
a top-level definition both produce a value, so it is simpler to produce closures globally,
across all the entire interpreter.
A Term is processed by the Compiler into a Code object, which is then wrapped into
the ClosureRootNode, and converted into a CallTarget. The compilation process pro-
duces the Truffle graph as another tree structure, only this onewill be interpreted by Truffle
and not our algorithms. A snippet of the compilation code can be seen in Listing 4.13. It
converts the Term type into a version of the eval function: a Π-type produces a closure,
therefore we need to start a new compilation process with its body. a local variable reads
from the Frame, therefore we find the FrameSlot that corresponds to the de Bruijn in-
dex, and compile it into a read operation. Finally, a unit term is compiled into a constant
expression.

class TruffleCompiler(val ctx: MontunoContext) : Compiler() {
override fun buildClosure(t: Term, env: VEnv): Closure {

val fd = FrameDescriptor()
val code = compileTerm(bodyTerm, Lvl(env.size + 1))
val root = TruffleRootNode(code, ctx.top.lang, fd)
return TruffleClosure(ctx, env, root.callTarget)

}
private fun compileTerm(

t: Term, depth: Lvl, fd: FrameDescriptor
): Code = when (t) {

is TPi -> CClosure(t.name, t.type,
compileTerm(t.bound, depth, fd),
compileClosure(body, depth + 1))

is TApp -> CApp(compileTerm(t.l, depth, fd),
compileTerm(t.r, depth, fd))

is TLocal -> CReadLocal(fd.findFrameSlot(t.ix.toLvl(depth).it))
is TMeta -> CDerefMeta(t.slot)
TUnit -> CConstant(VUnit)

} //...
}

Listing 4.13: Snippet from the Compiler
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4.5.5 Elaboration

Given the previously mentioned approach, changing the elaboration would not be nec-
essary at all. However, in the course of building the second version, I had attempted to
perform type-directed optimization, meaning that to optimize a term well, I needed its
type. In the course of performing this change, I had changed the meta-context from un-
typed to typed, meaning that each meta-variable now has a type that the solution needs to
conform to. This means that all binders in terms and values can now store the type of their
argument, which allows the optimization process to use this information.
The actual implementation of meta-variables, as used by the compiler is shown in Listing
4.14. The Truffle graph node stores a reference to the meta-variable. If it has been solved
between the time of the compilation and execution, this node is replaced with the value of
the solution. If it has not, then this node produces a neutral value with an empty spine.

open class CDerefMeta(val slot: MetaEntry) : Code() {
override fun execute(frame: VirtualFrame): Val = when {

!slot.solved -> VMeta(slot.meta, VSpine(), slot)
else -> {

replace(CConstant(slot.value!!, loc))
slot.value!!

}
}

}

Listing 4.14: Meta-variable reference node in Truffle

4.5.6 Normalization

Given the approach taken, there are no actual changes to the normalization algorithm, only
the references to closures in Π- and λ-terms have been changed to be an opaque inter-
face, which offers only a single operation instantiate. The non-Truffle implementation
needed to slightly change as well to conform to this interface. The interface and the non-
Truffle implementation of a closure are demonstrated in Listing 4.15.

interface Closure {
fun inst(v: Val): Val

}
@CompilerDirectives.ValueType
@ExportLibrary(InteropLibrary::class)
data class PureClosure(val env: VEnv, val body: Term) : Closure {

override val arity: Int = 1
@ExportMessage fun isExecutable() = true
@ExportMessage override fun execute(vararg args: Any?): Val

= body.eval(concat(env, args))
}

Listing 4.15: Non-Truffle closure implementation
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4.5.7 Built-ins

Built-in constants and types need to be implemented as special nodes. The resolution of
a built-in name to its corresponding node happens during compilation. Each built-in term
has its arity, the number of expected arguments. The compiler produces the correct number
of closures (VLam) nodes around the built-in node invocation that corresponds to the arity
of the operation. These are passed to a BuiltinRootNode that uses them directly, unlike
the ClosureRootNode, that first copies them to the local scope
This is shown on the example of a Succ node in Listing 4.16. This node has the arity 1, it
expects a single argument, which can be either an already evaluated integer or a Thunk
that will produce an integer, which is then forced, and coerced to a integer using a function
generated by the TypeSystem.

class Succ : BuiltinTerm(1) {
@Specialization
fun doInt(n: Int) = n + 1
@Specialization
fun doThunk(t: Thunk) = TypesGen.asVNat(t.force()) + 1

}

Listing 4.16: Example of a built-in node, a Succ node

4.5.8 Driver

The previously-mentioned decision to share elaboration code was also partly motivated by
the experience of working on the original Truffle code base: while it is possible to pause
the execution of a Truffle program, and inspect it inside a debugger, it is impossible to
access the language context from outside the language code. This made any attempts at
incremental development using unit tests impossible, as I was only able to test the complete
process by providing input from the outside.
While this also means that the polyglot interface of the language is well-tested, it discour-
aged me from trying to adapt the existing Truffle codebase when attempting to integrate
the concepts from Enso. However, this limitation places additional demands on the driver
code that handles user interaction. Each user command that is impossible to express us-
ing the polyglot interface needs to be implemented as an interpreter directive, a pragma.
As processing of parsed input happens in the course of elaboration, this means that the
function checkTopLevel not only handles elaboration of top-level definitions, but also
these commands. They are parsed into RTerm nodes, as the same mechanism is used for
pragmas like NORMALIZE, that expect a well-formed expression. An snippet of the code
that processes these commands is shown in Listing 4.17.
One other benefit of the two interpreters sharing their code base is that switching between
backends is possible by simply issuing a command in the REPL interface, as demonstrated
in Listing 4.18. Extending the compiler backend with different or better optimizations
passes, in the manner of Montuno, would be possible by simply extending the Compiler
interface. Any algorithmic improvements to the elaboration process would then be shared
between all implementations.
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fun checkTopLevel(top: MontunoContext, e: TopLevel): Any? {
top.metas.newMetaBlock()
val ctx = LocalContext(top, LocalEnv(top.ntbl))
return when (e) {

// ...
is RTerm -> when (e.cmd) {

Pragma.NOTHING -> top.pretty(ctx.infer(e.tm))
Pragma.RESET -> { top.reset(); null }
Pragma.SYMBOLS -> top.getSymbols()
Pragma.BUILTIN -> { top.registerBuiltins(e.loc, e.tm); null }
Pragma.PRINT -> top.printElaborated()

}
}

}

Listing 4.17: Processing REPL commands inside elaboration

$> montuno --truffle
Mt> :engine
montuno-truffle
Mt> id : {A} -> A -> A = \x.x
Mt> :normalize id id
λ x. x
Mt> :engine montuno-pure
Mt> id : {A} -> A -> A = \x.x
Mt> :normalize id id
λ x. x

Listing 4.18: Switching compilation engines in REPL
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Chapter 5

Evaluation

We now have two interpreters, one written in pure Kotlin that uses the general JIT com-
pilation provided by JVM, the other delegating term evaluation to Truffle. It is now time
to evaluate their performance on a number of both elaboration and evaluation tasks. We
will also briefly compare their performance with the performance of state-of-the-art proof
assistants on the same tasks.
The primary goal is to evaluate the general time andmemory characteristics of the systems
and how they vary with the size of the term and on the number of binders (λ- and Π-
abstractions). For this purpose, we will construct a set of benchmarks involving simple
expressions, whose size we can easily vary.
A secondary goal is to investigate the costs associated with a runtime system based on the
JVM, and how they may be eliminated. We will also prepare a suite of benchmarks by
translating a number of test cases from common performance test suites, and compare this
system’s performance with other functional languages.

5.1 Workload

The evaluation workload will be split into two parts: elaboration tasks, that test the com-
bined performance of our infer/check bidirectional typing algorithm, normalization-by-
evaluation, and unification; and normalization tasks, that only test the performance of
normalization-by-evaluation. These benchmark taskswere partially adapted from thework
of András Kovács [32], and partially extrapolated from the evaluation part of Jason Gross’s
doctoral thesis [24].

5.1.1 Normalization

Both normalization and elaboration tasks need to involve terms that can be easily made
larger or smaller. A typical workload involves Church-encoded terms, naturals in partic-
ular, as these involve λ-abstraction and application. They will be tested in the first set of
tasks: evaluation of a large natural number to a unit value. These will be first evaluated on
Church-encoded naturals, and then on the built-in typeNat that is backed by a Java integer.
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Nat : Unit = (N : Unit) → (N → N) → N → N
zero : Nat = λ N s z. z
succ : Nat → Nat = λ a N s z. s (a N s z)
mul : Nat → Nat → Nat = λ a b N s z. a N (b N s) z
forceNat : Nat → Unit = λn. n _ (λx.x) Unit

(a) Church-encoded naturals and forceNat
n10 = mul n2 n5
n20 = mul n2 n10
-- ...
n20M = mul n2 n10M
(b) Large Church numbers

Figure 5.1: Benchmark tasks: large Church naturals

5.1.2 Elaboration

Elaborationwill test not only the NbE part of our system, but also type inference and check-
ing. Wewill use not only deeply nested function application of Church-encoded terms, but
also terms with large types: those that contain many or deeply nested function arrows or
Π-types. The first task is the elaboration of a polymorphic id function repeatedly applied to
itself, as this producesmeta-variables whose solution doubles in sizewith each application.
The second task especially tests unification: the task is to unify two large Church-encoded
natural numbers, to check them for equivalence.

idTy : {A} → A → A
id : idTy = λ x. x
test : idTy = id id id [...] id

(a) Church-encoded naturals and forceNat

Eq : Nat -> Nat -> Unit
= λ x y. (P : Nat → Unit) → P x → P y

x : Eq n20Mb n20M = \_ x.x

(b) Large Church numbers

Figure 5.2: Benchmark tasks: elaboration

5.2 Methodology

There are many ways how we can measure each language’s performance on these tasks.
The main concern is that Montuno and MontunoTruffle are JIT-compiled languages that
need a significant amount of warm-up: the first iterations will take significantly longer
than the iterations that happen after warm-up, after all code is JIT-optimized.
There are several options for eliminating the influence of JIT warm-up on performance
measurements: the first is to measure an “empty run”, and simply subtract the times from
benchmarking runs. This eliminates JIT start-up times, but does not eliminate the time
required for warming-up of the user system itself. For this reason, there are various tools
for either statistical analysis of the results that discard all but the stable-state performance,
or that simply measure a large number of iterations.
This, however, measures the performance of the system on a single computational task.
The user-visible delay between starting the program and seeing results is what interests
the users of a program, especially in an interpreter for a programming language, that may
need to run often, for a tight feedback loop during program development.
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Figure 5.3: Results of evaluation on the id stress test

For this reason, I have selected the option of measuring whole-system performance includ-
ing start-up and warm-up times, but with a large number of iterations of the benchmark
tasks, so their influence on the overall runtime is also visible. Aside from measuring the
time it takes to normalize or elaborate an expression, we will also measure the peak mem-
ory usage using the system tool time -v.
These benchmarks were run on my personal computer, a laptop with 32GBs of RAM and
a 16 core processor running at 1.4GHz (AMD Ryzen 7 PRO 4750U). No other programs
were running on themachine at the time of benchmarking, to eliminate external influences.

5.3 Results

The measurements were performed using ten iterations of the program (accomplished by
adding a loop to the program code), as an average of five measurements.
Figure 5.3 shows the results of evaluating the system on the 𝑖𝑑𝑆𝑡𝑟𝑒𝑠𝑠 benchmark, measuring
the performance of solving meta-variables. The results are disappointing. Unfortunately,
I have only started stress-testing the system in the last parts of the implementation, other-
wise the project might have taken a different direction.
The original benchmarks in the SmallTT project [32] included comparison of up to one
million binders and not only 700, but the reason for not including more than 700 is that
the elaboration overflowed the stack, using too deep recursive function calls. Overall, this
shows how recursive descent tree transformation algorithms are unsuitable for the Java
Virtual Machine, and does not say too much about the performance of the system overall.
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Program warm-up (a trivial run that only checks the base 𝑖𝑑 definition) takes over five
seconds, going up to ten seconds for the largest run. The long warm-up is to be expected
from a JVM-based system. However, even compared to the two years old benchmarks of
systems like Agda or Coq from the SmallTT project, the performance of these systems are
extremely disappointing.
Rewriting recursive descent algorithms into stack based ones is not a small undertaking,
so instead of trying to push the deadline even further, I have searched for possible causes.
I have found another project of Kovács’, a recent one that compares the suitability of differ-
ent platforms for elaboration [31], and which has added JVM-based systems to its compar-
ison two months ago. In that evaluation, JVM-based platforms have just as disappointing
performance as my solution.
Instead of the many planned measurements and evaluations, I have instead attempted to
analyze possible performance bottlenecks: largely, they come down to the capability of the
JVM to handle recursive functions, which is a long-standing issuewith the JVM capabilities.
Trivial optimizations did not help, and non-trivial optimizationswere out of my time range.

5.4 Discussion

Instead of general programming platforms, languages with dependent types usually use
the platforms of functional languages, e.g., GHCHaskell and its Spineless TaglessG-Machine
(STG), OCaml and the Zinc abstract machine, or Idris 2 that uses Chez Scheme.
These platforms are optimized for fast function calls, currying, tail-calls, and non-eager
(lazy) evaluation strategy, all of which needs to be emulated manually on the JVM. I will
follow with a brief list of optimizations that I have attempted to apply on the Montuno
interpreters:

• Replacing functions for tree transformations with object methods on the term and
value nodes themselves. This halved the stack usage.

• Applying λ-merging to closures, introducing the concept of the arity of a closure:
the body of a closure is not called until all arguments it expects are supplied, which
applies mostly to nested VLam or VPi terms. This helped in some test cases, but not
in the general case.

• Removing lazy evaluation. Surprisingly, this improved the performance of the sys-
tem the most, as the overhead caused by wrapping and unwrapping values in clo-
sureswas removed. This is an optimization that helps in general systemperformance,
but its effects are often unpredictable.

• Unfolding recursive helper functions for processing linked lists of data into iterative
ones, using for cycles. This helped slightly with stack usage, but not as much as I’d
expected.

After looking formore optimization opportunities, I have found an analysis in the Enso [38]
system, where they have encountered the same problem, and used an interesting work-
around. Each thread in the JVM has a separate stack space limit, so instead of working
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around the stack limit, they introduce a heuristic that tracks stack usage 1, and spawns
a new thread with the currently running computation.
Although in my research, I have primarily focused on the optimization opportunities of
Truffle and GraalVM, I have disregarded the optimizations required for the system itself
that is written Kotlin, and often directly used the same style that I am used to fromworking
in Haskell and similar languages.

5.5 Next work

From my research, it seems that Truffle can bring interesting benefits to programming lan-
guage implementers, andn perhaps even for implementing the runtime systems of depen-
dent types, but not for the style of algorithms that are used in dependent type elaboration
without significantly more effort put into their optimization and adaptation for the JVM
platform.
I have started this thesis as a follow up to the Cadenza project [30] that asked whether
Truffle can be useful to a simply-typed λ-calculus implementation. Its results were slightly
disappointing, but the project’s author suggested a follow-up project to me as a thesis topic
likely to produce a positive result. I will have to conclude from the performance of this
project that cannot benefit a runtime system for dependent types, at least not using the
approach that I have taken.
When finishing my thesis, I have discovered that parallel to my work on this thesis, the
author has started a new project called TruffleSTG2, that attempts to apply the knowledge
from these two projects to another domain, that is even more likely to benefit from Truf-
fle. The STG is the abstract machine used by Haskell and other languages that compile to
Haskell. Instead of implementing the entire elaboration system in Kotlin or another JVM-
based language, TruffleSTG uses the GHC Haskell machinery to process dependent types,
and only uses Truffle as a compiler. This takes the approach from my thesis to the extreme.
Where I have used Truffle as a backend that directly communicates with the elaboration
process, TruffleSTG communicates with GHC using GHC-WPC interface files, meaning
that it only attempts to act as a runtime system for Haskell and nothing more.
The language implemented in the course of this thesis has its limitations, the user interface
is incomplete, and the system likely has some bugs that would be discovered when used
on a larger scale, all of which would be good to fix and publish this project as inspiration
for future endeavors in this area.
However, I believe a very useful follow-up to this project would be a rigorous evaluation
of the different platforms that can be used for both functional languages, and for language
with dependent types, extending the benchmarks by Kovacs [31], and standardizing them
as a set of common elaboration tasks, which can then be used to compare the performance
of proof assistants and systems with dependent types.

1Source: https://enso.org/docs/developer/enso/runtime/unbounded-recursion.html
2TruffleSTG, https://github.com/acertain/trufflestg
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Chapter 6

Conclusion

The first part of this thesis presents the concepts necessary for understanding and specify-
ing type systems based on the systems of the λ-cube. I have used these concepts to specify
a small, dependently-typed language. The second part contains an overview of state-of-
the-art algorithms involved in creating an interpreter for a dependently-typed language,
and presents my implementation of such an interpreter in Kotlin.
In the third part of the thesis, I have presented GraalVM, the Truffle language implemen-
tation framework, and the optimization possibilities they provide. I have implemented
a second interpreter for the language using the Truffle framework, also written in Kotlin.
The fourth part contains the compilation of a small set of benchmarks for investigating the
elaboration performance of dependently-typed languages, and uses them to evaluate the
effect of JIT compilation on the performance of the interpreters, and to coarsely compare
their performance with the performance of state-of-the-art languages.
The results are, however, unsatisfactory. The benefits brought by JIT compilation are out-
weighed by the overhead of the implementation on the JVM platform. Its performance
is lacking, compared to platforms like GHCHaskell, or Chez Scheme that are used in other
dependently-typed languages. I believe further investigation would manage to eliminate
most causes of inefficiency, but compared to the initial expectations, such conclusions dis-
prove the entire premise of my thesis.
Overall, despite the negative conclusion, I believe this thesis has fulfilled a large part of
its goals. It presents a concise introduction to the concepts required for implementing
a dependently-typed language, and an overview of the optimization opportunities offered
by Truffle, which can both form the starting point for other projects in this area.
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Appendix A

Language specification

A.1 Syntax

𝑡𝑒𝑟𝑚 ≔ 𝑣 | 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
| 𝑎 𝑏 | 𝑎 {𝑏}
| 𝑎 → 𝑏 | (𝑎 ∶ 𝐴) → 𝑏 | {𝑎 ∶ 𝐴} → 𝑏
| 𝑎 × 𝑏 | (𝑙 ∶ 𝐴) × 𝑏 | 𝑎.𝑙
| let 𝑥 = 𝑣 in 𝑒
| _

𝑣𝑎𝑙𝑢𝑒 ≔ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
| 𝜆𝑥 ∶ 𝐴.𝑏 | Π𝑥 ∶ 𝐴.𝑏
| (𝑎1,⋯, 𝑎𝑛)
| _

𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ≔ 𝑣𝑎𝑟 | 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎1 ...𝑎𝑛 | 𝑛𝑒𝑢𝑡𝑟𝑎𝑙.𝑙𝑛

Figure A.1: Terms and values in Montuno (revisited)
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A.2 Grammar
grammar Montuno;
@header { package montuno; }
file : END* decls+=top? (END+ decls+=top)* END* EOF ;
top : id=IDENT ':' type=term #Decl

| id=binder (':' type=term)? '=' defn=term #Defn
| '{-#' cmd=IDENT (target=term)? '#-}' #Pragma
| term #Expr
;

term : lambda (',' tuple+=term)* ;
lambda

: LAMBDA (rands+=lamBind)+ '.' body=lambda #Lam
| 'let' IDENT ':' type=term '=' defn=term 'in' body=lambda #LetType
| 'let' IDENT '=' defn=term 'in' body=lambda #Let
| (spine+=piBinder)+ ARROW body=lambda #Pi
| sigma ARROW body=lambda #Fun
| sigma #LamTerm
;

sigma
: '(' binder ':' type=term ')' TIMES body=term #SgNamed
| type=app TIMES body=term #SgAnon
| app #SigmaTerm
;

app : proj (args+=arg)* ;
proj: proj '.' IDENT #ProjNamed

| proj '.1' #ProjFst
| proj '.2' #ProjSnd
| atom #ProjTerm
;

arg : '{' (IDENT '=')? term '}' #ArgImpl
| proj #ArgExpl
;

piBinder
: '(' (ids+=binder)+ ':' type=term ')' #PiExpl
| '{' (ids+=binder)+ (':' type=term)? '}' #PiImpl
;

lamBind
: binder #LamExpl
| '{' binder '}' #LamImpl
| '{' IDENT '=' binder '}' #LamName
;

atom: '(' term ')' #Rec
| IDENT #Var
| '_' #Hole
| ('()' | 'Unit' | 'Type') #Star
| NAT #Nat
| '[' IDENT '|' FOREIGN? '|' term ']' #Foreign
;

binder : IDENT #Bind | '_' #Irrel ;
IDENT : [a-zA-Z] [a-zA-Z0-9'_]*;
NAT : [0-9]+;
LAMBDA : '\\' | 'λ';
ARROW : '->' | '→';
TIMES : '×' | '*';
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A.3 Built-in constructs

• Unit : Type

• unit : Unit

• Nat : Type

• zero : Nat

• succ : Nat → Nat

• natElim : {A} → Nat → A → (Nat → A) → A

• Bool : Type

• true : Bool

• false : Bool

• cond : {A} → Bool → A → A → A

• fix : {A} → (A→A) → A

• the : (A) → A → A
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A.4 Pre-terms
package montuno.syntax

typealias Pre = PreTerm
sealed class TopLevel : WithLoc
sealed class PreTerm : WithLoc

data class RDecl(val n: String, val ty: Pre) : TopLevel()
data class RDefn(val n: String, val ty: Pre?, val tm: Pre) : TopLevel()
data class RTerm(val cmd: Pragma, val tm: Pre?) : TopLevel()

data class RVar (val n: String) : Pre()
data class RPair(val lhs: Pre, val rhs: Pre) : Pre()
data class RApp (

val arg: ArgInfo, val rator: Pre, val rand: Pre
) : Pre()
data class RLam (

val arg: ArgInfo, val bind: Binding, val body: Pre
) : Pre()
data class RLet (

val n: String, val type: Pre?, val defn: Pre, val body: Pre
) : Pre()
data class RPi (

val bind: Binding, val icit: Icit, val type: Pre, val body: Pre
) : Pre()
data class RSg (

val bind: Binding, val type: Pre, val body: Pre
) : Pre()
data class RProjF(val body: Pre, val field: String) : Pre()
data class RProj1(val body: Pre) : Pre()
data class RProj2(val body: Pre) : Pre()

data class RU (override val loc: Loc) : Pre()
data class RHole(override val loc: Loc) : Pre()
data class RNat(val n: Int) : Pre()
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