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Abstract
Register automaton (RA) operating over infinite alphabet is one of the great tools for
pattern matching with backreferences, runtime verification, or modelling of parallel com-
putation. In case of pattern matching with backreferences, the state-of-the-art matchers
make use of backtracking algorithms, whose application causes significant slowdown in case
of nondeterministic regular expressions.

Since RAs cannot always be determinised, it is an unsuitable model for solution to
problems related to inefficient usage of backtracking algorithms. On the other hand, the
RA’s quality of being equipped by a finite memory serves as a good basis for storing the
so-called capture groups used in pattern matching with backreferences.

In this work, a formal model called register set automaton (RsA) is proposed. A large
class of RAs can be transformed into this deterministic model, which, among other things,
allows for fast pattern matching with backreferences. We explore RsA’s properties including
decidability of emptiness testing, determinisability, closure under Boolean operations and
we compare it to other register models in context of their expressive power.

Abstrakt
Registrový automat (RA) pracujúci nad nekonečnou abecedou je jedným z nástrojov pre
pattern matching s backreferenciami, dynamickú verifikáciu, alebo modelovanie paralelných
výpočtov. Súčasné riešenia v aplikáciách pattern matchingu používajú backtrackingové
algoritmy v prípade nedeterministických regulárnych výrazov.

Nemožnosť determinizovať registrový automat spôsobuje, že nie je vhodným formálnym
modelom pre riešenie problémov spojených s neefektívnymi aplikáciami backtrackingových
algoritmov. Na druhej strane, vybavenosť konečnou pamäťou slúži ako vhodná báza pre
ukladanie takzvaných capture groups použitých v takejto aplikácii.

Táto práca sa zaoberá predstavením formálneho modelu registrovo množinového au-
tomatu. Veľká trieda registrových automatov môže byť transformovaná do tohto determin-
istického modelu, ktorý okrem iného, dovoľuje vykonávať rýchly pattern matching s back-
referenciami. Definované sú vlastnosti zahŕňajúce rozhodnutelnosť testu prázdnosti, deter-
minizovateľnosť, uzavretosť voči Booleovským operáciám. Zároveň tento model porovná-
vame voči iným registrovým modelom z hľadiska ich vyjadrovacej sily.
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Rozšírený abstrakt

Motivácia. Registrový automat (RA) je automatový model pracujúci nad nekonečnou
abecedou. Modely pracujúce nad nekonečnou abecedou sú využité v rôznych praktických
aplikáciách, akými je napríklad dynamická verifikácia, pattern matching s backreferenciami,
alebo modelovanie sieťových protokolov. Model registrového automatu bol predstavený ako
rozšírenie konečného automatu. Toto rozšírenie je popri klasickej štruktúre pozostávajúcej
zo stavov a prechodov vybavené konečnou pamäťou vo forme konečnej množiny registrov.
V každom registri možno uchovávať jednu hodnotu videnú na vstupnej páske, a neskôr voči
tejto hodnote porovnávať obsahy iných registrov, či aktuálnu hodnotu na páske. Tento
model je uzavretý voči prieniku a zjednoteniu, nie však voči komplementu. Test prázdnosti
jazyka registrového automatu je rozhodnuteľný. Okrem neuzavretosti voči komplementu je
registrový automat nie vždy determinizovateľný.

Keďže registrový automat nemožno vždy determinizovať, jeho použitie v praktických
aplikáciách má nie vždy efektívny výsledok. Príkladom takejto aplikácie je provnávanie
zadaného vstupu a rozšírených regulárnych výrazov s backreferenciami. Táto funkcia je
často vykonávaná na rôznych webových stránkach, či počas spracovávania textu pomocou
grep a sed nástrojov. Pre príklad uvážme nasledujúci regulárny výraz:

𝑅\3\2\1 = /(.).*;.*(.).*;.*(.).*\3\2\1/.

Pri použití nástroja PCRE2, ktorý predstavuje súčasné riešenia, trvá 10,416 krokov, kým
nástroj vyhodnotí, že nasledovný, 42-znakov dlhý, náhodne vygenerovaný reťazec tomuto
regulárnemu výrazu nevyhovuje:

"ah;jk2367ash;la5akv45lwkjb9f.dj5fqkbxsfyrf".

Toto enormné spomalenie je spôsobené tzv. katastrofickým backtrackingom. Keďže PCRE2
nie je založený na deterministickom modeli, pri kontrole, či zadaný vstup vyhovuje konkrét-
nemu regulárnemu výrazu, musí nad daným slovom nedeterministicky vykonať mnoho be-
hov, kým nenarazí na jeden prijímajúci. Takéto spomalenie vedie k náchylnosti systému,
ktorý danú techniku kontroly využíva, na zlyhania spôsobené ReDoS útokmi. Okrem vopred
zmienenej aplikácie je použitie deterministického registrového modelu žiadúce pre kontrolu
jazykovej inklúzie registrových automatov, čo je vo všeobecnosti nerozhodnuteľný problém.

Cieľom tejto práce je predstaviť model, ktorý nám umožní transformovať veľkú triedu
registrových automatov do ich deterministickej podoby. Pre daný problém identifikujeme
jeho rôzne vlastnosti, vrátane uzavretosti voči Booleovským operáciám, rozhodnuteľnosti
a konkrétnej zložitosti niektorých rozhodovacích problémov. Práca je tiež zameraná na
určenie vyjadrovacej sily predstaveného modelu v porovnaní s inými registrovými modelmi.

Navrhnutý model. Navrhnutý model je založený na rozšírení registrového automatu.
Takzvaný registrovo množinový automat (RsA) je štruktúrou podobný RA, s výnimkou
možného obsahu registrov. V prípade RsA v každom registri možno ukladať množinu
hodnôt videných na vstupnej páske. Nasledovne je možné testovať príslušnosť, či neprís-
lušnosť aktuálnej hodnoty na vstupe do konkrétneho registra. Do registrov možno pridá-
vať akutálnu hodnotu zo vstupu, alebo do nich zjednocovať niekoľko obsahov iných reg-
istrov. Obrázok 1 obsahuje ukážku registrovo množinového automatu, ktorý prijíma reťazce,
v ktorých sa akýkoľvek symbol vyskytuje aspoň dvakrát. Vyobrazený automat je determin-
istický. Je nutné poznamenať, že tento jazyk nie je reprezentovateľný deterministickým
registrovým automatom.



𝑞 𝑠

𝑎 in /∈ 𝑟
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𝑎

Obrázok 1: Príklad deterministického registrovo množinového automatu.

Vlastnosti RsA. Uzáverové vlastnosti registrovo množinového automatu sú rovnaké
ako v prípade registrových automatov. RsA je uzavretý na zjednotenie a prienik, nie je
uzavretý na komplement. Keďže registrovo množinové automaty generalizujú nedetermin-
istické registrové automaty, problémy univerzality, ekvivalencie a jazykovej inklúzie sú pre
tento model nerozhodnuteľné.

Jednou z dôležitých vlastností registrových automatov je, že test prázdnosti ich jazyka
je rozhodnuteľný. Presnú zložitosť tohto rozhodovacieho problému možno určiť pomocou
obojsmernej redukcie na test pokryteľnosti v transferových Petriho sieťach, čo je známy,
F𝜔-úplný problém. Transferové Petriho siete sú rozšírením klasických Petriho sietí o tzv.
broadcastové hrany, ktoré nám umožňujú prénašať všetky tokeny zo zdrojového miesta
prechodu, do cieľového miesta prechodu. Model transferových Petriho sietí úzko súvisí
s broadcastovými protokolmi.

Determinizácia NRA do DRsA. RsA majú nasledujúcu vlastnosť: veľká trieda
registrových automatov môže byť determinizovaná do deterministických registrovo množi-
nových automatov. Navrhnutý algoritmus pre túto transformáciu je založený na klasickom
algoritme determinizácie vykonávajúcom podmnožinovú konštrukciu, s pridaným spraco-
vaním hodnôt uložených v registri. Spracovanie zahŕňa detekciu nadaproximácie, alebo
zmeny semantiky výsledného jazyka automatu, ku ktorej može dôjsť v rôznych prípadoch.
Navrhnutý algoritmus je, okrem iného, úplný pre triedu NRA=

1 , čo je trieda nedetermin-
istických registrových automatov s jedným registrom a výhradnými testami rovnosti na
prechodoch.

Vyjadrovacia sila. Súčasťou tejto práce bolo porovnanie predstaveného modelu s in-
ými modelmi nad nekonečnými abecedami, a klasifikácia jeho vyjadrovacej sily voči iným,
registrovým modelom. Predstavený model generalizuje registrové automaty, teda vyjadrova-
cia sila RsA je väčšia než vyjadrovacia sila RA. Tiež bolo na základe identifikácie niekoľkých
jazykov zistené, že registrovo množinové automaty sú neporovnateľné s modelom alternu-
júceho registrového automatu, ani s jeho rozšírením o guess a spread operátory. Model RsA
je tiež neporovnateľný s tzv. pebble automatmi.

Možné rozšírenia. V našej práci sme skúmali niekoľko rôznych rozšírení RsA. Skú-
mané rozšírenia spočívali v úprave prechodovej relácie, pričom sme na každom prechode
umožnili vykonávať viacero operácii nad registrami. Aj malé rozšírenia prechodovej relá-
cie vedú k nerozhodnuteľnosti. Pre príklad, keď umožníme testovanie rovnosti registrov,
v prípade testu prázdnosti je možné ukázať redukovateľnosť z problému dosiahnuteľnosti
v Petriho sieťach s inhibičnými hranami, čo je známy, nerozhodnuteľný problém. Rovnaký
dôsledok platí aj pre rozšírenia o možnosť odoberania hodnôt z registrov, či o testovanie
prázdnosti registra.



Zhrnutie a budúca práca. V tejto práci sme predstavili registrovo množinové automaty,
triedu automatov pracujúcich nad dátovými slovami, ktoré predstavujú vhodnú formálnu
bázu pre efektívny pattern matching podtriedy rozšírených regulárnych výrazov s backref-
erenciami. Navrhnutý model oplýva niekoľkými zaujímavými vlastnosťami. Je uzavretý
voči prieninku a zjednoteniu, veľká trieda registrových automatov môže byť determinizo-
vaná do registrovo množinových automatov, a test prázdnosti jazyka je pre tento model
rozhodnuteľný. Súčasťou budúcej práce je experimentovanie s inými štruktúrami registrov,
upravenie algoritmu determinizácie pre rozšírenie triedy registrových automatov determini-
zovateľných do registrovo množinových automatov, idenitifkácia korešpondujúceho frag-
mentu logiky pre deterministické RsA, a návrh algoritmov pre efektívne testovanie jazykovej
inklúzie.
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Chapter 1

Introduction

Register automaton (RA) is an automaton model operating over an infinite alphabet. Such
models have found applications in many fields of computer science including modelling
network protocols [5], pattern matching with backreferences [34], runtime verification [15],
or even testing satisfiability in the SMT theory of strings [6].

RA, also known as finite memory automaton, was first introduced in [22] as an extension
of finite automaton equipped with a finite set of registers, each of them able to store a single
value copied from the input tape. It was introduced with the goal of preserving closure under
Boolean operations. The authors succeeded in doing so, with the exception of closure under
complementation. This property could only be accomplished by constraining to a more
restricted model. The emptiness problem, however, remained decidable. In addition, RAs
not only cannot be complemented, they also cannot be determinised.

The RA’s non-determinisability causes it to be an unsuitable model for some practical
applications. One of them is matching regexes with back-references, which is done ubiq-
uitously in validating user input on web pages, processing text using the grep and sed
tools, transforming XML documents, or detecting network incidents [32, 4]. Consider, for
instance, the (extended) regular expression (regex)

𝑅\3\2\1 = /(.).*;.*(.).*;.*(.).*\3\2\1/,

which matches strings of the form

. . .a. . .;. . .b. . .;. . .c. . .cba. . .

for any symbols a,b,c, and any number of arbitrary symbols (except “;”) at the positions
of “.”.

Using the state-of-the-art PCRE2 regex matcher, it takes 10,416 steps before reporting
no match in the randomly generated 42-character-long string

"ah;jk2367ash;la5akv45lwkjb9f.dj5fqkbxsfyrf“.

If we were to remove the delimiters (semicolons in 𝑅\3\2\1), the process would take 179,372
steps in the same text. Ideally, this process should only take 42 steps, one for each character
in the string. This slowdown is caused by the so-called catastrophic backtracking. The
PCRE2 matcher is based on backtracking, and since the regex is nondeterministic, the
backtracking algorithm needs to try all possibilities of placing the three capture groups
before concluding that there is no match. Such scenario causes the systems making use of

3



pattern matching with backreferences to perform poorly. In the worst case, this leads to
an undesirable behavior, with systems being prone to attacks such as regular expression
denial of service (ReDoS) [2]. For instance, a 2016 StackOverflow outage was caused by
a ReDoS attack [42]. In particular, the attack was conducted by creating a malformed post,
containing several thousands of whitespaces, which in combination with a simple regex for
removing the whitepaces caused a high consumption of CPU. This led to a collapse of
StackOverflow’s servers, making the website unavailable for more than one hour.

In addition to prevention of catastrophic backtracking, the existence of a determinis-
tic register automaton model would be useful in language inclusion checking of register
automata, which is in general an undecidable problem. Even though it is impossible to de-
terminise a significant class of register automata, the presence of its finite memory lays out
a convenient basis for storing of capture groups in pattern matching with backreferences.
The main goal of this thesis is to introduce a formal model called register set automaton
(RsA), which is based on extending the existing model of register automata, such that
a deterministic subclass of RsAs can capture a large fragment of nondeterministic register
automata (NRAs).

This work is directed towards the development of formal theory for RsAs, focusing
on Boolean closure properties, the power of nondeterminism, and their position in the
landscape of register automata models, in the context of their expressive power. In addition,
we explore the decidability of problems such as emptiness testing in case of RsAs and their
extensions. This thesis is organized in the following way. Chapter 2 contains the definitions
of basic notions used throughout this work. In this chapter, automata theory is explained
to the extent necessary for understanding the relation of the newly proposed model to
the already existing ones. In Chapter 3, we introduce the proposed model and discuss its
properties, including the closure under Boolean operations, decidability of some decision
problems, and the power of nondeterminism. Chapter 4 contains the involved proof of
decidability of emptiness problem for the introduced model together with the proof of
its particular computational complexity. In Chapter 5, we discuss the determinisation of
register automata into our proposed model, give a semi-algorithm for determinisation, and
observe for which subclass of register automata it is complete. Chapter 6 is devoted to
positioning the proposed model in the landscape of other register automata models, in the
context of its expressive power. Finally, in Chapter 7, we discuss some possible extensions
of the proposed model, and we give the main results for each of these models, in terms of
decidability of some decision problems.

4



Chapter 2

Preliminaries

This chapter contains the definitions of concepts that are necessary for understanding the
problems dealt with throughout this work. Section 2.1 contains the characterizations of
notions that make up the formal basis of the developed theoretical model. Section 2.2 offers
an overview of phenomena important for understanding the proposed extension of register
automata. In addition, a brief definition of other related formal models follows. Register
automata are compared to these models in terms of expressive power in the latter chapters.
Section 2.1.1 contains definitions of some example languages, which are used throughout
this work. Section 2.3 provides an introduction to regular expressions. Manipulation with
their extensions is one of the motivations for this thesis. It is important to remark that
throughout this work, the terms register automaton and finite memory automaton are used
interchangeably.

2.1 Basic Notions
We use N to denote the set of natural numbers without 0, N0 to denote N∪{0}, and [𝑛] for
𝑛 ∈ N0 to denote the set {1, . . . , 𝑛} (we note that [0] = ∅). Moreover, 𝑓 : 𝑋 ⇀ 𝑌 is used
to denote a partial function 𝑓 from 𝑋 to 𝑌 . If the value of 𝑓 for 𝑥 ∈ 𝑋 is undefined, we
write 𝑓(𝑥) = ⊥. In addition to denoting concatenation, we sometimes use “·” to denote an
ellipsis, i.e., a value that can be ignored. Next, we give some definitions for the terms used
in the theory of automata.

Definition 2.1.1. An alphabet is a finite, non-empty set of elements called characters,
letters, or symbols. By Σ*, we denote a set of all words over alphabet Σ, and by Σ+, the set
of all non-empty words over alphabet Σ. A data domain is a countably infinite, non-empty
set of elements called data values. A word over an alphabet Σ is a sequence of characters
𝑎1𝑎2 . . . 𝑎𝑛, such that for all 1 ≤ 𝑖 ≤ 𝑛, it holds that 𝑎𝑖 ∈ Σ.

Example 2.1.1. In example, let Σ = {𝑎}. Then:

• {𝑎}* = {𝜖, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, . . .}, and

• {𝑎}+ = {𝑎, 𝑎𝑎, 𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, . . .} = {𝑎}* ∖ {𝜖}.

Let us fix a finite nonempty alphabet Σ and an infinite data domain D.

Definition 2.1.2. A data word of length 𝑛 is a function 𝑤 : [𝑛]→ (Σ× D).
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We use |𝑤| = 𝑛 to denote the length of a word 𝑤. The empty word of length 0 is denoted
as 𝜖, which holds for both words and data words. The notations Σ[𝑤] and D[𝑤] are used to
denote the projection of data word 𝑤 onto the respective domain.

Example 2.1.2. Let 𝑤 = ⟨𝑎, 1⟩⟨𝑏, 2⟩⟨𝑏, 3⟩. Then, its Σ-projection and D-projection are
defined as Σ[𝑤] = 𝑎𝑏𝑐 and D[𝑤] = 123, respectively.

Additionally, given 𝑎 ∈ Σ, we use 𝑎[𝑤𝑖] as an abbreviation for Σ[𝑤𝑖] = 𝑎. The number
of occurrences of a symbol 𝑎 in a word 𝑤 is denoted by #𝑎(𝑤).

Intuitively, the Σ portion of the data word defines the context of the data value it is
paired with. As an example, consider a system with unbounded number of processes, each of
which can be in one of two states, either busy (b), or waiting (w). When working with traces
of such a system, each pair of the data word represents the identification of a given process,
and its current state. An example of such data word is ⟨𝑤, 8⟩⟨𝑏, 42⟩⟨𝑏, 99⟩⟨𝑤, 12⟩ [26].

In the following, we introduce some operations on words. They can be easily extended
to data words.

Definition 2.1.3. Let 𝑢 and 𝑣 be two words over alphabet Σ. A binary operation of con-
catenation, denoted by “·” is defined as 𝑢 · 𝑣 = 𝑢𝑣.

Definition 2.1.4. Let 𝑖 ∈ N0. An 𝑖-th power of a word 𝑤, denoted by 𝑤𝑖, is inductively
defined in the following way:

• 𝑤0 = 𝜖,

• 𝑤𝑖 = 𝑤 · 𝑤𝑖−1.

Next, we introduce the notion of a language and define some operations on languages.

Definition 2.1.5. A language over alphabet Σ is a set of words over Σ. It is an arbitrary
subset of Σ*.

Since each language is a set of words, we can perform standard set operations on them.
Let 𝐿1 and 𝐿2 be two languages over alphabet Σ.

Definition 2.1.6. The union of languages 𝐿1 and 𝐿2, denoted by 𝐿1 ∪ 𝐿2, is defined as
𝐿1 ∪ 𝐿2 = {𝑤 | 𝑤 ∈ 𝐿1 ∨ 𝑤 ∈ 𝐿2}.

Definition 2.1.7. The intersection of languages 𝐿1 and 𝐿2, denoted by 𝐿1 ∩𝐿2, is defined
as 𝐿1 ∩ 𝐿2 = {𝑤 | 𝑤 ∈ 𝐿1 ∧ 𝑤 ∈ 𝐿2}.

Definition 2.1.8. The complement of language 𝐿1, denoted by 𝐿1, is defined as 𝐿1 = {𝑤 |
𝑤 ∈ Σ* ∧ 𝑤 /∈ 𝐿1}.

The following operations on words can be extended to languages:

Definition 2.1.9. The concatenation of languages 𝐿1 and 𝐿2, denoted by 𝐿1 ·𝐿2, is defined
as 𝐿1 · 𝐿2 = {𝑤1 · 𝑤2 | 𝑤1 ∈ 𝐿1 ∧ 𝑤2 ∈ 𝐿2}.

Definition 2.1.10. Let 𝑖 ∈ N0. An 𝑖-th power of a language 𝐿, denoted by 𝐿𝑖 is inductively
defined as:

• 𝐿0 = {𝜖},

• 𝐿𝑖 = 𝐿 · 𝐿𝑖−1.
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With respect to the previous definition, we define the notions of Kleene star and Kleene
plus.

Definition 2.1.11. Kleene star/Kleene plus. Let 𝐿 be a language. The Kleene star of 𝐿,
denoted by 𝐿*, is defined as

𝐿* =
∞⋃︁
𝑖=0

𝐿𝑖.

The Kleene plus of 𝐿, denoted by 𝐿+, is defined as

𝐿+ =

∞⋃︁
𝑖=1

𝐿𝑖.

2.1.1 Example Languages

Throughout this thesis, we work with a number of interesting languages to demonstrate the
difference in the expressive power of various register automata models, or to give an idea of
some important properties of particular models. In the following, we give the list of these
languages with their definitions, both formal and informal. We only use their names in the
latter chapters.

• 𝐿∃repeat = {𝑤 | ∃𝑖, 𝑗 : 𝑖 ̸= 𝑗 ∧ D[𝑤𝑖] = D[𝑤𝑗 ]} denotes the language of words where
some symbol appears at least twice.

• 𝐿¬∃repeat = {𝑤 | ∀𝑖, 𝑗 : 𝑖 ̸= 𝑗 =⇒ D[𝑤𝑖] ̸= D[𝑤𝑗 ]} denotes the language of words where
each symbol appears at most once, i.e. no symbols repeat.

• 𝐿∃,¬∃repeat = 𝐿∃repeat · {⟨𝑏, 𝑑⟩ | 𝑑 ∈ D} · 𝐿¬∃repeat denotes the language composed as
the concatenation of 𝐿∃repeat and 𝐿¬∃repeat with a delimiter.

• 𝐿∀repeat = {𝑤 | ∀𝑖∃𝑗 : 𝑖 ̸= 𝑗 ∧ D[𝑤𝑖] = D[𝑤𝑗 ]} denotes the language of words where
each symbol appears at least twice.

• 𝐿¬∀repeat = {𝑤 | ∃𝑖∀𝑗 : 𝑖 ̸= 𝑗 =⇒ D[𝑤𝑖] ̸= D[𝑤𝑗 ]} denotes the language of words where
there exists a symbol, that appears exactly once.

• 𝐿∃a-no-b = {𝑤 | ∃𝑖 : 𝑎[𝑤𝑖] ∧ ∄𝑗 < 𝑖 : 𝑏[𝑤𝑗 ] ∧ D[𝑤𝑗 ] = D[𝑤𝑖]} from [14, Proof of Propo-
sition 3.2], denotes the language of words 𝑤 such that there exists an input ele-
ment ⟨𝑎, 𝑑⟩ that is not preceded by an occurrence of a ⟨𝑏, 𝑑⟩ element.

• 𝐿¬∃a-no-b = {𝑤 | ∀𝑖 : 𝑎[𝑤𝑖] =⇒ (∃𝑗 < 𝑖 : 𝑏[𝑤𝑗 ] ∧ D[𝑤𝑖] = D[𝑤𝑗 ])} denotes the language
of words where each input element ⟨𝑎, 𝑑⟩ is preceded by an occurrence of ⟨𝑏, 𝑑⟩ element.

• 𝐿∀𝑎∃𝑏 =
{︀
𝑤 | ∀𝑖 : 𝑎[𝑤𝑖] =⇒

(︀
(∀𝑗 ̸= 𝑖 : 𝑎[𝑤𝑗 ] =⇒ D[𝑤𝑖] ̸= D[𝑤𝑗 ]) ∧
(∃𝑘 > 𝑖 : 𝑏[𝑤𝑘] ∧ D[𝑤𝑖] = D[𝑤𝑘])

)︀}︀
denotes the lan-

guage of words where no two 𝑎-positions contain the same data value and every 𝑎-
position is followed by a matching 𝑏-position.
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2.2 Automata Theory
Finite automaton is a formal model that allows us to represent a class of infinite state sys-
tems in a finite way. Register automata, introduced as their generalization, were first pre-
sented under the term finite memory automata in the paper of Kaminski and Francez [22].

The difference between register automaton and finite automaton is that register au-
tomata are equipped with a finite number of registers that can store an arbitrary data
value from the input tape, which allows for working with infinite alphabets. Finite au-
tomata only have bounded memory in the form of control states. If we were to work with
infinite alphabets in the context of finite automata, the model could not tell infinitely
many elements apart. On the other hand, because of their finiteness, finite automata enjoy
many favorable properties, such as closure under Boolean operations, projections, homo-
morphism, etc. In the following sections, we introduce some of the formal models, each of
which will be referred to in the latter chapters of this thesis. We begin by introducing some
concepts crucial for understanding the motivation behind the phenomena that we deal with
throughout this work.

Determinism and nondeterminism. A deterministic computation works in a way
such that when the machine is in a given state and reads the next input symbol, there is at
most one next state – the computation is determined. In a non-deterministic computation,
there is more than one possibility of moving from the current state to the next state via the
current symbol on the input tape. Intuitively, each step of computation follows a unique
path from the preceding step, and for each word, there is only a single unique run that the
automaton can make when reading its characters. Nondeterminism is a generalization of
determinism, therefore each deterministic automaton is naturally nondeterministic. While
nondeterminism is a useful concept in the theory of computation [41] leading to, among
other things, compact representations of some languages, its use in practical applications
may be inefficient. For example, when performing pattern matching based on some nonde-
terministic model, the need for trying out all possible runs over the given word may lead
to an abundance of backtracking, thus leading to inefficient performance and malfunctions
in the worst case scenario.

Infinite alphabet. The intuition behind infinite alphabets is not that the words
accepted by the automaton may be of infinite length, but, rather, that the domain of
characters of which the word consists is infinite.

Practical applications from which the needs for infinite alphabets arise include the need
for concurrency, situations, when it is necessary to statically decide whether a particular
program satisfies given specifications, or working with an unbounded number of processes,
each of them having a unique identification, such that we have to maintain information
about their interaction and cooperation. Other considerations leading to infinite alphabets
arise from attempting to perform a classical model checking techniques on infinite state
systems, or from the realm of databases [26].

Decidability of a problem. For a better understanding of the identified properties
for the proposed model, we explain the notion of decidability. Certain problems can be
solved algorithmically and others cannot. In latter chapters, our goal is to explore the
limits of algorithmic solvability for some of the decision problems in case of the proposed
model and its extensions. Intuitively, a decision problem 𝑃 can be understood as a function,
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whose range is the set {true, false}. That is, for any specified problem and a given input,
the function returns true if the specified property is satisfied by the input, and it returns
false otherwise. We say that a decision problem is decidable, if it can be solved by an
algorithm that halts on all given inputs in a finite number of steps.

2.2.1 Finite Automaton

Finite automaton (FA) is a simple yet powerful formal model, with memory limited to its
finite state space. Its function is to either accept or reject an input word, depending on
whether it satisfies the pattern defined by a given FA.

First, we give the formal definition of a finite automaton, and in the following sections,
we introduce formal models that are more powerful in their expressive power. However,
they are built upon extending the structure of FA.
Definition 2.2.1. A finite automaton (FA) is a tuple 𝒜 = (𝑄,Σ,Δ, 𝐼, 𝐹 ), where:

• 𝑄 is a finite set of states,

• Σ is a finite non-empty alphabet,

• Δ is a transition function, such that Δ: 𝑄× Σ→ 2𝑄,

• 𝐼 ⊆ 𝑄 is a set of initial states, and

• 𝐹 ⊆ 𝑄 is a set of final states.
Definition 2.2.2. A configuration of 𝒜 is a pair 𝑐 ∈ 𝑄×Σ*, i.e., it consists of a state and
the remaining substring of the processed word on the input tape. An initial configuration is
a pair 𝑐 ∈ 𝐼 × Σ*. Suppose 𝑐1 = (𝑞1, 𝑤), and 𝑐2 = (𝑞2, 𝑤

′) are two configurations of 𝒜. We
say that 𝑐1 can make a step to 𝑐2 over 𝑎, denoted as 𝑐1 ⊢𝑎 𝑐2, iff

1. 𝑤 = 𝑎𝑤′,

2. 𝑞2 ∈ Δ(𝑞1, 𝑎).

A run 𝜌 of 𝒜 over the word 𝑤 = 𝑎1𝑎2𝑎3 . . . 𝑎𝑛 from a configuration 𝑐 is a sequence of
configurations 𝜌 = 𝑐0𝑐1 . . . 𝑐𝑛 such that ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑐𝑖−1 ⊢𝑎𝑖 𝑐𝑖 and 𝑐0 = 𝑐. We say that 𝜌 is
accepting if 𝑐 is an initial configuration, 𝑐𝑛 = (𝑠, 𝜖), and 𝑠 ∈ 𝐹 .

Definition 2.2.3. The language accepted by 𝒜, denoted as ℒ(𝒜), is defined as ℒ(𝒜) =
{𝑤 | 𝒜 has an accepting run over 𝑤}.

Graphical representation. When depicting finite automata, the states are repre-
sented by circles, interconnected by arrows which represent the transition. For a transition
to be enabled, above each transition, there is a symbol that needs to be present on the
input tape when the computation’s current state is the source state of the transition. The
initial and final states are depicted in the following way:

𝑞init

(a) Depiction of an initial state.

𝑞fin

(b) Depiction of a final state.

Example 2.2.1. The finite automaton in Figure 2.2 accepts all words both starting and
ending with letter 𝑎.

9



𝑞 𝑠 𝑡
𝑎

Σ

𝑎

Figure 2.2: Example FA.

2.2.2 Register Automata

The model of register automaton lies at the basis of our introduced model. We build upon
extending its structure, therefore, it is necessary to introduce a proper formal basis of RA.
As mentioned before, the RA is a formal model operating over data words, whose data
domain is an infinite set of values. It is equipped with a finite memory in the form of
registers, each of which can store a single data value seen on the input tape.

Definition 2.2.4. A (nondeterministic one-way) register automaton (on data words), ab-
breviated as (N)RA, is a tuple 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 ) where:

• 𝑄 is a finite set of states,

• R is a finite set of registers,

• 𝐼 ⊆ 𝑄 is a set of initial states,

• 𝐹 ⊆ 𝑄 is a set of final states, and

• Δ ⊆ 𝑄× Σ× 2R × 2R × (R→ R ∪ {in,⊥})×𝑄 is a transition relation such that if
𝑡 : (𝑞, 𝑎, 𝑔=, 𝑔 ̸=, up, 𝑠) ∈ Δ, then 𝑔= ∩ 𝑔 ̸= = ∅.

We use 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 to denote 𝑡 (and often drop from up mappings 𝑟 ↦→ 𝑟 for 𝑟 ∈ R,
which we treat as implicit). The semantics of 𝑡 is that:

• 𝒜 can move from state 𝑞 to state 𝑠 if:

– the Σ-symbol at the current position of the input word is 𝑎,
– the D-value at the current position is equal to all registers from 𝑔=,
– the D-value at the current position is not equal to any register from 𝑔 ̸=.

• The content of the registers is updated so that 𝑟𝑖 ← up(𝑟𝑖) (i.e., 𝑟𝑖 can be assigned
the value of some other register, the current D-symbol, denoted by in, or it can be
cleared by being assigned ⊥).

We refer to 𝑔= and 𝑔 ̸= as to guard of a transition, since it is a condition that needs to be
satisfied in order to enable particular transition. In addition, up is referred to as update,
since it denotes the way in which the content of registers gets updated after moving via
given transition. In the following, we give the definitions for the formal basis of register
automata.

Definition 2.2.5. A configuration of 𝒜 is a pair 𝑐 ∈ 𝑄× (R→ D ∪ {⊥}), i.e., it consists
of a state and an assignment of data values to registers. An initial configuration of 𝒜 is
a pair 𝑐init ∈ 𝐼 × {{𝑟 ↦→ ⊥ | 𝑟 ∈ R}}. Suppose 𝑐1 = (𝑞1, 𝑓1) and 𝑐2 = (𝑞2, 𝑓2) are two
configurations of 𝒜. We say that 𝑐1 can make a step to 𝑐2 over ⟨𝑎, 𝑑⟩ ∈ Σ × D using
transition 𝑡 : 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 ∈ Δ, denoted as 𝑐1 ⊢⟨𝑎,𝑑⟩𝑡 𝑐2, iff
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1. 𝑑 = 𝑓1(𝑟) for all 𝑟 ∈ 𝑔=,

2. 𝑑 ̸= 𝑓1(𝑟) for all 𝑟 ∈ 𝑔 ̸=, and

3. for all 𝑟 ∈ R, we have 𝑓2(𝑟) =

⎧⎪⎨⎪⎩
𝑓1(𝑟

′) if up(𝑟) = 𝑟′ ∈ R,

𝑑 if up(𝑟) = in, and
⊥ if up(𝑟) = ⊥.

A run 𝜌 of 𝒜 over the word 𝑤 = ⟨𝑎1, 𝑑1⟩ . . . ⟨𝑎𝑛, 𝑑𝑛⟩ from a configuration 𝑐 is a se-
quence of alternating configurations and transitions 𝜌 = 𝑐0𝑡1𝑐1𝑡2 . . . 𝑡𝑛𝑐𝑛 such that ∀1 ≤ 𝑖 ≤
𝑛 : 𝑐𝑖−1 ⊢⟨𝑎𝑖,𝑑𝑖⟩𝑡𝑖

𝑐𝑖 and 𝑐0 = 𝑐.

We say that 𝜌 is accepting if 𝑐 is an initial configuration, 𝑐𝑛 = (𝑠, 𝑓), and 𝑠 ∈ 𝐹 .

Definition 2.2.6. The language accepted by 𝒜, denoted as ℒ(𝒜), is defined as ℒ(𝒜) =
{𝑤 ∈ (Σ× D)* | 𝒜 has an accepting run over 𝑤}.

A configuration 𝑐 is reachable if there exists a run 𝜌 starting from an initial configuration
such that the last configuration of 𝜌 is 𝑐. A state 𝑞 ∈ 𝑄 is reachable if there exists a reachable
configuration (𝑞, 𝑓) for some 𝑓 . A configuration 𝑐 is backward-reachable if there exists
a run 𝜌 starting from 𝑐 such that the last configuration of 𝜌 is (𝑞, 𝑓) for some 𝑞 ∈ 𝐹 and
a state 𝑞 ∈ 𝑄 is backward-reachable if there exists a backward-reachable configuration (𝑞, 𝑓)
for some 𝑓 . A state is useful if it is reachable and backward-reachable, it is useless otherwise.

We say that 𝒜 is a deterministic RA (DRA) if for all states 𝑞 ∈ 𝑄 and all 𝑎 ∈ Σ, it holds
that for any two distinct transitions 𝑞 𝑎 | 𝑔=1 , 𝑔

̸=
1 , up1 𝑠1, 𝑞 𝑎 | 𝑔=2 , 𝑔

̸=
2 , up2 𝑠2 ∈ Δ we

have that 𝑔=1 ∩ 𝑔
̸=
2 ̸= ∅ or 𝑔=2 ∩ 𝑔

̸=
1 ̸= ∅. 𝒜 is complete if for all states 𝑞 ∈ 𝑄, symbols 𝑎 ∈ Σ,

and 𝑔 ⊆ R, there is a transition 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 such that 𝑔 ⊆ 𝑔= and 𝑔 ∩ 𝑔 ̸= = ∅.

Properties. When it comes to decision problems of register automata, the non-
emptiness of NRA is decidable [22]. The languages recognized by NRA are not closed
under the complement, and, additionally, universality, together with equivalence and in-
clusion of NRA are undecidable [29]. One of the possibilities of regaining decidability is
by restriction to deterministic register automata, which are closed under complement, and
have a decidable inclusion, universality and equivalence [8]. The inclusion problem for
ℒ(𝒜) ⊆ ℒ(ℬ), where 𝒜 is an NRA and ℬ is a DRA is decidable. The standard approach to
testing ℒ(𝒜) ⊆ ℒ(ℬ) is to (i) determinise ℬ into ℬ𝐷, (ii) complement ℬ𝐷 into ℬ𝐷, (iii) test
the emptiness of the intersection of 𝒜 and ℬ𝐷. Another way of gaining decidability is the
restriction on the number of registers. The inclusion problem is decidable, when 𝒜 is an
NRA and ℬ is an NRA with one register [22]. When increasing the number to two registers,
the problem becomes undecidable again [10].

Graphical representation. When depicting register automata, the graphical repre-
sentation of initial and final states is the same as for FA, with the exception in the depiction
of the transition. Take, for example, the following transition:

𝑞 𝑠

𝑎 in ̸= 𝑟

𝑟 ← in

The RA can move from state 𝑞 to state 𝑠 iff:
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1. the Σ-symbol at the current position is 𝑎, and

2. the D-value (denoted by in in the picture) at the current position is different from
the value stored in 𝑟.

The content of the register 𝑟 is updated so that 𝑟 ← in. This depiction is equivalent
to the transition 𝑞 𝑎 | ∅, {𝑟}, {𝑟 ↦→ in} 𝑠. That is, the symbol in the box denotes the
current Σ-symbol, the formula above the line represents the guard of the transition, and
the assignment below the line represents the update of the transition.

Example 2.2.2. The NRA recognizing the language 𝐿∃repeat can be seen in the following
figure:

𝑞 𝑠 𝑡

𝑎

𝑎

𝑟 ← in

𝑎 in ̸= 𝑟

𝑎 in = 𝑟

𝑎

2.2.3 Universal Register Automata

A universal register automaton (URA) is defined in the same way as a non-deterministic
register automaton, with the exception of its accepting condition. In order for a word to
be accepted by URA, each of its runs over this word has to be accepting.

Definition 2.2.7. A language accepted by a URA 𝒜𝑈 is the set ℒ(𝒜𝑈 ) = {𝑤 ∈ (Σ×D)* |
every run of 𝒜𝑈 on 𝑤 is accepting}. Note that the URA should be complete.

There is a duality between NRAs and URAs.

Fact 2.2.1. For every NRA 𝒜𝑁 , there is a URA accepting the complement of ℒ(𝒜𝑁 ).
Conversely, for every URA 𝒜𝑈 , there is an NRA accepting the complement of ℒ(𝒜𝑈 ).

Proof. For both parts, the complement automaton is obtained by

(i) adding a rejecting sink state to the automaton,

(ii) completing the transition relation (i.e., adding transitions for undefined combinations
of symbols and guards to the sink state) of the input automaton, and

(iii) swapping final and non-final states.

Example 2.2.3. URAs can, for instance, accept the language 𝐿¬∃repeat obtained as the
complement of 𝐿∃repeat from Example 2.2.2 (i.e., it is the language of words where no two
data values are the same), which NRAs cannot accept. URAs on the other hand cannot
accept 𝐿∃repeat . The URA accepting 𝐿¬∃repeat can be seen in Figure 2.3.
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𝑢 𝑣 𝑤

𝑎

𝑎

𝑟 ← in

𝑎

𝑎 in ̸= 𝑟

𝑎

Figure 2.3: URA recognizing 𝐿¬∃repeat .

2.2.4 Alternating Register Automata

An alternating register automaton makes use of alternation, which is a generalization of
non-determinism. The difference between the two lies in the accepting conditions. The
states of ARA are either existential (denoted by ∨), or universal (denoted by ∧). When
depicting ARAs, the transitions originating in a universal state are connected by an arc with
the guard that needs to hold for all interconnected transitions. Existential transitions are
denoted in the usual manner. An example of such an automaton can be seen in Figure 2.4.
Note that in this picture, the state 1 is universal, even though it may look like it is both
universal and existential. The two sets of transitions are distinguished by the different
labels 𝑎 and 𝑏 required to enable the transitions.

Intuitively, in case of an existential state, for a word to be accepted from it, a condition
there exists at least one run originating in this state that accepts has to hold. In order to
accept a word from a universal state, the condition all runs originating in this state have
to accept must hold. The run for ARAs is not linear (in a single thread), but branching
into multiple threads, i.e., it is a tree. An example of the run of the ARA from Figure 2.4
over the data word ⟨𝑏, 4⟩⟨𝑎, 1⟩⟨𝑏, 2⟩⟨𝑎, 3⟩⟨𝑏, 1⟩⟨𝑏, 3⟩ can be seen in Figure 2.5. Labels of the
form 𝑟 = 1 below the states denote the content of a register active for a given branch of
computation.

It is obvious that alternating automata combine the accepting conditions of NRA and
URA. A universal register automaton can be thought of as an ARA with only universal
states, and a non-deterministic register automaton can be thought of as an ARA with only
existential states.

1 2

𝑠

3

𝑏

𝑟 ← in

𝑎 in ̸= 𝑟

𝑏 in ̸= 𝑟

𝑏 in = 𝑟

𝑎 in = 𝑟

𝑎 in = 𝑟

Σ

𝑏

𝑎 in ̸= 𝑟

𝑎

Figure 2.4: Example ARA, recognizing 𝐿∀𝑎∃𝑏.

Definition 2.2.8. An alternating RA (ARA) is a tuple 𝒜 = (𝑄 = 𝑄∧ ∪ 𝑄∨,R,Δ =
Δ∧ ∪ Δ∨ ∪ Δ𝜖, 𝐼, 𝐹 ) where 𝑄∧ and 𝑄∨ denote the (disjoint) finite sets of universal and
existential states respectively, 𝐼 and 𝐹 are the same as for NRA, and the transitions are as
follows:
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1 1 1 1 1 1 1

2

𝑟 = 3

2

𝑟 = 3

3

𝑟 = 3

2

𝑟 = 1

2

𝑟 = 1

2

𝑟 = 1

3

𝑟 = 1

3

𝑟 = 1

⟨𝑏, 4⟩ ⟨𝑎, 1⟩ ⟨𝑏, 2⟩ ⟨𝑎, 3⟩ ⟨𝑏, 1⟩ ⟨𝑏, 3⟩

𝑟 ← 3𝑟 ← 1

∧ ∧

Figure 2.5: An example of a run of the ARA from Figure 2.4.

1. Δ∧ ⊆ 𝑄∧ × Σ× 2R × 2R × (R→ R ∪ {in,⊥})×𝑄,

2. Δ∨ ⊆ 𝑄∨ × Σ× 2R × 2R × (R→ R ∪ {in,⊥})×𝑄, and

3. Δ𝜖 ⊆ 𝑄×𝑄.

The transitions in Δ𝜖 are the so-called 𝜖-transitions, which neither read any symbol from
the input nor manipulate registers.

In this thesis, we only use the ARA to position our model in the landscape of expres-
sivity of register automata models. Therefore, we refrain from giving other fully involved,
technical definitions. These can be found e.g. in the paper of Demri and Lazić [10].

2.2.5 Alternating Register Automata with guess and spread
There are many possible ways of extending alternating register automata, in order to in-
crease their expressivity or obtain other advantages in terms of their computational power.
In this thesis, we also consider an extension introduced in [14].

In the aforementioned paper, authors explore the model of alternating register automata
with guess and spread operations (ARA(guess, spread)). The guess operation allows a thread
to assign a nondeterministically chosen data value into some register, which may be different
for each thread. In addition, the spread operation allows to make a certain kind of universal
quantification over the data values seen so far on the run of the automaton, including data
values seen on different threads.

We explore the expressive power of ARA(guess, spread) in comparison with the expres-
sivity of our proposed model. As with ARA, we do not directly work with this model. The
overview of its formal basis, and the relation to its equivalent logic fragment can be found
in [14].

By notation NRA𝑛,URA𝑛, and RsA𝑛, we denote the subclasses of respective register
automata models with 𝑛 registers. The NRA=, URA=, and DRA= are used to denote the
subclasses of NRAs, URAs, and DRAs with no inequality guards, i.e., automata where for
every transition 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 it holds that 𝑔 ̸= = ∅. Furthermore, for a class 𝒞 of
automata with registers and 𝑛 ∈ N, we use 𝒞𝑛 to denote the subclass of 𝒞 containing
automata with at most 𝑛 registers (e.g., DRA2). We abuse notation and use 𝒞 to also
denote the class of languages defined by 𝒞.
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2.3 Regular Expressions
In theory of computation, formal languages can be described by expressions, which are built
up by regular operations [41]. Such expressions are called regular expressions. Regular ex-
pression (regex) is a powerful mechanism for representation of regular languages, or a strong
technique for describing patterns, first introduced by S. C. Kleene in [23]. Intuitively, each
regex represents a formal structure of each word belonging to a language it represents.

Regexes are convenient in many practical applications, such as in data processing, nat-
ural language processing, pattern matching, data extraction, or even web scraping. In the
following, we give their formal definition, followed by a definition of their possible extension
with greater expressive power.
Definition 2.3.1. Let Σ be an alphabet. A regular expression (regex) ℛ over Σ is recursively
defined in the following way:

1. ℛ = ∅,

2. ℛ = 𝜖,

3. ℛ = 𝑎 for some 𝑎 ∈ Σ,

4. ℛ = ℛ1 +ℛ2, where ℛ1 and ℛ2 are regular expressions,

5. ℛ = ℛ1ℛ2, where ℛ1 and ℛ2 are regular expressions, and

6. ℛ = ℛ*
1, where ℛ1 is a regular expression.

Regular expressions and finite automata are equivalent in their expressive power [18].
Any finite automaton can be converted into an equivalent regex and vice versa.

2.3.1 Regular Expressions with Backreferences

There are many important applications in which the usage of regular expressions is crucial.
In some of them, the context calls for definition of more complicated patterns that cannot be
represented by the general structure of regular expressions. One of them is manipulation
with an arbitrary substring or a subpattern of some matched word. In this thesis, we
focus on regular expressions with backreferences, since their processing is one of the main
motivations for introduction of our proposed model. Intuitively, regular expressions with
backreferences are used when one wishes to match the same piece of text more than once.

In most applications, the regular expression contains one or more capture groups, which
enclose one or more characters by parentheses (e.g. (.), which is a group capturing a single
arbitrary character). Later in the regular expression, this capture group is referred to by
a backreference, which is denoted by a backslash, followed by a particular number i (e.g. \1).
Since there may be more than one capture groups, the number i denotes the i -th capture
group from the beginning of the extended regular expression. The backreference requires the
repetition of a particular pattern enclosed in the capture group appearing on the position
of the backreference.
Example 2.3.1. The extended regex /(.).*\1/ captures words in which some symbol ap-
pears at least twice. It is equivalent to the language 𝐿∃repeat from Example 2.2.2.
Example 2.3.2. The extended regex /(.).*(.).*\2.*\1/ captures words in which ar-
bitrary two symbols appear at least twice, such that their order is reversed in the second
appearance.
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Chapter 3

Register Set Automaton

This chapter contains proper formal definitions of the introduced model and its properties.
The proposed model, called register set automaton, is based on extending the model of
register automaton, and allowing for storage of a set of values in each register, contrary to
the singleton value in the original model.

In our work, we were inspired by counting-set automata introduced by Turoňová et
al. [44]. These use sets of counter values to compactly represent configurations of counting
automata [17] (a restricted version of counter automata [28] with a bound on the value of
counters for compact representation of finite automata) in order to obtain a deterministic
model for efficient matching of regular expressions with repetitions.

Definition 3.0.1. A (nondeterministic) register set automaton (on data words), abbrevi-
ated as (N)RsA is a tuple 𝒜𝑆 = (𝑄,R,Δ, 𝐼, 𝐹 ) where:

• 𝑄 is a finite set of states,

• R is a finite set of registers,

• 𝐼 ⊆ 𝑄 is a set of initial states,

• 𝐹 ⊆ 𝑄 is a set of final states, and

• Δ ⊆ 𝑄 × Σ × 2R × 2R × (R → 2R∪{in}) × 𝑄 is a set of transitions such that if
𝑞 𝑎 | 𝑔∈, 𝑔/∈, up 𝑠 ∈ Δ, then 𝑔∈ ∩ 𝑔 /∈ = ∅ (as with NRAs, we often do not write
mappings 𝑟 ↦→ {𝑟} for 𝑟 ∈ R when defining the update (up)).

The semantics of a transition 𝑞 𝑎 | 𝑔∈, 𝑔/∈, up 𝑠 is the following:

• 𝒜𝑆 can move from state 𝑞 to state 𝑠 if

– the Σ-symbol at the current position of the input word is 𝑎,
– the D-value at the current position is in all registers from 𝑔∈, and
– the D-value at the current position is in no registers from 𝑔 /∈.

• The content of the registers is updated so that 𝑟𝑖 ←
⋃︀
{𝑥 | 𝑥 ∈ up(𝑟𝑖)} (i.e., 𝑟𝑖 can

be assigned the union of values of several registers, possibly including the current
D-symbol denoted by in).

Definition 3.0.2. A configuration of 𝒜𝑆 is a pair 𝑐 ∈ 𝑄 × (R → 2D), i.e., it consists of
a state and an assignment of sets of data values to registers.
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Definition 3.0.3. An initial configuration of 𝒜𝑆 is a pair 𝑐init ∈ 𝐼 × {{𝑟 ↦→ ∅ | 𝑟 ∈ R}}.
Suppose 𝑐1 = (𝑞1, 𝑓1) and 𝑐2 = (𝑞2, 𝑓2) are two configurations of 𝒜𝑆. We say that 𝑐1 can
make a step to 𝑐2 over ⟨𝑎, 𝑑⟩ ∈ Σ × D using transition 𝑡 : 𝑞 𝑎 | 𝑔∈, 𝑔/∈, up 𝑠 ∈ Δ, denoted
as 𝑐1 ⊢⟨𝑎,𝑑⟩𝑡 𝑐2, iff

1. 𝑑 ∈ 𝑓1(𝑟) for all 𝑟 ∈ 𝑔∈,

2. 𝑑 /∈ 𝑓1(𝑟) for all 𝑟 ∈ 𝑔 /∈, and

3. for all 𝑟 ∈ R, we have 𝑓2(𝑟) =
⋃︀
{𝑓1(𝑟′) | 𝑟′ ∈ R, 𝑟′ ∈ up(𝑟)}∪

{︃
{𝑑} if in ∈ up(𝑟) and
∅ otherwise.

A run 𝜌 of 𝒜𝑆 over the word 𝑤 = ⟨𝑎1, 𝑑1⟩ . . . ⟨𝑎𝑛, 𝑑𝑛⟩ from a configuration 𝑐 is a se-
quence of alternating configurations and transitions 𝜌 = 𝑐0𝑡1𝑐1𝑡2 . . . 𝑡𝑛𝑐𝑛 such that ∀1 ≤ 𝑖 ≤
𝑛 : 𝑐𝑖−1 ⊢⟨𝑎𝑖,𝑑𝑖⟩𝑡𝑖

𝑐𝑖 and 𝑐0 = 𝑐.

We say that 𝜌 is accepting if 𝑐 is an initial configuration, 𝑐𝑛 = (𝑠, 𝑓), and 𝑠 ∈ 𝐹 .

Definition 3.0.4. The language accepted by 𝒜𝑆, denoted as ℒ(𝒜𝑆), is defined as ℒ(𝒜𝑆) =
{𝑤 ∈ (Σ× D)* | 𝒜 has an accepting run over 𝑤}.

We say that the RsA 𝒜𝑆 is deterministic (DRsA) if for all states 𝑞 ∈ 𝑄 and all 𝑎 ∈ Σ, it
holds that for any two distinct transitions 𝑞 𝑎 | 𝑔∈1 , 𝑔/∈

1 , up1 𝑠1, 𝑞 𝑎 | 𝑔∈2 , 𝑔/∈
2 , up2 𝑠2 ∈ Δ

we have that 𝑔∈1 ∩ 𝑔 /∈
2 ̸= ∅ or 𝑔∈2 ∩ 𝑔 /∈

1 ̸= ∅.

Graphical representation. When depicting register set automata, the graphical
representation of initial and final states is, again, the same as for FA, with the exception in
the depiction of the transition. Take, for example, the following transition:

𝑞 𝑠

𝑎 in /∈ 𝑟

𝑟 ← 𝑟 ∪ {in}

The RsA can move from state 𝑞 to state 𝑠 iff:

1. the Σ-symbol at the current position is 𝑎,

2. the D-value at the current position (denoted by in in the picture) does not belong to
the register set 𝑟.

The content of the register 𝑟 is updated so that 𝑟 ← 𝑟 ∪ {in}. This depiction is equivalent
to the transition 𝑞 𝑎 | ∅, {𝑟}, {𝑟 ↦→ {𝑟, in}} 𝑠. That is, the symbol in the box denotes the
current Σ-symbol, the notion above the line represents the guard of the transition, and the
notion below the line represents the update of the transition.

Example 3.0.1. A DRsA accepting the language 𝐿∃repeat from Example 2.2.2 can be seen in
Figure 3.1. Formally, it is a DRsA1 𝒜 = ({𝑞, 𝑠}, {𝑟},Δ, {𝑞}, {𝑠}) where Δ contains the fol-
lowing transitions: Δ = {𝑞 𝑎 | ∅, {𝑟}, {𝑟 ↦→ {𝑟, in}} 𝑞, 𝑞 𝑎 | {𝑟}, ∅, ∅ 𝑠, 𝑠 𝑎 | ∅, ∅, ∅ 𝑠}.
Intuitively, the DRsA waits in 𝑞 and accumulates the so-far seen input data values in regis-
ter 𝑟 (we use 𝑟 ← 𝑟∪{in} to denote the update 𝑟 ↦→ {𝑟, in}). Once the DRsA reads a value
that is already in 𝑟, it moves to 𝑠 and accepts.
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𝑞 𝑠

𝑎 in /∈ 𝑟

𝑟 ← 𝑟 ∪ {in}

𝑎 in ∈ 𝑟

𝑎

Figure 3.1: DRsA1 recognizing 𝐿∃repeat .

Example 3.0.2. Consider the language 𝐿¬∀repeat . Intuitively, it is the language of all
words containing a data value with exactly one occurrence. This language is accepted, e.g.,
by the RsA1 in Figure 3.2. The RsA stays in state 𝑞, collecting the so-far seen values into
its register, and at some point, when it encounters a value occurring for the first time, it
nondeterministically moves to 𝑠, remembering the value in its register. Then, at state 𝑠,
the RsA just checks that the previously stored value does not appear at the input any more.

𝑞 𝑠

𝑎

𝑟1 ← 𝑟1 ∪ {in}

𝑎 in /∈ 𝑟1
𝑟1 ← {in}

𝑎 in /∈ 𝑟1

Figure 3.2: RsA1 recognizing 𝐿¬∀repeat .

Example 3.0.3. Consider the extended regular expression 𝑅\3\2\1 from Chapter 1. The
RsA equivalent to this extended regex can be seen in Figure 3.3. Intuitively, it accumu-
lates all encountered data values into the register 𝑟1, until the ";" delimiter is seen, then
it accumulates all values in register 𝑟2 while reaching another delimiter, and, finally, it ac-
cumulates all values into register 𝑟3. At some point, the RsA non-deterministically checks
whether the three last symbols belong to registers 𝑟3, 𝑟2 and 𝑟1, respectively.

Example 3.0.4. A DRsA1 accepting the language 𝐿¬∃repeat , which is the complement of
the language 𝐿∃repeat from Example 2.2.2, can be seen in Figure 3.4.

Intuitively, the automaton stays in state 𝑞 and accumulates all input data values in
register 𝑟, making sure no input data value has been seen previously.

1 2 3 4 5 6
; ;

Σ
in ∈ 𝑟3

Σ
in ∈ 𝑟2

Σ
in ∈ 𝑟1

Σ

𝑟1 ← 𝑟1 ∪ {in}

Σ

𝑟2 ← 𝑟2 ∪ {in}

Σ

𝑟3 ← 𝑟3 ∪ {in}

Figure 3.3: RsA equivalent to 𝑅\3\2\1.
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𝑞

𝑎 in /∈ 𝑟

𝑟 ← 𝑟 ∪ {in}

Figure 3.4: DRsA1 recognizing 𝐿¬∃repeat .

3.1 Properties
In this section, we discuss some of the properties for RsAs as well as the decidability of
basic decision problems for RsAs. At first, we claim that RsAs generalize NRAs.

Fact 3.1.1. For every 𝑛 ∈ N and NRA𝑛, there exists an RsA𝑛 accepting the same language.

Proof. We transform every NRA transition 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 into the RsA transition
𝑞 𝑎 | 𝑔∈, 𝑔/∈, up′ 𝑠 such that 𝑔∈ = 𝑔=, 𝑔 /∈ = 𝑔 ̸=, and for every register 𝑟𝑖 and up(𝑟𝑖) = 𝑥,

up′(𝑟𝑖) =

{︃
{𝑥} for 𝑥 ∈ R ∪ {in}
∅ for 𝑥 = ⊥.

Intuitively, every simple register of NRA will be represented by a set register of RsA that
will always hold the value of either an empty or a singleton set.

The next theorem shows the core property of RsAs, which is that their emptiness
problem is decidable. The proof of decidability and a proper classification of its complexity
can be found in Chapter 4, which is entirely devoted to the emptiness checking of register
set automata.

Theorem 3.1.1. The emptiness problem for RsA is decidable, in particular, F𝜔-complete.

Remark 3.1.1. Since register set automata generalize non-deterministic register automata,
their universality, equivalence, and language inclusion problems are all undecidable.

3.2 Closure Properties
In this section, we examine and prove the closure properties for RsA as well as for its
more restricted versions, with respect to a fixed number of registers, and the property of
determinism. We study the closure under Boolean operations, including union, intersection,
and complement.

3.2.1 Closure Properties of RsA

The closure properties of RsAs are the same as for NRAs.

Theorem 3.2.1. The following closure properties hold for RsA:

1. RsA is closed under union and intersection.

2. RsA is not closed under complement.
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Proof. The proofs for closure under union and intersection are standard: for two RsAs 𝒜1 =
(𝑄1,R1,Δ1, 𝐼1, 𝐹1) and 𝒜2 = (𝑄2,R2,Δ2, 𝐼2, 𝐹2) with disjoint sets of states and registers,
the RsA 𝒜∪ accepting the union of their languages is obtained as 𝒜∪ = (𝑄1 ∪ 𝑄2,R1 ∪
R2,Δ1 ∪Δ2, 𝐼1 ∪ 𝐼2, 𝐹1 ∪ 𝐹2). Similarly, 𝒜∩ accepting their intersection is constructed as
the product 𝒜∩ = (𝑄1 ×𝑄2,R1 ∪R2,Δ

′, 𝐼1 × 𝐼2, 𝐹1 × 𝐹2) where

(𝑠1, 𝑠2) 𝑎 | 𝑔∈1 ∪ 𝑔∈2 , 𝑔
/∈
1 ∪ 𝑔 /∈

2 , up1 ∪ up2 (𝑠′1, 𝑠
′
2) ∈ Δ′

iff

𝑠1 𝑎 | 𝑔∈1 , 𝑔/∈
1 , up1 𝑠′1 ∈ Δ1 and 𝑠2 𝑎 | 𝑔∈2 , 𝑔/∈

2 , up2 𝑠′2 ∈ Δ2.

Correctness of the constructions is clear.
For showing the non-closure under complement, consider the language 𝐿¬∀repeat from

Example 3.0.2, which can be accepted by RsA. Let us show that for the complement of the
language, namely, the language 𝐿∀repeat , where all data values appear at least twice, there
is no RsA that can accept it.

Our proof is a modification of the proof of Proposition 3.2 in [14]. In particular, we show
that if 𝐿∀repeat were expressible using an RsA, then we could construct an RsA encoding
accepting runs of a Minsky machine. Since emptiness of an RsA is decidable (cf. Theo-
rem 3.1.1) and emptiness of a Minsky machine is not, we would then obtain a contradiction.

Let us consider a Minsky machine ℳ with two counters and instructions of the form
(𝑞, ℓ, 𝑞′) where 𝑞 and 𝑞′ are states of ℳ and ℓ ∈ {inc, dec, ifzero} × {1, 2} is the cor-
responding counter operation. A run of ℳ is a sequence of instructions (which can be
viewed as Σ-symbols) together with a data value 𝑑 ∈ D assigned to every symbol. The data
values are used to match increments with decrements of the same counter (intuitively, we
are trying to say that “each increment is matched with a decrement”, in order to express
that the value of the counter is zero). For instance, consider the following run:

(𝑞1, inc1, 𝑞2)
12

(𝑞2, inc1, 𝑞3)
42

(𝑞3, dec1, 𝑞3)
12

(𝑞3, inc2, 𝑞2)
17

(𝑞2, dec1, 𝑞1)
42

(𝑞1, ifzero1, 𝑞4)
7

Here, the first increment of counter 1 is matched with the first decrement of the counter
(both having data value 12) and the second increment of counter 1 is matched with the
second decrement of the counter (both having data value 42). Since all increments of the
counter are uniquely matched with a decrement, the test at the end is satisfied, soℳ would
accept (we assume 𝑞4 is a final state). To be able to accept such words, we can construct
an automaton that checks the following properties of the input word:

1. The first instruction is of the form (𝑞1, ·, ·) for 𝑞1 being the initial state of ℳ.

2. Each instruction of the form (·, ·, 𝑞𝑖) is followed by an instruction of the form (𝑞𝑖, ·, ·).

3. All increments have different data values, and all decrements have different data
values.

4. Between every two (·, ifzero𝑖, ·) instructions (or between the start and the first such
an ifzero𝑖 instruction),

(a) every (·, dec𝑖, ·) needs to be preceded by an (·, inc𝑖, ·) instruction with the same
data value and
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(b) every (·, inc𝑖, ·) needs to be followed by a (·, dec𝑖, ·) instruction with the same
data value.

Properties 1 and 2 can be easily expressed using an NFA and, therefore, also using a DRsA.
Property 3 is easily expressible using an RsA (in fact, using a DRsA) that collects data
values of increments and decrements of each counter in registers (we need two registers
for every counter). Property 4a is also expressible using an RsA (again, using a DRsA)
that collects the data values of decrements and whenever it reads an increment, it checks
whether it has seen the increment’s data value before.

Let us now focus on Property 4b. The negation of this property would be “there is an
increment not followed by a decrement with the same data value”. This negated property is
essentially captured by the language 𝐿¬∀repeat and so it is expressible using RsA (in fact, it
can be expressed by an NRA with guessing; or by a simple NRA provided that we change
the accepted language to be prepended by a sequence of data values that will be used in
the run, separated from the run by a delimiter). Therefore, if an RsA could accept the
complement of 𝐿¬∀repeat , i.e., the language 𝐿∀repeat , then we would be able to solve the
emptiness problem of a Minsky machine, which is a contradiction.

3.2.2 Closure Properties of RsA𝑛

For RsAs with a limited number of registers, we lose the closure under intersection.

Theorem 3.2.2. For each 𝑛 ∈ N, the following closure properties hold for RsA𝑛:

1. RsA𝑛 is closed under union.

2. RsA𝑛 is not closed under intersection and complement.

Proof. The proof of closure under union is the same as in the proof of Theorem 3.2.1 with
the exception that the result uses only registers R1 (we assume |R1| = 𝑛): all references to
registers 𝑟 ∈ R2 are changed to references to 𝑓(𝑟) where 𝑓 : R2 → R1 is an injection.

To show non-closure under intersection, consider the two languages

ℒ𝐴𝑛 = {𝑤 | ∀𝑖 < 𝑛 : D[𝑤𝑖] = D[𝑤|𝑤|−𝑖+1]}

and

ℒ𝐵𝑛 = {𝑤 | ∀𝑛 ≤ 𝑖 < 2𝑛 : D[𝑤𝑖] = D[𝑤|𝑤|−𝑖+1]}.

Intuitively, ℒ𝐴𝑛 is the language of words where the first 𝑛 data values in the word are repeated
(in the reverse order) at the end of the word and ℒ𝐵𝑛 is the language of words where the
(𝑛+1)-th to 2𝑛-th data values are repeated (also in the reverse order) at the 2𝑛-th to (𝑛+1)-
th position from the end. Both languages can be expressed via NRA𝑛, and therefore also
via RsA𝑛. Their intersection is the language ℒ𝐴𝐵

𝑛 = {𝑤 | ∀𝑖 < 2𝑛 : D[𝑤𝑖] = D[𝑤|𝑤|−𝑖+1]},
which is the same as ℒ𝐴2𝑛 and clearly needs 2𝑛 registers.

Non-closure under complement follows from Theorem 3.2.1 (its proof uses RsA1).

3.2.3 Closure Properties of DRsA

Theorem 3.2.3. DRsA is closed under union, intersection, and complement.
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Proof. The proof of closure of DRsA under union is standard. Let 𝒜1 and 𝒜2 be two
complete DRsAs, such that 𝒜1 = (𝑄1,R1,Δ1, 𝐼1, 𝐹1) and 𝒜2 = (𝑄2,R2,Δ2, 𝐼2, 𝐹2), and
their sets of states and registers are disjoint. The DRsA 𝒜∪ accepting the union of their
languages is obtained as 𝒜∪ = (𝑄1 ×𝑄2,R1 ∪R2,Δ

′, 𝐼1 × 𝐼2, 𝐹
′) where

(𝑠1, 𝑠2) 𝑎 | 𝑔∈1 ∪ 𝑔∈2 , 𝑔
/∈
1 ∪ 𝑔 /∈

2 , up1 ∪ up2 (𝑠′1, 𝑠
′
2) ∈ Δ′

iff

𝑠1 𝑎 | 𝑔∈1 , 𝑔/∈
1 , up1 𝑠′1 ∈ Δ1 and 𝑠2 𝑎 | 𝑔∈2 , 𝑔/∈

2 , up2 𝑠′2 ∈ Δ2,

and 𝐹 ′ = {(𝑞1, 𝑞2) | 𝑞1 ∈ 𝐹1 ∨ 𝑞2 ∈ 𝐹2}.
The construction of the DRsA 𝒜∩ = (𝑄1 ×𝑄2,R1 ∪R2,Δ

′, 𝐼1 × 𝐼2, 𝐹
′
∩) accepting the

intersection of ℒ(𝒜1) and ℒ(𝒜2) is similar to the construction of 𝒜∪, with the exception
of 𝐹 ′

∩, which is obtained as 𝐹 ′
∩ = 𝐹1 × 𝐹2.

The complement of DRsA is obtained in the standard way by completing it and swapping
final and non-final states. Since the automaton is already deterministic, the correctness of
the construction is obvious.

3.2.4 Closure properties of DRsA𝑛

Theorem 3.2.4. For each 𝑛 ∈ N, the following closure properties hold for DRsA𝑛:

1. DRsA𝑛 is closed under complement.

2. DRsA𝑛 is not closed under union and intersection.

Proof. The closure under complement is trivial (complete the DRsA and swap final and
non-final states; no new register is introduced).

To show that DRsA𝑛 is not closed under intersection, we use languages ℒ𝐴𝑛 and ℒ𝐵𝑛 from
the proof of Theorem 3.2.2. In particular, both these languages are in DRA𝑛 (the DRA𝑛

needs more states than the corresponding NRA𝑛 because it cannot guess where the final part
of the word starts and needs to consider all posibilites, making the DRA𝑛 exponentially
larger). Similarly as in the proof of Theorem 3.2.2, a DRsA for the intersection of the
languages, the language ℒ𝐴𝐵

𝑛 , would need at least 2𝑛 registers.
Non-closure under union follows from De Morgan’s laws.

3.3 The Power of Nondeterminism
As with RAs, nondeterminism also allows bigger expressivity for RsAs.

Theorem 3.3.1. DRsA ⊊ RsA

Proof. Let us consider the language 𝐿¬∀repeat from the proof of Theorem 3.2.1, which is
expressible using RsAs, and its complement 𝐿∀repeat , which is not expressible using RsAs.
Since DRsAs are closed under complement (Theorem 3.2.3), if they could accept 𝐿¬∀repeat ,
they could also accept 𝐿∀repeat , which is a contradiction. Therefore, 𝐿¬∀repeat /∈ DRsA.
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Chapter 4

Emptiness Problem

In this chapter, we examine another property of register set automata. Namely, we deal
with the decidability of the emptiness problem. For a given automaton 𝒜, this problem
asks whether 𝒜’s language is empty.

In the case of finite automata, this question can be easily answered by removing any
unreachable states from the automaton and checking whether there are any final states left.
On the other hand, in case of a register set automaton, this problem is much harder, since
there are sequences of conditions on transitions that need to be true in order to reach the
final state, in addition to update functions, which move data values between register sets
after each step of a run. However, in the following sections we prove that this problem is
indeed decidable, and we determine its particular complexity.

4.1 Complexity Classes
We begin with a short overview of how decision problems are classified. In order to un-
derstand how hard the particular problem of emptiness checking for RsAs is, we also give
a brief introduction into the fast-growing hierarchy of functions.

Complexity classes are used as a standardized tool for classification and comparison of
computational problems. Each class contains a set of problems which take similar range
of time and space to solve [21]. Most of the classes involving problems that range from
tractable1 to intractable2 can be observed in the well-guided Complexity Zoo [1]. One can
classify the upper or lower complexity bound of a given problem by reducing to or from
another problem whose complexity is already identified. List of well-suited problems for
the reductions can be found in the botanical companion to the aforementioned Complexity
Zoo, the so-called Complexity Garden [19].

At first, we give the definitions for notions related to defining a particular complexity
of a computational problem 𝑃 . Let 𝐶 be a complexity class. Intuitively, a reduction is
a computable function that converts instances of problem 𝑃 to a computational problem 𝑆.
Any instance of the problem 𝑃 can then be solved by using the reduction to first convert
it to an instance of the problem 𝑆, and then apply the solver for the problem 𝑆 [41]. The
notation 𝑃 ≤ 𝑆 is used to denote the reduction from decision problem 𝑃 to problem 𝑆.
Additionally, in theory of formal languages, words over suitable alphabet Σ are used to

1Problems solved by computer algorithms running in polynomial time.
2There do not exist any algorithms for solving of these problems in polynomial time.
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represent individual instances of some decision problem 𝑃 . Naturally, this means that
a decision problem 𝑃 can be represented by a formal language ℒ𝑃 .

Definition 4.1.1. Let ℛ denote a class of functions. Language ℒ𝑃 is ℛ reducible to lan-
guage ℒ𝑆 (also known as ℛ many-to-one reducible), if there exists a function 𝑓 from ℛ such
that

𝑤 ∈ ℒ𝑃 ⇐⇒ 𝑓(𝑤) ∈ ℒ𝑆 .

Definition 4.1.2. Problem 𝑃 is said to be 𝐶-hard if every problem in the class 𝐶 reduces
to problem 𝑃 . When it is possible to reduce problem 𝑃 to problem 𝑆, problem 𝑃 is at least
as hard as problem 𝑆.

Definition 4.1.3. Problem 𝑃 is said to be 𝐶-complete, if every problem in the class 𝐶 re-
duces to problem 𝑃 , and 𝑃 is also in the class 𝐶 itself.

4.1.1 Beyond elementary

The work of Schmitz [35] was created with the goal of introducing complexity classes beyond
elementary, ones that bring some structure between the classes of Elem and PR, as well as
between the classes of PR and R. See [3] for introduction to Elem, PR, and R. Classes beyond
elementary were introduced as a tool for proper classification of truly intractable problems,
which can be found in the areas of logic, formal languages, or verification.

The aforementioned work introduced an ordinal-indexed hierarchy (F𝛼)𝛼 of fast-growing
complexity classes of nonelementary complexities. These complexity classes are related to
extended Grzegorczyk [25] (ℱ𝛼)𝛼 hierarchies, which are well suited for characterization
of various complexity classes including functions computed by forms of for programs or
terminating while programs [27, 13]. The overview of some complexity classes together
with ones introduced in the aforementioned work can be seen in Figure 4.1.

F𝜔 class. Intuitively, this class corresponds to non-primitive recursive Ackermannian
problems closed under primitive-recursive reductions.

Let FPR denote the set of primitive-recursive functions. In the following definition, we
use the notion of DTime. Intuitively, DTime represents a particular computational resource
of computation time. It is the class of decision problems solvable by a deterministic Turing
machine [41] in time 𝒪(𝑓(𝑛)) [1], where 𝒪 is the asymptotic notation for estimating the
running time of a given algorithm.

Formally, F𝜔 is a class containing problems that are decidable with F𝜔 resources of
some primitive-recursive function of the input size

F𝜔
def
=

⋃︁
𝑝∈FPR

DTime
(︂
F𝜔

(︁
𝑝(𝑛)

)︁)︂
.

Problems such as finite containment problem for vector addition systems [20], universality
of one-dimensional vector addition systems [16], or the emptiness of ARA1 [10] are complete
for this class. See [40, 45, 39] for deeper explanation.

4.2 Transfer Petri Nets
Intuitively, transfer Petri net is an extension of Petri nets where transitions can transfer all
tokens from one place to another place at once. They are closely related to broadcast pro-
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Figure 4.1: Some complexity classes. Adapted from [37].

tocols [12]. Broadcast protocols are appropriate for many applications, including analyzing
bus-based hardware protocols such as ones designed for cache coherency [11].

Definition 4.2.1. A transfer Petri net (TPN) is a triple 𝒩 = (𝑃, 𝑇,𝑀0), s.t.

• 𝑃 is a finite set of places,

• 𝑇 is a finite set of transitions, and

• 𝑀0 : 𝑃 → N is an initial marking.

The set of transitions 𝑇 is such that 𝑃 ∩ 𝑇 = ∅ and every transition 𝑡 ∈ 𝑇 is of the
form 𝑡 = ⟨In,Out ,Transfer⟩ where In,Out : 𝑃 → N define 𝑡’s input and output places
respectively and Transfer : 𝑃 → 𝑃 is a (total) transfer function.

Definition 4.2.2. A marking of 𝒩 is a function 𝑀 : 𝑃 → N assigning a particular number
of tokens to each place. Given a pair of markings 𝑀 and 𝑀 ′, we use 𝑀 ≤ 𝑀 ′ to denote
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that for all 𝑝 ∈ 𝑃 it holds that 𝑀(𝑝) ≤𝑀 ′(𝑝). Moreover, we use u𝑝 to denote the marking
such that u𝑝(𝑝

′) = 1 if 𝑝 = 𝑝′ and u𝑝(𝑝
′) = 0 otherwise.

Given a marking 𝑀 , we say that a transition 𝑡 = ⟨In,Out ,Transfer⟩ is enabled if
In ≤ 𝑀 , i.e., there is a sufficient number of tokens in each of its input places. We use
𝑀 [𝑡⟩𝑀 ′ to denote that:

1. 𝑡 is enabled in 𝑀 and

2. 𝑀 ′ is the marking such that for every 𝑝 ∈ 𝑃 the following holds :

𝑀 ′(𝑝) =
∑︁
{𝑀aux (𝑝

′) | Transfer(𝑝′) = 𝑝}+Out(𝑝), where 𝑀aux = 𝑀 − In.

That is, the successor marking 𝑀 ′ is obtained by

(i) removing In tokens from inputs of 𝑡,

(ii) transferring tokens according to Transfer , and

(iii) adding Out tokens to 𝑡’s outputs.

We say that a marking 𝑀 is reachable if there is a (possibly empty) sequence 𝑡1, 𝑡2, . . . , 𝑡𝑛
of transitions such that it holds that 𝑀0[𝑡1⟩𝑀1[𝑡2⟩ . . . [𝑡𝑛⟩𝑀 , where 𝑀0 is the initial marking.

A marking 𝑀 is coverable if there exists a reachable marking 𝑀 ′, such that 𝑀 ≤ 𝑀 ′.
The Coverability problem for TPNs asks, given a TPN 𝒩 and a marking 𝑀 , whether 𝑀 is
coverable in 𝒩 .

Proposition 4.2.1 ([38]). The Coverability problem for TPN is F𝜔-complete.

4.3 Proof of F𝜔-completeness of RsA emptiness
The next theorem shows that the emptiness problem of RsA is decidable, but for a much
higher price than for NRAs, for which it is Pspace-complete3 [10]. For classifying the
complexity of the problem, we use the hierarchy of fast-growing complexity classes of
Schmitz [35] (cf. Section 4.1.1).

Theorem 4.3.1. The emptiness problem for RsA is decidable. In particular, the problem
is F𝜔-complete.

Intuition behind the proof. The proof is done by showing interreducibility of RsA emptiness
with coverability in transfer Petri nets (TPNs) (often used for modelling the so-called
broadcast protocols), which is a known F𝜔-complete problem [38, 36, 37]. In the following,
we briefly describe both directions of the reduction, followed by its formal definitions, proofs,
and examples.

(RsA emptiness ≤ TPN coverability) The formal definition of the reduction can be seen
in Section 4.3.1. Intuitively, the conversion of an RsA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 ) into
a TPN 𝒩𝒜 is done in the following way. The set of places of 𝒩𝒜 will be as fol-
lows:

3Note that for an alternative definition of NRAs considered in [22, 33], where no two registers can contain
the same data value, the problem is NP-complete [33].
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𝑟1 𝑟2

rgn2
{𝑟1, 𝑟2}

rgn4
{∅}

rgn1
{𝑟1}

rgn3
{𝑟2}

Figure 4.2: Venn diagram depicting possible regions for two registers of RsA.

(i) one place for each state of 𝒜,
(ii) two special places init and fin, and
(iii) one place for every subset rgn ⊆ R; these places are used to represent all possible

intersections of values held in the registers. We call these intersections regions.
For instance, if there are four tokens in the place representing 𝑟1 ∩ 𝑟2, it means
that there are exactly four different data values stored in both 𝑟1 and 𝑟2 and in
no other register. Depiction of these regions is shown in Figure 4.2.

𝑞 𝑠 𝑡

𝑎

𝑟1 ← 𝑟1 ∪ {in}
𝑟2 ← 𝑟1 ∪ 𝑟2

𝑏

𝑟1 ← ∅
𝑟2 ← 𝑟1

𝑎

𝑟1 ← 𝑟1 ∪ {in}
𝑟2 ← 𝑟2

𝑏
in ∈ 𝑟1
in ∈ 𝑟2

𝑟1 ← ∅
𝑟2 ← ∅

Figure 4.3: An example RsA.

Each transition 𝑡 of 𝒜 is simulated by one or more TPN transitions between places
representing its source and target states. The number of respective TPN transitions
depends on how specific the guard is in the original automaton, since we need to
distinguish every possible option of in being in some region rgn ∈ 2R. The transi-
tions move the token between the places corresponding to 𝑡’s source and target states
and, moreover, use the broadcast arcs to move tokens between the places representing
regions, according to the manipulation of the set-registers in the update function of 𝑡.
The special place init is used to have a single starting marking (it just nondeter-
ministically chooses one state from 𝐼) and the place fin is used as the target for the
coverability test; all places corresponding to final states of 𝒜 can simply transition
into it. An example of a reduced TPN equivalent to transition of the RsA in Figure 4.3
can be seen in Figure 4.4.

(TPN coverability ≤ RsA emptiness) The formal proof with definitions is in Section 4.3.2.
Given a TPN 𝒩 , the RsA 𝒜𝒩 simulating it will have the following structure. There
will be a state 𝑞main , which will be active before and after the simulation of firing
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𝑞

𝑟1 ∩ 𝑟2

𝑟1 ∩ 𝑟2

𝑟1 ∩ 𝑟2

𝑟1 ∩ 𝑟2

𝑡1 𝑡2 𝑡3 𝑡4

𝑚

𝑚

𝑛

𝑛

𝑜

𝑜

𝑝

𝑝

Figure 4.4: A TPN equivalent to the transition 𝑞 𝑎 | ∅, ∅, {𝑟1 ↦→ {𝑟1, in}, 𝑟2 ↦→ {𝑟1, 𝑟2}} 𝑞
from the RsA in Figure 4.3. Corresponding colors represent the position of the in value for
a given transition.

each transition of 𝒩 . Moreover, there will be one register for every place of 𝒩 ;
individual tokens in the places will be simulated by unique data values from D stored
in the corresponding registers. For each transition of 𝒩 , there will be a gadget, doing
a cycle on 𝑞main , that represents the semantics of 𝒩 ’s transition. Each such gadget is
composed of several protogadgets, which simulate basic actions performed during the
transition (adding a token to a place, removing a token, moving all tokens between
places). Implementation of adding a token and moving tokens is relatively easy, the
tricky part is removing a token, since RsAs do not support removing a data value
from a register. We solve this by using a lossy remove: i.e., if one token is to be
removed from a place, we simulate it by removing at least one token (but potentially
more). This will not preserve reachability, but it is enough to preserve coverability.
Moreover, there will also be an initial part setting the contents of the registers to
reflect the initial marking of 𝒩 (terminating in 𝑞main) and a final part that checks
the coverability by removing (again in a lossy way) tokens from places, terminating
in a single final state.

In the following sections, we prove the two directions of the proof of Theorem 4.3.1.

4.3.1 Reduction from RsA emptiness to TPN coverability

In this section, we give the formal definition of the reduction from emptiness testing in
register set automata to coverability in transfer Petri nets. The reduction is followed by
a proof that shows that it preserves the answer of the reduced problem.

Lemma 4.3.1. The emptiness problem for RsA is in F𝜔.

Proof. The proof of the lemma is based on reducing the RsA emptiness problem to coverabil-
ity in TPNs, which is F𝜔-complete (Proposition 4.2.1). Intuitively, the reduction consists
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of creating a TPN with places representing both individual states of RsA and individual
regions of the Venn diagram of R. Transitions of RsA are represented by one or more tran-
sitions of TPN, distinguishing every possible option of in being in some region rgn ∈ 2R.
The set of arcs leading to and from each transition is calculated in a way that preserves
the semantics and position of values defined by the guard and update formulae. Finally, the
marking to be covered requires one token to be present in the places representing the final
states of the RsA.

Construction of 𝒩𝒜. Formally, let 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 ) be an RsA. In the following,
we will construct a TPN 𝒩𝒜 = (𝑃, 𝑇,𝑀0) and a marking 𝑀𝐹 such that ℒ(𝒜) ̸= ∅ iff 𝑀𝐹

is coverable in 𝒩𝒜. We set the components of 𝒩𝒜 as follows:

• 𝑃 = 𝑄 ⊎ {init ,fin} ⊎ 2R where init and fin are two new places,

• 𝑇 = {⟨uinit ,u𝑞𝑖 , id⟩ | 𝑞𝑖 ∈ 𝐼} ∪ {⟨u𝑞𝑓 ,ufin , id⟩ | 𝑞𝑓 ∈ 𝐹} ∪ 𝑇 ′ with 𝑇 ′ defined below,
and

• 𝑀0 = uinit .

Intuitively, the set of places contains the states of 𝒜 (there will always be at most one token
in those places), two new places init and fin, which are used for the initial nondeterministic
choice of some initial state of 𝒜 and for a unique final place (whose coverability will be
checked) respectively, and, finally, a new place for every region of the Venn diagram of R,
which will track the number of data values that two or more registers share (e.g., for
R = {𝑟1, 𝑟2, 𝑟3}, the subset {𝑟1, 𝑟3} denotes the region 𝑟1∩ 𝑟2∩ 𝑟3, i.e., the data values that
are stored in 𝑟1 and 𝑟3 but are not stored in 𝑟2. The region 𝑟1 ∩ 𝑟2 ∩ 𝑟3 is denoted as {∅}.
Regions rgn1, rgn2 are distinct, if rgn1△rgn2 ̸= ∅, i.e. ∃𝑟 : (𝑟 ∈ rgn1∪rgn2)∧𝑟 /∈ rgn1∩rgn2.

We now proceed to the definition of 𝑇 ′. Let 𝑡 = 𝑞 𝑎 | 𝑔∈, 𝑔/∈, up 𝑠 ∈ Δ be a transition
in 𝒜. Then, we create a TPN transition for every possible option of in being in some region
rgn𝑔 ∈ 2R (e.g., for in ∈ 𝑟1 ∩ 𝑟2 ∩ 𝑟3 or in ∈ 𝑟1 ∩ 𝑟2 ∩ 𝑟3). For 𝑡 and rgn𝑔, we define

𝛾(𝑡, rgn𝑔) =

{︃
{⟨In,Out ,Transfer⟩} if (𝑔∈ ⊆ rgn𝑔) ∧ (𝑔 /∈ ∩ rgn𝑔 = ∅) and
∅ otherwise.

(4.1)

Then 𝑇 ′ =
⋃︀
{𝛾(𝑡, rgn𝑔) | 𝑡 ∈ Δ, rgn𝑔 ∈ 2R}.

• In = urgn𝑔
+ u𝑞 and

• Out = udst + u𝑠 where dst = {𝑟𝑖 ∈ R | in ∈ up(𝑟𝑖)}.

• Before we give a formal definition of Transfer , let us start with an intuition given in
the following example.

Example 4.3.1. Let us consider the register set automaton in Figure 4.3 and its
transition 𝑞 𝑎 | ∅, ∅, up 𝑞 with up(𝑟1) = {𝑟1, in} and up(𝑟2) = {𝑟1, 𝑟2}. We need to
update the following four regions of the Venn diagram of 𝑟1 and 𝑟2: 𝑟1 ∩ 𝑟2, 𝑟1 ∩ 𝑟2,
𝑟1 ∩ 𝑟2, and 𝑟1 ∩ 𝑟2. From the update function up, we see that the new values stored
in 𝑟1 and 𝑟2 will be (we used primed versions of register names to denote their value
after update) 𝑟′1 = 𝑟1 (we do not consider {in} here because it has been discharged
within Out in the previous step) and 𝑟′2 = 𝑟1 ∪ 𝑟2. The values of the regions will
therefore be updated as follows:
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𝑟′1 ∩ 𝑟′2 = 𝑟1 ∩ (𝑟1 ∪ 𝑟2) 𝑟′1 ∩ 𝑟′2 = 𝑟1 ∩ (𝑟1 ∪ 𝑟2)

= (𝑟1 ∩ 𝑟1) ∪ (𝑟1 ∩ 𝑟2) = 𝑟1 ∩ 𝑟1 ∩ 𝑟2

= 𝑟1 ∪ (𝑟1 ∩ 𝑟2) = ∅
= (𝑟1 ∩ 𝑟2) ∪ (𝑟1 ∩ 𝑟2)

𝑟′1 ∩ 𝑟′2 = 𝑟1 ∩ (𝑟1 ∪ 𝑟2) 𝑟′1 ∩ 𝑟′2 = 𝑟1 ∩ (𝑟1 ∪ 𝑟2)

= (𝑟1 ∩ 𝑟1) ∪ (𝑟1 ∩ 𝑟2) = 𝑟1 ∩ 𝑟1 ∩ 𝑟2

= 𝑟1 ∩ 𝑟2 = 𝑟1 ∩ 𝑟2

(4.2)

Note that in the last step of the calculation of 𝑟′1 ∩ 𝑟′2, we used the fact that 𝑟1 =
(𝑟1 ∩ 𝑟2) ∪ (𝑟1 ∩ 𝑟2) in order to obtain a union of regions. From the previous calcu-
lation, we see that Transfer should be set as follows: Transfer({𝑟1, 𝑟2}) = {𝑟1, 𝑟2},
Transfer({𝑟1}) = {𝑟1, 𝑟2}, Transfer({𝑟2}) = {𝑟2}, and Transfer({∅}) = {∅}. ◁

Computation of Transfer function. Formally, Transfer is computed as follows. For
every rgn𝑜 ∈ 2R, let us compute the sets of sets of registers

pstΠ(rgn𝑜) = {up(𝑟𝑖)∩R | 𝑟𝑖 ∈ rgn𝑜} and ngt(rgn𝑜) =
⋃︁
{up(𝑟𝑖)∩R | 𝑟𝑖 /∈ rgn𝑜} (4.3)

(pst is for “positive” and ngt is for “negative”, which represent registers that occur positively
and negatively, respectively, in the specification of the region of the Venn diagram rgn𝑜).
The intuition is that pstΠ(rgn𝑜) represents the update of rgn𝑜 as the product of sums
(intersection of unions), cf. the first line of Equation 4.2 in Example 4.3.1. Next, we convert
the product of sums pstΠ(rgn𝑜) into a sum of products

pstΣ(rgn𝑜) =
∐︁

pstΠ(rgn𝑜) (4.4)

where
∐︀
{𝐷1, . . . , 𝐷𝑛} is the unordered Cartesian product of sets 𝐷1, . . . , 𝐷𝑛, i.e.,∐︁

{𝐷1, . . . , 𝐷𝑛} =
{︀
{𝑑1, . . . , 𝑑𝑛}

⃒⃒
(𝑑1, . . . , 𝑑𝑛) ∈ 𝐷1 × · · · ×𝐷𝑛

}︀
. (4.5)

Example 4.3.2. In the transition considered in Example 4.3.1, we obtain the following:

pstΠ({𝑟1, 𝑟2}) = {{𝑟1}, {𝑟1, 𝑟2}} pstΠ({𝑟1}) = {{𝑟1}}
pstΣ({𝑟1, 𝑟2}) = {{𝑟1}, {𝑟1, 𝑟2}} pstΣ({𝑟1}) = {{𝑟1}}
ngt({𝑟1, 𝑟2}) = ∅ ngt({𝑟1}) = {𝑟1, 𝑟2}

pstΠ({𝑟2}) = {{𝑟1, 𝑟2}} pstΠ({∅}) = {{∅}}
pstΣ({𝑟2}) = {{𝑟1}, {𝑟2}} pstΣ({∅}) = {{∅}}
ngt({𝑟2}) = {𝑟1} ngt({∅}) = {𝑟1, 𝑟2}

◁

Next, we modify pstΣ into pst ′Σ by removing regions that are incompatible with ngt to
obtain

pst ′Σ(rgn𝑜) = {𝑥 ∈ pstΣ(rgn𝑜) | 𝑥 ∩ ngt(rgn𝑜) = ∅}. (4.6)
Example 4.3.3. In the running example, we would obtain the following values of pst ′Σ:

pst ′Σ({𝑟1, 𝑟2}) = {{𝑟1}, {𝑟1, 𝑟2}} pst ′Σ({𝑟1}) = ∅
pst ′Σ({𝑟2}) = {{𝑟2}} pst ′Σ({∅}) = {{∅}}

Compare the results with the calculation in Equation 4.2. ◁
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Lastly, for every rgn𝑖 ∈ 2R such that pst ′Σ(rgn𝑜) ∈ rgn𝑖, we set Transfer(rgn𝑖) = rgn𝑜.

Example 4.3.4. Continuing in the running example, we obtain

Transfer({𝑟1, 𝑟2}) = {𝑟1, 𝑟2} Transfer({𝑟1}) = {𝑟1, 𝑟2}
Transfer({𝑟2}) = {𝑟2} Transfer({∅}) = {∅},

which is the same result as in Example 4.3.1. Figure 4.4 contains the TPN fragment for all
TPN transitions constructed from 𝒜’s transition 𝑞 𝑎 | ⊤,⊤, {𝑟1 ↦→ {𝑟1, in}, 𝑟2 ↦→ {𝑟1, 𝑟2}} 𝑞.

◁

The following claim shows that this construction is indeed well defined.

Claim 4.3.1. The function Transfer is well defined.

Proof. It is necessary to show that no set of values will be duplicated and assigned to two
distinct regions when Transfer is calculated. According to the definition of Transfer , for
all regions rgn ′ ∈ 2R such that pst ′Σ(rgn𝑜) ∈ rgn ′, the value of Transfer(rgn ′) is set to be
rgn𝑜, therefore we need to prove that for each pair of distinct regions rgn1 and rgn2 ∈ 2R

it holds that pst ′Σ(rgn1) ∩ pst ′Σ(rgn2) = ∅. We prove this by contradiction.
Assume that there are two distinct regions rgn1 and rgn2 such that there exists a region

rgn3 ∈ pst ′Σ(rgn1) ∩ pst ′Σ(rgn2). According to the construction of pst ′Σ, it holds that

rgn3 ∈ pstΣ(rgn1) ∧ rgn3 ∩ ngt(rgn1) = ∅ and
rgn3 ∈ pstΣ(rgn2) ∧ rgn3 ∩ ngt(rgn2) = ∅.

Then, according to the construction of pstΣ,

rgn3 ∈
∐︁

pstΠ(rgn1) ∧ rgn3 ∩ ngt(rgn1) = ∅ and

rgn3 ∈
∐︁

pstΠ(rgn2) ∧ rgn3 ∩ ngt(rgn2) = ∅.

Following the construction of pstΠ:

(∀𝑟 ∈ rgn3∃𝑃 ∈ pstΠ(rgn1) : 𝑟 ∈ 𝑃 ) ∧ (∀𝑃 ′ ∈ pstΠ(rgn1)∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ 𝑃 ′) ∧

(rgn3 ∩ ngt(rgn1) = ∅) ∧
(∀𝑟 ∈ rgn3∃𝑃 ∈ pstΠ(rgn2) : 𝑟 ∈ 𝑃 ) ∧ (∀𝑃 ′ ∈ pstΠ(rgn2)∃𝑟′ ∈ rgn3 : 𝑟

′ ∈ 𝑃 ′) ∧
(rgn3 ∩ ngt(rgn2) = ∅).

According to the construction of pstΠ, it holds that if 𝑃 ∈ pstΠ(rgn) then there exists
a register 𝑟 ∈ rgn such that 𝑃 = up(𝑟𝑖). Therefore, for each 𝑃 ∈ pstΠ(rgn) there exists
a register 𝑟′ ∈ rgn ′ such that 𝑟 ∈ 𝑃 . Then, continuing in the proof, we obtain

(∀𝑟 ∈ rgn3∃up(𝑟𝑖) : 𝑟𝑖 ∈ rgn1 ∧ 𝑟 ∈ up(𝑟𝑖)) ∧ (∀𝑟∙ ∈ rgn1∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ up(𝑟∙)) ∧

(rgn3 ∩ ngt(rgn1) = ∅) ∧
(∀𝑟 ∈ rgn3∃up(𝑟𝑖) : 𝑟𝑖 ∈ rgn2 ∧ 𝑟 ∈ up(𝑟𝑖)) ∧ (∀𝑟∙ ∈ rgn2∃𝑟′ ∈ rgn3 : 𝑟

′ ∈ up(𝑟∙)) ∧
(rgn3 ∩ ngt(rgn2) = ∅)
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From the construction of ngt(rgn), the formula rgn𝑖 ∩ngt(rgn𝑗) = ∅ is equivalent to the
formula ∀𝑟 ∈ rgn𝑖¬∃𝑟* /∈ rgn𝑗 : 𝑟 ∈ up(𝑟*). Therefore:

(∀𝑟 ∈ rgn3∃up(𝑟𝑖) : 𝑟𝑖 ∈ rgn1 ∧ 𝑟 ∈ up(𝑟𝑖)) ∧ (∀𝑟∙ ∈ rgn1∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ up(𝑟∙)) ∧

(∀𝑟 ∈ rgn3¬∃𝑟* /∈ rgn1 : 𝑟 ∈ up(𝑟*)) ∧
(∀𝑟 ∈ rgn3∃up(𝑟𝑖) : 𝑟𝑖 ∈ rgn2 ∧ 𝑟 ∈ up(𝑟𝑖)) ∧ (∀𝑟∙ ∈ rgn2∃𝑟′ ∈ rgn3 : 𝑟

′ ∈ up(𝑟∙)) ∧
(∀𝑟 ∈ rgn3¬∃𝑟* /∈ rgn2 : 𝑟 ∈ up(𝑟*))

Further, we only make use of

(∀𝑟 ∈ rgn3¬∃𝑟* /∈ rgn1 : 𝑟 ∈ up(𝑟*)) ∧ (∀𝑟∙ ∈ rgn2∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ up(𝑟∙)),

and the fact that rgn1 and rgn2 are distinct. Therefore, ∃𝑟dist : 𝑟dist ∈ rgn2 ∧ 𝑟dist /∈ rgn1

(or vice versa).
By simplifying

(∃𝑟dist : 𝑟dist ∈ rgn2 ∧ 𝑟dist /∈ rgn1) ∧
(∀𝑟 ∈ rgn3¬∃𝑟* /∈ rgn1 : 𝑟 ∈ up(𝑟*)) ∧
(∀𝑟∙ ∈ rgn2∃𝑟′ ∈ rgn3 : 𝑟

′ ∈ up(𝑟∙)),

we obtain

(∃𝑟dist : 𝑟dist ∈ rgn2 ∧ 𝑟dist /∈ rgn1) ∧
(∀𝑟 ∈ rgn3∀𝑟* : 𝑟* /∈ rgn1 → 𝑟 /∈ up(𝑟*)) ∧

(∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ up(𝑟dist)),

which is clearly a contradiction, since 𝑟dist /∈ rgn1 ∧ ∃𝑟′ ∈ rgn3 : 𝑟
′ ∈ up(𝑟dist). ◁

Finally, the marking 𝑀𝐹 to be covered is constructed as 𝑀𝐹 = ufin . We have finished
the construction of 𝒩𝒜, now we need to show that it preserves the answer.

Claim 4.3.2. ℒ(𝒜) ̸= ∅ iff the marking 𝑀𝐹 is coverable in 𝒩𝒜.

Proof. (⇒) Let 𝑤 ∈ (Σ× D)* such that 𝑤 ∈ ℒ(𝒜). Moreover, assume that

𝜌 : 𝑐0 ⊢𝑤1
𝑡1

𝑐1 ⊢𝑤2
𝑡2

. . . ⊢𝑤𝑛
𝑡𝑛 𝑐𝑛

is an accepting run of 𝒜 on 𝑤. We will show that there exists a sequence of firings

𝜌′ : 𝑀init [𝑡
′
init⟩ 𝑀0[𝑡

′
1⟩𝑀1[𝑡

′
2⟩ . . . [𝑡′𝑛⟩𝑀𝑛 [𝑡′fin⟩𝑀fin

in 𝒩𝒜 such that 𝑀fin covers 𝑀𝐹 . In particular, we construct the markings and
transitions as follows:

• 𝑀init = uinit and 𝑡′init = ⟨uinit ,u𝑞0 , id⟩ for 𝑐0 = (𝑞0, 𝑓0).
• For all 0 ≤ 𝑖 ≤ 𝑛 with 𝑐𝑖 = (𝑞𝑖, 𝑓𝑖), we set 𝑀𝑖 as follows:

𝑀𝑖 = {init ↦→ 0,fin ↦→ 0, 𝑞𝑖 ↦→ 1} ∪ {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄 ∖ {𝑞𝑖}} ∪{︁
rgn ↦→ 𝑥 | rgn ⊆ R, 𝑥 =

⃒⃒
∩𝑟∈rgn 𝑓𝑖(𝑟)

⃒⃒}︁
Furthermore, 𝑡′𝑖 = 𝛾(𝑡𝑖, rgn𝑔) where rgn𝑔 = {𝑟 | 𝑑𝑖 ∈ 𝑓𝑖−1(𝑟)}.
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• 𝑀fin is as follows:

𝑀fin = {init ↦→ 0,fin ↦→ 1} ∪ {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄} ∪ {rgn ↦→𝑀𝑛(rgn) | rgn ⊆ R}

and 𝑡′fin = ⟨u𝑞𝑛 ,ufin , id⟩ for 𝑐𝑛 = (𝑞𝑛, 𝑓𝑛).

Note that 𝑀𝐹 is covered by 𝑀fin .
We can now show by induction that 𝜌′ is valid, i.e., all firings are enabled and respect
the transition relation.

(⇐) Let 𝜌 : 𝑀init [𝑡0⟩ 𝑀0[𝑡1⟩𝑀1[𝑡2⟩ . . . [𝑡𝑛⟩𝑀𝑛 [𝑡fin⟩𝑀fin be a run of 𝒩𝒜 such that 𝑀fin ≥
𝑀𝐹 , where 𝑀𝐹 is the final marking. We show that there exists a sequence of transi-
tions

𝜌′ : 𝑐0 ⊢𝑤1

𝑡′1
𝑐1 ⊢𝑤2

𝑡′2
. . . ⊢𝑤𝑛

𝑡′𝑛
𝑐𝑛

in 𝒜 on 𝑤 = 𝑤1𝑤2 . . . 𝑤𝑛, such that 𝑐𝑛 is a final configuration, and, therefore,
𝑤 ∈ ℒ(𝒜). First, we notice the following easy-to-see invariant of 𝒩𝒜, which holds
for every 𝑀𝑖: ∑︁

𝑝∈𝑄∪{init ,fin}

𝑀𝑖(𝑝) = 1 (4.7)

i.e., there is always exactly one token in any of the places in 𝑄 ∪ {init ,fin}.
Let us now construct 𝜌′ as follows:

• 𝑐0 = (𝑞0, 𝑓0) is constructed such that 𝑞0 is picked to be the state 𝑞0 ∈ 𝑄 with
𝑀0(𝑞0) = 1 (this is well defined due to Equation (4.7)).

• For all 1 ≤ 𝑖 ≤ 𝑛, the transition 𝑡′𝑖 is picked to be the transition such that
𝑡𝑖 ∈ 𝛾(𝑡′𝑖, rgn𝑔) for some region rgn𝑔. The data value 𝑑𝑖 of 𝑤𝑖 is then cho-
sen to be compatible with the guard of rgn𝑔, i.e., 𝑑𝑖 ∈ ∩𝑟∈rgn𝑔

𝑓𝑖−1(𝑟) and
𝑑𝑖 /∈ ∪𝑟∈R∖rgn𝑔

𝑓𝑖−1(𝑟).

It can then be shown by induction that, for all 0 ≤ 𝑖 < 𝑛, the following holds:

(a) 𝑐𝑖 = (𝑞𝑖, 𝑓𝑖) where 𝑞𝑖 is the (exactly one) state such that 𝑀𝑖(𝑞𝑖) = 1 and
(b) the transition 𝑡𝑖+1 is enabled.

We can then conclude that, since the last firing in 𝜌 was 𝑀𝑛[𝑡fin⟩𝑀fin , then, from the
construction of 𝒩𝒜, it holds that 𝑀𝑛(𝑞𝑓 ) = 1 for 𝑞𝑓 ∈ 𝐹 and so 𝜌′ is accepting. ◁

Claim 4.3.2 and the observation that 𝒩𝒜 is single-exponentially larger than 𝒜 conclude
the proof (F𝜔 is closed under primitive-recursive reductions).

4.3.2 Reduction from coverability in TPN to emptiness in RsA

In the following, we give the formal definition of the reduction from coverability in transfer
Petri nets to emptiness testing in register set automata. The reduction is followed by a proof
that shows that it preserves the answer of the reduced problem.

Lemma 4.3.2. The emptiness problem for RsA is F𝜔-hard.

Proof. The proof is based on a reduction of coverability in TPNs (which is F𝜔-complete)
to non-emptiness of RsAs. Intuitively, given a TPN 𝒩 , we will construct the RsA 𝒜𝒩
simulating 𝒩 , which will have the following structure:
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𝑞1 𝑞2 𝑞3
𝑎 in ∈ 𝑟𝑝
𝑟in ← {in}
𝑟tmp ← ∅

𝑎
in ∈ 𝑟𝑝
in /∈ 𝑟in

𝑟tmp ← 𝑟tmp ∪ {in}

𝑎

𝑟𝑝 ← 𝑟tmp

(a) The LossyRm(𝑝) protogadget.

𝑞1 𝑞2
𝑎

𝑟𝑝1 ← ∅
𝑟𝑝2 ← 𝑟𝑝1 ∪ 𝑟𝑝2

(b) The Move(𝑝1, 𝑝2) protogadget.

𝑞1 𝑞2
𝑎 {in /∈ 𝑟}𝑟∈R

𝑟𝑝 ← 𝑟𝑝 ∪ {in}

(c) The NewToken(𝑝) protogadget.

Figure 4.5: Protogadgets used in the construction of RsA𝒩 .

• There will be the state 𝑞main , which will be active before and after simulating the
firing of TPN transitions.

• Each place of 𝒩 will be simulated by a register of 𝒜𝒩 ; every token of 𝒩 will be
simulated by a unique data value.

• For every TPN transition, 𝒜𝒩 will contain a gadget that transfers data values between
the registers representing the places active in the TPN transition. The gadget will
start in 𝑞main and end also in 𝑞main .

• Coverability of a marking will be simulated by another gadget connected to 𝑞main

that will try to remove the number of tokens given in the marking from the respective
places and arrive at the single final state 𝑞fin .

Formally, let 𝒩 = (𝑃, 𝑇,𝑀0) with 𝑃 = {𝑝1, . . . , 𝑝𝑛} be a TPN. W.l.o.g. we can assume
that 𝑀0 contains a single token in the place 𝑝1, i.e., 𝑀0 = {𝑝1 ↦→ 1, 𝑝2 ↦→ 0, . . . , 𝑝𝑛 ↦→ 0}.
We will show how to construct the RsA 𝒜𝒩 = (𝑄,R,Δ, {𝑞init}, {𝑞fin}) over the unary
alphabet Σ = {𝑎} such that a marking 𝑀𝑓 is coverable in 𝒩 iff the language of 𝒜𝒩 is
non-empty. The set of registers of 𝒜𝒩 will be the set R = {𝑟in , 𝑟tmp} ∪ {𝑟𝑝, 𝑟𝑝′ | 𝑝 ∈ 𝑃}.

Protogadgets. Let us now define the following protogadgets, which we will later use
for creating a gadget for each TPN transition and a gadget for doing the coverability test.
We define the following protogadgets:

1. The Lossy Removal protogadget, which simulates a (lossy) removal of one token
from a place 𝑝 is the RsA defined as LossyRm(𝑝) = ({𝑞1, 𝑞2, 𝑞3},R,Δ′, {𝑞1}, {𝑞3})
where Δ′ contains the following three transitions (cf. Figure 4.5a):

Δ′ =

⎧⎪⎨⎪⎩
𝑞1 𝑎 | {𝑟𝑝}, ∅, {𝑟in ↦→ {in}, 𝑟tmp ↦→ ∅} 𝑞2,

𝑞2 𝑎 | {𝑟𝑝}, {𝑟in}, {𝑟tmp ↦→ {𝑟tmp , in}} 𝑞2,

𝑞2 𝑎 | ∅, ∅, {𝑟𝑝 ↦→ {𝑟tmp}} 𝑞3

⎫⎪⎬⎪⎭ (4.8)
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Intuitively, the protogadget stores the data value to be removed from 𝑝 in a special
register 𝑟in . Next, it simulates the calculation of the difference of 𝑟𝑝 and 𝑟in . This
is done by accumulating the values that are present in 𝑟𝑝 and are not present in
𝑟in into 𝑟tmp .
Since some values may get “lost”, and disappear because of not being added to the
accumulated difference, this protogadget is considered lossy.

2. The Move protogadget, which simulates moving all tokens from a place 𝑝1 to a place 𝑝2,
is the following RsA (also depicted in Figure 4.5b):

Move(𝑝1, 𝑝2) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅, ∅, {𝑟𝑝1
↦→ ∅, 𝑟𝑝2

↦→ {𝑟𝑝1
, 𝑟𝑝2
}} 𝑞2}, {𝑞1}, {𝑞2}).

Intuitively, the protogadet empties out the register that represents the place 𝑝1. Its
previous value is assigned to the register representing the place 𝑝2 in union with
its value.

3. The New Token protogadget, which simulates adding a token to a place 𝑝, is defined
as follows (depiction is in Figure 4.5c):

NewToken(𝑝) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅,R, {𝑟𝑝 ↦→ {𝑟𝑝, in}} 𝑞2}, {𝑞1}, {𝑞2}).

Intuitively, the protogadget adds the unique data value from the input tape into the
register representing the place 𝑝. The uniqueness of the data value is ensured by 𝑔 /∈,
which requires that the input in does not belong to any of the registers from R.

For convenience, we will use the following notation. Let 𝒜1 = (𝑄1,R,Δ1, {𝑞𝐼1}, {𝑞𝐹1 })
and 𝒜2 = (𝑄2,R,Δ2, {𝑞𝐼2}, {𝑞𝐹2 }) be a pair of RsAs with a single initial state and a single
final state. We will use 𝒜1 · 𝒜2 to denote the RsA

(𝑄1 ⊎𝑄2,R,Δ1 ∪ {𝑞𝐹1 𝑎 | ∅, ∅, ∅ 𝑞𝐼2} ∪Δ2, {𝑞𝐼1}, {𝑞𝐹2 }).

Moreover, for 𝑛 ∈ N0, we use 𝒜[𝑛]
1 to denote the RsA defined inductively as

𝒜[0]
1 = ({𝑞},R, ∅, {𝑞}, {𝑞}),

𝒜[𝑖+1]
1 = 𝒜[𝑖]

1 · 𝒜1.

Intuitively, 𝒜[𝑛]
1 is a concatenation of 𝑛 copies of 𝒜1.

Gadgets. For each TPN transition 𝑡 = ⟨In,Out ,Transfer⟩, we then create the gadget
RsA 𝒜𝑡 in several steps.

1. First, we transform In into the RsA 𝒜In = 𝒜In(𝑝1) · . . . · 𝒜In(𝑝𝑛) where every 𝒜In(𝑝𝑖)

is defined as 𝒜In(𝑝𝑖) = LossyRm(𝑝𝑖)
[In(𝑝𝑖)], i.e., it is a concatenation of In(𝑝𝑖) copies

of LossyRm(𝑝𝑖).

2. Second, from Out we create the RsA 𝒜Out = 𝒜Out(𝑝1) · . . . · 𝒜Out(𝑝𝑛) with 𝒜Out(𝑝𝑖)

defined as 𝒜Out(𝑝𝑖) = NewToken(𝑝𝑖)[Out(𝑝𝑖)], i.e., it is a concatenation of Out(𝑝𝑖)
copies of NewToken(𝑝𝑖).

35



3. Third, from Transfer we obtain the RsA 𝒜Transfer = 𝒜Transfer(𝑝1) · . . . · 𝒜Transfer(𝑝𝑛) ·
𝒜unprime(𝑝1) · . . . · 𝒜unprime(𝑝𝑛) such that 𝒜Transfer(𝑝𝑖) = Move(𝑟𝑝𝑖 , 𝑟𝑝′𝑗 ) with 𝑝𝑗 =

Transfer(𝑝𝑖) and 𝒜unprime(𝑝𝑖) = Move(𝑝′𝑖, 𝑝𝑖). Intuitively, 𝒜Transfer first moves the
contents of all registers according to Transfer to primed instances of the target reg-
isters (in order to avoid mix-up) and then unprimes the register names.

4. Finally, we combine the RsAs created above into the single gadget obtained as 𝒜𝑡 =
𝒜In · 𝒜Transfer · 𝒜Out .

The initial marking will be encoded by a gadget that puts one new data value in the
register representing the place 𝑝1. For this, we construct the RsA 𝒜𝑀0 = NewToken(𝑝1)
and rename its initial state to 𝑞init .

The last ingredient we need is to create a gadget that will encode the marking 𝑀𝑓 , whose
coverability we are checking. For this, we construct the gadget 𝒜𝑀𝑓

= 𝒜𝑀𝑓 (𝑝1) · . . . ·𝒜𝑀𝑓 (𝑝𝑛)

where every 𝒜𝑀𝑓 (𝑝𝑖) is defined as 𝒜𝑀𝑓 (𝑝𝑖) = LossyRm(𝑝𝑖)
[𝑀𝑓 (𝑝𝑖)], i.e., it is a concatenation

of 𝑀𝑓 (𝑝𝑖) copies of LossyRm(𝑝𝑖). We rename the final state of 𝒜𝑀𝑓
to 𝑞fin . W.l.o.g. we

assume that the set of states of all constructed gadgets are pairwise disjoint.

Construction of 𝒜𝒩 . We can now finalize the construction. 𝒜𝒩 is obtained as the
union of the following RsAs:

• 𝒜𝑀0 = (𝑄𝑀0 ,R,Δ𝑀0 , {𝑞init}, {𝑞𝐹𝑀0
}),

• 𝒜𝑀𝑓
= (𝑄𝑀𝑓

,R,Δ𝑀𝑓
, {𝑞𝐼𝑀𝑓

}, {𝑞fin}), and

• 𝒜𝑡 = (𝑄𝑡,R,Δ𝑡, {𝑞𝐼𝑡 }, {𝑞𝐹𝑡 }) for every 𝑡 ∈ 𝑇 .

Each of the previous RsAs is connected to the state 𝑞main . The final, reduced register set
automaton is defined as, 𝒜𝒩 = (𝑄,R,Δ, {𝑞init}, {𝑞fin}), where

• 𝑄 = {𝑞main} ∪𝑄𝑀0 ∪𝑄𝑀𝑓
∪
⋃︀

𝑡∈𝑇 𝑄𝑡 and

• Δ = Δ𝑀0 ∪Δ𝑀𝑓
∪ {𝑞𝐹𝑀0

𝑎 | ∅, ∅, ∅ 𝑞main , 𝑞main 𝑎 | ∅, ∅, ∅ 𝑞𝐼𝑀𝑓
} ∪⋃︀

𝑡∈𝑇 (Δ𝑡 ∪ {𝑞main 𝑎 | ∅, ∅, ∅ 𝑞𝐼𝑡 , 𝑞
𝐹
𝑡 𝑎 | ∅, ∅, ∅ 𝑞main}).

In the following, we prove that reduction to the emptiness preserves the answer of the
coverability.

Claim 4.3.3. The marking 𝑀𝐹 is coverable in 𝒩 iff ℒ(𝒜𝒩 ) ̸= ∅.

Proof. (⇒) Let there be the following run of 𝒩 :

𝜌 : 𝑀0[𝑡1⟩𝑀1[𝑡2⟩ . . . [𝑡𝑛⟩𝑀𝑛

such that 𝑀𝑛 covers 𝑀𝐹 . We will show that there exists a word 𝑤 ∈ (Σ × D)* and
a run

𝜌′ : 𝑐(init ,0) ⊢𝑤1

𝑡′
(init,1)

𝑐(init ,1) ⊢𝑤2

𝑡′
(init,2)

. . . 𝑐(init ,𝑘init ) ⊢
𝑤𝑖0

𝑡′
(0,0)

(initialization)

𝑐(0,0) ⊢
𝑤𝑖0+1

𝑡′
(0,1)

𝑐(0,1) . . . 𝑐(0,𝑘1) ⊢
𝑤𝑖1

𝑡′
(1,0)

𝑐(1,0) ⊢
𝑤𝑖1+1

𝑡′
(1,1)

𝑐(1,1) . . . 𝑐(1,𝑘1) . . . 𝑐(𝑛−1,𝑘𝑛−1) ⊢
𝑤𝑖𝑛

𝑡′
(𝑛,0)

𝑐(𝑛,0) ⊢
𝑤𝑖𝑛+1

𝑡′
(fin,1)

𝑐(fin,1) . . . ⊢
𝑤𝑖fin

𝑡′
(fin,𝑘fin )

𝑐(fin,𝑘fin ) (finalization)
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of 𝒜𝒩 on 𝑤 such that 𝑞 ∈ 𝐹 for 𝑐(fin,𝑘fin ) = (𝑞, ·). The run 𝜌′ will be constructed to
preserve the following invariant for each 0 ≤ 𝑖 ≤ 𝑛:

𝑐(𝑖,0) = (𝑞main , 𝑓𝑖) such that ∀𝑝 ∈ 𝑃 : |𝑓𝑖(𝑟𝑝)| = 𝑀𝑖(𝑝). (4.9)

Therefore, configurations with state 𝑞main represent the TPN’s state after (or before)
firing a transition. Firing a transition 𝑡 is simulated by going to the gadget for 𝑡 in 𝒜𝒩
and picking input data values such that the run returns to 𝑞main in as many steps as
possible (this is to take the run through the LossyRm protogadgets that preserves
the precise value of the marking). By induction on 0 ≤ 𝑖 ≤ 𝑛, we can show that the
invariant in Equation (4.9) is preserved (the base case is proved by observing that the
initialization part is correct).

(⇐) Let 𝑤 ∈ ℒ(𝒜𝒩 ) and

𝜌 : 𝑐(init ,0) ⊢𝑤1

𝑡′
(init,1)

𝑐(init ,1) ⊢𝑤2

𝑡′
(init,2)

. . . 𝑐(init ,𝑘init ) ⊢
𝑤𝑖0

𝑡′
(0,0)

(initialization)

𝑐(0,0) ⊢
𝑤𝑖0+1

𝑡′
(0,1)

𝑐(0,1) . . . 𝑐(0,𝑘1) ⊢
𝑤𝑖1

𝑡′
(1,0)

𝑐(1,0) ⊢
𝑤𝑖1+1

𝑡′
(1,1)

𝑐(1,1) . . . 𝑐(1,𝑘1) . . . 𝑐(𝑛−1,𝑘𝑛−1) ⊢
𝑤𝑖𝑛

𝑡′
(𝑛,0)

𝑐(𝑛,0) ⊢
𝑤𝑖𝑛+1

𝑡′
(fin,1)

𝑐(fin,1) . . . ⊢
𝑤𝑖fin

𝑡′
(fin,𝑘fin )

𝑐(fin,𝑘fin ) (finalization)

be an accepting run of 𝒜𝒩 on 𝑤 such that for each 0 ≤ 𝑖 ≤ 𝑛, it holds that 𝑐(𝑖,0) =
(𝑞main , ·)—this follows from the structure of 𝒜𝒩 . We will construct a run

𝜌′ : 𝑀0[𝑡1⟩𝑀1[𝑡2⟩ . . . [𝑡𝑛⟩𝑀𝑛

where each 𝑡𝑖 is the TPN’s transition corresponding to the gadget that the corre-
sponding part of 𝜌 traversed. For all 0 ≤ 𝑖 ≤ 𝑛, the following invariant will hold:

∀𝑝 ∈ 𝑃 : |𝑓𝑖(𝑟𝑝)| ≤𝑀𝑖(𝑝). (4.10)

We note that the run 𝜌 might not have been the “most precise” run of 𝒜𝒩 , so the
markings in the TPN run overapproximate the contents of 𝒜𝒩 ’s registers in 𝜌. The
invariant can be proved by induction. ◁

Claim 4.3.3 and the observation that𝒜𝒩 is single-exponentially larger than𝒩 (assuming
binary encoding of the numbers in 𝒩 ) conclude the proof (F𝜔 is closed under primitive-
recursive reductions).

From Lemma 4.3.1 and Lemma 4.3.2, we immediately obtain Theorem 4.3.1.
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Chapter 5

Determinisation of Register
Automata

Determinisation is a process of transforming a formal model into one whose each step of
any run is deterministic, i.e., there is always at most one possibility of moving into the
next state with the current input, and the languages of the two models are equivalent.
In other words, determinisation is a process of converting a non-deterministic automaton
into a deterministic one. Amongst other things, the process of converting automata to
their equivalent, deterministic versions is a crucial step for increasing the efficiency of some
automata-based approaches since it eliminates the need of performing backtracking in some
practical applications. Generally speaking, some operations, such as complementation, are
much easier in case of deterministic automata. In addition, considering a deterministic
model of register automata allows for regaining the decidability of some decision problems,
including language inclusion, equivalence, and universality.

Register automata themselves cannot always be determinised. One of the main motiva-
tions for this thesis was the introduction of a register automaton model that can possess the
quality of deterministic computation. Even though some previous advances in the theory of
register automata have shown that a data language is recognizable by a DRA if, and only
if, both this language and its complement are recognizable by NRAs [24], we wish to extend
the property of determinisability onto a bigger class of register automata. RsAs do have
this interesting property: a large class of NRA languages can, indeed, be determinised into
DRsAs. In this chapter, we give a semi-algorithm for determinisation of register automata
into register set automata, and we discuss properties of a class of NRAs for which the given
algorithm is complete.

Preprocessing. Let 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 ) be an NRA. We use R[𝑞] for 𝑞 ∈ 𝑄 to denote
the set of registers 𝑟 such that there exists a transition 𝑠 · | 𝑔=, 𝑔 ̸=, up 𝑡 ∈ Δ with

(i) up(𝑟) ̸= ⊥ and 𝑡 = 𝑞 or
(ii) 𝑟 ∈ 𝑔= ∪ 𝑔 ̸= and 𝑠 = 𝑞.

Intuitively, R[𝑞] denotes the set of registers active in 𝑞. Given a set of states 𝑆, we define

R[𝑆] =
⋃︁
𝑞∈𝑆

R[𝑞].

We call 𝒜 register-local if for all 𝑟 ∈ R it holds that if 𝑟 ∈ R[𝑞] and 𝑟 ∈ R[𝑠] for some
states 𝑞, 𝑠 ∈ 𝑄, then 𝑞 = 𝑠. It is easy to see that every NRA can be transformed into
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the register-local form by creating a new copy of a register for every state that uses it,
potentially increasing the number of registers to |𝑄| · |R|.

Furthermore, we call 𝒜 single-valued if there is no reachable configuration (𝑞, 𝑓) such
that 𝑓(𝑟1) = 𝑓(𝑟2) for a pair of distinct registers 𝑟1, 𝑟2 ∈ R, i.e., there is at most one copy
of each data value in 𝒜. Again, any NRA can be converted into the single-valued form,
however, the number of states can increase to 𝐵|R| · |𝑄| where 𝐵𝑛 is the 𝑛-th Bell number1.
Intuitively, the transformation is done by creating one copy of each state for every possible
partition of R (the partitions denote which registers hold the same value), and modifying
the transition function correspondingly.

The algorithm. The determinisation (semi-)algorithm for a single-valued NRA 𝒜 is
shown in Algorithm 1. On the high level, it is similar to the standard Rabin-Scott subset
construction for determinising finite automata [30] with additional treatment of registers
superimposed onto it.2

Algorithm 1: Determinisation of an NRA into a DRsA

Input : Single-valued NRA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 )
Output: DRsA 𝒜′ = (𝒬′,R,Δ′, 𝐼 ′, 𝐹 ′) with ℒ(𝒜′) = ℒ(𝒜) or ⊥

1 𝒬′ ← worklist← 𝐼 ′ ← {(𝐼, 𝑐0 = {𝑟 ↦→ 0 | 𝑟 ∈ R})};
2 Δ′ ← ∅;
3 while worklist ̸= ∅ do
4 (𝑆, 𝑐)← worklist.pop();
5 foreach 𝑎 ∈ Σ, 𝑔 ⊆ R do
6 𝑇 ←

{︀
𝑞 𝑎 | 𝑔=, 𝑔 ̸=, · 𝑞′ ∈ Δ | 𝑞 ∈ 𝑆, 𝑔= ⊆ 𝑔, 𝑔 ̸= ∩ 𝑔 = ∅

}︀
;

7 𝑆′ ←
{︀
𝑞′ | · · | ·, ·, · 𝑞′ ∈ 𝑇

}︀
;

8 if ∃𝑞 · | ·, 𝑔 ̸=, · 𝑞′ ∈ 𝑇, ∃𝑟 ∈ 𝑔 ̸= : 𝑐(𝑟) = 𝜔 then return ⊥ ;
9 foreach 𝑟𝑖 ∈ R do

10 tmp ←
{︀
𝑥 ∈ R ∪ {in} | · · | ·, ·, up · ∈ 𝑇, up(𝑟𝑖) = 𝑥, 𝑐(𝑟𝑖) ̸= 0

}︀
;

11 op𝑟𝑖 ← (tmp ∖ 𝑔) ∪ {in | 𝑥 ∈ tmp ∩ 𝑔};
12 foreach 𝑞′ ∈ 𝑆′ do
13 𝑃 ← op𝑟1 × · · · × op𝑟𝑛 for {𝑟1, . . . , 𝑟𝑛} = R[𝑞′];
14 foreach (𝑥1, . . . , 𝑥𝑛) ∈ P do
15 if ∄(· · | ·, ·, up 𝑞′) ∈ 𝑇 s.t.

⋀︀
1≤𝑖≤𝑛

up(𝑟𝑖) = 𝑥𝑖 then return ⊥ ;
16 up′ ← {𝑟𝑖 ↦→ op𝑟𝑖 | 𝑟𝑖 ∈ R};
17 𝑐′ ← {𝑟𝑖 ↦→

∑︀
𝑥∈up′(𝑟𝑖)

𝑐(𝑥, 𝑔) | 𝑟𝑖 ∈ R};

18 if (𝑆′, 𝑐′) /∈ 𝒬′ then
19 worklist.push((𝑆′, 𝑐′));
20 𝒬′ ← 𝒬′ ∪ {(𝑆′, 𝑐′)};
21 Δ′ ← Δ′ ∪

{︀
(𝑆, 𝑐) 𝑎 | 𝑔,R ∖ 𝑔, up′ (𝑆′, 𝑐′)

}︀
;

22 return 𝒜′ = (𝒬′,R,Δ′, 𝐼 ′, {(𝑆, 𝑐) ∈ 𝒬′ | 𝑆 ∩ 𝐹 ̸= ∅});

1Bell number represents the number of possible partitions of a given set, where partition stands for
grouping of set’s elements into non-empty subsets, such that these subsets are pairwise disjoint

2The algorithm can be seen as a simplification of the algorithm for converting counting automata to
deterministic counting-set automata from [44] (we do not need to deal with operations on the values stored
in registers), but with additional features necessary to deal with NRA-specific issues.
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𝑞 𝑠 𝑡

𝑎

𝑟𝑞 ← in

𝑎

𝑟𝑞 ← 𝑟𝑞

𝑎 in ̸= 𝑟𝑞
𝑟𝑠 ← 𝑟𝑞 𝑎 in = 𝑟𝑠

(a) An input NRA 𝒜 with a disequality
guard.

{𝑞} {𝑞, 𝑠} · · ·

𝑎 in ∈ 𝑟𝑞
𝑟𝑞 ← 𝑟𝑞 ∪ {in} 𝑎 in /∈ 𝑟𝑞

𝑟𝑞 ← 𝑟𝑞 ∪ {in}
𝑟𝑠 ← 𝑟𝑞

𝑎
in /∈ 𝑟𝑞
in /∈ 𝑟𝑠

𝑟𝑞 ← 𝑟𝑞 ∪ {in}
𝑟𝑠 ← 𝑟𝑞

𝑎
in ∈ 𝑟𝑞
in /∈ 𝑟𝑠

𝑟𝑞 ← 𝑟𝑞 ∪ {in}

(b) A part of the RsA obtained for 𝒜.

Figure 5.1: Possible inconsistency in determinisation caused by disequality on guards in
the input automaton.

During the construction, we track

(i) all states of 𝒜 in which the runs of 𝒜 might be at a given point, represented by a set
of states 𝑆 ⊆ 𝑄 and

(ii) the sizes of sets stored in each register, represented by a mapping 𝑐 : R→ {0, 1, 𝜔} (𝜔
denotes any number ≥ 2);

the macrostate is then a pair (𝑆, 𝑐). Regarding the 𝑐-element of the macrostate, we keep
track of the sizes to detect when our simulation of a disequality test in ̸= 𝑟 by the non-
membership test in /∈ 𝑟 is imprecise due to 𝑟 containing two or more elements. The initial
state of the constructed DRsA is the macrostate (𝐼, 𝑐0) where 𝑐0 is a mapping assigning
zero to each register (the run of a DRsA starts with all registers initialized to ∅) (Line 1).

The main loop of the algorithm then constructs successors of reachable macrostates for
each 𝑎 ∈ Σ and each 𝑔 ⊆ R on Line 5; each pair 𝑎, 𝑔 corresponds to the so-called minterm
(minterms denote combinations of guards whose semantics do not overlap [9]). For each
minterm, we collect all transitions of 𝒜 compatible with this minterm (Line 6) and generate
the successor set of states 𝑆′ (Line 7). The 𝒜′ update function up′ for register 𝑟 is then set
to collect into 𝑟 all possible values that might be stored into 𝑟 in 𝒜 on any run over the
input word at the given position (Lines 9–16).

The algorithm needs to avoid the following possible issues:

1. Since the algorithm collects in the set-register 𝑟 all possible values that could have
been stored into the standard register 𝑟 in 𝒜, if the disequality tests in 𝑔 ̸= were
changed for non-membership tests in 𝑔 /∈, this could mean that 𝒜′ might not be able
to simulate some transition of 𝒜 (the transition would not be enabled). Consider
the example in Figure 5.1, where Figure 5.1b contains a part of the RsA obtained if
Algorithm 1 did not use the 𝑐-component of macrostates. Notice that while 𝒜 does
accept the word ⟨𝑎, 1⟩⟨𝑎, 2⟩⟨𝑎, 2⟩⟨𝑎, 1⟩, the RsA obtained in this way does not. The
reason for this is that after reading the third symbol (i.e., ⟨𝑎, 2⟩), the RsA goes to the
macrostate {𝑞}—it thinks it cannot be in 𝑠 any more.
This is the reason why we augment macrostates with the 𝑐-component. If we detect
that a disequality test is performed on a register containing more than one element,
we terminate the algorithm (Line 8). The tracking of sizes of sets stored in registers
is done on Line 17 where 𝑐(𝑥, 𝑔) is defined as
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(i) 𝑐(𝑥) if 𝑥 ∈ R ∖ 𝑔,
(ii) 0 if 𝑥 ∈ 𝑔, and
(iii) 1 if 𝑥 = in;

moreover, the sum is saturated to 𝜔 for values ≥ 2.

2. By collecting all possible values that can occur in registers, the algorithm is performing
the so-called Cartesian abstraction (i.e., it is losing information about dependencies
between components in tuples). This can lead to a scenario where, for some set-
register assignment 𝑓 ′ of 𝒜′, we would have 𝑑1 ∈ 𝑓 ′(𝑟1) and 𝑑2 ∈ 𝑓 ′(𝑟2), but there
would be no corresponding configuration of 𝒜 with register assignment 𝑓 such that
𝑑1 = 𝑓(𝑟1) and 𝑑2 = 𝑓(𝑟2). Consider, e.g., an NRA for the language {𝑢𝑣𝑤𝑣𝑧 | 𝑢,𝑤, 𝑧 ∈
(Σ×D)*, |𝑣| = 2} depicted in Figure 5.2. When the algorithm computes the successor
of the macrostate ({𝑞, 𝑠, 𝑡}, {𝑟1:1, 𝑟2:1, 𝑟3:1}) over 𝑎 ∈ Σ and the guard 𝑔 = ∅, it
would obtain the following update of registers: 𝑟1 ← {in} (transition from 𝑞 to 𝑠),
𝑟2 ← 𝑟1 ∪ 𝑟2 (transition from 𝑠 to 𝑡 and transition from 𝑡 to 𝑡), and 𝑟3 ← 𝑟3 ∪ {in}
(transition from 𝑠 to 𝑡 and transition from 𝑡 to 𝑡). This would simulate the update
𝑟2 ← 𝑟2, 𝑟3 ← in, which is nowhere in the original NRA. The algorithm detects the
possibility of such an overapproximation on Lines 12–15.

𝑞 𝑠 𝑡 𝑢 𝑣

𝑎

𝑎

𝑟1 ← in

𝑎

𝑟2 ← 𝑟1
𝑟3 ← in

𝑎

𝑟2 ← 𝑟2
𝑟3 ← 𝑟3

𝑎 in = 𝑟2
𝑟4 ← 𝑟3 𝑎 in = 𝑟4

𝑎

Figure 5.2: Example RsA.

3. We need to avoid a situation when a set-register has collected all possible nondeter-
ministic choices of a standard NRA register and then is tested twice with a different
result. Consider the example of an NRA 𝒜 and an RsA obtained from 𝒜 by Algo-
rithm 1 without Line 11 (to save space, we collapse all macrostates with the same set
of states into one) depicted in Figure 5.3. One can see that while the NRA cannot
accept the word ⟨𝑎, 1⟩⟨𝑎, 2⟩⟨𝑏, 1⟩⟨𝑏, 2⟩, the RsA accepts it. This happens because the
RsA did not “collapse” the possible nondeterministic choices that are kept in the reg-
isters for the value of 𝑟𝑞 after the first membership test (on the transition from {𝑞}
to {𝑠}) succeeded. We avoid this situation by the code on Line 11, which performs
the collapse of the set of nondeterministic choices into a single value when it is posi-
tively tested. The update on the RsA transition from {𝑞} to {𝑠} constructed by the
algorithm will then become 𝑟𝑠 ← {in} and the result will be precise.
One might also imagine similar scenario as the previous but with several registers
copying a nondeterministically chosen value (e.g., when a data value is copied from 𝑟1
to 𝑟2 and, later, 𝑟1 is positively tested for equality, we need to guarantee that the
value of 𝑟2 also collapses to the given data value). In order to avoid this, we require
that the input NRA is single-valued, i.e., it never happens that a data value is in more
than one register.
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𝑞 𝑠 𝑡

𝑎

𝑟𝑞 ← in

𝑎

𝑟𝑞 ← 𝑟𝑞

𝑏 in = 𝑟𝑞
𝑟𝑠 ← 𝑟𝑞 𝑏 in = 𝑟𝑠

(a) An NRA 𝒜

{𝑞} {𝑠} {𝑡}

𝑎

𝑟𝑞 ← 𝑟𝑞 ∪ {in}

𝑏 in ∈ 𝑟𝑞
𝑟𝑠 ← 𝑟𝑞 𝑏 in ∈ 𝑟𝑠

(b) An RsA overapproximating 𝒜’s language

Figure 5.3: Possible inconsistency in determinisation causing overapproximation of 𝒜’s
language.

Soundness of the algorithm. In the following, we prove that the determinisation
preserves the language of the input NRA.

Theorem 5.0.1. When Algorithm 1 returns a DRsA 𝒜′, then ℒ(𝒜) = ℒ(𝒜′).

Proof. (⊆) Let 𝑤 = ⟨𝑎1, 𝑑1⟩ . . . ⟨𝑎𝑛, 𝑑𝑛⟩ ∈ ℒ(𝒜). Then there is an accepting run 𝜌 of 𝒜
on 𝑤, such that

𝜌 : (𝑞0, 𝑓0) ⊢⟨𝑎1,𝑑1⟩𝑡1
(𝑞1, 𝑓1) ⊢⟨𝑎2,𝑑2⟩𝑡2

· · · ⊢⟨𝑎𝑛,𝑑𝑛⟩𝑡𝑛 (𝑞𝑛, 𝑓𝑛)

with 𝑞𝑛 ∈ 𝐹 . Furthermore, let

𝜌′ : ((𝑆′
0, 𝑐

′
0), 𝑓

′
0) ⊢

⟨𝑎1,𝑑1⟩
𝑡′1

((𝑆′
1, 𝑐

′
1), 𝑓

′
1) ⊢

⟨𝑎2,𝑑2⟩
𝑡′2

· · · ⊢⟨𝑎𝑛,𝑑𝑛⟩𝑡′𝑛
((𝑆′

𝑛, 𝑐
′
𝑛), 𝑓

′
𝑛)

be the run of 𝒜′ on 𝑤 (𝒜′ is deterministic and complete, so 𝜌′ is unique). We will
show that 𝜌′ is accepting, and so 𝑤 ∈ ℒ(𝒜′).
Let us show that for all 0 ≤ 𝑖 ≤ 𝑛, the following conditions hold:

1. 𝑞𝑖 ∈ 𝑆′
𝑖,

2. ∀𝑟 ∈ R : 𝑓𝑖(𝑟) ̸= ⊥ =⇒ 𝑓𝑖(𝑟) ∈ 𝑓 ′
𝑖(𝑟), and

3. ∀𝑟 ∈ R : 𝑐′𝑖(𝑟) =

⎧⎪⎨⎪⎩
0 iff 𝑓 ′

𝑖(𝑟) = ∅,
1 iff |𝑓 ′

𝑖(𝑟)| = 1,

𝜔 iff |𝑓 ′
𝑖(𝑟)| ≥ 2.

We proceed by induction on 𝑖:

– 𝑖 = 0: Since the (only) initial state of 𝒜′ is the macrostate (𝐼, 𝑐0 = {𝑟𝑖 ↦→ 0 |
𝑟𝑖 ∈ R}) (cf. Line 22), and 𝑞0 ∈ 𝐼, then condition 1 holds. Moreover, 𝑓0(𝑟) = ⊥
for every 𝑟 ∈ R, so condition 2 holds trivially, and so does condition 3 (the 𝑐′𝑖 of
all registers is initialised to zero on Line 1 and all registers are initialised to ∅ in
a run of an RsA).

– 𝑖 = 𝑗 + 1: We assume the conditions hold for 𝑖 = 𝑗. Let there be the following
transition from the 𝑗-th to the (𝑗 + 1)-th configurations of the runs 𝜌 and 𝜌′:

(𝑞𝑗 , 𝑓𝑗) ⊢
⟨𝑎𝑗+1,𝑑𝑗+1⟩
𝑡𝑗+1

(𝑞𝑗+1, 𝑓𝑗+1)
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and
((𝑆′

𝑗 , 𝑐
′
𝑗), 𝑓

′
𝑗) ⊢

⟨𝑎𝑗+1,𝑑𝑗+1⟩
𝑡′𝑗+1

((𝑆′
𝑗+1, 𝑐

′
𝑗+1), 𝑓

′
𝑗+1)

and let 𝑡𝑗+1 : 𝑞𝑗 𝑎𝑗+1 | 𝑔=, 𝑔 ̸=, up 𝑞𝑗+1. Moreover, let 𝑔 ⊆ R be the set of regis-
ters 𝑟 such that 𝑓(𝑟) = 𝑑𝑗+1 (𝑔 here corresponds directly to the 𝑔 on Line 5 of Al-
gorithm 1). Transition 𝑡′𝑗+1 would be (𝑆′

𝑗 , 𝑐
′
𝑗) 𝑎𝑗+1 | 𝑔,R ∖ 𝑔, up′ (𝑆′

𝑗+1, 𝑐
′
𝑗+1)

where 𝑆′
𝑗+1 is constructed using 𝑎𝑗+1 and 𝑔 as on Lines 6–7.

We need to show the following:
(i) transition 𝑡′𝑗+1 : (𝑆

′
𝑗 , 𝑐

′
𝑗) 𝑎𝑗+1 | 𝑔,R ∖ 𝑔, up′ (𝑆′

𝑗+1, 𝑐
′
𝑗+1) is enabled and

(ii) conditions 1–3 hold for 𝑖 = 𝑗 + 1.
Claim 5.0.1. Transition 𝑡′𝑗+1 : (𝑆

′
𝑗 , 𝑐

′
𝑗) 𝑎𝑗+1 | 𝑔,R ∖ 𝑔, up′ (𝑆′

𝑗+1, 𝑐
′
𝑗+1) is en-

abled.

Proof. Since transition 𝑡𝑗+1 is enabled in configuration (𝑞𝑗 , 𝑓𝑗), it holds that
(a) ∀𝑟 ∈ 𝑔= : 𝑓𝑗(𝑟) = 𝑑𝑗+1 and
(b) ∀𝑟 ∈ 𝑔 ̸= : 𝑓𝑗(𝑟) ̸= 𝑑𝑗+1.
From (a) and the induction hypothesis (condition 2), we have that ∀𝑟 ∈ 𝑔 : 𝑑𝑗+1 ∈
𝑓 ′
𝑗(𝑟), so the 𝑔∈-part of 𝑡′𝑗+1’s enabledness holds. Proving the 𝑔 /∈-part (i.e., that
∀𝑟 ∈ R ∖ 𝑔 : 𝑑𝑗+1 /∈ 𝑓 ′

𝑗(𝑟)) is more difficult. We prove this by contradiction.
For the sake of contradiction, assume that there exists a register 𝑟 ∈ 𝑔 ̸= such
that 𝑑𝑗+1 ∈ 𝑓 ′

𝑗(𝑟) (other registers in R ∖ 𝑔 do not need to be considered because
they do not affect the enabledness of 𝑡𝑗+1). Because

(i) 𝑓𝑗(𝑟) ̸= 𝑑𝑗+1,
(ii) 𝑓𝑗(𝑟) ∈ 𝑓 ′

𝑗(𝑟) (from condition 2 of the induction hypothesis), and
(iii) 𝑑𝑗+1 ∈ 𝑓 ′

𝑗(𝑟) (from the assumption),
we know that |𝑓 ′

𝑗(𝑟)| ≥ 2. From condition 3 of the induction hypothesis, it holds
that 𝑐′𝑗(𝑟) = 𝜔. But then, since there is a register 𝑟 ∈ 𝑔 ̸= such that 𝑐′𝑗(𝑟) = 𝜔,
Algorithm 1 would on Line 8 return ⊥, which gives us a contradiction with the
fact that the algorithm returned a DRsA. ◁

Claim 5.0.2. The following holds:
1. 𝑞𝑗+1 ∈ 𝑆′

𝑗+1,
2. ∀𝑟 ∈ R : 𝑓𝑗+1(𝑟) ̸= ⊥ =⇒ 𝑓𝑗+1(𝑟) ∈ 𝑓 ′

𝑗+1(𝑟), and

3. ∀𝑟 ∈ R : 𝑐′𝑗+1(𝑟) =

⎧⎪⎨⎪⎩
0 iff 𝑓 ′

𝑗+1(𝑟) = ∅,
1 iff |𝑓 ′

𝑗+1(𝑟)| = 1,

𝜔 iff |𝑓 ′
𝑗+1(𝑟)| ≥ 2.

Proof. 1. Trivial.
2. Follows from the induction hypothesis and the definition of the update func-

tion up′ on Lines 9–16.
3. Follows from the induction hypothesis and from the definition of 𝑐′ on

Line 17. ◁

This concludes the first direction of the proof.
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(⊇) Let 𝑤 = ⟨𝑎1, 𝑑1⟩ . . . ⟨𝑎𝑛, 𝑑𝑛⟩ ∈ ℒ(𝒜′). Then there is an accepting run 𝜌′ of 𝒜′

on 𝑤, such that

𝜌′ : ((𝑆′
0, 𝑐

′
0), 𝑓

′
0) ⊢

⟨𝑎1,𝑑1⟩
𝑡′1

((𝑆′
1, 𝑐

′
1), 𝑓

′
1) ⊢

⟨𝑎2,𝑑2⟩
𝑡′2

· · · ⊢⟨𝑎𝑛,𝑑𝑛⟩𝑡′𝑛
((𝑆′

𝑛, 𝑐
′
𝑛), 𝑓

′
𝑛)

with (𝑆′
𝑛, 𝑐

′
𝑛) ∈ 𝐹 ′. We will construct in a backward manner a sequence of sets

of 𝒜’s configurations (i.e., pairs containing a state and assignment to registers)
𝑈0, 𝑈1, . . . , 𝑈𝑛−1, 𝑈𝑛, such that ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑈𝑖 ∈ 𝑄× (R → D), that represents
all accepting runs of 𝒜 over 𝑤, and show that 𝑈0 contains a configuration (𝑞0, 𝑓0)
with 𝑞0 ∈ 𝐼 and 𝑓0 = {𝑟 ↦→ ⊥ | 𝑟 ∈ R}. Let us start with 𝑈𝑛, which we construct
as 𝑈𝑛 = {(𝑞𝑛, 𝑓𝑛) | 𝑞𝑛 ∈ 𝑆′

𝑛 ∩ 𝐹 ′, 𝑓𝑛 = {𝑟 ↦→ 𝑑 | 𝑑 ∈ 𝑓 ′
𝑛(𝑟)}}. Now, given 𝑈𝑖+1 for

0 ≤ 𝑖 ≤ 𝑛 − 1, we construct the set of previous configurations 𝑈𝑖 as the set of
pairs (𝑞𝑖, 𝑓𝑖) for which the following conditions hold:

1. 𝑞𝑖 ∈ 𝑆′
𝑖,

2. for every register 𝑟 ∈ R, it holds that 𝑓𝑖(𝑟) ∈ 𝑓 ′
𝑖(𝑟) ∪ {⊥},

3. there is a transition 𝑡𝑖+1 : 𝑞𝑖 𝑎𝑖+1 | 𝑔=, 𝑔 ̸=, up 𝑞𝑖+1 ∈ Δ such that
∗ (𝑞𝑖+1, 𝑓𝑖+1) ∈ 𝑈𝑖+1 and
∗ (𝑞𝑖, 𝑓𝑖) ⊢⟨𝑎𝑖+1,𝑑𝑖+1⟩

𝑡𝑖+1
(𝑞𝑖+1, 𝑓𝑖+1).

Let us now show that for all 0 ≤ 𝑖 ≤ 𝑛, the set 𝑈𝑖 is nonempty. We proceed by
backward induction.

∗ 𝑖 = 𝑛 (base case): 𝜌′ is accepting, so there is at least one state in 𝑆′
𝑛 ∩ 𝐹 ′.

∗ 𝑖 = 𝑗 + 1 (induction hypothesis): we assume that 𝑈𝑗+1 ̸= ∅.
∗ 𝑖 = 𝑗 (induction step): because in configuration ((𝑆′

𝑗 , 𝑐
′
𝑗), 𝑓

′
𝑗) the transition

𝑡′𝑗+1 : (𝑆
′
𝑗 , 𝑐

′
𝑗) 𝑎𝑗+1 | 𝑔∈, 𝑔/∈, up′ (𝑆′

𝑗+1, 𝑐
′
𝑗+1) is enabled, it needs to hold that

· ∀𝑟 ∈ 𝑔∈ : 𝑑𝑗+1 ∈ 𝑓 ′
𝑗(𝑟) and

· ∀𝑟 ∈ 𝑔 /∈ : 𝑑𝑗+1 /∈ 𝑓 ′
𝑗(𝑟).

Then, for every 𝑞𝑗+1 such that (𝑞𝑗+1, 𝑓𝑗+1) ∈ 𝑈𝑗+1, from the construction of
𝑡′𝑗+1, there needs to exist a transition 𝑡𝑗+1 : 𝑞𝑗 𝑎𝑗+1 | 𝑔=, 𝑔 ̸=, up 𝑞𝑗+1 ∈ Δ

with 𝑔= ⊆ 𝑔∈ and 𝑔 ̸= ⊆ 𝑔 /∈. It is left to show that there is an assignment 𝑓𝑗

such that (𝑞𝑗 , 𝑓𝑗) ∈ 𝑈𝑗 and (𝑞𝑗 , 𝑓𝑗) ⊢
⟨𝑎𝑗+1,𝑑𝑗+1⟩
𝑡𝑗+1

(𝑞𝑗+1, 𝑓𝑗+1). But this clearly
holds since if it did not hold, then the algorithm would fail on Lines 13–15
(when checking whether the update is overapproximating or not) and would
not produce 𝒜′.

Properties for determinisability. Naturally, we wish to syntactically characterize
the class of NRAs for which Algorithm 1 is complete. We observe that when we start with
an NRA=

1 and transform it into the single-valued register-local form, the algorithm always
returns a DRsA.

Theorem 5.0.2. (a) For every NRA=
1 , there exists a DRsA accepting the same language.

(b) For every URA=
1 , there exists a DRsA accepting the same language.

Proof. (a) Let 𝒜 be an NRA=
1 and 𝒜𝑟 be its register-local version. Because 𝒜𝑟 contains no

disequality guards, the only way how Algorithm 1 could fail is at Line 15. Since 𝒜 used
at most one register 𝑟, then each state 𝑞 of 𝒜𝑟 will also use at most one register 𝑟𝑞 (the
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copy of 𝑟 for 𝑞). Then 𝑃 on Line 13 will only be a set of elements with no dependency.
For such a set, the Cartesian abstraction is precise, so the test on Line 15 will never
cause an abort.

(b) Let 𝒜 be a URA=
1 such that ℒ(𝒜) = ℒ. First, using Fact 2.2.1, we construct an NRA=

1

𝒜𝑁 accepting ℒ (note that although the first step in the construction in the proof
of Fact 2.2.1 is to make 𝒜 complete, we actually do not need to add transitions with
missing guards (which might make us add transitions with a ̸= guard), but we can add
transitions of the form · · | ∅, ∅, ∅ 𝑞sink , which do not introduce ̸= guards). Then, we
use (a) to convert 𝒜𝑁 into a DRsA 𝒜𝐷 accepting ℒ. Finally, we complement 𝒜𝐷 (by
completing it and swapping final and non-final states), obtaining a DRsA accepting ℒ.

Let ℬ(NRA=
1 ) be the class of languages that can be expressed using a Boolean com-

bination of NRA=
1 languages, i.e., it is the closure of NRA=

1 languages under union, and
intersection, and complement (it could also be denoted as ℬ(URA=

1 )).

Example 5.0.1. For instance, the language 𝐿∃,¬∃repeat , defined as

𝐿∃,¬∃repeat = 𝐿∃repeat · {⟨𝑏, 𝑑⟩ | 𝑑 ∈ D} · 𝐿¬∃repeat .

This language is composed as the concatenation of 𝐿∃repeat and 𝐿¬∃repeat with a delimiter,
and it is in ℬ(NRA=

1 ), since it is the intersection of languages

𝐿∃repeat · {⟨𝑏, 𝑑⟩ | 𝑑 ∈ D} · {⟨𝑎, 𝑑⟩ | 𝑑 ∈ D}*

and

{⟨𝑎, 𝑑⟩ | 𝑑 ∈ D}* · {⟨𝑏, 𝑑⟩ | 𝑑 ∈ D} · 𝐿¬∃repeat ,

but is expressible neither by an NRA nor by a URA (URAs cannot express the part before
the delimiter and NRAs cannot express the part after the delimiter).

From Theorem 5.0.2 we can conclude that ℬ(NRA=
1 ) is captured by DRsA.

Corollary 5.0.1. For any language in ℬ(NRA=
1 ), there exists a DRsA accepting it.

Proof. Let 𝐿 ∈ ℬ(NRA1) and 𝑡 be a term describing 𝐿 using unions, intersections, and
complements, with atoms being NRA=

1 languages. W.l.o.g., we can assume that 𝑡 is in the
negation normal form (i.e., complements are only over atoms—it is easy to transform any
term into this form using De Morgan’s laws and double-complement elimination).

We can construct a DRsA 𝒜𝐷 accepting 𝐿 inductively as follows:

1. Non-complemented literals: if the literal is not complemented, we use Theorem 5.0.2(a)
to obtain a DRsA accepting it.

2. Complemented literals: first, we use Fact 2.2.1 to obtain the URA=
1 accepting the

complemented language and then use Theorem 5.0.2(b) to convert it into a DRsA.

3. Unions and intersections: we simply use Theorem 3.2.3 to obtain the resulting DRsA.

Corollary 5.0.2. The inclusion problem between RsA and ℬ(NRA=
1 ) is decidable.

Proof. We just write ℒ(𝒜1) ⊆ ℒ(𝒜2) as ℒ(𝒜1)∩ℒ(𝒜2) = ∅ and use Corollary 5.0.1 and The-
orems 3.1.1 and 3.2.1.
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Chapter 6

Expressive Power

In this chapter, the model of register set automaton is positioned in the landscape of
automata over data words, in terms of their expressive power. For a given formal model,
its expressive power is the broadness of languages the model can recognize. This quality is
yet another factor that can be used for comparing different automata models and creating
various hierarchies. When analyzing the expressive power of automata models, they are
usually classified with respect to the Chomsky hierarchy of languages [7]. In case of register
set automata, we are looking to find out how expressive the model is in comparison to other
register automata models with decidable emptiness problem. Since the Chomsky hierarchy
is not used for classification of automata operating on data languages, we do not focus on
finding the RsA’s position in this hierarchy.

It is necessary to note that a greater expressive power often brings non-closure under
some Boolean operations, or results in higher complexities of decision problems, which may
be even undecidable for a given model. In this chapter, we first introduce the notions
necessary for understanding the orderings between individual automata models, and then
focus on showing the relationship between RsAs and other register automata models.

Let ℒ𝒜 denote the set of all languages recognized by an automaton model 𝒜, and ℒℬ
denote the set of all languages recognized by an automaton model ℬ.

Definition 6.0.1. A model 𝒜 is said to be more expressive than the model ℬ if it holds
that ℒℬ ⊆ ℒ𝒜. Two automata are said to be incomparable in their expressive power if it
holds that ℒ𝒜 ⊈ ℒℬ, and, at the same time, ℒℬ ⊈ ℒ𝒜.

6.1 Classifying the Expressive Power of RsA

In the following, we examine the abilities of individual register models to recognize chosen
languages, thus comparing them with the model of register set automaton. We establish the
orderings between given models by identifying specific languages expressible by one model
and inexpressible by the other. For this, we use the languages introduced in Section 2.1.1.

Proposition 6.1.1. RsA and ARA1 are incomparable.

Proof. Consider the language 𝐿∀𝑎∃𝑏 from [10, Example 2.2]. Intuitively, 𝐿∀𝑎∃𝑏 denotes the
language of words where no two 𝑎-positions contain the same data value and every position
with label 𝑎 is followed by a matching 𝑏-position. As seen in Figure 6.1, 𝐿∀𝑎∃𝑏 is recognizable
by ARA1 [10, Example 2.6], but is not recognizable by any URA, NRA, or RsA. Intuitively,
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Table 6.1: Table showing the closure properties for a selection of register automata models
as well as the decidability of some decision problems.

RsA RsA𝑛 DRsA DRsA𝑛 NRA DRA URA ARA1 ARA1(g, s)

union ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

intersection ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

complement ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

universality ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗

emptiness ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

if RsA was capable of recognizing this language, it would have to remember values seen
with 𝑎 in one register, and values seen with 𝑏 in another register. The automaton would
then have to be capable of matching the values in one register with the values in the other,
thus making sure that no value seen with the label 𝑎 was left unmatched. There is clearly
no possibility of RsA representing this property. On the other hand, consider the language
𝐿¬∃a-no-b from [14, Proof of Proposition 3.2]. This language is not expressible by ARA1.
However, as seen in Figure 6.2b, even DRsA1 with only one state is capable of recognizing
this language. This shows that in addition to RsA and ARA1 being incomparable, DRsA1

and ARA1 are incomparable too.

1 2

𝑠

3

𝑏

𝑟 ← in

𝑎 in ̸= 𝑟

𝑏 in ̸= 𝑟

𝑏 in = 𝑟

𝑎 in = 𝑟

𝑎 in = 𝑟

Σ

𝑏

𝑎 in ̸= 𝑟

𝑎

Figure 6.1: ARA1, recognizing 𝐿∀𝑎∃𝑏

Proposition 6.1.2. RsA and ARA1(guess, spread) are incomparable.

Proof. First, consider the language over Σ = {𝑎, 𝑏}, 𝐿∃a-no-b and its complement 𝐿¬∃a-no-b .
Intuitively, 𝐿∃a-no-b is the language of words 𝑤 such that there exists an input element ⟨𝑎, 𝑑⟩
that is not preceded by an occurrence of a ⟨𝑏, 𝑑⟩ element. Neither 𝐿∃a-no-b nor 𝐿¬∃a-no-b can
be accepted by ARA1 while ARA1(guess, spread) accepts 𝐿∃a-no-b . ARA1(guess, spread) can-
not accept the complement of this language, namely, 𝐿¬∃a-no-b . On the other hand, as shown
in Figures 6.2a and 6.2b, DRsA1 can accept both 𝐿∃a-no-b and 𝐿¬∃a-no-b . As shown in Sec-
tion 6.1, ARA1 is capable of recognizing 𝐿∀𝑎∃𝑏, while RsA is not. Since ARA1(guess, spread)
is more expressive than ARA1 [14], the same holds for ARA1(guess, spread). Therefore, RsA
and ARA1(guess, spread) are incomparable.

It might seem suspicious that DRsA1 can express the language 𝐿¬∃a-no-b . According
to [14, Proof of Proposition 3.2], if an ARA1 𝒜 could accept the language, 𝒜 could be used
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Table 6.2: Distinguishing languages for a selection of register automata models. Grey cells
denote that the result is implied from the class being a sub/super-class of another class
where the result is established. DRA

(=)
1 denotes both DRA1 and DRA=

1 , similarly for
URA

(=)
1 . DRsA(1) denotes both DRsA and DRsA1. None of the languages is accepted

by DRA.

Language NRA
(=)
1 URA

(=)
1 ℬ(NRA=

1 ) ARA1 DRsA(1) RsA1 ARA1(g, s)

𝐿∃repeat ✓ Ex. 2.2.2 ✗ Ex. 2.2.2 ✓ ✓ ✓ Ex. 3.0.1 ✓ ✓

𝐿¬∃repeat ✗ Ex. 2.2.2 ✓ Ex. 2.2.2 ✓ ✓ ✓ Ex. 3.0.4 ✓ ✓

𝐿∃,¬∃repeat ✗ Ex. 5.0.1 ✗ Ex. 5.0.1 ✓ Ex. 5.0.1 ✓ ✓ ✓ ✓

𝐿∀repeat ✗ ✗ ✗ ✗ [14] ✗ Thm. 3.3.1 ✗ Thm. 3.2.1 ✗ [14]
𝐿¬∀repeat ✗ ✗ ✗ ✗ [14] ✗ Thm. 3.3.1 ✓ Ex. 3.0.2 ✓ [14]
𝐿∃a-no-b ✗ ✗ ✗ ✗ ✓ Ex. 6.1 ✓ ✓ [14]
𝐿¬∃a-no-b ✗ ✗ ✗ ✗ ✓ Ex. 6.1 ✓ ✗ [14]
𝐿∀𝑎∃𝑏 ✗ Ex. 6.1 ✗ Ex. 6.1 ✗ ✓ [10] ✗ ✗ Ex. 6.1 ✓

to decide language-emptiness of a Minsky machine (this problem is known to be undecidable
even with an alphabet consisting of one symbol). So how come that we can express 𝐿¬∃a-no-b
using DRsA1, which have a decidable emptiness problem (cf. Theorem 3.1.1)? The reason
is that in the construction of the automaton representing the accepting runs of a Minsky
machine from [14], apart from 𝐿¬∃a-no-b , we also need to be able to express the property
“every counter increment is matched with its decrement”, which is not expressible by RsA
(cf. the proof of Theorem 3.2.1).

𝑞 𝑠

𝑎 𝑖𝑛 ∈ 𝑟𝑏

𝑏

𝑟𝑏 ← 𝑟𝑏 ∪ {in}

𝑎 in /∈ 𝑟𝑏

Σ

(a) A DRsA1 recognizing 𝐿∃a-no-b

𝑞

𝑎 𝑖𝑛 ∈ 𝑟𝑏

𝑏

𝑟𝑏 ← 𝑟𝑏 ∪ {in}

(b) A DRsA1 recognizing 𝐿¬∃a-no-b

Figure 6.2: Example DRsA1

Remark 6.1.1. RsAs are also incomparable to the class of pebble automata [29], since
DRsAs generalize DRAs, as shown in [43, Remark 3.7], they can accept a language

𝑅+ =
⋃︁

𝑚=1,2,3...

𝑅+
𝑚,

where each 𝑅+
𝑚 is defined as:

𝑐0𝑐1 · · ·⏟ ⏞ 
𝑢1

𝑐1𝑐2 · · ·⏟ ⏞ 
𝑢2

𝑐2𝑐3 · · · · · · · · · 𝑐𝑚−3𝑐𝑚−2 · · ·⏟ ⏞ 
𝑢𝑚−2

𝑐𝑚−2𝑐𝑚−1 · · ·⏟ ⏞ 
𝑢𝑚−1

𝑐𝑚−1𝑐𝑚,

where for each 𝑖 ∈ {0, 1, 2 . . .𝑚 − 1} the symbol 𝑐𝑖 does not appear in 𝑢𝑖 and 𝑐𝑖 ̸= 𝑐𝑖+1.
This language is not expressible by PAs (cf. [43]). On the other hand, RsAs cannot ex-
press 𝐿∀repeat , which is expressible by PAs.
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RsA

DRsA

DRsA1

DRA1

DRA=
1

ARA1(g, s)

ARA1

NRA=
1 URA=

1

NRA1 ℬ(NRA=
1 )

Figure 6.3: Hasse diagram comparing the expressive power of a selection of register au-
tomata models with decidable emptiness problem. All inclusions are strict. Languages
distinguishing the different models can be found in Table 6.2.

The Hasse diagram comparing the expressive power of a selection of register automata
models with decidable emptiness problem is in Figure 6.3 and languages that distinguish
the various classes are in Table 6.2. Additionally, Table 6.1 contains the closure properties
and decidability of some decision problems for selected register models. It can be seen that
the RsAs are incomparable in expressive power to other popular automata models over data
words, such as alternating register automata and their extension ARA(guess, spread).
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Chapter 7

Extensions of Register Set
Automata

In this chapter, we present several extensions of the register set automata model. These
models are based on extending the supported operations in manipulation with registers on
the transitions of the automaton. It can be seen that even a slight modification results in
undecidability of some of the decisions problems. The following sections contain the formal
definitions of each extension and the main results for each of these models.

7.1 RsAs with Register Emptiness Test
Definition 7.1.1. A register set automaton with register emptiness test (RsA=∅) is a tu-
ple 𝒜𝐸 = (𝑄,R,Δ=∅, 𝐼, 𝐹 ) where 𝑄,R, 𝐼, 𝐹 are the same as for RsAs and the transition
relation Δ=∅ for RsA=∅ is defined as Δ=∅ ⊆ 𝑄×Σ× 2R × 2R × 2R × (R→ 2R∪{in})×𝑄.

The semantics of a transition 𝑞 𝑎 | 𝑔∈, 𝑔/∈, 𝑔=∅, up 𝑠 is such that:

• 𝒜𝐸 can move from state 𝑞 to state 𝑠 if

– the Σ-symbol at the current position of the input word is 𝑎,
– the D-symbol at the current position is in all registers from 𝑔∈,
– the D-symbol at the current position is in no register from 𝑔 /∈, and
– all registers from 𝑔=∅ are empty.

• The content of the registers is updated so that 𝑟𝑖 ←
⋃︀
{𝑥 | 𝑥 ∈ up(𝑟𝑖)}.

Lemma 7.1.1. For every RsA=∅ 𝒜, there exists an RsA 𝒜′ with the same language.

Proof. Proof is done by showing the construction of an RsA 𝒜′.
The modification of 𝒜′ appears in the structure of states, where we code the information

about the empty registers into the states themselves, and modify the transition relation
accordingly. Let 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹 ). The information about the emptiness of registers is
kept in the form of a binary vector, denoted v∅, such that v∅[𝑟𝑖] = 0 iff 𝑟𝑖 = ∅, and v∅[𝑟𝑖] = 1
otherwise. Let V∅ = {(𝑒1, . . . 𝑒𝑛) | ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑒𝑖 ∈ {0, 1} ∧ 𝑛 = |R|} denote the set of
all possible binary vectors. The RsA equivalent to 𝒜 is created as 𝒜′ = (𝑄′,R,Δ′, 𝐼 ′, 𝐹 ′)
where 𝑄′ = 𝑄×V∅, 𝐼 ′ = {(𝑞𝑖,v0

∅) | 𝑞𝑖 ∈ 𝐼 ∧∀𝑟𝑖 ∈ R : v∅[𝑟𝑖] = 0)}, 𝐹 ′ = {(𝑞𝑓 ,v∅) | 𝑞𝑓 ∈ 𝐹},
and Δ′ = {(𝑞1,v1

∅) 𝑎 | 𝑔∈, 𝑔/∈, up (𝑞2,v
2
∅) | 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, 𝑆, up 𝑞2 ∈ Δ ∧ 𝑆 = {𝑟 ∈ R |
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v1
∅ = 0} ∧ ∀𝑟𝑖 ∈ R : v2

∅[𝑟𝑖] = up∅(v
1
∅[𝑟𝑖])}. For all 1 ≤ 𝑖 ≤ |R| and given register 𝑟, the

update of vector v𝑖
∅[𝑟], denoted by up∅(v

𝑖
∅[𝑟]) is defined as:

up∅(v
𝑖
∅[𝑟]) =

⎧⎪⎨⎪⎩
1 if (∃𝑟𝑗 ∈ R : 𝑟𝑗 ∈ up(𝑟) ∧ v𝑖−1

∅ [𝑟𝑗 ] ̸= 0) ∨
(in ∈ up(𝑟)), and

0 otherwise.
(7.1)

For such constructed RsA 𝒜′ it holds that ℒ(𝒜′) = ℒ(𝒜).

7.2 RsAs with Register Equality Test
Definition 7.2.1. A register set automaton with register equality test (RsA=𝑟) is a tuple
𝒜𝐸𝑞 = (𝑄,R,Δ=r , 𝐼, 𝐹 ) where 𝑄,R, 𝐼, 𝐹 are the same as for RsA and the transition rela-
tion Δ=r for RsA=𝑟 is defined as Δ=r ⊆ 𝑄×Σ×2R×2R×(R→ 2R)×(R→ 2R∪{in})×𝑄.

The semantics of a transition 𝑞 𝑎 | 𝑔∈, 𝑔/∈, 𝑔=, up 𝑠 is such that:

• 𝒜𝐸 can move from state 𝑞 to state 𝑠 if

– the Σ-symbol at the current position of the input word is 𝑎,
– the D-symbol at the current position is in all registers from 𝑔∈,
– the symbol at the current position is in no register from 𝑔 /∈, and
– for all 𝑟 ∈ R it holds that if 𝑟𝑖 ∈ 𝑔=(𝑟), then 𝑟𝑖 = 𝑟.

• The content of the registers is updated so that 𝑟𝑖 ←
⋃︀
{𝑥 | 𝑥 ∈ up(𝑟𝑖)}.

Theorem 7.2.1. The emptiness problem for RsA=𝑟 is undecidable.

Proof. The proof is done by reduction from reachability in Petri nets with inhibitor arcs
(PN𝐼), which is an undecidable problem [31]. Given a PN𝐼 𝒩𝐼 with inhibitor arcs, we
construct a corresponding RsA=𝑟 𝒜=𝑟

𝐼 . The process of construction of 𝒜=𝑟
𝐼 follows the

reduction of TPN to RsA in the proof of Lemma 4.3.2. The structure of the resulting
automaton differs in protogadgets whose concatenation is used for construction of gadgets
that make up the reduced RsA=𝑟.

The following protogadgets are used in the reduction:

1. The EmptyEq protogadget (depicted in Figure 7.1a), which simulates the inhibitor
arc leading from place 𝑝 is an RsA=𝑟 defined as:

EmptyEq(𝑝) = ({𝑞1, 𝑞2, 𝑞3},R,

{𝑞1 𝑎 | ∅, ∅, ∅, {𝑟𝑒 ↦→ ∅} 𝑞2, 𝑞2 𝑎 | ∅, ∅, {𝑟𝑝 ↦→ {𝑟𝑒}}, ∅ 𝑞3}, {𝑞1}, {𝑞3}).

Intuitively, EmptyEq simulates a register emptiness test. At first, the protogadget
explicitly assigns the value of the empty set to the register 𝑟𝑒 and then it compares its
equality with the content of the register representing the place in which the inhibitor
arc originates.

2. The New Token protogadget (depicted in Figure 7.1b), which simulates adding a token
to a place p, is an RsArm

=∅ defined in the following way:

NewToken(𝑝) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅,R, ∅, {𝑟𝑝 ↦→ {𝑟𝑝, in}}} 𝑞2}, {𝑞1}, {𝑞2}).
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𝑞1 𝑞2 𝑞3
𝑎

𝑟𝑒 ← ∅
𝑎 𝑟𝑝 = 𝑟𝑒

(a) The EmptyEq(𝑝) protogadget.

𝑞1 𝑞2
𝑎 {in /∈ 𝑟}𝑟∈R

𝑟𝑝 ← 𝑟𝑝 ∪ {in}

(b) The NewToken(𝑝) protogadget.

𝑞1 𝑞2 𝑞3
𝑎 in ∈ 𝑟𝑝
𝑟in ← {in}
𝑟𝑠 ← {in}

𝑎
in ∈ 𝑟𝑝
in /∈ 𝑟in

𝑟tmp ← 𝑟tmp ∪ {in}
𝑟𝑠 ← 𝑟tmp ∪ 𝑟in ∪ {in}

𝑎 𝑟𝑝 = 𝑟𝑠
𝑟𝑝 ← 𝑟tmp

(c) The NonLossyRm(𝑝) protogadget.

Figure 7.1: Protogadgets used in the construction of the RsA=𝑟 for 𝒩𝐼 .

Intuitively, for each arc originating in the transition and ending in a particular place,
a token is added to the register representing the destination. The guard ensures that
the added value is not already present within the register, so that the number of
values actually increases.

3. The Non-lossy Remove Token protogadget (depicted in Figure 7.1c), which simulates
removal of a token from a place 𝑝 is an RsA=𝑟 defined in the following way:

NonLossyRm(𝑝) = ({𝑞1, 𝑞2, 𝑞3},R, {𝑞1 𝑎 | {𝑟𝑝}, ∅, ∅, {𝑟in ↦→ {in}, 𝑟𝑠 ↦→ {in}} 𝑞2,

𝑞2 𝑎 | {𝑟𝑝}, {𝑟in}, ∅, {𝑟tmp ↦→ {𝑟tmp , 𝑖𝑛𝑝}, 𝑟𝑠 ↦→ {𝑟tmp , 𝑟in , in}} 𝑞2,

𝑞2 𝑎 | ∅, ∅, {𝑟𝑝 ↦→ {𝑟𝑠}}, {𝑟𝑝 ↦→ {𝑟tmp}} 𝑞3}, {𝑞1}, {𝑞2}).

Intuitively, for each arc originating in a place 𝑝 and terminating in a PN𝐼 transition,
the respective number of values has to be removed from the register representing
place 𝑝. Therefore, on each protogadget of this kind, one value is removed from
a register representing the source place in a lossless manner. The quality of being
lossless is necessary in order to sustain the semantics of the source PN𝐼 . Otherwise,
some transitions may be enabled even though they were not enabled in the source PN𝐼 .

To conclude, it can be observed that even small extension of RsA which allows for
testing the equality of registers on the transitions of the automaton leads to undecidability
of the emptiness problem.

7.3 RsAs with Removal and Register Emptiness Test
Definition 7.3.1. An RsA with removal and register emptiness test (RsArm

=∅) is a tuple
𝒜𝑅𝐸 = (𝑄,R,Δrm

=∅ , 𝐼, 𝐹 ), where 𝑄,R, 𝐼, 𝐹 are the same as for RsAs and the transition
relation Δrm

=∅ is defined as Δrm
=∅ ⊆ 𝑄× Σ× 2R × 2R × 2R × 2R × (R→ 2R∪{in})×𝑄.
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𝑞1 𝑞2
𝑎 𝑟𝑝 = ∅

(a) The Empty(𝑝) protogadget.

𝑞1 𝑞2
𝑎 {in /∈ 𝑟}𝑟∈R

𝑟𝑝 ← 𝑟𝑝 ∪ {in}

(b) The NewToken(𝑝) protogadget.

𝑞1 𝑞2
𝑎 in ∈ 𝑟𝑝

𝑟𝑝 ← 𝑟𝑝 ∖ {in}

(c) The TokenRem(𝑝) protogadget.

Figure 7.2: Protogadgets used in the construction of the RsArm
=∅ for 𝒩𝐼 .

The semantics of a transition 𝑞 𝑎 | 𝑔∈, 𝑔/∈, 𝑔=∅, rem, up 𝑠 is such that:

• 𝒜𝑅𝐸 can move from state 𝑞 to state 𝑠 if

– the Σ-symbol at the current position of the input word is 𝑎,
– the D-symbol at the current position is in all registers from 𝑔∈,
– he D-symbol at the current position is in no register from 𝑔 /∈, and
– all registers from 𝑔=∅ are empty.

• Regarding rem and up, the content of the registers is updated so that for all 𝑟𝑖
from rem, first, 𝑟𝑖 ←

⋃︀
{𝑥 | 𝑥 ∈ up(𝑟𝑖)} and then 𝑟𝑖 ← 𝑟𝑖 ∖ {in}.

Theorem 7.3.1. The emptiness problem for RsArm
=∅ is undecidable.

Proof. The proof is done by showing the reducibility from reachability in Petri nets with
inhibitor arcs, which is an undecidable problem.

Given a PN𝐼 𝒩𝐼 with inhibitor arc, we construct the RsArm
=∅ 𝒜𝒩𝐼

. The structure
of 𝒜𝒩𝐼

is similar to the structure of RsA 𝒜𝒩 in the proof of Theorem 7.2.1.
The only difference is in gadgets used for simulation of respective transition in PNI and

gadget for doing the reachability test. These are created by concatenation of respective
protogadgets, which are defined in the following way:

1. The Empty protogadget (depicted in Figure 7.2a), which simulates the inhibitor arc
leading from the place p is an RsArm

=∅ defined as:

Empty(𝑝) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅, ∅, {𝑟𝑝}, ∅, {𝑟𝑝 ↦→ ∅}} 𝑞2}, {𝑞1}, {𝑞2}).

Intuitively, since the inhibitor arc enables its transition only if the source place is
empty, the respective protogadget checks on its guard whether the register representing
the source place is empty as well.

2. The New Token protogadget (depicted in Figure 7.2b), which simulates adding a token
to a place p, is an RsArm

=∅ defined in the following way:

NewToken(𝑝) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅,R, ∅, ∅, {𝑟𝑝 ↦→ {𝑟𝑝, in}}} 𝑞2}, {𝑞1}, {𝑞2}).
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Intuitively, for each arc originating in the transition and ending in a particular place,
a token is added to the register representing the destination. The guard ensures that
the added value is not already present within the register, so that the number of
values actually increases.

3. The Remove Token protogadget (depicted in Figure 7.2c), which simulates the removal
of a token from a place p, is an RsArm

=∅ defined in the following way:

TokenRem(𝑝) = ({𝑞1, 𝑞2},R, {𝑞1 𝑎 | ∅, {𝑟𝑝}, ∅, {𝑟𝑝}, {𝑟𝑝 ↦→ {𝑟𝑝}}} 𝑞2}, {𝑞1}, {𝑞2}).

Intuitively, for each token removed from the source place, one value is removed from
the register representing that place.

To conclude, it can be seen that extending the model of RsA with possibility of removing
values from registers and testing registers for emptiness brings the undecidability of the
emptiness problem.
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Chapter 8

Conclusion

In this thesis, we have introduced a model of register set automaton, based on extending the
model of register automaton. We allow for storing of a set of values in each register, contrary
to the single value allowed by RA. In addition to the formal definition of the introduced
model, we have proven its closure properties, with restriction to both fixed number of
registers, and a deterministic structure. We have shown the decidability of the emptiness
testing of RsA, and proven its F𝜔-completeness by interreducibility with coverability testing
of transfer Petri nets.

We have provided a semi-algorithm for transforming a subclass of register automata
into deterministic register set automata. Furthermore, a comparison of the register set
automata and other register models was explored in context of their expressive power. We
have shown the incomparability of RsAs and alternating register automata, together with
their extensions.

Finally, we observed some of the possible extensions of register set automata and de-
cidability of their emptiness problem. This was proven undecidable for RsAs allowing for
removal of values from registers, and testing the register emptiness on the transitions, as
well as for the register equality testing. The undecidability was proven by reduction from
reachability in Petri nets with inhibitor arcs. Additionally, we have shown that for each
RsA with extension to register emptiness test, there exists an equivalent RsA accepting the
same language.

There are many challenges we wish to address in the future. We would like to focus
on exploring different structures of the registers, which would allows us, in case of pattern
matching with backreferences, to work with dependencies between capture groups, and
with capture groups that can hold more than one symbol. Additionally, we would like to
propose algorithms for efficient testing on language inclusion of register automata, improve
our determinisation algorithm to work on a larger class of input NRAs, and identify a logic
fragment corresponding to (D)RsA.
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Appendix A

Content of the Attached Storage
Medium

• src-thesis/ Folder with LATEX source files.

• src-thesis/figures Folder with figures used throughout the thesis.

• gulcikova-rsa-thesis.pdf Electronically submitted version of the thesis.

• gulcikova-rsa-thesis-p.pdf Printed version of the thesis1.

1Content is the same as in the version for the electronic submission, difference is in the structure of pages,
which was modified for printing on both sides of the paper.
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