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Abstract

Neural solvers have been increasingly explored to replace computationally expensive con-
ventional numerical methods for solving PDEs. This work focuses on solving the time-
independent Helmholtz equation for the transcranial ultrasound therapy. Using the con-
volutional neural networks requires the data to be sampled on a regular grid. In order to
try to lift this restriction, we propose an iterative solver based on graph neural networks.
Unlike Physics-informed neural networks, our model needs to be trained only once, and
only a forward pass is required to obtain a new solution given input parameters. The
model is trained using supervised learning, where the reference results are computed using
the traditional solver k-Wave. Our results show the model’s unroll stability despite being
trained with only 8 unroll iterations. Despite the model being trained on the data with a
single wave source, it can predict waveĄelds with multiple wave sources in much larger com-
putational domains. Our model can produce a prediction for sub-pixel points with higher
accuracy than linear interpolation. Additionally, our solution can predict the waveĄeld with
downsampled Laplacian Ű only three samples per wavelength. We are unaware of any other
existing method capable of working with such a sparse discretization.

Abstrakt

Za účelem nahrazení výpočtově náročných konvenčních numerických metod řešících difer-
enciální rovnice jsou neurální výpočty stále více prozkoumávány. Tato práce se zaměřuje
na řešení časově nezávislé Helmholtzovi rovnice, která modeluje šíření ultrazvuku při tran-
skraniální léčbě ultrazvukem. Při použití konvolučních neuronových sítí musí být data nav-
zorkovaná na pravidelné mřížce, abychom odstranili dané omezení, navrhli jsme neurální
výpočet založený na grafových neuronových sítích. Narozdíl od fyzikálně informovaných
neuronových sítích (PINN) je potřeba náš model natrénovat pouze jednou, řešení pro
množinu nových parametrů vyžaduje pouze dopředných chod. Model byl natrénovaný po-
mocí učení s učitelem, kde referenční data byly vypočítána pomocí konvenční metody k-
Wave. Náš model má stabilní rozvinutí, přestože byl natrénovaný pouze s osmi iteracemi.
Ačkoli byl model natrénovaný pouze na datech s jedním zdrojem vln, tak zvládne prediko-
vat i vlnová pole s více zdroji i v mnohem větších výpočetních doménách. Náš model je
schopen predikovat subpixelové body s větší přesností než lineární interpolace. Dále je naše
řešení schopno predikovat vlnové pole i s podvzorkovaným Laplaciánem, kde jsou pouhé tři
vzorky na jednu vlnovou délku. Nejsme si vědomi žádné existující metody fungující s takto
řídkou diskretizací.
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Rozšířený abstrakt

Transkraniální léčba ultrazvukem byla schválena úřadem pro kontrolu potravin a léčiv
(FDA1) na léčbu Parkinsonovy choroby a esenciálního tremoru [43, 16], probíhají také
klinické studie využití léčby ultrazvukem za účelem na vytvoření mikrobublinek v mozku,
které umožní doručení léků do speciĄckých oblastí mozku [22]. Šíření ultrazvuku skrze
lebku je popsáno Helmholtzovou rovnicí. Následující rovnice popisují obecnou diferenciální
rovnici:

(ℒa𝑢)(x) = 𝑔, 𝑥 ∈ Ω

𝑢(x) = 0, 𝑥 ∈ 𝜕Ω
(1)

kde 𝑎 představuje parametry diferenciálního operátoru ℒ, 𝑢 je neznámá funkce, 𝑔 popisuje
rozložení zdrojů v prostoru a x reprezentuje souřadnice v prostoru.

Speeds of SoundWave Sources

Inputs

Wavefield

Neural

Solver

Outputs

Solves the 

Helmholtz PDE. 

Figure 1: Navrhnutý model z mapy rychlosti zvuku a umístění zdrojů vln predikuje šíření
vln modelované Helmholtzovou rovnicí.

Motivace neurálního výpočtu. Jak uvádí Treeby a Cox [51], konvenční metody pro
řešení parciálních diferenciálních rovnic jako metoda konečných prvků [18] nebo metoda
konečných diferencí [33] vyžadují velmi jemnou diskretizaci prostoru, což vede k poma-
lejšímu řešení dané rovnice. Metoda k-Wave pracuje s hrubší diskretizací díky využití
pseudo-spektrální metody [6, 7, 31, 48] pro výpočet derivací. Nicméně k-Wave stále ne-
dosahuje dostatečné rychlosti ve 3D prostoru.

Existující řešení. Neurální výpočet má za cíl nahradit konvenční metody za účelem
urychlení či aproximace řešení diferenciálních rovnic. Většina metod využívá konvoluční
neuronové sítě [47, 50] nebo fyzikálně informované neuronové sítě (PINN2) [37, 23, 9, 45,
12]. Konvoluční neuronoví sítě jsou omezeny strukturou dat, které musí být navzorkované
na pravidelné mřížce, zatímco PINN metody jsou nezávislé na mřížce, na kterých byla data
navzorkována. Nicméně PINN pouze reprezentuje řešení 𝑢(x) diferenciální rovnice a neřeší
ji přímo, proto musí být síť natrénována znova pro každou novou množinu parametrů 𝑎
dané diferenciální rovnice.

Každý fyzikální systém může být popsán grafem, kde vzorek je reprezentován jako uzel
v grafu. Sanchez-Gonzalez et al. [40] propojuje všechny uzly v určité vzdálenosti, kdežto
Pfaff et al. [34] pracuje přímo s hranami vytvořené mesherem. Obě metody řeší dynamické

1FDA – Food and Drug Administration
2PINN – Physics-informed Neural Networks



systémy jsou založeny na encode-process-decode architektuře, která je deĄnována pomocí
Graph Network frameworku Battaglia et al. [4].

Další kategorií neurálního výpočtu jsou neurální operátory. První metodou v této kategorii
je Graph Kernel Network (GKN) [2], která přímo kóduje Greenovu funkci dané parciální
diferenciální rovnice do parametrů sítě. Jelikož tato metoda reprezentuje prostor jako graf
a spojuje každý uzel se všemi ostatními uzly, počet hran roste kvadraticky s počtem uzlů.
Druhou metodou patřící do neurálních operátorů je Fourier Neural Operator (FNO) [26],
která nahrazuje kernel reprezentující Greenovu funkci za konvoluci ve Fourierovým prostoru.

Architektura modelu. V rámci této diplomové práce jsem navrhl iterativní metodu
založenou na grafových neuronových sítích [4, 34, 40], která řeší Helmholtzovu rovnici. Daná
síť je založena architektuře encode-process-decode, kde každá část je realizována pomocí
plně propojených neuronových sítí. Kromě parametrů 𝑎 dané diferenciální rovnice, je na
vstup dále vložen residuál dané rovnice [47]. Empiricky jsme zjistili, že residuál je esenciální
pro náš model.

Evaluace. Schopnost modelu generalizovat byla úspěšně otestována na datech mimo
distribuci trénovacích data. Model byl schopen predikovat vlnové pole i s více zdroji,
přestože byl natrénovaný na datech pouze s jedním zdrojem. Dále je model invariantní vůči
velikosti výpočetní domény. Přestože byl natrénovaný pouze na datech v doméně 96× 96,
naše metoda je schopna provádět inferenci i v doméně o velikosti 512× 512.

Přestože model primárně pracuje na datech s pravidelnou mřížkou, zvládne predikovat
subpixelové vzorky s větší přesností než při použití lineární interpolace, tyto vzorky nemusí
být navzorkované na pravidelné mřížce. Tudíž je náš naše metoda schopna provádět i super-
resolution. Dále byla otestována schopnost našeho modelu pracovat s podvzorkovaným
residuálem (tři vzorky na jednu periodu). Naše metoda jednoznačně překonala konvenční
metody, které nejsou schopny pracovat v tomto nastavení.

Závěr Přestože naše metoda není rychlejší než dostupné metody, je nutno brát v potaz, že
implementace naší metody není nijak optimalizována a ani zde nebyl pokus ji urychlit. Tato
práce slouží především jako ověření konceptu neurálního výpočtu založeném na grafových
neuronových sítích pro řešení Helmholtzovi rovnice.

Navržená metoda funguje jako iterativní solver, kde se iterativně volá grafová neuronová
síť. Náš model je schopný predikovat vlnové pole ve větších doménách i s více zdroji, čímž
dokazuje svoji schopnost generalizovat. Narozdíl od konvolučních neuronových sítích je
naše metoda schopna provádět super-resolution pouze v oblastech zájmu. Dále je navržený
model schopen pracovat i s podvzorkovaným Laplaciánem, kde má pouhé tři vzorky na
jednu periodu. Nejsme si vědomi žádné konvenční ani neurální metody, která pracuje v
tomto nastavení. Předběžné výsledky naší práce byly prezentovány na studentské konferenci
Excel@FIT2022, kde naše práce získala všechny tři ocenění a v blízké budoucnosti plánujeme
vydání vědeckého článku založeném na výsledcích popsaných v této práci. Tato práce byla
podpořena Ministerstvem školství, mládeže a tělovýchovy České republiky prostřednictvím
e-INFRA CZ (ID:90140).
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Chapter 1

Introduction

The transcranial ultrasound therapy has been recently approved by Food and Drug Admin-
istration (FDA) for the treatment of essential tremor and Parkinson’s disease [43]. Cur-
rently, there are experimental treatments for Alzheimer’s disease and brain tumor using
ultrasound to create microbubbles, which enable targeted drug delivery in brain tissue [22].

The ultrasound transmitter positioning requires a simulation of the ultrasound propagation
through a skull, which depends on solving the Helmholtz equation. The waves have to be
focused on the area of interest in order to make thermal ablation and other treatments [16]
possible (see Figure 1.1). The simulation using traditional solvers requires a lot of compu-
tational resources. Several works tackle the problem of solving PDEs using neural networks
(neural solvers), focusing on reducing the simulation time.

Heated focal

zone.

Ultrasound

arc source.

Skull.

Figure 1.1: High-intensityŰfocused ultrasound ablation (HIFU) is one of the noninvasive
treatments utilizing the focused ultrasound. In the focal zone, the acoustic energy is trans-
formed into heat, resulting in necrosis of surrounding tissue. Figure adapted from Stanziola
et al. [47].

Most neural physical systems adopt Convolutional Neural Networks (CNN) [47, 50] or
Physics-informed neural networks (PINN) [37, 23, 9, 45, 12]. The Ąrst family of methods
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works only with data sampled on a regular grid. On the other hand, the latter group of
methods is mesh-independent. However, the networks need to be retrained for every set of
new PDE parameters.

Our method aims to tackle these problems by employing Graph Neural Networks (GNN) [42,
14], allowing more variable mesh than CNNs. We use graph edges to control the message
passing between the nodes, corresponding with the samples in a space. The network is
structured as an iterative solver [38]. Only a forward pass of the model is required to solve
the Helmholtz equation for a new set of parameters.

In Section 2 this work describes partial differential equation (PDE) and its boundary con-
ditions for the modeling of the wave propagation. Section 4 and Section 3 formulate the
graph neural networks and the methods used for a physics-based deep learning. Section 6
describes our proposed method for simulating the propagation of waves. Lastly, Section 7
contains the evaluation of the method’s generalization, its behavior on different sampling
grids, and the effect of pruning on the accuracy and its capability to predict the waveĄeld
with a downsampled residual.

3



Chapter 2

Equations Governing Propagation

of Waves

This section outlines equations used for wave propagation modeling Ű such as sound waves,
water waves, etc. Nevertheless, this work is based on equations used in sound-waves mod-
eling. The wave equation describes the propagation of waves through space:

𝜕2𝑢(x)

𝜕𝑡2
= 𝑐(x)2∇2𝑢(x), (2.1)

where 𝑢 : RD → C is a waveĄeld, 𝐷 ∈ Z
+ denotes the dimensionality, x ∈ 𝑅D denotes a

spatial coordinate, 𝑡 stands for time variable and 𝑐 : RD → R
+ is a speed of sound.

However, in transcranial focused ultrasound therapy [22, 16, 43], the ultrasound beam is ap-
plied for a period of time exceeding the time required to reach a steady state. Consequently,
in this work, the time-independent Helmholtz equation is used to model the propagation
of waves (Figure 2.1).

(a) Speeds of sound c. (b) Source distribu-
tions ρ.

(c) Wave field u.

Figure 2.1: Given the inhomogeneous speeds of sound 𝑐 and source distributions 𝜌, the
objective is to retrieve steady-state wave Ąeld 𝑢.

2.1 Helmholtz Equation

The Helmholtz equation is a linear partial differential equation, and it represents a time-
independent form of the Wave equation (Equation (2.1)). The time-independent form is

4



achieved by the separation of the variables in the wave equation. Although the simulation
of an ultrasound propagating through the skull involves nonlinear, shear, and other effects,
Stanziola et al. [47] present that these effects can be applied additionally after calculating
the waveĄeld modeled by the Helmholtz equation. Thus, we focus on modeling a sim-
pliĄed model of wave propagation described by the Helmholtz equation subjected to the
SommerĄeld radiation condition at inĄnity [46]:

[︃

∇2 +

(︂

𝜔

𝑐(𝑥)

)︂2
]︃

𝑢(𝑥) = 𝜌(𝑥), (2.2)

s.t. lim
|x|→∞

|𝑥|
n−1
2

(︂

𝜕

𝜕|𝑥|
− 𝑖

𝜔

𝑐0

)︂

𝑢(𝑥) = 0, (2.3)

where 𝐷 ∈ Z
+ is the dimensionality, 𝜔 ∈ R stands for the angular velocity of the source,

x ∈ R
D is a spatial coordinate, 𝑐 : RD → R

+ is the inhomogeneous speed of sound (SOS) at
the certain point x, 𝜌 : RD → C denotes the forcing term, and 𝑢 : RD → C is the unknown
acoustic waveĄeld. The inhomogeneous SOS is considered only within a domain of interest
Ω, for the rest of the domain 𝜕Ω the speed of sound is homogeneous with a value equal to
𝑐0. Graphical example of the components of the Helmholtz equation is shown in Figure 2.2.

SourceWavefieldSpeed of
Sound (SOS)

Figure 2.2: In this work, speeds of sound 𝑐 contains a model of a skull, which has a different
speed of sound compared to the surrounding medium. Source values 𝜌 are zero, except at
the location of a source, where the value is set to the source amplitude. Inverse problem is
not contemplated in this work. Thus the waveĄeld 𝑢 is the only unknown in the equation.

2.2 Perfectly Matched Layer

In order to satisfy the SommerĄeld radiation condition in a Ąnite domain Ω, a boundary
condition such as Perfectly Matched Layer (PML) [5] can be applied. PML is an artiĄcial
layer surrounding the domain Ω attenuating all incoming waves to prevent the reĆections
from the domain’s border, as depicted in Figure 2.4. Consequently, PML simulates an
inĄnite domain, as shown in Figure 2.3.

By employing the PML, an absorption term is introduced into the derivative operators:

𝜕

𝜕𝜂
→

1

𝛾η

𝜕

𝜕𝜂
, (2.4)

5



Domain Ω PML

Attenuates all
incoming waves to 
prevent reflections
from the borders.

For each point x 
there is defined 

a speed of sound c(x).

Figure 2.3: To satisfy SommerĄeld condition (Equation (2.3)), an artiĄcial layer (PML) is
wrapped around the domain Ω to attenuate all incoming waves. Adapted from Stanziola
et al. [47].

where 𝜂 = 𝑥1, 𝑥2, . . . , 𝑥n, 𝑥j corresponds to the 𝑗-th spatial dimension, and where

𝛾η =

⎧

⎨

⎩

1, 𝜂 ∈ Ω

1 +
𝑖

𝜔
𝜎(𝜂), otherwise

(2.5)

where 𝜔 is the angular velocity from Equation (2.2), Ω is the domain of interest, and the
absorption proĄle 𝜎 is deĄned by the following equation:

𝜎(𝜂) = 𝜎max

(︂

1−
𝜂

∆𝐿

)︂2

, (2.6)

where 𝜎max is maximum PML absorption parameter, ∆𝐿 deĄnes the width of a PML and
𝜂 is the spatial distance from the domain border in a given dimension.

Domain Ω PML

Figure 2.4: The PML layer attenuates all incoming waves quadratically (Equation (2.5)) in
order to satisfy the SommerĄeld radiation condition at inĄnity.

When the PML is used as a boundary condition, the Laplace operator is transformed in
the following way:

∇2 =
∑︁

η

𝜕2

𝜕𝜂2
→ ∇̂2 =

∑︁

η

1

𝛾η

𝜕

𝜕𝜂

(︂

1

𝛾η

𝜕

𝜕𝜂

)︂

(2.7)
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Chapter 3

Physics-Based Deep Learning

Watt et al. [56] deĄnes neural networks as computational models that describe empirical
data and the underlying phenomena 𝑓*, with little or no human involvement. We denote
idealized parameters of functions with a superscript *. Goodfellow et al. [13] view a feed-
forward network as a mapping y = 𝑓(v,θ) from an input v to an output y (e.g. category,
heatmaps, etc.). An example of the mapping is depicted in Figure 3.1.

But the one question that arises is if the neural network is able to solve a PDE? According to
Universal Approximation Theorem, [17] any single-layer network with a nonlinear activation
function can approximate any continuous function to a reasonable accuracy. Therefore, the
network should be able to represent a PDE solution at least.

Input v
i

Output y
i

Model f(v
i
,
  
)

Figure 3.1: A feedforward neural network can be deĄned as a mapping from an input x

to an output y. In this particular example, an input image is mapped to a segmentation
mask (the person is segmented).

According to Goodfellow et al. [13], most of the learning algorithms can be divided into
two categories Ű supervised learning and unsupervised learning. The main difference
between the two approaches is the presence of a label Ű representing reference or ground
truth ŞsolutionŤ.

Supervised learning. Given a dataset 𝒟 containing features v1,v2, . . .vn, each feature
vi is associated with a label yi Ű the true label is known. Formally, Ąnding the optimal
model weights θ* is deĄned as:

θ* = argmin
θ

∑︁

(vi,yi)∈𝒟

𝐿(𝑓(vi,θ),yi), (3.1)
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where 𝐿(·, ·) symbolizes a loss function.

Unsupervised learning. Unlike supervised learning, the unsupervised approach omits
the ground truth labels yi. This approach is particularly useful when obtaining the ground
truth is not viable Ű computationally infeasible, or requires an immoderate amount of time.
Formally, acquiring an optimal set of model weights is described by the following equation:

θ* = argmin
θ

∑︁

vi∈𝒟

𝐿(𝑓(xi,θ)) (3.2)

3.1 Neural Network Optimization

DeĄnition of the optimal model weights 𝜃* is described by Equation (3.1) and Equa-
tion (3.2). But how would one Ąnd the optimal model weights 𝜃*? In order to Ąnd the
optimal weights θ*, optimization algorithms are used. Methods such as Adam [20] or SGD
(with momentum) [39] belong to the Ąrst-order optimization methods. These methods are
still the most popular ones, due to their low memory consumption, computational require-
ments, and robustness. As an example, the Vanilla Gradient Descend algorithm is described
by Algorithm 3.1.

Listing 3.1: Pseudo-code for Gradient Descend algorithm, where 𝛼, 𝜃, 𝒟 denote learning
rate, model parameters and dataset, respectively. 𝐽(·, ·) is an objective function, and 𝐿(·, ·)
is a loss function. Each iteration contains following steps: computing a loss value, computing
derivative of the loss value w.r.t. parameters 𝜃, and updating parameters using computed
gradients, where 𝛼 denotes a learning rate of an optimizer.

1. Compute prediction ŷ = f(x,θi)

2. Compute loss value L(ŷ,y) .

3. Compute gradients w.r.t parameters ∂
∂θi

J(θi,D).

4. Update parameters θi+1 = θi − α ∂
∂θi

J(θi,D)

5. Go to step 1, until |L(ŷ,y)| is sufficiently small or other condition is met.

Although the second-order methods converge in fewer optimization iterations, they are less
popular due to their heavy memory, and computation consumption [49]. Even though
methods such as BFGS [24] or Levenberg-Marquardt [32] tackle the problem with high
memory footprint, Ąrst-order methods are still the preferred option due to their scalability
for larger neural networks as can be seen in Figure 3.2.

3.2 Categorization

Physics-Based Deep Learning (PBDL) can be categorized in two ways. The Ąrst is based
on the unknown variable. The other type of categorization distinguishes the integration
depth of a physics model into a model.
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Figure 3.2: Although second-order methods (BFGS, Levenberg-Marquardt) converge in
signiĄcantly less epochs than SGD, the required computational time increases exponentially
with the number of neurons.

3.2.1 Based on the Unknown

The Ąrst concept of categorization of Physics-Based Deep Learning (PBDL) is based on the
unknown variable. If the method’s objective is to Ąnd the parameters of a physical system
𝑎(x) based on the observations 𝑢(x), then this method belongs to the inverse problems
category. Otherwise, it is a part of forward simulations group, where the task is to predict
a state or temporal evolution (see Figure 3.3). As an example, given the seismic waves, the
goal of an inverse problem would be to locate the source of the earthquakes. In the forward
simulation, the source of the waves is known, and the goal is to solve which locations are
affected and how they are affected by the seismic waves.

Model f(v
i
,
  
)

Forward Simulation

Model f(v
i
,
  
)

Inverse Problem

Figure 3.3: The PBDL can be categorized based on the unknown. If the parameters of a
physics model are unknown, it belongs to the category of inverse problems. Otherwise, it
belongs to the forward simulation category, where the model parameters 𝑎(x) are known,
and the goal is to solve the unknown Ąeld 𝑢(x).

3.2.2 Based on the Physics Integration

The physics model can be integrated into the deep learning (DL) model in multiple ways.
Thuerey et al. [50] distinguishes three main categories based on the integration depth of a
physics model:
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Supervised. With the supervised approach, a physical model is only used to generate the
data. There is no other interaction with the physical model.

Loss-terms. A PDE describing the physical model is encoded in the loss function. More
detailed description of physics loss is in Section 3.3.

Interleaved. Interleaved category represents the tightest coupling between deep learning
and a physical model. The physical simulation (solver) is intertwined directly with the
learning process. Naturally, a differentiable solver is expected.

3.3 Physics-Informed Loss Function

The ground-truth data for physical systems are usually generated in the supervised settings
using the numerical simulation of a physical model. Thuerey et al. [50] claim that with
the knowledge of a target physical model, speciĄc inductive biases can be made toward
improving the training process.

In this work, we only consider time-independent partial differential equation (PDEs). Using
the notation framed by Thuerey et al. [50], a PDE can be formulated as a function ℱ of
the derivatives of an unknown 𝑢(x):

ℱ(𝑢, 𝑢x, 𝑢xx, . . . , 𝑢xx...x)(x) = 𝑔(x), (3.3)

where the 𝑥 subscript denotes a spatial derivative w.r.t to 𝑥, and 𝑔 stands for a forcing
term. The notation is slightly abused by letting 𝑥 be any dimension in an attempt to keep
the equation short and clear.

By deĄning a residual 𝑅 using Equation (3.4), 𝑅 should be closer to zero the closer the
approximation u is to the true solution u*. Therefore the residual acts as a loss function
that should be minimized.

𝑅 = ℱ(𝑢, 𝑢x, 𝑢xx, . . . , 𝑢xx...x)(x)− 𝑔(x) (3.4)

While Thuerey et al. [50] states that using only the residual term 𝑅 as a loss function
𝐿physics would result in a random offset or scale, we assume a forcing term 𝑔(x) to be
nonzero because we use the Helmholtz equation with constant sources, so the scaling of
the unknown 𝑢(x) is constrained. Therefore, 𝐿physics loss deĄned by Equation (3.5) can be
used as a loss function without causing random scaling issues [45, 47]. Subsequently, the
training objective is deĄned by Equation (3.6).

𝐿physics = ||(𝑅(𝑢))(x)||22 (3.5)

θ* = argmin
θ

∑︁

vi∈𝒟

𝐿physics(𝑓(vi,θ)) (3.6)

However, the combined loss can help to pin down the prediction in more points not just in
𝑔(x) [50]. The resulted objective function is described as:

θ* = argmin
θ

∑︁

vi∈𝒟

𝜆1||yi − 𝑓(vi,θ)||
2
2 + 𝜆2𝐿physics(𝑓(vi,θ)), (3.7)
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where 𝜆1, 𝜆2 indicate how the supervised and the physics term contribute to the objective
function, respectively.

Example 1: Let Equation (3.8) be the governing equation describing the behavior of a
target system, where 𝑢(x) denote the unknown. With unsupervised settings, a physics loss
𝐿physics can be leveraged. By reordering terms of Equation (3.8), the residual 𝑅 is obtained
as follows:

[︂

∇2 +
(︁𝜔

𝑐

)︁2
]︂

𝑢(x) = 𝜌(x), (3.8)

𝑅(x) =

[︂

∇2 +
(︁𝜔

𝑐

)︁2
]︂

𝑢(x)− 𝜌(x). (3.9)

With the deĄned residual 𝑅, we can utilize the physics loss function (Equation (3.5)), which
results in:

𝐿physics =

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

[︂

∇2 +
(︁𝜔

𝑐

)︁2
]︂

𝑢(x)𝜌(x)

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

2

2

. (3.10)
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Chapter 4

Different Viewpoints on Graph

Neural Networks

Although convolutional neural networks [47, 50] have been a preferred option for physics-
based problems, it restricts the form of discretization of the target domain Ű domain can
be only discretized using a regular grid (Figure 4.1).

(a) Regular grid. (b) Arbitrary graph struc-
ture.

Figure 4.1: Figure (a) depicts an image, which can be represented as a Ąxed-size grid graph.
However, as Figure (b) shows, a graph can hold more complex shapes Ű in this case the
edges were generated using triangulation of nodes.

On the other hand, the discretization restrictions are no longer present with more general
structures such as graphs, which allow various discretization. Every physics system can
be modeled using a graph, as samples produced by spatial sampling can be represented as
nodes in a graph. Sanchez-Gonzalez et al. [40] connect nodes in a certain radius, whereas
Pfaff et al. [34] operate directly with the edges produced by a mesher. These two method
networks [34, 40] are based on the encode-process-decode architecture deĄned under the
Graph Network framework [4]. However, the mentioned methods predict only the time
evolution of time-dependent PDEs.

Graph Neural Networks (GNN) were introduced by Scarselli et al. [42] and Gori et al. [14].
Li et al. [25] added a new network architecture to the ŞGNNŤ family later. Since then there
have been numerous works regarding neural networks for graphs [21, 54, 52].
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4.1 Message Passing Network

Gilmer et al. [12] formed the Message passing neural networks (MPNN) framework, which
uniĄes a portion of the models working with graphs. Let a tuple 𝐺 = (𝑉,𝐸) denote a graph
with a set of edges 𝐸 and a set of nodes 𝑉 . Connection between the nodes is denoted by
the edge eij , which connects nodes vi and vj . The edge can also contain features alongside
the representation of the connection between the nodes.

Figure 4.2: In a message passing step, the updated node’s state is computed from its
current state and aggregated messages from its neighbors. Adapted from Towards Data
Science blog1.

The MPNN framework can be split into three steps: message pass, update and decode (see
Algorithm 4.1). Message pass step propagates the information between the neighbours
𝐾-times, where each additional message pass step increases the node’s receptive Ąeld.

Listing 4.1: An algorithm of a MPNN framework consists of three steps: message, update
and decode.

1. Message.

A message mk+1
i = ρvj∈N(i)

(︀

φv
(︀

vki , v
k
j , eij

)︀)︀

is computed for each node. ρv represents

an aggregator, which aggregates messages from the neighborhood {vj}j∈N(i)

of the node vi. φk is a differentiable function. k ∈ Z+ denotes a message pass

iteration step.

2. Update.

Each node state vi is updated using following equation: vk+1
i = γ

(︀

vki ,m
k+1
i

)︀

, where γ

is a differentiable function. For more message pass steps, go to step 1.

3. Decode.

After K steps, create a final feature vector representing the whole

graph ŷ = ρu
(︀

{vKi }j∈G

)︀

. ρu denotes a differentiable function.

A message 𝑚k+1
i of 𝑖-th node at 𝑘+ 1 message pass iteration is computed using a differen-

tiable function 𝜑v Ű such as multi layer perceptron (MLP). Function 𝜑v takes the edge 𝑒ij
and nodes it connects as an input(see Equation (4.1)). Messages of neighbouring nodes are
aggregated using a permutation invariant function 𝜌v such as sum, mean, etc.

1Figure adapted from https://towardsdatascience.com/graph-neural-networks-as-neural-

diffusion-pdes-8571b8c0c774.
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𝑚k+1
i = 𝜌vj∈N(i)

(︁

𝜑v
(︁

𝑣ki , 𝑣
k
j , 𝑒ij

)︁)︁

, (4.1)

where 𝑁(𝑖) is a set of indices of nodes neighboring with a node 𝑣i. 𝑒ij denotes an edge
connecting nodes 𝑣i and 𝑣j .

Following the message step is the update step, where the nodes’ features 𝑣k+1 are updated
using the previous state 𝑣k and aggregated message 𝑚k+1. The update step is deĄned for
𝑖-th node by Equation (4.2). The message pass step refers to the execution of the update
and the message step (Figure 4.2). One message pass step can be view as one iteration of
the node update:

𝑣k+1
i = 𝛾

(︁

𝑣ki ,𝑚
k+1
i

)︁

, (4.2)

where 𝛾 is a differentiable function such as MLP. After 𝐾 message passings, the nodes’
features are decoded to a single vector graph representation 𝑦 using a differentiable function
𝜌u:

𝑦 = 𝜌u
(︀

{𝑣Ki }j∈G
)︀

(4.3)

4.2 UniĄed Framework

Gilmer et al. [12] introduced the message-passing neural network (MPNN) and Wang et al.
[53] presented the non-local neural network (NLNN), unifying various GNN and GCN
architectures, and a portion of self-attention methods, respectively. Battaglia et al. [4]
later presented the graph networks (GN) framework, which generalizes MPNN as well as
NLNN methods.

Figure 4.3: Example of the notation used within the GN framework. vi corresponds to the
attributes of 𝑖-th node. 𝑠k and 𝑟k are indices of the sender and receiver nodes, respectively.
Lastly, ek denotes attributes of 𝑘-th edge.

The GN framework [4] deĄnes graph as a tuple 𝐺 = (u, 𝑉, 𝐸). The u denotes a global
attribute of a graph. A set of nodes attributes of the cardinality 𝑁v and 𝑁 e is deĄned
as 𝑉 = {vi}i=1:Nv . The 𝐸 = {(ek, 𝑟k, 𝑠k)}k=1:Ne is a set of edges’ attributes, where
ek, 𝑟k ∈ {1, . . . , 𝑁v}, 𝑠k ∈ {1, . . . , 𝑁v} denote the attributes of an edge, an index of an
receiver node and an sender node, respectively (see Figure 4.3).

e′k = 𝜑e(ek,vrk ,vsk ,u) e′i = 𝜌e→v
(︀

𝐸′
i

)︀

v′
i = 𝜑v(e′i,vi,u) e′ = 𝜌e→u

(︀

𝐸′
)︀

(4.4)

u′ = 𝜑u(e′,v′,u) v′ = 𝜌v→u
(︀

𝑉 ′
)︀

where 𝐸′
i = {(e′k, 𝑟k, 𝑠k)}rk=i,k=1:Ne , 𝑉 ′ = {v′

i}i=:Nv and 𝐸′ =
⋃︀

i𝐸
′
i. The 𝜑e and 𝜑n func-

tions compute per-edge and per-node updates, respectively. 𝜑u is used to compute a global
update. The 𝜌 corresponds to a function mapping a set of elements to a single element. 𝜌
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function must be invariant to permutations and take variable number of arguments (e.g.
summation, product, mean, maximum, etc.) [4]. The number of message passings corre-
sponds to the number of update steps. The more message passings there are, the larger
neighbourhood is aggregated.

4.2.1 Update steps of a GN block

Given a graph 𝐺 = (u, 𝑉, 𝐸), where u, 𝑉 and 𝐸 denote global attributes, edges and nodes,
respectively, the update steps are deĄned follows:

Listing 4.2: Description of the graph network’s update step. For more details see Section 4.2.

1. Edge update φe.

The function φe is applied for each edge (ek, rk, sk), resulting in updated

attributes e′

k. The function φe takes edge’s attributes ek,

receiver’s attributes Vrk, sender attributes Vsk and the global attributes u.

2. Edge aggregation ρe→v.

After updating the edges’ attributes, edges are aggregated on "node-level".

All edges which have i-th node as a receiver will be aggregated/reduced into a single

element e′i. Selection of the edges is defined as E′

i = {(e′

k, rk, sk)}rk=i,k=1:Ne.

3. Node update φv.

Similarly to the edge update step, all nodes vi attributes are updated using φv,

resulting in v′

i. The arguments of the update function φv are aggregated edges e′i,

node’s old attributes vi and global attributes u

4. Node aggregation ρv→u.

Given set of all the nodes V ′ = {v′

i}i=1:Nv, the aggregation ρv→u takes V ′ and results

in the aggregated element v′.

5. Edge aggregation ρe→u.

The set of all edges E′ =
⋃︀

i E
′

i is aggregated using ρe→u into e′.

6. Global update φu.

Finally, aggregated edges e′, aggregated nodes v′ and old global attributes u are

transformed using φu into updated global attributes u′.
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(a) Edge update (b) Node update (c) Global update

Figure 4.4: Diagram of the updates in a GN block. Black color denotes data, which are
used in the update, blue color corresponds to the updated element. See Section 4.2.1 and
Equation (4.4) for more details. Adapted from Battaglia et al. [4].
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Chapter 5

Exiting Solutions for Solving PDEs

Using Neural Networks

Although the section name points out the PDE neural solvers in general, a strong emphasis
is put on solving the Helmholtz equation. The Helmholtz equation can be solved using Şclas-
sicalŤ methods such as Ąnite-difference (FDM) [33] and Ąnite element methods (FEM) [18].
However, Treeby and Cox [51] state that using these methods is computationally expensive.
This is caused mainly by a Ąne resolution requirement, resulting in a too-large grid. To
reduce memory as well as computational consumption, the k-Wave toolbox [51] uses k-space
pseudospectral method [6, 7, 31, 48].

k-Wave reduces the required computational time compared to FEM and FDM. However,
with every dimension, the required time of a simulation rises by an order of magnitude,
thus making the conventional solvers still computationally expensive [47]. Subsequently,
the neural solvers have been recently extensively researched, with the premise of decreasing
computational demands over the conventional numerical methods. We consider a general
PDE with parameters 𝑎 of the following form:

(ℒa𝑢)(x) = 𝑔(x), 𝑥 ∈ Ω

𝑢(x) = 0, 𝑥 ∈ 𝜕Ω,
(5.1)

where ℒ is a differential operator, and 𝑢, 𝑔 are functions on the spatial domain. 𝑔 represents
the forcing term, whereas 𝑢 is the unknown in the forward simulation. Spatial coordinate
is denoted by x.

5.1 Physics-informed Neural Networks

Recently, there has been a growing interest in mesh-independent methods. Various Physics-
informed neural network (PINN) methods [12, 45, 9, 37, 23] use multilayer perceptron (MLP)
to map a spatial coordinate x directly to a solution 𝑢(x). Thus, PINN methods learn to
represent the solution instead of computing one. An optimization algorithm is used to Ąnd
the closest representation to the true solution 𝑢*(x). However, these networks need to be
retrained for each set of new PDE parameters 𝑎. Nonetheless, querying a new position x

only requires a forward pass of the model, making it mesh-independent.
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PINN [36] utilizes an underlying PDE by encoding it into the physics loss (see Section 3.3).
The neural network takes the spatial coordinates xi as an input and outputs a physical
quantity 𝑢i(xi). Auto-differentiation is utilized to compute the physics loss containing
gradients w.r.t. input. Given that the model directly represents the unknown function and
uses the auto-differentiation to compute its derivatives, the PINN methods enforce a strong-
form solution. An example of the pipeline of PINN methods can be seen in Figure 5.1.

Despite that Chamberlain et al. [8], shows the network architecture and topology can be
designed to correspond with underlying PDE. PINN methods generally use a fully connected
shallow neural network [45, 36, 55, 9]. The second-order methods are employed as a result
of using the shallow neural networks with few parameters, to assure quicker convergence to
the PDE solution.

Auto

Differentiation

Minimize underlaying

equation residual

Input 

Coordinates x

Physical

Quantity u

Figure 5.1: In PINN methods, the spatial coordinates are used as an input of a neural
network. The network outputs the prediction of a physical quantity. The gradients of
the output w.r.t. input are computed effortlessly by using the auto-differentiation. PINN
approaches usually use a fully connected shallow neural network [36, 45, 9]. The Ągure is
based on Ben Moseley blog1.

5.2 Neural Operators

Another branch of neural solvers called Neural operators [2, 26] aims to learn a direct
mapping between the inĄnite-dimensional function spaces from forcing term 𝑔(x) to an
unknown 𝑢(x) (see Equation (5.1)), thus making them discretization-invariant.

5.2.1 Graph Kernel Network

Anandkumar et al. [2] architecture design is motivated by reformulating the linear PDEs
using the Green’s function 𝐺. The Green’s function 𝐺 : Ω × Ω → R is a solution to the
following problem:

(ℒa𝐺(x, s) = 𝛿x(s), (5.2)
1Figure based on https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-

network
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where x ∈ Ω, s ∈ Ω and 𝛿x is a Dirac delta function centered at the point x. ℒ is a linear
differential operator with parameters 𝑎. Then the solution 𝑢(x) can be presented as:

𝑢(x) =

∫︁

Ω
𝐺(x, s)𝑓(𝑠) 𝑑𝑠. (5.3)

Note that Green’s function depends on parameters 𝑎, and is different for each set of param-
eters 𝑎.

Graph Kernel Networks (GKN) directly approximates the Green’s function by using a
graph neural network. Additionally, the integral is viewed as an averaging aggregation of
the messages in the graph neural network (see Section 4.1). The resulting approximation
is described by the following equation:

𝑢t+1(x) = 𝜎
(︀

𝑊𝑢t(x) +
(︀

𝒦(𝑎; 𝜃)𝑢t
)︀

(x)
)︀

, (5.4)

where 𝜎 : R → R is an activation function, 𝑊 ∈ 𝑅n×n is parametrized matrix, 𝜃 are the
parameters of the kernel 𝜅 and the kernel integral 𝒦 is deĄned as follows:

(𝒦(𝑎, 𝜃)𝑢t) (x) =

∫︁

Ω
𝜅 (x, s, 𝑎(x), 𝑎(s); 𝜃)𝑢t(x) 𝑑𝑠, (5.5)

The main disadvantage of GKN is connecting each node with all the other nodes, making it
computationally and memory expensive in a larger domain. As the authors state, decreasing
the resolution causes errors, making the method less competitive. Other methods, such as
HelmNet [47], usually cast the PDE in a Ąnite-dimensional Euclidian space. Therefore,
these methods are discretization-dependent.

5.2.2 Fourier Neural Operator

Li et al. [26] replace the kernel operator deĄned by Equation (5.5) with the Fourier integral
operator 𝒦:

(𝒦(𝜃)𝑢t) (x) = ℱ−1 (𝑃θ · ℱ(𝑢t)) (x), (5.6)

where 𝑃θ ∈ 𝑅n×n is a convolution matrix in Fourier space, ℱ and ℱ−∞ denote Fourier
transform and its inverse, respectively.
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Figure 5.2: The Fourier Neural Operator adopts the encode-process-decode. Encode and
decode blocks are implemented using fully connected layers. The process part is realized
using the Fourier layers. Adapted from Li et al. [26].
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The Fourier neural operator has an iterative structure. It is composed of encode, process,
and decode blocks. The encode and decode parts are implemented using a fully connected
layer, as depicted in Figure 5.2. The process part is realized by using the Fourier layer ℱ ,
which transforms the input into Fourier space, performs a linear transform 𝑃 , and Ąlters
out higher frequencies. Then the inverse Fourier transform ℱ−1 is applied. Additionally,
the Fourier layer input is linearly transformed in its original space by tensor 𝑊 . This result
is then added to the output of the inverse Fourier transform (see Figure 5.3).

h(x) R

W

Figure 5.3: The Fourier layer transforms the input ℎ into Fourier space, performs a linear
transformation 𝑃 for the lower frequencies, Ąlters out higher frequencies and applies inverse
Fourier transform. Adapted from Li et al. [26].

Fourier Neural Operator (FNO) achieves lower error than Graph Kernel Method, at the
cost of requiring uniformly sampled data. Additionally, it has a signiĄcantly higher speed
than the traditional solvers. In the original papers, both neural operators are evaluated on
Burgers’ equation, Darcy Ćow, and Navier-Stokes equation.

5.3 HelmNet

In contrast with Neural Operator [2], HelmNet [47] learns the mapping only between the
Ąnite-dimensional Euclidian spaces by using Convolutional Neural Networks (CNN). Au-
thors of Helmnet [47] pursue the identical objective as our work Ű solving the Helmholtz
equation (Equation (2.2)). Helmnet is based on the U-net architecture [38], and it is struc-
tured as an iterative solver described by the following equation:

(∆𝑢k+1, ℎk+1) = 𝑓θ(𝑢
k, 𝑒k, ℎk)

𝑢k+1 = 𝑢k +∆𝑢k+1,
(5.7)

where 𝑢 denotes an unknown wave-Ąeld from Helmholtz equation (Equation (2.2)), ℎ is a
recurrent belief state, 𝑒k represents the PDE residual (see Section 3.3). 𝑓θ is a learnable
differentiable function, implemented using a modiĄed U-net [38]. The authors discovered
that instead of passing the PDE parameters directly, incorporating these parameters into
the residual term 𝑅 (Equation (3.4)) eases the network’s learning of the mapping from the
parameters of a PDE 𝑎 to a solution 𝑢. We omitted the spatial coordinate x in order to
improve the clarity of the equation.

The training is guided using only a physics loss formed by the residual of the Helmholtz
equation. The method applies gradient clipping at a value of 1 to avoid exploding gradients.
The other distinctive feature of HelmNet is utilization of a replay buffer, which indirectly
enables the model to be trained for unrolling for a large number of iterations.
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Figure 5.4: Scheme of an iterative solver proposed by Stanziola et al. [47]. A belief state
ℎ, residual 𝑒 and wave-Ąeld prediction from previous iteration are passed as inputs to a
function 𝑓θ in each iteration. The function 𝑓θ is realized using a modiĄed version of U-Net,
which is depicted in Figure 5.5. Adapted from Stanziola et al. [47].
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Figure 5.5: Scheme of a modiĄed version of U-Net. Each decoding block consists of two
3 × 3 convolutional kernels and PReLu activation function [15]. Each convolution layer
contains only 8 channels, resulting in a lightweight network with 47k parameters. Adapted
from Stanziola et al. [47].
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Chapter 6

Proposed Solution for Sound

Propagation Approximation

To solve the Helmholtz equation, we propose an iterative solver based on the graph neural
networks. The neural network architecture and the training procedure are described more
extensively in Section 6.2 and Section 6.4. Unlike Helmnet [47], our solution employs
supervised learning, thus a reference solution 𝑢*(x) is required. The following section
provides a more detailed description of the used dataset.

6.1 Creating a Synthetic Dataset

We use the method proposed by Stanziola et al. [47] to generate synthetic skulls as sound
speed maps. The shape of the idealized skull is created by summing circular harmonics
with random amplitude and shape. The whole work considers normalized units 𝜔 = 1 rad/s
and background speed of sound of 1m/s. As depicted in Figure 6.1, the skull thickeness
ranges from 2 to 10m with sound speed varying from 1.5 to 2m/s. Stanziola et al. [47]
generated coarser samples with 96 × 96 grid size with 1m grid spacing. We opted for a
higher resolution, which provides an option for later experiments with different resolutions
by downsampling the samples. Hence we set the grid size to 384 × 384 with 0.25m grid
spacing. The source location is generated randomly for each sample, but each coordinate
value is a multiple of four due to subsequent downsampling. By using these settings the
samples can be downsampled by a factor of 2 and 4 effortlessly.

Unlike Helmnet [47], our model is trained using supervised learning. For that reason,
each data sample requires a ground truth waveĄeld. Obtaining a closed-form solution for
each data sample would be infeasible, thus, we used k-Wave [51] to generate numerical
solutions for each sample as the ground truth. For each skull, three random wave source
positions are generated. Due to the linearity of the Helmholtz equation, solutions can be
added together to create a new, more complex solution with multiple sources, as shown in
Figure 6.2. Training, validation, and test sets contain 24 000, 3 000, and 3 000 waveĄelds
samples, respectively. The dataset is available in a public repository1.

1https://sc-nas.fit.vutbr.cz:10443/xnguye16/ssw-dataset
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Figure 6.1: Synthetic skulls were generated using the method proposed by Stanziola et al.
[47]. Summing several elliptical harmonics results in a shape similar to a skull. Each skull
has a random sound speed between 1.5 and 2m/s. Downloaded from Stanziola et al. [47].
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Figure 6.2: Synthetic skulls were generated by summing several elliptical harmonics [47].
Reference waveĄelds were computed using k-Wave [51] solver. Three waveĄelds were com-
puted for each SOS map, each with a different source location. WaveĄelds can be added
together to produce a new and more complex waveĄeld as a consequence of the Helmholtz
equation linearity.

6.2 Network Architecture Solving the Helmholtz Equation

The proposed solution’s network architecture is depicted in Figure 6.3. The network is
based on the graph neural network formalized using the Graph Network framework [4] with
the encode-process-decode structure [34, 40], since it should handle data sampled on an
irregular grid to a certain degree.
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Figure 6.3: The network architecture consists of three parts Ű encode, process, and de-
code. In the encoder stage, all features are respectively transformed into latent vectors.
A message-passing mechanism is executed in the process stage, where information from
neighboring nodes is aggregated to produce updated features for the target node and edges.
Lastly, the decoder transforms data from latent space to output space.

All parts of the process block 𝜑e, 𝜑v, both encoders 𝜖v, 𝜖e and decoder 𝛿v are implemented
using a two-layer MLP with ReLU activation function [1] and a residual connection. We
omit the global features, therefore 𝜑u function is not used. The latent and output size is 64,
except 𝛿v, where the output size equals to the model’s output size. The MLP is depicted
in Figure 6.4. Due to residual connections, our method deĄned by Equation (6.2) can be
viewed as:

𝑢k+1 = 𝑢k + 𝑔θ(𝑣, 𝑒, 𝑢
k, 𝑅k), (6.1)

where 𝑔θ would be the MLPs without the residual connection. After this modiĄcation
it resembles to the Euler forward method. Furthermore, Lu et al. [28] present that each
residual block can be perceived as one step of the Euler method:

𝑢k+1 = ℎ𝑓(𝑢k), (6.2)

where ℎ represents the step size. Additionally, for the same reasons described in Sec-
tion 5.2.1, we opted for the averaging aggregation function.

All parameters from the Helmholtz equation, such as SOS map, source map, or spatial
coordinate, are used as an input alongside with the prediction and residual from a previous
iteration. All nodes are sampled on a uniformly spaced grid, where all nodes within a radius
𝑟 = 0.02 are connected.

Encode Encoder consists of two separate MLPs 𝜖v, 𝜖e for nodes and edges, respectively.
These encoders transform input features (procesess each node and each edge separately)
into latent vector of size 64. Each node feature 𝑣i with a spatial position xi is composed
of SOS map𝑐(xi), wave source distribution 𝜌(xi) and PML absorption term 𝜎(xi). The
distance information |𝑥i𝑗| and 𝑥i − 𝑥j between connected nodes is encoded in the edges.
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Figure 6.4: The main building block for the whole network is based on the two-layer MLP
with a ReLU activation function and a residual connection.

Figure 6.5: Hop connections connect every 𝑛-th node. In this particular case 𝑛 = 4. Hop
connections 𝑛 ∈ {3, 5, 10} are used in the proposed solution.

The SOS map is sampled using 96 × 96 regular grid. Thus the data are downsampled
using a factor of 4. Connections between the nodes are created using radius 𝑟 = 0.02, node
coordinates are normalized to range [0, 1].

Additionally, we use connections between every 𝑛-th node (hop connection), increasing the
model’s receptive Ąeld (Figure 6.5). The hop connections can be seen as a multi-resolution
graph [27, 35] and they should enable the network to predict larger area in less unroll
iterations. Our model contains hop connections between every 3-th, 5-th and 10-th node.

Process Processor unit is a derivation of a processor deĄned by Pfaff et al. [34]. It
consists of 𝑃 identical blocks Ű Graph Block [4]. Each block contains a separate set of
weights.

As depicted in Figure 6.6, the Graph Block consists of three parts: 𝜑e, 𝜑v and 𝜌e→v.
Function 𝜑e is implemented using MLP. It encodes data of an edge and nodes connected to it
into a new edge feature. Then edges connected to a node are aggregated using function 𝜌e→v.
In our work, we use the averaging function as an aggregation function. Aggregated features
are transformed into an updated version of node features using a function 𝜑v. The previously
mentioned function 𝜑v is also implemented using MLP. The described functionality is also
referred to as message passing [12]. One Graph Block corresponds to one message passing.
More Graph Blocks result in a larger receptive Ąeld of the network.
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Figure 6.6: Graph block consists of two parts: edge block and node block. Edge block uses
features of a given edge and its nodes to update edge’s features. Node block updates a
node features based on all the nodes connected to the target node. Functions 𝜑e, 𝜑v are
implemented using MLPs, aggregation function 𝜌e→v is using the averaging function.

Decode Last stage of the network 𝛿v decodes node features from latent space into the
scaled waveĄeld prediction 𝛽𝑢k+1, where 𝛽 = 500 is a scaling term (see Section 6.4).

6.3 Approximating the Equation Residual

Due to the explicit residual calculation, an approximation of the Laplacian has to be com-
puted. Equation (2.2) is transformed into the residual in the following way:

𝑅 =

[︃

∇2 +

(︂

𝜔

𝑐(x)

)︂2
]︃

𝑢(x)− 𝜌(x), (6.3)

Based on the conducted experiments (Section 6.3), we use a pseudo-spectral method, which
is restricted to the regular grid, to approximate the derivatives.

6.3.1 Pseudo-spectral Method

Stanziola et al. [47] approximate Ąrst-order derivatives using FFT-based method (see Equa-
tion (6.4)). They are then composed into the Laplacian. The Laplacian can not be com-
puted directly as a result of using PML as the boundary condition (Equation (2.4)).

𝑓η(𝜂) ≈ ℱ−1 (ℱ (𝑖𝑘η𝑓(𝜂))) , (6.4)

where 𝜂 = 𝑥1, 𝑥2, . . . , 𝑥n denotes a spatial dimension, 𝑓η stands for a gradient of the function
𝑓 w.r.t. 𝜂, 𝑘η represents wavenumbers in a given direction, ℱ , ℱ−1 are Fourier transform
and its inverse, respectively.

6.3.2 Average Gradient on Star

The Average Gradient on Star (AGS) and Per-Cell linear Estimation (PCE) methods unlike
the FFT-base method can be utilized on an irregular grid. In a 2D mesh, for a triangle 𝑡
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with vertices 𝑣i, 𝑣j , 𝑣k, PCE is deĄned as follows [30]:

∇𝑓t ≈ (𝑓j − 𝑓i)
(𝑣i − 𝑣k)

⊥

2𝐴t
+ (𝑓k − 𝑓i)

(𝑣j − 𝑣i)
⊥

2𝐴t
, (6.5)

where 𝐴t is an area of the triangle 𝑡, 𝑓i is a value of a vertex 𝑣i and (𝑒)⊥ denotes a
perpendicular vector to the vector 𝑒.

Average Gradient on Star (AGS) averages all gradients from neighboring vertices to compute
per-vertex gradients:

∇𝑓(𝑣) ≈
1

∑︀

i∈𝒩 (v)𝐴i

∑︁

i∈𝒩 (v)

𝐴i∇PCE𝑓i (6.6)

where ∇PCE𝑓i is deĄned by Equation (6.5) and 𝒩 (𝑣) is set of vertices connected to the
vertex 𝑣.

6.4 Training the Iterative Model

As mentioned before, the model is trained using supervised learning. Any addition of
physics terms resulted in an unstable training and constrained the model’s ability to learn
more than a small neighborhood around the source.

6.4.1 Loss Function

Naturally, mean-squared error is applied as a loss function

𝐿 =
1

𝑁

∑︁

||𝑢T − 𝛽𝑢*||22, (6.7)

where 𝛽 = 500 is a scaling term, 𝑁 is the number of graph samples. All samples are
downscaled to 96 × 96. Symbol 𝑢T is the predicted solution after 𝑇 unroll iterations. In
other words, loss function only takes into account a prediction from the last unroll iteration.

The value of scaling term 𝛽 was selected empirically. It can be seen as scaling the source
amplitude by 𝛽. Usage of the scaling term changes the magnitude as well as the direction
of loss function gradients. We hypothesize that the scaling term is essential mainly due to
the numerical stability, since the waveĄeld values are too small when the waveĄeld is not
scaled.

6.4.2 Training phases

Although the model can be trained end-to-end, the two-phased approach requires only half
of the computational time (Table 6.1). The Ąrst phase involves training the network with 3
unroll iterations for ≈ 70 k optimization iterations. As illustrated in Figure 6.7, the network
is then Ąne-tuned for ≈ 10 k optimization steps with 8 unroll iterations. Both phases are
trained using the Adam optimizer [20] with a learning rate 𝛼 = 3𝑒 − 5. The network is
trained on 8 A100 40GB GPUs using Pytorch Lightning2 distributed data-parallel (DDP)
accelerator.

2https://www.pytorchlightning.ai/
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Figure 6.7: Even though end-to-end training requires the same number of optimization steps
as the two-phased approach, it requires more time, since the duration of one optimization
step is longer. Thus we opted for training with two phases. The Ąrst part of training
comprises 70k optimization iterations with three unroll iterations. Afterward, the network
is Ąne-tuned for less than 10k optimization iterations with 8 unroll iterations. Here the
network learns to stabilize unrolling. The displayed error curve was calculated on the
validation set. Thus, the peak in the second phase of the training signalizes overĄtting.

Table 6.1: Two phased training signiĄcantly reduces the computational resources compared
to the end-to-end approach. The training time was measured on a computer with 8 A100
40GB.

End-to-end 2 phases

MSE 14.301 14.577
Duration [h] 21 10
Optim. steps ≈ 80k

6.4.3 Mini-batching

Instead of computing the gradients based on the whole dataset, the gradients are approx-
imated from a mini-batch. Based on the assumption that the data distribution of the
mini-batch is close to the data distribution of the whole dataset, the gradients should be
similar as well.

Mini-batch from a set of images is typically formed by concatenating the same-sized images
along a new dimension. However, if the graphs are mini-batched the same way as the
images, it would result in high memory consumption. This is due to the padding, since all
graphs can have a different shape, nodes count, etc. For that reason, we use mini-batching
implemented by PyG3.

Formation of the mini-batch graph is described by Equation (6.8). All adjacency matrices
Ai are stacked diagonally resulting in the one large graph containing multiple isolated
graphs. Node features vi are concatenated along the node dimension (see Figure 6.8).

3Pytorch Geometric - https://pytorch-geometric.readthedocs.io/en/latest/index.html
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Figure 6.8: Concatenating graphs along a new dimension would require padding Ű setting
all graphs to the same size. Nonetheless, memory overhead caused by padding can be
avoided if all graphs are formed into one large graph containing multiple isolated graphs.
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Since all the graph samples are isolated graphs, the message can not be exchanged be-
tween two nodes that do not belong to the same graph after applying the message-passing
operators.

6.4.4 Implementation of the Multi-GPU Training

Since a graph is one of the most general data structures, it requires more data to describe
it. For that reason, we struggled with memory issues, allowing us to set the batch size only
to 2 on a 40GB GPU.

The problem of having a small batch size can be avoided by employing multi-GPU training.
The multi-GPU training is achieved using Pytorch Lightning implementation of Distributed
Data-parallel training (DDP). DDP feeds a mini-batch to each GPU, and then each GPU
computes the gradients w.r.t. the mini-batch. Afterwards, gradients are averaged across all
the GPUs, resulting in a effective batch size equal to 𝑁 × batch size, where 𝑁 corresponds
to the number of GPUs (see Figure 6.9). Since our model was trained on a node with 8
A100 40GB, the effective batch size was 16.
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Figure 6.9: In the distributed data-parallel training (DDP), each GPU receives a mini-
batch and computes gradients w.r.t. the given mini-batch. Afterwards, gradients from all
the GPUs are synchronized and averaged to produce the Ąnal gradients.
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Chapter 7

Evaluation

To evaluate the performance of the trained model, we put our solution under multiple
tests. Firstly, the model’s generalization ability is demonstrated using samples outside of
the training and validation distribution, including more than 5-times larger domain. The
reference solutions are computed using k-Wave Toolbox [51]. Additionally, our model is
compared to Helmnet [47], where the MSE is used as an evaluation metric:

MSE =
1

𝑁
||𝑢− 𝛽𝑢*||22, (7.1)

where 𝑁 is the nodes count, 𝛽 = 500 is the scaling term (see Section 6.4.1), 𝑢 and 𝑢* are
predicted and reference waveĄeld, respectively. We scale the predicted waveĄeld 𝑢 by 𝛽 if
the tested system produces an unscaled waveĄeld 𝑢t Ű waveĄeld with a source magnitude
set to one.

7.1 Testing the Model’s Generalization in Various Domains

Our model has only been trained on the synthetic skulls, therefore a square SOS map
is out of the training distribution. Nonetheless, our model is able to predict SOS maps,
which it has never seen, indicating that the model learned to solve the Helmholtz equation,
as illustrated in Figure 7.1. Furthermore, Figure 7.2 depicts that the model learned the
interaction between waves from multiple wave sources, although it was trained on samples
with a single wave source.

7.1.1 Unroll Stability

For most samples with 96 × 96 grid size, 8 unroll iterations are sufficient to predict the
waveĄeld for the whole computational domain. Nonetheless, more complex waveĄelds as
well as larger domains require more than 8 unroll iterations. This happens due to more wave
reĆections that need to be simulated. To test whether our model is capable of predicting
waveĄelds even in larger domains, we measured unroll stability for 128 iterations in a 96×96
domain. As depicted in Figure 7.3, the error does not rapidly diverge until approximately
70-th iteration.
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Figure 7.1: The model is able to predict waveĄeld with the square heterogenity in the
middle, although it was only trained on synthetic skulls.
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Figure 7.2: The model is able to predict waveĄelds with multiple wave sources, despite the
fact it was trained with single-source samples.
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Figure 7.3: Although, the model is only trained with 8 unroll iterations, the error does
not greatly diverge until the 70-th iteration. We use a replay buffer to mitigate the unroll
divergence. The unroll stability was tested in a 96× 96 domain.
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We utilized a replay buffer [19] to reduce the unroll divergence. The replay buffer contains
400 quaternions (𝑢k, 𝑅k, 𝑒, 𝑣). The iteration index 𝑘 is randomly initialized to an integer
from 0 to the half of the maximum iteration count 𝑄 Ű we set 𝑄 = 256. After training
the model with the replay buffer, the error does not diverge (Figure 7.3). Thus, the model
learned to stop, when the waveĄeld is solved.

7.1.2 Larger domains

The model is not invariant to the domain size, as a result of its dependence on the nodes
coordinates 𝑥i ∈ [0, 1]D (see Section 6.2). We Ąrstly train the model in the Ąrst phase to cre-
ate a domain-invariant model as described in Section 6.4. The input features corresponding
to the nodes coordinates x are set to zero during the second phase. With this modiĄcation,
we are able to train a size-invariant model, where the model predicts the waveĄeld in a
512× 512 domain, as shown in Figure 7.4.

Figure 7.4: Our model is able to perform inference even on larger domains 512 × 512.
However, during Ąne-tuning, the feature of each node corresponding to its position is set to
zero. If the position is set to zero before the Ąrst phase of training, the model is not able
to converge to a state of stable unrolling.

The replay buffer fails to produce stable unrolling in the larger domain as depicted in
Figure 7.5, despite the fact it signiĄcantly stabilizes the unroll iterations (Figure 7.3) in a
96 × 96 domain. Small errors start to appear at the corners of the domain and are later
ampliĄed and propagated by the next unroll iterations.
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Figure 7.5: Although, replay buffer stabilizes the unroll in the 96× 96, the network trained
without the replay buffer produces more stable unroll. The model trained with the replay
buffer starts to produce errors at the corners of the domain, which are ampliĄed by the
next unroll iterations.
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Figure 7.6: Our model is notably slower than Helmnet and k-Wave and is not able to
reach error as low as Helmnet. We assume that the speed is slower because the graph
contains more data to be processed, despite containing the same amount of information as
the images. Additionally, we did not optimize the residual calculation in any way. The
experiment was conducted on a machine with the Nvidia A100 GPU.

7.1.3 Comparison with Helmnet

The accuracy of Helmnet [47] is remarkably higher than the accuracy of our solution, as
depicted in Figure 7.7. We believe that the higher error of our model is caused by Ąne-
tuning the training with the replay buffer. Thus, our model is not trained with enough
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unroll iterations to predict the waveĄeld with such low error. Our assumption is supported
by Figure 7.6, where our model reaches a certain level of error, and stops to improve the
predicted waveĄeld. Because the training with the replay buffer was done in later stages of
our work, there was not enough time to tune the hyperparameters of the replay buffer.

Due to a larger amount of data to be processed (nodes and edges), our model is signiĄcantly
slower than Helmnet and k-Wave. Thus, failing at one of the main aspects of the neural
solvers. Nevertheless, our work mainly served to prove a concept, and its implementation
is not optimized in any way.

Reference Helmnet

Our Solution

Speeds of sound

Figure 7.7: Helmnet produces a signiĄcantly more accurate waveĄeld than our solution.
Nevertheless, our method still produces produces an adequate prediction.
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7.2 Gradient Approximators for Residual Calculation

The FFT-based approximation of the residual is more accurate than the AGS approxima-
tion. Although the AGS is able to approximate the shape of the gradient, its magnitude
error is signiĄcantly larger. The proposed model is sensitive to directional and magnitude
error in the Laplacian due to explicitly calculating the residual. As illustrated in Figure 7.8,
with more signiĄcant residual error, the model can only predict the waveĄelds to a certain
distance from the source.

(a) FFT-based derivative (b) AGS

Figure 7.8: Despite having only three unroll iterations, the model with the FFT-based
derivative approximation is able to predict signiĄcantly larger area than the model with
the AGS approximation. When using AGS, the predicted area does not noticeably grow
with more unroll iterations.

7.3 Predicting Irregularly Sampled Data

To alleviate the constraint of using data sampled on a regular grid, we experimented with
data sampled on different grids, as depicted in Figure 7.9. Using other than the FFT-based
derivative approximators is not feasible, as shown in Section 6.3 experiments. Thus, we opt
for computing the Laplacian utilizing FFT. Although the Fourier transform is deĄned on
graphs [41], it is more computationally expensive than the regular FFT, which makes them
impractical.

In order to use FFT with irregular grids, we utilize a linear interpolator. Laplacian of the
irregularly sampled data is retrieved using interpolation of regularly sampled data. Residual
then can be computed the same way as with a regular grid.

Regular Grid Samples are sampled on a regular grid Ű they are evenly spaced.

Random Grid Samples coordinates are produced using a uniform random generator. As
illustrated in Figure 7.9, sampling with a random generator fails to produce evenly spaced
samples Ű producing samples too close to each other resulting in numerical instabilities.

Offset Regular Grid To create data sampled on a non-regular grid with evenly spaced
samples, we perturb data sampled on a regular grid. Given a grid (96 × 96), the sample
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Uniform Offset Uniform Random

Figure 7.9: We utilize FFT-based derivative approximation to compute the Laplacian. Thus
in the proposed solution, we use a regular grid. We attempted to lift the restriction of using
the regular grid by several experiments described in Section 7.3.

coordinates are perturbed using the following method:

x̂ = x+ 𝒰(−𝜖, 𝜖), (7.2)

where x is the sample coordinates and 𝒰 stands for uniform distribution. The perturbation
𝜖 = 0.0026 is calculated as a 25% perturbation in a 96× 96 grid (𝜖 = 0.25 * 1/96).

Offset Regular
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Random GridRegular GridReference

0.15

0.00

-0.15

-0.05

-0.10

0.05

0.10

Figure 7.10: Proposed model produces the best results with data sampled on the regular
grid. However, data sampled on the offset regular grid still produces usable waveĄelds.
However, randomly sampled data suffer from an interpolation error, due to unevenly sam-
pled domain. All models are evaluated with only 3 unroll iterations due to limited access
to the supercomputer.

Results Any irregularity in the data sampling grid results in model’s incapability of sta-
ble unrolling. Figure 7.10 does not sufficiently depict the difference between the waveĄelds
predicted on different grids. In Table 7.1 the difference between the waveĄelds predicted
on the irregular grid and regular grid is more apparent.

Table 7.1: The model is not capable of stable unrolling on the irregular grid. The irregular
grid increases the model’s error substantially. Models are evaluated only with 3 unroll
iterations due to the limited access to the computational resources.

Uniform Offset Uni. Random

MSE 24.8 27.1 27.9
Optim. steps ≈ 63𝑘 ≈ 70𝑘 ≈ 120𝑘
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7.4 Achieving Super-resolution

To test the model’s ability to predict waveĄeld for the upsampled points, we insert data
sampled on the irregular grid into the uniformly sampled data. This is done in order to
increase resolution in certain areas of the computational domain (see Figure 7.11).

During the training, we simulate super-resolution by generating 500 upsampled points using
a uniform random generator. The upsampled data are then concatenated with the uniformly
sampled data. Since the FFT is well deĄned only on the regular grid, the residual can only
be computed for uniformly sampled data. Thus, we obtain the residual of random points
by interpolating the residual from uniformly sampled neighbours.

Results To evaluate the upsampled predictions produced by our model, the MSE is
computed only from the upsampled points. As shown in Table 7.2, our model offers lower
error than the linear interpolation method. Despite that, the MSE of the upsampled points
(MSE = 20.88) is substantially higher in comparison to MSE of uniformly sampled points
(MSE = 13.65). We hypothesize that the higher error of the upsampled points is caused
by their irregularity, as shown in experiments described in Section 7.3.

Table 7.2: As a baseline solution, we used a linear interpolation of the neighbouring nodes.
Compared with our model, the MSE error of the upsampled points is notably lower.
Nonetheless, the MSE of the predicted uniform samples is 13.65, which is signiĄcantly
lower.

Interpolated Predicted

MSE 22.51 20.88

Uniform Random Super-res

+ =

Figure 7.11: 500 random points are concatenated to the uniformly sampled data to train
the network to perform prediction for upsampled data. The residual for the upsampled
data is computed by interpolating residual from the uniformly sampled neighbours.

7.5 Operating the Model with the Downsampled Laplacian

As Ayala et al. [3] state, the state-of-the-art parallel FFT implementations are still bounded
by the communication bottleneck. For that reason, the scalability of the FFT is rather
limited. Instead of using a more efficient implementation of FFT, we opted to avoid the
problem altogether.
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Our solution, as well as Helmnet [47], uses the FFT multiple times in the residual approxi-
mation. In a larger domain or a 3D space, the scalability issues of the FFT might bottleneck
the neural solver. For that reason, we test whether the neural solver is capable of solving
the waveĄeld with downsampled Laplacian.

Given the waveĄeld’s angular velocity𝜔 = 1 and grid spacing dx = 1m described in Sec-
tion 6.1, the number of points per wavelength (PPW) is 6.283. Therefore, a waveĄeld with
dx = 2m will statisfy the Nyquist-Shannon sampling theorem [44], because the points
per wavelength would be 3.141. Purely based on the sampling theorem, the neural solver
should work with a downsampled Laplacian. Nonetheless, none of the traditional solvers
work reasonably with so few PPW, and we are not aware of any neural solver capable of
working with these extreme settings.

+

R

4 8 x 4 8 9 6 x 9 6 9 6 x 9 6

Figure 7.12: To overcome the scalibility issues of FFT in the residual calculation, we propose
to downsample the input of the pseudo-spectral method. The output of the pseudo-spectral
method is upsampled using bicubic interpolation to match the resolution of other terms of
the residual.

Downsampling the Laplacian. Downsampling the Laplace operator (Equation (2.7))
is described by the following equation:

1

𝛾η

𝜕

𝜕𝜂
→

1

𝛾η
Up

(︂

𝜕

𝜕𝜂
Down (·)

)︂

, (7.3)

where Up(·) and Down(·) stand for upsample and downsample using bicubic interpolation,
respectively. The sample size is 96×96, but the gradient is computed in 48×48 resolution.

Results. Our method can correctly predict the waveĄeld even with the downsampled
Laplacian as illustrated by Figure 7.3. PPW = 3.14 satisĄes the sampling theorem, however
none of the traditional solvers produce acceptable results. Furthermore, we are unaware
of any neural solver working with these settings.

As expected, the FFT execution time is signiĄcantly lower if the input of the FFT is down-
sampled. The input and the output have to be resampled, yet the total time spent com-
puting the gradient remains lower than the computation without downsampled Laplacian
(see Table 7.3).
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Figure 7.13: Unlike k-Wave, our model can operate with the downsampled Laplacian, where
PPW = 3.

Table 7.3: Downsampling the Laplacian resulted a minor increase in error. Nonetheless,
the large MSE of the downsampled k-Wave proves the traditional methods’ incapability
to work with sparser discretization. The execution times were measured on the NVIDIA
Quadro RTX 6000 GPU.

Baseline Downsampled
Residual

Downsampled
k-Wave

MSE 14.58 14.77 560.89
FFT [ms] 0.704 0.252 Ů
Spectral Derivative [ms] 2.762 0.803 Ů

7.6 Effect of Pruning on the Model’s Performance

One of the primary motivations behind the neural solvers is to reduce the time required
to obtain a PDE solution. Due to this reason, we analyze pruning the network’s weights,
which might improve the network’s speed. However, Frankle and Carbin [10] formulate the
Lottery Ticket Hypothesis (LTH), stating that it can increase the model’s accuracy as well.
Frankle and Carbin [10] use the Iterative Magnitude Pruning (IMP) to Ąnd Winning Tickets
Ű pruned models performing better than the unpruned ones. To formulate the sparsity of
the network, 𝑃m denotes the percentage of unpruned weights Ű 𝑃m = 75%, when 25% of
weights are pruned.

Our proposed method differs by employing the two-phased training. Pruning can be applied
at the beginning of the Ąrst or the second phase. We followed the LTH methodology so we
reset the model weights after each pruning. Three different scenarios were tested:

Training The pruning is applied before the whole training starts, which is the beginning
of the Ąrst training phase Ű training with 3 unroll iterations.

Fine-tuning As the name suggests, the model is pruned at the beginning of the second
training phase (Ąne-tunning) Ű training with 8 unroll iterations. The model weights are
reset to the state at the beginning of the second training phase, meaning the weights are
not set to initialization.
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Figure 7.14: Any pruned network with better performance than the best-unpruned network
(baseline), is referred to as winning ticket. Winning tickets only occur when the network
is pruned before the Ąrst training phase, where any network with 𝑃m ≥ 72% is a winning
ticket (purple area). 𝑃m denotes the percentage of unpruned weights displayed on the
logarithmic scale.

End-to-end End-to-end training with 8 unroll iterations was tested. The network is
pruned at the beginning of the training Ű same as Frankle and Carbin [10].

Results As Figure 7.14 shows, the winning ticket can only be obtained with the two-
phased training. We believe that the Ąne-tuning approach failed to produce any winning
tickets due to not resetting the weights to the ones from the initialization. End-to-end
approach failed because it requires signiĄcantly more optimization steps than the two-
phased approach (see Section 6.4). This is leaving the two-phased training approach most
likely to produce any winning tickets. The winning tickets were only obtained with low levels
of pruning 𝑃m ≥ 72%, meaning the network might not be over-parametrized. Iterative
pruning can be used to increase the model’s accuracy, even though the winning tickets are
not sufficiently sparse to utilize sparse multiplication or improve inference speed. Despite
that, there are multiple methods for stabilizing the LTH [29, 11]. We did not conduct any
related experiments, due to the expensive nature of the LTH experiments.

7.7 Ablation Study of the Proposed Model

This section covers additional tests and reasonings behind the proposed solution’s design
choices. Firstly, the signiĄcance of the hop connections is tested. Then we test the effect
of a training noise on the model performance. Lastly, we assess the trade-off between the
unroll iterations and graph block count.

7.7.1 Hop Connections

The decision to use hop connections was based on the results from the Ąrst phase of the
training. The error decreased signiĄcantly with hop connections in the Ąrst phase. However,

41



as can be seen in Table 7.4, after Ąne-tuning, where the model truly learns the propagation
of sound waves, hop connections only result in an insigniĄcant error decrease.

Table 7.4: Reason behind the usage of multiple hop connections in the proposed solution
was based on the results from the Ąrst stage of the training. Nonetheless, MSE from the
Ąne-tuning stage prove that the hop connections are unnecessary.

Hops {3, 5, 10} No Hops

First Phase 24.78 26.12
Fine-tuning 14.58 14.62

We hypothesize that the hop connections redundancy in the latter stage of the training
is caused by the network starting to act as an iterative solver, where the prediction only
requires a smaller neighborhood rather than the whole domain.

7.7.2 Training Noise

Pfaff et al. [34] demonstrated that noise injection during training improved the unroll sta-
bility and lowered overall error. The interpretation is that the error accumulating during
unrolling can be reduced by simulating this error in the network input. It leads the network
to learn correcting the error, thus lowering the overall accumulated error occurring during
unrolling.

Although Pfaff et al. [34] use noise injection in the prediction of dynamical systems, we
test the training noise in our proposed solution as well. We analyzed the distribution of
the noise after 8 unroll iterations and decided to model the error within 10%. The training
noise is set to the 8-th root of the error. We model the training noise as the multiplicative
noise, because the unroll error depends on the predicted waveĄeld. The following equation
describes the training noise:

𝑢k = 𝑢k + 𝑢k * noise, (7.4)

where 𝑢k is the predicted waveĄeld at the 𝑘-th iteration. The noise is implicitly added to
the residual 𝑅k by injecting the noise in the waveĄeld 𝑢k.

Table 7.5: Injecting the 1.2% training noise, described by Equation (7.4), simulates the
prediction error. Using the training noise forces the model to learn correcting its prediction
error during unrolling.

Noise [%] 0 0.6 1.2 2.4 4.8

MSE 14.58 14.56 14.37 15.76 15.43

As shown in Table 7.5, by injecting the 1.2% noise during training, the model’s performance
improved. Hence, the model learned to reduce the prediction error from previous iterations.
Any higher training noise ended up with worse results.
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7.7.3 Unroll Iterations vs. Message Pass Count

This section examines the trade-off between unroll iterations and message passing count.
With every unroll iteration, a new residual is computed from the predicted waveĄeld. On
the contrary, a Graph Block only passes a message (hidden state) to the next block. In
the following experiments, we set a Ąxed total message passing count to 60, so the ratio
between the unroll iterations and graph blocks is the only one that changed.

As Table 7.6 shows, unroll iterations are essential for the waveĄeld prediction. More Graph
Blocks (GB) result in more learnable parameters Ű increasing the model’s capacity. Never-
theless, the model with 5 Graph Blocks has the lowest error. We suppose that the unroll
iterations are crucial, due to the addition of residual to the network’s input. We observed,
that the model could not predict more complex wave reĆections and interactions without
the residual as an input. We assume it is due to the network’s inability to learn a Laplacian
operator. This experiment was conducted after the design choices. For that reason, the
proposed solution has 10 Graph Blocks instead of 5.

Table 7.6: In this experiment, we Ąxed the total message passing count to 60. Exchanging
the unroll iterations for message pass count resulted in a higher error. We assume that the
unroll iterations are essential because the network is not able to compute the residual itself.
Without the residual as an input, the model is not able to predict complex wave reĆections.
GB refers to a Graph Block, which corresponds to a single message passing.

60 Unrolls,
1 GB

20 Unrolls,
3 GBs

12 Unrolls,
5 GBs

6 Unrolls,
10 GBs

4 Unrolls,
15 GBs

MSE 46.27 14.52 14.00 19.69 21.66
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Chapter 8

Conclusion

We proposed a novel iterative solver based on the graph neural networks capable of solving
large domains such as 512× 512, thus moving beyond ŞtoyŤ problems. Unfortunately, it is
slower than Helmnet as well as the reference solver k-Wave. In addition, Helmnet achieves
a lower error by almost two orders of magnitude compared to our solutions. Nevertheless,
our model is able to perform a super-resolution, where it reached a lower error than the
baseline method Ű linear interpolation.

Even though our model was only trained on samples with a single source, it can predict a
waveĄeld with multiple sources, proving that it learned the interaction between the sound
waves. Additionally, our model can perform an inference in the 512 × 512 computational
domain, although the model was only trained in the 96× 96 domain.

We demonstrated that the graph neural networks are able to solve a second-order time-
independent PDE within a large computational domain. Also, we outlined the problem of
training an effective model on an irregular grid. Lastly, we tested a neural solver against
the Lottery Ticket Hypothesis [10]. We were only able to produce winning tickets with a
low level of sparsity 𝑃m ≥ 72%. The winning tickets are not sparse enough to utilize sparse
multiplication, though the iterative pruning can be used to improve the accuracy of the
model.

Our model outperforms the linear interpolation at the super-resolution task on an irregular
grid. Additionally, our model is capable of predicting a waveĄeld even with the down-
sampled Laplacian. After downsampling the Laplacian, our model’s accuracy barely drops
compared to the k-Wave solver. To the best of our knowledge, our method is the only PDE
solver capable of working with just three points per wavelength.

In the future, given the Ćexibility of Graph Networks, emphasis can be put on training on
the data in the 2D space and later translating it to the 3D space. We hypothesize that
AGS could replace the spectral method to compute the residual with denser sampling.

we expect that the results from this work will be used to produce a scientiĄc paper with
the collaboration of the UCL Biomedical Ultrasound Group, SC@FIT, and Graph@FIT
groups. Preliminary results of this work were already published at the Excel@FIT2022
student conference, where our work won all three awards.

44



Bibliography

[1] Abien Fred Agarap. Deep learning using rectiĄed linear units (relu). CoRR,
abs/1803.08375, 2018. URL http://arxiv.org/abs/1803.08375.

[2] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola
Kovachki, Zongyi Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph
kernel network for partial differential equations. In ICLR 2020 Workshop on
Integration of Deep Neural Models and Differential Equations, 2020. URL
https://openreview.net/forum?id=fg2ZFmXFO3.

[3] Alan Ayala, Stanimire Tomov, Miroslav Stoyanov, and Jack Dongarra. Scalability
issues in fft computation. In Parallel Computing Technologies: 16th International
Conference, PaCT 2021, Kaliningrad, Russia, September 13Ű18, 2021, Proceedings,
page 279Ű287, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-030-86358-6.
doi: 10.1007/978-3-030-86359-3_21. URL
https://doi.org/10.1007/978-3-030-86359-3_21.

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard,
Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash,
Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational
inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

[5] Alfredo Bermudez, Luis Hervella-Nieto, Andrés Prieto, and R. Rodrıguez. An
optimal perfectly matched layer with unbounded absorbing function for
time-harmonic acoustic scattering problems. Journal of Computational Physics, 223:
469Ű488, 05 2007. doi: 10.1016/j.jcp.2006.09.018.

[6] Norbert N. Bojarski. The k-space formulation of the scattering problem in the time
domain. Journal of the Acoustical Society of America, 72:570Ű584, 1982.

[7] Norbert N. Bojarski. The k-space formulation of the scattering problem in the time
domain: An improved single propagator formulation. Acoustical Society of America
Journal, 77(3):826Ű831, March 1985. doi: 10.1121/1.392051.

[8] Benjamin Paul Chamberlain, James Rowbottom, Maria Goronova, Stefan Webb,
Emanuele Rossi, and Michael M Bronstein. Grand: Graph neural diffusion.
Proceedings of the 38th International Conference on Machine Learning, (ICML)
2021, 18-24 July 2021, Virtual Event, 2021.

45



[9] Steffen Eger, Paul Youssef, and Iryna Gurevych. Is it time to swish? comparing deep
learning activation functions across NLP tasks. CoRR, abs/1901.02671, 2019. URL
http://arxiv.org/abs/1901.02671.

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin.
The lottery ticket hypothesis at scale. CoRR, abs/1903.01611, 2019. URL
http://arxiv.org/abs/1903.01611.

[12] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17, page
1263Ű1272. JMLR.org, 2017.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[14] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in
graph domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729Ű734 vol. 2, 2005. doi:
10.1109/IJCNN.2005.1555942.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectiĄers: Surpassing human-level performance on imagenet classiĄcation. In 2015
IEEE International Conference on Computer Vision (ICCV), pages 1026Ű1034, 2015.
doi: 10.1109/ICCV.2015.123.

[16] David S. Hersh and Howard M. Eisenberg. Current and future uses of transcranial
focused ultrasound in neurosurgery. J Neurosurg Sci, 62(2):203Ű213, Apr 2018.

[17] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251Ű257, 1991. ISSN 0893-6080. doi:
https://doi.org/10.1016/0893-6080(91)90009-T. URL
https://www.sciencedirect.com/science/article/pii/089360809190009T.

[18] Frank Ihlenburg and Ivo Babuska. Finite element solution of the Helmholtz equation
with high wave number Part I: The h-version of the FEM. Computers &
Mathematics With Applications, 30:9Ű37, 1995.

[19] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos.
Recurrent experience replay in distributed reinforcement learning. In International
Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=r1lyTjAqYX.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

46



[21] Thomas N. Kipf and Max Welling. Semi-Supervised ClassiĄcation with Graph
Convolutional Networks. In Proceedings of the 5th International Conference on
Learning Representations, ICLR ’17, 2017. URL
https://openreview.net/forum?id=SJU4ayYgl.

[22] Vibhor Krishna., Francesco Sammartino., and Ali Rezai. A Review of the Current
Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound
Technology: Advances in Diagnosis and Treatment. JAMA Neurol, 75(2):246Ű254, 02
2018.

[23] Isaac E. Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. ArtiĄcial neural networks
for solving ordinary and partial differential equations. IEEE Transactions on Neural
Networks, 9(5):987Ű1000, 1998. doi: 10.1109/72.712178.

[24] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
BackProp, pages 9Ű48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN
978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_3. URL
https://doi.org/10.1007/978-3-642-35289-8_3.

[25] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph
sequence neural networks. In Proceedings of ICLR’16, April 2016. URL
https://www.microsoft.com/en-us/research/publication/gated-graph-

sequence-neural-networks/.

[26] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural
operator for parametric partial differential equations. In International Conference on
Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

[27] Wenzhuo Liu, Mouadh Yagoubi, and Marc Schoenauer. Multi-resolution Graph
Neural Networks for PDE Approximation. In ArtiĄcial Neural Networks and
Machine Learning Ű ICANN 2021, volume 12893 of Lecture Notes in Computer
Science, pages 151Ű163. Springer International Publishing, September 2021. doi:
10.1007/978-3-030-86365-4∖_13. URL
https://hal.archives-ouvertes.fr/hal-03448278.

[28] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond Ąnite layer neural
networks: Bridging deep architectures and numerical differential equations. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3282Ű3291, Stockholmsmässan, Stockholm Sweden, 10Ű15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/v80/lu18d.html.

[29] Jaron Maene, Mingxiao Li, and Marie-Francine Moens. Towards understanding
iterative magnitude pruning: Why lottery tickets win, 2021. URL
https://arxiv.org/abs/2106.06955.

[30] Claudio Mancinelli, Marco Livesu, and Enrico Puppo. Gradient Field Estimation on
Triangle Meshes. In Smart Tools and Apps for Graphics - Eurographics Italian
Chapter Conference. The Eurographics Association, 2018. ISBN 978-3-03868-075-8.
doi: 10.2312/stag.20181301.

47



[31] T. Douglas Mast, Laurent P. Souriau, Donald L. Liu, Makoto Tabei, Adrian I.
Nachman, and Robert C. Waag. A k-space method for large-scale models of wave
propagation in tissue. IEEE Trans Ultrason Ferroelectr Freq Control, 48(2):341Ű354,
Mar 2001.

[32] Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and theory. In
G.A. Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in
Mathematics, pages 105Ű116. Springer Berlin Heidelberg, 1978.

[33] Gregory A. Newman and David L. Alumbaugh. Frequency-domain modelling of
airborne electromagnetic responses using staggered Ąnite differences. Geophysical
Prospecting, 43:1021Ű1042, 1995.

[34] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia.
Learning mesh-based simulation with graph networks. In International Conference
on Learning Representations, 2021. URL
https://openreview.net/forum?id=roNqYL0_XP.

[35] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, page
5105Ű5114, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[36] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:
686Ű707, February 2019. doi: 10.1016/j.jcp.2018.10.045.

[37] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed
neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational Physics,
378:686Ű707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045.
URL https://www.sciencedirect.com/science/article/pii/S0021999118307125.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention Ű MICCAI 2015, pages 234Ű241, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-24574-4.

[39] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

[40] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter W. Battaglia. Learning to simulate complex physics with graph networks.
In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8459Ű8468. PMLR, 2020. URL
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html.

[41] Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on graphs:
Graph fourier transform. In 2013 IEEE International Conference on Acoustics,

48



Speech and Signal Processing, pages 6167Ű6170, 2013. doi:
10.1109/ICASSP.2013.6638850.

[42] Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung
Tsoi, and Marco Maggini. Graph neural networks for ranking web pages. In
Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, WI ’05, page 666Ű672, USA, 2005. IEEE Computer Society. ISBN
076952415X. doi: 10.1109/WI.2005.67. URL https://doi.org/10.1109/WI.2005.67.

[43] Bhavya R. Shah, Vance T. Lehman, Timothy J. Kaufmann, Daniel Blezek, Jeff
Waugh, Darren Imphean, Frank F. Yu, Toral R. Patel, Shilpa Chitnis, Richard B.
Dewey, Joseph A. Maldjian, and Rajiv Chopra. Advanced MRI techniques for
transcranial high intensity focused ultrasound targeting. Brain, 143(9):2664Ű2672, 09
2020.

[44] C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37
(1):10Ű21, jan 1949. doi: 10.1109/jrproc.1949.232969. URL
https://doi.org/10.1109/jrproc.1949.232969.

[45] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions.
In Proc. NeurIPS, 2020.

[46] Arnold Sommerfeld. Die greensche funktion der schwingungslgleichung. Jahresbericht
der Deutschen Mathematiker-Vereinigung, 21:309Ű352, 1912. URL
http://eudml.org/doc/145344.

[47] Antonio Stanziola, Simon R. Arridge, Ben T. Cox, and Bradley E. Treeby. A
helmholtz equation solver using unsupervised learning: Application to transcranial
ultrasound. Journal of Computational Physics, 441:110430, Sep 2021. ISSN
0021-9991. doi: 10.1016/j.jcp.2021.110430. URL
http://dx.doi.org/10.1016/j.jcp.2021.110430.

[48] Makoto Tabei, T. Douglas Mast, and Robert C. Waag. A k-space method for coupled
Ąrst-order acoustic propagation equations. J Acoust Soc Am, 111(1 Pt 1):53Ű63, Jan
2002.

[49] Hong Hui Tan and King Hann Lim. Review of second-order optimization techniques
in artiĄcial neural networks backpropagation. In Materials Science and Engineering
Conference Series, volume 495 of Materials Science and Engineering Conference
Series, page 012003, April 2019. doi: 10.1088/1757-899X/495/1/012003.

[50] Nils Thuerey, Philipp Holl, Maximilian Müller, Patrick Schnell, Felix Trost, and
Kiwon Um. Physics-based deep learning. CoRR, abs/2109.05237, 2021. URL
https://arxiv.org/abs/2109.05237.

[51] Bradley E. Treeby and Benjamin T. Cox. k-Wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave Ąelds. Journal of Biomedical
Optics, 15(2):1 Ű 12, 2010. doi: 10.1117/1.3360308. URL
https://doi.org/10.1117/1.3360308.

49



[52] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. 6th International Conference on
Learning Representations, 2017.

[53] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural
networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7794Ű7803, 2018. doi: 10.1109/CVPR.2018.00813.

[54] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans.
Graph., 38(5), oct 2019. ISSN 0730-0301. doi: 10.1145/3326362. URL
https://doi.org/10.1145/3326362.

[55] Ziming Wang, Tao Cui, and Xueshuang Xiang. A neural network with plane wave
activation for helmholtz equation, 2020. URL https://arxiv.org/abs/2012.13870.

[56] Jeremy Watt, Reza Borhani, and Aggelos K. Katsaggelos. Machine Learning ReĄned:
Foundations, Algorithms, and Applications. Cambridge University Press, 2016. doi:
10.1017/CBO9781316402276.

50


	Introduction
	Equations Governing Propagation of Waves
	Helmholtz Equation
	Perfectly Matched Layer

	Physics-Based Deep Learning
	Neural Network Optimization
	Categorization
	Physics-Informed Loss Function

	Different Viewpoints on Graph Neural Networks
	Message Passing Network
	Unified Framework

	Exiting Solutions for Solving PDEs Using Neural Networks
	Physics-informed Neural Networks
	Neural Operators
	HelmNet

	Proposed Solution for Sound Propagation Approximation
	Creating a Synthetic Dataset
	Network Architecture Solving the Helmholtz Equation
	Approximating the Equation Residual
	Training the Iterative Model

	Evaluation
	Testing the Model's Generalization in Various Domains
	Gradient Approximators for Residual Calculation
	Predicting Irregularly Sampled Data
	Achieving Super-resolution
	Operating the Model with the Downsampled Laplacian
	Effect of Pruning on the Model's Performance
	Ablation Study of the Proposed Model

	Conclusion

