
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FINAL SENTENTIAL FORMS AND
THEIR APPLICATIONS
KONCOVÉ VĚTNÉ FORMY A JEJICH APLIKACE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. TOMÁŠ KOŽÁR
AUTOR PRÁCE

SUPERVISOR prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Master's Thesis Specification

Student: Kožár Tomáš, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Mathematical Methods
Title: Final Sentential Forms and Their Applications
Category: Theoretical Computer Science
Assignment:

1. Study selected topics of formal languages, including grammatical sentential forms.
2. Based upon the supervisor's instructions, introduce final context-free sentential forms and

study them.
3. Based upon the supervisor's suggestion, consider a variety of applications that make use of

final context-free sentential forms, such as linguistic applications. Discuss their advantages
and disadvantages.

4. Based upon the supervisor's recommendation, implement selected applications from item 3.
Compare them with other existing software tools.

5. Summarize the work and discuss its future development.
Recommended literature:

Meduna, A.: Automata and Languages, Springer, London, 2000, ISBN 978-1-85233-074-3
Rozenberg, G. and Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1-3,
Springer, 1997, ISBN 3-540-60649-1

Requirements for the semestral defence:
Items 1 through 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Meduna Alexander, prof. RNDr., CSc.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: October 26, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24245/2021/xkozar02 Page 1/1

Abstract
Context-free grammars are one of the most used formal models in formal language theory.
They have many useful applications, but for many applications, they lack expressive power.
We introduce a final language 𝐹 . When a sentential form of the context-free grammar 𝐺
belongs to the 𝐹 , it becomes a final sentential form. By the erasion of the nonterminals
from the final sentential forms, we receive a language of 𝐺 finalized by 𝐹,𝐿(𝐺,𝐹). We prove
that for each recursively enumerable language 𝐿, there exists context-free grammar 𝐺, such
that 𝐿 = 𝐿(𝐺,𝐹), with 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, where 𝑤𝑅 is a reversal of 𝑤. When
a regular language is used as 𝐹 , no increase in generative power compared to context-free
grammars is achieved. We show multiple applications of the final sentential forms in the
fields of the linguistics and bioinformatics.

Abstrakt
Bezkontextové gramatiky sú jedny z najpoužívanejších formálnych modelov v teórii for-
málnych jazykov. Majú mnoho užitočných použití, no pre mnoho aplikácii nemajú dosta-
točnú vyjadrovaciu silu. Preto zavádzame koncový jazyk 𝐹 . Keď vetná forma bezkon-
textovej gramatiky 𝐺 patrí do jazyka 𝐹 , stáva sa konečnou vetnou formou. Odstránením
neterminálov z konečných vetných foriem získavame jazyk gramatiky 𝐺 ukončený jazykom
𝐹,𝐿(𝐺,𝐹). Dokazujeme, že pre každý rekurzívne vyčísliteľný jazyk existuje jazyk 𝐿(𝐺,𝐹),
kde 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*} a 𝑤𝑅 je obrátené slovo 𝑤. Keď ako 𝐹 použijeme regulárny
jazyk, nedosiahneme žiadne zvýšenie vyjadrovacej sily oproti bezkontextovým gramatikám.
Ukazujeme viacero aplikácii koncových vetných foriem v oblastiach lingvistiky a bioinfor-
matiky.

Keywords
formal grammars, sentential forms, minimal linear grammars, recursively enumerable lan-
guages, Cocke-Younger-Kasami, CYK

Kľúčové slová
formálne gramatiky, vetné formy, minimálne lineárna gramatiky, rekurzívne vyčísliteľné
jazyky, Cocke-Younger-Kasami, CYK

Reference
KOŽÁR, Tomáš. Final Sentential Forms and Their Applications. Brno, 2022. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof.
RNDr. Alexander Meduna, CSc.

Rozšírený abstrakt
Témou tejto práce sú koncové vetné formy bezkontextových gramatík. Bezkontextové

gramatiky predstavujú v obore teórie formálnych jazykov jeden z najpoužívanejších for-
málnych modelov. Aj keď majú bezkontextové gramatiky množstvo zásadných praktických
aplikácii, pre veľké množstvo aplikácii je ich vyjadrovacia sila nedostačujúca. Preto sa v
tejto práci venujeme ukončovaniu vetných foriem. Toto ukončenie nám poskytuje mechaniz-
mus, ktorým dokážeme zmeniť spôsob konštrukcie výsledného jazyka. Koncové vetné formy
sú také vetné formy, ktoré dokážeme po transformácii priradiť do koncového jazyka 𝐹 . Vy-
jadrovacia sila koncových vetných foriem záleží na výbere jazyka 𝐹 . V práci ukazujeme,
že ak je 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, môžeme vyjadriť ľubovoľný rekurzívne vyčísliteľný
jazyk. Ak ako 𝐹 zvolíme regulárny jazyk, vyjadrovacia sila zostane oproti vyjadrovacej sile
bezkontextových gramatík nezmenená.

Na začiatku práce definujeme základné pojmy ako je napríklad symbol, slovo a jazyk.
Definované pojmy predstavujú fundamentálny základ teórie formálnych jazykov. Ďalej
predstavujeme viaceré formálne modely. Konečné automaty, ktoré reprezentujú formálne
jazyky pomocou prijímania jednotlivých slov. Ďalej viacero verzií gramatík, ktoré formálne
jazyky reprezentujú pomocou generovania jednotlivých slov. Predstavené modely je možné
medzi sebou porovnávať na základe ich vyjadrovacej sily. Ako základ pre porovnanie slúži
Chomského hierarchia, no sú zavedené aj ďalšie porovnania, ktoré z tejto hierarchie nie sú
jasné.

Samotným jadrom práce sú koncové vetné formy. Tie definujeme pomocou množiny
𝑊 , koncového jazyka 𝐹 , slabej identity 𝜔 a bezkontextovej gramatiky 𝐺. Množina 𝑊
je podmnožinou všetkých terminálov a neterminálov gramatiky 𝐺. Koncový jazyk 𝐹 je
definovaný práve nad množinou 𝑊 . Slabá identita 𝜔 zo vstupného slova vymaže všetky
symboly, ktoré nepatria do definovanej množiny. Bezkontextová gramatika 𝐺 slúži na gen-
erovanie vetných foriem. Na to, aby slovo generované bezkontextovou gramatikou patrilo
do výsledného jazyka, musí obsahovať len terminálne symboly. Vetné formy sú ľubovoľné
slová, ktoré bezkontextová gramatika môže vygenerovať. Môžu teda obsahovať terminály aj
neterminály. Aby sa vetná forma gramatiky 𝐺 stala koncovou vetnou formou, aplikujeme
na ňu slabú identitu 𝜔 podľa množiny 𝑊 a skúsime ju priradiť do jazyka 𝐹 . Ak po ap-
likácii slabej identity vetná forma patrí do 𝐹 , jedná sa o koncovú vetnú formu. Pre získanie
výsledného jazyka 𝐿(𝐺,𝐹) vymažeme z koncových vetných foriem všetky neterminály.

V práci skúmame dva druhy konečného jazyka 𝐹 . Ako prvé dokazujeme, že na to, aby
jazyk 𝐿(𝐺,𝐹) mohol vyjadriť ľubovoľný rekurzívne vyčísliteľný jazyk, stačí nám práve je-
den koncový jazyk 𝐹 , a to 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}. Na druhej strane, ak ako 𝐹 zvolíme
regulárny jazyk, nevedie to k žiadnej zmene vyjadrovacej sily oproti bezkontextovým gra-
matikám. Oba tieto tvrdenia sú v práci rigorózne dokázané.

Pred tým než ukážeme aplikácie koncových vetných foriem, musíme definovať spô-
sob, ako zistiť či je dané slovo súčasťou jazyka 𝐿(𝐺,𝐹). Tento problém sa rieši pomo-
cou syntaktickej analýzy. Ako základ pre koncové vetné formy využívame bezkontextové
gramatiky. Preto aj pri syntaktickej analýze ako základ využívame algoritmus pre syntak-
tickú analýzu bezkontextových gramatík. Algoritmus, ktorý sme vybrali sa nazýva Cocke-
Younger-Kasami (ďalej len CYK). Tento algoritmus požaduje vstupnú gramatiku v Chom-
ského normálovej forme. To znamená, že každé prepisovacie pravidlo môže mať na pravej
strane buď jeden terminál alebo dva neterminály. Najväčším problémom pri syntaktickej
analýze koncových vetných foriem je zmazanie neterminálov z koncových vetných foriem
pri vytváraní jazyka 𝐿(𝐺,𝐹). Algoritmus CYK upravujeme tak, aby zvládol rekonštruovať
pôvodnú vetnú formu. Keďže pôvodná vetná forma musí byť aj koncovou vetnou formou,

pre každý symbol uchovávame históriu redukcií, na základe ktorej zrekonštruujeme pôvodnú
vetnú formu a testujeme, či je aj koncová.

Algoritmus CYK požaduje vstupnú gramatiku v Chomského vetnej forme. My však
zavádzame ďalšie obmedzenia, aby bola syntaktická analýza uskutočniteľná. Žiaden neter-
minál z 𝑊 sa nesmie vyskytovať na ľavej strane prepisovacieho pravidla a pravá strana
prepisovacieho pravidla nesmie obsahovať len neterminály z 𝑊 . Tieto obmedzenia sú nutné,
ináč by sme mohli rekonštruovať vetné formy donekonečna.

Popísaná syntaktická analýza je implementovaná vo forme programu za účelom de-
monštrácie koncových vetných foriem na konkrétnych aplikáciách. Tento program je im-
plementovaný v jazyku Python. Užívateľ vo vstupnom súbore definuje vstupnú bezkon-
textovú gramatiku a množinu 𝑊 , z ktorej sa odvodí jazyk 𝐹 . Algoritmus CYK vyžaduje
gramatiku v Chomského normálovej forme. Pre užívateľa by bolo náročné a nepraktické
tvoriť gramatiku v tejto normálovej forme. Preto je súčasťou implementácie algoritmus
na transformáciu bezkontextovej gramatiky do Chomského normálovej formy. Následne je
implementovaná modifikácia algoritmu CYK pre koncové vetné formy.

V práci uvádzame niekoľko aplikácii koncových vetných foriem. Pri aplikáciách sa zau-
jímame o problémy, ktoré nie je možné reprezentovať pomocou bezkontextových gramatík.
Prvou aplikáciou je jazyk, ktorý korešponduje k jazyku 𝐿 = {𝑤𝑤 |𝑤 ∈ Σ*}, kde Σ je
abecedou. Tento jazyk je jedným z klasických príkladov jazyka, ktorý nie je možné vyjadriť
pomocou bezkontextových gramatík. Ďalšou aplikáciou je jazyk, ktorý obsahuje gramaticky
správne a taktiež pravdivé anglické vety o prarodičoch. Tento jazyk koresponduje s jazykom
{𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 ≥ 0}. Ďalšou aplikáciou je jazyk, ktorý obsahuje také dvojice binárnych čísel
s rovnakým počtom bitov, že hodnota ľavého čísla je väčšia ako toho pravého. Posledná
aplikácia je z oblasti bioinformatiky. Jedná sa o zjednodušenú reprezentáciu sekundárnej
štruktúry, anglicky nazývanej pseudoknot.

Final Sentential Forms and Their Applications

Declaration
I hereby declare that this master’s thesis was prepared as an original work by the author
under the supervision of prof. RNDr. Alexander Meduna, CSc. The supplementary infor-
mation about application of formal languages in bioinformatics was provided by Ing. Ivana
Burgetová, Ph.D. I have listed all the literary sources, publications and other sources, which
were used during the preparation of this thesis.

. .
Tomáš Kožár
May 17, 2022

Acknowledgements
Chcel by som sa hlavne poďakovať vedúcemu práce za jeho odborné konzultácie a rady,
bez ktorých by táto práca nevznikla. Ďalej by som sa chcel poďakovať svojej mame, za
jej snahu, výchovu a trpezlivosť. V neposlednej rade by som chcel poďakovať všetkým
kamarátom, ktorý mi pomáhali vyhýbať sa písaniu tejto práce.

Contents

1 Introduction 2

2 Languages, automata and grammars 4
2.1 Symbols, alphabets, and words . 4
2.2 Languages . 5
2.3 Finite automata . 6
2.4 Grammars . 8
2.5 Properties of context-free grammars . 12

2.5.1 Derivation trees . 13
2.5.2 Chomsky normal form . 14

2.6 Language families . 16

3 Final Sentential Forms 18
3.1 Palindromial finalizing language . 19
3.2 Regular finalizing language . 23
3.3 Results . 26

4 Syntax analysis 27
4.1 Top-down syntax analysis . 28
4.2 Bottom-up syntax analysis . 28
4.3 Algorithm Cocke-Younger-Kasami . 28
4.4 Syntax analysis of final sentential forms . 30

4.4.1 Modification of algorithm Cocke-Younger-Kasami 32

5 Implementation and applications 35
5.1 Implementation . 35

5.1.1 Command-line interface . 36
5.1.2 Input file . 37
5.1.3 Input file reader . 38
5.1.4 Transformation of context-free grammar to Chomsky normal form . 39
5.1.5 Syntax analysis . 39
5.1.6 Comparison to other software . 40

5.2 Applications . 40

6 Conclusion 44

Bibliography 47

1

Chapter 1

Introduction

Theoretical informatics represent a huge part of the information technology. Specifically,
the field of the formal language theory. Formal language theory studies mainly properties,
complexity, and the means of representation of the formal languages. Informally, formal
languages are sets consisting of words—also called strings. To represent formal languages,
there are two major methods. Automata and grammars. Automata are used to represent
computation and to accept formal languages. On the other hand, grammars act only as
language generators. There are many different versions of automata and grammars. These
versions differ in the mechanism they use, and in the restrictions that are used to constrain
them. The main property of mentioned formal models is the language that they represent.
We can classify languages based on their complexity. For example, take two languages.
The first one consists of words consisting of odd numbers of 𝑥s. The second one consists of
words, such that each word is triple of some input, some algorithm, and the output of said
algorithm for the mentioned input. Notice that the first language is trivial compared to the
second one. For the first language, we need to use a formal model that is able to somehow
count an odd number of occurrences of the symbol 𝑥. For the second one, we need a formal
model that is able to produce an output of an algorithm for any correct input.

The set of all the languages that we can represent by some formal model is called
language family. Since the language families are sets, we can compare them to each other
by a subset or superset relation. Based on the subsets of the language families, we can say
that some formal models are more powerful than others. Intuitively, the more powerful the
language family we want to represent, the more complex the formal model we need. Apart
from making the model itself more complex, we can combine multiple weaker models to
raise their generative power.

The most important language family is the family of recursively enumerable languages.
This language family represents all of the problems, that we are able to solve algorithmically.
Meaning that we are guaranteed to get the result. In this thesis, we prove, that by combining
the context-free grammars and a single minimal-linear language, we are able to represent
the whole recursively enumerable language family.

The theoretical informatics and formal language theory rely on mathematical notation
and formal definitions. The basic definitions are formal, but they often vary slightly across
different sources. Therefore, Chapter 2 is dedicated to the basic definitions that are needed
throughout this thesis. At first, we define a symbol, an alphabet, a word, and a language.
These definitions are absolutely crucial in the formal language theory. Next, we describe
the formal models that we use to represent the languages in this thesis. The finite automata
work as language acceptors, meaning that they get a word as an input and they decide,

2

whether the input word belongs to the language that they represent. The grammars are
language generators. They work by iterative application of their rules that rewrite their
left-side to their right-side, in order to generate words. The language of some grammar is a
set of all the words it generates. In this thesis, context-free grammars are of great interest.
Therefore, we describe their properties in greater detail.

In this thesis, we introduce the notion of final sentential forms, which are defined in
Chapter 3. Let 𝑊 be a set of symbols and 𝐹 be a final language. We use context-free
grammar 𝐺 to generate the sentential forms. Context-free grammar uses nonterminal and
terminal symbols during the derivation. The nonterminal cannot occur in the words of the
generated language. Only terminals. The sentential forms are any words that 𝐺 generates,
even ones with nonterminals. To obtain final sentential forms, we take the individual
sentential forms and erase all the symbols that do not belong to 𝑊 . If the resulting word
belongs to the 𝐹 , the original sentential form is a final sentential form. To obtain the
resulting language 𝐿(𝐺,𝐹) of the final sentential forms, we erase all the nonterminals from
the final sentential forms. The power of the language family of 𝐿(𝐺,𝐹) depends on the
selection of the finalizing language 𝐹 . We have proven that if 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*},
we achieve the recursively enumerable language family. On the other hand, if we choose
regular language as 𝐹 , the resulting power is the same as the power of the context-free
grammars. Both of these claims are rigorously proven.

The most important property of the language models is the language they represent.
For the language, the most important problem is the membership problem. Does the word
we provide belong to the given language? Chapter 4 describes the syntax analysis which
is used to decide the membership problem. For context-free grammars, we describe the
algorithm Cocke-Younger-Kasami (CYK for short). This algorithm works with the context-
free grammars in Chomsky normal form, but any context-free grammar can be converted
to such grammar. The reason we selected this algorithm is, that it can be modified for
other grammars as well. We introduce a modification of the CYK algorithm, such that the
resulting algorithm is able to perform syntax analysis of the final sentential forms. The
biggest challenge of such modification is the erasion of the nonterminals from the final
sentential forms. We introduce restrictions on the underlying context-free grammars in
order to simplify the syntax analysis itself.

As part of this thesis, we implement the described modification of the CYK algorithm
for the final sentential forms. The purpose of this implementation is to demonstrate the
final sentential forms on the practical applications. The first part of Chapter 5 describes the
implementation of syntax analysis of the final sentential forms. For the syntax analysis, we
need to provide the context-free grammar, set 𝑊 , and the input word. The input grammar
and the set 𝑊 are specified in a JSON file. The JSON filename and the input word are
provided through a command-line interface. The algorithm CYK that is used requires the
input context-free grammar to be in Chomsky normal form. Therefore, the transformation
of the context-free grammar to Chomsky normal form is also implemented.

In the second part of Chapter 5, we introduce the applications of the final sentential
forms. For these applications, we are interested only in non-context-free languages. The
first application corresponds to the formal language 𝐿1 = {𝑤𝑤 |𝑤 is a word }. The second
one corresponds to the language 𝐿2 = {𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 ≥ 0}. The third application contains
pairs of the binary numbers with the same number of bits, where the value of the left
binary number is greater than the value of the right binary number. The last application
is from the field of bioinformatics and it represents the secondary structure of the RNA.
None of these languages can be represented by the context-free grammar.

3

Chapter 2

Languages, automata and
grammars

Before the actual subject of this thesis can be presented, we need to define basic notions of
formal language theory. The formal language theory studies formal languages, their proper-
ties, and the ways that these languages can be formally represented. Natural languages are
complex, with many rules regarding the form of the individual words, sentence structure,
and so on. However, there are many exceptions to these rules. Sometimes, even linguists
cannot agree on some disputes regarding natural languages. On the contrary, the formal
languages are exact and are represented by the formal models. The definitions presented
in this chapter are crucial to understand the topic of final sentential forms. It is assumed
that the reader is familiar with basic set theory, such as sets, subsets, inclusions, and set
operators.

All of the definitions, if not explicitly stated otherwise, are taken from [4].

2.1 Symbols, alphabets, and words
The smallest unit in formal language theory is a symbol. We can think of symbols as letters
in natural languages. The alphabets represent a domain of symbols, that can be used to
construct words. As in natural languages, there is no single alphabet. Different languages
can be made of different alphabets.

Definition 2.1. An alphabet is a finite, nonempty set of elements, which are called
symbols.

Consequently, the words over the alphabet can be created as sequences of symbols from
said alphabet. The special case of the word, an empty word, is denoted by 𝜀 and contains
no symbols.

Definition 2.2. Let Σ be an alphabet. A word is recursively defined as

• 𝜀 is the word over Σ and

• if 𝑥 is the word over Σ and 𝑎 ∈ Σ, then 𝑎𝑥 is the word over Σ

A string is synonymous with a word and can be used interchangeably. In this thesis,
the term word is used. Since the words are sequences of symbols, we can define their length.
The length of the word is a number of all symbols in the word.

4

Definition 2.3. Let 𝑥 be a word over an alphabet Σ. A length of 𝑥 denoted as |𝑥| is
defined as

• if 𝑥 = 𝜀, then |𝑥| = 0

• if 𝑥 = 𝑎1, ..., 𝑎𝑛, for some 𝑛 ≥ 1, where 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 𝑛, then |𝑥| = 𝑛.

Many operations can be performed on the words. Some of those operations are used
in this thesis and defined below. Specifically, concatenation, reversal, prefix and suffix of
words.

Definition 2.4. Let 𝑥 and 𝑦 be words over an alphabet Σ. Then, 𝑥𝑦 is the concatenation
of 𝑥 and 𝑦.

The operation of concatenation is denoted by the operator ·, but is usually omitted.

Definition 2.5. Let 𝑥 be a word over an alphabet, Σ. The reversal of 𝑥, 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥), is
defined as

• if 𝑥 = 𝜀, then 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥) = 𝜀

• if 𝑥 = 𝑎1, ..., 𝑎𝑛, for some 𝑛 ≥ 1, where 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 𝑛, then 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥) = 𝑎𝑛...𝑎1.

Reversal of 𝑥, 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥), can also be denoted as 𝑥𝑅.

Definition 2.6. Let 𝑥 and 𝑦 be words over an alphabet Σ. Then, 𝑥 is a prefix of 𝑦 if
there exists a word 𝑧 ∈ Σ*, such that 𝑥𝑧 = 𝑦.

For word 𝑦, 𝑝𝑟𝑒𝑓𝑖𝑥(𝑦, 𝑖) denotes prefix of 𝑦 of length 𝑖 for all 0 ≤ 𝑖 ≤ |𝑦|.

Definition 2.7. Let 𝑥 and 𝑦 be words over an alphabet Σ. Then, 𝑥 is a suffix of 𝑦 if there
exists a word 𝑧 ∈ Σ*, such that 𝑧𝑥 = 𝑦.

For word 𝑦, 𝑠𝑢𝑓𝑓𝑖𝑥(𝑦, 𝑖) denotes suffix of 𝑦 of length 𝑖 for all 0 ≤ 𝑖 ≤ |𝑦|.

Definition 2.8. Let 𝑥 and 𝑦 be two words over an alphabet Σ. Then, 𝑥 is a subword of
𝑦 if there exist two words, 𝑧, 𝑧′ , over Σ so 𝑧𝑥𝑧′ = 𝑦.

2.2 Languages
Now let us take the concept of the words and define languages. Informally speaking, a lan-
guage is any set of words. Languages can be finite or infinite. In format language theory, we
are usually interested in infinite languages. Languages also differ in their complexity. Con-
sider languages 𝐿1 = {𝑥 |𝑥 is a prime number} and 𝐿2 = {𝑤 |𝑤 is any word}. Intuitively,
language 𝐿1 is more complex than language 𝐿2. To represent language 𝐿1, we need a formal
model that is able to decide which numbers are prime. On the other hand, language 𝐿2 is
trivial, since any word belongs to it. The more complex languages we want to represent,
the more complex formal models need to be used. The generative power (power for short)
of a formal model represents the complexity of the languages it can represent in comparison
to the other models. Models may have same power, meaning they are equivalent. Some
models are more/less powerful than others. Some models may have mutually incomparable
power.

5

Let us consider an alphabet Σ. Let Σ* denote the set of all words over Σ and set
Σ+ = Σ* − {𝜀}. Notice that Σ+ is the set of all nonempty words over Σ. Now, the
definition of the language can be formalized.

Definition 2.9. Let Σ be an alphabet, and let 𝐿 ⊆ Σ*. Then, 𝐿 is a language over Σ.

By this definition, ∅ and {𝜀} are languages over any alphabet. However, notice that
∅ ≠ {𝜀}. As languages are defined as sets, notions concerning sets also apply to languages.

Definition 2.10. A cardinality of a language 𝐿, 𝑐𝑎𝑟𝑑(𝐿) denotes the number of words
that 𝐿 contains.

For example, 𝑐𝑎𝑟𝑑(∅) = 0 and 𝑐𝑎𝑟𝑑({𝜀}) = 1, since 𝜀 is also a word. Therefore, men-
tioned non equivalence ∅ ≠ {𝜀} holds true. A special case of cardinality is infinity. Based
on this, the languages can be divided into two groups. Finite and infinite languages.

Definition 2.11. Let 𝐿 be a language. 𝐿 is finite if 𝑐𝑎𝑟𝑑(𝐿) = 𝑛 for some 𝑛 ≥ 0; otherwise,
𝐿 is infinite.

Let us consider operations of union, intersection, and difference of sets. Since the
languages are defined as sets, mentioned operations are straightforward for languages. For
two languages 𝐿1 and 𝐿2, these operations are defined as

𝐿1 ∪ 𝐿2 = {𝑥 |𝑥 ∈ 𝐿1 or 𝑥 ∈ 𝐿2}
𝐿1 ∩ 𝐿2 = {𝑥 |𝑥 ∈ 𝐿1 and 𝑥 ∈ 𝐿2}
𝐿1 − 𝐿2 = {𝑥 |𝑥 ∈ 𝐿1 and 𝑥 ̸∈ 𝐿2}

2.3 Finite automata
We have introduced the notion of the symbols, alphabets, words, and languages. However,
until now, we described the languages as mostly mathematical concept described by the sets.
The theory of formal languages studies many formal models that are used to describe the
languages. The main groups of these models are the language acceptors and the language
generators. Automata, in our case the finite automata, are language acceptors. Each finite
automaton consists of an input tape and a set of states. The input tape contains a word.
Based on the symbols read from the input tape, the finite automaton can transition (move)
between its states. The input tape is read from left to right and finite automaton can
read each symbol on the tape only once. When the finite automaton reads the whole tape
and its current state is a so-called final state, the input word is accepted. Otherwise, it is
rejected. Using described mechanism, the finite automaton can either accept or reject the
input word. There are many more different types of automata, that work in different ways.
However, in this thesis, only finite automata are of interest.

Definition 2.12. A finite automaton is quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹)

where

• 𝑄 is a finite set of states

6

• Σ is an input alphabet such that Σ ∩𝑄 = ∅

• 𝑅 ⊆ 𝑄(Σ ∪ 𝜀)×𝑄 is a relation

• 𝑠 ∈ 𝑄 is a start state

• 𝐹 ⊆ 𝑄 is a set of final states.

Members of 𝑅 are called computational rules, or simply, rules. 𝑅 is referred to as a
finite set of rules. For any rule (𝑝𝑎, 𝑞) ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜀 we write 𝑝𝑎 → 𝑞.

As mentioned earlier, a finite automaton transitions between its states. To describe the
current configuration of the finite automaton, we need to know an unread part of the input
tape and its current state. A word that combines the current state and the unread input
is called configuration of the finite automaton.

Definition 2.13. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a finite automaton. A configuration of 𝑀
is a word 𝜒 satisfying 𝜒 ∈ 𝑄Σ*.

Using this notion, we can now describe a move of a finite automaton. Let 𝑝𝑎 → 𝑞 ∈ 𝑅
be any computational rule of finite automaton. Define injection 𝑙ℎ𝑠 from 𝑅 to 𝑄Σ* as
𝑙ℎ𝑠(𝑝𝑎 → 𝑞) = 𝑝𝑎 and injection 𝑟ℎ𝑠 from 𝑅 to 𝑄 as 𝑟ℎ𝑠(𝑝𝑎 → 𝑞) = 𝑞.

Definition 2.14. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a finite automaton. If 𝑙ℎ𝑠(𝑟)𝑦 is a configura-
tion of 𝑀 , where 𝑟 ∈ 𝑅, 𝑦 ∈ Σ*, then 𝑀 makes a move from 𝑙ℎ𝑠(𝑟)𝑦 to 𝑟ℎ𝑠(𝑟)𝑦 according
to 𝑟 and is denoted as 𝑙ℎ𝑠(𝑟)𝑦 ⊢ 𝑟ℎ𝑠(𝑟)𝑦 [𝑟], or simply 𝑙ℎ𝑠(𝑟)𝑦 ⊢ 𝑟ℎ𝑠(𝑟)𝑦.

The following definition extends a single move to the sequence of moves.

Definition 2.15. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a finite automata.

1. Let 𝜒 be any configuration of 𝑀 . 𝑀 makes zero moves from 𝜒 to 𝜒 according to 𝜀,
written as 𝜒 ⊢0 𝜒 [𝜀].

2. Let there exist a sequence of configurations 𝜒0, ..., 𝜒𝑛 for some 𝑛 ≥ 1 such that 𝜒𝑖−1 ⊢
𝜒𝑖 [𝑟𝑖], where 𝑟𝑖 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛; that is 𝜒0 ⊢ 𝜒1 [𝑟1] ⊢ 𝜒2 [𝑟2] ⊢ ... ⊢ 𝜒𝑛 [𝑟𝑛]. Then,
𝑀 makes 𝑛 moves from 𝜒0 to 𝜒𝑛 according to 𝑟1...𝑟𝑛 written as 𝜒0 ⊢𝑛 𝜒𝑛 [𝑟1...𝑟𝑛].

Let 𝜒 and 𝜒′ be two configurations of 𝑀 .

3. If there exists 𝑛 ≥ 1 so 𝜒 ⊢𝑛 𝜒′ [𝜌] in 𝑀 , then 𝜒 ⊢+ 𝜒′ [𝜌].

4. If there exists 𝑛 ≥ 0 so 𝜒 ⊢𝑛 𝜒′ [𝜌] in 𝑀 , then 𝜒 ⊢* 𝜒′ [𝜌].

Using defined notions of sequences of moves, words accepted by a finite automaton can
be defined. By extending this definition, a language accepted by the finite automaton is
defined.

Definition 2.16. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a finite automaton and 𝑤 ∈ Σ*. If there
exists an accepting computation of form 𝑠𝑤 ⊢* 𝑓 , where 𝑓 ∈ 𝐹 , then 𝑀 accepts 𝑤. The
language accepted by 𝑀 , denoted by 𝐿(𝑀), is defined as

𝐿(𝑀) = {𝑤 |𝑤 ∈ Σ* and 𝑠𝑤 ⊢* 𝑓, 𝑓 ∈ 𝐹}

7

A finite automaton defined in Definition 2.12 can have two potentially unwanted prop-
erties. It can contain so-called 𝜀-moves that do not read any symbol and it can work in
nondeterministic way.

Definition 2.17. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a finite automaton. 𝑀 is an 𝜀-free finite
automaton if for all 𝑟 ∈ 𝑅, 𝑙ℎ𝑠(𝑟) ∈ 𝑄Σ.

Any finite automaton can be converted to an equivalent 𝜀-free finite automaton. Mean-
ing that both automata accept the same language. An algorithm for this conversion can be
found in [4] and is not discussed in this thesis.

Definition 2.18. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be an 𝜀-free finite automaton such that for all
𝑟, 𝑟′ ∈ 𝑅, 𝑟 ̸= 𝑟′ implies 𝑙ℎ𝑠(𝑟) ̸= 𝑙ℎ𝑠(𝑟′). Then, 𝑀 is a deterministic finite automaton
(DFA for short).

A finite automaton that does not fulfill the property of DFA is called nondeterministic
finite automaton (NFA for short). Similarly to 𝜀-free finite automaton, there exists an
algorithm that converts any 𝜀-free finite automaton to an equivalent DFA. Therefore, for
every NFA there exists an equivalent DFA. All the algorithms for conversions can be found
in [4].

2.4 Grammars
Grammars are formal models that represent language generators and work by iterative
rewriting of the their sentential forms. Grammar usually starts with a single nonterminal—
start symbol. Then, grammar applies its rules to rewrite a left-side to a right-side of said rule.
By repetition of the application of the rules, grammar generates the sentential forms. When
the generated sentential form contains only terminals, it is considered to be a word and
belongs to the language generated by said grammar. In this way, the grammars generates
individual words of their languages.

Definition 2.19. A unrestricted grammar is a quadruple 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆), where

• 𝑉 is a total alphabet;

• 𝑇 is an alphabet of terminals such that 𝑁 ∩ 𝑇 = ∅;

• 𝑃 ⊆ 𝑉 + × 𝑉 * is a finite relation;

• 𝑆 ∈ 𝑉 − 𝑇 is a start symbol.

Set 𝑁 = 𝑉 − 𝑇 . 𝑁 is an alphabet of nonterminals such that 𝑁 ∩ 𝑇 = ∅. In some
definitions, the quadruple 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) is used. Members of 𝑃 are called productions,
rewriting rules or rules for short. Instead of (𝑢, 𝑣) ∈ 𝑃, 𝑢 ∈ 𝑉 +, 𝑣 ∈ 𝑉 * we write 𝑢 → 𝑣.
For brevity, we often denote 𝑢 → 𝑣 ∈ 𝑃 by a unique label 𝑝 as 𝑝 : 𝑢 → 𝑣 and we use 𝑝
and 𝑢 → 𝑣 interchangeably. Define the injection 𝑙ℎ𝑠 from 𝑃 to 𝑉 + as 𝑙ℎ𝑠(𝑢 → 𝑣) = 𝑢 and
injection 𝑟ℎ𝑠 from 𝑃 to 𝑉 * as 𝑙ℎ𝑠(𝑢 → 𝑣) = 𝑣.

Since grammars are language generators, they contain a mechanism that allows them to
generate words of a language. An unrestricted grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) uses its produc-
tions to generate individual words. Consider word 𝑥𝑢𝑦, where 𝑥, 𝑦 ∈ 𝑉 * and a production
𝑝 : 𝑢 → 𝑣 ∈ 𝑃 . By using 𝑝, 𝐺 directly derives 𝑥𝑣𝑦 from 𝑥𝑢𝑦.

8

Definition 2.20. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be an unrestricted grammar, 𝑝 ∈ 𝑃 , and 𝑥, 𝑦 ∈ 𝑉 *.
Then, 𝑥𝑙ℎ𝑠(𝑝)𝑦 directly derives 𝑥𝑟ℎ𝑠(𝑝)𝑦 according to 𝑝 in 𝐺; symbolically 𝑥𝑙ℎ𝑠(𝑝)𝑦 ⇒
𝑥𝑟ℎ𝑠(𝑝)𝑦 [𝑝], where [𝑝] can be omitted.

The following definition generalizes a direct derivation to a sequence of 𝑛 derivation
steps for 𝑛 ≥ 0.

Definition 2.21. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be an unrestricted grammar.

1. For any 𝑢 ∈ 𝑉 *, 𝐺 makes a zero-step derivation from 𝑢 to 𝑢 according to 𝜀, which
is written as 𝑢 ⇒0 𝑢 [𝜀].

2. Let 𝑢0, ..., 𝑢𝑛 ∈ 𝑉 *, for some 𝑛 ≥ 1, such that 𝑢𝑖−1 ⇒ 𝑢𝑖 [𝑝𝑖], where 𝑝𝑖 ∈ 𝑃 , for
𝑖 = 1, ..., 𝑛; that is, 𝑢0 ⇒ 𝑢1 [𝑝1] ⇒ 𝑢2 [𝑝2] ⇒ ... ⇒ 𝑢𝑛 [𝑝𝑛]. Then 𝐺 makes an 𝑛-step
derivation from 𝑢0 to 𝑢𝑛 according to 𝑝1...𝑝𝑛, written as 𝑢0 ⇒𝑛 𝑢𝑛 [𝑝1...𝑝𝑛].

3. If there exists 𝑛 ≥ 1 so 𝑣 ⇒𝑛 𝑤 [𝜋] in 𝐺, then 𝑣 properly derives 𝑤 according to 𝜋
in 𝐺 written as 𝑣 ⇒+ 𝑤 [𝜋].

4. If there exists 𝑛 ≥ 0 so 𝑣 ⇒𝑛 𝑤 [𝜋] in 𝐺, then 𝑣 derives 𝑤 according to 𝜋 in 𝐺
written as 𝑣 ⇒* 𝑤 [𝜋].

Derivations are often written without specifying productions [𝜋]. Now that notion
of derivations is defined, the sentential form, a sentence, and a language generated by a
unrestricted grammar can be defined.

Definition 2.22. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a unrestricted grammar. If 𝑆 ⇒* 𝑤 in 𝐺,
then 𝑤 is a sentential form of 𝐺. Set of all sentential forms generated by 𝐺 is defined
as 𝜑(𝐺) = {𝑤 ∈ 𝑉 * |𝑆 ⇒* 𝑤}. A sentential form 𝑤, such that 𝑤 ∈ 𝑇 * is a sentence
generated by 𝐺. The language generated by 𝐺, 𝐿(𝐺) is the set of all sentences that 𝐺
generates; formally,

𝐿(𝐺) = {𝑤 ∈ 𝑇 |𝑆 ⇒* 𝑤}

Restricted grammars

Unrestricted grammars represent the most general and most powerful grammars due to no
restriction of the left-side of the rules. However, these grammars are not practical since
working with such rules is difficult. As a result, more types of grammar are defined by the
restrictions of the left-hand side of the rules. Sometimes, even the right-sides of the rules
are restricted.

A context-sensitive grammar can rewrite only a single nonterminals, but it can select
these nonterminals based on the surrounding symbols. These surrounding symbols are
considered to be a context. A context-free grammar (CFG for short) can rewrite only single
nonterminals, but these nonterminals cannot be selected based on the context. Otherwise,
the mechanics of these grammars are identical to the unrestricted grammars.

Definition 2.23. A unrestricted grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) is a context-sensitive gram-
mar if all rules 𝛼𝑢𝛽 → 𝛼𝑣𝛽 ∈ 𝑃 satisfy 𝑢 ∈ 𝑉 − 𝑇, 𝛼, 𝛽 ∈ 𝑉 * and 𝑣 ∈ 𝑉 +. In addition 𝑃
may contain the production 𝑆 → 𝜀 and in this case 𝑆 does not occur on the right side of
any production of 𝑃 .

9

Definition 2.24. A unrestricted grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) is a context-free grammar if
all rules 𝑢 → 𝑣 ∈ 𝑃 satisfy 𝑢 ∈ 𝑉 − 𝑇, 𝑣 ∈ 𝑉 *.

Definition 2.25. A context-free grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) is a regular grammar if all
rules 𝑢 → 𝑣 ∈ 𝑃 satisfy 𝑢 ∈ 𝑉 − 𝑇, 𝑣 ∈ 𝑇 ((𝑉 − 𝑇) ∪ {𝜀}).

Definition 2.26. A context-free grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) is linear if no more than one
nonterminal appears of the right-side of the rules from 𝑃 . Formally, 𝑃 ⊆ (𝑉 −𝑇)×𝑇 *(𝑉 −
𝑇)𝑇 * ∪ 𝑇 *.

Definition 2.27. A linear grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) is a minimal linear if 𝑉 = 𝑇 ∪ {𝑆}
and 𝑆 → # ∈ 𝑃 , with # ∈ 𝑇 , is the only production with no nonterminal on the right
side, and it is assumed that # does not occur in any other production. Formally, 𝑃 ⊆
{𝑆} × (𝑇 *{𝑆}𝑇 * ∪#).

The definition of the context-sensitive grammar is taken from [8]. The definitions of the
linear and minimal grammars are taken from [9].

Definition 2.28. In this thesis, a minimal linear grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) is called a
palindromial grammar if |𝑃 | ≥ 2, and every rule of the form 𝑆 → 𝑥𝑆𝑦, where 𝑥, 𝑦 ∈ 𝑇
satisfies 𝑥 = 𝑦.

For instance, 𝐻 = ({𝑆, 0, 1,#}, {0, 1,#}, {𝑆 → 0𝑆0, 𝑆 → 1𝑆1, 𝑆 → #}, 𝑆) is a palin-
dromial grammar.

Notice that all of the grammars defined in Definitions 2.23 to 2.28 are more restricted
versions of the unrestricted grammars. Therefore, these grammars are also unrestricted
grammars. Due to this property, all of the notions defined for the unrestricted grammars
apply to these grammars as well.

Queue grammars

The unrestricted grammars work by rewriting parts of the sentential forms directly in their
position. However, we can modify the rewriting mechanism by which sentential forms are
generated to obtain new kinds of grammars. One such example are the queue grammars.
The queue grammars introduce a concept of states into the derivation. Similarly to the finite
automata. A derived word consists of a sentential form over a total alphabet suffixed by
a symbol representing a state in the queue grammar. The queue grammar always rewrites
the leftmost symbol of the sentential form to some sequence of symbols that is appended
after the sentential form. In front of the state symbol. This principle can be interpreted as
a queue, hence the name. The queue grammar is formally defined as follows.

Definition 2.29. A queue grammar (see [2]) is a sextuple, 𝑄 = (𝑉, 𝑇, 𝑈,𝐷, 𝑠, 𝑃), where

• 𝑉 is an total alphabet of symbols;

• 𝑇 is an alphabet of terminals such that 𝑇 ⊆ 𝑉 ;

• 𝑈 is an alphabet of states;

• 𝐷 is an alphabet of final states such that 𝐷 ⊆ 𝑈 ;

• 𝑠 ∈ (𝑉 − 𝑇)(𝑈 −𝐷);

10

• 𝑃 ⊆ (𝑉 × (𝑈 −𝐷))× (𝑉 *×𝑈) is a finite relation such that for for every 𝑎 ∈ 𝑉 , there
exists an element (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑃 .

Compared to the unrestricted grammars, queue grammars have more complex rules.
Each rule is in the form (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑃 , where 𝑎 ∈ 𝑉, 𝑏 ∈ 𝑈 − 𝐷, 𝑧 ∈ 𝑉 *, 𝑐 ∈ 𝑈 . The
semantics of these rules are following. If the derivation is in state 𝑏, take the leftmost
symbol 𝑎 of the sentential form and erase it. Append 𝑧 to the end of the sentential form
and change the state symbol to 𝑐. An interesting property of the derivation is, that once
a final state from 𝐷 is reached, no further rule can be applied. This property is caused by
the definition of 𝑃 .

Definition 2.30. Let 𝑄 = (𝑉, 𝑇, 𝑈,𝐷, 𝑠, 𝑃) be a queue grammar. If 𝑢, 𝑣 ∈ 𝑉 *𝑈 such that
𝑢 = 𝑎𝑟𝑏; 𝑣 = 𝑟𝑧𝑐; 𝑎 ∈ 𝑉 ; 𝑟, 𝑧 ∈ 𝑉 *; 𝑏, 𝑐 ∈ 𝑈 ; and (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑃 , then 𝑢 directly derives 𝑣
according to (𝑎, 𝑏, 𝑧, 𝑐) in 𝑄; symbolically 𝑢 ⇒ 𝑣 [(𝑎, 𝑏, 𝑧, 𝑐)] in 𝑄 or, simply, 𝑢 ⇒ 𝑣. In the
standard manner, extend ⇒ to ⇒𝑛, where 𝑛 ≥ 0; then, based on ⇒𝑛, define ⇒+ and ⇒*.

Definition 2.31. The language of 𝑄, 𝐿(𝑄), is defined as 𝐿(𝑄) = {𝑤 ∈ 𝑇 * | 𝑠 ⇒* 𝑤𝑓 ,
where 𝑓 ∈ 𝐷}.

An example of the queue grammar is presented below.

Example 2.1. Let 𝐺 = ({𝐴, 𝑎, 𝑏}, {𝑎, 𝑏}, {𝑒, 𝑓}, {𝑓}, 𝐴𝑒, 𝑃) be a queue grammar, where

𝑃 = {1 : (𝐴, 𝑒, 𝑏𝐴𝑎, 𝑒), 2 : (𝐴, 𝑒, 𝜀, 𝑓), 3 : (𝑎, 𝑒, 𝑎, 𝑒), 4 : (𝑏, 𝑒, 𝑏, 𝑒)},

and

𝐴𝑒 ⇒ 𝑏𝐴𝑎𝑒 [1] ⇒ 𝐴𝑎𝑏𝑒 [4] ⇒ 𝑎𝑏𝑏𝐴𝑎𝑒 [1] ⇒ 𝑏𝑏𝐴𝑎𝑎𝑒 [3] ⇒ 𝑏𝐴𝑎𝑎𝑏𝑒 [4]

⇒ 𝐴𝑎𝑎𝑏𝑏𝑒 [4] ⇒ 𝑎𝑎𝑏𝑏𝑓 [2]

is an example derivation of 𝑎𝑎𝑏𝑏 ∈ 𝐿(𝐺). The language generated by 𝐺 is 𝐿(𝐺) =
{𝑎𝑛𝑏𝑛 |𝑛 ≥ 0}.

Example 2.1 is taken from the [1].

Definition 2.32. A left-extended queue grammar is a sextuple, 𝑄 = (𝑉, 𝑇, 𝑈,𝐷, 𝑠, 𝑃),
where 𝑉, 𝑇, 𝑈,𝐷, and 𝑠 have the same meaning as in a queue grammar. 𝑃 ⊆ (𝑉 ×(𝑈−𝐷))×
(𝑉 *×𝑈) is a finite relation (as opposed to an ordinary queue grammar, this definition does
not require that for every 𝑎 ∈ 𝑉 , there exists an element (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑃). Furthermore,
assume that # /∈ 𝑉 ∪ 𝑈 . If 𝑢, 𝑣 ∈ 𝑉 *{#}𝑉 *𝑈 so that 𝑢 = 𝑤#𝑎𝑟𝑏; 𝑣 = 𝑤𝑎#𝑟𝑧𝑐; 𝑎 ∈
𝑉 ; 𝑟, 𝑧, 𝑤 ∈ 𝑉 *; 𝑏, 𝑐 ∈ 𝑈 ; and (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑃 , then 𝑢 ⇒ 𝑣[(𝑎, 𝑏, 𝑧, 𝑐)] in 𝐺 or, simply 𝑢 ⇒ 𝑣.
In the standard manner, extend ⇒ to ⇒𝑛, where 𝑛 ≥ 0; then, based on ⇒𝑛, define ⇒+

and ⇒*. The language of 𝑄,𝐿(𝑄), is defined as 𝐿(𝑄) = {𝑣 ∈ 𝑇 * |#𝑠 ⇒* 𝑤#𝑣𝑓 for some
𝑤 ∈ 𝑉 * and 𝑓 ∈ 𝐷}.

The left-extended queue grammar extends the queue grammars by recording the history
of derivation. Every rewritten symbol is shifted left over #. In this way, 𝑄 records the
history of derivation.

Left-extended queue grammars play a crucial role in the proofs in this thesis.

11

2.5 Properties of context-free grammars
In formal language theory, context-free grammars are commonly studied, since CFGs rep-
resent a simple model that can represent many useful applications, such as programming
languages. CFGs have countless properties. Some of these properties are specific to CFGs,
but some are not.

The main purpose of the grammars, in general, is a generation of languages. How-
ever, grammar does not necessarily generate non-empty language. Consider grammar
𝐺 = ({𝑆,𝐴}, {𝑎}, {𝑆 → 𝐴,𝐴 → 𝐴𝐴}, 𝑆). It is apparent that the set of sentential forms
of 𝐺,𝜑(𝐺) is infinite, but the generated language of 𝐺,𝐿(𝐺) is empty. There is no use for
such grammar. This example of 𝐺 is an extreme case. Grammars can contain only some
parts of them that are useless. For example nonterminals, that cannot be derived to the
sequence of terminals.

Definition 2.33. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar, and 𝑋 ∈ 𝑉 − 𝑇 . 𝑋 is
terminating if there exists 𝑤 ∈ 𝑇 *, such that 𝑋 →* 𝑤 in 𝐺; otherwise, 𝑋 is nontermi-
nating.

Notice, that once a nonterminating symbol occurs in some sentential form, it can never
be derived to a word of terminals. Therefore, the existence of such symbols in CFGs is
unwanted.

Another instances of unwanted symbols in CFGs are inaccessible symbols. These sym-
bols do not occur in any sentential form.

Definition 2.34. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar, and 𝑋 ∈ 𝑉 . 𝑋 is
accessible if 𝑆 ⇒* 𝑢𝑋𝑣 in 𝐺, for some 𝑢, 𝑣 ∈ 𝑉 *; otherwise, 𝑋 is inaccessible.

When both nonterminating and inaccessible symbols are put together, we get useless.

Definition 2.35. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar, and 𝑋 ∈ 𝑉 . 𝑋 is useful
if 𝑆 ⇒* 𝑢𝑋𝑣 ⇒* 𝑢𝑥𝑣 in 𝐺, for some 𝑢, 𝑣 ∈ 𝑉 * and 𝑥 ∈ 𝑇 *.; otherwise, 𝑋 is useless.

Equivalently, 𝑋 is useful if it is accessible and terminating. Otherwise, 𝑋 is useless.
Since useless symbols serve no purpose in CFGs, we want to remove them. Algorithms for
removing useless symbols from CFGs can be found in [4].

In two previous definitions, we described symbols that are unwanted in CFGs. Of course,
when we want to remove these symbols from CFG, we also have to remove any rules where
these symbols occur. However, the main emphasis is on these symbols themselves. In the
next two definitions, we define the forms of rules that are undesirable in CFGs.

Definition 2.36. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar and 𝐴 ∈ 𝑉 − 𝑇 . 𝐴 is
an erasable nonterminal if 𝐴 ⇒* 𝜀 in 𝐺. 𝐺 is a 𝜀-free context-free grammar if it
contains no erasable nonterminals.

𝜀-free context-free grammars are also-called propagating. An existence of 𝜀-nonterminals
implies existence of so-called 𝜀-rules. Rules in the form of 𝑋 → 𝜀 that erase nonterminals.
𝜀-rules can be useful in the construction of grammar. However, such rules are problematic
in the practical use of grammars, for example in an implementation.

Removal of 𝜀-rules is possible. Consider CFG 𝐺 = ({𝑆,𝑋, 𝑎, 𝑏}, {𝑎, 𝑏}, {𝑆 → 𝑎𝑋𝑎, 𝑆 →
𝑏𝑋𝑏,𝑋 → 𝑎𝑋𝑎,𝑋 → 𝑏𝑋𝑏,𝑋 → 𝜀}, 𝑆). The language generated by 𝐺 is 𝐿(𝐺) = {𝑤𝑤𝑅 |𝑤 ∈
{𝑎, 𝑏}+}. 𝐺 contains single 𝜀-rule—𝑋 → 𝜀. To remove this rule, add 𝑆 → 𝑎𝑎, 𝑆 → 𝑏𝑏,𝑋 →

12

𝐴𝐴,𝑋 → 𝑏𝑏 to 𝐺. These rules simulate the application of 𝑋 → 𝜀 later in the derivation.
Notice that removal of 𝜀-rules introduces new rules into a CFG, therefore it increases its
size.

Notice, that 𝜀 ̸∈ 𝐿(𝐺). This property of 𝐿(𝐺) is deliberately enforced by introduction
of 𝑋 in 𝐺 and by having 𝑆 → 𝑎𝑋𝑎 and 𝑆 → 𝑏𝑆𝑏 as only rules that rewrites start symbol in
𝐺. Consider 𝐻 = ({𝑆, 𝑎, 𝑏}, {𝑎, 𝑏}, {𝑆 → 𝑎𝑆𝑎, 𝑆 → 𝑏𝑆𝑏, 𝑆 → 𝜀}, 𝑆), and 𝐿(𝐻) = 𝐿(𝐺) ∪ 𝜀.
The 𝜀-rule 𝑆 → 𝜀 becomes non erasable in 𝐻. Therefore, not all 𝜀-rules can be erased from
CFGs. An exact algorithm for 𝜀-rules removal can be seen in [4].

Definition 2.37. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar. A production, 𝑝 ∈ 𝑃 ,
is a unit production if 𝑟ℎ𝑠(𝑝) ∈ 𝑁 . If 𝐺 contains no unit productions, it is unit-free
context-free grammar.

Intuitively, we understand that unit rules are useless in CFGs. They only transform one
nonterminal into another. All of the unit productions can be removed. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆).
Assume that 𝐺 contains unit rules. For every 𝐴,𝐵 ∈ 𝑉 − 𝑇 , such that 𝐴 → 𝐵 ∈ 𝑃 is a
unit rule, add {𝐴 → 𝛼 |𝐵 ⇒ 𝛼} to 𝑃 . Repeat this step until no unit rule is left in 𝐺. An
exact algorithm for unit rules removal can be seen in [4].

Both 𝜀-rules and unit rules introduce an unwanted property to CFGs—cycling.

Definition 2.38. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 contains cycle, if
𝐴 ⇒+ 𝐴 in 𝐺.

If a CFG contains cycle, it is called cycling CFG. Consider a CFG 𝐺 = ({𝐴, 𝑎}, {𝑎}, {1 :
𝐴 → 𝑎, 2 : 𝐴 → 𝐴, 3 : 𝐴 → 𝐴𝐴, 4 : 𝐴 → 𝜀}, 𝐴). 𝐺 generates language 𝐿(𝐺) = {𝑎𝑖 | 𝑖 ∈ N0}
and contains unit and 𝜀-rule. 𝐺 cycles in two ways.

𝐴 ⇒ 𝐴𝐴[3] ⇒ 𝐴[4]

𝐴 ⇒ 𝐴[2]

2.5.1 Derivation trees

For any grammar, the most important property is the language that it generates. However,
not only the words that comprise the generated language are important. We are also
interested in the way that these words are generated. In the case of the grammars, we
are interested in the sequence of the derivation steps from the start symbol to the final
word. A representation for this derivation is needed. Remember, that for some derivation
𝑆 ⇒+ 𝛼[𝛾], 𝛾 represents labels of rules, in the order in which they were applied. But it
doesn’t capture which nonterminal was rewritten. In CFGs, the order of the applications of
rules is also irrelevant. Therefore, this mechanism cannot be used to represent derivations.

A derivation tree is a representation of the derivation in the CFGs that can be easily
presented graphically. It captures individual derivation steps but is invariant to the order
of these steps. The derivation tree is a tree, such that the root node is the start symbol,
all the nodes are nonterminals, and the leaf nodes are terminals. Informally, each node can
have multiple child nodes. A root node is a node that is not a child node of any other node.
A leaf has no child nodes. The child nodes of a parent node represent a result of the direct
derivation of the parent node. An example of the derivation tree can be seen in Figure 2.1.
A thorough definition of the derivation tree can be found in [4].

13

Figure 2.1: Derivation tree for a derivation of 𝑏𝑎𝑐 in a context-free grammar 𝐺 =
({𝑆,𝐴,𝐵}, {𝑎, 𝑏, 𝑐}, {𝑆 → 𝐴𝑐,𝐴 → 𝐵𝑎,𝐵 → 𝑏}, 𝑆).

Now that the derivation trees are defined, we can define another property of CFGs—
ambiguity. Remember that a language is a set of words. Sets can only contain unique values.
However, a CFG can generate a single word in multiple different ways. Different order of
application of the applied rules is not considered to be a different way of generation of the
same word. Consider a CFG 𝐺 = ({𝑆,𝐴, 𝑎}, {𝑎}, {𝑆 → 𝐴,𝑆 → 𝑎𝑆, 𝑆 → 𝑎,𝐴 → 𝑎𝐴,𝐴 →
𝑎}, 𝑆). 𝐺 generates a language 𝐿(𝐺) = {𝑎𝑛 |𝑛 ≥ 1}. Notice that for every 𝑤 ∈ 𝐿(𝐺),
there are two ways it can be generated. Let 𝑤 = 𝑎𝑎. 𝐺 derives 𝑤 as 𝑆 ⇒ 𝑎𝑆 ⇒ 𝑎𝑎 or as
𝑆 ⇒ 𝐴 ⇒ 𝑎𝐴 ⇒ 𝑎𝑎. It is impossible to say, which derivation was used to generate 𝑤. We
can distinguish between these two derivations by the usage of the derivation trees, which
are different for each of these derivations. This property is called ambiguity.

Definition 2.39. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar. If there exists word
𝑤 ∈ 𝐿(𝐺), such that we can construct more than one derivation tree, 𝐺 is ambiguous.
Otherwise, 𝐺 is unambiguous.

The ambiguity of CFGs is unwanted. However, there is no general way to get rid of
ambiguity from the CFGs. Even the problem to decide whether a given CFG is ambiguous
or not is undecidable. Meaning that there is no algorithm that is able to decide, whether
the given grammar is ambiguous or not. Therefore we cannot remove the ambiguity from
CFGs, since in general, we cannot even detect it.

Ambiguity may impose a problem during a syntax analysis (also-called parsing). Syntax
analysis decides whether a given word is part of a language generated by some grammar.
In general, this problem is called a membership problem. During syntax analysis of a CFG,
we are effectively trying to find a derivation tree for the given word. In ambiguous CFGs,
we are trying to find one of the possible derivation trees. It does not matter which one we
find.

2.5.2 Chomsky normal form

In the grammars, the forms of the productions can be restricted, while preserving their
expressive power. Such restrictions may allow us to work with said grammars in a more
suitable way. These restrictions are often called normal forms. A grammar that does not
satisfy any normal form is usually smaller than an equivalent grammar in some normal

14

form. Meaning that in order to satisfy the normal form, the number of the rules usually
increases.

In the case of CFGs, one of the studied normal forms is Chomsky normal form. Before
we define Chomsky normal form, let us define a proper CFG. A proper form of CFGs
represents much weaker restriction than normal forms.

Definition 2.40. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar and 𝐴 ∈ 𝑉 −𝑇 satisfying
the following properties:

• 𝑉 contains only useful symbols (see Definition 2.35);

• 𝐺 is 𝜀-free (see Definition 2.36);

• 𝐺 is unit-free (see Definition 2.37).

Then, 𝐺 is a proper context-free grammar.

In the previous part of this chapter, we described why the useless symbols, 𝜀-rules,
and unit rules as undesirable in CFGs. Algorithms for their removal can be found in [4].
Remember that the rule that rewrites the start symbol to 𝜀 cannot be removed. Therefore,
for every CFG 𝐺, there exists a proper CFG 𝑃 such that 𝐿(𝑃) = 𝐿(𝐺)− {𝜀}.

Definition 2.41. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 is in Chomsky
normal form if every rule, 𝑝 ∈ 𝑃 , satisfies 𝑟ℎ𝑠(𝑝) ∈ (𝑇 ∪ (𝑉 − 𝑇)2).

A CFG is in Chomsky normal form if the right-side of all the rules are either two
nonterminals or a single terminal. Any CFG 𝐺 can be transformed into a CFG 𝐺 in
Chomsky normal form, such that 𝐿(𝐺) = 𝐿(𝐺). The algorithm for this transformation
works in the following way. It takes a proper CFG 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) as an input. Remember
that a proper CFG does not contain rules, that have either a single nonterminal or epsilon
on the right-side. Formally, for all 𝑝 ∈ 𝑃, 𝑟ℎ𝑠(𝑝) ̸∈ (𝑉 − 𝑇) ∪ {𝜀} holds.

Begin the transformation of 𝐺 to a CFG in Chomsky normal form 𝐺 = (𝑉 , 𝑇, 𝑃 , 𝑆). Set
𝑊 = {𝑎|𝑎 ∈ 𝑇}, 𝑉 = 𝑉 ∪𝑊 . CNF allows occurrence of the terminals in the right-sides of
rules only as single terminal. In case of other occurrences of terminals, these terminals must
be replaced by nonterminal, that can only be rewritten to said terminal. Define bijection
𝛽 that maps every nonterminal to itself, and every terminal 𝑎 ∈ 𝑇 to a nonterminal from
𝑊,𝑎. Formally, 𝛽 is defined as bijection from 𝑉 to 𝑊 ∪ (𝑉 − 𝑇) as 𝛽(𝑎) = 𝑎 for all 𝑎 ∈ 𝑇
and 𝛽(𝐴) = 𝐴 for all 𝐴 ∈ 𝑉 − 𝑇 . Bijection 𝛽 does the replacement of terminals to their
dedicated nonterminals. For each nonterminal 𝑎 ∈ 𝑇 , add 𝑎 → 𝑎 to 𝑃 . Since the 𝐺 is
proper, right-side of each rule must be of length 1, 2 or more than 2. If the length of
right-side of rule is 1, it must be single terminal, since proper CFG cannot contain single
nonterminal as right-side. If the length of right-side of rule is 2, it can be easily added to
𝑃 . For every 𝑝 : 𝐴 → 𝑋1𝑋2 ∈ 𝑃,𝐴 ∈ 𝑉 − 𝑇 ;𝑋1, 𝑋2 ∈ 𝑉 , add 𝐴 → 𝛽(𝑋1)𝛽(𝑋2) to 𝑃 . Any
of symbols 𝑋1 and 𝑋2 can be a terminal. In such case, 𝑝 would not satisfy CNF. Therefore,
bijection 𝛽 is used.

The last case of length or right-side of the rule is more than 2. Such sequences must be
divided into multiple parts. For 𝐴 → 𝑋1𝑋2...𝑋𝑛 ∈ 𝑃 ;𝐴 ∈ 𝑉 − 𝑇,𝑋𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 3,
introduce new nonterminals ⟨𝑋2...𝑋𝑛⟩, ⟨𝑋3...𝑋𝑛⟩, ...⟨𝑋𝑛−1𝑋𝑛⟩ and add them to 𝑉 . Add
rules 𝐴 → 𝛽(𝑋1)⟨𝑋2...𝑋𝑛⟩, ⟨𝑋2...𝑋𝑛⟩ → 𝛽(𝑋2)⟨𝑋3...𝑋𝑛⟩, ..., ⟨𝑋𝑛−1𝑋𝑛⟩ → 𝛽(𝑋𝑛−1)𝛽(𝑋𝑛)
to 𝑃 . Notice that these rules satisfy CNF. In this way, 𝐴 ⇒ 𝑋1𝑋2...𝑋𝑛[𝐴 → 𝑋1𝑋2...𝑋𝑛]
is simulated in 𝐺.

An algorithm for this transformation is written as pseudocode in Algorithm 2.1.

15

Algorithm 2.1 An algorithm for transformation of a proper CFG to a CFG in Chomsky
normal form.
Input

A proper CFG 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆).
Output

A CFG 𝐺 = (𝑉 , 𝑇, 𝑃 , 𝑆) in Chomsky normal form, such that 𝐿(𝐺) = 𝐿(𝐺).
Method

introduce 𝑊 = {𝑎|𝑎 ∈ 𝑇} and bijection 𝛽 from 𝑉 to 𝑊 ∪ 𝑉 − 𝑇 defined as
𝛽(𝑎) = 𝑎 for all 𝑎 ∈ 𝑇 and 𝛽(𝐴) = 𝐴 for all 𝐴 ∈ 𝑉 − 𝑇

set 𝑉 = 𝑊 ∪ 𝑉 and 𝑃 = ∅
for all 𝑎 ∈ 𝑇 do

add 𝑎 → 𝑎 to 𝑃
for all 𝐴 → 𝑎 ∈ 𝑃,𝐴 ∈ 𝑉 − 𝑇, 𝑎 ∈ 𝑇 do

add 𝐴 → 𝑎 ∈ 𝑃 to 𝑃

for all 𝐴 → 𝑋1𝑋2 ∈ 𝑃,𝐴 ∈ 𝑉 − 𝑇,𝑋1, 𝑋2 ∈ 𝑉 do
add 𝐴 → 𝛽(𝑋1)𝛽(𝑋2)𝑃 to 𝑃

for all 𝐴 → 𝑋1𝑋2...𝑋𝑛 ∈ 𝑃,𝐴 ∈ 𝑉 − 𝑇,𝑋𝑖 ∈ 𝑉 +, 1 ≥ 𝑖 ≥ 𝑛 such that 𝑛 ≥ 3 do
add new nonterminals ⟨𝑋2...𝑋𝑛⟩, ⟨𝑋3...𝑋𝑛⟩, ...⟨𝑋𝑛−1𝑋𝑛⟩ to 𝑉
add 𝐴 → 𝛽(𝑋1)⟨𝑋2...𝑋𝑛⟩, ⟨𝑋2...𝑋𝑛⟩ → 𝛽(𝑋2)⟨𝑋3...𝑋𝑛⟩, ...,
⟨𝑋𝑛−1𝑋𝑛⟩ → 𝛽(𝑋𝑛−1)𝛽(𝑋𝑛) to 𝑃

2.6 Language families
Each formal model has limits to the languages it can describe. For example, there is no
context-free grammar that can generate language {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 1}. The proof is omitted
but the reader can try to construct such CFG. Refer back to Definitions 2.19 and 2.24 of
unrestricted and context-free grammars, respectively. Intuitively, unrestricted grammars
provide more powerful rules than CFGs. Therefore, unrestricted grammars have the ability
to generate more complex languages than CFGs.

A language family represents a set of all the languages that can be described by some
formal model. The relation between the language families is the same as the relation
between the expressive powers of their formal models.

Hierarchy of language families

The language families of some formal models defined in this thesis can be arranged into a
hierarchy by their expressive power. Now, let us define these language families.

Definition 2.42. REG,PAL,ML,LIN,CF,CS and RE denote the language families
that are generated by the regular, palindromial, minimal linear, linear, context-free, and
unrestricted grammars, respectively.

These families are so-called families of regular, palindromial, minimal linear, linear,
context-free, and recursively enumerable languages, respectively. Languages from RE are
also described by the turing machines. RE represent all of the problems, that we can
compute.

Claim 2.1. Following properties hold

(a) REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE

16

(b) REG ∪PAL ⊂ LIN

(c) PAL ⊂ ML

Proof. Proof of these properties can be found in [4] and [9].

The strict inclusions of the language families from (a) is also called Chomsky hierarchy
and can be seen on Figure 2.2.

Figure 2.2: Chomsky hierarchy.

Claim 2.2. REG ̸⊆ ML and ML ̸⊆ REG.

Proof. To prove ML ̸⊆ REG, consider a minimal linear grammar

𝑃 = ({𝑆, 0, 1,#}, {0, 1,#}, {𝑆 → 0𝑆1, 𝑆 → #}).

It is apparent that 𝐿(𝑃) = {0𝑛#1𝑛 |𝑛 ≥ 0}. There exists no regular grammar that could
generate such language. Since 𝐿(𝑃) ∈ ML and 𝐿(𝑃) ̸∈ REG, ML ̸⊆ REG holds true.

To prove REG ̸⊆ ML, consider a regular grammar 𝑅 = ({𝑆,𝐵,𝐶, 𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑆 →
𝑎𝑆, 𝑆 → 𝑎𝐵,𝐵 → 𝑏𝐵,𝐵 → 𝑏𝐶,𝐶 → 𝑐𝐶,𝐶 → 𝑐}, 𝑆). A language generated by 𝑅 is
𝐿(𝑅) = {𝑎𝑥𝑏𝑦𝑐𝑧 |𝑥, 𝑦, 𝑧 ≥ 1}. Intuitively, since the minimal linear grammars contain only
single nonterminal, they have no way to ensure transition between 𝑎, 𝑏, 𝑐 in the words of
the resulting language. Therefore, 𝐿(𝑃) ∈ REG and 𝐿(𝑃) ̸∈ ML, so REG ̸⊆ ML.

When there can be no subset relation between the two sets made, we call them mutually
incomparable. Since the languages are the sets, we say that REG and ML are mutually
incomparable.

Claim 2.3. REG ∩PAL = ∅.

Proof. Recall Definition 2.28 of the palindromial grammars. Let 𝑃 = (𝑉, 𝑇, 𝑃, 𝑆) be any
palindromial grammar. The language of 𝑃 must be {𝛼#𝛾 |𝛼, 𝛾 ∈ 𝑇 * and 𝛼 = 𝛾𝑅}. The
regular grammars cannot generate such languages. Therefore, this Claim holds.

17

Chapter 3

Final Sentential Forms

Context-free grammars represent one of the most used model in the formal language the-
ory since they are simple and allow us to define useful languages, such as programming
languages. However, for many applications, CFGs are not sufficient. Over the years, many
efforts were made to restrict the way CFGs generate words to improve their generative
power.

In this chapter, we introduce the notion of a final sentential forms of CFGs. These
forms represent the subset of sentential forms of CFGs, where parts of individual sentential
forms belong to specified finalizing language 𝐿. Since only parts of individual sentential
forms are controlled, a less powerful language family can be used.

The main topic of this thesis are the final sentential forms, where sentential forms of
CFGs are finalized by either minimal linear languages or regular languages. First, we start
with the definition of a weak identity which extracts parts of the sentential forms.

Definition 3.1. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar, 𝑊 be a set and 𝜔 be a
homomorphism from 𝑉 * to 𝑊 *; 𝜔 is a weak identity if 𝜔(𝑎) ∈ {𝑎, 𝜀} for all 𝑎 ∈ 𝑉 . Define
the weak identity 𝑊𝜔 from 𝑉 * to 𝑊 * as 𝑊𝜔(𝑋) = 𝑋 for all 𝑋 ∈ 𝑊 , and 𝑊𝜔(𝑋) = 𝜀 for
all 𝑋 ∈ 𝑉 −𝑊 .

The purpose of the weak identity is to erase selected symbols and keep the rest. In our
case, we define a set of symbols 𝑊 , which we want to preserve in the word. Symbols that
do not belong to 𝑊 are erased.

Definition 3.2. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a context-free grammar and 𝑊 ⊆ 𝑉 . Let 𝐹 ⊆ 𝑊 *.
Set

𝜑(𝐺,𝐹) = {𝑥 |𝑥 ∈ 𝜑(𝐺), 𝑊𝜔(𝑥) ∈ 𝐹}
𝐹 is called a final language or finalizing language Members of 𝜑(𝐺,𝐹) are called the
final sentential forms of 𝐺.

The set 𝜑(𝐺,𝐹) represents all the sentential forms of 𝐺, that belong to the final language
𝐹 after the application of weak identity 𝑊𝜔. This mechanism allows us to impose further
constraints on the underlying CFG. In turn, we may increase the generative power of said
CFG. The resulting power depends on the selection of final language 𝐹 . Notice that the
final sentential forms may contain nonterminals. However, these nonterminals cannot be
present in the resulting language.

Definition 3.3. 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a CFG and 𝑊 ⊆ 𝑉 . Let 𝐹 ⊆ 𝑊 *. Set

𝐿(𝐺,𝐹) = { 𝑇𝜔(𝑦) | 𝑦 ∈ 𝜑(𝐺,𝐹), (𝑉−(𝑊∪𝑇)𝜔(𝑦) = 𝜀}.

18

The language 𝐿(𝐺,𝐹) is called language of 𝐺 finalized by 𝐹 .

By the definition, we remove all nonterminals from final sentential forms 𝜑(𝐺,𝐹) to
obtain 𝐿(𝐺,𝐹). Notice that by the definition of 𝐿(𝐺,𝐹), final sentential forms that cannot
contain nonterminals from 𝑉 − (𝑊 ∪ 𝑇). We could omit this condition without changing
any of the results proven in this chapter. However, by application of this restriction, we are
able to present a stronger result.

In the first chapter, we defined queue grammars (see Definition 2.29). These grammars
work in a different way compared to unrestricted grammars. In a way, queue grammars
combine the derivation process of grammars with the state transitions of automata. We use
the queue grammars in our proofs presented below. The reason we use the queue grammars
is that they are Turing-equivalent. In other words, the language family generated by queue
grammars is recursively enumerable (RE for short).

Lemma 3.1. Let 𝐿 ∈ RE. Then, there exists a left-extended queue grammar 𝑄 satisfying
𝐿(𝑄) = 𝐿.

Proof. See Lemma 1 in [2].

To be more precise, we don’t use queue grammars directly, but we use left-extended
queue grammars (see Definition 2.32). The left-extended queue grammars work in the
same way as queue grammars, but they also record the derivation history on the left side of
the derived word. The derivation history is separated from the sentential form by #. From
the definition of the left-extended queue grammar, it is apparent that they are equivalent
to the ordinary queue grammars.

We need to constrain the way left-extended queue grammars derive the words. Similarly
to the normal forms of CFGs. Since queue grammars always rewrite the leftmost symbol,
we constrain the left-extended queue grammar 𝑄 in such a way, that derivation can be split
into these two phases:

1. rewrite the nonterminals only to the sequences of nonterminals;

2. rewrite the nonterminals only to the sequences of terminals.

At the beginning of the derivation, 𝑄 uses rules that rewrite nonterminal to the sequence
of nonterminals. Once the rule that rewrites nonterminal to the sequence of terminals is
used, 𝑄 can only use rules that rewrite nonterminal to the sequence of terminals. The
sequences mentioned can also be empty, meaning that the nonterminal is rewritten to 𝜀.

The proof that we can achieve such constraint of the left-extended queue grammar
without changing its generative power can be seen in [3].

Lemma 3.2. Let H be a left-extended queue grammar. Then, there exists a left-extended
queue grammar, 𝑄 = (𝑉, 𝑇, 𝑈,𝐷, 𝑠,𝑅), such that 𝐿(𝐻) = 𝐿(𝑄) and every (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅
satisfies 𝑎 ∈ 𝑉 − 𝑇, 𝑏 ∈ 𝑈 −𝐷, 𝑧 ∈ ((𝑉 − 𝑇)* ∪ 𝑇 *) and 𝑐 ∈ 𝑈 .

Proof. See Lemma 2 in [3].

3.1 Palindromial finalizing language
In Definition 3.2 of the final sentential forms, no particular finalizing language 𝐹 is specified.
Based on our selection of 𝐹 , we study the resulting language 𝐿(𝐺,𝐹). In this section, we

19

show, that using a palindromial (see Definition 2.28) final language 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈
{0, 1}*}, any language 𝐿 ∈ RE can be represented by 𝐿(𝐺,𝐹). Notice, that the language
𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*} is indeed palindromial. It can be generated by a palindromial
grammar 𝐺 = ({𝑆, 0, 1,#}, {0, 1,#}, {𝑆 → 0𝑆0, 𝑆 → 1𝑆1, 𝑆 → #}, 𝑆).

Lemma 3.3. Let 𝑄 = (𝑉, 𝑇, 𝑈,𝐷, 𝑠,𝑅) be a left-extended queue grammar. Then, 𝐿(𝑄) =
𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}), where 𝐺 is a CFG.

Idea. In proof of this lemma, we simulate the derivations 𝑄 by some CFG 𝐺. Recall that
left-extended queue grammars have greater generative power than CFGs. Therefore, 𝐺
cannot simulate 𝑄 itself. Hence we use the final language 𝐹 that is able to recognize proper
derivations of 𝑄 simulated by 𝐺.

Proof. Without any loss of generality, assume that 𝑄 satisfies the properties described
in Lemma 3.2 and that {0, 1} ∩ (𝑉 ∪ 𝑈) = ∅. For some positive integer, 𝑛, define an
injection, 𝜄, from Ψ* to ({0, 1}𝑛 − 1𝑛), where Ψ = {𝑎𝑏 | (𝑎, 𝑏, 𝑥, 𝑐) ∈ 𝑅, 𝑎 ∈ 𝑉 − 𝑇, 𝑏 ∈
𝑈 − 𝐷,𝑥 ∈ (𝑉 − 𝑇)* ∪ 𝑇 *, 𝑐 ∈ 𝑈} so that 𝜄 is an injective homomorphism when its
domain is extended to Ψ*; after this extension, 𝜄 thus represents an injective homomorphism
from Ψ* to ({0, 1}𝑛 − 1𝑛)*(a proof that such an injection necessarily exists is simple and
left to the reader). Based on 𝜄, define the substitution, 𝜈 from 𝑉 to ({0, 1}𝑛 − 1𝑛) as
𝜈(𝑎) = {𝜄(𝑎𝑞) | 𝑞 ∈ 𝑈} for every 𝑎 ∈ 𝑉 . Extend domain of 𝜈 to 𝑉 *. Furthermore, define
the substitution, 𝜇, from 𝑈 to ({0, 1}𝑛 − 1𝑛) as 𝜇(𝑞) = {𝜄(𝑎𝑞)𝑅 | 𝑎 ∈ 𝑉 } for every 𝑞 ∈ 𝑈 .
Extend the domain of 𝜇 to 𝑈*.

The set Ψ represents pairs of the symbol and state, that can be rewritten in the deriva-
tion step. Injective homomorphism 𝜄 encodes these pairs into binary form. The substitution
𝜈 creates a set for some nonterminal 𝐴, that contains all of the possible pairs for 𝐴 from
Ψ encoded by 𝜄. The substitution 𝜇 creates a set for some state 𝐵, that contains all of the
possible pairs for 𝐵 from Ψ encoded by 𝜄 that are reversed.

Consider 𝑎𝑏 ∈ Ψ, where 𝑎 ∈ 𝑉 − 𝑇 and 𝑈 −𝐷. From the definitions of 𝜈 and 𝜇, it is
apparent that 𝜈(𝑎) ∩ 𝜇(𝑏)𝑅 = {𝜄(𝑎𝑏)}.

Construction. Next, we introduce a context-free grammar 𝐺 so that

𝐿(𝑄) = 𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}).

Set 𝐽 = {⟨𝑝, 𝑖⟩ | 𝑝 ∈ 𝑈−𝐷 and 𝑖 ∈ {1, 2}}. Let 𝐺 = (𝑉 , 𝑇, 𝑃, 𝑆), where 𝑉 = 𝐽 ∪ {0, 1,#} ∪
𝑇 . Construct 𝑃 in the following way. Initially, set 𝑃 = ∅; then, perform the following steps
1 through 5.

1. if (𝑎, 𝑞, 𝑦, 𝑝) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇, 𝑝, 𝑞 ∈ 𝑈 −𝐷, 𝑦 ∈ (𝑉 − 𝑇)* and 𝑎𝑞 = 𝑠,
then add 𝑆 → 𝑢⟨𝑝, 1⟩𝑣 to 𝑃 , for all 𝑢 ∈ 𝜈(𝑦) and 𝑣 ∈ 𝜇(𝑝);

2. if (𝑎, 𝑞, 𝑦, 𝑝) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇, 𝑝, 𝑞 ∈ 𝑈 −𝐷 and 𝑦 ∈ (𝑉 − 𝑇)*,
then add ⟨𝑞, 1⟩ → 𝑢⟨𝑝, 1⟩𝑣 to 𝑃 , for all 𝑢 ∈ 𝜈(𝑦) and 𝑣 ∈ 𝜇(𝑝);

3. for every 𝑞 ∈ 𝑈 −𝐷, add ⟨𝑞, 1⟩ → ⟨𝑞, 2⟩ to 𝑃 ;

4. if (𝑎, 𝑞, 𝑦, 𝑝) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇, 𝑝, 𝑞 ∈ 𝑈 −𝐷, 𝑦 ∈ 𝑇 *,
then add ⟨𝑞, 2⟩ → 𝑦⟨𝑝, 2⟩𝑣 to 𝑃 , for all 𝑣 ∈ 𝜇(𝑝);

20

5. if (𝑎, 𝑞, 𝑦, 𝑝) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇, 𝑞 ∈ 𝑈 −𝐷, 𝑦 ∈ 𝑇 *, and 𝑝 ∈ 𝐷,
then add ⟨𝑞, 2⟩ → 𝑦# to 𝑃 .

Each derivation of 𝑄 goes through these phases in the following order

(a) 𝑄 uses rules (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅 such that 𝑎 ∈ 𝑉 − 𝑇, 𝑏, 𝑐 ∈ 𝑈 −𝐷, and 𝑧 ∈ (𝑉 − 𝑇)*;

(b) 𝑄 uses rules (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅 such that 𝑎 ∈ 𝑉 − 𝑇, 𝑏, 𝑐 ∈ 𝑈 −𝐷, and 𝑧 ∈ 𝑇 *;

(c) 𝑄 uses final rule (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅 such that 𝑎 ∈ 𝑉 − 𝑇, 𝑏 ∈ 𝑈 −𝐷, 𝑐 ∈ 𝐷, and 𝑧 ∈ 𝑇 *.

By Lemma 3.2, this order must be fulfilled. Examine the constructed rules. Rules con-
structed in (1) simulate the start of the derivation by 𝑄. Rules from (1), together with
rules from (2) simulate part (a) of the derivation of 𝑄. Rules from (3) simulate the transi-
tion from (a) to (b). Part of the derivation described by (b) is simulated by rules from (4).
And finally, rules from (5) are used to finish the derivation in 𝑄, denoted by (c).

In rules constructed in (1), (2), and (4) we can see the use of substitutions 𝜈 and 𝜇.
Context-free grammars have no mechanism to ensure that simulation of derivation in 𝑄
would not perform invalid steps. Meaning that the simulation would not generate 𝐿(𝑄).
Therefore, mentioned substitutions, that are later controlled by 𝐹 are added.

The purpose of the substitution 𝜈(𝑦) for some 𝑦 ∈ (𝑉 − 𝑇)* is to record nonterminals
that must be rewritten in the future on the left side of the derived word. This mecha-
nism effectively acts as a queue. For example let 𝐴,𝐵,𝐶 ∈ (𝑉 − 𝑇), then 𝜈(𝐴𝐵𝐶) =
𝜄(𝐴𝐷)𝜄(𝐵𝐸)𝜄(𝐶𝐹) for some 𝐷,𝐸, 𝐹 ∈ 𝑈 . Remember, that from the definition of 𝜈, that
|𝜈(𝐴𝐵𝐶)| can be greater than 1. Conversely, the substitution 𝜇 represents the nonterminal
and the current state of 𝑄 that are being rewritten. At the time of application of the rules
containing substitution 𝜇, there is no way for 𝐺 to know the leftmost symbol that should
be rewritten. At the end of the derivation, the final language 𝐹 verifies, that 𝐺 selected
correct rules.

Notice that in the definition of 𝜇, a reversal of 𝜄 is used. In order for 𝐺 to make proper
derivation according to 𝑄, each of the nonterminals encoded by the substitution 𝜈 must
be fulfilled by an actual derivation by 𝜇. This property is fulfilled only by members of
{𝑥𝑦#𝑧 ∈ 𝜑(𝐺) |𝑥 ∈ 𝑊+, 𝑦 ∈ 𝑇 *, 𝑧 = 𝑥𝑅}.

Set 𝑊 = {0, 1,#} and Ω = {𝑥𝑦#𝑧 ∈ 𝜑(𝐺) |𝑥 ∈ {0, 1}+, 𝑦 ∈ 𝑇 *, 𝑧 = 𝑥𝑅}.

Claim 3.1. Every ℎ ∈ Ω is generated by 𝐺 in this way

𝑆
⇒ 𝑔1⟨𝑞1, 1⟩𝑡1 ⇒ 𝑔2⟨𝑞2, 1⟩𝑡2 ⇒ ... ⇒ 𝑔𝑘⟨𝑞𝑘, 1⟩𝑡𝑘 ⇒ 𝑔𝑘⟨𝑞𝑘, 2⟩𝑡𝑘
⇒ 𝑔𝑘𝑦1⟨𝑞𝑘+1, 2⟩𝑡𝑘+1 ⇒ 𝑔𝑘𝑦1𝑦2⟨𝑞𝑘+2, 2⟩𝑡𝑘+2 ⇒ ... ⇒ 𝑔𝑘𝑦1𝑦2...𝑦𝑚−1⟨𝑞𝑘+𝑚−1, 2⟩𝑡𝑘+𝑚−1

⇒ 𝑔𝑘𝑦1𝑦2...𝑦𝑚−1𝑦𝑚#𝑡𝑘+𝑚

in 𝐺, where 𝑘,𝑚 ≥ 1; 𝑞1, ..., 𝑞𝑘+𝑚−1 ∈ 𝑈 − 𝐷; 𝑦1, ..., 𝑦𝑚 ∈ 𝑇 *; 𝑡𝑖 ∈ 𝜇(𝑞𝑖...𝑞1) for 𝑖 =
1, ..., 𝑘+𝑚; 𝑔𝑗 ∈ 𝜈(𝑑1...𝑑𝑗) with 𝑑1, ..., 𝑑𝑗 ∈ (𝑉 −𝑇)* for 𝑗 = 1, ..., 𝑘; 𝑑1...𝑑𝑘 = 𝑎1...𝑎𝑘+𝑚 with
𝑎1, ..., 𝑎𝑘+𝑚 ∈ 𝑉 − 𝑇 (that is, 𝑔𝑘 ∈ 𝜈(𝑎1...𝑎𝑘+𝑚) with 𝑔𝑘 = (𝑡𝑘+𝑚)𝑅);ℎ = 𝑦1𝑦2...𝑦𝑚−1𝑦𝑚.

Proof. Examine the construction of 𝑃 . Observe that every derivation begins with an ap-
plication of a production having 𝑆 on its left-hand side. Set 1-𝐽 = {⟨𝑝, 1⟩ | 𝑝 ∈ 𝑈}, 2-𝐽 =
{⟨𝑝, 2⟩ | 𝑝 ∈ 𝑈}, 1-𝑃 = {𝑝 | 𝑝 ∈ 𝑃 and 𝑙ℎ𝑠(𝑝) ∈ 1-𝐽}, 2-𝑃 = {𝑝 | 𝑝 ∈ 𝑃 and 𝑙ℎ𝑠(𝑝) ∈ 2-𝐽}.
Observe that in every successful derivation of ℎ, all applications of productions from 1-𝑃

21

precede the applications of productions from 2-𝑃 . Thus, the generation of ℎ can be ex-
pressed as

𝑆
⇒ 𝑔1⟨𝑞1, 1⟩𝑡1 ⇒ 𝑔2⟨𝑞2, 1⟩𝑡2 ⇒ ... ⇒ 𝑔𝑘⟨𝑞𝑘, 1⟩𝑡𝑘 ⇒ 𝑔𝑘⟨𝑞𝑘, 2⟩𝑡𝑘
⇒ 𝑔𝑘𝑦1⟨𝑞𝑘+1, 2⟩𝑡𝑘+1 ⇒ 𝑔𝑘𝑦1𝑦2⟨𝑞𝑘+2, 2⟩𝑡𝑘+2 ⇒ ... ⇒ 𝑔𝑘𝑦1𝑦2...𝑦𝑚−1⟨𝑞𝑘+𝑚−1, 2⟩𝑡𝑘+𝑚−1

⇒ 𝑔𝑘𝑦1𝑦2...𝑦𝑚−1𝑦𝑚#𝑡𝑘+𝑚

where all the involved symbols have the meaning stated in Claim 3.1.
In the first 𝑘, 𝑘 ≥ 1 steps of the derivation, only rules in form of (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅, where

𝑎 ∈ 𝑉 − 𝑇, 𝑏, 𝑐 ∈ 𝑈 − 𝐷, and 𝑧 ∈ 𝑉 * are simulated by 𝐺. The first derivation step is
made according to rules from (1), and the following 𝑘− 1 steps are done according to rules
constructed in (2). Remember that in rules from (1) and (2), the 𝑦 ∈ (𝑉 − 𝑇)*. Therefore,
in the derivation above, the |𝑔𝑘| can be larger than |𝑡𝑘|. Then, 𝐺 needs to make a single
derivation step according to rules from (3). In next 𝑚 − 1,𝑚 ≥ 1 derivation steps, only
rules in form of (𝑎, 𝑏, 𝑧, 𝑐) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇, 𝑏, 𝑐 ∈ 𝑈 −𝐷, and 𝑧 ∈ 𝑇 * are simulated by
𝐺 according to rules from (4). The derivation is then finished by the rule from (5).

Claim 3.2. Every ℎ ∈ 𝐿(𝑄) is generated by 𝑄 in this way

#𝑎0𝑞0
⇒ 𝑎0#𝑥0𝑞1 [(𝑎0, 𝑞0, 𝑧0, 𝑞1)]
⇒ 𝑎0𝑎1#𝑥1𝑞2 [(𝑎1, 𝑞1, 𝑧1, 𝑞2)]
...
⇒ 𝑎0𝑎1...𝑎𝑘#𝑥𝑘𝑞𝑘+1 [(𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1)]
⇒ 𝑎0𝑎1...𝑎𝑘𝑎𝑘+1#𝑥𝑘+1𝑞𝑘+2 [(𝑎𝑘+1, 𝑞𝑘+1, 𝑦1, 𝑞𝑘+2)]
...
⇒ 𝑎0𝑎1...𝑎𝑘𝑎𝑘+1...𝑎𝑘+𝑚−1#𝑥𝑘+𝑚−1𝑦1...𝑦𝑚−1𝑞𝑘+𝑚 [(𝑎𝑘+𝑚−1, 𝑞𝑘+𝑚−1, 𝑦𝑚−1, 𝑞𝑘+𝑚)]
⇒ 𝑎0𝑎1...𝑎𝑘𝑎𝑘+1...𝑎𝑘+𝑚#𝑦1...𝑦𝑚𝑞𝑘+𝑚+1 [(𝑎𝑘+𝑚, 𝑞𝑘+𝑚, 𝑦𝑚, 𝑞𝑘+𝑚+1)]

where 𝑘,𝑚 ≥ 1, 𝑎𝑖 ∈ 𝑉 −𝑇 for 𝑖 = 0, ..., 𝑘+𝑚, 𝑥𝑗 ∈ (𝑉 −𝑇)* for 𝑗 = 1, ..., 𝑘+𝑚, 𝑠 = 𝑎0𝑞0,
𝑎𝑗𝑥𝑗 = 𝑥𝑗−1𝑧𝑗 for 𝑗 = 1, ..., 𝑘, 𝑎1...𝑎𝑘𝑥𝑘+1 = 𝑧0...𝑧𝑘, 𝑎𝑘+1...𝑎𝑘+𝑚 = 𝑥𝑘, 𝑞0, 𝑞1, ..., 𝑞𝑘+𝑚 ∈
𝑈 −𝐷 and 𝑞𝑘+𝑚+1 ∈ 𝐷, 𝑧1, ..., 𝑧𝑘 ∈ (𝑉 − 𝑇)*, 𝑦1, ...𝑦𝑚 ∈ 𝑇 *, ℎ = 𝑦1𝑦2...𝑦𝑚−1𝑦𝑚.
Proof. Recall that 𝑄 satisfies the properties given in Lemma 3.2. These properties imply
that Claim 3.2 holds true.

Claim 3.3. 𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈ (𝑊 − {#}*}) = 𝐿(𝑄).
Proof. To prove that 𝐿(𝐺,𝐹) ⊆ 𝐿(𝑄), take any ℎ ∈ Ω generated in the way described in
Claim 3.1. From 𝑊𝜔(ℎ) ∈ {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, it follows that 𝑥𝑦#𝑧 with 𝑧 = 𝑥𝑅 where
𝑥 = 𝑔𝑘, 𝑦 = 𝑦1...𝑦𝑚, 𝑧 = 𝑡𝑘+𝑚. At this point 𝑅 contains (𝑎0, 𝑞0, 𝑧0, 𝑞1), ...,(𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1),
(𝑎𝑘+1, 𝑞𝑘+1, 𝑦1, 𝑞𝑘+2), ..., (𝑎𝑘+𝑚−1, 𝑞𝑘+𝑚−1, 𝑦𝑚−1, 𝑞𝑘+𝑚), (𝑎𝑘+𝑚, 𝑞𝑘+𝑚, 𝑦𝑚, 𝑞𝑘+𝑚+1), where
𝑧1, ..., 𝑧𝑘 ∈ (𝑉 − 𝑇)*, and 𝑦1, ..., 𝑦𝑚 ∈ 𝑇 *. Then, 𝑄 makes the generation of 𝑇𝜔(ℎ) in the
way described in Claim 3.2. Thus 𝑇𝜔(ℎ) ∈ 𝐿(𝑄).

To prove 𝐿(𝑄) ⊆ 𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}), take any ℎ ∈ 𝐿(𝑄). Recall that ℎ is
generated in the way described in Claim 3.2. Consider the rules used in this generation.
Furthermore, consider the definition of 𝜈 and 𝜇. Based on this consideration, observe that
from the construction of 𝑃 , it follows that 𝑆 ⇒* 𝑜ℎ#𝑜 in 𝐺 for some 𝑜, 𝑜 ∈ {0, 1}+ with
𝑜 = 𝑜𝑅. Thus, 𝑊𝜔(𝑜ℎ#𝑜) ∈ {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, so consequently, ℎ ∈ 𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈
{0, 1}*}).

22

Claims 3.1 through 3.3 imply that Lemma 3.3 holds true.
Theorem 3.1. A language 𝐿 ∈ RE if and only if 𝐿 = 𝐿(𝐺, {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}), where
𝐺 is a propagating CFG.
Proof. This theorem follows from Lemmas 3.1 through 3.3.

Corollary 3.1. RE = CFPAL.

3.2 Regular finalizing language
In the previous chapter, we chose the finalizing language 𝐹 as a palindromial language leads
to the recursively enumerable language family. Furthermore, only a single palindromial
language is needed for this result. A natural question arises. What happens when we use a
language from different language family as the finalizing language? In this section, we study
the case of a regular finalizing language. Recall, that palindromial and regular languages do
not contain any common languages. Meaning that PAL ∩REG = ∅ (see Claim 2.3). We
proved, that by using regular finalizing language, 𝐿(𝐺,𝐹) remains context-free language.
Meaning that such finalizing language is useless.

The regular languages can be represented by either regular grammars, or by finite
automata. In our proofs, we use finite automata for representation of the regular finalizing
language.
Lemma 3.4. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be any CFG and 𝐹 ∈ REG. Then, 𝐿(𝐺,𝐹) ∈ CF.

The proof of this lemma is done by simulation of 𝐿(𝐺,𝐹) by newly constructed CFG
𝐻. 𝐻 simulates both the derivation in 𝐺 and the run of a deterministic finite automaton
𝑀 , such that 𝐹 = 𝐿(𝑀). Remember that the finite automata accept the family of reg-
ular languages REG. Furthermore, for every finite automaton, there exists an equivalent
deterministic finite automaton. It is then shown, that 𝐿(𝐻) = 𝐿(𝐺,𝐹).
Proof. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be any CFG and 𝐹 ∈ REG. Let 𝐹 = 𝐿(𝑀), where 𝑀 =
(𝑄,𝑊,𝑅, 𝑞𝑠, 𝑄𝐹) is a deterministic finite automaton.
Construction. Introduce 𝑈 = {⟨𝑝𝑎𝑞⟩ | 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ 𝑉 } ∪ {⟨𝑞𝑠𝑆𝑄𝐹 ⟩}. Members of 𝑈
have following meaning. Let ⟨𝑝𝑎𝑞⟩ ∈ 𝑈, 𝑝, 𝑞 ∈ 𝑄, and 𝑎 ∈ 𝑉 . The ⟨𝑝𝑎𝑞⟩ represents a
sequence of moves in 𝑀 , where 𝑝 denotes a beginning state, and 𝑞 denotes an ending state
of the sequence. 𝑈 contains special member ⟨𝑞𝑠𝑆𝑄𝐹 ⟩. Since the finite automaton can have
multiple final states, ⟨𝑞𝑠𝑆𝑄𝐹 ⟩ represents any successful run of the finite automaton from
start state to any final state.

From 𝐺 and 𝑀 , construct a new CFG 𝐻 such that 𝐿(𝐻) = 𝐿(𝐺,𝐹) in the following
way. Set

𝐻 = (𝑉 , 𝑇, 𝑃 , ⟨𝑞𝑠𝑆𝑄𝐹 ⟩)

The components of 𝐻 are constructed as follows. Set 𝑉 = 𝑉 ∪ 𝑈 . Construct 𝑃 as follows:

(0) Add ⟨𝑞𝑠𝑆𝑄𝐹 ⟩ → ⟨𝑞𝑠𝑆𝑞𝑓 ⟩ for all 𝑞𝑓 ∈ 𝑄𝐹 .

(1) Let 𝐴 → 𝑦0𝑋1𝑦1𝑋2...𝑋𝑛𝑦𝑛 ∈ 𝑃 , where 𝐴 ∈ 𝑉 − 𝑇, 𝑦𝑖 ∈ (𝑉 −𝑊)* and 𝑋𝑗 ∈ 𝑉, 0 ≤
𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛, for some 𝑛 ≥ 1;
then, add ⟨𝑞1𝐴𝑞𝑛+1⟩ → 𝑦0⟨𝑞1𝑋1𝑞2⟩𝑦1⟨𝑞2𝑋2𝑞3⟩...⟨𝑞𝑛𝑋𝑛𝑞𝑛+1⟩𝑦𝑛 to 𝑃 , for all
𝑞1, 𝑞2, ..., 𝑞𝑛+1 ∈ 𝑄.

23

(2) Let 𝐴 → 𝛼 ∈ 𝑃 , where 𝐴 ∈ 𝑉 − (𝑇 ∪𝑊), 𝛼 ∈ (𝑉 −𝑊)*;
then, add 𝐴 → 𝛼 to 𝑃 .

(3) Let ⟨𝑝𝑎𝑞⟩ ∈ 𝑈 , where 𝑎 ∈ 𝑊 ∩ 𝑇, 𝑝𝑎 → 𝑞 ∈ 𝑅;
then, add ⟨𝑝𝑎𝑞⟩ → 𝑎 to 𝑃 .

(4) Let ⟨𝑝𝐵𝑞⟩ ∈ 𝑈 , where 𝑝𝐵 → 𝑞 ∈ 𝑅,𝐵 ∈ 𝑊 ∩ (𝑉 − 𝑇);
then, add ⟨𝑝𝐵𝑞⟩ → 𝜀 to 𝑃 .

Rules from (0) are used to select a concrete run in 𝑀 . Rules from (1) are used to divide a
sequence of moves ⟨𝑞1𝐴𝑞𝑛+1⟩ ∈ 𝑈 of 𝑀 . Notice that for every two consequential sequences
on the right-side of these rules, the first sequence ends with the same state as the second one
begins with. Furthermore, notice that the beginning state of the sequence on the left-side
of the rules is the same as the beginning state of the first subsequence on the right-side.
The ending state of the sequence on the left-side is the same as the ending state of the last
subsequence on the right-side. This means, that the original sequence as a whole remains
the same. The 𝑦𝑖 ∈ (𝑉 − 𝑊)* for 0 ≤ 𝑖 ≤ 𝑛 must not contain the symbols from 𝑊 . All
the symbols from 𝑊 must be encapsulated by some symbol from 𝑈 . Otherwise, we could
not simulate a run of 𝑀 over all of the symbols from 𝑊 in the derived word. Notice that
the symbol from 𝑈 does not have to contain the member of 𝑊 , since there could exist such
nonterminal 𝑋 ∈ (𝑉 −𝑊), that 𝑋 ⇒+ 𝑌 , where 𝑌 ∈ 𝑊 . The rules from (2) are used to
simulate the derivation of 𝐺 for the parts that are not covered by 𝑀 . These rules cannot
contain the symbols from 𝑊 on either side of the rule.

When the simulation of 𝑀 inside of 𝐻 gets to the point that ⟨𝑞1𝐴𝑞2⟩ ∈ 𝑈 corresponds
to a single step of 𝑀 such that 𝑞1𝐴 → 𝑞2 ∈ 𝑅, rules from (3) and (4) are used. Remember
from the definition of 𝐿(𝐺,𝐹), that nonterminals from 𝑊 are erased from 𝜑(𝐺,𝐹). So if
𝐴 is nonterminal from 𝑊 , we need to erase it. On the contrary, if 𝐴 is terminal from 𝑊 ,
we need to keep it. Rules from (3) are used to keep described terminals and rules from (4)
erase described nonterminals.

To prove 𝐿(𝐺,𝐹) = 𝐿(𝐻), we first prove 𝐿(𝐻) ⊆ 𝐿(𝐺,𝐹); then, we establish 𝐿(𝐺,𝐹) ⊆
𝐿(𝐻). To demonstrate 𝐿(𝐻) ⊆ 𝐿(𝐺,𝐹), we first make three observations—(i) through (iii).

(i) By using rules constructed in (1) and (2), 𝐻 makes a derivation of the form

⟨𝑞𝑠𝑆𝑞𝑓 ⟩ ⇒* 𝑥0⟨𝑞1𝑍1𝑞2⟩𝑥1...⟨𝑞𝑛𝑍𝑛𝑞𝑛+1⟩𝑥𝑛

where 𝑥𝑖 ∈ (𝑇 − 𝑊)*, 0 ≤ 𝑖 ≤ 𝑛, ⟨𝑞𝑗𝑍𝑗𝑞𝑗+1⟩ ∈ 𝑈,𝑍𝑗 ∈ 𝑊, 1 ≤ 𝑗 ≤ 𝑛, 𝑞1 = 𝑞𝑠, 𝑞𝑛+1 =
𝑞𝑓 , 𝑞1...𝑞𝑛+1 ∈ 𝑄, 𝑞𝑓 ∈ 𝑄𝐹 .

(ii) If

⟨𝑞𝑠𝑆𝑞𝑓 ⟩ ⇒* 𝑥0⟨𝑞1𝑍1𝑞2⟩𝑥1...⟨𝑞𝑛𝑍𝑛𝑞𝑛+1⟩𝑥𝑛

in 𝐻, then

𝑆 ⇒* 𝑥0𝑍1𝑥1...𝑍𝑛𝑥𝑛

in 𝐺, where all the symbols have the same meaning as in (i).

24

(iii) Let 𝐻 make

𝑥0⟨𝑞1𝑍1𝑞2⟩𝑥1...⟨𝑞𝑛𝑍𝑛𝑞𝑛+1⟩𝑥𝑛 ⇒* 𝑦

by using rules constructed in (3) and (4), where 𝑦 ∈ 𝑇 *, and all the other symbols have
the same meaning as in (i). Then, for all 1 ≤ 𝑗 ≤ 𝑛, 𝑞𝑗𝑍𝑗 → 𝑞𝑗+1 ∈ 𝑅, 𝑦 = 𝑥0𝑈1𝑥1...𝑈𝑛𝑥𝑛,
where 𝑈𝑗 = 𝑇𝜔(𝑍𝑗). As 𝑞𝑗𝑍𝑗 → 𝑞𝑗+1 ∈ 𝑅, 1 ≤ 𝑗 ≤ 𝑛, 𝑞1 = 𝑞𝑠 and 𝑞𝑛+1 = 𝑞𝑓 , 𝑞𝑓 ∈ 𝑄𝐹 , we
have 𝑍1...𝑍𝑛 ∈ 𝐿(𝑀).

Based on (i) through (iii), we are now ready to prove 𝐿(𝐻) ⊆ 𝐿(𝐺,𝐹). Let 𝑦 ∈ 𝐿(𝐻).
Thus ⟨𝑞𝑠𝑆𝑄𝐹 ⟩ ⇒* 𝑦, 𝑦 ∈ 𝑇 * in 𝐻. As 𝐻 is an ordinary CFG, we can always rearrange the
applications of rules during ⟨𝑞𝑠𝑆𝑄𝐹 ⟩ ⇒* 𝑦 in such a way that

⟨𝑞𝑠𝑆𝑄𝐹 ⟩ ⇒ ⟨𝑞𝑠𝑆𝑞𝑓 ⟩ (𝛼)
⇒* 𝑥0⟨𝑞1𝑍1𝑞2⟩𝑥1...⟨𝑞𝑚𝑍𝑚𝑞𝑚+1⟩𝑥𝑚 (𝛽)
⇒* 𝑦 (𝛾)

so that during (𝛼), only a rule from (0) is used, during 𝛽 only rules from (1) and (2) are
used, and during (𝛾) only rules from (3) and (4) are used. Recall that 𝑍1𝑍2...𝑍𝑛 ∈ 𝐹 (see
(iii)). Consequently, 𝑊𝜔(𝑥0𝑍1𝑥1...𝑍𝑛𝑥𝑛) ∈ 𝐹 . From (3), (4), (ii), and (iii), it follows that

𝑆 ⇒* 𝑥0𝑍1𝑥1...𝑥𝑛−1𝑍𝑛𝑥𝑛 in 𝐺

Thus, as 𝐿(𝑀) = 𝐹 , we have 𝑦 ∈ 𝐿(𝐺,𝐹), so 𝐿(𝐻) ⊆ 𝐿(𝐺,𝐹).
To prove 𝐿(𝐺,𝐹) ⊆ 𝐿(𝐻), take any 𝑦 ∈ 𝐿(𝐺,𝐹). Thus,

𝑆 ⇒* 𝑥0𝑍1𝑥1...𝑥𝑛−1𝑍𝑛𝑥𝑛 in G, and
𝑦 = 𝑇𝜔(𝑥0𝑍1𝑥1...𝑥𝑛−1𝑍𝑛𝑥𝑛) with 𝑍1...𝑍𝑛 ∈ 𝐹,

where 𝑥𝑖 ∈ (𝑇 − 𝑊)*, 0 ≤ 𝑖 ≤ 𝑛,𝑍𝑗 ∈ 𝑊, 1 ≤ 𝑗 ≤ 𝑛. As 𝑍1...𝑍𝑛 ∈ 𝐹 , we have 𝑞1𝑍1 →
𝑞1, ..., 𝑞𝑛𝑍𝑛 → 𝑞𝑛+1 ∈ 𝑅, 𝑞1...𝑞𝑛+1 ∈ 𝑄, 𝑞1 = 𝑞𝑠, 𝑞𝑛+1 = 𝑞𝑓 , 𝑞𝑓 ∈ 𝑄𝐹 . Consequently, from (0)
through (4) of the Construction, we see that

⟨𝑞𝑠𝑆𝑄𝑓 ⟩ ⇒ ⟨𝑞𝑠𝑆𝑞𝑓 ⟩
⇒* 𝑥0𝑍1𝑥1...𝑍𝑛𝑥𝑛

⇒* 𝑥0𝑈1𝑥1...𝑈𝑛𝑥𝑛

where 𝑈𝑗 = 𝑇𝜔(𝑍𝑗), 1 ≤ 𝑗 ≤ 𝑛. Hence, 𝑦 ∈ 𝐿(𝐻), so 𝐿(𝐺,𝐹) ⊆ 𝐿(𝐻).
Thus, 𝐿(𝐺,𝐹) = 𝐿(𝐻).

Theorem 3.2. CFREG = CF.

Proof. Clearly, CF ⊆ CFREG. From Lemma 3.4, CFREG ⊆ CF. Thus, Theorem 3.2
holds true.

25

3.3 Results
In this chapter, two types of the final sentential forms were studied. The sentential forms
of the context-free grammars finalized by the palindromial languages and the sentential
forms of the context-free grammars finalized by the regular languages. Notice that these
final sentential forms differ only by the type of finalizing language. Refer back to the
Claim 2.1 to see, that the families of palindromial and regular languages are mutually
incomparable. Furthermore, both of these families are small compared to the context-free
languages. However, when palindromial languages are used for finalization, the recursively
enumerable language family is achieved. In contrast, when the regular languages are used
as the finalizing language, the resulting language family is still context-free.

The most interesting result of this chapter is, that by using a single palindromial lan-
guage {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*} as the finalizing language, the recursively enumerable language
family is achieved.

The biggest advantage of the final sentential forms is, that by using the palindromial
languages as the finalizing language, we achieve recursively enumerable languages. The
palindromial languages have a simple structure, therefore it is easy to check, whether some
word belongs to some palindromial language.

The disadvantage of the final sentential forms is, that during the last part of a derivation
process, all the nonterminals from 𝑊 are erased from them. By this mechanism, the
resulting language is produced. We could reproduce this mechanism in the underlying
context-free grammar 𝐺 simply by adding rule 𝑋 → 𝜀 for each nonterminal from 𝑊 . The
problem occurs when we want to decide, whether some word belongs to the generated
language 𝐿(𝐺,𝐹). We need to reconstruct every possible sentential form of 𝐺 and decide,
whether at least one of them is also the final sentential form.

26

Chapter 4

Syntax analysis

In the formal language theory, a membership problem is a problem with the most practical
use. It asks whether or not a given word is a member of a given language. However,
since the languages are potentially infinite and we are mostly interested in the infinite
languages, we describe them by formal models. For example, we ask whether the given
word belongs to the language generated by a given context-free grammar. Solution of
membership problem has different complexity based on the formal model used to describe
the language. Intuitively, it is easier to decide the membership problem for the regular
grammars than for the unrestricted grammars.

The membership problem has many practical uses. Its biggest use is in programming
languages. Source codes of programming languages are processed by finite automata as
part of the lexical analysis of a compiler, and it is determined whether the structure of
lexemes is fulfilled. As part of the syntactical analysis in compilers, it is checked whether
or not the source code fulfills the specification of said programming language, described by
some grammar (usually context-free grammar). In other words, the membership problem
is decided for the source code and the programming language specified by some grammar.
The syntactical analysis is also often called parsing and is used for the membership problem,
where the language is described by some grammar.

Syntax analysis can be divided into two main categories, bottom-up, and top-down
syntax analysis. The bottom-up analysis starts with a word, which represents the bottom
of a derivation tree. Then, by use of reduction rules, bottom-up syntax analysis tries
to reduce a given word to some representation of a start symbol. Conversely, top-down
analysis usually starts with a representation of a start symbol, which represents the top of
a derivation tree. Then by use of expansions than represent a derivation rule, it tries to
expand this start symbol to the given word.

In this chapter, we describe the fundamentals of syntax analysis first. Syntax analysis is
an extensive topic tightly connected to the compilers. Since the syntax analysis is not the
main focus of this thesis, only the basics needed for comprehension of our use are described.
More information about parsing and compilers themselves can be found in [5].

The main part of this chapter is the algorithm Cocke-Younger-Kasami (CYK for short).
Algorithm CYK is a method of the syntax analysis of the context-free grammars. It can
be modified to work as syntax analysis for other grammar-based formal models.

27

4.1 Top-down syntax analysis
The top in the top-down syntax analysis refers to the top of the derivation tree, meaning the
starting symbol. Conversely, bottom refers to the bottom of the derivation tree, meaning
the derived word. Top-down syntax analysis is more straightforward than bottom-up syntax
analysis. The most naive way of top-down syntax analysis is to start with the start symbol,
and generate all of the possible words by the given grammar, until we either generate same
word as an input word or we deplete all the words of the same size as an input word.
Obviously, this method is inefficient. Another example of the method of top-down syntax
analysis is the recursive descent parser which is widely used in compilers.

4.2 Bottom-up syntax analysis
Bottom-up syntax analysis represents a fundamentally opposite way of syntax analysis to
top-down syntax analysis. It with a given word and it tries to work its way to the starting
symbol by application of reductions. In the compilers, LR parsing is a method for bottom-
up syntax analysis. In this chapter, we are using the algorithm Cocke-Younger-Kasami,
which is the bottom-up syntax analysis. However, while it is a method for syntax analysis,
it is not the preferred method for compilers, since it requires a CFG in Chomsky normal
form.

4.3 Algorithm Cocke-Younger-Kasami
An algorithm Cocke-Younger-Kasami (CYK for short) represents a general way to solve
the membership problem for CFGs. It takes some word and the CFG in Chomsky normal
form (see Definition 2.41) as an input. Recall that grammar in Chomsky normal form if
and only if for all the rules in grammar, the right-side contains either two nonterminals
or one terminal. The output of the algorithm is, whether or not an input grammar can
generate an input word. The main part of this algorithm is the so-called CYK table. It is
a two-dimensional array with both dimensions of the size of the input word.

Basic idea. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be an input CFG and 𝑤 = 𝑤1...𝑤𝑛, with 𝑤𝑖 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑛
be an input word. The base of the algorithm is two dimensional array of sets of nontermi-
nals 𝐶𝑌𝐾[𝑖, 𝑗], for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. From definition of Chomsky normal form, we know that
in order to 𝑤 ∈ 𝐿(𝐺) hold true, there must exist at least one nonterminal 𝐴 ∈ 𝑉 − 𝑇 , such
that 𝐴 → 𝑤𝑖 ∈ 𝑅, for each 1 ≤ 𝑖 ≤ 𝑛. Therefore, the algorithm starts by placing these non-
terminals into corresponding positions in 𝐶𝑌𝐾. For each 1 ≤ 𝑖 ≤ 𝑛, add each nonterminal
𝐴 such that 𝐴 → 𝑤𝑖 to 𝐶𝑌𝐾[𝑖, 𝑖]. After that, pairs of nonterminals on right-side of the
rules can be reduced to single nonterminal. Whenever 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘]
and 𝑋 → 𝐵𝐶 ∈ 𝑃 , add 𝑋 to 𝐶𝑌𝐾[𝑖, 𝑘]. The end of algorithm occurs when no further re-
duction can be applied. At the end of the run of the algorithm, if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛], 𝑤 ∈ 𝐿(𝐺).
Otherwise, 𝑤 ̸∈ 𝐿(𝐺).

A successful run of the algorithm can be seen in Figure 4.1. The algorithm CYK is taken
from [5]. This algorithm is also described in the form of pseudocode in Algorithm 4.1.

Algorithm CYK is also suitable for other types of grammars, assuming that it is properly
modified.

28

Figure 4.1: Example of the successful run of the algorithm CYK with a visualization of the
CYK table for grammar 𝐺 = ({𝐴,𝐵,𝐶,𝐷,𝑋, 𝑌, 𝑆}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑆 → 𝑋𝑌,𝑋 → 𝐴𝐵, 𝑌 →
𝐶𝐷,𝐴 → 𝑎,𝐵 → 𝑏, 𝐶 → 𝑐,𝐷 → 𝑑}, 𝑆) for an input word 𝑎𝑏𝑐𝑑. Bottom left corner
represents position [1,1] and bottom right corner represents position [1,4] in the table.

Algorithm 4.1 An algorithm Cocke-Younger-Kasami for syntax analysis of context-free
grammars
Input

• a context-free grammar, 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) in Chomsky normal form
• 𝑤 = 𝑎1𝑎2...𝑎𝑛 where 𝑎𝑖 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1.

Output
• ACCEPT if 𝑤 ∈ 𝐿(𝐺)
• REJECT if 𝑤 /∈ 𝐿(𝐺)

Method
𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
for i = i to 𝑛 do

if 𝐴 → 𝑎𝑖 ∈ 𝑅 then
𝑎𝑑𝑑 𝐴 𝑡𝑜 𝐶𝑌 𝐾[𝑖, 𝑖]

repeat
if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗+1, 𝑘], 𝐴 → 𝐵𝐶 ∈ 𝑅 for some 𝐴,𝐵,𝐶 ∈ (𝑉 −𝑇) then

𝑎𝑑𝑑 𝐴 𝑡𝑜 𝐶𝑌 𝐾[𝑖, 𝑘]

until no changes
if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] then

ACCEPT
else

REJECT

29

4.4 Syntax analysis of final sentential forms
In Chapter 3, we described the properties of the final sentential forms with two different
types of finalizing languages. When we use the palindromial languages to finalize sentential
forms of the context-free grammars, we get generative power equivalent to turing machines.
When regular languages are used for finalizing, the resulting languages are context-free.
Therefore, we are only interested in finalizing by palindromial grammars.

The algorithm CYK for syntax analysis of CFGs was described in Section 4.3. Since the
basis of the final sentential forms are sentential forms of CFGs, we modify the CYK algo-
rithm for our purposes. The modifications of the CYK algorithm must solve the increased
complexity of the final sentential forms.

Problems of syntax analysis of final sentential forms

Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a CFG and 𝐹 a palindromial language. In Definition 3.2 we defined
the final sentential forms 𝜑(𝐺,𝐹) and the language of 𝐺 finalized by 𝐹,𝐿(𝐺,𝐹). For the
syntax analysis, it is needed to somehow represent this palindromial language 𝐹 . For this
purpose, we use the set 𝑊 since the palindromial language have trivial form. Remember,
that palindromial grammars have only a single nonterminal and rules in the form 𝑆 → 𝑎𝑆𝑎
or → #, where 𝑆 is the only nonterminal, 𝑎 is a terminal, and # is a terminal that only
occurs on the right-side of a single rule. Therefore, every palindromial language over 𝑊 is
defined as {𝑤#𝑤𝑅 |𝑤 ∈ 𝑊 *}.

It may seem, that syntax analysis of the final sentential forms is straightforward. We
already described the algorithm for syntax analysis of context-free grammars, and syntax
grammar of palindromial grammars is trivial. However, there is one more problem. The
biggest challenge during syntax analysis of the final sentential forms is a reconstruction
of the deleted symbols. Remember that 𝐿(𝐺,𝐹) is defined as 𝐿(𝐺,𝐹) = { 𝑇𝜔(𝑦) | 𝑦 ∈
𝜑(𝐺,𝐹), (𝑁−𝑊)𝜔(𝑦) = 𝜀}. By this definition, all of the occurrences of (𝑊 − 𝑇) are deleted.
Parsing of final sentential forms consists of these three steps

(1) reconstruction of 𝑦, such that 𝑇𝜔(𝑦) ∈ 𝐿(𝐺,𝐹);

(2) syntax analysis of 𝑦 by the CFG 𝐺;

(3) syntax analysis of 𝑊𝜔(𝑦) by the palindromial grammar 𝑀 , such that 𝐿(𝑀) = 𝐹 .

Let us start with the description of step (3), since it is the easiest.

Syntax analysis of the palindromial languages

In Lemma 3.3, we have proven, that by using a palindromial finalizing language 𝐹 =
{𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, the resulting language family is recursively enumerable.

The usage of the concrete palindromial language 𝐹 in Lemma 3.3 results in a stronger
theoretical result. However, the use of this language is impractical in practice. Instead of
this language, we allow usage of any palindromial language. To represent the palindromial
language, we could use palindromial grammar (see Definition 2.28). However, notice that
the forms of the rules of palindromial grammars are very constricted, allowing only rules
in the form 𝑆 → #, or 𝑆 → 𝑎𝑆𝑎, where 𝑆 is the only nonterminal, # is the central symbol
and the 𝑎 is any terminal except for #. In final sentential forms, the palindromial language
𝐹 is defined over the set 𝑊 . Therefore, we represent 𝐹 indirectly by the set 𝑊 . Let

30

𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be a palindromial grammar such that 𝐿(𝐺) = 𝐹 . We assume that 𝑇 = 𝑊
and 𝑉 = 𝑊 ∪{𝑆}, 𝑃 = {𝑆 → 𝑥𝑆𝑥 |𝑥 ∈ 𝑊 −{#}}∪{𝑆 → #} and 𝑆 is the start symbol. As
result, every final language 𝐹 can be expressed as {𝑤#𝑤𝑅 |𝑤 ∈ (𝑊 − {#})*}. This allows
us to perform the syntax analysis of the palindromial languages easily without working with
the palindromial grammars.

Palindromial languages have a simple structure. We must verify that the input word
𝑥 is of the form 𝑥 = 𝑦#𝑧, where 𝑦, 𝑧 ∈ (𝑊 − {#})*, and 𝑦 = 𝑧𝑅. The central symbol
is always member of 𝑊 . The algorithm for syntax analysis palindromial languages is
described in the form of the pseudocode in Algorithm 4.2.

Algorithm 4.2 A algorithm for syntax analysis of the palindromial languages
Input

• a set 𝑊 , such that 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ (𝑊 −#)*}
• an input word 𝑤

Output
• ACCEPT if 𝑤 ∈ 𝐹
• REJECT if 𝑤 /∈ 𝐹

Method
if 𝑤 = 𝑥#𝑦, 𝑥, 𝑦 ∈ 𝑊 − {#}, |𝑥| = |𝑦|, and 𝑥 = 𝑦𝑅 then

ACCEPT
else

REJECT

Syntax analysis of the context-free final sentential forms

Let 𝐿(𝐺,𝐹) be a language of 𝐺 finalized by 𝐹 , where 𝐺 is a CFG and 𝐹 is a palindromial
language. The sentential forms of 𝐺 are the basis of the final sentential forms, which then
form 𝐿(𝐺,𝐹). As an input of syntax analysis, we take some word 𝑤 which consists of
terminals. Recall Definition 3.3 of 𝐿(𝐺,𝐹). Notice, that by this definition, 𝑤 ∈ 𝐿(𝐺) ⇐⇒
𝑤 ∈ 𝐿(𝐺,𝐹) may not hold. And it most likely does not hold. This property comes from the
fact, that we construct 𝐿(𝐺,𝐹) by erasion of symbols from 𝑊 −𝑇 from sentential forms of
𝐺.

Constraints of the context-free final sentential forms

In Section 3.1, we have shown and proven, that by using a palindromial language to finalize
sentential forms of CFGs, we achieve recursively enumerable language family. When we
look at the proof of Lemma 3.3, we can see that the context-free grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆)
that is constructed in this proof has certain properties. 𝐺 is propagating, meaning that it
contains no 𝜀-rules. Also notice, that symbols from 𝑊 are never rewritten, even though
they are nonterminals. This means that for 𝐺, symbols from 𝑊 are useless. However, in
final sentential forms, these symbols play a crucial role.

In the context-free grammars, we defined the notion of ambiguity (see Definition 2.39).
In final sentential forms, there may exist multiple sentential forms that can be transformed
into the same word. Remember, that this transformation is done by application of 𝑇𝜔 to
the sentential form 𝑢. However, 𝑢 does not have to be the final sentential form. If we allow
symbols from 𝑊 to be rewritten, there may exist an infinite number of sentential forms
that can be transformed into the same word. We would potentially need to check every one

31

of them, whether at least one of them belong to the final language. We could not reliably
decide, whether there exists some sentential form that also belongs to the final language
since there could be an infinite number of these sentential forms. Therefore, we cannot
allow nonterminals from 𝑊 to be rewritten, or right-side to consist only of nonterminals
from 𝑊 . The rules in these forms could potentially keep expanding the sentential form
without adding any terminals.

In conclusion, the context-free grammar 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) used to generate the final
sentential forms must fulfill following properties:

• 𝐺 is propagating;

• 𝑃 ⊆ 𝑉 − (𝑊 ∪ 𝑇)× 𝑉 *((𝑉 −𝑊) ∪ 𝑇))𝑉 *.

4.4.1 Modification of algorithm Cocke-Younger-Kasami

In Section 4.3, we described the Cocke-Younger-Kasami syntax analysis algorithm for
context-free grammars. Let 𝐿(𝐺,𝐹) be a language of 𝐺 finalized by 𝐹 , where 𝐺 =
(𝑉, 𝑇, 𝑃, 𝑆) is a CFG and 𝐹 is a palindromial language. Since we use CFG to generate
sentential forms that are then finalized by 𝐹 , we decided to use the algorithm CYK for
syntax analysis of final sentential forms. Algorithm CYK requires the input CFG to be in
Chomsky normal form (see Definition 2.41). Earlier in this chapter, we constrained CFGs
for final sentential forms to propagating CFGs. Meaning that they contain no 𝜀-rules. To
transform 𝐺 to the Chomsky normal form, we need to remove unit rules and apply Algo-
rithm 2.1 to 𝐺. Notice, that by Definition 2.41, useless symbols are prohibited in CNF.
However, we require that nonterminal symbols from 𝑊 are never rewritten, therefore they
are useless by Definition 2.35. Hence, we ignore this requirement. From this point, we
assume that 𝐺 is already in Chomsky normal form.

The algorithm CYK takes a word 𝑧 consisting only of terminals as input. The language
𝐿(𝐺,𝐹) may contain the word 𝑧, but 𝐺 does not have to be able to generate it. 𝐺 generates
sentential forms, that are then finalized and transformed by the application of 𝑇𝜔. So we
need algorithm CYK to find such sentential form 𝑠 of 𝐺, that 𝑠 can be finalized by 𝐹 and
transformed to 𝑧 input word by application of 𝑇𝜔. Meaning that CYK needs to find 𝑠, such
that 𝑊𝜔(𝑠) ∈ 𝐹 , and 𝑇𝜔(𝑠) = 𝑧.

The CYK table in the CYK algorithm has a size according to the length of the input
word 𝑧, |𝑧|. The sentential form 𝑠 of 𝐺, such that 𝑊𝜔(𝑠) ∈ 𝐹 , and 𝑇𝜔(𝑠) = 𝑧 may be longer
than 𝑧. There is no way to compute the length of 𝑠 at the beginning of the algorithm, since
we obtain 𝑠 at the end of the algorithm. Therefore, we have to adapt the algorithm for this
fact. By the definition of final sentential forms, they can only contain nonterminals from
𝑊 . This means, that the extra length of 𝑠, |𝑠| over |𝑧| comes from nonterminal symbols
from 𝑊 . Since 𝐺 is in Chomsky normal form, nonterminals from 𝑊 can only occur on the
right-side of the rules in three cases:

(1) 𝐴 → 𝐵𝐶, where 𝐴 ∈ 𝑉 − (𝑊 ∪ 𝑇), 𝐵 ∈ 𝑊 − 𝑇,𝐶 ∈ 𝑉 − (𝑊 ∪ 𝑇);

(2) 𝐴 → 𝐵𝐶, where 𝐴 ∈ 𝑉 − (𝑊 ∪ 𝑇), 𝐵 ∈ 𝑉 − (𝑊 ∪ 𝑇), 𝐶 ∈ 𝑊 − 𝑇 ;

(3) 𝐴 → 𝐵𝐶, where 𝐴 ∈ 𝑉 − (𝑊 ∪ 𝑇), 𝐵 ∈ 𝑊 − 𝑇,𝐶 ∈ 𝑊 − 𝑇 .

The cases (1) and (2) mean, that the nonterminal symbol from 𝑊 is either on the right
or left position of pair of nonterminals. Remember that the case (3) is forbidden by the

32

restrictions that we put on the input CFG. The nonterminals from 𝑊 are simply removed
to acquire the resulting word in 𝐿(𝐺,𝐹). Therefore, we check each nonterminal 𝑋 in the
CYK table, whether it could be part of some rule described in (1) and (2). If such rule
exists, make reduction according to this rule and place the left-side nonterminal on the
same position as 𝑋. With the addition of handling of these rules, we can continue the
algorithm CYK as usual.

By mentioned modification, we are able to decide, whether there exists a sentential form
𝑠 generated by 𝐺, such that 𝑇𝜔(𝑠) = 𝑧, where 𝑧 is the input word. However, this does not
mean that 𝑧 ∈ 𝐿(𝐺,𝐹). We also need to verify that 𝑊𝜔(𝑠) ∈ 𝐹 . In the original algorithm
CYK, once we get the start symbol 𝑆, 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛], where 𝑛 is the length of 𝑧, in the
CYK table, we declare syntax analysis as successful. For our modification, once we reach
𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛], we need to check, whether 𝑊𝜔(𝑠) ∈ 𝐹 . For this purpose, we need to extract
𝑊𝜔(𝑠) and pass it to syntax analysis for the palindromial languages. In CYK for CFGs, it
doesn’t matter what sequence of reductions was used to reach the start symbol. In other
words, it doesn’t matter which derivation tree we discovered. Once we know that some
derivation tree exists for the input word 𝑥 and input grammar 𝐻, we know that 𝑥 ∈ 𝐿(𝐻).
Even if 𝐻 is ambiguous. On the contrary, for the syntax analysis of final sentential forms,
we also need to check that 𝑊𝜔(𝑠) ∈ 𝐹 .

To extract 𝑊𝜔(𝑠) from sentential form 𝑠, we need to keep the history of reductions for
each symbol. That means, that we are effectively constructing the derivation tree 𝑡. The
root of 𝑡 is start symbol 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛]. The leaves of 𝑡 are terminals and nonterminal from
𝑊 , and nodes are nonterminals. The child nodes of each node represent the right side of the
rules that were used to reduce this node. We construct 𝑡 in a bottom-up way. It is important
that we construct every possible derivation tree. Therefore, the CYK table might contain
duplicate nonterminals in the same position, that represent different derivation subtrees.
Of course, when we perform reduction with rules that contain nonterminal from 𝑊 , we
must put that nonterminal into the derivation tree.

Once we construct the full derivation tree 𝑡, we can perform extraction of 𝑊𝜔(𝑠). Notice
that because of the use of Chomsky normal form, each node of 𝑡 has exactly two child nodes,
except for nodes whose child node is a leaf. This means, that we can think of 𝑡 as a binary
tree. We traverse 𝑡 in an inorder fashion, and when we encounter the symbol from 𝑊 , we
put it as the next symbol in a word 𝑢 that reconstructs 𝑊𝜔(𝑠). When the traversal of 𝑡 is
finished, 𝑊𝜔(𝑠) = 𝑢.

Once we obtain 𝑢, we can perform the syntax analysis of 𝑢 ∈ 𝐹 . If the result is a
success, 𝑧 ∈ 𝐿(𝐺,𝐹), otherwise, we continue the CYK algorithm to get the next derivation
tree. Once we cannot find any new derivation tree, and no syntax analysis of 𝑢 ∈ 𝐹 was
successful, the result of 𝑧 ∈ 𝐿(𝐺,𝐹) is unsuccessful.

The whole modification of the CYK algorithm for final sentential forms can be seen as
pseudocode in Algorithm 4.3.

33

Algorithm 4.3 A modification of algorithm Cocke-Younger-Kasami for syntax analysis of
final sentential forms
Input

• a context-free grammar, 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) in Chomsky normal form
• a set 𝑊 , such that 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ (𝑊 −#)*}
• 𝑤 = 𝑎1𝑎2...𝑎𝑛 where 𝑎𝑖 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1.

Output
• ACCEPT if 𝑤 ∈ 𝐿(𝐺,𝐹)
• REJECT if 𝑤 /∈ 𝐿(𝐺,𝐹)

Data structures
structure 𝐼𝑡𝑒𝑚 {𝑠𝑦𝑚𝑏𝑜𝑙, 𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡, 𝑟𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑒𝑛𝑡}
Method
𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
for i = i to 𝑛 do

if 𝐴 → 𝑎𝑖 ∈ 𝑅 then
𝑎𝑑𝑑 𝐼𝑡𝑒𝑚{𝑠𝑦𝑚𝑏𝑜𝑙 : 𝐴, 𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡 : 𝑎𝑖, 𝑟𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑒𝑛𝑡 : 𝑛𝑢𝑙𝑙} 𝑡𝑜 𝐶𝑌 𝐾[𝑖, 𝑖]

repeat
for every unique 𝑋𝐼𝑡𝑒𝑚 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝑌 ∈ 𝑊 such that, 𝑍 → 𝑋𝑠𝑦𝑚𝑏𝑜𝑙𝑌 ∈ 𝑅 or

𝑍 → 𝑌 𝑋𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑅 do
𝑎𝑑𝑑 𝐼𝑡𝑒𝑚{𝑠𝑦𝑚𝑏𝑜𝑙 : 𝑍, 𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡 : 𝑋𝐼𝑡𝑒𝑚, 𝑟𝑖𝑔ℎ𝑡𝐼𝑡𝑒𝑚 : 𝑌 } or
𝐼𝑡𝑒𝑚{𝑠𝑦𝑚𝑏𝑜𝑙 : 𝑍, 𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡 : 𝑌, 𝑟𝑖𝑔ℎ𝑡𝐼𝑡𝑒𝑚 : 𝑋𝐼𝑡𝑒𝑚}
𝑡𝑜 𝐶𝑌 𝐾[𝑖, 𝑗], respectively

for every unique 𝐵𝐼𝑡𝑒𝑚 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶𝐼𝑡𝑒𝑚 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘] such that, 𝐴 →
𝐵𝑠𝑦𝑚𝑏𝑜𝑙𝐶𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑅 do

𝑎𝑑𝑑 𝐼𝑡𝑒𝑚{𝑠𝑦𝑚𝑏𝑜𝑙 : 𝐴, 𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡 : 𝐵𝐼𝑡𝑒𝑚, 𝑟𝑖𝑔ℎ𝑡𝐼𝑡𝑒𝑚 : 𝐶𝐼𝑡𝑒𝑚} 𝑡𝑜 𝐶𝑌 𝐾[𝑖, 𝑘]

until no changes
if there exists any 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] 𝑎𝑛𝑑 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝐼𝑡𝑒𝑚(𝑆𝐼𝑡𝑒𝑚) ∈ 𝐹 then

ACCEPT
else

REJECT

function TraverseItem(Item X)
𝑤𝑜𝑟𝑑 = 𝜀
if 𝑋𝑙𝑒𝑓𝑡𝑃𝑎𝑟𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 then

𝑤𝑜𝑟𝑑 = 𝑤𝑜𝑟𝑑+ TraverseItem(𝑋𝑙𝑒𝑓𝑡𝐼𝑡𝑒𝑚)

if 𝑋𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑊 then
𝑤𝑜𝑟𝑑 = 𝑤𝑜𝑟𝑑+ TraverseItem(𝑋𝑙𝑒𝑓𝑡𝐼𝑡𝑒𝑚)

if 𝑋𝑟𝑖𝑔ℎ𝑡𝑃𝑎𝑟𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 then
𝑤𝑜𝑟𝑑 = 𝑤𝑜𝑟𝑑+ TraverseItem(𝑋𝑙𝑒𝑓𝑡𝐼𝑡𝑒𝑚)

return 𝑤𝑜𝑟𝑑

34

Chapter 5

Implementation and applications

In Chapter 3, we have shown that language 𝐿(𝐺,𝐹) can represent any recursively enumer-
able language, in case that 𝐺 is a propagating context-free grammar and 𝐹 is a palindromial
language. This means that the final sentential forms of context-free grammar finalized by
a palindromial language are equivalent to turing machines.

In this chapter, we firstly discuss the implementation of the introduced syntax analysis
for the final sentential forms. Then we discuss the applications of the final sentential forms
that can be put into the practice using the implementation of the syntax analysis.

When we mention the final sentential forms in this chapter, we always refer to the
context-free sentential forms finalized by a palindromial language.

5.1 Implementation
The problems of syntax analysis of final sentential forms are described in Chapter 4. The
point of the syntax analysis is to determine whether the given word is a member of a
language described by some final sentential forms. This implementation is supposed to act
as a demonstration of the final sentential forms in practice.

One of the first stages of the implementation is a selection of a programming lan-
guage. For purposes of the implementation part of this thesis, I chose the programming
language Python, version 3.10. Python is interpreted high-level programming with rich
abstractions and standard library. Therefore, it is suitable for prototyping and small-scale
implementations, where its slower execution speed does not cause an issue.

The implementation is written as a console application. The main purpose of this
implementation is to demonstrate the capabilities of the final sentential forms.

File structure

The implementation of the syntax analysis of the final sentential forms is divided into
multiple parts—files. There are 5 files that contain source code. Those are

(a) parse.py;

(b) fileReader.py;

(c) rules.py

(d) chomskyNormalForm.py;

35

(e) cyk.py.

The file (a) represent the console interface between the user and the program. It reads
the command-line parameters and performs the syntax analysis of the final sentential forms
based on these parameters. The input file that defines the input context-free grammar
and the palindromial language is read and processed by file (b). It provides the internal
representation of the mentioned CFG and the palindromial language to the other parts of
the program. The file (c) contains the data structures used for the internal representation
of the symbols and the rules of context-free grammars.

The algorithm Cocke-Younger-Kasami requires the input CFG to be in Chomsky normal
form. For the user, it would be impractical and difficult to provide the CFG in Chomsky
normal form directly. Therefore, the file (d) performs the transformation of the input CFG
𝐺 to the CFG 𝐺 in Chomsky normal form, such that 𝐿(𝐺) = 𝐿(𝐺). The syntax analysis
itself is done entirely in the file (d). It performs both the modified Cocke-Younger-Kasami
algorithm and the syntax analysis of the palindromial language.

5.1.1 Command-line interface

Interaction with the user is done using the command-line. Meaning that there is no graph-
ical interface. The interaction with the implemented program is simple. The user needs
to provide the input file and the word to parse. Both can be easily done through the
command-line.

The file that implements the command-line interaction with the user is parse.py. The
program accepts only 3 command-line parameters and if syntax analysis should be executed,
it passes the parameters to the proper objects. The parameters that parse.py accept are:

(1) -h

(2) -i <input file>

(3) -w <word to parse>

The parameter (1) is used to print the help text to the standard output. When this
parameter is used, only the help text is printed. No syntax analysis is performed. The
input file is specified by the parameter (2). The input file can be specified by either relative
or absolute path. This parameter is mandatory when the parameter (1) is not used. The
last parameter (3) is used to specify the input word for syntax analysis. This parameter is
also mandatory when the parameter (1) is not used.

We mentioned, that we must specify the input CFG and the palindromial grammar.
However, so far we have not specified the format of this input file.

Data structures for the context-free grammar

In the implementation of the final sentential forms, we need to represent the context-free
grammars internally by proper data structures. Specifically, the symbols and the rules of
the context-free grammar. The file rules.py contains 6 classes, which represent the data
structures.

36

Symbols

Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) be an input context-free grammar. The symbols of the total alphabet 𝑉
are represented by the classes Symbol, Terminal, and NonTerminal. These three classes use
the inheritance. The Symbol class is a parent class and both Terminal and NonTerminal
classes are its subclasses (they inherit from Symbol class). The only instance variable
that these classes contain is value which the character representing the symbol. The
main purpose of the Terminal and NonTerminal is to differentiate between terminals and
nonterminals. These two classes have their equivalence defined based on their type and
their value, meaning that nonterminal with value 𝐴 is not equal to the terminal with the
value 𝐴.

The SymbolSequence represents the sequences of the terminals and nonterminals. These
sequences are mainly used as the right-sides of the rules. This class also contains methods
that are able to classify a type of the sequence. For example isCNF method decides, whether
the sequence satisfies the Chomsky normal form.

Rules

We have already described, how are the symbols and the symbol sequences of the 𝐺 repre-
sented by the data structures. The rules use both the symbols and the symbol sequences.
The nonterminal symbols are the left-side of the rules, and the symbol sequences are the
right-sides of the rules. The class that represent the rules is Rule. It contains two instance
variables—leftSides and rightSide. Each rule object keeps the list of the left-sides, that
can be rewritten to some single right-side.

To manage all the rules of the input CFG, class RuleHandler is used. It contains
three instance variables—terminals, nonterminals, and rules. The instance variables
terminals and nonterminals are lists, that are used mainly during the creation of the
instances of the SymbolSequence class. The rules instance variable is the data structure
hash table (dictionary in Python) used to store all the rules of the input CFG. Hash tables
are used because of their native built-in support in Python and their fast value access. Hash
tables store key-value pairs, similarly to the JSON files. The key is used to access the value
in hash map. Any data type can be used as the key as long as the hash function if provided
for that data type. For the rules hash table, the keys are SymbolSequence objects and
the values are Rule objects. The Rule objects contain the list of the left-sides that can be
rewritten to the same right-side. Therefore, the keys are the right-sides of the rules and the
lists of the left-sides are the values. It may seem counter-intuitive to use the right-sides as
the keys, but it simplifies the implementation of the syntax analysis.

5.1.2 Input file

The input file contains the specification of the input CFG and the palindromial grammar
in JSON format. The abbreviation JSON stands for JavaScript object notation. It is a
standardized text-based syntax used for storing structured data. JSONs syntax is light-
weight which makes it easily readable for the user. Even though JSON is derived from
the programming language JavaScript, it is language-independent. Python programming
language allows us to easily work with the JSON files by providing the module json. JSON
is also widely used in real-world applications.

We mentioned that JSON has light-weight syntax. However, the full specification of the
JSON syntax has complicated details. The specification of the JSON is specified in both

37

ECMA standard1 and IETF RFC2. We describe only the basics needed for the user to write
a proper input file.

The main structure of the JSON is the object. The object definition starts with a
left curly bracket { and ends with a right curly bracket }. Inside the curly brackets, zero
or more name-value pairs are defined. The pairs are delimited by comma ,. The name and
the value of the pair are delimited by a colon :. In the name-value pair, the name is string
literal and the value can be an object, array, string, number, or true/false/null literal.

In JSON, array structure starts with the left square bracket [and ends with the right
square bracket]. Inside the square brackets, zero or more values delimited by the comma
can be specified. The string and number values are in the usual format. The true and
false values represent boolean values. The null value is the special value for unspecified
value. The white-space in JSON is ignored.

The input file must contain the following name-value pairs

(a) nonterminals

(b) terminals

(c) rules

(d) W

The values of the (a), (b), (c) and (d) are an arrays of a strings. Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆𝐺)
be a context-free grammar, 𝐹 ⊆ 𝑊 * ∈ PAL. The (a) represents 𝑉 − 𝑇 , the (b) represents
𝑇 , the (c) represents 𝑃 and the (d) represents 𝑊 , that is used as a representation of the
final language 𝐹 . The strings of (a), (b) and (d) must be a single character.

The rule strings of (c) start with a single symbol representing a nonterminal, followed
by the dash and ”greater-than“ symbols ’->’, and a right-sides. The right-side is sequence
of terminal and nonterminal symbols. Each rule string can contain single or multiple right-
sides. When we want to declare multiple right-sides at once, we delimit them vertical bar
symbol ’|’. The example of the rule string is following:

R -> 1RA|0RB|0WC|0C

The start symbol is implicitly S.
Notice that the only information about the finalizing palindromial language is the set

𝑊 . The palindromial languages can be represented by the palindromial grammars (see
Definition 2.28). The rules of the palindromial languages are trivial. For some palindromial
grammar 𝐻 = ({𝑆} ∪𝑊,𝑊,𝑅, 𝑆𝐻), we assume, that for every 𝑥 ∈ 𝑊 − {#}, there exists
rule 𝑥𝑆𝑥 ∈ 𝑅. Furthermore, we assume that the set of the rules 𝑅 contains only one other
rule—𝑆 → #. As mentioned earlier, the final language 𝐹 ⊆ 𝑊 * is defined as 𝐹 = 𝐿(𝐻),
and only 𝑊 is used for the syntax analysis.

5.1.3 Input file reader

Earlier in this section, we described the format and the contents of the input file. The
input file is in JSON format and contains the symbols and the rules of the input context-
free grammar and the set 𝑊 . The file fileReader.py is responsible for the reading of

1ECMA-404 The JSON data interchange syntax
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

2IETF RFC 8259 The JavaScript Object Notation (JSON) Data Interchange Format
https://datatracker.ietf.org/doc/html/rfc8259#section-2

38

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://datatracker.ietf.org/doc/html/rfc8259#section-2

the input file, the verification of the JSON contents, and the creation of the proper data
structures from the input file.

The input file is read using the Python built-in package json. It allows us to load the
JSON file directly and provides the basic verification of the JSON format. The function
json.load loads the input file into the hash table (dictionary in Python). The JSON
does not provide any feature to define and enforce the schema of the data. However,
fileReader.py contains functionality to verify that the JSON contains all required data in
proper format and noting more. The fileReader.py contains the class InputData whose
instance it returns as an internal representation of the input file. The only purpose of this
class is to store the contents of the loaded input file.

5.1.4 Transformation of context-free grammar to Chomsky normal form

In Section 4.4.1, we introduced a modification of the algorithm Cocke-Younger-Kasami that
is suitable for syntax analysis of the final sentential forms. Remember, that the algorithm
CYK requires the input CFG to be in Chomsky normal form. Chomsky normal form is
described in Section 2.5.2. It also describes the algorithm for conversion of any CFG to
Chomsky normal form. In Algorithm 2.1 for the transformation of the context-free grammar
to the context-free grammar in Chomsky normal form, we assume that the input CFG is
in proper form. Remember, that the CFG is proper (see Definition 2.40, if it contains no
useless symbols, no 𝜀-rules, and no unit rules. For the purposes of the syntax analysis of the
final sentential forms, we require the nonterminals from 𝑊 to be, by Definition 2.35, useless.
Therefore, we ignore this property. The CFG of the final sentential forms is propagating,
therefore it contains no 𝜀-rules. The input CFG for the transformation may contain the
unit rules, so we must be able to replace them with rules that satisfy Chomsky normal
form.

The file chomskyNormalForm.py contains the class CNF. CNF loads the rules of the in-
put context-free grammar 𝐺 and transforms them into the Chomsky normal form. The
main method of the CNF is the method getRulesInCNF. It takes the instance of the class
InputData as its parameter and returns the instance of the class RuleHandler. At first,
the method getRulesInCNF verifies the format of the rules and puts rules already in CNF
to the new instance of the RuleHandler 𝑟. Then, the method transformToCNF transforms
the remaining rules of 𝐺 into the Chomsky normal form. These rules are added to 𝑟 and 𝑟
is then returned.

5.1.5 Syntax analysis

The file cyk.py implements the syntax analysis of the final sentential forms. Algorithm 4.3
describes the implemented syntax analysis. It is a modification of the CYK algorithm for
the syntax analysis of the context-free grammars. By the described modifications of the
CYK algorithm, we are able to perform the syntax analysis of the final sentential forms.

The file cyk.py contains two classes used for the syntax analysis of the final sentential
forms. The class CYKItem is used for the representation of the items in the CYK table.
This class contains three instance variables. The value represents the nonterminal itself.
The leftParent and the rightParent represent left and the right nonterminals that were
reduced to the nonterminal in value. Remember that every rule in Chomsky normal form
satisfies the form 1 : 𝐴 → 𝐵𝐶 or 2 : 𝐴 → 𝑎, where 𝐴,𝐵,𝐶 are some nonterminals and 𝑎
is some terminal. If 𝐴 in CYK table is reduced according to the rule 1, the leftParent
is the nonterminal 𝐵 and the rightParent is the nonterminal 𝐵. If the rule 2 is used for

39

the reduction, 𝑎 is assigned to the leftParent and rightParent remains empty. When a
rule with a single terminal on the right-side is used, the leftParent is used. The purpose
of the left and right parents is to construct the parse tree, hence the name.

The second class of the file cyk.py is the CYK. Its purpose is to load the rules from the
input file, transform them to CNF, and perform the syntax analysis on the given input
word. The constructor of the CYK class takes two parameters—file name of the input file
and the input word. The file fileReader.py is used to get the instance of InputData that
is passed to the instance of the CNF class, which returns the rules in the Chomsky normal
form.

The method parse performs the syntax analysis of the final sentential forms. The
method parsePalindromial is used for the syntax analysis of the palindromial language
described in Algorithm 4.2. As mentioned earlier, the syntax analysis of the palindromial
language is done in regard to the set 𝑊 . Meaning that the word must satisfy the form
𝑥#𝑥𝑅, 𝑥 ∈ (𝑊 − {#})*. If the syntax analysis of the final sentential forms is successful,
the input word, the final sentential form, the word in the final language, and the success
message are printed to the standard output. In the case of the failure, only the input word
and the failure message are printed to the standard output. The examples of the successful
and unsuccessful runs can be seen in Figure 5.1.

Figure 5.1: Example of the outputs from the implemented program. The language 𝐿(𝐺,𝐹)
and the set 𝑊 used is taken from Application 5.3. On the left side, an input word 110#101 ∈
𝐿(𝐺,𝐹). The 𝑊𝜔(1𝐴1𝐶0𝐷#101𝐷𝐶𝐴) ∈ 𝐹 holds true. On the right side, an input word
110#111 ̸∈ 𝐿(𝐺,𝐹).

5.1.6 Comparison to other software

The main result of this thesis are the final sentential forms. They are newly introduced
concept that allow us to filter the sentential forms of the context-free grammars and select
only some of them, based on the final language. In Chapter 4, we described the algorithm for
syntax analysis of the final sentential forms. The implementation in this thesis is supposed
to act as demonstration of feasibility of syntax analysis of the final sentential forms. We
have also shown some applications of the final sentential forms. Since the final sentential
forms are newly introduced concept, we cannot compare this implementation to the other
software fairly.

5.2 Applications
For many applications, the CFGs simply do not have sufficient generative power. By the
finalization of context-free sentential forms, we achieve far greater generative power. We
focus only on applications that cannot be represented by the context-free grammars. It
would be unnecessary to represent context-free languages by final sentential forms since we
are already using a CFG to generate sentential forms that are then finalized. One of the
areas, where we applied the final sentential forms is linguistics.

40

Application 5.1. Let Σ represent an English alphabet. Set 𝐿 = {𝑤#𝜎(𝑤) |𝑤 ∈ Σ+},
where 𝜎 is the homomorphism from Σ* to {0, 1}* defined as 𝜎(𝑥) = 1 and 𝜎(𝑦) = 0 for
every consonant 𝑥 in Σ and every vowel 𝑦 in Σ, respectively. For instance, considering Σ as
the English alphabet, 𝑡ℎ𝑒#110 ∈ 𝐿 while 𝑡ℎ𝑒#100 ̸∈ 𝐿. Define the context-free grammar
𝐺 with following rules.

• 𝑆 → 𝐴#𝐵,𝐵 → 0𝑌 𝐵,𝐵 → 0𝑌,𝐵 → 1𝑋𝐵,𝐵 → 1𝑋,

• 𝐴 → 𝑎𝐴𝑌,𝐴 → 𝑎𝑌 for all vowels 𝑎 in Σ,

• 𝐴 → 𝑏𝐴𝑋,𝐴 → 𝑏𝑋 for all consonants 𝑏 in Σ,

where the uppercases are nonterminals with 𝑆 being the start nonterminal, and the other
symbols are terminals. Set 𝑊 = {𝑋,𝑌,#} and 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {𝑋,𝑌 }*}. For instance,
take this step-by-step derivation

𝑆 ⇒ 𝐴#𝐵 ⇒ 𝑡𝐴𝑋#𝐵 ⇒ 𝑡ℎ𝐴𝑋𝑋#𝐵 ⇒ 𝑡ℎ𝑒𝑌 𝑋𝑋#𝐵

⇒ 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋𝐵 ⇒ 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋𝐵 ⇒ 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋0𝑌

In 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋0𝑌,𝑊𝜔(𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋0𝑌) = 𝑌 𝑋𝑋#𝑋𝑋𝑌 ∈ 𝐹 , and apart from
𝑋,𝑌,# ∈ 𝑊 , 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋0𝑌 contains only terminals. The removal of all 𝑋s and
𝑌 s in 𝑡ℎ𝑒𝑌 𝑋𝑋#1𝑋1𝑋0𝑌 results into 𝑡ℎ𝑒#110, which thus belongs to 𝐿(𝐺,𝐹). Clearly,
𝐿(𝐺,𝐹) = 𝐿.

Application 5.1 indicates whether the letters are the vowels or the consonants. Notice,
that the language generated in this example is a modification of the mentioned non context-
free language 𝐿2 = {𝑤𝑤 |𝑤 ∈ Σ*}. This means, that we are able to effectively represent
the non-context-free language by the final sentential forms.

The following example is taken from the [6]. Consider two sentences. ”Your great-
grandparents are all your great-grandfathers and all your great-grandmothers.“ and ”Your
great-grandparents are all your grandfathers and all your grandmothers.“. The former sen-
tence is both grammatically correct and truthful. The latter sentence is also grammatically
correct but it is not truthful. For such sentence to be both grammatically correct and
truthful, it must belong to the language

𝐿 = {Your {great-}𝑖grandparents are all your
{great-}𝑖grandfathers and all your {great-}𝑖grandmothers. | 𝑖 ≥ 0}.

To create such truthful sentence, we need to know the context of the sentence. Notice
that the language 𝐿 corresponds to the language 𝐿𝑥 = {𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 ≥ 0}, which is known to
be non-context-free language.

Application 5.2. Consider a language 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 ≥ 1}.
Let 𝐺 = ({𝑆,𝑋, 𝑌, 0, 1, 𝑎, 𝑏, 𝑐,#}, {𝑎, 𝑏, 𝑐}, 𝑃, 𝑆) be a context-free grammar. Add a following
rules to 𝑃

𝑆 → 𝑋#𝑌,𝑋 → 𝑎0𝑋𝑏, 𝑌 → 0𝑌 𝑐,𝑋 → 𝑎0𝑏, 𝑌 → 0𝑐.

Set 𝑊 = {0,#} and 𝐹 = {0𝑛#0𝑛 |𝑛 ≥ 1}. Let 𝐻 = ({𝑆, 0,#}, {0,#}, {𝑆 → 0𝑆0, 𝑆 →
#}, 𝑆) be a palindromial grammar, such that 𝐹 = 𝐿(𝐻). Then, 𝐿(𝐺,𝐹) = 𝐿. Notice that

41

by # being a nonterminal in 𝐺, it gets erased and does not occur in words of the 𝐿(𝐺,𝐹).
In other applications, we set # as a terminal, therefore it does not get erased from the
words in 𝐿(𝐺,𝐹).

Application 5.3. Set 𝐼 = {𝑖(𝑥) |𝑥 ∈ {0, 1}+}, where 𝑖(𝑥) denotes the integer represented
by 𝑥 in the standard way; for instance, 𝑖(011) = 3. Consider

𝐿 = {𝑢#𝑣 |𝑢, 𝑣 ∈ {0, 1}+, 𝑖(𝑢) > 𝑖(𝑣) and |𝑢| = |𝑣|}.

Next, we define a CFG 𝐺 and 𝐹 ∈ PAL such that 𝐿 = 𝐿(𝐺,𝐹). Let 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆)
be a context-free grammar. Set 𝑉 = {𝑆,𝑋,𝑋, 𝑌, 𝑌 , 𝐶,𝐷, 0, 1,#}, 𝑇 = {0, 1,#} and add
following rules to 𝑃

• 𝑆 → 𝑋#𝑋

• 𝑋 → 1𝐴𝑋,𝑋 → 0𝐵𝑋,𝑋 → 1𝐶𝑌,𝑋 → 1𝐶

• 𝑋 → 1𝑋𝐴,𝑋 → 0𝑋𝐵,𝑋 → 0𝑌 𝐶,𝑋 → 0𝐶

• 𝑌 → 𝛼𝐷𝑌, 𝑌 → 𝛼𝐷, 𝑌 → 𝛼𝑌 𝐷, 𝑌 → 𝛼𝐷 for all 𝛼 ∈ {0, 1}.

Set 𝑊 = {𝐴,𝐵,𝐶,𝐷,#} and 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {𝐴,𝐵,𝐶,𝐷}+ and 𝑛 ≥ 1}. Observe that
𝐹 = 𝐿(𝐻), where 𝐻 = ({𝑆,𝐴,𝐵,𝐶,𝐷,#}, {𝐴,𝐵,𝐶,𝐷,#}, {𝑆 → 𝐴𝑆𝐴,𝑆 → 𝐵𝑆𝐵, 𝑆 →
𝐶𝑆𝐶, 𝑆 → 𝐷𝑆𝐷,𝑆 → #}, 𝑆) is a palindromial grammar. Therefore, 𝐹 ∈ PAL. For
instance, take this step-by-step derivation

𝑆 ⇒ 𝑋#𝑋 ⇒ 1𝐴𝑋#𝑋 ⇒ 1𝐴0𝐵𝑋#𝑋 ⇒ 1𝐴0𝐵1𝐶𝑌#𝑋 ⇒ 1𝐴0𝐵1𝐶0𝐷#𝑋

⇒ 1𝐴0𝐵1𝐶0𝐷#1𝑋𝐴 ⇒ 1𝐴0𝐵1𝐶0𝐷#10𝑋𝐵𝐴 ⇒ 1𝐴0𝐵1𝐶0𝐷#100𝑋𝐶𝐵𝐴

⇒ 1𝐴0𝐵1𝐶0𝐷#1001𝑌 𝐷𝐶𝐵𝐴 ⇒ 1𝐴0𝐵1𝐶0𝐷#1001𝐷𝐶𝐵𝐴

in 𝐺. Notice that

𝑊𝜔(1𝐴0𝐵1𝐶0𝐷#1001𝐷𝐶𝐵𝐴) ∈ 𝐹, therefore
𝑇𝜔(1𝐴0𝐵1𝐶0𝐷#1001𝐷𝐶𝐵𝐴) ∈ 𝐿(𝐺,𝐹).

It is apparent that 𝐿(𝐺,𝐹) = 𝐿.

In Application 5.3, the language 𝐿 is not context-free language. It represents the rela-
tion of operation of > on two numbers represented in binary form.

We can also apply the final sentential forms in bioinformatics. We can use them to
represent the secondary structures of RNA—pseudoknots.

Application 5.4. Set Σ = {𝑎, 𝑔, 𝑐, 𝑢}. Define the bijection 𝛼 from Σ to Σ as {𝑎 ↦−→
𝑢, 𝑢 ↦−→ 𝑎, 𝑐 ↦−→ 𝑔, 𝑔 ↦−→ 𝑐} and extend it to Σ*. Let 𝐿 = {𝑥𝑦𝛼(𝑥)𝛼(𝑦) |𝑥, 𝑦 ∈ Σ*}.

The Σ represents possible bases of the RNA and 𝛼 represents their complements. Set
𝑊 = {𝑀,𝑁,𝑂, 𝑃,#} and 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ 𝑊 *}. Next, we construct CFG 𝐺 =
(𝑉,Σ, 𝑃, 𝑆), such that 𝐿(𝐺) = 𝐿. Set 𝑉 = Σ ∪ {𝑆,𝐴,𝐵,𝐶,𝐷}. Add following rules to
𝑃

42

𝑆 → 𝐴#𝐶

𝐴 → 𝑀𝑎𝐴,𝐴 → 𝑁𝑔𝐴,𝐴 → 𝑂𝑐𝐴,𝐴 → 𝑃𝑢𝐴,𝐴 → 𝐵

𝐵 → 𝑀𝑎𝐵,𝐵 → 𝑁𝑔𝐵,𝐵 → 𝑂𝑐𝐵,𝐵 → 𝑃𝑢𝐵,𝐵 → 𝑀𝑎,𝐵 → 𝑁𝑔,𝐵 → 𝑂𝑐,𝐵 → 𝑃𝑢

𝐶 → 𝑢𝐶𝑀,𝐶 → 𝑐𝐶𝑁,𝐶 → 𝑔𝐶𝑂,𝐶 → 𝑎𝐶𝑃,𝐶 → 𝐷

𝐷 → 𝑢𝐷𝑀,𝐷 → 𝑐𝐷𝑁,𝐷 → 𝑔𝐷𝑂,𝐷 → 𝑎𝐷𝑃,𝐷 → 𝑢𝑀,𝐷 → 𝑐𝑁,𝐷 → 𝑔𝑂,𝐷 → 𝑎𝑃

The resulting 𝐿(𝐺,𝐹) = 𝐿. For example, 𝑎𝑔𝑐𝑢𝑢𝑐𝑔𝑎 ∈ 𝐿(𝐺,𝐹), since 𝑢𝑐 = 𝛼(𝑎𝑔) and
𝑔𝑎 = 𝛼(𝑐𝑢).

The specifics of the problem of representation of the pseudoknots in RNA are explaned
in [7]. This example simplifies representation of pseudoknots slightly. In real world, the
pseudoknots may contain unpaired bases between the paired sequences. In terms of the
defined language, there could be sequences of Σ* randomly between 𝑥, 𝑦, 𝛼(𝑥), 𝛼(𝑦). We
could easily add this fact to the grammar 𝐺, but it would make the example much bigger.

In Applications 5.1, 5.2, 5.3, and 5.4, we have shown some selected application of final
sentential forms. Notice, that throughout these examples, only the propagating CFGs
and the palindromial languages were used. Also, all of the languages that these examples
presented are not context-free languages.

Input files for the applications

For each example presented in Section 5.2, we created an input file for the implemented
program. The symbols used in the input files may differ, since we used special char-
acters in the examples. The input files are application1.json, application2.json,
application3.json, and application4.json for Application 5.1, Application 5.2, Appli-
cation 5.3, and Application 5.4, respectively.

43

Chapter 6

Conclusion

The main purpose of this thesis is to introduce the notion of the final sentential forms
and study their generative power. This is done by defining the notion of a weak identity
𝜔, a finalizing language 𝐹 , the final sentential forms of the context-free grammars, and a
language of 𝐺, finalized by 𝐹,𝐿(𝐺,𝐹), where 𝐺 is a context-free grammar. We prove that
based on the selection of 𝐹 , the resulting language family is either recursively enumerable
or context-free. In addition to the introduction to the final sentential forms, this thesis
studies their syntax analysis. This is achieved by the modification of the algorithm Cocke-
Younger-Kasami for the context-free grammars. Finally, we study the applications of the
final sentential forms for the non-context-free languages.

As the prerequisites for the final sentential forms, we defined the basic notions of the
formal language theory. The symbols represent the most basic elements of the formal lan-
guages, the words are sequences of the symbols and the languages are sets of the words. The
context-free grammars are the basis of the final sentential forms. They start the generation
of the words with a start nonterminal, and they repeatedly apply their rewriting rules to
generate sentential forms. Context-free grammars can only rewrite single nonterminals to
any sequence of the nonterminals and terminals. The sentential forms are any sequences
that can be generated by the grammar. When the sentential form contains only terminals,
it becomes a member of a generated language. For the final sentential forms, we modify
this mechanism to obtain a much more powerful language family.

By restriction of the rules of the context-free grammars, we obtain less powerful, but
more specific grammars. The minimal-linear grammars contain only a single nonterminal—
start symbol. This nonterminal can occur only once on the right side of the rule. In this
thesis, we also use a notion of palindromial grammar, that can generate only palindromials
delimited by the central symbol #. Palindromial grammars generate palindromial languages
that are much weaker compared to the context-free languages.

To obtain final sentential forms from the context-free sentential forms, we use the weak
identity 𝜔, the set 𝑊 , and the finalizing language 𝐹 . The purpose of the weak identity is
to remove all symbols that do not belong to the specified set from some word. We take a
sentential form and use weak identity 𝜔 to erase all the symbols that do not belong to 𝑊 .
After the application of 𝜔, we check whether or not the result belongs to the 𝐹 . If the result
belongs to the 𝐹 , the original context-free sentential form is also a final sentential form. To
obtain 𝐿(𝐺,𝐹), we simply erase all nonterminals from the individual final sentential forms.

In formal language theory, we take great interest in the language families of the formal
models. The language family of a formal model is a set of all the languages that can
be represented by the said model. Possibly the most important language family is the

44

recursively enumerable language family. This language family represents all the computable
languages and is represented by the Turing machines. In this thesis, we prove that by using
a context-free grammar 𝐺 to generate the sentential forms and a minimal-linear language
as the finalizing language 𝐹 , the 𝐿(𝐺,𝐹) represents the recursively enumerable language
family. However, we need only one minimal-linear language to represent the recursively
enumerable language family—the language {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}. In comparison, when we
use a regular language as the finalizing language 𝐹 , the resulting language family is the
same as the language family of context-free grammars. In other words, we do not change
the power of the context-free grammars.

To prove that 𝐿(𝐺,𝐹), where 𝐺 is context-free grammar and 𝐹 = {𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*},
can represent any recursively enumerable language, we use queue grammars. Queue gram-
mars also represent the recursively enumerable language family. We prove that we can
simulate any queue grammar by 𝐿(𝐺,𝐹), therefore 𝐿(𝐺,𝐹) can represent any recursively
enumerable language. The queue grammars have more complex derivation process than
context-free grammars. Therefore we cannot simulate it directly. The idea is simple. We
try to simulate any queue grammar with context-free grammar. The constructed context-
free grammar for simulation also simulates derivations that are not possible. It cannot
decide whether the simulation is correct or not. For this purpose, it suitably places the
symbols from 𝑊 , and the finalizing language 𝐹 is used to distinguish the correct simulations
from incorrect ones.

To prove that 𝐿(𝐺,𝐹), where 𝐺 is context-free grammar and 𝐹 is a regular language, can
represent only context-free languages, we use finite automata. We construct new context-
free grammar for any context-free grammar and any regular language represented by a
finite automaton. This newly constructed grammar simulates both the original context-
free grammar and the run of the finite automaton over the symbols from 𝑊 . Since we have
proven that we in fact can construct such grammar, in this case, 𝐿(𝐺,𝐹) can only represent
context-free languages.

In formal language theory, the most important property of a formal model is the lan-
guage it represents. The most important problem for the formal model is the membership
problem. It asks whether a given word belongs to the language that the given formal model
represents. Syntax analysis is used to decide the membership problem for the grammars.
There are many algorithms for the syntax analysis. We decided to use the algorithm Cocke-
Younger-Kasami (CYK for short). It is a general syntax analysis algorithm that requires
the input grammar to be in Chomsky normal form. Chomsky normal form of the context-
free grammars requires each right-side of the rule to consist of either two nonterminals or
a single terminal. We use this algorithm as a basis for the syntax analysis of the final
sentential forms since it can be modified for this purpose. The CYK algorithm works in a
bottom-up way and it used the CYK table for the reductions. It starts with a word and it
reduces the right-sides of the rules to the nonterminal on the left-side. When a start symbol
is reached in a proper position of the CYK table, the syntax analysis is successful.

The biggest challenge for the syntax analysis of the final sentential forms is the erasion
of the nonterminals from 𝑊 . Since these symbols are not present in the input word, we
need to reconstruct them. We introduce special reductions that handle the erasion of such
nonterminals. Another issue is, that the result of an application of the weak identity 𝜔
must belong to the finalizing language 𝐿. To solve this, we record the history of reductions
for each symbol in the CYK table. This means that a single position in the CYK table can
contain multiple matching symbols, but they need to differ in their history of reductions.
Once the start symbol occurs in the proper position, we need to check that the result of

45

the weak identity 𝜔 belongs to the resulting language 𝐹 . Furthermore, we need to restrict
the underlying context-free grammar. We do not allow it to rewrite the nonterminals from
𝑊 , or the right-side of any rule to consist purely of the nonterminals from 𝑊 .

To demonstrate the described algorithm for the syntax analysis of the final sentential
forms, we implemented said syntax analysis as a program. This program uses a command-
line interface to specify the input context-free grammar, the finalizing language 𝐹 , and the
input word. The input context-free grammar and the finalizing language 𝐹 are specified
using an input file which is provided to the program using the command-line. The input
file is in JSON format since it is simple and easily readable for the user. For the algorithm
CYK, the input context-free grammar must be in Chomsky normal form. For more com-
plex context-free grammar, it would be hard for the user to provide the input context-free
grammar directly in Chomsky normal form. Therefore, the user does not have to specify
it in Chomsky normal form. As part of the implementation, the input grammar is con-
verted to the Chomsky normal form. Another purpose of this program is, that it allows
us to show the applications of the final sentential forms. We show 4 applications of the
final sentential forms. We are only interested in the applications, which cannot be repre-
sented using the context-free grammars. The first application corresponds to the language
𝐿1 = {𝑤𝑤 |𝑤 ∈ Σ*}, which is known non-context-free language. The second application
constructs grammatically correct and truthful sentences in English. It corresponds to the
formal language 𝐿2 = {𝑎𝑛𝑏𝑛𝑐𝑛 |𝑛 ≥ 0}. The third application constructs pairs of the binary
numbers of the same size, such that the value of the first binary number is greater than the
value of the second binary number. The last application is from the field of bioinformatics.
It is a simplified representation of a secondary structure of an RNA—a pseudoknot.

The main result of this thesis is, that by using a single palindromial language,
{𝑤#𝑤𝑅 |𝑤 ∈ {0, 1}*}, as a finalizing language, we can represent any recursively enumer-
able language. However, by using a regular language as a finalizing language, we do not
increase the generative power of context-free grammars. These results are also interest-
ing since palindromial languages and regular languages are both weak language families in
comparison to the context-free languages. It is worth pointing out, that palindromial and
regular language families do not have any common language.

As part of this thesis, we modified the algorithm CYK for syntax analysis of the final
sentential forms and implemented it. This implementation serves the purpose of demon-
stration of the mentioned modification of the algorithm CYK on introduced applications. It
is therefore not compared with any other software. We do not study the complexity of the
proposed algorithm. As a future development of this topic, the complexity of the proposed
algorithm could be studied. How much did the complexity increase in comparison to the
original algorithm CYK?

We used the modification of the algorithm CYK for syntax analysis of the final sentential
forms. Algorithm CYK uses context-free grammar in Chomsky normal form and its speed
suffers from the size of the grammars in Chomsky normal form. Are we able to modify
other algorithms for syntax analysis in order to achieve lower complexity of the resulting
algorithm?

We put restrictions on the underlying context-free grammar of 𝐿(𝐺,𝐹). Are we able to
restrict it further without lowering its generative power? Can we restrict the number of the
nonterminals that 𝐺 contains? We could also study whether we can swap the underlying
context-free grammar for other grammar.

46

Bibliography

[1] Jiří Techet, T. M. and Meduna, A. Other Grammars. 2007. Available at:
http://www.fit.vutbr.cz/~meduna/work/lib/exe/fetch.php?media=lectures:phd:tid:
frvs:13-othergrampres.pdf.

[2] Kleijn, H. C. M. and Rozenberg, G. On the Generative Power of Regular Pattern
Grammars. Acta Informatica. 1983, vol. 20, p. 391–411.

[3] Meduna, A. Generative Power of Three-Nonterminal Scattered Context Grammars.
Theoretical Computer Science. 2000, vol. 2000, no. 246, p. 279–284. ISSN 0304-3975.
Available at: https://www.fit.vut.cz/research/publication/6182.

[4] Meduna, A. Automata and Languages: Theory and Applications [Springer, 2000].
Springer Verlag, 2005. 892 p. ISBN 1-85233-074-0.

[5] Meduna, A. Elements of Compiler Design. Taylor & Francis Informa plc, 2008.
304 p. Taylor and Francis. ISBN 978-1-4200-6323-3. Available at:
https://www.fit.vut.cz/research/publication/8538.

[6] Meduna, A. and Techet, J. Scattered Context Grammars and their Applications.
WIT Press, 2010. 224 p. WIT Press, UK. ISBN 978-1-84564-426-0. Available at:
https://www.fit.vut.cz/research/publication/8997.

[7] Rivas, E. and Eddy, S. The language of RNA: A formal grammar that includes
pseudoknots. Bioinformatics (Oxford, England). may 2000, vol. 16, p. 334–40. DOI:
10.1093/bioinformatics/16.4.334.

[8] Rozenberg, G. and Salomaa, A., ed. Handbook of Formal Languages, Vol. 1: Word,
Language, Grammar. Berlin, Heidelberg: Springer-Verlag, 1997. ISBN 3540604200.

[9] Salomaa, A. Formal Languages. Academic Press, 1973. ACM monograph series.
ISBN 9780126157505.

47

http://www.fit.vutbr.cz/~meduna/work/lib/exe/fetch.php?media=lectures:phd:tid:frvs:13-othergrampres.pdf
http://www.fit.vutbr.cz/~meduna/work/lib/exe/fetch.php?media=lectures:phd:tid:frvs:13-othergrampres.pdf
https://www.fit.vut.cz/research/publication/6182
https://www.fit.vut.cz/research/publication/8538
https://www.fit.vut.cz/research/publication/8997

	Introduction
	Languages, automata and grammars
	Symbols, alphabets, and words
	Languages
	Finite automata
	Grammars
	Properties of context-free grammars
	Derivation trees
	Chomsky normal form

	Language families

	Final Sentential Forms
	Palindromial finalizing language
	Regular finalizing language
	Results

	Syntax analysis
	Top-down syntax analysis
	Bottom-up syntax analysis
	Algorithm Cocke-Younger-Kasami
	Syntax analysis of final sentential forms
	Modification of algorithm Cocke-Younger-Kasami

	Implementation and applications
	Implementation
	Command-line interface
	Input file
	Input file reader
	Transformation of context-free grammar to Chomsky normal form
	Syntax analysis
	Comparison to other software

	Applications

	Conclusion
	Bibliography

