
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ASYNCHRONOUS MQTT CLIENT FOR EMBEDDED
DEVICES RUNNING ON DROGUE IOT FIRMWARE
ASYNCHRONNÍ KLIENTSKÁ KNIHOVNA PRO VESTAVNÁ ZAŘÍZENÍ PROVOZUJÍCÍ DROGUE-

IOT FIRMWARE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ BABEC
AUTOR PRÁCE

SUPERVISOR Ing. JAN PLUSKAL
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Babec Ondřej
Programme: Information Technology
Title: Asynchronous MQTT Client Library for Embedded Devices Running on

Drogue-IoT Firmware
Category: Embedded Systems
Assignment:

1. Study the basic principles of the Drogue-IoT, MQTT protocol, Rust programming language
and Embassy asynchronous library for embedded devices.

2. Design Embassy based MQTT asynchronous client library (fully supporting MQTT v5) in
Rust programming language for embedded devices. Respect all constraints introduced by
intended usage on these devices enforced by the Drogue-IoT.

3. Implement the MQTT library designed in point 2.
4. Design, implement and evaluate functional and performance tests of your solution.
5. In conclusion, evaluate the solution on the embedded device chosen by the supervisor,

propose possible improvements for the created implementation, and describe usability and
implementation difficulty for such improvement.

Recommended literature:
Drogue IoT [online]. 2020. Available at: https://book.drogue.io/drogue-book/index.html
Banks, A., Briggs, E., Borgendale, K. and Gupta, R. MQTT Version 5.0 [online]. March 2019.
Available at: https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.
Rust RFC 2394 [online]. 2018. Available at: https://rust-
lang.github.io/rfcs/2394-async_await.html.
Rust RFC 2592 [online]. 2018. Available at: https://rust-lang.github.io/rfcs/2592-futures.html.
Troutwine, B.Hands-On Concurrency with Rust: Confidently Build Memory-safe,Parallel, and
Efficient Software in Rust. Packt Publishing, 2018. ISBN9781788399975

Requirements for the first semester:
Completed points 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Pluskal Jan, Ing.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: October 19, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24465/2021/xbabec00 Page 1/1

Abstract
IoT is a branch of informatics that is massively expanding in the last few years. In today’s
world, IoT is all around us. Smart bulbs, household accessories, or also thousands of
devices in industrial buildings all are part of the IoT. There are many projects that allow
the integration of IoT devices and cloud processing of their messages. One of these projects
is Drogue-IoT. This open-source project allows creating the enterprise cloud solutions but
also firmware for the embedded devices. One limitation of this project is the unavailability
of the client library for the MQTT messaging protocol. Exactly this library is the main
theme of this paper. Work designs and implements Rust native MQTT client for embedded
devices, which currently does not exist. The solution is shown with the built device. The
final report evaluates the implementation of the client and includes possible improvements
in implementation.

Abstrakt
IoT je odvětví informatiky, které v posledních letech masivně expanduje. V dnešním světě
je IoT všude kolem nás. Jsou to chytré žárovky a doplňky do domácnosti, ale také tisíce
zařízení v průmyslových objektech. Nedílnou součástí IoT jsou protokoly pro zasílání zpráv,
které umožňují komunikaci komunikaci s těmito zařízeními. Dnes již existuje mnoho pro-
jektů, které umoňují integraci IoT zařízení a následné cloudové zpracování jejich zpráv.
Jedním z těchto projektů je Drogue-IoT. Tento open-source projekt umožňuje vytvářet
firemní cloudové řešení, ale také firmware pro vestavné zařízení. Jednou z limitací tohoto
projektu je nepřítomnost klientské aplikace podporující zasílání zpráv pomocí protokolu
MQTT. Právě tato klientská aplikace je tématem této práce. Práce zahrnuje návrh a im-
plementaci klienta protokolu MQTT pro vestavěná zařízení v jazyce Rust, který doposud
neexistuje. Řešení je demonstrováno pomocí sestrojeného zařízení. Výsledná práce vyhod-
nocuje implementaci klienta a obsahuje návrhy na budoucí vylepšení práce.

Keywords
MQTT, Embedded, Rust, Async, IoT

Klíčová slova
MQTT, Embedded, Rust, Async, IoT

Reference
BABEC, Ondřej. Asynchronous MQTT client for embedded devices running on Drogue
IoT firmware. Brno, 2022. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Ing. Jan Pluskal

Rozšířený abstrakt
Internet věcí (IoT) je velké aktuální téma, slyšíme to všude okolo nás. U televizí, ledniček

dokonce i sporáků v dnešní době najdeme nějaké klíčové slovo, které nás odkazuje na
informaci, že zařízení je možné zapojit do chytré domácnosti. Mimo tyto domácí spotřebiče
jsou to, ale i průmysloví roboti a jiné senzory. Všechna tato zařízení potřebují ke svému
fungování jeden nejvíce podstatný mechanismus. Tímto mechanismem jsou komunikační
protokoly, bez kterých by nemohlo žádné z IoT zařízení komunikovat s okolním světem. Mezi
nejpoužívanější protokoly v tomto odvětví patří HTTP, CoAP a MQTT. Každý z protokolů
má svá specifika, jako je zabezpečení, náročnost zpracování a další. Protokol MQTT, který
je jedním z hlavních prvků této práce je navržen jako velmi efektivní a zároveň nenáročný
na hardwarové vybavení.

Mimo komunikační protokoly jsou jedním z velice důležitých prvků IoT zařízení také
programovací jazyky, pomocí kterých jsou aplikace pro vestavná IoT zařízení vytvořeny.
Každý jazyk má svoje výhody, či nevýhody. Ze starších jazyků se v tomto světě setkáme
především s jazyky jako jsou C a C++. Proč zrovna tyto jazyky má poměrně jasné opod-
statnění. Jsou to jedny z mála jazyků, které mají možnost přistupovat přímo k hardwarové
výbavě počítače. Většina vysoko úrovňových jazyků jako Java takovou funkcionalitu nen-
abízejí, a proto je takřka nemožné v nich vestavné aplikace vytvářet. Jedním z nových hráčů
na tomto poli je programovací jazyk Rust. Tento programovací jazyk je tvořen obrovskou
open-source komunitou a nabízí přímý přístup k hardware, což ve spojení s jeho rychlostí a
spolehlivostí umožňuje vývoj velmi efektivních aplikací pro (nejen) vestavná zařízení. Právě
tento jazyk je hlavním implementačním jazykem této bakalářské práce.

Cílem této práce je tedy kombinace obou dříve zmíněných technologií. Přesněji jde
o vytvoření asynchronní MQTT klientské knihovny pro vestavná zařízení provozující Drogue-
device firmware v jazyce Rust. Klient by měl podporovat MQTT verze 5 a umožňovat pří-
padné rozšíření pro starší standard MQTT verze 3. Proč MQTT klient v Rustu? Odpověď
na tuto otázku je velice jednoduchá, protože žádný takový klient zatím neexistuje. Jeden
z hlavních důvodů, proč zatím žádná implementace neexistuje by mohl být samotný stan-
dard MQTT verze 5. Tento standard udává, že většina kontrolních paketů tohoto protokolu
obsahuje části, jejichž délka je variabilní. Variabilita je poměrně velký problém v Rustu pro
vestavěná zařízení, jelikož na vestavných zařízeních není žádný operační systém, nemůžeme
využít dynamické alokování paměti. Tato překážka vede k nutnosti využití pokročilých
možností jazyka Rust, jako jsou konstantní generické argumenty, či explicitní anotace délky
života jednotlivých proměnných.

Vývoj klientské knihovny byl rozdělen do třech základních částí, a to návrh, imple-
mentace a testování/evaluace. Návrh takové klientské knihovny je velmi problematický,
poněvadž každé vestavné zařízení je vybaveno zcela rozdílným hardwarovým vybavením,
bylo nutné návrh vytvořit tak, aby umožňoval co největší konfigurovatelnost chování klienta
a jeho využití hardwaru. Zároveň bylo nutné udržet rovnováhu mezi flexibilitou konfigu-
race a její složitostí. Součástí návrhu vznikla také omezení, která bude nutné pří výsledném
použití knihovny respektovat. Tato omezení jsou z pravidla určena zamýšleným použitím
dané knihovny. Implementace zcela respektuje návrh klienta a jejím výsledkem je tedy
zcela funkční MQTT klient podporující standard MQTT verze 5. Poslední částí vývoje je
testování a vyhodnocení. V rámci tohoto kroku vzniklo několik automatizovaných testo-
vacích sad, testy pro zajištění správné funkce klienta při zpracování velkého množství zpráv,
aplikace sloužící pro sběr výkonnostních metrik a nakonec demonstrační aplikace pro za-
řízení micro:bit V2 a Wi-Fi modul ESP8266 realizující reálný případ použití vytvořeného
klienta.

Výsledkem této práce je tedy kompletně funkční klientská knihovna. Tato klientská kni-
hovna je schopna pracovat pod velkým zatížením bez ztráty výkonu, či náznaku chybného
chování. Demonstrační aplikace zároveň ukázala, že využití knihovny je velice pohodlné a
nebude tedy přinášet budoucím uživatelům žádnou negativní zkušenost. Díky implementaci
síťového adaptéru pro Drogue device firmware je zároveň dosaženo velké podpory pro různé
vestavné zařízení a periferie, jako například STM32, Raspberry Pico, či senzory jako DHT22
a další. Drobným rozšíření knihovny oproti zadání práce je taktéž podpora standardních
zařízení pomocí asynchronní knihovny Tokio, která umožňuje použití knihovny na stan-
dardních zařízeních.

Asynchronous MQTT client for embedded devices
running on Drogue IoT firmware

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Jan Pluskal. The supplementary information was provided
by Ing. Jakub Stejskal (Redhat) and Siv. Ing. Ulf Lilleengen (Redhat). I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Ondřej Babec

May 8, 2022

Acknowledgements
I would like to thank my supervisors, Ing. Jan Pluskal from VUT FIT, and Ing. Jakub
Stejskal from Red Hat Czech s.r.o for guidance and providing valuable feedback. Also, I
would like to thank my technical consultant Siv. Ing. Ulf Lilleengen (Redhat) for his time
during the introduction and explanation of the Drogue-IoT project.

Contents

1 Introduction 5

2 Fundamentals of Drogue-IoT 7
2.1 Drogue-IoT . 7
2.2 Drogue-cloud . 8

2.2.1 Data plane . 9
2.2.2 Control plane . 10
2.2.3 Additional components . 12

2.3 Drogue-device . 13

3 Technology evaluation 15
3.1 MQTT protocol . 15

3.1.1 Packet format . 17
3.1.2 Control packets . 18
3.1.3 Quality of Service . 20

3.2 Rust and Embassy . 21
3.2.1 Memory management . 22
3.2.2 Concurrency . 22

4 Client design 25
4.1 Requirements . 25
4.2 Architecture design . 26
4.3 Use cases . 29

5 Implementation 31
5.1 Client implementation . 31
5.2 Network trait and adapters . 34
5.3 Libraries . 35
5.4 Rust package manager . 36

6 Testing 37
6.1 Test levels . 37
6.2 CI/CD . 41
6.3 Evaluation . 42

7 Conclusion 44

Bibliography 45

1

Appendices 47
List of Appendices . 48

A CD Content 49

B Commendation 52

C Excel@FIT 54

2

List of Figures

2.1 Framework architecture expressing Drogue-IoT layout and core components
of ecosystem. 8

2.2 Drogue-cloud simplified diagram which express device and applications com-
munication patterns with cloud through protocol endpoints and protocol
integrations. 8

2.3 Data plane communication schematics with example MQTT device protocol
and multiple customer protocols. 9

2.4 Control plane schema describing communication between Device registry and
services. 11

2.5 Example of actor model communication scheme using fifo queues as actor
inbox. 13

3.1 MQTT communication scheme expressing communication between security
sensor and multiplatform user application. 16

3.2 Quality of Service level 0 schematics . 20
3.3 Quality of Service level 1 schematics . 21
3.4 Quality of Service level 2 schematics . 21
3.5 Async scheme representing position of the client in the actor model that has

to be followed in order to use embassy async executor. 24

4.1 Diagram displays the class diagram of the MQTT Client library. 26
4.2 MQTT client sequence diagram that displays async communication of the

client. 28
4.3 Example use case of async MQTT client for embedded devices in Industry

4.0 environment. 29

6.1 Graph displaying trend in the performance results. 40
6.2 Schema displaying GitHub Actions workflows for client library. 41

B.1 Acknowledgment for the project received from Datamole company. 53

C.1 Excel paper . 55

3

List of Tables

3.1 Table displays format of the MQTT packet fixed header. 17

6.1 Performance metrics gathered during performance experiments. 39
6.2 Standard deviations for each specific action and message count 40

4

Chapter 1

Introduction

IoT (Internet of Things) is a big topic in the world of information technologies [7]. If we
speak about the IoT, we have to mention messaging as the fundamental base of every IoT
system. Messaging is the most crucial part of each IoT framework. The reason for it is
simple – devices need a way how to talk to each other and how they can accept commands
or different kinds of inputs. And for this, we have specific messaging protocols such as
MQTT, CoAP or AMQP [10]. These messaging protocols have various behaviors in areas
like security, speed, and reliability. MQTT is one of the oldest protocols, but it is still
one of the most used protocols because it is simple and builds on well known observer
design pattern [1, 6]. It means that MQTT can be used on devices with really less-powerful
processors, which are ideal for the IoT world. With Rust [12] entering the IoT playground
as a relatively new competitor, there are few messaging clients for embedded devices, and
the MQTT client is one of them. Drogue-device framework is also missing (at the time of
writing of this thesis) the implementation of the MQTT client written in Rust, which the
users could widely use. To remedy this inability is the primary motivation for this thesis.

Drogue IoT [4] is an open-source project that provides tools for creating complete enter-
prise IoT solutions. Drogue comprises two main parts — Drogue-device and Drogue-cloud.
Drogue-cloud is a cloud solution that allows users to connect devices and applications. The
cloud side has been built on the popular cloud technologies like Kafka, Keycloak, Cloud
events, and Kubernetes. Although until now we have spoken only about embedded devices
but Drogue-cloud is designed to allow users to integrate also larger machines running on
standard OS like Linux or Windows. Drogue-device operates directly on embedded devices.
It provides firmware with the most important drivers and tools, which are necessary for the
development of the Rust applications.

Implementing such a complex ecosystem as Drogue is not a simple job, especially in
a new programming language like Rust. The language is under active development, so
something perfectly right today does not have to be right tomorrow. Balancing on this edge
is difficult, and it is also one of the biggest challenges for development. This challenge is not
one-sided, and waiting for feature implementation in Rust can be even more challenging.

The main goal of this work is to create an open-source, asynchronous Rust native MQTT
client for embedded devices that do not exist yet. Yes, there are a couple of async clients
written in Rust, so the logical question would be: Why not use this existing client? These
clients use standard Rust libraries which are not supported in no-std Rust for embedded
devices. Everything is turning around Drogue IoT, but the client should not be just some
solution that can be used together with Drogue-device. It should be standalone and serve
a purpose for the whole Rust IoT community.

5

The thesis deals with several topics. In the first two chapters, you find a deeper de-
scription of Drogue fundamentals and designs. The following two chapters outline the
implementation and design of the MQTT client and evaluation device. The last part of
the thesis is focused mainly on the evaluation. Evaluation includes the realization of the
device designed in the third chapter, and also a conclusion. The conclusion contains all
the positives and negatives of the current implementation together with implementation
improvements.

6

Chapter 2

Fundamentals of Drogue-IoT

This chapter goes through the fundamentals of the toolset Drogue-IoT, which is a base
use-case for MQTT client designed in Chapter 4. The Drogue-IoT project provides a set of
tools for building an enterprise IoT solution. The project is separated into two main parts,
Drogue-cloud and Drogue-device.

Drogue-cloud is a toolset that allows the creation Drogue-IoT cloud that connects (em-
bedded) devices with enterprise applications. Cloud schema is described in two layers, the
Data plane and the Control plane described later in the chapter.

Drogue-device is an async open-source framework that allows building embedded appli-
cations in Rust. The framework is built on top of the actor model for concurrent applica-
tions. Drogue-device supports several microcontrollers specified at the end of the chapter
and also drivers for commonly used peripherals.

2.1 Drogue-IoT
Drogue-IoT project separates devices, such as sensors or actuators, from the cloud side.
Cloud side called Drogue-cloud combines connectivity layer and device management ser-
vices. Device side is called Drogue-device.

As you can see in Figure 2.1 these two sides are connected by protocol endpoints.
These endpoints provide mapping between device messaging protocol and Cloud Events1.
Then asynchronous processing starts on the cloud side and when the processing is done,
customer’s cloud applications can consume results.

The cloud side is designed as a service so user should have everything prepared on
demand. If you imagine a potential user of this project, he does not care about what is going
on somewhere on the cloud. He wants to plug-in an application into the cloud, specify device
endpoint and that should be it. That’s exactly what Drogue allows you. Drogue is built
using Rust programming language. Rust allows developers to avoid memory corruption and
undefined behaviors with only a little effort. These, together with its speed, are basically
the most important attributes for software that is running on embedded devices.

1Specification for describing data in one common way for all the formats. More can be found: https:
//cloudevents.io/

7

https://cloudevents.io/
https://cloudevents.io/

	 Drogue device

	 	 Kubernetes

	 Drogue cloud

 Protocol endpoints

MQTT

CoAP

HTTP

 Cloud events

 Customer applications

Publish

Subscribe
CoAP

Figure 2.1: Framework architecture expressing Drogue-IoT layout and core components of
ecosystem.

2.2 Drogue-cloud
One of the main purposes of the Drogue-cloud is connecting devices and applications dis-
played in Figure 2.2. Devices need a way how to speak with the application and the same
thing reversed, the application needs a way how to command devices. This part of the
Drogue-cloud is called Data plane.

The second part that is less important but maybe even more complex is called Control
plane. Both parts are described with more details in Subsections 2.2.1 and 2.2.2. When we
say the word Control we usually speak about controlling device which includes some kind
of security and that is exactly what Control plane does.

	 Drogue cloud
 Drogue devices

Consume

Command

Configure
Publish

Subscribe

 Customer applications

Figure 2.2: Drogue-cloud simplified diagram which express device and applications com-
munication patterns with cloud through protocol endpoints and protocol integrations.

With the gathered information, you are for sure speculating if the Drogue-cloud is
something different from a simple messaging broker. You could even use a single message
broker that implements all protocols, like ActiveMQ which implements at least HTTP

8

and MQTT. However, it will still be only message broker. Drogue extends the broker
functionality by very specific IoT functionalities like over-the-air firmware updates or device
specific authentication.

2.2.1 Data plane

Data plane serves mainly for a connection. An ideal situation with IoT cloud presented in
Figure 2.3 would be the user application supports just one messaging protocol in order to
receive or send messages to devices. Drogue provides, let’s say, a normalization layer to
which the user application connects.

This normalization layer provides multiple APIs on which applications can consume and
send messages. Drogue is internally using Cloud Events, which means that messages are
mapped through external interfaces (protocol endpoints) into Cloud Events format used by
internal components.

Drogue also allows applications to send messages to devices. Application can send
commands to the command endpoint (HTTP). These messages are mapped to the Cloud
Events format, processed by the Kafka, and forwarded to the subscribed device. This
principle, with both sides capable of sending and receiving, is in Drogue named Push and
Pull model.

	 	 Kubernetes

	 Drogue cloud

Cloud Events

	 Drogue device

	 Kafka

 Application

MQTT

 Application

HTTP

 Application

Cloud Events

Broker
1

Broker
2

Broker
N

Figure 2.3: Data plane communication schematics with example MQTT device protocol
and multiple customer protocols.

Devices are communicating through protocol endpoints. In this context, we rarely spoke
about a single microcontroller or any kind of sensor. In massive enterprise ecosystems, we
also speak about gateways or services.

Gateways act as proxy servers directly connected to the Drogue-cloud (protocol end-
points). Gateways usually enable the use of devices with a non-IP connection like

9

bluetooth and other low-energy transmissions. These servers are forwarding messages
from devices to protocol endpoints.

Services are basically gateways but on a larger scale. Services usually have their own
infrastructure and they can be even cloud-based. One of the most popular services
is probably TTN network 2.TTN network is a service for LoRaWAN which is heavily
used all around the world.

The protocol endpoints are device facing services. These services offer connectivity
to specific messaging protocols. Drogue-cloud currently supports three different protocol
endpoints:

• HTTP – Includes TTN version 3 endpoint

• CoAP – Does not include DTLS

• MQTT – The endpoint provides both MQTT version 5 and MQTT version 3 support.
However, it also sets requirements for the client implementation:

– Clean session flag in CONNECT packet must be always true
– Client must support at least username/password authentication

Aside just the sending messages from one side to another, Drogue-cloud also provides
solution for storing these messages. Message persistence is part of the Data plane layer.
When the message hits protocol endpoint and endpoint maps the message to Cloud events
format, it is forwarded to Kafka server which delivers the message to the business applica-
tion.

In terms of persistence, we can imagine Kafka as a ‘’buffer” for messages. Kafka can3

store messages on a disk until a message consumer is ready to consume. Kafka also offers
functionality to share the load of messages between multiple customer instances.

2.2.2 Control plane

The Control plane is here to control. In our environment, we speak mostly about security on
both device and application sides. With devices, it would be tough to implement any SSO4

service. For the application side is SSO an ideal solution. To make everything easier for
devices and applications, Drogue provides a solution named Device registry. It controls both
applications and devices authentication services. These are connected via device registry
component, as it is displayed in Figure 2.4.

2More information about TTN can be found at https://www.thethingsnetwork.org
3Kafka persistence is configurable by user in multiple ways. First is number of bytes which can be stored

for each topic and second is time for which are messages in topic stored.
4SSO (Single sign-on) is an authentication scheme that allows users/applications to sign on to an au-

thentication service just one time.

10

https://www.thethingsnetwork.org

	 Kubernetes

	 Drogue cloud

Customer applications

Device
auth

service

User auth
API

SSO

 Device registry

Authenticate

Change events

Manage devices

 Drogue device

Device
management

API

Figure 2.4: Control plane schema describing communication between Device registry and
services.

The device registry is basically an access control5 server for devices and applications.
It also stores the configuration for devices and applications. Configuration persistence is
provided by PostgresSQL compatible database6. With devices trying to access the requested
resource, you want to make it the easiest as possible to save energy and also a memory of
the device. Because of this, Drogue-cloud provides several types of technologies for access
control:

• pre-shared keys

• X.509 certificates
5When we speak about devices, we usually speak about both authentication and authorization.
6Type of database deployment is up to the user. It can be both clustered or non-clustered.

11

• simple username and password

For the configuration, Device registry provides several public and private services that
users can use to edit or read both device and application configuration. Device Auth Service
is the core device access control service. It allows internal components to authenticate and
authorize devices. This service is mostly used by protocol endpoints when the device wants
to publish or subscribe to the endpoint. Drogue does not forget about users. For user
access control system provides User Auth Service internal service which allows checking if
the user has an access to the target resource.

Both these services have a read-only access to the database. How the name of the
last service (Device) Management API suggests it is used mainly for the management of
information stored in the Device registry. Management API is the only one that has read-
write access to the database [4].

Drogue also implements a system named Change events. This system is built on top of
Knative7 eventing. Change events basically allows other components to react to change in
the Device registry. As an example, when a user makes a change by Management API, there
is an event created which notifies listeners like operators. These operators can eventually
react to a change by changing the device certificate or password.

Besides basic services of Device registry, Drogue-cloud also provides SSO. Authenti-
cation service will propagate information about currently authenticated sessions between
other components so these components do not have to authenticate users again. This ser-
vice is by default implemented by Keycloak however any other OpenID Connect service
can be used instead. Although SSO service is available for authentication only. User Auth
Service is still responsible for the authorization. This service is also commonly used with
external components described in Subsection 2.2.3.

2.2.3 Additional components

Additonal components are not in standard Drogue-cloud deployment but there is built-in
support for them so they can be deployed afterward. These components do not carry the
core functionality of the cloud stack.

Eclipse Ditto digital twins technology brings a new look into device management prob-
lematic. Basically, for each of local devices, there is a twin in the cloud. These
twins are synchronized with the actual device in terms of current information or, to
be exact, the latest sent and received information to/from the device. We can use
these pieces of information for many useful things, such as predicting the future based
on input data, connecting machine learning, and others. One of the currently used
implementations is Eclipse Ditto8, which also can be used in Drogue-cloud.

Grafana is open-source visualizing software9 that allows you to visualize a time-series
database. Grafana’s basic part is dashboard. Dashboards are configurable boards
which visualize data from the selected data source. There are several data sources,
most used are probably Prometheus, Graphite, and Influx. Grafana is not a part of
the Drogue-cloud, but the cloud provides all necessary services to adapt Grafana as
easy as possible, such as SSO.

7Knative is an open source project which provides components for deploying, running, and managing
serverless, cloud-native applications to Kubernetes

8More information about Ditto can be found: https://www.eclipse.org/ditto/
9Deeper grafana specification can be found: https://grafana.com/

12

https://www.eclipse.org/ditto/
https://grafana.com/

2.3 Drogue-device
Drogue-device is a memory and thread-safe async open-source framework for embedded de-
vices that allows creating applications using firmware that contains specific device drivers10

described in Section 2.3. Framework is based on Actor model from Subsection 2.3.

Actor model is a mathematical model of concurrent computation. In this model, the
actor is a universal primitive that performs all computations in the system. Each
actor has its own state [11], which can be changed only by the owner (actor to which
state belongs). Besides, a state actor needs to implement several fundamental rules:

• actors can communicate with each other only through messages
• in response to message actor can do only 3 reactions:

1. change its own state
2. send message to other actor
3. create a finite number of child actors

	 Actor 1

FIFO

 Computation
	 Actor 2

FIFO

 Computation

Notify

	 Actor 3

FIFO
Repeat

 Computation

Count

Figure 2.5: Example of actor model communication scheme using fifo queues as actor inbox.

Each actor in Drogue ecosystem is single-threaded thus able to process one message
at the time. As embedded processors are single thread, supporting multiple actors
require usage of async [5] and .await [14] functions.
In order to enable communication between actors, each actor has its own address
assigned during creation. This address is the entry point for all communication with
that actor. The address cannot be used to access actor directly, it can be used only for
sending messages. As Figure 2.5 shows, the next to address actors have also attached
async message channels (FIFO queue), that enable actors to receive messages during
computation.
Besides standard actor model, Drogue provides specific component Packages. Package
connects multiple actors into one semantic component. This component has shared
package state [4].

10Driver provides a software interface that allows embedded applications access hardware without knowing
exact details about it.

13

Drivers that Drogue-device contains10 are for commonly used sensors and extension
boards11. Besides that there are also several ways how to implement custom driver:

• a trait that defines API for driver to implement
• a driver that implements HAL12 or hardware directly
• an actor implementation for the driver

In order to create a new driver, the user has to implement one or more of the things
above. Each of these has a different outcome and is suitable for different situations.
Implementing a new trait makes sense only in the case that board has some very
specific behavior that is not yet created. This situation mostly comes only with new
boards. For most scenarios, a new driver’s implementation will be the best option.
The driver will implement existing traits that are already defined.
The use of the last option makes sense only when a peripheral or a board that requires
shared access by multiple parts of the system. Actor implementation secures that
there is always only one actor accessing the hardware at the time.

Supported devices are based on Embassy supported embedded devices. These devices
are:

• nRF52 – The nRF52 Series13 devices contain low-power Arm Cortex-M4 pro-
cessor

• STM32 – The STM32 family14 of 32-bit microcontrollers is based on the Arm
Cortex-M processor (large range from M0 to M7F).

• Raspberry Pi Pico – Based on RP204015 microcontroller, contains dual-core
Arm Cortex-M0+ processor.

Besides the support for the microcontrollers, Drogue also specifies support for specific
ESP8266 firmware. Drogue-device currently supports only the ESP8266 based Wi-Fi chips
that are running on AT firmware version 1.7.0.X.

11Led matrix display, RAK811 (LORA), HTS221, ESP8266, ESWiFi
12A Hardware Abstraction Layer which enables manipulation with hardware accessible from:

https://github.com/rust-embedded/embedded-hal.
13nRF52 specification can be found: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct

_nrf52%2Fstruct%2Fnrf52.html
14STM32 specification accesible from: https://www.st.com/en/microcontrollers-microprocessors/s

tm32-32-bit-arm-cortex-mcus.html
15Raspberry Pi Pico specifications can be found: https://www.raspberrypi.com/documentation/micro

controllers/raspberry-pi-pico.html

14

https://github.com/rust-embedded/embedded-hal
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

Chapter 3

Technology evaluation

This chapter aims to go through the main technologies that are necessary to create MQTT
client. First, there is a summary of the MQTT features, patterns, and attributes. The
MQTT is an OASIS standard messaging protocol. This chapter covers the MQTT version
5, which is the a current latest release of the protocol.

MQTT section provides the most necessary information, to understand the protocol
and be able to create a functional messaging client. These pieces of information are topics,
packet formats, packet types, and quality of service.

Besides the MQTT, the chapter also describes the technologies that are used to build
the client. Rust is a multi-paradigm programming language designed for high performance
and safety. Rust provides a way to build an application into an embedded environment
with a few limitations in memory and concurrency.

After the examination of the embedded Rust limitations, the chapter outlines a solution
for the concurrency on the embedded devices, Embassy. The embassy is an async executor
for the embedded devices.

3.1 MQTT protocol
As it is described in Chapter 1 MQTT (MQ Telemetry Transport)1 is a lightweight mes-
saging protocol that works on a well-known observer pattern. MQTT is built on top of
TCP protocol that ensures best effort delivery. MQTT was designed to be suitable for the
following typical IoT challenges [8]:

• be lightweight to make possible transmission high volumes of data without a huge
overhead

• distribute a small amount of data in high volumes

• make it possible to react to events whenever they happen (event-oriented architecture)

• offer security and privacy for all the data

• be able to provide scalability to distribute data to a huge amount of clients

• offer low power consumption. That basically means to keep size of message header to
bare minimum but still keeps all the functionality

1There is also MQTT branch that is working on top of the UDP protocol. More information about the
MQTT/UDP can be found: https://mqtt-udp.readthedocs.io/en/latest

15

https://mqtt-udp.readthedocs.io/en/latest

Currently, there are two versions of MQTT that are mostly being used, 3.1.1 and 5.0.
There are some major changes done between these two versions, but the basics of protocol
remain the same. MQTT OASIS standard version 3.1.1 [2] does not include negative
acknowledgments or extended authentication packets.

Both versions of the protocol need a server, also known as a broker. Broker stands for
Subject in the observer pattern [6]. Client (observer) can subscribe to topic (described in
Section 3.1) and also publish messages to some topics. After the message is published to
the topic broker, it notifies all subscribed clients with a new message.

Communication pattern

	 Broker

CONNACK

CONNECT

PUBLISH

/homeapp/main-door

SUBSCRIBE

/homeapp/#

PUBLISH

/homeapp/main-hall

 App main-hall

CONNACK

CONNECT

PUBLISH

/homeapp/main-hall

SUBSCRIBE
/homeapp/main-hall

 App main

 Motion sensor

 Camera 1
 CONNECT

CONNACK

PUBLISH /homeapp/main-door

CONNECT

CONNACK

PUBLISH /homeapp/main-hall

Figure 3.1: MQTT communication scheme expressing communication between security
sensor and multiplatform user application.

Standard MQTT communication always starts with CONNECT packet, which is sent
from the client to the broker. Then follows CONNACK packet which confirms or declines
connection, with MQTT 5.0 there is also Negative Acknowledgment present. Negative Ac-
knowledgment brings back information why was connection declined (we can imagine this
as return codes from standard command-line programs). If the connection is successfully
established, the client can continue sending various control packets [1].

Topics

Topics are message channels that allow MQTT to share messages between clients. Topics
are treated as a hierarchy (using slash as a separator) client can create any topic on which
will later publish messages. As we can see on communication pattern Section 3.1 topic can

16

look like /homeapp/cottage/side-door. The client can subscribe to one or more topics
using wildcards:

• + wildcard is used to subscribe on exact level on topic hierarchy. Client subscribed
to /homeapp/cottage/+ will get messages from all topics under cottage

• # wildcard is used to subscribe on remaining levels of hierarchy. Client subscribed
to /homeapp/# will get messages recursively from all topics lower in hierarchy (for
example /homeapp/cottage/side-door, /homeapp/cottage/main-door and
/homeapp/house/main-door)

3.1.1 Packet format

All MQTT packets are following the same design. The packet is separated into three parts:
Fixed header, Variable header, Payload. This dispensation is the same in MQTT version
3.1.1 and 5.0. In addition, version 5.0 includes the Negative Acknowledgment in the packet,
introduced in Section 3.1.

Byte/Bit 7 6 5 4 3 2 1 0
1 Type Reserved
2. . . 5 Remaining lenght

Table 3.1: Table displays format of the MQTT packet fixed header.

Fixed header as packet diagram Table 3.1 displays fixed header have the length from 2
to 5 bytes, where the first byte contains type and second remaining lenght of the
control packet. This is the same for both MQTT versions. Type of control packet is a
4 bit sequence which determines type of MQTT packet [1, p. 16]. Remaining lenght
is lenght of 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ℎ𝑒𝑎𝑑𝑒𝑟 + 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 encoded as Variable Byte Integer [1, p. 29].

Variable header each MQTT control packet has a different Variable header structure.
These headers usually carry information about the protocol, QoS, topic, flags, return
codes and user properties.
User properties are a list of values formatted as identifier and value combination.
Each property has a unique identifier and specific data type that is following (string,
byte, four byte integer or other). These properties mostly carry information that
is not strictly necessary for the communication (settings, extensions, specific user
information).

Payload the payload part of the packet must follow the length specified in Subsection 3.1.1.
Content of the payload is specific to packet type and content of the variable header.
The payload contains longest part of the packet, like authentication data, subscription
descriptors and the application message that is most important part of the payload.

Security

MQTT protocol provides mechanism for several security procedures:

• Authentication of users and devices. Authentication is part of CONNECT packet
and is implemented through a combination of username and password. Although

17

this could be sufficient for some of the applications, this can be extended via LDAP
or OAUTH connected to the broker. Where TLS is enabled, SSL certificates sent
from the client can be also used for client authentication.

• Authorization of access to server resources. The broker makes authorization itself
and MQTT, as the protocol, does not carry any other information than user identifi-
cation to support this. The broker usually implements some kind of RBAC 2 or ACL
to achieve authorization.

• Integrity of packets can be achieved with checksum, digital signature or MAC3 [9]
included in payload of PUBLISH packets.

• Privacy of MQTT Control Packets, there is no built-in mechanism for data privacy
in MQTT. Privacy of packets can be achieved via secure TLS connection. Otherwise
application can encrypt message but everything except payload will be still visible,
such as Topic introduced in Section 3.1.

3.1.2 Control packets

Control packets are a fundamental base of MQTT protocol. Each of the control packet
serves different purpose. Each packet can cause different actions on the broker/client once
it is received. Packets listed in this section are those which are absolutely necessary for the
client implementation.

CONNECT is used to connect the client to broker. This packet has to be always first in
the communication. This packet is also carries the most information. It contains a
unique field in the variable header carries connection flags. These flags specify how
will client establish the connection (presence of username and password). Besides
that, it also contains a specification of the Will behavior.If Will client enables sets
this flag, broker will send specified will message after client disconnects. Last and
most important is Clean Start flag. It ensures that broker will create a new user
session4 for the connection.
Rest of the packet is composed of Keep alive value, optional properties and payload.
Keep alive defines time window during which will connection be active. Once this
time runs out, broker can send disconnect packet to the client or just close the TCP
connection. None of these properties is required. Information which these properties
carry are mostly just supportive, not functional (with exceptions). The payload of
connect packet depends on the connection flags. It can contain username, password
or will message, based on specified flag combination.

CONNACK serves as an answer for the connection. This packet can flow only from the
broker to client, not in the opposite way. The most important section of this is the
reason code. Reason codes are in MQTT slang often called negative acknowledgments

PUBLISH is the core of the MQTT communication. Both client and broker can send
this packet. A client sends the publish packet in order to send a message towards

2Role-based access control is a method of regulating access to whatsoever resource or service based on
role of an individual users inside the organization.

3MAC – Message Authentication Code
4Sessions are used to store information about connected client. These information contain session expiry

timer, specific QoS information, subscriptions

18

MQTT broker. A broker sends publish packets to the subscribed clients once the
broker accepts a new message on subscribed topic. This packet contains three unique
segments: topic name, packet identifier and specific fixed header flags. Topic name
indicates topic to which will broker direct message.
Packet identifier is the specific attribute of the publish packet available only during
communication with QoS enabled. It gives both broker and client opportunity to send
acknowledge receipt. Fixed header of this packet contains three specific flags. DUP,
QoS, Retain, where DUP marks packet as re-delivery. QoS is a two bit flag which
indicates the expected level of QoS. If the client set Retain flag to packet and send
this packet to the broker, the broker has to store this message and send it to each
client that successfully subscribed to a specified topic.

PUBACK, PUBREC, PUBREL, and PUBCOMP serve only for acknowledgment
purposes. These follow exactly same the format. They contain packet identifier,
reason code and optional properties. Packet identifier identifies the packet which
is being acknowledged. Reason codes are slightly different for each of the packets.
Packets starting acknowledgment (PUBCOMP, PUBREC) have a diverse range
of reason codes. Including implementation specific error, invalid payload or invalid
topic name. PUBACK and PUBREL do not have this range of the reason codes,
they can carry just one reason code, packet identifier not found.

SUBSCRIBE packet completes the send and receive loop between broker and client.
Headers of the packet are same as, for example, PUBACK, only difference is in user
properties. The most valuable part of this packet is the payload. Payload contains
specific subscription descriptors. These contain packet filter and subscription options.
Packet filter is string (MQTT represents strings as length on first 2 Bytes followed by
UTF-8 encoded string) that contains single topic or wildcard.
Subscription options section is a bit array that represents the settings of the sub-
scription for the specific filter. It allows configuration of Retain, shared subscription
and QoS. Retain settings adjust rules (send immediately, send only if the subscription
does not exist, do not send) for sending retained messages to the subscribed client.
Besides that, there is also RAP(Retain as Published). If the client set this flag, it
means that messages forwarded by this subscription will carry Retain flag set to one.
Last flag is the expected level of Quality of Service. This level is does not have to be
final level. Critical is the QoS included in the response for subscribe packet.

SUBACK is the answer for the subscription packet, which has to be sent by the broker.
Headers of this packet do not carry any necessary information. Crucial part of this
packet is the payload. The payload is formed by a list of the subscribe reason codes.
Each entry of this list represents status for subscription descriptor sent by the client
in SUBSCRIBE packet. This reason codes differ slightly from other because there are
more positive acknowledgments. These positive codes have value from 0x00 to 0x02
and they specify granted QoS (from 0 to 2). Order of these codes have to match order
of subscription descriptors.

UNSUBSCRIBE allows the client to remove some or all topics from the subscription .
This packet is very similar to the subscribe one. Only difference is that payload of the
packet contains only a list of topic filters, not whole subscription descriptor (combina-
tion of filter and subscribe options). Response for the unsubscribe is the UNSUBACK.

19

UNSUBACK follow same scheme as the SUBACK. Headers are minimalistic and a
list of ordered reason codes composes the payload.

PINGREQ is something what could be called utility packet. These packets do not have
variable header, nor payload and remaining length is always to zero. Only purpose of
this packet is to ensure the broker that client who is sending the packet is still alive.
Clients are mostly using some timer that is restarted after each message and maximal
value of the timer is set to keep-alive value specified in the CONNECT packet. This
workflow ensures that broker cannot disconnect client because of timeout.

PINGRESP is an answer for the PINGREQ. It follows same scheme as the PINGREQ
packet. Purpose of this packet is to ensure the client that broker still exits. To-
gether with PINGREQ these packets also ensure both client and broker that network
connection is alive.

DISCONNECT ends the communication between broker and client. It can be sent in
both directions. Packet does not carry any payload. The most important part of the
packet is the reason code in the variable header. This reason code shows why client
or broker close connection.

3.1.3 Quality of Service

Quality of Service (QoS) is the level on which MQTT guarantees successful delivery of a
message to broker and all subscribed clients. MQTT provides three levels of QoS from
zero guarantees to double confirmation of a received packet. QoS is configured in each
PUBLISH packet (fixed header) by number from 0 to 2 in a bit sequence. The number 3
is reserved.

At most once delivery this level of QoS is identified by 0 and means that all messages
will be delivered according to network capabilities.

 Broker Client
PUBLISH

Figure 3.2: Quality of Service level 0 schematics

The receiver (broker, client) is not sending any confirmation MQTT packet to assure
the sender that message was delivered successfully. This approach is mainly beneficial
for use cases where is acceptable to lose some amount of data (usually there is a huge
send rate). All of the possible losses are covered only with TCP’s best effort.

At least once delivery is identified by 1. With this QoS receiver will send exactly one
PUBACK packet to confirm that message was delivered, which includes the packet
identifier of the received packet. This identifier will not be used by the sender until
PUBACK is received.

20

 Broker Client PUBLISH

PUBACK

Figure 3.3: Quality of Service level 1 schematics

This approach is ensuring that the packet will be delivered from sender to receiver
but does not guarantee that there will not be duplicates.

Exactly once delivery this is the highest QoS that MQTT can assure, and it’s identified
by 3. This level of QoS is guaranteed with 2 separate confirmation packets.

 Broker Client
PUBLISH

PUBREC

PUBREL

PUBCOMP

Figure 3.4: Quality of Service level 2 schematics

PUBLISH packet is confirmed via PUBREC packet. After confirmation of PUB-
LISH is completed, the sender must send PUBREL packet, including packet iden-
tifier, and wait for PUBCOMP packet. Sender cannot send packet again when re-
ceived PUBREC packet and cannot reuse packet identification until PUBCOMP
is received. Receiver must send the acknowledgment to any PUBLISH packet with
the same packet identification until is PUBREL received, but it must not cause any
duplicates of messages.
As it is clear from the name and description, the result of exactly-once delivery is
that message will be received by the receiver once and it is not possible that sending
create any duplicates of that message (as it is possible with at least once delivery).
Because of massive communication overhead, this level of QoS is rarely used by small
battery powered IoT devices.

3.2 Rust and Embassy
Rust is a statically typed programming language originally developed by Graydon Hoare
in 2005 [16]. Currently is Rust open-source that is mainly developed by Mozilla and other
developers from the open-source community.

The syntax is very similar to languages like C/C++. Rust is in most cases very similar
to both named languages but solves a couple of problems with which were developers
struggling: memory management Section 3.2.1 and concurrent programming Section 3.2.2.

Programming embedded applications in Rust can be achieved with a specific Rust en-
vironment named no_std. Using this environment variable, programmer throws away all
possibilities to use standard operating system library instead of that no_std Rust is using

21

core library. Core library delivers only a minimum of features that are necessary for basic
embedded development, features like heap allocation or input-output operations are not
included. These features and others can be imported from specific libraries if the platform
support them and developer see usage of them as benefit.

3.2.1 Memory management

The memory model in Rust is divided into multiple segments [12]:

• text – contains actual code to be executed in compiled binary

• data – place for static variables

• heap – segment used for store any dynamically allocated data. Dynamically allocated
data are those whose size is known only in run-time

• stack – used to hold any local variables and addresses of functions (size is known in
advance)

Fixed memory is used whenever is binding let either as values or as pointers to a heap[3,
p. 43], we can summarize this as everything except smart pointers5 and collections.
Any time when function or method is called stack frame6 is being created. These
values are removed in reverse order, such as LIFO. The main benefit of fixed allo-
cation is speed, allocation/de-allocation memory requires just one CPU instruction
(increasing/decreasing stack frame pointer). Each stack frame is accessible only until
the program leaves scope7 in which was stack frame created.

Dynamic memory is used to allocate variables that have to outlive scope and collections
on the stack. Reference to allocated data is stored in smart pointers[3, p. 55]. So far
everything sounds the same as C++ or C but the main difference is not in allocation
but in de-allocation. Rust uses semi-automatic mechanism for de-allocating based on
Rust ownership model. Memory is de-allocated if one of the following conditionals is
met:

• Box (the simplest form of heap allocation) goes out of scope
• reference count goes to zero

3.2.2 Concurrency

Rust’s concurrency model relies on native operation system threads [12], API delivering
necessary tooling to manage threads are delivered in standard library module std::thread.
When we use threads for concurrency, we need a way how to exchange information between
those threads. Rust offers two ways how to achieve this:

• Message exchange is mechanism to exchange information between threads. Rust
standard library provides implementation to create message channels8 to deliver this
approach.

5Data that must outlive the scope in which it is declared.
6Stack frame is a logical block or memory on a stack that stores context of a function.
7Section of a computer program where the binding is valid.
8We can image message channels as tunnels where sender stays on the entrance and receiver on the exit.

The message is passed to the tunnel where it is safe and no one can achieve this message until it reaches
exit where the receiver takes it.

22

• Shared state is the second valid approach. With this mechanism, threads are ac-
cessing the same allocated memory. We can recognize this approach from C where
threads are accessing one allocated memory and using locks to eliminate memory cor-
ruption. Rust is no different, shared memory is secured by Mutex locks9. Difference
between rust and C is that with Rust we have to respect the ownership model.
So we cannot move ownerships of mutex variable freely between threads. Luckily, Rust
provides yet another concurrency primitive named Atomic reference. This primitive
solves the problem by implementing synchronization mechanisms.

Threads are the base unit of concurrency in Rust standard library. For situations where
standard library cannot be used, Rust also provides building blocks for creating co-routines
or non-preemptive multitasking. These blocks are called async/await10.

Embassy

Embassy is an async executor which schedules a fixed number of tasks without the need
to allocate anything on heap [5]. Embassy is basically delivering a way how to write and
manage concurrent applications on embedded devices using async/await. Besides that
Embassy also provides HAL to enable access to peripherals such as UART, I2C, SPI and
others.

Executor is a function whose only purpose is to poll tasks. Executor stores the tasks in the
queue of tasks to poll. After the task is polled and it is completed successfully (there
is no other responsibility for a task to be satisfied) task is returning Poll::Ready and
the executor removes the task from the queue. If there is something more what task
needs to do and currently it is blocked (usually a task is .awaiting an async function)
task returns Poll:Pending then executor takes a task and put it at the end of the
queue.

Interrupts every input from a single button, keyboard, or other peripheral usually raises
interrupt. Embassy has built-in support for interrupts which fits into Embassy async
architecture. Let us imagine the situation when the executor polled the task which
then instructed the peripheral to do something and now it is waiting for a peripheral
interrupt. After the interrupt is received, the interrupt handler wakes the task and
notifies the executor which polls task again.

Applications working on top of the Embassy as the async executor, work in specific
workflow, displayed in Figure 3.5 from MQTT client perspective. This workflow is very
important. Based on knowledge of this workflow it is possible to create effective async
applications that are need access hardware. In case of this thesis we are talking about the
Drogue-device demonstration 6.3.

9More information about the mutex locks is accessible from: https://doc.rust-lang.org/std/sync/st
ruct.Mutex.html

10async/await are special pieces of Rust that enable asynchronous programming in one thread [13]

23

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html

1: Poll

6: Poll

Embassy executor

2: Await network output

Client send()

7: Await network input

Client receive()

Network driver
9: Awake

5: Notify

4: Awake

10: Notify

8: Interrupt 3: Interrupt

Interrupt handler

Figure 3.5: Async scheme representing position of the client in the actor model that has to
be followed in order to use embassy async executor.

Poll is the first step of the workflow, as it is described in Embassy Subsection 3.2.2. It
creates asynchronous running task which is on top of executors FIFO queue.

Await as the name suggests, this step is about waiting. After instructing network periph-
eral using network trait, the client has to wait until the operation is complete. If
the last operation failed, it can either repeat the failed operation or cancel the task.
Await goal is fulfilled after the network peripheral raises the interrupt signal.

Interrupt after an operation on the network peripheral is done, the interrupt signal is
raised, marking the operation as done. Interrupt handler than routes this signal to
driver and notify executor.

Awake the goal of awake is to ensure driver internal state is updated so the operation,
after which was the interrupt raised, can continue.

Notify the purpose of notify is to inform the executor that the task which was waiting is
now ready to continue (to be polled again).

24

Chapter 4

Client design

This chapter goes through the requirements for client design and implementation, client
design models, and expected use cases for the client. The requirements are derived from
the Drogue-IoT limitations for the clients and also the characteristics of the embedded
devices.

Client architecture sections contain two diagrams that describe how the implementation
of the client should behave, class and sequential diagram. The class diagram displays the
client structure composition. The sequential diagram complements the class diagram and
shows how the client communicates. This diagram also points to actions that are required
from the user to execute client methods.

The last topic described in the section is two expected use cases of the client, Industry
4.0 and Smart home. Both of the areas are a great fit for this client. However, the Industry
4.0 use case is the main area for the Drogue-IoT, so this example is described more deeply
in the chapter and also includes an example of such a use case.

4.1 Requirements
The client is going to be used in various situations on large scalce of the devices. The aim of
the requirements is to ensure that clients work effectively and follow all constraints derived
from expected use cases, platforms, and used technologies.

Functional requirements are derived from the thesis assignment and Drogue-IoT frame-
work. In summary, there are three functional requirements:

• support MQTT version 5 (possibility of extending support for version 3)
• support Quality of Service level 0 and 1
• enable username/password authentication (Drogue-cloud MQTT endpoint au-

thentication 2.2.1)

Non-functional requirements define constraints that affect how the system should per-
form.

• client memory utilization must be user configurable. While the MQTT packets
form the most client’s RAM usage, configurable maximal packet size ensures that
client will not be limited by hardware on Drogue-device supported devices 2.3

• library can sustain a load of at least 10000 messages with no side effects
• client does not increase hardware utilization over the run time

25

4.2 Architecture design
Class design of client displayed in Figure 4.1 respects all shortages of Rust:

• rust has no inheritance.

• specific memory model.

Besides the shortages from Rust, the client architecture is created around the fields with a
variable length that MQTT protocol allows (properties). Meaning that end-user controls
the number of these fields in the whole client library. In the end, design provides an API
that is easy to use and is sufficiently maintainable.

MQTTClient

+ connect()
+ publish()
+ subscribe()
+ disconnect()

ClientConfig

- qos
- keepAlive
- username
- password
- properties
- mqttVersion
- rngImplementation

<trait>
Packet

+ decode(buffer)
+ encode(buffer)
+ decodeFixedHeader(buffer)
+ decodeProperties(buffer)

<trait>
Network

+ send()
+ receive()

DrogueNetwork

+ send()
+ receive()

TokioNetwork

+ send()
+ receive()

ConcretePacket

- customAttribute
+ customMethod()

ConcretePacketN

- customAttribute
+ customMethod()

Figure 4.1: Diagram displays the class diagram of the MQTT Client library.

MQTTClient is the core of the client design. This structure should contain client actions
for both versions of the protocol. Having separate implementation for each protocol
version could be beneficial if the client would support over two versions of the protocol.
Otherwise it just complicates an API. Client structure carries all the protocol logic in
the client library. Client selects correct actions based on the configuration structure
ClientConfig.

26

ClientConfig is the structure that carries client configuration properties. Configuration
contains authentication information, version of the protocol, attributes of the connec-
tion (Quality of Service, session timeout) and list of properties. This list can contain
any property specified in the MQTT standards. Each control packet choose set of the
properties from the list and include correct subset to its own property list.

Packet trait specifies the interface that defines the set of the methods and default im-
plementations for specific implementations of the control packet structures. From
diagram shown in Figure 4.1, we can notice that encode and decode methods are
requesting buffer without specific size as parameter. Reason for that is the balance
between MQTT packet size and device RAM.
Library simply cannot allocate a locked amount of memory for each device, because
the size of MQTT packets can be up to 256 MB[1]. That is more memory than
most embedded boards have at disposal. This responsibility is handed over to the
user. User has to allocate buffer for messages, either statically or on the stack, and
hand over a reference to that buffer to client. This way will client always have the
information about the maximum size of the message.

Network trait it makes little sense to include many network drivers in the client. Each
driver would increase project maintenance needs. For this reason, the client model
includes a trait named Network. This trait is basically an interface that the user has
to implement with some network driver and pass it to the client in order to enable
network communication. Besides the trait, client includes two adapter implemen-
tations of this trait, DrogueNetwork and TokioNetwork. These adapters are based
on the adapter design pattern and they are transforming tokio and drogue network
implementation onto compatible network interface [6].

Sequential diagram of the client’s example usage is shown in Figure 4.2. The diagram
displays position of the receiver and publisher. Although it could look like synchronous
communication, the left and the right side of the diagram are time-dependent only from
publisher to subscriber. The diagram does not include the network driver position because
of the readability reasons. The flow displayed on this diagram proves that usage of the
client is simple and there is no necessary overhead.

27

Publisher Client Broker Client Subscriber

createConnection() createConnection()

connect()
sendPacket()

waitData()

response
result

send_message()
sendPacket()

waitData()

result
result

connect()
sendPacket()

waitData()

response
result

subscribe()
sendPacket()

waitData()

response
result

receive_m()
waitData()

response
message

disconnect()
sendPacket()

new(connection)

clientInst

new(connection)

clientInst

disconnect()
sendPacket()

closeConnection() closeConnection()

Figure 4.2: MQTT client sequence diagram that displays async communication of the client.

28

4.3 Use cases
When someone speaks about the word IoT, there are usually two main situations. The first
situation is industrial IoT, also known as Industry 4.0. The Industrial IoT environment is a
perfect fit for this MQTT client. Devices are reporting the state of the monitored machine
to some central server. And in some situations, accept commands that machines have to
execute, such as shut-down, start-up, and others.

 Industry 4.0
 factory /booth/global /assembly/global

 Spray booth Assembly line

HTTPS traffic

 Central office

/fan/1/state

 Central cloud

/fan/1/command

Figure 4.3: Example use case of async MQTT client for embedded devices in Industry 4.0
environment.

In Figure 4.3 we can see the typical use case of this MQTT client in industrial IoT.
There are various machines which are controlled via a built-in embedded controller. The
controller is monitoring the state of the device and periodically sends it to the unique topic
through the MQTT gateway on the central cloud stack. Figure 4.3 also express the model
situation which can be reached in industrial IoT.

In this example fan gets stuck because some system failure. Controller detects this fail-
ure and send it towards topic /fan/1/state. Machine is listening on topics /fan/1/comm-
and and /booth/global for commands. Cloud proceeds the message and sent towards the
company central office. Immediately after the central office receives failure, it is evaluated.
If machine failure affects other devices, the central office will send command stop to topic
/booth/global.

All controllers listening to that topic will immediately stop their machines to prevent
more damage. This principle is repeated after the machine is fixed. The state will be
sent towards the central office and evaluated. Based on the state central office will send a
command to start all devices through the global topic. Of course, machine failure does not

29

have to affect other devices. Here, all commands would be sent just to /fan/1/command
topic so other machines can continue working.

The second situation which IoT covers is a smart home. Smart home architecture is
not very different from an industrial one. The only small difference is that smart home
aims more for commands (lights on, gate open, and others) than monitoring (speaking
only about sensors or actuators that are supposed to send and receive some messages via
MQTT). The central stack is usually much smaller than the industrial one, and there is no
need to have something scalable.

Example usage of MQTT client in a smart home is mostly remote relay control such
as opening a gate to the house. The user takes a phone and clicks on the gate icon,
which usually results in some kind of command for the central server. Here, the server is
instructed to send the command to the gate controller. The command would be sent to the
unique topic where the gate controller is listening. The gate controller receives the message
(command) and opens the gate.

30

Chapter 5

Implementation

The implementation chapter goes through details of the client implementation. It summa-
rizes the project repository1 architecture together with the purpose of each module. Later
in the Client implementation section, there are descriptions and examples of the various
implementation obstacles and specific solutions for each of the repository modules.

After the client implementation section explains the core of the client implementation,
the next section explains the network trait and adapters implementation. The next section
also contains specific information which is necessary to extend the client by new network
implementation and also the description of existing adapters, Drogue and Tokio network
adapters.

The last two sections show details about used external libraries and Rust package man-
ager. As the client has to work on the no_std environment, the number of libraries that
can be used is significantly reduced. The libraries section goes through all the external li-
braries used for the implementation. The Rust package manager section points out specific
parts of the build configuration files.

5.1 Client implementation
Client implementation has been logically separated into several packages (modules):

• client

• encoding

• network

• utils

• tokio_net

These packages contain structures and traits that are having a common focus on func-
tionality. Some packages are mostly formed with structures and functions that are used
to manipulate buffer, memory and network. These packages and structures will be in
this chapter call utility structures and packages. All the packages are joined in client, see
Subsection 5.1, package.

1Repository can be found at:https://github.com/obabec/rust-mqtt

31

https://github.com/obabec/rust-mqtt

Utils package contains structures and types which are mostly focused on work with mem-
ory. The most significant parts of this package are BuffReader and BuffWriter. These
are used for reading and writing into buffer supplied as a parameter.
An interesting aspect of the code below 5.1 is the return type, which is used Re-
sult<(), BufferError>. That type is specific to Rust, methods return either success
with void or error with a variant of specific enumeration.

1 pub fn write_binary_ref(&mut self,
2 bin: &BinaryData<’a>)
3 -> Result<(), BufferError> {
4 self.write_u16(bin.len)?;
5

6 return self.insert_ref(bin);
7 }
8

Listing 5.1: Example client code displaying error delegation.

That is interesting, but what is even more teasing is operator ?. This operator
is bound to the Result type. If the result is success operator unwraps the value
(void in this case) otherwise it takes an error and returns it immediately from the
method/function.

Encoding package contains Decoder and Encoder for variable byte integer, which is de-
scribed in MQTT version 5 OASIS standard [1]. Error delegation in this package
works same way as previous package only this time there is a use of special type
VariableByteInteger that is basically type alias as we know from other languages
like C or C++.

Packet as Figure 3.1 shows, MQTT provides various control packets. These packets have
to be mapped in a protocol to ensure communication functionality. This mapping
is stored right in this package. There is a public trait Packet which contains a
declaration of all methods which have to be implemented for specific packet types
and contains a default implementation for common features which are the same for
all the packet types.
The rest of the structures for control types simply map packet binary form into Rust
structures. At this moment, there is a massive obstacle which has to be overcome.
MQTT version 5 enables users to include properties of variable lengths and amounts
in the packet.
With embedded platforms in combination with variable lenghts, there is a problem.
As it was said, there is no dynamic allocation, so there is no way how this could be
variable. We have to know the exact size during the compile-time. Rust provides a
solution named const generics2 that allows programmer to parameterize a structure
or method with a constant. In the manner of this client, it allows to parameterize
structures with the expected length of buffers that store fields of variable length. Let’s
get through this by the example of publish packet.

2Rust generics: https://rust-lang.github.io/rfcs/2000-const-generics.html

32

https://rust-lang.github.io/rfcs/2000-const-generics.html

1 use heapless::Vec;
2

3 pub struct PublishPacket
4 <’a, const MAX_PROPERTIES: usize> {
5 pub properties: Vec<Property<’a>,
6 MAX_PROPERTIES>,
7 pub message: Option<&’a [u8]>,
8 }
9

10 let pub = PublishPacket::<’b, 5>::new();
11

Listing 5.2: Code example explaining the Rust const generics usage in the client library.

In the Listing 5.2 is definition of PublishPacket structure which contains explicit
lifetime annotation ’a and const generic argument MAX_PROPERTIES. This
argument sets the size for heapless vec3 during the creation of packet structure so
variable length of properties is maintained and the user can decide how many prop-
erties will need with no limitations from the client-side.
Aside from mapping packets also contains implementations of trait methods. The
most crucial of these are decode and encode. These two methods are the core of
the whole client library. Decode methods decode incoming messages from raw format
into the usable structures with which can client manipulate. Encode method do exact
opposite. Without them client could not work with packets effectively.

Client contains an implementation of MQTT version 5 compatible client structure and
configuration structure ClientConfig in the client package. Client structure holds
config as an attribute and passes corresponding parts of config to each of the control
packets. Client contains implementations of Actions from the MQTT standard. The
most significant obstacle here is the hassle with lifetimes.

1 pub async fn connect_to_broker<’b>
2 (&’b mut self)
3 -> Result<(), ReasonCode> {
4

5 let mut connect =
6 ConnectPacket::<’b, 2, 0>::new();
7

8 if self.config.username_flag {
9 connect.add_username(

10 &self.config.username);
11 }
12 }
13

14 { client.connect_to_broker().await };
15 { client.send_message(topic, MSG).await };
16

Listing 5.3: Code example that displays problematic of the Rust borrow lifecycle.

We can see the example right in the code above. Method send_message also uses
one of the client’s attributes - config. Firstly client is passed as a mutable reference
with lifetime ’b which means the reference will live only in the method’s scope. Later

3Heapless crate: https://docs.rs/heapless/0.2.1/heapless/struct.Vec.html

33

https://docs.rs/heapless/0.2.1/heapless/struct.Vec.html

is attribute config.username as a reference handed to created connect packet (packet
lifetime is also set to ’b).
Once the method is done, all variables and references with lifetime ’b are destroyed
and they can be freely moved to another method. If the lifetime was not specified, the
client mutable reference could not be passed to the next method because the reference
in the packet would outlive the scope.

5.2 Network trait and adapters
Achieving compatibility with all the network drivers that exist is not possible. Client
provides implementation of two network adapters for both embedded and non-embedded
network drivers. These adapters are for tokio network and Drogue-device network driver.
In order to achieve maximum network driver compatibility, library also provides public
network traits:

• NetworkConnectionFactory which should be used to establish a connection

• NetworkConnection containing all methods necessary for working with TCP stack

Users with specific needs can adapt these traits onto their network driver and pass adapter
to the library. Both traits contains specific return types. These types are Rust futures.
Future traits represent an asynchronous computation that may eventually produce final
value [15] of the NetworkConnection or NetworkConnectionFactory actions (send,
recv, connect, close).

Tokio network adapter first network trait implementation is Tokio network. Implemen-
tation is stored in a package of the same name. This implementation adapts Tokio
network that is contained inside Tokio async library4 into providing network traits.
Network implementation in Tokio aims to support network driver for standard devices
(non-embedded).
Adapting such a network is not really great example for this project because network
running on standard devices rarely need to close connections because most of the
systems can close these themselves. Having this implementation means the client
offers full support for non-embedded devices using Tokio runtime. This network
adapter is not the primary goal of this thesis but having such implementation is
necessary to make whole development easier because debugging and testing are things
which are in most time very problematic and time-consuming on embedded devices.

Drogue network adapter second implementation of network traits is Drogue Network.
This adapter is located directly in Drogue GitHub repository5.
Having support for Drogue means that the library now supports all devices and Wi-Fi
chips that are supported in Drogue framework. This is much more beneficial than
having support for just one type of device, which is scope of this work.
Behavior of the Drogue Network differs totally from Tokio network because we have
to respect structure of Drogue-device firmware.

4Available from: https://tokio.rs/
5Drogue Network available from: https://github.com/drogue-iot/drogue-device/blob/0385306/de

vice/src/network/clients/mqtt.rs

34

https://tokio.rs/
https://github.com/drogue-iot/drogue-device/blob/0385306/device/src/network/clients/mqtt.rs
https://github.com/drogue-iot/drogue-device/blob/0385306/device/src/network/clients/mqtt.rs

1 pub struct DrogueNetwork<A>
2 where
3 A: TcpStack + Clone + ’static,
4 {
5 socket: Socket<A>,
6 }
7

Listing 5.4: DrogueNetwork implementation code displaying usage of actor model.

As the code above displays, instead of keeping some address to the socket network
structure is keeping the address of the socket as the TcpStack. This way client can
communicate with an actual TCP connection (open, send, receive, close).
Besides that standard connection, there is also an adapter implemented for the Drogue
TlsConnection. This implementation allows using TLS. Support for TLS is neces-
sary to allow connection with public Drogue-cloud. This adapter is later used in the
evaluation application 6.3 with Drogue-cloud sandbox.

5.3 Libraries
Libraries used during the implementation do not carry any main functionality but they are
making implementation, debugging, and even readability of code much more simple. All
libraries that are covered in this section are accessible from community crate registry6.

Regular build described in Section 5.4 does not include all the libraries. These libraries
are development libraries. These dependencies are in Rust, usually used for things such as
logging or other supportive features for developers.

Heapless library provides friendly data structures that do not require allocation on heap.
In, case of this project, we talk specifically about Vec. Small disadvantage which
is, of course, understandable is that this structure does not support any kind of
reallocation (meaning size of Vec given during initialization cannot be changed or
overridden afterwards). There is an enormous advantage. Having data structure such
as Vec without memory allocator means developer does not need to worry about usual
exceptions such as OOM (Out Of Memory).

Rand core rand core provides traits for random number generation. As some embedded
devices have special hardware support for generating random numbers (usually based
on hardware timers), we cannot provide strict implementation.
Client provides only very simple implementation of these traits (counting random
generator) but users can pass own Rng implementation to the client via configura-
tion visible in Section 4.1. Client uses the rng implementation to generate packet
identifiers.

Logging is necessary for every application and this project is no different. Although sup-
porting both embedded and non-embedded runners makes things more complicated.
Usually one logger implementation is enough but embedded devices need much more
specific approach which is not necessarily great fit for standard devices. Because
of that is the client using two different implementations for logging Defmt and Env
logger.

6Accessible from: www.crates.io

35

www.crates.io

Defmt library is a high performance logging library for embedded devices. Defmt pro-
vides limited formats of log messages and possibilities, which are absolutely sufficient
for the embedded world but not for standard environments. We would surely like
something more complex. Env logger fulfilled this requirement, basic logging library
for standard devices which allows configuration expected on non-embedded devices
such as logging to std-err or std-out, filtering specific logs and formatting log messages
to specific format including timestamps.
Client code provides module that automatically selects which logging implementation
it should use based on the Cargo features. This way is all decision making around
the logging hidden from end-user and makes API of the client more simple.

5.4 Rust package manager
Cargo is the package manager for Rust. Cargo is basically entry point to programs written
in Rust. It downloads dependencies, compiles program and makes distributable packages.
We could say that Cargo is very like Maven for Java language.

The main configuration for Cargo is located in Cargo.toml file in root of the MQTT
package. Four sections form standard configuration:

• package – contains information about crate which will be displayed in crate registry
once crate is released.

• dependencies – section contains dependencies (libraries) that will be linked to ap-
plication during every compilation. It will include these dependencies every time
regardless build features specification.

• dev-dependencies – part is very interesting. It contains dependencies which will be
used in tests, benchmarks or examples. It will not include these dependencies in final
build of the application.

• features – section creates parameters for the build. Each parameter (feature) con-
tains a list of optional dependencies, that are included in build once is the parameter
specified. In scope of this project, features are the key to compile on both embedded
and non-embedded environments.

36

Chapter 6

Testing

Aim of this chapter is to describe the testing process in the client repository. First, it
goes through all the test levels that are included in the client test suites. These levels
are: unit, integration, load and performance. Unit levels tests each component of the
client in an isolated environment. Integration level aims for the interaction between system
components. Load test level validates if the client can endure a high number of messages
with no side effects. Last, probably the biggest part of the testing is performance.

Performance testing is last part of the test levels section. This level of testing provides
metrics gathered during manual performance testing. This metrics, as it is described in the
end of the section, helped to find a significant performance issue.

Client’s library is open-source. That means anybody from the community can contribute
to the project and something has to keep things in best shape possible. System that helps to
achieve this is described in the second section of this chapter. CI/CD provides Continuous
Integration and Continuous Delivery functions. Continuous integration functions serves
the automation testing of the pull requests. Continuous delivery is going to be used for
automatic release of the library into public crate repository1. System that combines both
of the functions and is used in this repository is named GitHub actions.

Last part of this chapter is the evaluation of the client implementation. The evaluation
was done on the Micro::bit V2 micro controller connected to Adafruit Huzzah ESP8266
microchip that serves as Wi-Fi module. Evaluation displays that client can work asyn-
chronously on a single embedded device. Application contains publisher which sends the
messages towards the broker after button is pressed and async receiver that subscribes to
the topic and waits for the new messages. Once the message arrives, receiver displays it on
the LED matrix display.

6.1 Test levels
Currently there are three automated testing levels wit for this library:

• unit – main purpose of the tests on this level is to test functionality of each component
in an isolated environment. This test level together with integration level is automated
and run in the CI/CD 6.2.

1Available at: https://crates.io/

37

https://crates.io/

• integration – level is used to test interactions between the components of the system.
That is the main job of this level also in this library, but there are also scenarios
included which could be identified as end to end.

• load – includes tests that aim for behavior of the system under load (high message
rate).

Having all these different test levels ensures that all library requirements are met and there
should be minimal amount of bugs in the merged software. Tests included in these levels
all use non-embedded desktop runner. Possibilities how to run automated tests on some
embedded device are very limited and make little sense to this library. Reason for it is that
all problems which are specific to embedded are resource based (insufficient memory size)
and these are even harder to emulate.

Once we look at this problematic from a higher perspective, keeping the library and
Rust design in mind, we can assume that testing on embedded devices does not really bring
any higher advantage. If the code is compilable2 for embedded architecture and all tests
for all the functionalities completes successfully (on non-embedded). Only possible failures
are those made by user. As example would be a mismatch of configuration for the target
device hardware equipment.

Tests could run directly on the embedded devices. But there is second obstacle. Tests
for embedded devices would have to live in the Drogue-device repository as the network
driver is part of that project and Drogue-device. At the time of writing, does not provide
any technology which could run those tests.

Unit tests

Unit tests are a fundamental part of the product testing. Primary aim of these tests
is to confirm that each individual component works as expected. Isolated environment
accomplishes this, meaning tests can test all components separately and integration between
them does not affect functionality of the component.

In the manner of this library, unit tests provide confidence on most important parts
of the client. All these parts aim on memory, so we are speaking about buffers, vectors,
and streams. Testing functionalities of such components with unit tests is fundamental
because unexpected behavior of the component is usually hidden and takes a huge amount
of debugging in order to find and fix the failure in production code.

Standard Rust practice is to have the unit tests in the same module as the tested
component. For this thesis, unit tests are stored in separate module to achieve more
consistency and readability. Module containing unit tests is called tests/unit and it is
located inside the client library because of that these tests do not use dev-depenencies
introduced in Section 5.4.

Integration tests

Integration tests are testing interactions between system components. That means tests on
this level the test client library as one component. Usually we can find a huge amount of
test cases for this test level, but with MQTT version 5 is everything little more difficult.

2Compilation of the code to embedded platform secures one the the CI pipelines, more described in the
Section 6.2

38

This protocol version does not enforce exact reactions for most of the actions, so each broker
can behave differently.

This behavior is a problem and a big one. One of the test cases cover maximum packet
size property, but it simply cannot because, for example, Mosquitto broker simply kill TCP
connection with no Disconnect packet with some reason code. This behavior cannot be
properly tested because TCP connection could be closed because of totally different reason.

Because of problems described above, integration tests are simplified to most possible
configurations of the client, which output can be determined from OASIS standard. These
tests are executed against multiple MQTT broker open-source implementations (currently
Mosquitto and HiveMQ).

Following Rust best practices about testing integration, tests lay in specific module tests
that is in the client’s core next to Cargo.toml cargo configuration file. Tests in this module
are using dev-depenencies.

Load tests

These tests can be executed against whatever broker. These tests are not executed in
regular builds because results are highly depending on the environment (current state of
broker, network throughout). This tests level contains tests that tries if the client is working
without any side effects under load. Load used for these tests is from hundred to twenty
thousand messages.

During the development, load tests were executed a couple of times and results were
very satisfying. Client shown no kind of load problem. Tests with enabled quality of service
have zero failure percentage.

Performance testing

Performance testing is slightly specific than previous levels. Main point of the performance
testing for this library is to collect performance metrics about the behavior of the client.

Application for the performance scenario is in custom fork for drogue repository. Code
is prepared for micro:bit V2 board with ESP8266 Wi-Fi chip. Client is waiting for button
press then sends the desired amount of messages and also starts the hardware timer which
is measuring the time. Once application sends all the messages, it stops the timer and logs
the value of timer into the terminal window.

Message count Action QoS Time
(ms)

Stack
(KiB) Flash Static RAM

100

Send

0 2661

14.69

0xe91 0x20dc

1 7777

1000 0 37305
1 69568

10000 0 336551
1 715689

100
Receive 1

4385
0xefd4 0x21741000 44337

10000 451740

Table 6.1: Performance metrics gathered during performance experiments.

39

Performance experiments were executed on the standard home Wi-Fi network against
Hive-MQ broker. Network was not under any bigger load at the time of the execution. All
the experiments were executed 15 times. The results in Table 6.1 are arithmetic means of
the actual results. Standard deviation of the results differs from experiment to experiments.
All the standard deviations are recorded in Table 6.2.

Message count 100 1000 10000
Send QoS0 79.0 ms 183.9 ms 413.2 ms
Send QoS1 80.7 ms 250.3 ms 573.2 ms
Recv 85.9 ms 198.3 ms 440.1 ms

Table 6.2: Standard deviations for each specific action and message count

It is clearly visible that QoS is adding some time and deviations are higher. It is an
expected result because client relies much more on the broker and network 3.1.3. There is
one more metric, which is not included in the table and that is the number of CPU cycles.
This metric is not included because measurement library3 uses only u32 register to store
this count. With longer experiments, such as these which have been executed count will
overflow the register so metric would not be accurate.

Message count

Ti
m

e

0

200000

400000

600000

800000

0 2500 5000 7500 10000

Receice QoS0 Send Qos0 Send QoS1

Figure 6.1: Graph displaying trend in the performance results.

Overall, results are highly satisfying. The course of the experiments have proven that
library has a higher performance tan hardware which was available for the testing. When
we examine Plot 6.1 we can see that implementation reports ideal results. As time needed
for execution is growing linearly with the number of messages sent.

During the performance testing, there was also a significant issue found. The issue was
in the process of reading packet from network driver. This process discovered that part of

3Available from: https://docs.rs/cortex-m/0.5.1/cortex_m/peripheral/struct.DWT.html

40

https://docs.rs/cortex-m/0.5.1/cortex_m/peripheral/struct.DWT.html

the packet could be discarded and that later results in loss of whole next packet. Fixing
this issue4 brought also significant performance improvement (20-25 percent).

6.2 CI/CD
Main point of CI/CD, in this open-source library, is to help with control of the pull re-
quests from community and maintainers and automate the release process to public crate
repository, including storage for build archives, documentation and rest of the released
artifacts.

GitHub provides a perfect solution that is already integrated into GitHub itself and it
is free for open-source projects such as this one. GitHub Actions are configurable pipelines
running on container platform. There is also a public marketplace for already created steps.

Actions are composed from several key parts:

• workflow – a set of jobs that is triggered after the trigger condition is met (created
pull request, published release, and others)

• job – pipeline containing steps

• step – the individual part which can execute usual system commands

Workflows are configured via yaml files stored in .github folder in root of the repository.

	 Integration test workflow

	 Mosquitto

	 Unit test workflow

Rust

Rust Build Unit

tests

Mosqu
ittoBuild Int

tests

	 HiveMQ

Rust HiveMQBuild Int

tests

Figure 6.2: Schema displaying GitHub Actions workflows for client library.
4The issue was fixed in the commit: https://github.com/obabec/rust-mqtt/commit/0e7bdadf5

41

https://github.com/obabec/rust-mqtt/commit/0e7bdadf5

Figure 6.2 displays schema of workflows, jobs and steps used in this project. Each circle
represents on step in GitHub action job. To keep things simple default GitHub action steps
are omitted.

First workflow contains only one job. Job contains three steps installing specific Rust
tool chain, building project with default features (meaning with std) an execution of unit
tests. Second workflow is more complex and is composed of two jobs.

Jobs are almost the same, but there are different broker implementation deployed for
each job. Build in the integration test workflow is configured with embedded target without
default features, which assures that code is deployable on embedded devices.

Next to the CI workflows, there is one continuous delivery workflow. This workflow
ensures automatic releases into public crate repository5. This workflow starts once a new
release is created in GitHub. There are three steps in this job. The first job runs the unit
tests, just to ensure nothing has been broken by accident in the final code of the client. The
next step tries compilation to the embedded platform. The last step publishes the library
to the crate repository.

6.3 Evaluation
For the evaluation purposes, I have created demonstration application which will connect
Drogue-cloud with MQTT client6 and show the usage of this combination in the real world.
This application runs on the Micro::bit V2 and ESP8266 Wi-Fi chip.

Micro:bit V2

Micro:bit is a single board computer which is build on top of ARM Cortex-M4 nRF52
processor with clock speed of 64MHz and 128KB of RAM7.

Computing power and memory is definitely smaller than rest of the single board comput-
ers but micro:bit offers a big amount of built-in peripheral (led matrix, buttons, gyroscope,
and lot other).

Main reason for selecting micro:bit is size and also accessibility. For this board, there
is no need to get any other sensor or some other I/O device. It is a complete package.

ESP8266

ESP8266 is one of the most used Wi-Fi chips. These days, we usually cannot say that the
boards offering the Wi-Fi module are only Wi-Fi chips. Most of these ESP8266 boards, such
as NodeMCU, are completely independent micro controllers. However, Drogue firmware
currently does not allow to run on these micro controllers alone. This means we need some
firmware that will allow us to communicate with the Wi-Fi module.

Most of the ESP8266 boards include AT 8 firmware in order to allow communication
to Wi-Fi module alone. This is also the case for the ESP8266 used on demonstration
video. Evaluation device contains ESP8266 manufactured by Adafruit and is built on top
of ESP-12 module.

5Available at: https://crates.io/crates/rust-mqtt
6There is also second demo, running demonstration app with non-TLS connection and plain MQTT

broker. This video is accessible from: https://nextcloud.fit.vutbr.cz/s/zx27acoZHZ23Mt7
7Whole specs available at: https://all3dp.com/2/bbc-micro-bit-v2-review-specs/
8Firmware for the esp devices from the EspressIF. More information can be found: https://www.espre

ssif.com/en/products/sdks/esp-at/overview

42

https://crates.io/crates/rust-mqtt
https://nextcloud.fit.vutbr.cz/s/zx27acoZHZ23Mt7
https://all3dp.com/2/bbc-micro-bit-v2-review-specs/
https://www.espressif.com/en/products/sdks/esp-at/overview
https://www.espressif.com/en/products/sdks/esp-at/overview

Adafruit supplies the chips with firmware from manufacturer EspressIF (AT). However,
version of the firmware was not sufficient for Drogue-device. That results in flashing the
evaluation Wi-Fi chip with the AT firmware version 1.7.0.4 9.

Demonstation application

The whole code is aligned around the Actor model 2.5, which allows running and managing
asynchronous applications on one thread. Code is separated into two actors.

• Main – contains publisher functionality. First, there is a configuration of the board
and the following peripherals (Led Matrix and ESP8266 Wi-Fi chip). After that,
Drogue-device establishes the TLS and TCP connection. Receiver actor is spawned
with passed connection.
The main application loop follows. This loop contains asynchronous wait for the
trigger of button A. User press the button and MQTT client will send ”temp“: 42
json message to the specified application in the Drogue-cloud sandbox instance.

• Receiver – contains all configuration and logic of MQTT receiver. Once the client is
configured, it connects to the broker and subscribes to the specified command topic.
Then the main receiver loop starts. The client is waiting for a new MQTT message.
When the MQTT message arrives, it executes display function on the LED Matrix
driver with the payload of the MQTT message. The

Besides the code of the Rust demonstration application, there is also a script that will create
the echo on the cloud side. Meaning it will listen on the MQTT integration. Waiting for
the device MQTT message. Once the message arrives, it extracts message data and sends
the data to the command topic for the device.

This example represents the expected usage of the client and is displayed on the demon-
stration video10. Several client instances running on the same device with the possibility of
different configurations for all these instances.

9Available open source at: https://github.com/espressif/ESP8266_NONOS_SDK
10Accessible from: https://nextcloud.fit.vutbr.cz/s/n7GL2RtpCzAKxRL

43

https://github.com/espressif/ESP8266_NONOS_SDK
https://nextcloud.fit.vutbr.cz/s/n7GL2RtpCzAKxRL

Chapter 7

Conclusion

The assignment for the thesis was to study basic principles of the Drogue-IoT, MQTT
protocol, Rust programming language, and Embassy asynchronous library for embedded
devices. The second part of the assignment was also to design, implement and test MQTT
asynchronous client library (fully supporting MQTT v5) in Rust programming language for
embedded devices. Respect all constraints introduced by intended usage on these devices
enforced by the Drogue-IoT during the design and implementation.

During the study of technologies, I have been able to identify all requirements intro-
duced in Section 4.1. These requirements mostly come from the embedded platform itself.
Embedded devices have various amounts of hardware equipment, so every step in design
and implementation has to aim for maximal configurability (to use limited hardware as
effectively as possible).

The design described in Chapter 4 respects all the requirements introduced in Sec-
tion 4.1. Implementation shown in Chapter 5 follows this design. Functionality, usability,
quality of design, and implementation were confirmed using not only automatized testing
but also demonstration application and performance experiments.

The main future improvement is to add support for the MQTT version 3. Second
improvements can be done on the optimization side. Most of the MQTT brokers implement
Nagle’s algorithm1 to improve the efficiency of the TCP protocol. The client does not
implement this feature at the moment. Implementing such feature would surely bring even
more satisfying performance results.

The client is fully functional and currently, it is the first open-source implementation of
the MQTT version 5 client in Rust language. The client library is accessible on GitHub2.
The community interest in this project can confirm the usability and quality of the library,
as Appendix B shows, one of the companies in the Czech IoT environment will use the
client in production systems.

During the work on this thesis, I have also created a proposal for the Excel@FIT
conference. The proposal, see Appendix C, was accepted by Excel@FIT committee and
was presented during the poster session. This paper was awarded by the main partner of
the conference EdHouse3 as the interesting industrial ready project.

1Nagles’s algorithm can reduce the number of small datagrams sent over the network. Detailed infor-
mation can be found here: https://datatracker.ietf.org/doc/html/rfc896

2Can be found at: https://github.com/obabec/rust-mqtt
3Information about the company can be found at: https://www.edhouse.cz/

44

https://datatracker.ietf.org/doc/html/rfc896
https://github.com/obabec/rust-mqtt
https://www.edhouse.cz/

Bibliography

[1] Banks, A., Briggs, E., Borgendale, K. and Gupta, R. MQTT Version 5.0
[online]. March 2019. [visited 2021-01-09]. Available at:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.

[2] Banks, A., Cohn, R. J., Coppen, R. J. and Gupta, R. MQTT Version 3.1.1
[online]. October 2014. [visited 2021-01-09]. Available at:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[3] Blandy, J. and Orendorff, J. Programming Rust: Fast, Safe Systems
Development. 1st ed. O’Reilly Media, 2017. ISBN 9781491927281.

[4] Drogue IoT [online]. 2020. [visited 2021-01-09]. Available at:
https://book.drogue.io/drogue-book/index.html.

[5] Embassy [online]. 2021. [visited 2021-05-10]. Available at:
https://embassy.dev/embassy/dev/index.html.

[6] Gamma, E. Design patterns : elements of reusable object-oriented software. 1st ed.
Boston: Addison-Wesley, 1995. Addison-Wesley professional computing series. ISBN
0-201-63361-2.

[7] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. Internet of Things (IoT):
A vision, architectural elements, and future directions. Future generation computer
systems. 1st ed. AMSTERDAM: Elsevier B.V. 2013, vol. 29, no. 7, p. 1645–1660.
ISSN 0167-739X.

[8] Hillar, G. C. MQTT Essentials - A Lightweight IoT Protocol. 1st ed. Packt
Publishing Ltd., 2007. ISBN 978-1-78728-781-5.

[9] MQTT Message Data Integrity - MQTT Security Fundamentals [online]. 2015.
[visited 2021-01-09]. Available at: https:
//www.hivemq.com/blog/mqtt-security-fundamentals-mqtt-message-data-integrity/.

[10] Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. In: Ministry of Defence, Defence School of Communications and
Information Systems, United Kingdom. 2017 IEEE International Systems
Engineering Symposium (ISSE). 2017, p. 1–7. DOI: 10.1109/SysEng.2017.8088251.

[11] Nash, M. and Waldron, W. Applied Akka Patterns: A Hands-On Guide to
Designing Distributed Applications. 1stth ed. O’Reilly Media, Inc., 2016. ISBN
1491934883.

45

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://book.drogue.io/drogue-book/index.html
https://embassy.dev/embassy/dev/index.html
https://www.hivemq.com/blog/mqtt-security-fundamentals-mqtt-message-data-integrity/
https://www.hivemq.com/blog/mqtt-security-fundamentals-mqtt-message-data-integrity/

[12] Rust [online]. 2021. [visited 2021-01-09]. Available at: https://www.rust-lang.org/.

[13] Async book [online]. 2021. [visited 2021-01-09]. Available at:
https://rust-lang.github.io/async-book.

[14] Rust RFC 2394 [online]. 2018. [visited 2021-17-10]. Available at:
https://rust-lang.github.io/rfcs/2394-async_await.html.

[15] Rust RFC 2592 [online]. 2018. [visited 2021-15-10]. Available at:
https://rust-lang.github.io/rfcs/2592-futures.html.

[16] Troutwine, B. Hands-On Concurrency with Rust: Confidently Build Memory-safe,
Parallel, and Efficient Software in Rust. 1st ed. Packt Publishing, 2018. ISBN
9781788399975.

46

https://www.rust-lang.org/
https://rust-lang.github.io/async-book
https://rust-lang.github.io/rfcs/2394-async_await.html
https://rust-lang.github.io/rfcs/2592-futures.html

Appendices

47

List of Appendices

A CD Content 49

B Commendation 52

C Excel@FIT 54

48

Appendix A

CD Content

• /rust-mqtt/* — source code of MQTT client from May 8, 2022

• /rust-mqtt/README.md — README with useful informations about MQTT
client build and start

• /docs/* — documentation of MQTT client from May 8, 2022

• /drogue-device/* — source code of Drogue-device used for the evaluation

– examples/nrf52/microbit/esp8266/mqtt/* — demonstration application
code

– device/src/network/clients/mqtt.rs — Drogue-device network driver
for MQTT client

• /demo-tls.mp4 — demonstration video with Drogue-cloud and TLS

• /demo-broker.mp4 — demonstration video with plain MQTT broker

• /performance.xlsx — complete performance results

• /text/* — source code of this thesis from date May 8, 2022

• /xbabec00-thesis.pdf — final version of this thesis from date May 8, 2022

49

List of Abbreviations

MQTT Message Queuing Telemetry Transport

HTTP Hypertext Transfer Protoco

CoAP Constrained Application Protocol

IoT Internet of Things

AMQP Advanced Message Queuing Protocol

TTN The Things Network

LoRaWAN Long Range Wide Area Network

SSO Single sign-on

API Application Programming Interface

FIFO First In, First Out

HAL Hardware Abstraction Layer

TCP Transmission Control Protocol

OASIS Organization for the Advancement of Structured

Information Standards

RBAC Role Based Access Control

MAC Message Authentication Code

ACL Access-Control List

LDAP Lightweight Directory Access Protocol

TLS Transport Layer Security

SSL Secure Sockets Layer

OAUTH Open Authorization

QoS Quality of Service

50

DUP Duplicate Delivery of a Publish control packet

RAP Retain As Published

LIFO Last In, First Out

CPU Central Processing Unit

UART Universal Asynchronous Receiver-Transmitter

I2C Inter Integrated Circuit

SPI Serial Peripheral Interface

RAM Random Access Memory

RNG Random Number Generator

CI Continuous Integration

CD Continuous Delivery

LED Light Emitting Diode

I/O Input/Output

51

Appendix B

Commendation

52

Ondřej Babec
Faculty of Information Technology
Božetěchova 1/2, 612 00 Brno-Královo Pole
Czechia

April 23, 2022, in Prague

Letter of Commendation

Dear Ondřej,
My name is Matouš Hýbl and with this letter I would like to officially thank you for the work you’ve
done on the rust-mqtt (Rust native mqtt client for both std and no_std environments) project. The
work you’ve done will save us countless hours of development.

I work for a company called Datamole which is developing cloud based Industrial IoT solutions, where
I am in a team developing embedded software for one of our products - a device for long running
experiments with liquids in the food processing industry. As a part of the project we aim to use MQTT
for communication between parts of the device and this is where we plan on utilising your project.

As per our prior research a library implementing MQTT for embedded Rust has not yet existed or was
not in the desired state of completeness, which led us to believe that we’d need to develop it
ourselves, but thanks to your project we don’t have to. Your project is also a great fit for the reason
that it utilises asynchronous programming (implemented using Rust’s async/await mechanism), which
will make integrating it with our system a piece of cake.

As I am also a contributor to Embassy - a project and an initiative to bring asynchronous programming
in Rust to embedded devices, I can confidently say that your project extends the ecosystem with
valuable communication capabilities, making it much easier for people to build connected IoT devices
with Rust.

I’d also like to thank you for your promise to keep maintaining the project in the future and aiming to
bring many other contributions to the whole ecosystem.

Sincerely,

Matouš Hýbl
Datamole, s.r.o.
Tel: +420 720 644 619
Email: matous.hybl@datamole.ai

Headquarters: Office:
Datamole, s.r.o. IČ: 037 42 709 Datamole, s.r.o.
Banskobystrická 2080/11 Tel: +420 608 535 730 Vítězné náměstí 577/2
Dejvice, 160 00 Praha 6 E-mail: info@datamole.ai Dejvice, 160 00 Praha 6
Czech Republic www.datamole.ai Czech Republic

Figure B.1: Acknowledgment for the project received from Datamole company.

53

Appendix C

Excel@FIT

54

http://excel.fit.vutbr.cz

Asynchronous MQTT Client Library for Embedded
Devices Running on Drogue-IoT Firmware
Ondřej Babec*

HTTPS traffic

 Central office Central cloud
 Industry 4.0
 factory /assembly/glob

/assembly/arm

Abstract

The main target of this work is to create an asynchronous MQTT client, supporting MQTT version 5,
in Rust running on embedded devices powered by Drogue device opensource firmware. The number
of clients that support MQTT version 5 is highly limited, and currently no client implementation exists
in Rust. The main implementation challenge is that MQTT version 5 has properties of variable
lengths. Storing these properties of size which is unknown during compile time is a massive
obstacle because embedded Rust does not support dynamic allocation as there is no underlying
operating system.
The result of the work is a client that has comparable functionalities as other available clients
in different languages. The client library is extended with both desktop and embedded async
executors. Although the client could be used almost everywhere, leading variants are Industry 4.0
and Smart home.
Keywords: MQTT — Async — Rust — Embedded – Industry4.0 — Smart-home

Supplementary Material: Demonstration Video — GitHub repository — GitHub example

*xbabec00@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

The motivation for this project was that there is no2

such client today (at least no client accessible for pub-3

lic use) and community . There arises a question: Why4

should I use Rust client when I can use, for example,5

the eclipse-paho C MQTT client?. This client benefits6

from Drogue Device1 firmware. Firmware bring sup-7

port for several boards, sensors, and wifi chips. This,8

and all the other features of Drogue, help to build safe9

1Available at: https://github.com/drogue-iot/
drogue-device

and efficient applications in a very short time. 10

To build such a client, the design and implementa- 11

tion have to overcome several problems and obstacles: 12

• Memory allocation – This is the most crucial 13

problem that the implementation faced. With- 14

out a standard crate, the implementation can’t 15

use dynamic memory allocation, which means 16

implementation has to either force the user to 17

provide allocated buffers and their length or use 18

buffers with constant size. The absence of dy- 19

namic allocation also brings many design obsta- 20

cles where implementation has to work with the 21

Figure C.1: Excel paper

55

Rust ownership model described in Section 3.22

• Async executors differences – There are many23

async executors which could be used and more24

executors will probably come in the future as25

Rust is heavily developed. Client has to use26

general Rust futures [3] and async/await [2] so27

the end-user can choose final async executor.28

• Support for any network drivers – For embed-29

ded devices, we can find a significant amount of30

network boards and most of them have different31

network drivers.32

• Complexity of API – This point is probably33

most significant. With MQTT version 5 there34

come a large number of possibilities as to how35

control packets can be configured. But how36

much of this configuration does the user really37

need? The right balance will make the client38

usable in the real world.39

• Extensibility – An objective which is probably40

needed in all projects these days. With Rust,41

everything is a little more complicated. With no42

inheritance and big differences between MQTT43

versions, there is not much space how to prepare44

something for future development.45

A big advantage of this project is the significant46

number of potential areas where it can be used. Rust is47

currently in very active development and the commu-48

nity around it is growing massively. That means Rust49

is slowly starting to match older languages like C and50

C++. As is common knowledge, development and51

maintenance project written in those languages is hard52

so many companies providing IoT solutions invest a53

great deal in Rust development. These solutions are54

exactly the right fit for this MQTT client.55

2. Existing solutions56

If we talk about existing solutions there are no so-57

lutions that fit the purpose of this client. But there58

are solutions which are targeting mainly standard de-59

vices not embedded ones or supporting only MQTT60

version 3.61

2.1 Microsoft Hub MQTT62

Microsoft is providing several clients for MQTT but63

none of the clients2 is written in Rust. The only client64

which could be usable on embedded devices is a client65

written in C. Clients follow the specification of Hub.66

Most significant ones for MQTTv5:67

2Microsoft MQTT client: https://docs.
microsoft.com/en-us/azure/iot-hub/
iot-hub-mqtt-support

• Retain not supported 68

• Maximum QoS is 1 69

• No subscription identifiers and Client IDs 70

• Maximum packet size is set to 256 KiB 71

• Supports only AUTH packet authentication 72

MQTT version 5 features of the Hub are not offi- 73

cially released, so these might not be final specifica- 74

tions. 75

2.2 Eclipse Paho 76

Eclipse Paho might be the most used MQTT client 77

of all and, like most clients, Paho uses wrappers of 78

the C implementation to deliver the library in different 79

languages. It is no surprise that a wrapper is already 80

created for Rust3. 81

This implementation is targeting only memory- 82

managed operating systems, so there is no support 83

for embedded. Although this client will not work on 84

embedded, a big advantage could be support for all 85

configurations which MQTT provides, in all of the 86

current versions. However, in most scenarios, IoT 87

devices use only a limited number of configurations. 88

2.3 Comparison 89

All of these client implementations, including this 90

project, have different positives and negatives but none 91

of the clients above is Rust native, or aims mainly for 92

embedded devices. That is a big advantage of this 93

project together with competitive control packets con- 94

figuration. 95

Reviewing all of the information above we can say 96

that there is space for this project and there should not 97

be a problem in finding right fit in any of Rust based 98

IoT ecosystems (or just any Rust embedded firmware). 99

However usage of this project on standard devices may 100

not beat any of mentioned clients because embedded 101

support brings several complications which users do 102

not spend time with. 103

3. Implementation 104

Client implementation has been logically separated 105

into several packages. These packages contain struc- 106

tures and traits that are having a common focus on 107

functionality. All of these packages are joined together 108

in the client package, see section 3.5. 109

3.1 Utils 110

Utils contain structures and types which are mostly 111

focused on work with memory. The most significant 112

3Eclipse Paho: https://github.com/eclipse/
paho.mqtt.rust

56

parts of this package are BuffReader and BuffWriter113

which are used for reading and writing into buffer114

supplied as a parameter. An interesting aspect of115

this code is the return type, which is used Result<(),116

BufferError>. That type is specific to Rust, methods117

return either success with void or error with a variant118

of specific enumeration.119

pub fn write_binary_ref(&mut self,120

bin: &BinaryData<’a>)121

-> Result<(), BufferError> {122

self.write_u16(bin.len)?;123

124

return self.insert_ref(bin);125

}126

That is interesting, but what is even more teasing is127

operator ?. This operator is bound to the Result type. If128

the result is success operator unwraps the value (void129

in this case) otherwise takes an error and returns it130

immediately from the method/function.131

3.2 Encoding132

Encoding package contains Decoder and Encoder for133

variable byte integer, which is described in MQTT ver-134

sion 5 OASIS standard [1]. Error delegation in this135

package works same way as previous package only136

this time there is a use of special type VariableByteIn-137

tegerthat is basically type alias as we know from other138

languages like C or C++.139

3.3 Packet140

As Figure 1 shows, MQTT provides various control141

packets. These packets have to be mapped in a protocol142

to ensure communication functionality. This mapping143

is stored right in this package. There is a public trait144

Packet which contains a declaration of all methods145

which have to be implemented for specific packet types146

and contains a default implementation for common147

features which are the same for all the packet types.148

The rest of the structures for control types sim-149

ply map packet binary form into Rust structures. At150

this moment, there is a massive obstacle which has151

to be overcome. MQTT version 5 enables users to152

include properties of variable lengths and amounts in153

the packet.154

With embedded in combination with variables,155

there is a problem. As it was said, there is no dy-156

namic allocation, so there is no way how this could be157

variable. We have to know the exact size during the158

compile-time. Rust provides a solution named const159

generics4 that allows programmer parameterize struc-160

ture or method with constant. In the manner of this161

4Rust generics: https://rust-lang.github.io/
rfcs/2000-const-generics.html

client, it allows parameterize structures with the ex- 162

pected length of buffers that store fields of variable 163

length. 164

Let’s get through this by the example of publish 165

packet. 166

use heapless::Vec; 167

168

pub struct PublishPacket 169

<’a, const MAX_PROPERTIES: usize> { 170

pub properties: Vec<Property<’a>, 171

MAX_PROPERTIES>, 172

pub message: Option<&’a [u8]>, 173

} 174

175

PublishPacket::<’b, 5>::new(); 176

Listing above shows definition of PublishPacket struc- 177

ture which contains explicit lifetime annotation ’b and 178

const generic argument MAX PROPERTIES. This 179

argument sets the size for heapless vec5 during the 180

creation of packet structure so variable length of prop- 181

erties is maintained and the user can decide how many 182

properties will need with no limitations from the client- 183

side. 184

Aside from mapping packets also contains imple- 185

mentations of trait methods. The most crucial of these 186

are decode and encode. These two methods are the 187

core of the whole client library. Decode methods de- 188

code incoming messages from raw format into the 189

usable structures with which can client manipulate. 190

Encode method do exact opposite. Without them client 191

could not work with packets effectively. 192

3.4 Network trait and adapters 193

Achieve compatibility with all the network drivers that 194

exist is not possible. Client provides implementation 195

of two network adapters for both embedded and non- 196

embedded network drivers. These adapters are for 197

tokio network and Drogue-device network driver. In 198

order to achieve maximum network driver compatibil- 199

ity, library also provides public network traits: 200

• NetworkConnectionFactory which should be 201

used to establish a connection 202

• NetworkConnection containing all methods 203

necessary for working with TCP stack 204

Users with specific needs can adapt these traits onto 205

their network driver and pass adapter to the library. 206

Tokio network adapter 207

First network trait implementation is Tokio network. 208

Implementation is stored in a package of the same 209

name. This implementation adapts Tokio network that 210

5Heapless crate: https://docs.rs/heapless/0.2.
1/heapless/struct.Vec.html

57

	 Broker

CONNACK

CONNECT

PUBLISH

/homeapp/main-door

SUBSCRIBE

/homeapp/#

PUBLISH

/homeapp/main-hall

 App main-hall

CONNACK

CONNECT

PUBLISH

/homeapp/main-hall

SUBSCRIBE
/homeapp/main-hall

 App main

 Motion sensor

 Camera 1
 CONNECT

CONNACK

PUBLISH /homeapp/main-door

CONNECT

CONNACK

PUBLISH /homeapp/main-hall

Figure 1. MQTT protocol communication patter in smart home.

is contained inside Tokio async library6 into providing211

network traits. Network implementation in Tokio aims212

to support network driver for standard devices (non-213

embedded).214

Adapting such a network is not really great ex-215

ample for this project because network running on216

standard devices rarely need to close connections be-217

cause most of the systems can close these themselves.218

Having this implementation means the client offers219

full support for non-embedded devices using Tokio220

runtime. This network adapter is not the primary goal221

of this thesis but having such implementation is nec-222

essary to make whole development easier because de-223

bugging and testing are things which are in most time224

very problematic and time-consuming on embedded225

devices.226

Drogue network adapter227

Second implementation of network traits is Drogue228

Network. This adapter is located directly in Drogue229

GitHub repository7.230

Having support for Drogue means that the library231

now supports all devices and Wi-Fi chips that are sup-232

ported in Drogue framework. This is much more bene-233

ficial than having support for just one type of device,234

which is scope of this work.235

Behavior of the Drogue Network differs totally236

6Available from: https://tokio.rs/
7Drogue Network available from: https://github.

com/obabec/drogue-device/blob/mqtt-client/
device/src/clients/mqtt.rs

from Tokio network because we have to respect struc- 237

ture of Drogue-device firmware. Drogue-device async 238

behavior is based on actor model. That is important 239

because manipulating with TCP stack is running in 240

different actor than MQTT client. 241

pub struct DrogueNetwork<A> 242

where 243

A: TcpActor + ’static, 244

{ 245

socket: Socket<A>, 246

} 247

As, code above displays instead of keeping some 248

address to the socket network structure is keeping ad- 249

dress of socket as the TcpActor. This way client can 250

communicate with TCP stack (open, send, receive, 251

close). 252

3.5 Client 253

There is an implementation of MQTT version 5 com- 254

patible client structure MQTTClient and configura- 255

tion structure ClientConfig in the client package. Client 256

structure holds config as an attribute and passes corre- 257

sponding parts of config to each of the control pack- 258

ets. Client contains implementations of Actions from 259

MQTT standard. The most significant obstacle here is 260

hassle with lifetimes. 261

58

pub async fn connect_to_broker<’b>262

(&’b mut self)263

-> Result<(), ReasonCode> {264

265

let mut connect =266

ConnectPacket::<’b, 2, 0>::new();267

268

if self.config.username_flag {269

connect.add_username(270

&self.config.username);271

}272

}273

274

{ client.connect_to_broker().await };275

{ client.send_message(topic, MSG).await };276

We can see the example right in the code above.277

Method send message also uses one of the client’s278

attributes - config. Firstly client is passed as a mutable279

reference with lifetime ’b which means the reference280

will live only in the method’s scope. Later is attribute281

config.username as a reference handed to created con-282

nect packet (packet lifetime is also set to ’b).283

Once the method is done, all variables and refer-284

ences with lifetime ’b are destroyed and they can be285

freely moved to another method. If the lifetime was286

not specified, the client mutable reference could not287

be passed to the next method because the reference in288

the packet would outlive the scope.289

4. Testing290

Testing of client library is done automatically during291

pull requests in GitHub Actions8. The project reposi-292

tory contains 2 workflows:293

• Unit tests – these tests aim at fundamental func-294

tionalities of structures not the library as a whole.295

This does not require any other systems to be296

deployed no real messaging is happening. These297

tests are most beneficial for working with mem-298

ory where it is possible to simulate Index Out Of299

Bound error and others.300

• Integration tests – testing library as a whole sys-301

tem. This testing is done via Tokio test frame-302

work and Tokio net network implementation.303

The tests are executed in parallel and all are304

firing to the same MQTT broker. New approach305

is currently in development which will allow in-306

tegration tests to be run mupltiple times agains307

different broker implementations.308

Unit tests are testing a most crucial part of imple-309

mentation (mapping the protocol). There is a unit test310

8Github Actions: https://docs.github.com/en/
actions

for each packet this tests both encode and decode func- 311

tion. After decoding and encoding the packet structure 312

each time the result is compared with the binary or 313

struct created manually, which ensures that the client 314

will create a malformed packet. 315

5. Evaluation 316

As a demonstration, there is an example application 317

which is connecting the Drogue device and MQTT 318

client. This demonstrates the usage of the client in 319

the real world even if it seems simple it is basically 320

everything that the end-user will need on the embed- 321

ded device. The whole code is aligned around the 322

Actor model which allows running and managing asyn- 323

chronous applications on one thread. Code is separated 324

into three actors. 325

• Main contains publisher functionality. Firstly 326

there is a configuration of the board and the fol- 327

lowing peripherals (LED Matrix and esp8266 328

wifi chip). After that TCP connection is estab- 329

lished and actors for matrix and receiver are 330

spawned, passing connection to the receiver. 331

The main application loop follows. This loop 332

contains asynchronous wait for the trigger of but- 333

ton A. Once the button is pressed MQTT client 334

will send Hello World! message to the specified 335

topic. 336

• Receiver contains all configuration and logic of 337

MQTT receiver. Once the client is configured 338

it connects to the broker and subscribes to the 339

specified topic. Then the main receiver loop 340

starts. The client is waiting for a new message. 341

When the message arrives it sends another mes- 342

sage to the Matrix actor to display the received 343

message. 344

• LED Matrix is an actor which is provided as 345

part of the Drogue device for Micro::bit V2 346

which is powering this example. The actor is 347

waiting for a new message in the inbox. Once 348

the message arrives at the inbox it displays the 349

message with some refresh rate. 350

This example is representing the expected usage of the 351

client. Several client instances running on the same 352

device with the possibility of different configurations 353

for all these instances. This example is powered by 354

Micro::bit V2 and Adafruit HUZZAH ESP82669. 355

The example was recorded by Drogue contributor 356

Ulf Lilleengen because with recent changes in nightly 357

Rust and the wifi driver the HUZZAH which is not 358

9https://www.adafruit.com/product/2471

59

part of common the collection is now only esp8266359

currently working without an issue.360

6. Conclusion361

This work aimed to create an industrial ready asyn-362

chronous MQTT client in Rust working on Drogue363

device firmware. The result of this work is extensible364

and fully working MQTT client which is, with limita-365

tions, fully supporting MQTT version 5, together with366

automated test suite provides both unit and integration367

tests (running on Tokio async executor and network368

driver). The client is ready to support all network and369

async implementations with minimal effort from the370

end-user.371

At the same time application demonstration was372

created which confirms that clients API is easy to use373

and works on small embedded devices supported by374

Drogue device.375

In the next phase of development, I would like to376

include MQTT version 3 support which could be still377

useful in the embedded world and release first official378

version of the library into crate database crates.io.379

7. Acknowledgment380

I would like to thank my supervisors Ing. Jan Pluskal381

and Ing. Jakub Stejskal for valuable feedback and con-382

sultations. I would also like to thank Drogue contribu-383

tor Siv. Ing. Ulf Lilleengen for feedback and support384

during the development of the Drogue network adapter385

and client demo.386

References387

[1] BANKS, A., BRIGGS, E., BORGENDALE, K.388

and GUPTA, R. MQTT Version 5.0 [online].389

March 2019. [visited 2021-01-09]. Available390

at: https://docs.oasis-open.org/mqtt/391

mqtt/v5.0/os/mqtt-v5.0-os.html.392

[2] Async book [online]. 2021. [visited 2021-01-09].393

Available at: https://rust-lang.github.394

io/async-book.395

[3] Rust RFC 2592 [online]. 2018. Available396

at: https://rust-lang.github.io/rfcs/397

2592-futures.html.398

60

	Introduction
	Fundamentals of Drogue-IoT
	Drogue-IoT
	Drogue-cloud
	Data plane
	Control plane
	Additional components

	Drogue-device

	Technology evaluation
	MQTT protocol
	Packet format
	Control packets
	Quality of Service

	Rust and Embassy
	Memory management
	Concurrency

	Client design
	Requirements
	Architecture design
	Use cases

	Implementation
	Client implementation
	Network trait and adapters
	Libraries
	Rust package manager

	Testing
	Test levels
	CI/CD
	Evaluation

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	CD Content
	Commendation
	Excel@FIT

