BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

SYSTEM FOR RACE CAR PARAMETERIZATION

SYSTEM PRO PARAMETRIZACI ZAVODNIHO AUTA

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR PATRIK TISZAI
AUTOR PRACE
SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.

VEDOUCI PRACE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||\”!!L|!L\L|||||||\|

Student: Tiszai Patrik

Programme: Information Technology

Title: System for Race Car Parameterization
Category: Information Systems

Assignment:

1. Learn about the relevant technologies for CAN bus messaging.

2. Analyse the current CAN bus messaging solution of the TU Brno Racing team.

3. Based on user needs, propose a new solution for sending messages to devices connected to
the CAN bus (pedal, VCU, etc.). The solution will support enhanced functionality, in
particular: automated configuration retrieval (incl. parsing and data processing), unique
message and device identification system, support for configurable message filters incl.
analytical tools for optimizing filter usage, access control for multiple users, change control
and history tracking.

Implement proposed solution and conduct testing with focus on performance parameters.
Design ways to integrate with an existing message tracking solution (PCAN-View).

6. Discuss possible future extensions.

o~

Recommended literature:
¢ Do, Duc Huy. Automated Tool for CAN Bus Message Mapping. Bachelor's thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2020.
e relevant documentation
Requirements for the first semester:

e |[tems 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: ~ Han&cek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Bachelor's Thesis Specification/24450/2021/xtisza00 Page 1/1

Abstract

The work aims to design and implement an application for creating the configuration of mes-
sages and device filters in the CAN-bus for the school development team TU Brno Racing.
Above all, the application should streamline and reduce the error rate when creating new
configurations. For successful development, a requirements analysis was first performed
in the team and subsequent design and implementation. The result is a functional web
application that is tested for the usability of the configuration and user interface.

Abstrakt

Cielom prace je navrhniat a implementovat aplikdciu na vytvaranie konfiguracie sprav a
filtrov zariadeni v CAN-bus zbernici pre skolsky vyvjovy tim TU Brno Racing. Aplikicia
by mala predovsetkym zefektinif a znizit chybovost pri vytvarani novych konfiguracii. Pre
uspesny vyvoj, bola najskér vykonana analyza poziadaviek v spominanom time a nasledny
navrh a implementacia. Vysledkom je funkénd webova aplikicia, ktord je otestovana s
ohladom na pouzitelnost vytvaranej konfiguracie a uzivatelského rozhrania.

Keywords
CAN-bus, STM, message filtering, identifier assignment, user interface, Flask, library cre-
ation

KTlacové slova
CAN-bus, STM, filtrovanie sprav, pridelovanie identifikatorov, uzivatelské rozhranie, Flask,
vytvaranie kniznice

Reference

TISZAI, Patrik. System for Race Car Parameterization. Brno, 2022. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Mgr. Kamil
Malinka, Ph.D.

System for Race Car Parameterization

Declaration

Prohlasuji, ze jsem tuto bakalarskou praci vypracoval samostatné pod vedenim pana Mgr.
Kamlila Malinku, Ph.D..Uvedl jsem vSechny literarni prameny, publikace a dalsi zdroje, ze
kterych jsem cerpal.

Patrik Tiszai
May 11, 2022

Acknowledgements

First and foremost, I would like to thank my supervisor Mgr. Kamil Malinka, Ph.D. from
the Department of Intelligent Systems, for his patient guidance and lots of insightful and
sharp comments. I am also grateful to all team members from TU Brno Racing, who helped
me find helpful research material and other relevant resources. Finally, a huge thank you
goes to my family and friends for their support and encouragement.

Contents

1 Introduction

2 Theoretical introduction

2.1 Formula Student
2.2 Can Bus introduction oo
2.3 History e
2.4 CAN protocol standards
2.5 Bus access and arbitration L oL
2.6 CAN bus applications e
2.7 CAN bus benefits over other solutions

3 CAN-bus usage at TU Brno Racing

3.1 Communication structure in the vehicle
3.2 Message identification and filters o000
3.3 Block diagram of CAN on used microcontrollers
3.4 Library definition Lo
3.5 Current solution for creating identifiers and filters
3.6 Calculation of filters

4 Mapping analysis and design

4.1 Problem definition oL o
4.2 System requirements from TU Brno Racing
4.3 Mapping algorithm Lo L
4.4 Cluster sizes explanation L
4.5 Filter assignmento Lo
4.6 Input data for the configuration 0oL

5 GUI design

5.1 Usecase o e

5.2 Web framework

5.3 Mongo DB
6 Implementation and testing

6.1 Mapping and filtering Lo L

6.2 GUI implementation

6.3 Testing« . e

7 Conclusion

w

© © 00~ O O

10

11
12
13
13
15

16
16
16
17
18
21
21

23
23
25
26

28
28
29
31

32

Bibliography
A Contents of the flash drive

B GUI screens

33

35

36

Chapter 1

Introduction

I am a member of our school research team situated at the Faculty of mechanical engineer-
ing, where we are designing a formula student race car. These race cars have to be designed
and constructed wisely because before entering the race track, every car must undergo a
scrutineering to justify its design and manufacturing.

To provide flawless communication between many devices in the car, a CAN bus network
protocol is being used for many beneficial reasons. The apparent reason was the worldwide
usage of the Can-bus protocol in the automotive industry. This solution of communication
is considered a straightforward and low cost.

The connectivity is provided only via a single wire instead of direct complex analog signal
lines. This reduces errors, weight, and cost, which are fundamental aspects of building a
competitive racing car.

The thesis is divided into seven chapters. The chapter 2 deals with the laying of the
theoretical basis for the correct design. The reader can also learn basic information about
the communication protocol used in the race car and its various types. The end of the
chapter deals with comparisons with other communication protocols. In the next chapter,
I am focusing on describing the usage of this protocol in the team. So this chapter is about
calculating all the necessary parameters of the protocol to provide respectful functionality.
The chapter 4 describes the analysis of the solution, including the definition of the problem
with the output of the definition of user needs. Next, a mapping algorithm alongside filter
assignment is described here. In the end, the expected data structure for the application
is described. The next chapter is dedicated to designing the graphical user interface and
all the necessary parts for developing a web application. The last chapter 6 is devoted to
the implementation of key elements of the application. The end of this chapter consists of
various user tests and their evaluation.

Chapter 2

Theoretical introduction

2.1 Formula Student

Formula Student is the European version of the original US Formula SAE (Society of
Automotive Engineers) competition. It is a prestigious competition of university teams
composed of bachelor’s and master’s studies students. The beginnings of the competition
date back to 1981, when the idea of university races was born in the USA. It came to
Europe 17 years later. Moreover, races are not taking place only on these continents. In
addition to America and Europe, the competition is also held in Brazil, Japan, India, and
Australia. Overall, over 800 teams from all over the world take part in these races. There
is, therefore, no need to emphasize the importance of participation as it plays an important
role in the rating and prestige of the whole university.

The aim of the competition remains unchanged every year. In addition to gaining
valuable experience for participants and making friends with colleagues from abroad, the
main goal is to show the world the ability to build a single-seat racing car, which must be
maneuverable, powerful, reliable, and safe at the same time. The task of each team is to
find all the resources needed for such a challenging task as the construction of a racing car
undoubtedly is.

The winning team of each race is determined based on scoring from static and dynamic
disciplines. Without a doubt, not only the quality of the car but also the quality and skill
of the driver himself plays a big role in winning races.[4]

TU Brno Racing

Our team, TU Brno Racing, consists of students of faculties of the Brno University of Tech-
nology. The core of the team is composed of students of mechanical engineering. However,
in recent years the formula student is becoming more popular among students from the fac-
ulty of electrical engineering and the faculty of information technologies. The main reason
is the transition from an internal combustion engine powertrain to an utterly electric pow-
ertrain with the integration of driverless elements. Throughout the development, we receive
professional support and consultation from both Ph.D. students, senior management, and,
what is more, from external experts, not only from the automotive industry.

Our main goal is to design, construct and test a one-seat racing vehicle suitable for
participation in international competitions held in different parts of the world. Although
it is an important motivation, there is another one that drives our racing team - the desire
for knowledge, experience in the field of the automotive industry, and the ability to work

in a good team, which is our driving force to achieve the goal of being the best team in
the world. Nevertheless, all this hard work would be worthless without our sponsors, who
provide us with financial, material, and consulting support.

4,
Xt

NS

%0

o

e

|
{

Figure 2.1: Team TU Brno Racing

Team achievements

In 2021, our first electric formula racing car, ED1, was introduced, and even in the first race
that we attended in Most, Czech Republic, we could achieve a promising result. Overall,
our race car has ended in solid second place, winning in business plan presentation and
efficiency. The same year, our team also attended races with the other car, DX, which was
the team’s last internal combustion engine formula. With our ED1 race car, we are 36th in
the world ranking, and the DX formula ended 24th in the world ranking.

Formula ED1 concept

Every formula student race car must follow some rules, which are updated every year and
released by Formula student Germany. These rules are essential for teams, and ignoring
them results in disqualification. Our formula is made of a combination of carbon fiber and
steel tubes used at the rear of the car. It is powered by two electric motors driving the rear
wheels. A fast and reliable race car also requires stable communication between devices; for
this purpose, a CAN bus network is used, and this is also the main topic of this bachelor
thesis.

2.2 Can Bus introduction

Control Area Network (CAN) is a network communication protocol used for communication
between microcontrollers and other devices. CAN was introduced in February 1986 at the
Society of Automotive Engineers congress by Bosch GmbH. In CAN, a broadcast type of
communication is being used, so the message is transmitted to all devices connected to the
CAN bus, and the devices using filters determine which message is relevant reading for
them.

Compared to other solutions, where data is sent directly to every endpoint, CAN pro-
vides a simple, cheap, efficient, and flexible implementation of communication between
devices. CAN bus is mainly used in the automotive industry. [10]

Without CAN With CAN

I/0

Device

Device

Figure 2.2: CAN bus compared to different network solution [12]

2.3 History

The roots of the CAN bus reach out to the early 1980s when an evaluation of serial bus
systems was ongoing by engineers at Bosch, whose aim was to adopt some of these systems
into the passenger car industry. But none of the available network protocols satisfied their
requirements, so in 1983 the development of a new serial bus system was started by Uwe
Kienche. The main purpose of this new protocol was to add new functionality to existing
solutions, but as a by-product, the reduction of wiring harness was also achieved.

During development also, some big companies were involved in this process. In the very
first stage of specifying the requirements of the new protocol, Mercedes-Benz got involved,
and so did Intel, mainly because of potentially becoming the main semiconductor vendor.
Professor Dr. Wolfhard Lawrenz from the University of Applied Science Braunschweig-
Wolfenbutte, Germany, played a big role in this process as a consultant who gave the name
“Controller Area Network” to the newly created network protocol. Academic assistance
was provided by Professor Dr. Horst Wettstein from the University of Karlsruhe.

The introduction of a new network serial bus protocol was announced in February of
1986 at the Society of Automotive Engineers Congress in Detroit. The first controller
chip, the 82526 was introduced by Intel after several months of presentation and publica-

tion describing the new serial bus protocol. The 82526 was the first chip containing the
implementation of CAN.

Although CAN protocol was mostly meant to be used in passenger vehicles, the first
implementation found its place in a completely different market compartment, especially in
northern Europe. The first use of CAN in passenger cars was in 1991 when Mercedes-Benz
started using it in their upper-class car line-up. In 1995 CAN was also adopted by BMW in
its series 7 cars. This invention is considered one of the most successful network protocols
ever introduced thus of its robustness.[2]

2.4 CAN protocol standards

International Standardization Organization (ISO) defined CAN as a serial bus originally
developed for the automotive industry to replace the complex wiring system with a two-wire
bus. CAN protocol offers two versions. Standard CAN provides an 11-bit identifier, that is
enough for creating 2!, or 2048 unique message identifiers. For addressing more messages,
extended CAN was introduced with a bit field space increased up to 29-bit, thus 22, or 537
million unique identifiers can be created in case the standard 11-bit CAN cannot provide
enough identifiers. [6]

5 R]I E]Il

o] 11-Bit Identifier T|D|rd | DLC 0.. .8 Bytes Data CRC | ACK |O |F

F R |E F |8
Figure 2.3: Standard CAN

s 511 R E|]I

o 11-Bit Identifier R|D 18-Bit ldentifier |T |r1 | 0 |DLC | 0.. .8 Bytes Data |CRC |ACK |O | F

F R|E R F|S

Figure 2.4: Extended CAN

o SOF — The Start Of Frame (SOF) bit marks the start of a message, and is used to
synchronize the nodes on a bus.

e Identifier — Determines the priority of the message. Lower value means higher pri-
ority.

o RTR, SRE — The single remote transmission request (RTR) bit is set for remote
frames

o IDE — The single identifier extension (IDE) bit shows whether the standard or ex-
tended CAN message identification has been used.

e 10 — r1 — Reserved bit.

o DLC — The 4-bit data length code (DLC) contains the number of bytes of data being
transmitted.

e Data — Application data up to 64 bits.
e CRC — The 16-bit cyclic redundancy check (number of bits transmitted).

e ACK — When a valid message is accepted by receiver, then an acknowledgment bit
is sent.

¢ EOF — 7-bit field marks the end of a CAN frame.

e [FS — The amount of time required by the controller to move a correctly received
frame to its proper position in a message buffer area.

2.5 Bus access and arbitration

Bus access is event-driven and occurs randomly. Simultaneous occupation of the bus is
implemented with a bit-wise arbitration. The identifier in the message frame determines
the priority. The lower the binary identifier number, the higher priority is represented.
Therefore the node with higher priority gets access to the bus. Signals consisting only of
zeroes hold the bus dominant and can occupy the bus for the longest time. A recessive bit
(1) is always overwritten by a dominant bit (0) on the CAN bus. Therefore, CAN finds its
usage in real-time systems because this approach with a combination of an error handling
mechanism provides very good data consistency.|[8]

A wins arbitration B wins arbitration
Node A — Arbitration ID [010] Data A
;
Node B — Arbitration ID [111] Arbitration 1D [111] Data B —
CAN bus — Arbitration ID [010] Data A Arbitration ID [111] Data B —

Figure 2.5: Example of bus arbitration

2.6 CAN bus applications

Can bus network was mainly created to service in the automotive industry. Its initial
focus remained untouched, this is the most common network used in vehicles nowadays.
Throughout the years, the CAN bus was also adopted by other industries, mainly because
of its complexity and easy-to-use mechanism. Such as trams, undergrounds, light railways,
and long-distance trains use CAN on different levels of the network throughout these vehi-
cles. CAN is also present in aerospace applications, such as flight-state sensors, navigation
systems, and many others. The field of medical assessment is also incorporated with CAN
as an embedded network inside medical devices.[1]

2.7 CAN bus benefits over other solutions

Can bus network offers a very complex networking solution for communication. It provides
a low-cost solution for establishing communication between separate devices by a significant
reduction in wiring. Also, a big advantage is the electronic control unit does not necessarily
need to have an analog to the digital input to every device, but all the devices communicate
on a two wire CAN interface. Thus, the cost of the whole system is decreased as well,
compared to other systems. For reliable communications an error detection is also built
into the protocol [11]

The communication data is broadcasted over all devices inside the CAN interface, so
every single device can choose whether to accept the message or not. It’s done by using
filters on each device to accept the relevant messages. Every message has its distinguished
unique identification (ID). This ID defines the message priority when sending data over
CAN. The priority has a significant impact when more nodes want to send more messages
simultaneously, so the node with higher priority gets transmitted over the lower priority.

Chapter 3

CAN-bus usage at TU Brno
Racing

3.1 Communication structure in the vehicle

All devices required for running the car are connected to the CAN-bus network, which is
separated into three buses, CAN-generic, CAN-critical, and CAN-ams. Can-critical consists
of essential messages required for running the car. CAN-generic is mainly used as a reserved
bus in case there is a problem on CAN-critical. The CAN-ams is used for the messages
monitoring the battery pack. This communication network protocol was chosen because of
its flexibility when adding new devices to an existing network, the implementation of this
solution was also considered very easy compared to other protocols, but the main reason is
significant wire reduction; therefore, the overall weight of the vehicle is kept minimal.

Every single CAN bus network consists of the vehicle control unit (VCU), where all the
logic behind controlling all the systems in the vehicle is stored. Other devices connected
are the Steering unit, Dataloger unit, High-voltage box unit, Pump unit, and Telemetry
unit.

HIGH-VOLTAGE PUMP

VvCuU

TELEMETRY STEERING DATALOGER

Figure 3.1: Communication structure inside the vehicle

10

3.2 Message identification and filters

Currently, team TU Brno Racing is using a custom-developed library for securing proper
communication via CAN bus. The source code of this library is completely written in C
code. In this library all the required identifications and filters are defined to enable flawless
functioning of CAN bus network. The Can bus library is a separate module that is included
in each device’s program, so all the devices can see the configuration between each other if
necessary.

CAN bus network

—> veu !
E | 5
Vehicle S — !
: PUMP ;
5 | 5
E DEVICEN |e—
PUMP logic
VCU logic DEVICE N logic
pooTTTTTmmTTommmmmmmmy E PUMP | poTTTTTTmmTTommmmmmmmy
i i program i
5 vcu vl : 5 DEVICE N :
I program P A : program
A interacts ! A
—E interacts | interacts ——
; Lo CAN bus A i
! ! library !
CAN bus ! ! CAN bus !
! library . ! library

Figure 3.2: Structural demonstration of vehicle management

11

3.3 Block diagram of CAN on used microcontrollers

The team uses microcontrollers from the company STMicroelectronics (STM), so the CAN
bus will be described on these. These microcontrollers have been chosen for their ease of
programming and various materials available on the internet regarding some programming
issues.

For setting up the messages, three transmit mailboxes are provided to the software. For
deciding the message priority, a Transmission scheduler is used. The Can implementation
on STM microcontrollers provides 14 configurable identifier filters for selecting only rele-
vant messages for the current device; also two receive FIFO (first in first out) fronts are
implemented on the microcontroller. These buffers are entirely managed by hardware, and
each FIFO can store 3 complete messages.|[3]

TX mailboxes > E] CAN_TX
Mailbox 2
Mailbox 1
Receive FIFO 0 Receive FIFO 1

Mailbox O o

>

. Message 2 Message 2 z

Transmission (9]

o

scheduler x

Message 1 Message 1 m

)

Message 0 Message 0 =3

8

=2

>

Q

=}

o

Acceptance filters

Filter O

<:| [] cAN_RX

Filter 13

Figure 3.3: Block diagram of CAN implemented on STM32 microcontrollers

12

3.4 Library definition

The current solution for creating the library is managed without using any automated soft-
ware. To satisfy all needs of other programs using this library, a certain structure must be
followed.

Structure of the library:
e Dragon_ CANbus.c

e Dragon_ CANbus.h
e Dragon_ CANbus-deviceXXX.h
e Dragon_ CANbus-filter.h

e Dragon_ CANbus-filter.c

Files Dragon_ CANbus.c and Dragon_ CANbus.h provide the overall configura-
tion of CAN bus, Dragon-CANbus_ filter.h, and Dragon-CANbus__filter.c consists
of all call-back functions to every message, all unique identifications for every message, and
all the filter banks for different devices are defined here. Dragon-CANbus__deviceXXX.h
files are used for activating call-back functions (different for each device).

3.5 Current solution for creating identifiers and filters

The first step for creating a functioning library that is used by all the devices connected
to the CAN-bus network starts with filing in an excel document shown in picture 3.4. In
this file, all the necessary information could be found, such as the name of the message, the
priority of the message, and more. The priority plays a significant role in the configuration.
It has four stages very high, high, medium, and low, the team defined these stages, and each
section is relative to a specific message ID range. These ranges come out from analyzing
the number of messages within a single priority section. Currently, these ranges are used:

e Very high: 1 - 500
e High: 501 - 1000
e Low: 1501 — 2048

After getting familiar with the parameters of every priority section, the messages can be
added to the list, and the user must choose the correct section where to input the message
regarding its importance.

The term “input the message” means that the user fills in the name, data type of the
message, the area, specific for the message, size, transmitter, receiver, modifier, periodicity,
and notes. The only required information for further processing is the name of the message
and the receiving device name; other information is only for deeper specification information
of the message. It is beneficial for developers when working with the messages.

After having all the messages entered in the next step, it is necessary to manually
calculate an identification number for every message corresponding to the priority section.
Based on the receiver device of the message, a filter is made. This filter is also manually
calculated; thus, there is a significant chance of making an error. The calculation will be
described in the section 3.6.

13

t - | 1182 jo sabeyop

¥z - 1] losuas woy saunjesadwa]

gl - § Josuas woy sainjeladwa]

g - | Josuss woy sainjeladwa]
1eB6o7<-non

zH| 1ebbor<-non
zHo| 1ebbot<-nop
ZH00L-0} 18BBoT<-naA

HELS 453 <-JLH Z BYIQE|L
| sfEjas uo Wy 0] SN <- U AH Z BNUIZE|L

zHoL “18BB07<-NDA MO SING
ZHOL

Ryuiwodyd 810N
L 5 o o]

BlEp bal
Blep bal
Bjep bal
ejep bal

r)Rp 28essowl Ny Surjndur 10j o[qe], :§'¢ 2Insrq

A LO0D0
Do b

Do b

Do b

%

e I

N0
¥ 00

wnua

pouad ns [uun

d

o]

1aypo
]

A

u

aeyy1senb: ane@oay nwsuel) adfy eleqg

W

non
non
noA

ndn
NoA
NaA
NaA
NaA

ds3
ds3
ds3

ds3

SINY

Buw
@915

Buuaalg
Buusalg °

3

8915

NoA
NoA
noA

SN
SV
SV
SV
SV

SNV
SNV
SNV

NI

NI

NaA

SNV

[Epad
ds3

A

gl
g
g
g

g

g
gLmn
gL

gin

gin

giwin

glLmn

giin
giin

r

(a14g)
azi§
I

Op Lare|S
18] Lane|S
18] Lane|S
18] Lane|S
ey Maneg

Flieo xep
on Maneg
12 Maneg

opng shg
opng shg

eIs NOA

uEIS SNV

1e1s” [Epad
.S 4s3

aweN
I

SNV
SNV
SNV

W3LSAS puewwog
W3LSAS puewwog

SNV

ealy
2

Bo

BIEQ
BIEQ
BlEQ

o]

o]
o]
o4u|

dfp
4

0L+3LLL
0L+3ELL
0L+3ELL
0L+3ELL
0L+3ELL

0L+3L
0L+3L
0L+3L

80+3LLL
80+3LLL

OLORLLLL
0
OLLLLLE
LOLLELL
D0LLLLE

uiq

£aL
¢al
Las
0az
404

iy
GL¥
2Ly

941
EELS

4

A

az
o7

xal
ai

£o0e
200z
Looe
nooz
GGG

0501
6701
arolL

205

105

05¢

9zl

Szl
¥zl

29p

MO

WNIa3n

HOIH

OIH Ad3Nn

ALIMORd
v

e
az
T4
e
€2
o4
L
0e
6L
gl
£l
al
SL
¥l
EL
el
Ll
o]

[To T = - e]

- o Mmoot

14

3.6 Calculation of filters

As described in the section 3.3, the microcontroller offers two hardware FIFO buffers ac-
companied by 14 configurable filters, so in total, there are 28 available filters to configure.
To avoid missing reading any received messages, the team decided to set each filter to admit
only 3 messages, but this is only possible with the two most prioritized message categories
because other categories consist of much more messages than the filters can take, so this
rule is not applied there. Therefore, filters for medium and low priority messages take more;
this number differentiates on total message quantity.

The filter is defined with two parameters:
1. CAN ID allowed to be received
2. Mask register for masking the CAN 1D

Example of filter calculation accepting only one message with ID = 0x245.

Acceptance Filter =0x245
1021200101 (RecievelID)
&
11111111111 (Mask Register)

1001000101 -->Accepted ID

Figure 3.5: Filter calculation example [14]
If more CAN ID numbers needs to be accepted with one filter, then the mask register is

changed, e. g. if the mask register is changed to OxFE, messaged with IDs x245 and 0x244
are accepted.

15

Chapter 4

Mapping analysis and design

This chapter describes the whole analysis, which started with the definition of the problem,
the survey target group, and then the definition of user needs. Next, a mapping system
based on this analysis is described.

4.1 Problem definition

The main reason is the growing amount of messages and complicated recalculation. When
a single message with a predefined ID needs to be added to the list, it is sometimes easier
to recalculate the whole project to avoid any inconsistency.

Another factor is variability between team members, not everyone is fully dedicated
to this project and leaves after only a year, and it is not beneficial for them to learn the
complicated system just for one year, so we sometimes have to bother the older team
members who developed this solution to help the team.

The last big factor is the “human factor” all humans make mistakes at some point, and
this is not accepted in racing because it can cause a more serious outcome than just missing
one reading from a sensor that someone has not configured correctly.

4.2 System requirements from TU Brno Racing

The new system for creating unique CAN bus messages and the following assignment of
them to device filters for team TU Brno Racing has some requirements from the users.

Specified requirements for the application:

e It should be encapsulated into a web application to provide easy access for team
members and not cause incompatibilities between versions of the operating system.

e The system must be completely automatic without any further classification needed,
i.e., the user inputs only necessary parameters of a CAN message, like name, priority
section, and the receiver name, optionally some notes, the system will automatically
calculate everything required for creating the library.

e The final product of the system will consist of a few essential documents required to
have a beneficial impact on our team members.

16

e One output file will provide overall information about the configuration, meaning
there will be a complete list of all CAN messages sent over the network with some
additional information for a better understanding of the flow of the messages, and the
other documents will create the library used in other projects across team members.

o Possibility to show message properties.
o Ability to download the crated library.

e The application should provide history tracking, meaning that it would be possible
to select an older configuration and download it.

e Simple statistics tools, regarding filter usage for each device.

Mapping process analysis

Currently, there isn’t any capable system to satisfy team requirements because the micro-
controllers that we use are mostly popular among individuals or small companies like our
team; therefore, it is not beneficial for software companies to develop a variable mapping
system for these microcontrollers. Another big factor is that the microcontrollers we are
using don’t explicitly define the exact way how to use the CAN bus implemented, so a
few years prior, our team has decided to create self-made modules to interact with CAN
implementation of the microcontroller supplier. Therefore the whole CAN message and
filter library was created to fill our needs, but with a big weakness, that it would be almost
impossible to find any automated program for configuring the CAN.

Considering all these factors, not being able to find any program reaching the require-
ments for creating the filters, a custom-developed system has to be developed for this
purpose. The lack of possible algorithms suitable for this system is mainly caused by very
specific requirements to get the most out of the currently used microcontrollers and not
necessarily change the whole architecture, which has been proved very reliable and effective.

4.3 Mapping algorithm

For the usage of the strength of CAN bus on our microcontrollers, we are using hardware
filters provided by the chip. These filters work faster than using any kind of software filter
based on if-else clauses. But there are some limitations. Two big limitations that need to
be counted in this mapping algorithm are the maximum number of hardware filters for a
single chip and also the maximal effective count of messages assigned to a single filter.

The number of filters for each device is 28, and 3 messages per filter; these add up to
84 possible messages to be configured for each device. In our system configuration, is this
not always enough, so in some cases, we are forced to assign more messages to a single
filter. In this case, the division into priority sections comes very handily because we can
decide which messages are not that prioritized and essential to run the car properly, so we
can afford not to get the message all the time because the messages are sent with some
periodicity specific for each one of them and in the next iteration it is possible to get it
right, but this is unacceptable behavior in important messages.

17

Mapping logic

The calculation of unique identification is based on creating identification clusters of two,
three, four, and eight. Also, bigger clusters could be implemented, but for the purposes
of this project, this is more than enough because in the worst-case scenario, when using
clusters of size 8, the maximum amount of messages assigned to one device is increased
from 84 to 224.

All the messages Number of messages
assigned to a device inside clusters
e A

Priority section 1

. J

4 N\

Priority section 2

A J

Device

N

Priority section 3

J

~N

Priority section 4

Figure 4.1: Ideal usage of clusters

Mapping restrictions

Taking into consideration the fact that the system works the best when only 3 messages
are assigned to a single filter, a restriction has been created, so the cluster of 3 is primarily
used for messages in the first two highest priority sections, and clusters of size 4 and 8
are only used in two lowest priority sections of messages, and still provide enough space.
Respectively, when there are less than 84 messages assigned to one device, then only clusters
of size 3 are applied to all priority sections. This decision was also reviewed and approved
by the team.

Clusters of size 2 and a single message inside the cluster are only used in edge cases
when it is impossible to fit them inside main groups of 3, 4, and 8, without utilizing the
full free space of a cluster.

4.4 Cluster sizes explanation

The chosen sizes imply filter masks that also have to be used. These filter masks, in
combination with a starting identification number, create one whole filter.

18

Cluster of size 2

For creating a group of 2 numbers a set of masks is used.

Values of the masks
1. 0x7FE - (binary 011111111110)
2. 0x7FD - (binary 011111111101)

The mask 0x7FE is used when the starting IDs least significant bit is 0 and the mask 0x7FD
when the second least significant bit is 0.The image 4.2 shows the possible division.

l dec. bin I

; 1 —>»001 |

mask ID 2 —» 010

dec. bin. — ' .
1 —> 001 101 X0 | e o
X 11X ; 5 —>» 101 |

2 —> 010 5 6 —>» 110 |
3 —> oM R .
4 —> 100 mask ID dec. bin i
5 —> 101 |2 o
110 : 3 —> o011 |

6 —> 110 ; 5
| dec. bin

o4 —> 100 |

s —> 101 |

Figure 4.2: Cluster of size 2

Cluster of size 3 and 4

For this cluster, only a single mask is used with value 0x7FC) - (binary 011111111100). So
the two least significant bits determine the group, but for not causing any collisions all the
IDs divisible by 4 are excluded because if this mask is used, then it also possible to create a
group of four elements and not assign these values to the messages means that the filter in
one hand accepts more than 3 messages, but regarding no real ID with the fourth number
inside network is assigned the filter will accept only 3 messages in reality. For cluster size
4 the mask is the same, and the ID numbers divided by 4 are not excluded.

19

dec. bin. :__________________""":
1 —> 001 dec. bin. |

il 1 —>o001 |
2 —> 010 mask ID 'l 2 —>o010 |

o3 —>on |
3 —> 011 00 :
4 —>» 100 : dec. bin ,
5 —> 101 | s o |

5 6 —> 110 |
6 —> 110 T
7 —> 111

Figure 4.3: Cluster of size 3

Cluster of size 8

This cluster is only used in less prioritised messages with a single mask valued 0x7F8 -
(binary 011111111000), meaning that the 3 least significant bits are defining the group of
8 elements.

Concerns about not enough clusters

After evaluation of all factors within the team influencing the number of messages and the
distribution between priority sections, a final statement was set, showing that this proposed
solution for creating only these 4 types of clusters would completely satisfy the needs and
still have enough free filters for use in the future. The two least prioritized sections will also
use the combination of smaller size clusters to exclude some unnecessary messages. Another
factor in the evaluation was the current design of the communication inside the car, which
is not going to be changed unless some new rules are released by Formula student Germany
that our teams have to follow, but this is nothing that cannot be influenced by the team.
If some rules are changed in the future, the design of the algorithm will be changed to be
rules compliant.

20

4.5 Filter assignment

Each device connected to a CAN bus network has the capability of specifying 28 filter
banks. These filters have an exact structure, being a 2D array of size [14][6].

maskd id0 maskl idl fifo en

[0x07FC, Ox007C, OxO7FE, 0x012C Ox0001, 0x0001},
I0x07FE, 0x0190, OxO7FF OxO1F4, 0x0001, 0x0001},
[0xO7FF, 0x0000, OxO7FF 0x0000 Ox0000, 0x0000},
I0x07FF, Ox0000, OxO7FF 0Ox0000 0x0000, 0x0000},
[0xO7FF, 0x0000, OxO7FF 0x0000 Ox0000, 0x0000},
I0x07FF, Ox0000, OxO7FF 0Ox0000 0x0000, 0x0000},
[0xO7FF, 0x0000, OxO7FF 0x0000 Ox0000, 0x0000},
I0x07FE, Ox041A, Ox07FC, 0x041C 0x0000, 0x0001},
[0xO7FF, Ox07DA, OxO7FE, OxO7EE, O0x0000, 0x0001},
1OwO7FE, Ox07F0, Ox07FF, Ox0000 0x0000, 00001},
[0xO7FF, 0x0000, OxO7FF 0x0000 Ox0000, 0x0000},
I0x07FF, Ox0000, OxO7FF 0Ox0000 0x0000, 0x0000},
[0xO7FF, 0x0000, OxO7FF 0x0000 Ox0000, 0x0000},
I0x07FF, Ox0000, OxO7FF 0Ox0000 0x0000, 0x0000}

Figure 4.4: Demonstration of filter structure

For creating a working filter, both mask0 and i1d0, respectively, mask1 and id1, have to
be defined in correspondence to the FIFO buffer (this program uses mainly the first buffer
unless it is already fully occupied), and the last element en is set to 1, representing that
the filter is configured correctly and could be used.

4.6 Input data for the configuration

The program takes only a .csv file with all the necessary information for creating the
configuration. The file has to use semicolons as separators and has to have a header for
defining column names.

Header keywords

1. Type - basic information about the message

2. Area - part of the network where the message is sent
3. Name - name of the message

4. Size - size of the carried data inside message

5. Data type - data type of carried data inside message

6. Transmit - name of the device that transmits the message

21

7. Receive - name of the receiver device, support multiple devices, separated by a
comma

8. Request frame - additional information to data
9. idNum - specification of custom ID

All the columns, except Area, Name and Receive doesn’t have to contain any data, because
it is only used for information purpose for the programmer and not influencing the overall
configuration.

Type;Area;Name; Size;Data type;Transmit;Receive;Request frame;idNum;

FrFFrrrrr

FW; ;FWU Downstream; 8;uint8;Datalog;VCU, HV Box, Stesring, Pump, ESP; ;
FW;;FWU_Upstream;?;uintB;Datang;?CU,H?_BDX,Steering,Pump,ESP;;
Cnmmand;;Reset;l;uintE;Datang;vCU,HV_BDx,Steering,Pump,ESP;nw;

Info;;VCU status;l;uint8;VCU;Datalog;n;
InfD;;ESP_status;l;uintB;vCU;Datang;n;
InfD;;Pedal_status;l;uintB;VCU;Datang;n;;
InfD;;AMS_status;l;uintB;VCU;Datang;n;
InfD;;Pump_status;l;uintE;PUHP;Datang;;

Eerr;AMS;NDnCrit_Eerr;2;uint16;vCU;Datang;n;
InfD;;TS_Dn;l;uintB;VCU;Datang;y;
CDmmand;;Discharge;l;bDDl;vCU;Hv_BDx,Datalug;n;
Data;;Brake pres;Z;uintd;VCU;Datalog;;

FRIFFFFF G
Data;AMS;Battery_current;Q;inth;vCU;Datang;n;
Data;hMS;Battery_vnltage;Q;uinth;vCU;Datang;n;
Data;2MS;Max cell temp;l;int8;VCU;Datalog;n;
Data;hMS;hvg_cell_temp;l;intB;vCU;Datang;n;
Data;2MS;Min cell temp;l;int8;VCU;Datalog;n;

Figure 4.5: draft of .csv file

22

Chapter 5

GUI design

In addition to functionality, the application should also provide a sufficiently intuitive,
simple, and usable interface. The result of the analysis of the main goals of the application
and user needs is the following design of the user interface. Each designed screen and its
elements are based on user requirements and solve some predefined issues.

5.1 Use case

In the picture 5.1, the use case diagram is present, designed in UML language. This
diagram shows basic operations that the application should support on behalf of the user
requirements. These operations should be projected into the functionality of each element
in the proposed user interface.

The structure of the application is divided into four essential screens, where the user is
capable of switching between them using a navigation bar placed at the top of the screen.
This navigation bar is designed to be consistent throughout the whole application. There
is also a logout button and the name of the user currently logged in on the right-hand side

of the navigation bar, only when the user is logged in.
download library

analyze filters show configuration
User
change configuration

Figure 5.1: Use case diagram

23

The navigation bar consists of these screens:
e Create configuration

e Show configuration

o History

e Analyze

Login and register page

Before accessing all the functionality of the application, authentification would be required.
For this purpose, two separate pages were designed; one is the register page, where the user
inputs:

o User name
e Email
e Password

The second page is for already registered users, where it is necessary to log in to the
application to gain full access to the functionality. The login page also would be the first
screen after opening the application, so there will also be a button for registering a new
user. The form for logging in on this page consists of only:

e User name

o Password

Create configuration

Following the user requirements, it was important to create an intuitive and easy-to-use
screen for defining the configuration of whole CAN bus messages and filters. This page is
also set as the homepage of the whole application after logging in, it is due to the frequent
creation of configuration, and it would facilitate the work with the application. A simple
form is present on this page, consisting of these parameters to be inputted:

e Name of the configuration
e Comment

o Input file (.csv only)

Configuration

This screen shows the current configuration of Can-bus messages. The messages will be
displayed as a table where each row of the table shows a single message. The table should
have a couple of columns for better orientation in the messages by the user. These columns
would consist of:

e ID of the message

24

e Name of the message

e Name of the receiver device, support multiple devices, separated by a comma
e Size of the carried data inside message

« Data type of carried data inside message

e Name of the device that transmits the message

e Request frame - additional information to data

Above the list of messages is placed a download button for saving the CAN bus library
created by the backend to the computer.

Show history

In the user specification was also mentioned that the application should provide a history
of recent configurations. For this purpose, a separate page is created, where the user could
look at the complete list of configurations with some additional information about the
configuration done in the application. When clicking on one of these, the user would be
redirected to the page Configuration, where the selected configuration will be displayed.

Analyze

The last page will be used to show analytics about the configuration. Each device in the
configuration should have its own card on the page. In the header of the card, there is the
name of the device, under the title, the total number of messages assigned to this specific
device finds its place, and the last important parameter displayed in the card is the number
of remaining free filter banks inside the device configuration.

5.2 Web framework

It is a software framework that was developed in order to simplify the web development
process, so it allows web developers to write Web applications without knowing any low-level
details about sockets, protocols, or process management. In general, frameworks provide
support for interpreting requests, such as handling cookies and sessions. It is also helpful
in producing responses and storing data persistently. Nowadays, numerous frameworks
provide some sort of customization in their support for utilizing components and activities
already mentioned above, so in the real world, it is possible to create a full-stack framework
from scratch only using existing components.|7]

Flask

Flask is a lightweight WSGI web application framework written in python. It is free and
open-source and lets developers develop web applications easily. Also, getting started with
flask is very quick and easy, providing the ability to scale up to a complex application.
Flask is based on the Werkzeg WSGI toolkit and the Jinja2 template engine, developed by
Armin Ronacher, who led a team of international Python enthusiasts called Poocco. Flask
was originally an April’s fool joke that escalated into a serious useful application.[5]

25

from flask import Flask

app = Flask(__name__)

Qapp.route('/")
def hello_world():
return 'Hello World!'

if __name__ == '__main__"':

app.run()

Listing 1: Simple example in Flask

Bootstrap

Bootstrap is a free and open-source front-end development framework for the creation of
websites and web apps. The Bootstrap framework is built on HTML, CSS, and JavaScript
to facilitate the development of responsive, mobile-first sites and apps. Bootstrap was
originally named Twitter Blueprint and developed by Mark Otto and Jacob Thornton at
Twitter. The intention was to achieve consistency across different tools. Nowadays, it
offers user interface components, layouts, and JavaScript tools along with the framework
for implementation. This application would be accompanied by Bootstrap Version 5.[9]

5.3 Mongo DB

MongoDB is a document-oriented NoSQL database used for high-volume data storage. In-
stead of using tables and rows as in the traditional relational databases, MongoDB makes
use of collections and documents. Documents consist of key-value pairs, which are the basic
unit of data in MongoDB. Collections contain sets of documents and functions, which is
the equivalent of relational database tables.[13]

Key features of MongoDB architecture

o Database - a container for collection, each database consists of files on file system, a
MongoDB can accompany numerous databases

e Collection - it is similar to table in SQL database, collection can be created inside
database and doesn’t have to follow any structure

e Document - a record in a MongoDB collection, consists of field name and value
e Field - a name-value pair

e Id - required in every MongoDB document and represents a unique value, it is like
primary key in SQL based database

Database structure

One of the main parts of developing an application is choosing the correct database type
and the specific data model that will fulfill all the requirements from the user. For this

26

project, a MongoDB database is selected because the key feature of the application is to
calculate a configuration that would be accessible by all the users no matter where they
are. So the database should offer the possibility of storing documents, and MongoDB does
this all. Also, relations aren’t required. The picture 5.2 shows the database structure used
with MongoDB.

__

analyze - collection

CanPlanner - database

createdIDList -
collection

_id:
ConfigName :
MessCount :

FilterCount :

id:

ConfigName :

calculated

users - collection

_id:
username :
password :

email :

Figure 5.2:

inputFiles - collection

_id:
ConfigName :
file :
author :
date :

comment :

Database structure used in application

27

Chapter 6

Implementation and testing

For the implementation of the application, I have chosen a popular framework flask that is
described in section 5.2, and Visual studio code was used as a development environment. In
this section, I will be describing essential parts of the development of a mapping algorithm,
including the implementation of the user interface. The last part of this section will deal
with testing the application in team TU Brno Racing.

6.1 Mapping and filtering

This part of the application required much information to be stored throughout the whole
process of calculation, so I decided to create two python classes, class message() and
class filter(). The class message() is used for storing all kinds of information related
to the CAN message, and the class filter () represents with its data a complete block
of filters for one device.

The calculation of unique identification numbers and filters is implemented in
these files:

e parse_input.py
e create message.py

o create_ filters.py

Parsing input data

The application is expecting a specific format for loading all the necessary information, as
described in section 4.6. After parsing, the values from the document are stored inside the
class message. This class only represents one CAN message, so these objects are assigned
to a list(this list will be represented as a message list in upcoming parts of this document)
that is then used as input for other functions.

Creating the message

Before calculating the identification, the message list is sorted by ascending message priority
and also by receiver device names. This kind of sorting helps to reduce filter usage because
messages that have to be received by the same device have identification next to each other.

28

Creating filters

An important part of the application is the creation of filters; these follow the proposal
mentioned in section 4.5, with one change to the original idea. The last few messages
that don’t have the exact size of a cluster in priority sections 3 and 4 are not separated
into smaller clusters but remain with the same mask. This decision was made after testing
different configurations on a real CAN-bus network, and it has no noticeable effect on overall
message acceptance. It also provides more free filters for further messages.

Library

The most important part of the application was reducing errors created by humans when
not paying 100% attention, and the part when the library had to be assembled was the most
critical and had caused many hours of debugging when a mistake was made. The library
consists of two main files Dragon_CANbus_filter.c and Dragon_CANbus_filter.c, and
files for each device Dragon_CANbus_DEVICE.h. FEach of these files has its own header,
telling some information to the user about the particular file because each of them has a
different role in the library.

6.2 GUI implementation

The graphical user interface of this application is an important part for users to make their
life easier when making the application more interactive. The most important parts of this
GUI will be described in this section. The whole GUI appearance can be seen in appendices
B.

Navigation

The most important part of a GUI is a navigation bar for orientation between pages. It is
implemented as a part of the template for other pages in file layouts.html. The navigation
bar used in the application is fully created using Bootstrap as all the other elements, such
as forms, buttons, and tables.

CAN planner

Figure 6.1: Navbar used in the application

29

10

11

Screens and elements

All the screens are located in folder templates. The screen is named relative to the content
they are showing. Each of the files uses jinja2 as a template engine. A simple usage of
jinja2 is displayed below.

<tbody>
{% for mess in messList %}
<tr>
{% for elem in mess %}
<td>
{{ elem }}
</td>
{/% endfor %}
</tr>
{% endfor %}
</tbody>

Listing 2: Usage of jinja2 from the application

Work with the database

Every user’s input configuration file and calculated message IDs are stored inside the
database. The usage is very simple because the chosen database completely fits all re-
quirements of the application. The database is capable of storing different types of data
without declaring it in advance, which is used for storing configuration files. For inserting
and querying data inside the database, two methods are used:

configName = request.form['configName']
confTextArea = request.form['configTextArea']

file = request.files['file']

#inserting the file to the database

inputFiles.insert_one({'configName' : configName,'file':file.read(), 'comment' : confTextArea})

Listing 3: Inserting data retieved from form to the database

record = analyzeDB.find_one({'configName' : session['configName']})
messCount = json.loads(record['messCount'])

filterCount = json.loads(record['filterCount'])

Listing 4: Retrieving data from database

30

6.3 Testing

The testing of any sort of application is very crucial in development. The process of testing
was ongoing throughout the development of the application from the start. The first thing
that was observed was the faultiness in creating the library. In the early stages of the
development, this part was the most important because not every approach invented was
understood by other colleagues in the team, but after a few versions of the library, both ways
have crossed, and the functioning library was born. This library created by this program
was also part of the team TU Brno Racing formula ED1 on race in the Czech Republic in
2021, but at this stage, the application was working without the graphical user interface
that was created later.

The GUI was then also tested by team members. Five team members were randomly
selected from the electric powertrain section and were given several tasks to accomplish.
Tasks for testing:

e Create an account and login into the application

e Create a new configuration from the given file

e Download the created library

e Check how many filters are used in this configuration
e Create new configuration from other given file

e Download the library from the previous configuration

During these tasks, the user’s work with the application was observed, focusing on the
clarity of the graphical interface design. Task speeds were also observed, and whether
the users got stuck on any of the tasks. At the end of the testing, users received a short
questionnaire regarding the user interface.

Results of the testing

After completing the testing, it was determined which tasks were the biggest problem and
whether the users were able to quickly orient themselves in the application. Regarding
the proper communication with the team, while developing the graphical user interface, no
testing attendant showed any sights of hesitation following the tasks.

31

Chapter 7

Conclusion

This work aimed to design and implement an application for creating the configuration of
messages and device filters in the CAN-bus for school research team.

At the beginning, I studied the current configuration creation solution in the team. I
then started looking for various commercial solutions for the problem. However, due to the
very detailed specification of the system used, it was impossible to find a system that would
meet user requirements. For successful implementation, I also had to choose several of the
many technologies for web application development and study them.

The application’s design is based on the definition of the problem that needs to be
performed to define user needs. Based on this information, it was possible to design an
algorithm to map and filter CAN-bus messages with a user interface that meets these
needs.

The application was subsequently created using the Flask framework in the Python
programming language and the Visual Studio Code development environment. I gained
the basis of the correct design using various architectures that can be easily and clearly
expanded from the study of technology in the design part of the thesis.

During the creation of this work, I encountered several problems, especially while ob-
taining requests from different users of the proposed application. The requirements were
very fragmented and difficult to meet all. However, after a joint consultation, we found a
consensus that the application could undergo the next phase, implementation. I did not
encounter any unsolvable problem during the implementation, so the development could
be shifted to the last stage. The last phase was testing, which worked very well due to
well-defined user requirements.

From the point of view of the future of the application, it is possible to extend the
creation of various independent configurations in the case of using several CAN-bus buses
together with the addition of several analytical tools.

Another possible extension would be the integration of PCAN-View into the application.
But at this time, it would be redundant because it has already been implemented as a part
of another bachelor thesis by a team member.

The result of this bachelor thesis is a functional application that is tested and run on a
real device.

32

Bibliography

1]

Controller Area Network (CAN) Overview [online]. [cit. 2021-01-15]. Available at:
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network-

—can--overview.html.

History of CAN technology [online]. [cit. 2022-01-15]. Available at:
https://www.can-cia.org/can-knowledge/can/can-history/.

STM32F7 - BtCAN. https://www.st.com/content/ccc/resource/training/technical/
product_training/group0/49/99/d2/9b/67/7a/48/c0/STM32F7_Peripheral_bxCAN/
files/STM32F7_Peripheral_bxCAN.pdf/jcr:
content/translations/en.STM32F7_Peripheral_bxCAN.pdf.

What is the Formula Student Germany competition? [online]. [cit. 2022-05-05].
Available at: https://www.formulastudent.de/about/concept/.

AGGARWAL, S. Flask Framework Cookbook - Second Edition. July 2019. ISBN
1789951291.

CORRIGAN, S. Introduction to the Controller Area Network (CAN). 2016.

CURIE, D., JAISON, J., YADAV, J. and F1oNA, J. Analysis on Web Frameworks.
Journal of Physics: Conference Series. november 2019, vol. 1362, p. 012114. DOI:
10.1088/1742-6596/1362,/1,/012114.

Do, D. H. Automated tool for CAN bus message mapping [online]. Prague, 2019.
Bachelor’s thesis. Faculty of information technology CTU in Prague. Available at:
https://dspace.cvut.cz/bitstream/handle/10467/88148/F8-BP-2020-Do-Duc’20Huy-
thesis.pdf.

ELroM, E. CSS, Bootstrap, Responsive Design. In:. December 2016, p. 131-164.
DOI: 10.1007/978-1-4842-2044-3_6. ISBN 978-1-4842-2043-6.

GAy, W. CAN Bus. In:. June 2018, p. 317-331. DOI:
10.1007/978-1-4842-3624-6__18. ISBN 978-1-4842-3623-9.

Inc, R. E. A. Using CAN Bus Serial Communications in Space Flight Applications.
white paper. 2018.

ROBINSON, A. CAN Bus Cleared for Space Flight. Design World, 13. 2016 [cit.
2022-01-10]. Available at:
https://www.designworldonline.com/can-bus-cleared-for-space-flight/.

33

https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/49/99/d2/9b/67/7a/48/c0/STM32F7_Peripheral_bxCAN/files/STM32F7_Peripheral_bxCAN.pdf/jcr:content/translations/en.STM32F7_Peripheral_bxCAN.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/49/99/d2/9b/67/7a/48/c0/STM32F7_Peripheral_bxCAN/files/STM32F7_Peripheral_bxCAN.pdf/jcr:content/translations/en.STM32F7_Peripheral_bxCAN.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/49/99/d2/9b/67/7a/48/c0/STM32F7_Peripheral_bxCAN/files/STM32F7_Peripheral_bxCAN.pdf/jcr:content/translations/en.STM32F7_Peripheral_bxCAN.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/49/99/d2/9b/67/7a/48/c0/STM32F7_Peripheral_bxCAN/files/STM32F7_Peripheral_bxCAN.pdf/jcr:content/translations/en.STM32F7_Peripheral_bxCAN.pdf
https://www.formulastudent.de/about/concept/
https://dspace.cvut.cz/bitstream/handle/10467/88148/F8-BP-2020-Do-Duc%20Huy-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/88148/F8-BP-2020-Do-Duc%20Huy-thesis.pdf
https://www.designworldonline.com/can-bus-cleared-for-space-flight/

[13] TAYLOR, D. What is MongoDB? Introduction, Architecture, Features Example.
Guru99. [cit. 2022-01-15]. Available at: https://www.guru99.com/what-is-mongodb.html.

[14] YADAV, A. Bus Arbitration and Message Identification. EmbedClogic. [cit. 2022-01-15].
Available at: https://embedclogic.com/can-protocol-protocol-to-broadcast-
message-on-a-network/can-bus-arbitration-and-message-identification/.

34

https://www.guru99.com/what-is-mongodb.html
https://embedclogic.com/can-protocol-protocol-to-broadcast-message-on-a-network/can-bus-arbitration-and-message-identification/
https://embedclogic.com/can-protocol-protocol-to-broadcast-message-on-a-network/can-bus-arbitration-and-message-identification/

Appendix A

Contents of the flash drive

The flash drive contents:
e source codes of the application with documentation
o text of the bachelor thesis in PDF format
e source codes of bachelor thesis texts in IATEX format

e README.txt file, with manual to the application

35

Appendix B

G UI screens

Create an Account

Name Lo g I n
= Name
Email
Password
Password
®

Figure B.1: Register and login

36

Fill in this form to create
configuration

Mame the configuration
configName

Add comment to configuration

Input file

Choose File Mo file chosen

Figure B.2: Form for creating the configuration

37

Configuration name : test2-new

ID number priority area i transmit receive
Star_button 1 1 uints 1 STEERING VCU
Reset 2 1 uints 1 Datalog ESP
Reset 2 1 uints 1 Datalog HV_Box
Reset 2 1 uint8 1 Datalog Pump
Reset 2 1 uints 1 Datalog Steering
Reset 2 1 uints 1 Datalog VCU
VCU_status 501 2 uints 1 VCU Datalog
P=dal_status 502 2 uints 1 VCU Datalog
NonCrit_error 1000 3 AMS uint1é 2 VCU Datalcg
TS_on 1001 3 uints 1 VCU Datalog
Battery_current 1500 4 AMS int16 2 VCU Datalog
Battery_voltage 1501 4 AMS uint16 2 VCU Datalog

Figure B.3: Table of all messages from the configuration

Configuration Name Author Date Comment

test userl 2022-05-09 Configuration for only testing
test2 userl 2022-05-09 new testing configuration
test3 user? 2022-05-09 new testing configuration

Figure B.4: Recent configurations

38

Device name Total messages Filter usage

VCU 14 5724
HV_Box 4 2/24
Steering 5 2/ 24
Pump 3 1/24
ESP 5 2/ 24
Datalog 21 6/ 24

Figure B.5: Analysis of the filters

39

	Introduction
	Theoretical introduction
	Formula Student
	Can Bus introduction
	History
	CAN protocol standards
	Bus access and arbitration
	CAN bus applications
	CAN bus benefits over other solutions

	CAN-bus usage at TU Brno Racing
	Communication structure in the vehicle
	Message identification and filters
	Block diagram of CAN on used microcontrollers
	Library definition
	Current solution for creating identifiers and filters
	Calculation of filters

	Mapping analysis and design
	Problem definition
	System requirements from TU Brno Racing
	Mapping algorithm
	Cluster sizes explanation
	Filter assignment
	Input data for the configuration

	GUI design
	Use case
	Web framework
	Mongo DB

	Implementation and testing
	Mapping and filtering
	GUI implementation
	Testing

	Conclusion
	Bibliography
	Contents of the flash drive
	GUI screens

