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Abstract
This work deals with the classification of pilot proficiency level and basic flight ma-

neuvers from gaze. The goal is to provide additional valuable tool for aviation instructors
to evaluate proficiency of pilot students and provides them with feedback. This idea is
based on results of numerous relevant studies, which discovered correlation between ef-
fective scanning patterns and domain performance. This thesis considers two proficiency
levels — amateur and experienced.

This work utilizes common analysis metrics of visual scanning and machine-learning
classification techniques. The Support Vector Machine algorithm is used for the proficiency
classification and Hidden Markov Models are utilized in basic flight maneuvers classification.
The result of this thesis is a high accuracy proficiency classification and good ability to
distinguish between individual basic flight maneuvers performed by pilots.

Abstrakt
Tato práce se zabývá klasifikací úrovně odbornosti pilota a leteckých manévrů z pohledu

očí. Cílem je poskytnout další cenný nástroj pro hodnocení pilotáže leteckými instruk-
tory a poskytnout tak zpětnou vazbu trénovaným pilotům. Tato myšlenka je založena na
základě výsledků relevantních studií, které objevily korelaci mezi užíváním efektivních sken-
ovacích vzorů a doménové výkonnosti. V této práci jsou uvažovány dvě třídy odbornosti
— piloti a nováčci.

Tato práce využívá běžné metriky pro analýzu pohledu očí. Dále jsou v této práci
využity klasifikační techniky strojového učení. Metoda podpůrných vektorů je využita pro
klasifikaci úrovně způsobilosti, zatímco pro klasifikaci leteckých manévrů jsou využity skryté
Markovovy modely. Výsledkem práce je vysoce přesná klasifikace úrovně odbornosti pilot
a dobrá schopnost rozeznat individuální letecké manévry provedené piloty.

Keywords
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Rozšířený abstrakt
Důležitým předpokladem pro efektivní provedení letových manévrů je efektivní využití

jednotlivých letových přístrojů. Schopnost efektivního využití přístrojů postrádají zejména
nováčci. Proto je předmětem tréninku také studie efektivních sledovacích vzorů. Instruktoři
však nemají kvalitní nástroj pro evaluaci použitých technik trénovaných pilotů. Pokud by
takový nástroj měli k dispozici, věděli by, kde jsou slabá místa trénovaného pilota. Díky této
znalosti by pak mohli přizpůsobit jejich letecký trénink za účelem větší efektivity. Hlavním
cílem této práce je tak návrh klasifikátoru odbornosti pilota a kvality provedených manévrů
na základě pohledu očí a využitých sledovacích technik jednotlivých přístrojů. Celkově dvě
třídy odbornosti jsou v této práci uvažovány — zkušený pilot a amatérský pilot.

Úvodní část této práce shrnuje znalosti pro správnou techniku pilotáže se zaměřením na
přístrojové létání. Zaměření na přístrojové létání je důležité z toho důvodu, že klasifikace
způsobilosti pilota je postavena na hodnocení správného používání jednotlivých přístrojů.
Proto jsou v této kapitole blíže popsány základní letové přístroje. Dále jsou popsány dva
běžné způsoby využití jednotlivých přístrojů pro správné řízení letadla. Rovněž jsou pop-
sány běžně používané efektivní sledovací vzory, které zkušení pilot využívají při provádění
jednotlivých manévrů. Informace ohledně sledovacích vzorů jsou cenné zejména pro finální
analýzu dosažených výsleků. Na konci této kapitoly jsou pak blíže popsány základní letecké
manévry, které jsou v této práci předmětem klasifikace.

Další část blíže popisuje problematiku sledování pohledu očí. Nejdříve jsou shrnuty
poznatky z prací a výzkumů, které se zabývaly podobnou tématikou jako tato práce, a sice
studovaní sledovacích vzorů v různých doménách. Hojná část těchto prací se zaměřovala
právě na studii sledovacích vzorů pílotů a jejich rozdíl v rámci různých úrovní zkušeností.
Následně jsou popsány základní termíny z oblasti měření sledování očí. Znalost těchto
pojmů je klíčová pro správné nastavení měřících přístrojů, efektivní zpracování naměřených
dat, a také implementaci a správné nastavní jednotlivých klasifikátorů. Nakonec je uveden
výčet běžně používaných metrik pro analýzu sledovacích vzorů očí. Blíže jsou pak popsány
přechodové matice, které jsou využity v rámci klasifikace úrovně odpornosti pilota.

Další podstatnou část tvoří kapitola zabývající se studií klasifikačních technik. Jelikož
problém klasifikace spadá do okruhu strojového učení, jsou proto nejdříve uvedeny základní
principy strojového učení. Následně je blíže uvedena teorie klasifikace. Jsou popsány pos-
tupy pro efektivní trénování a evaluci klasifikátorů. Tyto znalosti jsou využity při návrhu a
implementaci samotného klasifikačního rámce. Následně jsou blíže popsány dvě klasifikační
metody, které byly v této využity. První z nich je metoda podpůrných vektorů. Jedná se o
jednoduchý klasifikátor, který je efektivní pro klasifikací dvou tříd. Dále jeho výhoda leží
ve schopnosti vypořádání se z daty vysoké dimenze. Zejména z těchto důvodů byl tento
klasifikátor vybrán pro účely klasifikace úrovně odbornosti pilota. Další z popsaných tech-
nik jsou skryté Markovovy modely. Tato metoda klasifikace byla vybrána pro klasifikaci
základních leteckých manévrů. Důvodem této volby je schopnost efektivního zpracování
datových řad.

Nejdůležitěší části této práce je věnována praktické části. Ta nejdříve popisuje návrh
samotného experimentu pro sběr dat. Popsán je letový vzorec, který každý z účastníků za-
létl celkem 4-krát. Vzorec se skládá z kombinace základních leteckých manévrů. Zahrnuty
jsou všechny manévry popsány v kapitole zabývající se technikou pilotáže. Následně je
příblížen simulační rámec pro měření a sběr dat. V bližším detailu je popsáno zařízení pro
měření pohledu očí. Následně jsou popsány způsoby zpracování naměřených dat. Toto zpra-
cování zahrnuje extrakci dat z jednotlivých letových fází experimentu. Tato data následně
tvoří datové sady pro trénování klasifikátorů. Velká část popisu zpracování je věnována



technice přiřazování fixačních oblastí zájmů jednotlivým fixacím. Je zhodnocen původní
návrh rozložení těchto oblastí. Výsledkem je, že původní návrh nebyl dostatečně silný pro
efektivní rozlišení jednotlivých leteckých manévrů. Z toho důvodu byla použitá technika
dělení některých oblastí na dílčí oblasti zvýrazňující konkrétní elementy některých přístrojů.
Nově vzniklé kombinace vedly k uspokojujícím výsledkům. Celkově byly vytvořeny dvě
různé rozložení. V poslední části je popsán návrh a implemntace klasifikačního rámce
pro klasifikaci leteckých manévrů a úrovně odbornosti pilota. Rámce nejdříve klasifikuje
úroveň odbornosti do jedné ze dvou tříd, a následně vybere model pro klasifikaci leteckým
manévrů. Důvodem tohoto dělení je, že nelze porovnávat manévry provedené zkušenými a
nezkušenými piloty v rámci jednoho klasifikačního modelu. Výsledky by nebyly relevantní.
Model pro klasifikaci manévrů je navržen tak, že lze klasifikovat různé třídy manévrů, a
nikoliv pouze jednotlivé manévry.

Další část se věnuje evaluaci klasifikátorů pro tři různé případy. V prvním případě
byly klasifikovány dvě třídy manévrů — podélné a stranové. V tomto případě byla klasi-
fikace manévrů v rámci obou tříd odbornosti vysoká. Přesnost klasifikace odobornosti
pilota byla rovněž vysoká. Při této evaluaci bylo použito jedno ze dvou rozložení fixačních
oblastí zájmu. V dalším případě byly manévry rozděleny do 4 tříd, kdy vertikální zatáčky
nebyly uvažovány. V případě zkušených pilotů přesnost klasifikace byla rovněž vysoká. U
nezkušených pilotů však byla vnesena nejistota a přesnost byla nižší. V posledním případě
bylo klasifikováno všech 6 manévrů. V obou případech byl problém zejména při rozlišování
mezi horizontálními a vertikálními zatáčkami.

Poslední část práce pak shrunuje dosažené výsledky a diskutuje další možný vývoj.
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NN Neural Network
PCA Principal Component Analysis
PDT Proportional Dwell Time
PFD Primary Flight Data
RPM Revolutions Per Minute
SDP Standard Datum Plane
SVM Support Vector Machine
SEP Single-Engine Propeller
TAS True Airspeed
TC Turn Coordinator
TMD Transition Matrix Density
UDP User Datagram Protocol
VFR Visual Flight Rules
VOR Very high frequency Omni-directional Range
VSI Vertical Speed Indicator
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List of Symbols

Symbol Meaning

𝛼𝑡(𝑖) Forward variable
𝛽𝑡(𝑖) Backward variable
𝛾𝑡(𝑖) Probability of being in 𝑖-th state given observation se-

quence 𝑂

𝛿𝑡(𝑖) Highest probability for hidden state path
𝜆 Set of HMM parameters
�̂� Re-estimated HMM parameters
𝜉𝑖 Slack variable of 𝑖-th feature vector
𝜉𝑡(𝑖, 𝑗) Probability of being in 𝑖-th state at time 𝑡 and 𝑗-th state at

time 𝑡 + 1 given observation sequence 𝑂

𝜋𝑖 Initial probability for 𝑖-th state
�̂�𝑖 Most likely estimate of 𝜋𝑖
𝜑𝑆 Angle of bank for standard rate of turn
Ψ𝑡(𝑖) Argument maximizing 𝛿𝑡(𝑖)

𝜋 Initial state probability distribution

𝑎𝑖𝑗 Probability of transition from 𝑖-th state to 𝑗-th state
�̂�𝑖𝑗 Most likely estimate of 𝑎𝑖𝑗
𝑏𝑖(𝑗) Probability of observing 𝑗-th symbol in 𝑖-th state
�̂�𝑖(𝑗) Most likely estimate of 𝑏𝑖(𝑗)
𝐶 Regularization parameter
𝐷 Number of dimensions
𝐷𝑚 Mean duty cycle
𝐸 Set of observable symbols
𝐸𝑖 𝑖-th observable symbol
𝐻 Hidden Markov Model
ℎ Altitude
𝑁 Number of dwells / AOIs / feature vectors / states
𝑀 Number of observable symbols
𝑛𝑖𝑗 Frequency of transition from 𝑖-th state to 𝑗-th state
𝑚𝑖(𝑗) Frequency of observing 𝑗-th symbol in 𝑖-th state
𝑂 Observation sequence
𝑜𝑡 Observation sequence random variable
𝑃𝑖𝑗 Probability of transition from 𝑖-th state to 𝑗-th state
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Symbol Meaning

𝑃𝑖𝑗1 Probability of one-way transition occurrence between 𝑖-th
and 𝑗-th state

𝑃𝑖𝑗2 Probability of two-way transition occurrence between 𝑖-th
and 𝑗-th state

𝑝𝑖 Period between 𝑖-th and next dwell
𝑆 Set of possible hidden states
𝑆𝑖 𝑖-th hidden state
𝑠 Distance
𝑇 Length of the observation sequence
𝑡 Time
𝑡𝑖 Dwell time of 𝑖-th dwell
𝑉𝑌 Best rate of climb
𝑉𝑋 Best angle of climb
𝑋 Hidden state path
𝑥𝑖 Feature of feature vector
𝑥𝑡 Hidden state path random variable
𝑦𝐶 Maneuver class inference result
𝑦𝑖 Feature vector label
𝑦𝐿 Level of proficiency inference result
A State transition matrix
B Emission matrix
xi Feature vector
w Hyperplane normal vector
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Chapter 1

Introduction

Gaze study is an interesting discipline, which has found utilization in numerous applica-
tions such as interface design, fatigue detection, medical research or virtual reality. For
instance, study on visual scanning strategies of pilots during various maneuvers and sit-
uations, resulted in the design of an optimal arrangement of instruments in the cockpit,
which lately became a world wide standard. Gaze-tracking is a powerful tool which can
be used to discover and better understand efficiency of visual scanning strategies used by
domain experts. It has been proved there exists a strong correlation between performance
and efficient scanning strategies. Thus, if we have means to study effective patterns, we
can use the acquired knowledge, among other possible utilization, for an effective training
of domain novices and detect, whether the individual is approaching the level of an expert
or not. Gaze analysis is also a valuable information for the instructor, as she/he can give
valuable feedback to trainee on a potentially ineffective scanning pattern. The overall eval-
uation would thus take into account how effective in processing of visual information the
pilot is.

This approach could also be used in pilot training. Effective scan patterns play a crucial
part in the overall performance. However, this criteria is usually not, if ever, taken into
account in the overall evaluation. Evaluation of quality of performed flight maneuvers
and other piloting techniques, is mainly based on performance and subjective rating of the
instructor. Although the instructor places great emphasis on the proper use of instruments,
he does not have required tools to evaluate scanning patterns to classify pilot proficiency.

The expansion of technology has also affected camera technology, thanks to which cam-
eras can be effectively installed for gaze-tracking in an aircraft cockpit or directly worn by
the pilot on the headset. Classification technologies of effective visual scanning patterns
can thus be deployed. These could be designed and implemented to asses multiple aspects
of the pilot’s scanning strategy during the flight. At first, the overall visual scanning strat-
egy during individual flight maneuvers could be analyzed. Based on the analysis, pilot
proficiency level would be determined, i.e. if the scanning strategy is advanced enough so
more complex techniques and procedures could be trained, or rather the strategy should
be subject of further training as it is not effective enough and is more similar to one used
by inexperienced pilots. In another step, the scanning strategy could be utilized for the
purpose off flight maneuver classification. Result of this type of classification would in-
dicate, if utilized scanning strategy corresponds to those commonly used by experienced
pilots during individual flight maneuvers.
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This thesis deals with the classification of pilot proficiency and performed basic flight
maneuvers. Overall, two proficiency levels are considered — experienced and amateur.
Chapter 2, Airplane Piloting Techniques and Procedures, deals with the description of prin-
ciples of instrument flight. This includes description of basic flight instruments, common
control and scanning strategies, and finally, basic flight maneuvers. Following chapter 3,
Gaze Classification Techniques, provides study of commonly used visual scanning strategy
metrics. Part of this section also includes research on related work and basic gaze-tracking
terminology. Chapter 4, State Classification Techniques, serves as an introduction into
classification domain. Furthermore, this chapter introduces theoretical background of two
algorithms utilized in this thesis. These are Support Vector Machine and Hidden Markov
Model algorithms. The chapter 5, Design and Implementation of the Classification Frame-
work, provides design and implementation details of the classification framework along with
experiment design. Chapter 6, Evaluation, provides and discusses achieved results.
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Chapter 2

Airplane Piloting Techniques and
Procedures

In this chapter, necessary knowledge on piloting techniques and common procedures will be
provided. It is crucial to understand the problematic, in order to properly design respective
experiments and to analyze obtained results. The emphasis is placed on the proper under-
standing of principles of instrument flight and their utilization in basic flight maneuvers
and procedures.

At first, a brief introduction into the concept of the instrument flight will be provided.
Next, basic flight instruments will be described. This part is important to understand,
especially the purpose of each instrument, as visual scanning used for classification of flight
maneuvers and proficiency, are composed of sequences of flight instruments. Next part of
this chapter focuses on the introduction of basic flight maneuvers the pilot should be able
to manage, in order to perform a successful flight. At the end of this chapter, examples of
various flight patterns, on which a beginner pilot trains and improves basic knowledge and
piloting skills, will be provided.

2.1 Rules of Flight
Piloting an aircraft is a complex task, which requires a pilot mastering multiple disciplines
together. In order to perform safe flight, the pilot needs to be capable of the attitude
control, navigation and collision avoidance in any situation. This capability however is
highly influenced by the current weather conditions. Thus, two sets of regulations are
defined, each for different weather conditions, which declare rules for civil flight

First set of regulations is called Visual Flight Rules (VFR). Using these rules, pilot
solely uses references to outside visual cues such as natural horizon, buildings and terrain
features. However, operating aircraft in such a way is possible only in relatively clear
weather conditions. The pilot must be able to clearly see the outside references and other
aircraft in the surrounding airspace from a sufficient distance. Otherwise, the flight would
be highly unsafe [9].

If weather conditions are not favorable for a VFR flight, the pilot operates the aircraft
using the Instrument Flight Rules (IFR). In this case, the pilot uses solely instruments
available in the flying deck for a proper aircrafft control and electronic signals to accomplish
navigation. Most of the IFR navigation is based on the use of multiple satellite-based
systems (GPS/GNSS) and ground-based systems (DME/VORs, ILS) [9].
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The IFR flight is a demanding discipline for which several conditions must be met. Most
important are [9]:

• The airplane must be equipped with certified and properly tested instruments.

• The pilot must have an instrument rating - required qualification for IFR flight.

• Before each flight, the pilot must fill IFR flight plan and pass it to eligible entity.

Reaching the qualification for IFR flight requires pilot to undergo sufficient training
aimed on mastering multiple disciplines. These disciplines are performing basic flight
maneuvers using instruments only, instrument radio navigation, instrument takeoff and
landing, solving unusual flight positions, IFR pre-flight planning or finnishing the flight
with a reduced number of instruments [9].

2.2 Basic Flight Instruments
Flight instruments play an important role in making of pilot situational awareness, as they
provide all necessary flight data defining the actual flight state of an aircraft. It is crucial
for the pilot to understand how to interpret and manipulate flight instruments in order to
perform safe flight. If the pilot would not have access to a spectrum of flight data, flying
the aircraft would become under adverse situations dangerous.

Flight instruments are located in an airplane cockpit, and provide multiple flight data
information. Among the most basic and crucial flight data are:

• airspeed,

• attitude,

• altitude,

• vertical speed,

• heading,

• turn rate.

As the aviation evolved over the years, more and more information were provided to
the pilot. As the reading of data become more challenging, in order to make it more con-
venient for pilots, new principles of visualisation and interpretation on flight instruments
were developed. Originally used mechanical instruments were gradually replaced by electro-
mechanical, and later with electro-optical instruments. Single-purpose instruments evolved
into much complex multipurpose ones, providing multiple clustered data on a single instru-
ment or device. In case of electro-optical instruments, data were primarily displayed on the
Primary Flight Displays (PFD) [25].

Six instruments will be described in the following part of this section. These instruments
are referred to as the “aviation six pack” or “basic six”, and are the most basic instruments,
and are in some way present in all airplanes [38].
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Figure 2.1: Single engine aircraft cockpit [47].

2.2.1 Altimeter

Altimeter (ALT) is one of the most important instruments in the cockpit, as it is the only in-
strument, which provides altitude information. It provides an indicated height above a given
pressure datum. By default, altimeters are calibrated to indicate height above the sea level.
There are five major types of altitude the pilot should be familiar with [10][19]:

• Indicated Altitude — is directly obtained from the altimeter. Indicated value is usually
affected by multiple errors (installation, instrument). This is something the pilot has
to be aware of and be able to work with.

• True Altitude — is the actual altitude of the airplane. It is a vertical distance of the
airplane above the sea level.

• Absolute Altitude — is the vertical distance of the airplane above the ground. It is
usually referenced to as above ground level (AGL).

• Pressure Altitude — is the height above standard datum plane (SDP), which is a the-
oretical level, where air pressure equals to 29.92 ”Hg, or 1 013.4 hPa. It is used to
measure density altitude, true altitude, and other performance data.

• Density Altitude — represents the pressure altitude corrected for multiple variations
from standard temperature.

A typical altimeter uses a dial with numbers arranged from zero to nine in a clockwise
direction to display altitude. The method of indicating the measured height depends very
much on the manufacturer. The most common way of indicating altitude however, is to use
three hands of different lengths [10]. An example of a common altimeter gauge is depicted
in figure 2.2.

The altimeter is a part of the pitot-static system, together with the airspeed indicator
and the vertical speed indicator. This system provides both, dynamic and static, pressures
necessary to indicate respective state quantities. In case of the altimeter, only a static
pressure is used. Since in various situations static pressure is not always the same, in order

14



Figure 2.2: An example of a common altimeter gauge.

to get valid altitude measurement, pilot has to be able to configure the altimeter correctly
depending on the conditions [19].

2.2.2 Airspeed Indicator

Airspeed Indicator (ASI) is an another crucial instrument present on the dashboard. As
the aircraft performance depends highly on the airspeed, for pilot it is absolutely necessary
to know a current airspeed, in order to perform a safe flight. Thanks to the airspeed
information, the pilot, for instance, knows whether the aircraft has sufficient speed at
takeoff or if the aircraft is approaching the stalling speed. Whether it can deploy or, on
the contrary, must close flaps or landing gear, or knows when the aircraft is approaching
its maximum flight speed [19].

As was the case with an altimeter, also here the pilot must be familiar with multiple
types of velocities [10]:

• Indicated Airspeed (IAS) — is directly obtained from the indicator. Displayed value
is affected by both, installation and instrument errors. It is uncorrected for variations
in atmospheric density.

• Calibrated Airspeed (CAS) — is indicated airspeed with minimized instrument and
installation errors. While at high speeds CAS and IAS are almost identical, at low
speeds, the difference between the two types may be of several units.

• True Airspeed (TAS) — is calibrated airspeed corrected for an altitude and nonstan-
dard temperature.

• Groundspeed (GS) — is true airspeed adjusted for the current wind. It measures
actual speed of an airplane over the ground.
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Figure 2.3: Airspeed Indicator gauge.

Typical ASI is designed as a dial with a single hand moving in the clockwise direction. It
has been standardized, that the ASI scale has to include multiple coloured arcs and lines to
indicate various speed limits. The arcs are used to indicate operating speed ranges, whereas
radial lines indicate limiting airspeeds. Among the most important markings belong [10][19]:

• White arc — indicates flap operating range. Range in which flaps could be operated.

• 𝑉𝑆0 — denotes the stalling speed or the minimum steady flight airspeed in the landing
configuration (gear and flaps down). It is located at the lower limit of the white arc.

• 𝑉𝐹𝐸 — indicates maximum speed, at which flaps can be extended. It is located at
the upper limit of the white arc.

• Green arc — indicates normal operating airspeed range of the airplane.

• 𝑉𝑆1 — denotes the stalling speed for the airplane in the clean configuration (gear and
flaps up).

• 𝑉𝑁0 — is the maximum structural cruising speed. Speed should not exceed this limit,
except in smooth air. It is located at the upper limit of the green arc.

• Yellow arc — is an indicator of range, in which the pilot should fly with caution and
only in a smooth air.

• Red line — indicates the airspeed pilot should never exceed. High risk of structural
damage is taken when flying in higher airspeed.

ASI is the only instrument of the pitot-static instrument using both dynamic and static
pressure to obtain measured value. The ASI gauge with colored arcs can be seen in fig-
ure 2.3.

2.2.3 Vertical Speed Indicator

Third, and the last instrument using pitot-static system is Vertical Speed Indicator (VSI).
As in case of the altimeter, it utilizes only the static pressure. By looking at VSI, pilot is
basically able to determine two information. First, the information whether the airplane
climbs, descends or is in the level flight, and second, the actual rate of climb or descent.
The rate is usually measured in units per minute [19].
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Figure 2.4: Vertical Speed Indicator gauge.

Dial of the VSI consists of a single hand moving in the clockwise direction in case of
climbing, while in the descent, the hand moves in the opposite counter-clockwise direction.
When in the level flight, the hand indicates zero on the indicator [10].

Since the basic VSI indicates actual rate with some lag, it is sometimes replaced by
Instantaneous Vertical Speed Indicator (IVSI) compensating initial lag present in the basic
VSI. The period between the start of the climb/descent and the rate displayed on the VSI
is in order of seconds [19]. A typical analog VSI is depicted in figure 2.4.

Figure 2.5: Heading Indicator with a heading bug set onto the North.

2.2.4 Heading Indicator

Heading Indicator (HI), also known as Directional Gyro (DG), is one of the three gyro-
scopic flight instruments. It basically a mechanical instrument indicating airplane heading
designed to facilitate the use of the classical magnetic compass. Nevertheless, magnetic
compass is still used to align the HI towards the reference, magnetic North, in order to get
valid information from the HI. This procedure is necessary, because the HI loses accuracy
over time due to the gyroscopic drift. Thus, the pilot has to provide correction to the HI
periodically [10].

To prevent these errors, the two instruments were combined into a single instrument,
which constantly adjusts reference to the magnetic north. The instrument is called remote
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indicating compass and it utilizes Earth’s magnetic filed and its magnetic flux for constant
adjustment [10]. HI usually allows the pilot to set so called “heading bug” onto the desired
heading, so does not to remember it all the time. An example of the HI can be seen in
figure 2.5.

2.2.5 Attitude Indicator

Attitude Indicator (AI), sometimes referred to as the artificial horizon, is an instrument
whose purpose is to provide the pilot with an information of the airplane attitude with
respect to the Earth’s horizon. That is, orientation in both roll and pitch axis. The AI
is another gyroscopic flight instruments representative. It is very sensitive, so it is able to
indicate even small changes in pitch or bank angle.

Display of the AI consist of the two coloured areas separated by vertical line representing
the horizon. In the middle is located airplane representation. Instrument provides both
pitch and bank scales in degrees. A classic look AI is presented in figure 2.6.

Figure 2.6: Classic look Attitude Indicator.

In further development, classic AI has been merged together with Flight Director System
(FDS) into a single instrument referred to as Attitude Direction Indicator (ADI). Besides
displaying the airplane attitude, ADI utilizes received radio navigational data, in order to
provide lateral and vertical navigational deviations [19].

2.2.6 Turn Indicators

On aircraft’s instrument panel can be mounted one of two, or both, instruments to indi-
cate turn direction, its rate and overall ”quality“, or coordination, of the turn. They are
referenced to as Turn and Bank (Turn and Slip) Indicator and Turn Coordinator (TC)
respectively [10].

Turn and Bank Indicator displays the turn direction in the horizontal plane. In addition,
it provides the pilot with a rate of turn information. The rate is indicated by a needle on
the scale usually consisting of three bars. Two extreme bars indicate standard-rate turn.
Finally, the instrument is equipped with an inclinometer, which detects airplane yaw. The
inclinometer consists of a tube and ball in it. In order to perform coordinated turn, the
ball should stay in the middle of the tube, otherwise, rudder has to be used to compensate
slip or skid [10].

Turn Coordinator is the further development of the Turn and Bank Indicator. It pro-
vides additional information in the form of the roll rate. This is indicated by an airplane
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Figure 2.7: A typical Turn Coordinator with an inclinometer.

marking. Sometimes it is confused with the AI, but except the AI, the TC does not provide
pitch angle information [10]. This instrument can be viewed in figure 2.7.

2.2.7 Instrument arrangements

All six instruments described above are coordinated instruments, the use of which enables
the pilot to determine the state of the aircraft. In order to make instruments reading for
pilot intuitive and less demanding, it is important to arrange those instruments on the
dashboard into a reasonable layout [38].

Airspeed Indicator Artiöcial Horizon

Altimeter Turn and Slip IndicatorDirectional Gyro

Vertical Speed Indicator
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Figure 2.8: “Basic six” arrangement used in the cockpit of a Supermarine Spitfire.

The first real attempt to design instrument layout resulted in an arrangement called
“basic six”, or “six pack”. In this arrangement are instruments aligned into two rows and
three columns. Middle top instrument is the AI (or artificial horizon) as it is referred to
as the master instrument, since it indicates pitch and roll of the airplane. Other three
instruments: ASI, VI and ALT, surround the AI. The reason for this arrangement the is
fact, that attitude is directly related to the control of airspeed and altitude. Thus, the
arrangement of these three instruments around the AI supports the interpretation of pitch
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attitude. The HI is placed bellow the AI and supports the roll attitude interpretation.
Finally, the turn indicator is placed next to the heading indicator as it also relates to
roll attitude and heading indication [38]. In figure 2.8, an example of the “basic six”
arrangement is presented. This particular arrangement of instruments was used in the
famous Supermarine Spitfire.

As the aviation evolved over period of time, new and more complex instruments were
introduced. Due to this evolution, the original “six pack” had to be reviewed and new
layout called
“T-arrangement”, or “basic T” has been designed. In this arrangement, four main instru-
ments are considered and placed within a T shape. These are ASI, ALT and AI (or ADI)
forming the horizontal bar of the T, and HI (or HSI) forming the vertical bar. Other
two, TC and VSI are placed each on both sides of the HI. The arrangement is depicted in
figure 2.9.

Airspeed Indicator Attitude Indicator Altimeter

Turn Coordinator Heading Indicator Vertical Speed Indicator

Figure 2.9: Typical example of the T-arrangement.

2.3 Instrument Flying Basics
When flying instrument flight, aircraft attitude and its navigation is performed by using
solely on-board instruments rather than outside references. For a proper aircraft control,
pilot has to be able to correctly interpret each instrument, especially those of the “basic six”.
Proper interpretation provides the pilot same information, as he would get by using outside
references in the VFR.

Overall, two approaches of flight instruments interpretation are being commonly used.
Depending on the personal preference and controlled aircraft, suitable approach is selected.
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2.3.1 Control and Performance Method

Basic concept of this method is, that the aircraft is controlled by properly setting air-
craft attitude (control) and power (performance). All instruments are divided into three
groups [35]:

• Control — is a group of instruments composed of AI and power instruments. Power
instruments vary across airplanes, but the most common are tachometer and manifold
pressure.

• Performance — is a group of instruments indicating actual performance state of the
aircraft. These instruments are ALT, ASI and VSI.

• Navigation — group includes instruments used to navigate the aircraft onto the se-
lected positions. Set of instruments includes various course indicators, range indica-
tors, glideslope indicators, and bearing pointers.

Artiöcial Horizon

1. Establish 2. Trim

4. Adjust Deviations?

3. Cros-Check

Tachometer
Manifold 
Pressure

Airspeed
Indicator

Vertical Speed
Indicator Altimeter

Performance InstrumentsControl Instruments

Figure 2.10: Scheme of the control and performance method [35].

The concept of establishing desired aircraft attitude utilizing this method is graphically
presented in figure 2.10. Overall, it is composed of 4 steps [35]:

1. Establish desired attitude and power settings.

2. Trim control surfaces.

3. Cross-check performance instruments if established attitude and power settings pro-
vide desired performance.

4. If there are any deviations, adjust attitude and power settings.
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2.3.2 Primary and Supporting Method

Another method of the aircraft attitude control works with the concept of assigning primary
and supporting instruments to each component (function) of the attitude control. These
components are pitch, bank and power. Groups are defined as follows [35]:

• Primary — is group of three instruments providing for each maneuver direct perfor-
mance information for each out of three attitude functions - pitch, bank and power.

• Supporting — is group of instruments representing backup for the primary instrument.
For each function, there may be more than one supporting instrument.

Artiöcial Horizon

1. Establish 4. Adjust2. Trim

Transition

3. Cross-Check

Tachometer
Manifold 
Pressure

Bank Pitch Power

Primary and Supporting InstrumentsAttitude and Power Instruments

Figure 2.11: An illustration of the principle of the primary and supporting method [35].

The concept of using instruments during particular flight maneuvers while utilizing
primary and supporting method, is the following [35]:

1. During the transitions between maneuvers, AI and power instruments are used.

2. After the attitude and power setting are established, use appropriate primary and
supporting instruments to maintain the attitude.

2.4 Instrument Scanning Strategies
In order to produce desired performance in the attitude and power control, pilot uses his
scanning strategy, i.e. cross-check, to observe and interpret instruments, that seems to
be the most effective from his perspective. Furthermore, he may have utilized multiple
strategies, each for a different maneuver. Although the scanning patterns are highly self
preference matter, it is recommended to use primarily instruments giving the instant in-
formation relevant to the maneuver and attitude function. Four o the scanning strategies,
which are widely used between expert pilots, are described in this section. Each of the four
strategies fits to different maneuvers. All scans stick to the rule: attitude plus power equals
performance. Thus, AI is always in the centre of the scan [9].
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(a) Inverted V-scan strategy. (b) T-scan strategy.

Figure 2.12: Instrument scanning strategies utilizing only a subset of instruments.

2.4.1 Inverted V-Scan

This scan involves primarily three instruments - AI, TC and VSI. Center of the scan is the
AI. Initial scan of the AI is followed by transitions to the TC and back. Finally, vertical
speed is cross-checked. Inverted V-scan is useful to validate, if all instruments, or rather
systems they are powered with, work properly. This comes from the fact, that all three
instruments are driven by different systems (vacuum, electric and pitot-static system). In
terms of maneuvers, with ALT included, this scan is suitable for turns [9][35].

2.4.2 T-Scan

The T-scan is a scanning technique involving instruments of major performance parameters
- airspeed, heading and altitude. Center of the scan is the AI. Then, scan continues to the
ASI and back, from the AI to the HI and back, and finally, to the ALT and back to the
AI. This scan is useful in straight-and-level flight, as the pilot checks correct heading and
flight level, while trying to maintain stable airspeed [35].

2.4.3 Selective Radial Scan

Selective radial scan, sometimes also referred to as Hub and Spoke, is the combination of
two previous scans, and is the most commonly used scanning technique. “Selective” because
pilot selects only the most relevant instruments for the maneuver, and “radial” because the
scan is centered around the AI (Hub) and eyes radially moves to other instrument (Spoke)
and back. Statistically, the AI is in focus in 80-90 % of the flight time. The combination of
predominantly looked at instruments determine performed maneuver [9][35].

2.4.4 Rectangular Scan

The last common scanning technique is the rectangular scan. Scan goes in the following
order: first scan top three instruments from left to right or vice versa. Then drop to
the bottom three and continue in the established direction to enclose the rectangle. The
scan may also be initiated in the AI and continues in the rectangular path either in the
clockwise or counter-clockwise direction. This scan is useful in situations, when rapid scan
of all instruments is needed [9][35].
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(a) Selective Radial Scan strategy. (b) Rectangular Scan strategy.

Figure 2.13: Instrument scanning strategies utilizing all instruments.

2.5 Longitudinal Basic Flight Maneuvers
First group of flight maneuvers are longitudinal maneuvers. Among longitudinal basic
flight maneuvers are straight-and-level flight, climb and descent. In this type of maneuvers,
heading of an aircraft is maintained, while the emphasis is placed on the pitch attitude
control [11].

2.5.1 Straight-and-Level Flight

Straight-and-Level flight is one of the four basic flight maneuvers. During the maneuver,
pilot should maintain desired altitude and heading. Straight-and-level flight perfection lies
in the correct utilization of flight controls and flight instruments. The pilot also has to be
able to make effective corrections of any deviations from desired airplane’s behavior [11].

Pitch Control

To maintain level flight, that is maintaining constant altitude, proper pitch attitude has to
be established. Direct indication of the pitch attitude is provided by the AI. Instruments
providing indirect pitch attitude are ALT, VSI and [9].

Since the altitude should remain the same, change in altitude indicates change in pitch
attitude. Direction of needles movement indicates whether the plane pitches up or down.
Additionally, the rate of altitude change tells the pilot the amount of pitch angle [9].

Similar applies to the VSI. The Pilot is able to determine direction of the pitch from
needle movement and it’s amount by looking at rate of movement of the needle [9].

In case of the constant power and pitch attitude during the level flight, airspeed remains
constant. As the pitch attitude changes, airspeed increases or decreases depending on the
pitch direction. The ASI is, therefore, used as an instrument of an indirect pitch attitude
indication in the straight-and-level flight [9].

Checking pitch as an indication of level flight however, is relevant only in case of constant
airspeed. If further pitch adjustment is needed for some reason, the altimeter is used as
a primary instrument, since it directly indicates the altitude which has to be maintained.
The altimeter is therefore generally used as a primary instrument for the pitch control
in the straight-and-level flight, while the couple of the AI and the VSI are supporting
instruments [9].
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Bank Control

Straight flight means to maintain constant heading. In order to maintain set heading, proper
bank control should be provided, as the bank angle other than zero results in heading
change. Here, as in case of the pitch, the bank angle is directly provided by the AI. It
provides pilot instant information of bank attitude by placing pointer along the scale on
the top of the instrument, and by showing the relationship of the airplane miniature with
respect to the horizon [9].

Other two instruments, the HI and the TC (or the turn-and-slip indicator), are used
as indirect indicators of the bank attitude. In case of the HI, rapid movement of the
rose indicates high bank angle, whereas slow movement indicates low bank angle. Indirect
indication of the bank attitude also provides the TC by turning the aircraft miniature
into the appropriate direction of turn. This instrument is also able to provide an indirect
information of the heading change since it detects both, roll and turn. The inclinometer is
also capable of indicating change of the heading, as it indicates if there are any deviations
from the desired heading due to the improperly trimmed aircraft [9].

In general, the HI is used as a primary instrument for the bank control in the straight-
and-level flight, as it directly indicates if the desired heading is maintained. The AI and
the TC are supporting instruments [9].

Power Control

Depending on the situation, primary instrument for the power control is selected. In the
straight-and-level flight is in most cases used the ASI as the primary instrument for power
control. In exceptional cases, when decreasing airspeed for instance, manifold pressure
gauge is used as a primary instrument [9].

In a straight-and-level flight with a constant airspeed and power, the T-scan shows as
an optimal scanning pattern [35].

2.5.2 Climb

Climb is a maneuver of increasing the altitude of an aircraft. This maneuver can be per-
formed in two ways, maintaining constant airspeed or constant rate of climb. The airspeed
is selected depending on needs of climbing performance. Overall, there are three general
types of climb the pilot should be familiar with [11]:

• Normal climb — sometimes referred to as cruise climb, is type of climb performed at
an airspeed recommended by the manufacturer. In this type of climb, for the pilot it
is easier to see over the nose than in other types of climb. In the normal climb, the
airplane flies at higher airspeed than in the best rate of climb.

• Best rate of climb — is the airspeed that allows the airplane to reach the desired
altitude in the shortest possible time. It takes more time to reach the altitude when
climbing either higher or lower airspeed. The best rate of climb is sometimes referred
to as 𝑉𝑌 and it is the ratio of altitude ℎ over time 𝑡:

𝑉𝑌 =
ℎ

𝑡
(2.1)
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• Best angle of climb — is an airspeed which is the most effective in terms of a flight
distance. In other words, the desired altitude is reached in the shortest distance. It
is referred to as 𝑉𝑋 and is expressed as the ratio of altitude ℎ over distance 𝑠:

𝑉𝑋 =
ℎ

𝑠
(2.2)

Distance
Time

VX VY

Faster

Slower

Altitude

Figure 2.14: Visualization of the relationship between the best rate of climb and the best
angle of climb.

Procedure of climbing maneuver is divided into three phases - (1) enter, (2) stabilized
climb and (3) leveling off. When entering the climb, pitch attitude is established to reach
predetermined vertical speed. For this purpose, the AI is used as a primary instrument.
Engine instruments and the HI are primary indicators for power and bank control respec-
tively [9].

In the stabilized climb, depending on the selected performance, primary instrument
for the pitch control is selected. In case of stabilized constant airspeed climb, the ASI is
selected. For the constant rate climb, primary indicator for the pitch control is the VSI,
and the ASI becomes primary instrument for the power control [9].

As the pilot starts to leveling off the aircraft, the ALT is primarily used to control the
pitch attitude, and the ASI to control power to establish desired airspeed [9].

2.5.3 Descent

Descent is the opposite maneuver to the climb, when the airplane altitude is decreased.
It can be performed at variety of airspeeds and altitudes. As in the case of the climb
maneuver, the pilot should be familiar with the following three types of descents [11]:

• Partial power descent — is type of descent performed with partial power. It is some-
times referred to as the en route descent. During this type of descent, airspeed, power
and pitch attitude should be kept constant. Usually the rate of descent is maintained
at 500 ft · min−1.

• Descent at minimum safe airspeed — is descent type, at which airspeed is normally
maintained no greater than 1.3 of the stalling speed. A steeper descent angle is usually
maintained during this type of descent.
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• Emergency descent — is a special type of descent with high drag and high airspeed,
requiring a specific airplane configuration.

Same as the climb, descent is divided into three phases — (1) entry, (2) stabilized
descent and (3) leveling off. The assignment of primary instruments is also similar. For
the constant airspeed descent, primary instrument for the pitch control is the ASI, while in
case of the constant rate descent, pitch is primarily controlled by the VSI.

2.6 Lateral Basic Flight Maneuvers
Second type of flight maneuvers are lateral maneuvers. The only representative of lateral
basic flight maneuver here is level turn. In lateral maneuver, the main emphasis is placed
on the roll attitude control [11].

2.6.1 Level Turn

Another basic flight maneuver each pilot should learn is level turn. Level turn is a maneuver,
when the pilot changes airplane heading while maintaining its current altitude. To perform
the turn, the pilot has to initiate banking by moving control stick either to the left or right,
depending on the direction he wants to fly. If the pilot moves the stick to the right causing
ailerons deflections, the right wing will be lowered and the airplane begins to turn to the
right. Same applies for the opposite direction [9].

Ailerons are used in combination with rudder, in order to perform coordinated turn.
Additionally, pilot should pitch up or add more power in order to maintain current level [9].

Turn types

Level turns are divided into three categories according to the angle of bank [11]:

• Shallow turns — with the bank angle less than 20 °. In most cases, when the pilot
releases pressure exerted on ailerons control, the airplane tends to roll back to the
bank angle equal to zero.

• Medium turns — with the bank angle between 20 ° and 45 °. When the pilot performs
medium turn, he can release pressure on ailerons to neutralize them. With ailerons
neutralized, the airplane should be maintaining constant bank angle without any
control inputs.

• Steep turns — with the bank angle higher than 45 °. When airplane reaches bank angle
higher than 45 °, it tends to continue in the banking even with ailerons neutralized.
To stop banking, pilot must provide pressure on the control stick in the opposite
direction.
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Figure 2.15: Change of turn radius with variable angle of bank and constant airspeed.
Inspired from [11].

30° angle of bank
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10° angle of bank
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Figure 2.16: Change of turn radius with variable airspeed and constant angle of bank.
Inspired from [11].

Important parameter of turn maneuvers is also turn rate as it directly affects turn
radius. Turn rate tells the pilot how fast the airplane changes its heading. The turn rate
is expressed by default in degrees per second. Amount of the turn rate is directly affected
by a combination of the bank angle and the airspeed, where following rules are generally
applied [11]:

• At constant airspeed, the rate of turn increases as the bank increases.

• At constant bank angle, the rate of turn decreases as the airspeed increases.

28



Common flight maneuvering is referenced to standard rate turn, when the aircraft per-
forms the full 360° turn in 2 minutes. That equals to 3 °/s of rate of turn. Following rule of
thumb is used, in order to get appropriate angel of bank for the standard rate turn 𝜃𝑆 [11]:

𝜑𝑆 = (
KTAS

10
) + 5 (2.3)

where KTAS denotes TAS in knots.

Turns to Predetermined Headings

Turns of this type are established in the standard rate turn, and are maintained until
desired heading is reached. Regarding the primary and supporting instruments, primary
instruments are TC, ALT and ASI to control bank, pitch and power respectively. Small
exception is the AI, which is considered as the primary instrument for the pitch control in
establishing turn [35].

For the bank control, the supporting instrument is the AI, for the pitch control these
are the AI together with the VSI, and engine instruments for the power [9].

Timed Turns

Timed turn is type of turn, when pilot practices his skills of performing accurate standard
rate turns without reference to the HI. Based on given time information and direction, he
should be able to determine target heading, as he knows how many degrees to turn while
turning in standard rate. For instance, 15 second standard rate turn yields 45 ° turn [35].

In this case, primary instrument for the bank control is the TC. For the pitch and the
power control, primary instruments are the same as for turns on predetermined headings.
Furthermore, the AI is again primary instrument for the pitch control at the beginning of
the maneuver [35].

Compass Turns

Purpose of compass turns are essentially the same as timed turns. Their purpose is to teach
the pilot the correct utilization of instrument panel without the reference to the HI. Turning
to the desired heading using primarily magnetic compass is not as easy as may seems at
the first sight. During various maneuvers, behavior of the compass can be confusing to
the pilot. Thus, it is necessary to get familiar with lags and a non-linear behavior of the
compass. Set of primary and supporting instruments is similar to timed turns [35].

2.7 Combined Flight Maneuvers
Most common combined maneuvers performed in an air traffic are vertical turns including
climbing and descending turns. In case of longitudinal and lateral maneuvers, the movement
of the aircraft was controlled either in a horizontal or vertical plane. During combined
maneuvers, the aircraft is controlled in both planes simultaneously.
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2.7.1 Climbing Turn

Climbing turn is a combination of climb and turn maneuvers. This type of maneuver
requires simultaneous control of multiple components, making this maneuver difficult to
perform [11]. Due to its complexity, it provides suitable test of pilot proficiency.

Climbing turns should be initiated in way, that first comes climb and than turn. Alter-
natively, turn and climb are initiated simultaneously. For climbing turns applies the same
as for level turns. To reach the most efficient rate of climb, it is recommended to establish
shallow angle of bank [11].

2.7.2 Descending Turn

Descending turns are similar to climbing turns but in opposite direction using descending
principles. First, pitch is established and then turn is initiated [9]. As the climbing turn,
this type of maneuver is due to its complexity an optimal option for proficiency testing.

2.8 Basic Instrument Flight Patterns
In this section, multiple flight patterns are introduced, as an example of possible maneu-
ver combinations to use in the design of the experiment scenarios. These patterns are
commonly used in order to train basic flight maneuvers in the instrument flight. These
patterns, depending on the complexity, involve multiple flight maneuvers and their varia-
tions, introduced in the previous sections. Following list is just a selection of many possible
patterns:

• Procedure Turn — is a flight maneuver, that is used to reverse flight direction. They
are used especially in cases, when intercepting the inbound course is required, prior
to the final approach fix during the approach procedure. Rate of turn should be held
at 3 °/s. The entire maneuver is flown in level flight. Overall, three common types
of procedure turns are used: standard 45° procedure turn, 80/260 procedure turn,
and teardrop pattern. In addition, three teardrop patterns are defined, differing in
degrees of the initial turn.

• S-Turns: — is a series of level turns, originally designed as a type of ground reference
maneuvers. This is due to an option of a pilot to use outside references in order
to perform turn with a constant radius. However, S-turns can be also included in
the instrument flying training. In combination with configuration changes, it can be
used to speed up scanning rate, and to improve power and altitude control required
during instrument approaches. It is performed in such a way, that while the pilot
gradually alternates left and right turns, he also during each turn adjusts an airspeed
and changes aircraft configuration. Basic S-Turns pattern is depicted in figure 2.17.

START

FINISH

30° Left of Initial Heading

30° Right of Initial Heading

Initial Heading

Figure 2.17: Basic S-Turn pattern [35].
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• Vertical S’s — combines climbs and descents together into series of these two maneu-
vers. Different rates of climb/descent are applied to each pair of these maneuvers.
Starting with the rate of 500 ft · min−1, pilot gradually performs four consecutive
climb-descent procedures, ending at 200 ft · min−1. Each climb and descent lasts for
a one minute. This type of pattern is shown in figure 2.18.

START
FINISH

500 ft  m 400 ft  m 300 ft  m 200 ft  m

1 min 1 min

. . . .-1 -1-1-1

Climb Descent

Figure 2.18: Vertical S’s pattern [35].

• Racetrack Pattern — is a pattern combining 180° standard-rate turns and timed
straight-and-level flights. In an air traffic, this type of pattern is usually used as
a holding pattern. For training purposes, it is possible to combine two racetracks
together into a single pattern. In this combination, each of two racetracks would be
flown in a different direction. Combined pattern of left and right hand racetrack is
depicted in figure 2.19.

Right turn (180°)

Right turn (180°)Left turn (180°)

Left turn (180°)

1 min 1 min

1 min 1 min

1 min 1 min1 min

START

FINISH

1. Right Hand Racetrack2. Right Hand Racetrack

Figure 2.19: Combined racetrack flight pattern.
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Chapter 3

Gaze Classification Techniques

As this thesis deals with a classification problem based on visual scanning strategies, theory
of gaze-tracking analysis should be provided. This includes introduction into the basic
terminology of the gaze-tracking, followed by definition of multiple metrics commonly used
in gaze analysis. At the beginning of this chapter however, related work on the topic of
human scanning behavior analysis is presented first.

3.1 Related Work
There has already been many studies on the topic of human scanning behavior. Some of
these studies focused on the finding of relationship between the scanning strategies and the
level of proficiency in a specific domain. Naturally, one could say that the way human uses
eyes indicates the strategy and patterns in obtaining the information related to some task.
If the human is a domain expert, he/she knows where to focus her/his gaze attention, to
obtain necessary information in the most efficient way. Thus, she/he uses some strategy,
that is most likely efficient in obtaining the information to reach high task performance.

Results of several studies support the idea that an efficient scanning strategy lead to
a better task performance. One of such studies [48] came up with a testing of effects
of scanning strategies on performance in videogames. There were two groups of players,
where one group received training on visual scanning patterns, while the other group did
not. As a result, players trained on efficient scanning strategies outperformed players with
random or no training. Additional knowledge gained from the result of this experiment is,
that scanning patterns can be trained, leading to a better performance. Related studies
focusing on different domains such as medicine, chess, sport or gun firing [36][44][51] came
to similar conclusions.

Concerning an aeronautical domain, there has been multiple studies showing that scan-
ning behavior of the pilot is an indication of different proficiency levels [6][20][21][32][53].
Some of them also revealed, that experienced pilots use shorter dwells and use higher fre-
quency of visiting different instruments in the cockpit [3][31][32]. Results of the [3] also
showed, that expert pilots are capable of flexible adaptation of their scanning patterns on
changing task demands. Another study [26] also came to the conclusion, that as opposed to
novices, experienced pilots have more structured patterns. According to results of related
research focusing on the relation of scanning strategies and pilot expertise [32], scanning
patterns are more complex and elaborate in case of expert pilots. Results also showed,
experts tend to have better distribution of attention than novices.

32



3.2 Gaze Measure Theory
Prior to metrics description, brief introduction of measured features during scanning behav-
ior analysis should be provided. There are numerous features which are from a statistical
point of view interesting indicators of the internal human state. As has been mentioned in
the previous section, these features, for instance, can distinct between levels of expertise in
specific domain, or might change in various conditions.

Figure 3.1: Graphical representation of the relationship between fixations, saccades
and dwells.

First basic term in the gaze measure domain is a fixation. Fixation or visual fixation
is a period, when the human eye is focused on a single location. During these fixations,
the visual information is extracted from the fixated location. In gaze analysis, interesting
features are fixation location and fixation duration [43]. According to relevant study, mean
fixation duration, depending on the task, ranges between 200-400 ms, while the shortest
measured duration has been around 40 ms and the longest up to 800 ms [43].

Human eye is capable of basically two types of movements. The first type is called
saccadic movement. Saccade is a rapid simultaneous movement of both eyes between two
consecutive fixations, reaching velocity of up to 500 °/s. This makes of the saccade one
of the fastest movements of a human body. During saccades, the eye does not retrieve
any visual information. This phenomena is called saccadic suppression. As in the case of
fixations, we can also measure saccade duration, however this information is usually not
in the center of interest. Interesting parameter of the saccade movement could be saccade
amplitude, which is the angular distance the eye travels in the direction of the movement.
Another type of movement is called smooth pursuit. It is a movement, when human eyes

33



remain aligned with the focused moving object, resulting in a smooth eye movement [43].
From the perspective of pilot scanning behavior analysis, saccades are more interesting
since they are able to distinguish fixations between different instruments in the cockpit.

Figure 3.2: Graphical representation of the fixation duration and dwell time.

When dealing with fixations, we often want to know, what is the subject of gaze interest.
For instance, in terms of pilot visual behavior, we want to know what instrument she/he
is looking at. Typically, the object on which the eye is focused, occupies some area of the
visual field. In addition, the object can be part of some group of related objects occupying
even larger area. In general, regions of visual field, where we want to know if eyes are
focused on that area, i.e. if the fixation is inside the area, are called Areas of Interests
(AOI) [14]. During the gaze measurement, we can register multiple consecutive fixations in
that area. In this case, group of these fixations are usually referred to as dwell. Interesting
factor widely used in the recent studies on scanning behavior is dwell time. Dwell time is an
information of what is the amount of time human have spent looking at a particular AOI.
Graphical representation of both, fixation duration and dwell time, can be seen in figure
3.2. Note that individual fixations do not have to follow each other exactly, but there is
a gap between them. Another valid numerical measures in the scanning behavior analysis
are frequencies of fixations and dwells [14].

When particular dwells are observed, series of all dwells is called visual scanning. Hav-
ing such visual scanning, one could be interested into finding visual scanning patterns, i.e.
determining scanning strategies revealing many interesting characteristics about the ob-
served person. Under the term visual scanning patterns we understand repeated sequences
of dwells in the visual scanning.

3.3 Basic Eye Movement Metrics
Now, when the brief introduction into the basics of gaze measuring has been provided, it is
possible to begin with the description of the state of the art of scanning behavior metrics
used in related studies. This section in particular, is dedicated to relevant basic measures
which can be obtained from eye movement measurements. More complex metrics focusing
on the study of patterns will be described in the following section.

3.3.1 Dwell Time

Dwell time is the most common measure in the relevant studies. It tells us, what is the total
time spent in some region for a single dwell. In the cockpit, each region would typically
represent a single, or group of related instruments. In addition to the cockpit instruments,
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area of windscreen is usually also included. As has been mentioned, dwells are composed
of multiple fixations, thus it is relevant, that multiple studies analyse fixations durations as
well. For the sake of simplicity however, only dwells are considered in this chapter.

Dwell time (or dwell duration) proved to be a good indication of domain expertise and
mental workload changes. In the 3.1 has been mentioned, that studies dealing with the
finding of relationship between the visual scanning and pilot expertise found, that shorter
dwell times is the sign of an experienced pilot behavior [3]. Dwell time also vary across
different instruments [34] and over different phases of flight [27].

Researches of National Aeronautics and Space Administration (NASA) dedicated to
the workload also discovered the fact, that dwell time increases with the increasing task
difficulty and workload [18].

3.3.2 Proportional and Average Dwell Time

Another valuable property of scanning behavior we can obtain from the gaze data, are
proportional dwell times for all AOIs. To obtain Proportional Dwell Time (PDT), or
simply percentage of the area utilization, we simply sum all dwell times of a particular
region, and divide it by the sum of all dwell times [14] of all regions. By summing all
dwell times of a particular region together, we obtain total dwell times, i.e. amount of time
the person have spent looking at each region in total, which sometimes might also be an
interesting value for the analysis.

Having the PDT, we can observe what is the most important and valuable source of
information for the person in a given task. In terms of flight tasks, it was discovered that
percentage of instruments usage vary across different phases of flight, since each type of ma-
neuver requires slightly different instrument information processing [7]. Another interesting
point that was found observing PDT in the related study is, that experts have different
patterns in PDT than novices. Same study also found the relationship between the PDT
and fuel consumption [31].

Sometimes we can be interested into average dwell time the pilot have spent looking at
each instrument. Average dwell time is simply obtained by dividing the total dwell time of
each instrument by the number of dwells of respective instrument.

3.3.3 Dwell Frequency

Dwell frequency is another interesting feature in the eye measurement. It describes how
often particular AOIs are visited [14]. In relation to the pilot proficiency, correlation between
the expertise and dwell frequency was found. Relevant studies discovered, that expert pilots
have significantly higher dwells frequency than novices. One study also showed different
frequencies across different instruments [3]. Relationship between the performance and
dwells frequency was also observed [26].

3.3.4 Duty cycle

Pennington (1979) in his study on pilot scanning behavior in instrument flight, used duty
cycle as an another metric for the purpose of scanning behavior analysis for various flight
maneuvers. Having 𝑁 dwells on particular instrument in the whole run, duty cycle is
defined as a ratio of 𝑖-th dwell time 𝑡𝑖 on that instrument, and period 𝑝𝑖 between the 𝑖-th
dwell and next dwell (returning) on that instrument: 𝑡𝑖

𝑝𝑖
. Overall, for 𝑁 dwells on some
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instrument, 𝑁−1 duty cycles in total are acquired. Mean duty cycle 𝐷𝑚 of some instrument
is obtained as follows [40]:

𝐷𝑚 =
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

𝑡𝑖
𝑝𝑖

(3.1)

while holds 𝑝𝑖 − 𝑡𝑖 > 0. Results of the study showed, that the duty cycle is, as in the
case for dwell time, different for each instrument. Additionally, an idea was proposed, that
low duty cycle of some instrument is an indication of low need for an information of that
instrument and vice versa [40].

3.4 Scanning Pattern Metrics
Simple statistical metrics introduced in the previous section, are able to describe some
characteristics on the high-level scope. However, we are usually interested in more complex
features of the gaze, such as visual scanning strategies or cognitive state of the person. In
this domain, basic metrics are not able of such a description. To describe these features,
we have to use more complex metrics, than just looking at statistics. Many related studies
did come up with various approaches to define these complex characteristics of the gaze. In
general, three different classes of metrics are available. Each class of metrics looks at the
problem from a different perspective. Together, they form relatively powerful view on the
visual scanning behavior of the human. These classes are:

• Transition Matrices — are intuitive tool used to discover importance of individual
objects of the observed scene and what are the relationships between them. Multiple
types of transition matrices can be created, each relating to different aspect of the
visual scanning [32].

• Sequence Analysis — is a group of metrics used to describe the complexity and or-
derliness of the visual scanning. Typical representative of this group commonly used
in related studies is entropy, describing how ordered and complex of each individual
the visual scanning is. Similar metric utilized for this purpose is Lempel-Ziv Com-
plexity (LZC), indicating visual scanning complexity based on the number of unique
sequences [32].

• Attentional Modes — describe the way how each individual scans the environment,
i.e. which attentional mode is mainly utilized. Two modes are defined — focal and
ambient. While the ambient mode is characterized by low fixation durations and large
saccade amplitudes, the focal mode is characterized with the exact opposite. Metric
used for this type of analysis is called 𝒦 coefficient. [29]

3.4.1 Transition Matrices

In this chapter, as advanced metrics only transition matrices are described in more detail, as
they are the only metric utilized in this thesis. They proved to be robust and flexible metric
independent on the flight maneuver type. Transition matrices use properties of Markov
chains. Detailed description of the Markov chains will be provided in the chapter 4.
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Transition matrix

In general, transition matrices are used to describe the relationships between particular
states in terms of dependency of the current state upon previously visited states. In our
case, states are represented by AOIs. Transition matrices are commonly used as a second-
order Markov transition matrices. This means, that current state depends solely on the
previously visited state. Thus, the second-order transition matrix has two dimensions. If
we extend the transition matrix by the third dimension, current state depends on the two
previously visited states [37].

to 𝑗-th AOI

from 𝑖-th AOI

⎡⎢⎣
1 2 3

1 𝑃11 𝑃12 𝑃13

2 𝑃21 𝑃22 𝑃23

3 𝑃31 𝑃32 𝑃33

⎤⎥⎦
(3.2)

Transition matrix is an 𝑁 ×𝑁 matrix, where 𝑁 is the number of AOIs. Equation 3.2
shows the general example of a transition matrix for 3 AOIs. Value of each cell contains the
probability of transition from the current AOI to one of the possible AOIs. The probability
is computed as:

𝑃𝑖𝑗 =
𝑛𝑖𝑗

𝑁∑︀
𝑗=1

𝑛𝑖𝑗

(3.3)

where 𝑛𝑖𝑗 denotes frequency of transition from 𝑖-th AOI to 𝑗-th AOI. Sum of each row
is equal to 1. Depending on the application, self transitions in the visual scanning are
sometimes omitted, thus, values on the diagonal are equal to zero.

Transition matrices are frequently used tool for finding scanning patterns. For example,
it was discovered, that transition matrices are different for various flight maneuvers [13].
This might be limitation in determination of any general scanning strategy for a complex
task. There was a study, which on the basis of transition matrices built Hidden Markov
Models for different flight tasks [22]. Interesting discovering was made by related works,
that transition matrices are able to distinguish between expert pilots and novices.

Transition occurrence matrix

Slightly different approach of study of visual scanning patterns used Fitts et al. (1949) in
their studies, dedicated to finding an optimal cockpit instrument arrangements. Among
other statistics, they were also interested in occurrences of transitions between individual
instruments, their percentage utilization in particular [12].

To obtain these percentages, number of occurrences of all transitions (i.e. dwell tran-
sition frequencies) between all instruments (𝑁 × 𝑁 transitions in total) are needed first.
Then, each frequency is divided by the number of all transitions in the visual scanning.
When analyzing these transitions, they did not considered self transitions to the same in-
struments. In this manner, probability of occurrence of a particular one-way transition is
obtained [17]:
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𝑃𝑖𝑗1 =
𝑛𝑖𝑗

𝑁∑︀
𝑖=1

𝑁∑︀
𝑗=1,𝑠.𝑡.𝑖 ̸=𝑗

𝑛𝑖𝑗

(3.4)

If we put all probabilities into the matrix, we would get matrix with probabilities of
transition occurrences, thus transition occurrence matrix. Sum of all elements of the matrix
is equal to 1. Note, that as self transitions are not considered, this matrix have zeroes on
its diagonal.

In the study however, they utilized two-way transitions, where they considered tran-
sitions in both directions. Thus, we get symmetric matrix. We obtain the probability
of a two-way transition occurrence by using the following equation [17]:

𝑃𝑖𝑗2 =
𝑛𝑖𝑗 + 𝑛𝑗𝑖

𝑁∑︀
𝑖=1

𝑁∑︀
𝑗=1,𝑠.𝑡.𝑖 ̸=𝑗

𝑛𝑖𝑗

(3.5)

Transition matrix density

Transition Matrix Density (TMD) is a metric able to describe level of complexity and
efficiency of the scanning pattern of a pilot with a single value. This metric was first
introduced in the study dedicated to evaluation of computer interface [15]. The density is
computed as a count of all transitions occurred at least once, divided by the total number
of all possible transitions, that is 𝑁 ×𝑁 :

TMD =

𝑁∑︀
𝑖=1

𝑁∑︀
𝑗=1

𝑐𝑖𝑗

𝑁2
(3.6)

where

𝑐𝑖𝑗 =

{︃
1, if 𝑛𝑖𝑗 ≥ 1

0, otherwise

If the transition matrix has high density, it could be an indication of a dispersed and
lengthy scanpath, while sparse transition matrix may indicate an efficient search [15]. How-
ever, sparse matrix may also indicate some negative aspects. For example, when a novice
pilot is excessively engaging his visual attention on a single instrument [52]. The TMD is
valuable in situations, when all AOIs are not used in measured epoch, otherwise the value
might not be very useful when comparing with other pilots [32].
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Chapter 4

State Classification Techniques

Since the goal of this thesis is to design and implement basic flight maneuver and pilot
proficiency classifier, theoretical background of the machine learning techniques, which are
heavily utilized for this purpose,is introduced. In the first part of this chapter, a brief
description of the machine learning will be provided together with general classification of
the learning techniques followed by theoretical basics of classification. Special attention in
the remaining part of this section is dedicated to Support Vector Machine (SVM) algorithm
and Hidden Markov Model (HMM), based on which the classification framework is designed
and implemented.

4.1 Machine Learning
Machine learning is one of the many subfields of computer science. It deals with building
algorithms solving practical problems. These algorithms improve over time based on col-
lected data, called training data, containing examples of some phenomena associated with
the respective problem.

Result of the machine learning process can be understood as a function 𝑓(𝑥) which,
based on input 𝑥, generates output 𝑦. For instance, 𝑥 is an image of either dog or cat,
and the function 𝑓 generates an answer 𝑦 to a question: “Does the image contains dog or
cat?”. All examples contained in respective datasets can come from nature, be handcrafted
by humans or generated by another algorithms [4][8].

Generally, machine learning algorithms are divided into four classes: supervised, unsu-
pervised, semi-supervised and reinforcement learning [8].

4.1.1 Supervised Learning

Algorithms built upon supervised learning principles are such algorithms, which use training
datasets consisting of 𝑁 pairs {(x𝑖, 𝑦𝑖)}𝑁𝑖=1. Each pair consists of feature vector x𝑖 and
label 𝑦𝑖. Feature vector is a vector of 1, . . . , 𝐷 features, which describe the example of
the phenomena. For instance, in case of some person, these features could be age, height,
weight, or sex. In case of an image, feature vector would consists of all image pixels. Each
feature vector is coupled with label 𝑦𝑖 telling the algorithm, what is the desired output on
the input x𝑖. Usually, label is value from a finite set of classes or real value. It can be
represented by more complex forms however [8].

Because the learning process is based on known classes, typical problem solved by the
supervised learning is a classification. Examples of classification are prediction of an animal
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from picture or level of pilot proficiency. Another type of problem solved by the supervised
learning is regression, where the output is some real or continuous value. Common regres-
sion problem is a stock value prediction [8].

4.1.2 Unsupervised Learning

Unlike the supervised learning, unsupervised learning algorithms do not use labels of feature
vectors, thus the desired outputs have to be discovered by finding patterns and grouping
similar examples together. The dataset {(x𝑖)}𝑁𝑖=1 consists of 𝑁 feature vectors, which are
transformed either to a single value or another vector [8].

Unsupervised learning includes algorithms, which have found utilization in solving prob-
lems of clustering, density estimation or dimension reduction [8].

4.1.3 Semi-Supervised Learning

Semi-supervised learning is a combination of both, supervised and unsupervised learning.
The dataset of the algorithm is comprised of labeled and unlabeled examples. Typically,
there is much more unlabeled samples than labeled present in the dataset. This brings
more information about the problem leading to higher learning accuracy [8].

4.1.4 Reinforcement Learning

Reinforcement learning is an another machine learning approach of solving some problem.
As opposed to supervised learning, reinforcement learning algorithms do not accept any
optimal outputs, but they rather discover them by trial and error procedure [8].

The basic idea of the reinforcement learning lies in maximizing rewards of the algorithm
for taking actions in particular states of the environment it is located in, in order to achieve
as optimal solution of the problem as possible. The goal of the algorithm is to learn the
policy, which is the function that takes state (feature vector) as an input and outputs the
most optimal action to take based on the current experiences. Each action the algorithm
takes in some particular state, is evaluated by different reward and leads to the discovery
of new states. Initially, actions are taken totally random, however, over time the algorithm
tends to use known actions with high rewards more frequently. These two attitudes are
called exploration and exploitation, and it is crucial not to focus on either of them too
much [8].

Reinforcement learning algorithms are used in many disciplines such game theory, con-
trol theory, statistics, multi-agent systems and much more [8].

4.2 Classification Theory
As has been mentioned in the previous section, classification is a typical problem solved by
supervised learning. The assumption in solving classification problem is, we exactly know
what are the classes we want input data to classify into. These classes fall into a finite set
of possible classes. Depending on the size of the set, we define the type of classification
problem. If data are classified only into two classes, we speak of binary (or binomial)
classification. Classification into three or more classes is called multiclass (or multinomial)
classification [8].
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4.2.1 Learning Process

The core idea of the classifier learning process is to take training and find appropriate
rules to build knowledge from them, so the classifier is able to identify class of some new
unlabeled example. In general, the supervised machine learning process is divided into
three phases — (1) training phase, (2) validation phase, and (3) testing phase [50].

Training Phase

During this phase, parameters of the classification model are being estimated, approximated
and optimized based on the training set consisting of labeled data. To reach an optimal
generalization, the training set should be large enough to cover the whole feature space
with an appropriate amount of examples. Training set should represent the majority of the
whole dataset. Usually, it takes 70 % or more out of the whole dataset. Exact percentage
depends on the size of the available dataset [50].

Validation Phase

This phase provides the feedback on the classification model effectiveness. The goal is to
evaluate how well the model performs on unknown data in the process of model selection,
i.e. hyperparameters tuning. Hyperparameters are parameters of the model which are not
object of training process, as they are used to control the learning process itself [8]. For
the purpose of validation, validation set is used. Multiple model validation techniques can
be selected. The selection depends on preferences and dataset availability [50].

Most common technique is called Hold-Out. Using this approach, the dataset is divided
into three groups — training, validation and test set, usually in ratio 70:15:15. Model is
validated on validation set consisting of unknown data. Another option is to divide dataset
only into training and test dataset, and model is validated on portion of randomly selected
samples of the training set. Validation and test sets do not affect training phase directly,
thus Hold-Out. Hold-Out technique is sensitive to a dataset division, so model can become
biased towards training set. Moreover, this method is not suitable for small dataset [50].

Another technique is called cross-validation, where the model is trained and validated on
combination of known and unknown data. There are multiple cross-validation algorithms.
Most common cross-validation technique is called K-Fold Cross-Validation. Training set is
split into 𝑘 groups, where 𝑘-1 groups are used to train, while the rest is used for validation.
Model score is then recorded, and the process is repeated, until each group is used as a val-
idation set. At the end, average score of all 𝑘 recorded scores is obtained. This approach
is used especially in cases, when only a dataset of limited size is available [50].

If the result of the is not satisfactory, model parameters are not optimized well enough,
thus, another round of training process is needed. During this phase, over-fitting problem
can also be controlled and corrected [50].

Testing Phase

In this phase, the final model is evaluated on the independent set called training set. This
set was not used either during the training nor the validation phase. So called qualitative
measures are used to evaluate the model, such as accuracy, sensitivity, specificity and
precision [50].
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Figure 4.1: Illustration of the K-Fold Cross-Validation technique [45].

4.2.2 Learning Algorithms Families

Overall, there are two families of supervised learning algorithms: model-based and instance-
based algorithms. Model-based algorithms, representing the larger of two groups, are such
algorithms, which build models and optimize their parameters from available training data.
Effectiveness of a classifier depends solely on the setting of these parameters. On the
other hand, instance-based algorithms do not build any model and optimize its parameters.
Instead, the model is represented by the dataset itself. In terms of classification, a typical
representative of the model-based algorithm group is an algorithm called Support Vector
Machine (SVM). Example of an instance-based classification algorithm is the K-Nearest
Neighbours (KNN) [8].

4.3 Support Vector Machine
Support Vector Machine (SVM) is a highly popular algorithm (probably to the most popular
of all machine learning algorithms) used for classification and regression problems. They are
known for their simplicity, high robustness and ability of an efficient generalization. SVMs
are capable of dealing with outliers. Another advantage is their ability to account for high
dimensional data. In fact, there is a whole group of related algorithms for classification
and regression referred to as Support Vector Machines (SVMs) that have found utilization
in many applications such as handwriting identification, stock and weather prediction, or
video and audio processing [1].

The SVM in its simplest form is capable of binary classification based on a linear
classifier. However, many other techniques were also introduced, so linearly non-separable
data can be classified or multiclass classification can be performed [8].
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4.3.1 The Basic Idea

Given a set of data points, where each sample belongs to one of two classes, the SVM
tries to find such a boundary in an 𝐷-dimensional space, that would distinctively separate
these data points. Then, when new data point is observed, the SVM is capable of correct
classification. The boundary is referred to as a hyperplane. It separates the 𝐷-dimensional
space into two regions, where 𝐷 corresponds to the number of features. For instance, in
case of 2-dimensional space, the hyperplane is a simple line [8].

Actually, there exist multiple hyperplanes separating the data. The SVM is capable of
finding such a hyperplane, that maximizes the so called margin, i.e. the distance between
two data points from each class. This is the advantage over other algorithms such as neural
networks, which are only capable of finding local minima. Thus, for the same dataset, the
resulted hyperplane would be different every time [24]. Maximal margin leads to a better
generalization. The margin is determined by the position of so called support vectors. These
are points from each class, which are closest to the hyperplane. Deleting some support
vector would result into a hyperplane change. The classifier based on the maximum margin
is called Maximum Margin Linear Classifier (MMLC) [1] [24]. A principle of the hyperplane,
maximized margin and support vectors is depicted in figure 4.2.

If the data cannot be separated with any hyperplane in the 𝐷-dimensional space by
default, a so called “kernel trick” technique is applied, which maps data into higher-
dimensional space, where a linear classifier can be applied [1].
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Figure 4.2: Support Vector Machine — Hard-Margin Classifier. Inspired by [33].

4.3.2 Linear Classifier

Linear classifier is the simplest SVM classifier example. Here we assume, that data in
original 𝐷-dimensional space can be linearly separated. We have a set of 𝑁 data points
{(xi, 𝑦𝑖)}𝑁𝑖=1, where 𝑦𝑖 belongs to one of the classes {−1, 1}.
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Each xi has 𝐷 features. The goal is to find such a hyperplane, that is able to linearly
separate both groups with maximum margin. The hyperplane can be expressed by the
following equation [8]:

w𝑇x− 𝑏 = 0 (4.1)

where w denotes normal vector to the hyperplane and x is an input feature vector.
Label of some feature vector x is defined as [8]:

𝑦 = sign(w𝑇x− 𝑏) (4.2)

Hard-Margin

Constraints for finding the hyperplane with a maximum margin, i.e. finding optimal values
of w and 𝑏, are following [8]:

w𝑇x𝑖 − 𝑏 ≥ +1 if 𝑦𝑖 = +1

w𝑇x𝑖 − 𝑏 ≤ −1 if 𝑦𝑖 = −1
(4.3)

or simply 𝑦𝑖(w
𝑇x𝑖 − 𝑏) ≥ 1, where, from the geometrical perspective, w𝑇x − 𝑏 = 1

and w𝑇x− 𝑏 = −1 are equations of two parallel hyperplanes defining boundaries for both
classes. A space between these two hyperplanes is the margin we want to maximize. The
distance between these two is equal to 2

‖w‖ . Note that it is also the distance between the
closest points of the two classes [8].

So the subject to machine learning here is the optimization problem of maximizing
objective function [1]:

𝐽(w, 𝑏) =
2

‖w‖
(4.4)

subject the constraints from equation 4.3. This can be also viewed as a minimization
problem by transforming objective function into [1]:

𝐽(w, 𝑏) =
1

2
‖w‖2 (4.5)

This is the example of the SVM linear classifier referred to as hard-margin SVM. It does
not allow to have any data points within the margin, so they can be easily separated by
a linear function. This is also the example of the SVM showed in figure 4.2. However, in
real world this is not always the case. For this purpose, the so called soft-margin SVM has
been introduced [1].

Soft-Margin

In real world, there is usually some noise present in the data. This represents a problem for
hard-margin classifier presented above, as the data cannot be linearly separated. Instead,
we allow some data points to be within the margin [1].

First, a hinge loss function is introduced [8]:

(̧x𝑖, 𝑦𝑖, 𝑔(x𝑖)) = max(0, 1 − 𝑦𝑖 · 𝑔(x𝑖)) (4.6)

where 𝑔(x𝑖) is the function of the hyperplane from 4.1. If constraints from 4.3 are
satisfied, result of the hinge loss function is equal to zero. However, if these constraints are
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Figure 4.3: Support Vector Machine — soft-margin classifier [33].

violated, result of the function is proportional to the distance on the wrong side of the class
boundary the input feature vector belongs to [8]. For each 𝑥𝑖, the result of the hing loss
function is represented by a new variable 𝜉𝑖 called the slack variable [1].

The optimization problem here is expressed as a minimization of the following objective
function [1]:

𝐽(w, 𝑏, 𝜉) =
1

2
‖w‖2 + 𝐶

𝑁∑︁
𝑖=1

𝜉𝑖 (4.7)

subject to 𝑦𝑖(w
𝑇x𝑖 − 𝑏) ≥ 1− 𝜉𝑖 and 𝜉𝑖 ≥ 0. 𝐶 represents the regularization parameter,

determining the trade-off between the number of misclassification and the size of the margin.
𝐶 parameter value depends on the preferences for the optimization problem. If the value is
lower, margin gets bigger, leading to an increased number of misclassifications. Otherwise,
if the value of the parameter is increased, more emphasis is placed on correct classifications,
because margin gets tighter [1].

Illustration of the soft-margin classifier can be observed in figure 4.3.

4.3.3 Kernel Classifier

In case data points are not linearly separable, no hyperplane in the original 𝐷-dimensional
space can be found, which could guarantee an optimal generalization. For this reason,
a kernel trick is used. It transforms data in higher dimension, so they can be eventually
separated [8]. The effect of the kernel trick is depicted in figure 4.4.

Note that the data in the original space cannot be linearly separated. After the kernel
is applied, data are transformed into higher dimension, where data can be easily separated.
A new space is called the feature space [8].
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Figure 4.4: Effect of the kernel trick application on non-separable data [49].

4.4 Markov Chains
In terms of the system’s state classification, Hidden Markov Model (HMM) is one of the
most common technique used today to solve such problem, especially, when no knowledge of
the internal representation of the system is present. They are well suited for the processing
of sequential data and they proved to be very useful and robust in pattern recognition
applications. Most common applications, in which HMMs are used are speech recognition,
gesture recognition, bioinformatics, stock predictions, etc. [42].

xt-1 xt xt+1

Figure 4.5: Graphical model of the first-order Markov Chain.

The Hidden Markov Model is an extension of a first-order Markov Chain, which is a stochas-
tic model describing randomly changing system. First-order Markov Chain models the sys-
tem as a system of 𝑁 states 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁}, which at time 𝑡 is being located only at
one of these states, while it is assumed, that each next state at time 𝑡 + 1 depends only on
the current state. This assumption called Markov Property is formally described as [42]:

𝑃 (𝑥𝑡|𝑥𝑡−1, 𝑥𝑡−2, . . . , 𝑥1) = 𝑃 (𝑥𝑡|𝑥𝑡−1) (4.8)
where 𝑥𝑡 denotes system’s state at time 𝑡. Graphical representation of the model is

depicted in figure 4.5. If we consider that right-hand side of equation 4.8 is independent of
time, transition matrix A = {𝑎𝑖𝑗} can be created, where [42]:

𝑎𝑖𝑗 = 𝑃 (𝑥𝑡+1 = 𝑆𝑗 |𝑥𝑡 = 𝑆𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (4.9)
with the following properties [42]:

𝑎𝑖𝑗 ≥ 0 (4.10a)
𝑁∑︁
𝑗=1

𝑎𝑖𝑗 = 1 (4.10b)

Therefore, the transition matrix A tells us what are probabilities of transitions between
each pair of all possible states of the system. Additionally, if assumption denoted in equation
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4.8 is taken into account, joint distribution of a sequence 𝑥1, 𝑥2, . . . , 𝑥𝑇 of 𝑇 observations
is given by [42]:

𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) = 𝑃 (𝑥1)
𝑇∏︁
𝑡=2

𝑃 (𝑥𝑡|𝑥𝑡−1) (4.11)

where in this case, observation sequence representing the output of the model is a se-
quence of states of the system over time. Note that while conditional probabilities in the
product in equation 4.11 can be obtained from A, marginal probability of the initial state
𝑃 (𝑥1) can not however. Thus, the initial state probability distribution matrix 𝜋 = {𝜋𝑖}
has to be defined, where [42]:

𝜋𝑖 = 𝑃 (𝑥1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁 (4.12)

Basic Markov chain assumes, that system’s states can be directly observed. In real
world however, this is not always the case. In fact, it is more common that the sequence
of states the system has gone through, and even it’s parameters, are totally hidden. All we
can observe are only some physically observable emissions of the system which somehow
depend on the hidden-state process. If we have at least some knowledge of how these
emissions depend on the hidden states, we can infer these hidden states based on the direct
observations. Thus, the HMM is introduced as a powerful tool to solve such problems [42].

4.5 Hidden Markov Models
Hidden Markov Model extends the basic Markov Chain by adding another layer of ob-
servation - symbol process producing sequence of emissions 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 , were each
emission 𝑜𝑡 is one of a set of 𝑀 observation symbols 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑀}. Note that it
is assumed only the finite set of observation symbols, since in this thesis, we focus on the
pilot’s eye scanning pattern between the finite number of clusters (instruments) forming
the whole observation sequence [42].

Another assumption called sensor Markov assumption is introduced, telling that each
emission is dependent only on its generating state. It is formally defined as [42]:

𝑃 (𝑜𝑡|𝑥𝑡, 𝑥𝑡−1, . . . , 𝑥1, 𝑜𝑡−1, 𝑜𝑡−2, . . . , 𝑜1) = 𝑃 (𝑜𝑡|𝑥𝑡) (4.13)

Graphically, the model is shown in figure 4.6. Again, considering the right-hand side of
equation 4.13 is being time independent, observable symbol probability distribution (emis-
sion) matrix B = {𝑏𝑗(𝑖)} is created. Each matrix member is described as [42]:

𝑏𝑗(𝑖) = 𝑃 (𝑜𝑡 = 𝐸𝑖|𝑥𝑡 = 𝑆𝑗), 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁 (4.14)

denoting that probability of observed symbol 𝐸𝑖 at time 𝑡 is generated by the system
in state 𝑆𝑗 . Matrix B has similar properties as transition matrix A [42]:

𝑏𝑗(𝑖) ≥ 0 (4.15a)
𝑀∑︁
𝑖=1

𝑏𝑗(𝑖) = 1 (4.15b)
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Figure 4.6: Graphical model of the Hidden Markov Model.

Having described all parameters from the above, the HMM can be formally defined as a
5-tuple 𝐻 = (𝑆,𝐸,𝜋,A,B), where 𝑆 and 𝐸 are finite set of states and observable symbols
respectively, 𝜋 is the initial probability distribution matrix, and finally, A and B are tran-
sition and emission matrices respectively. Furthermore, all three matrices form a complete
parameter set 𝜆 = (𝜋,A,B) of the model [42].

4.5.1 The Three Basic Computational Problems

Having some HMM model and observation sequence 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 , our goal is to
estimate hidden-state sequence of the system based on the sequence 𝑂. In order to achieve
an optimal output in some way, it is required to solve three computational problems that
arise when working with HMM. These are the following [42]:

1. Given the observation sequence 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 and model H with model param-
eters 𝜆 = (𝜋,A,B), how to efficiently compute conditional probability 𝑃 (𝑂|𝜆), i.e.
probability the sequence has been generated by the system?

2. Given the observation sequence 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 and model H with model param-
eters 𝜆 = (𝜋,A,B), how to choose a sequence of hidden states 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇
which is the optimal in defined way?

3. Given observation sequence 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 , alternatively together with appropri-
ate labels 𝑌 = 𝑦1, 𝑦2, . . . , 𝑦𝑇 , and model H with model parameters 𝜆 = (𝜋,A,B),
how to adjust parameters 𝜆 to maximize 𝑃 (𝑂|𝜆), i.e. how to train the model?

In the following sections of this chapter, all three problems will be examined and optimal
solutions described.

Model Evaluation

First problem to solve is the model evaluation problem. Given observation sequence and
model, we want to compute the probability of the model generating given sequence. If we
have multiple models and knowing appropriate likelihoods, we can choose the model that
best matches the given sequence. If we know the basics of probability theory, it should
not be the problem. The key word here is ”efficiently“ however, and this is not the case of
classic way [42].
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But first, the probability could be computed intuitively by iterating over all possible
hidden state sequences 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇 of length 𝑇 [42]:

𝑃 (𝑂|𝜆) =
∑︁
𝑎𝑙𝑙𝑋

𝑃 (𝑂|𝑋,𝜆)𝑃 (𝑋|𝜆)

=
∑︁

𝑥1,𝑥2,...,𝑥𝑇

𝜋𝑥1𝑏𝑥1(𝑜1)𝑎𝑥1,𝑥2𝑏𝑥2(𝑜2)

. . . 𝑎𝑥𝑡−1,𝑥𝑡𝑏𝑥𝑡(𝑜𝑡)

(4.16)

It is quite obvious, that this naive approach is highly inefficient. Since there is a large
number of calculations as the 𝑇 increases. For 𝑃 (𝑂|𝑋,𝜆)𝑃 (𝑋|𝜆) there needs to be done
2𝑇 −1 ≈ 2𝑇 multiplications. Then, this has to be done for each possible sequence of length
𝑇 , that is 𝑁𝑇 where 𝑁 denotes number of possible states. Overall, 2𝑇 × 𝑁𝑇 operations
needed to solve the problem. For 𝑁 = 6 states and 𝑇 = 100 observations, it leads to
2 × 100 × 6100 ≈ 1080 operations [42].

Fortunately, there exists a more efficient algorithm called Forward-Backward algorithm.
It is a dynamic programming algorithm utilizing induction in order to solve the whole se-
quence. It works in two passes. In the first pass, it walks through the sequence forward
in time, and then in second pass it goes backward in time, hence forward-backward algo-
rithm [42].

At first, consider new forward variable 𝛼𝑡(𝑖) defined as:

𝛼𝑡(𝑖) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑥𝑡 = 𝑆𝑖|𝜆) (4.17)
denoting the probability of partial observation sequence up to the time 𝑡 and state 𝑆𝑖

at that time given model parameters 𝜆. For the first observation, the forward procedure
is initialized by computing 𝛼 for each state according to equation 4.18. Consequently, for
each other observation up to 𝑡 = 𝑇 − 1, forward variable is computed using induction in
equation 4.19. Finally, the probability 𝑃 (𝑂|𝜆) is obtained by using equation 4.20 [42].

𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1) 1 ≤ 𝑖 ≤ 𝑁 (4.18)

𝛼𝑡+1(𝑗) =

[︃
𝑁∑︁
𝑖=1

𝛼𝑡(𝑖)𝑎𝑖𝑗

]︃
𝑏𝑗(𝑜𝑡+1) 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 (4.19)

𝑃 (𝑂|𝜆) =

𝑁∑︁
𝑖=1

𝛼𝑇 (𝑖) (4.20)

After closer examination of equations 4.18, 4.19 and 4.20, it can be seen that the number
of computations has been reduced from 2𝑇 ×𝑁𝑇 to approximately 𝑁2𝑇 . This means that
for 𝑁 = 6 states and 𝑇 = 100 observations we would need 3600 computations. This
is a rapid reduction [42].

Similarly, the backward variable 𝛽𝑡(𝑖) for the purpose of the backward pass, which is
together with 𝛼𝑡(𝑖) utilized in solving the third problem the model learning, is defined
as [42]:

𝛽𝑡(𝑖) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 |𝑥𝑡 = 𝑆𝑖, 𝜆) (4.21)
which tells the probability of partial observation sequence from time 𝑡+ 1 up to 𝑇 given

state 𝑆𝑖 at time 𝑡 and model parameters 𝜆. Backward algorithm is initialized by setting 𝛽𝑇
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for all states equal to 1 (equation 4.22). Then, passing back in time, for each of 𝑁 states
𝑆𝑖 at precedent time-step, backward variable is computed according to equation 4.23 [42].

𝛽𝑇 (𝑖) = 1 1 ≤ 𝑖 ≤ 𝑁 (4.22)

𝛽𝑡(𝑖) =

𝑁∑︁
𝑗=1

𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 1 ≤ 𝑖 ≤ 𝑁, 𝑡 = 𝑡𝑇−1, 𝑡𝑇−2 . . . 1 (4.23)

One could already see, that the computation difficulty is again equal approximately
to 𝑁2𝑇 .

Most Likely State Path

Another problem which arises when working with the HMM is the problem of finding the
optimal state path matching the observation sequence. However, there is a problem with
what is meant by the word ”optimal“, since there exist multiple optimal criteria we can
apply when solving the second problem of most likely state path. Criteria which is the
most commonly used when working with HMMs is to find path maximizing 𝑃 (𝑋|𝑂, 𝜆) or,
which is equal, 𝑃 (𝑋,𝑂|𝜆). To solve this problem, the dynamic programming method called
Viterbi algorithm is used [42].

This algorithm is able to find the most probable hidden-state path 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇
given a sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑡. First, a new variable is introduced [42]:

𝛿𝑡(𝑖) = max
𝑥1,𝑥2,...,𝑥𝑡−1

𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑡 = 𝑆𝑖, 𝑜1, 𝑜2, . . . , 𝑜𝑡|𝜆) (4.24)

which gives the probability of the path with the highest score up to time 𝑡 − 1 while
being in state 𝑆𝑖 at time 𝑡 and having first 𝑡 observations given the model 𝜆. Again, by
using induction, we can get 𝛿 at next time-step [42]:

𝛿𝑡+1(𝑗) =

[︂
max

𝑖
𝛿𝑡(𝑖)𝑎𝑖𝑗

]︂
𝑏𝑗(𝑜𝑡+1) (4.25)

While evaluating 4.25, the argument that maximizes that 𝛿 is stored. At the end of
the pass, the path is to be obtained using stored arguments in the backtracking process.
Variable denoting the argument is defined as [42]:

Ψ𝑡(𝑗) = arg max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗 ] (4.26)

The whole process of finding the optimal path according to the Viterbi algorithm has
following steps [42]:

1. Initialization:

𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1), 1 ≤ 𝑖 ≤ 𝑁 (4.27a)
Ψ1(𝑖) = 0 (4.27b)

2. Recursion:

𝛿𝑡(𝑗) = max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗 ] 𝑏𝑗(𝑜𝑡), 1 ≤ 𝑗 ≤ 𝑁, 2 ≤ 𝑡 ≤ 𝑇 (4.28a)

Ψ𝑡(𝑗) = arg max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗 ] , 1 ≤ 𝑗 ≤ 𝑁, 2 ≤ 𝑡 ≤ 𝑇 (4.28b)
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3. Termination:

𝑃 * = max
1≤𝑖≤𝑁

[𝛿𝑡(𝑖)] (4.29a)

𝑥*𝑇 = arg max
1≤𝑖≤𝑁

[𝛿𝑡(𝑖)] (4.29b)

4. Backtracking to determine hidden state sequence:

𝑥*𝑡 = Ψ𝑡+1(𝑥
*
𝑡+1), 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 1 (4.30)

At first, each state’s probability of occurring as a first one in the hidden state sequence
together with the first observation is computed, and array to store maximizing arguments is
initialized. Then, recursively with each next observation maximal probability is evaluated
for each state 𝑆𝑗 by finding the most probable previous state 𝑆𝑖 relating to the given
observation sequence. The maximizing argument 𝑖 is stored into a array. When evaluating
final delta, the maximizing probability is obtained with the last state. The final stage is
the backtracking process to build the resulting hidden-state sequence matching the input
observation sequence as best as possible [42].

Supervised Model Learning

The third, and the last problem to be solved is how to train the model, i.e. how to
adjust it’s parameters, in order to maximize 𝑃 (𝑂|𝜆). There are essentially two possible
approaches. The first, and the simple one, is supervised learning which assumes, that the
dataset contains both, the observation sequence as well as the appropriate hidden-state
sequence [42].

Having such dataset, most likely estimate of the transition probability distribution can
be computed by just counting the frequency of transitions, i.e. a new transition matrix
𝐴 = 𝑎𝑖𝑗 is computed by counting relative frequency of transitions between all states 𝑆𝑖

and 𝑆𝑗 . To express it more formally, first, the number of occurrences of a transition from
state 𝑆𝑖 to 𝑆𝑗 is given as [5]:

𝑛𝑖𝑗 =
𝑇∑︁
𝑡=1

‖𝑥𝑡 = 𝑆𝑖 ∧ 𝑥𝑡+1 = 𝑆𝑗‖ (4.31)

where 𝑇 denotes length of the training sequence and 𝑛𝑖𝑗 is frequency of transition from
state 𝑆𝑖 to 𝑆𝑗 . Then, we get new most likely estimate �̂�𝑖𝑗 of 𝑎𝑖𝑗 as [5]:

�̂�𝑖𝑗 =
𝑛𝑖𝑗

𝑁∑︀
𝑘=1

𝑛𝑖𝑘

(4.32)

where 𝑁 is the number of all possible states. In a similar manner, the most likely
estimate of the emission probability distribution is obtained by counting relative frequency
of the system being in state 𝑆𝑗 and emitting the observation 𝐸𝑖 for each emission function
𝑏𝑗(𝑖). The number of emitted observations 𝐸𝑖 in state 𝑆𝑗 is formally defined as [5]:

𝑚𝑖(𝑗) =
𝑇∑︁
𝑡=1

‖𝑥𝑡 = 𝑆𝑖 ∧ 𝑜𝑡 = 𝐸𝑗‖ (4.33)
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where 𝑚𝑖(𝑗) is the number of observable symbols 𝐸𝑗 emitted by the system in state 𝑆𝑖.
Now the most likely estimate �̂�𝑖(𝑗) of 𝑏𝑖(𝑗) is given by [5]:

�̂�𝑖(𝑗) =
𝑚𝑖(𝑗)

𝑀∑︀
𝑘=1

𝑚𝑖(𝑘)

(4.34)

where 𝑀 is the number all possible observation symbols. This training approach is
convinient, off course, in case appropriate hidden state sequence is available. Due to insuf-
ficient dataset however, it is possible that at the end of the training procedure, the model
will be underfitted. The cause of this problem is the absence of transitions in the training
dataset to a unused state 𝑆𝑗 . Thus, there is no way how to reach the state, because the
probability of transition to the state 𝑆𝑗 is equal to zero. The solution is to bias 𝑛𝑖𝑗 and
𝑚𝑖(𝑗) by bias values 𝑐𝑖𝑗 and 𝑐𝑖(𝑗) respectively. Bias values represent our prior knowledge
about the probability values. Values can be either small or large integer or real values. The
larger the value of the bias is, the more data is required to modify the prior knowledge [5].
Biased counts are then used in equations 4.32 and 4.34 respectively.

Unsupervised Model Learning

Having a complete dataset of observation sequences with appropriate hidden-state sequences
is not always the case however. In most cases only the observation sequence is available
making the third problem, i.e. model training, the most difficult to solve. In such case the
unsupervised learning techniques come to play. Even there is no known technique to solve
the problem analytically for the global maxima of the model parameters in a closed-form,
still, there exist techniques to maximize the probability 𝑃 (𝑂|𝜆) locally. The most common
algorithm used to train HMM is called Baum-Welch algorithm [42].

It is an iterative procedure which is from of EM (expectation-maximization) algorithm
divided into two step, as the name suggests, expectation and maximization. First, param-
eters 𝜆 are randomly generated or build based on prior knowledge about the parameters.
Then the algorithm iterates over two steps, the E-step and M-step. E-step estimates ex-
pected frequencies, probabilistic equivalents to 𝑛𝑖𝑗 and 𝑚𝑖(𝑗), based on current probability
distributions and forward-backward variables 𝛼 and 𝛽. In the M-step are re-estimated new
parameters of the model based on estimates obtained in the E-step [42].

To start with aa formal description of the algorithm, a new variable 𝜉𝑡(𝑖, 𝑗) is intro-
duced [42]:

𝜉𝑡(𝑖, 𝑗) = 𝑃 (𝑥𝑡 = 𝑆𝑖, 𝑥𝑡+1 = 𝑆𝑗 |𝑂, 𝜆)

=
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)

𝑃 (𝑂|𝜆)

=
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)

𝑁∑︀
𝑖=1

𝑁∑︀
𝑗=1

𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)

(4.35)

denoting the probability of being at time 𝑡 in state 𝑆𝑖 and at time 𝑡+1 in state 𝑆𝑗 given
the observation sequence 𝑂 and model with parameters 𝜆. The probability is computed
utilizing forward and backward variables 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖) [42].
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Second variable, introduced in the formal description of the algorithm defining prob-
ability of being in state 𝑆𝑖 at time 𝑡 given parameters 𝜆 and observation sequence 𝑂, is
defined as [42]:

𝛾𝑡(𝑖) =
𝑁∑︁
𝑗=1

𝜉𝑡(𝑖, 𝑗) (4.36)

If we know values of both variables for each state 𝑆𝑖 and 𝑆𝑗 , we can sum each variable
over time so we get expected number of visiting state 𝑆𝑖 and expected number of transitions
from state 𝑆𝑖 to state 𝑆𝑗 [42]:

𝑇−1∑︁
𝑡=1

𝜉𝑡(𝑖, 𝑗) = expected number of transitions between states 𝑆𝑖 and 𝑆𝑗 (4.37)

𝑇−1∑︁
𝑡=1

𝛾𝑡(𝑖) = expected number of visiting state 𝑆𝑖 (4.38)

Now we have all what is needed to re-estimate new parameters �̂� = (�̂�, Â, B̂) as [42]:

�̂�𝑖 = 𝛾1(𝑖) (4.39a)

�̂�𝑖𝑗 =

𝑇−1∑︀
𝑡=1

𝜉𝑡(𝑖, 𝑗)

𝑇−1∑︀
𝑡=1

𝛾𝑡(𝑖)

(4.39b)

�̂�𝑗(𝑖) =

𝑇−1∑︀
𝑡=1, 𝑠.𝑡. 𝑜𝑡=𝐸𝑖

𝛾𝑡(𝑗)

𝑇−1∑︀
𝑡=1

𝛾𝑡(𝑗)

(4.39c)

It has been proven by Baum [2], that in this manner, we can iteratively estimate new
parameters of the HMM and converge to the local maximum if and only if the initial
parameters 𝜆 do not represent a critical point of the likelihood function. Then applies that
𝑃 (𝑂|�̂�) > 𝑃 (𝑂|𝜆), �̂� = 𝜆 otherwise [42].

When it comes to comparison of supervised versus unsupervised learning, in several
works [5][28] it has been observed, that unsupervised learning significantly overcome su-
pervised learning in terms of performance. Furthermore, unsupervised learning is more
flexible, since it does not require appropriate labels. On the other hand advantage of the
supervised learning lies in the computational complexity.
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Chapter 5

Design and Implementation of the
Classification Framework

In the first part of this chapter, the flight scenario flown during experimental measurements
is introduced. Next, simulation and data acquisition framework used for experimental
measurement purposes is introduced. Finally, proficiency and maneuver classifier design
and its implementation are described.

5.1 Flight Scenario
Flight scenario is designed to consist of all basic instrument flight maneuvers. These are
straight-and-level flight, level and vertical turns, and climbs and descents. Part of the
whole pattern is also the take-off procedure, as the pilot starts each flight from the runway.
Overall, the whole flight consists of up to 10 phases. However, first phase, take-off, is not
an object of further analysis and classification.

Simulated flight is situated in the area around Brno Turany airport (ICAO code LKTB)
with airfield elevation of around 770 ft. The flight starts with a departure from runway 09.
Initial climb after the take-off ends when reaching the altitude of 1 000 ft. Predetermined
climbing airspeed and correct vertical speed should be established during this phase. Then,
initial climb follows up to target pressure altitude of 3 000 ft. After reaching target the
altitude, series of basic flight maneuvers is to be performed. The whole pattern can be seen
in figure C.1. Each participant performs the introduced scenario four times. The whole
flight is performed using solely flight instruments, i.e IFR flight.

Regarding flight the constraints of basic instrument flight maneuvers, all turns are
to be performed as a standard-rate turn. During climbs and descents, a vertical rate of
climb/descent of 500 ft ·min−1 is to be maintained. A full list of predetermined constraints
is below:

• Airspeed — during all basic instrument flight maneuvers, the IAS of 100 kts should
be reached and maintained. For climbs, the IAS airspeed is set to 75 kts.

• Altitude — majority of the flight is performed in pressure altitude range between 2 500
and 3 000 ft.

• Vertical Speed — target vertical speed for all maneuvers is set to ±500 ft · min−1.
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• Turn Rate — since all turns should be performed as a standard-rate turn, desired
turn rate to be maintained during each turn is equal to 3 °/s.

A two way communication between the operator and the pilot takes place during the
simulated flight. There are two reasons for the communication:

• Calling maneuvers and parameters to the pilot.

• Labeling of individual maneuvers by the pilot.

As the whole flight pattern is difficult to remember, prior to each maneuver, operator
calls the pilot informing her/him what maneuver should be performed and what are the
respective flight parameters. The pilot replies with a readback, informing the operator
she/he understands the command. Subsequently, the pilot initiates the maneuver. When
maneuver is accomplished, the pilot reports the maneuver termination, so the operator
could issue request to another maneuver. Every readback and termination calls serve also
as labels for individual maneuvers in data processing stage of the experimment.

5.2 Participants
Overall, 16 participants took part in the experiment. Every proficiency class was represent
by 8 participants. The “amateur” class consisted of participants with no real flight expe-
riences. However, they were familiar with aircraft control theoretical background, correct
interpretation of flight instruments and proved to have high interests in flight experiments.
Each recruited certified pilot representing the class “experienced” had in general more than
150 total flight hours (mean = 843.1, std = 1122.6) on Single-Engine Propeller (SEP) air-
craft. Three of the certified pilots had previous partial experience with IFR flight, with one
the cohort having 100 IFR hours.

Prior to measurements, all participants were asked to perform familiarization free flight
exercises and a single trial, to get experienced with the simulator sensitivity and responses.

5.3 SimStar Simulation Framework
For experiments, the SimStar simulation framework developed at the Faculty of Information
Technology of the University of Technology in Brno by the Aeroworks research group has
been used. The simulation framework consists of multiple functions, which together create
a high fidelity illusion of flight. During the simulated flight, the pilot is seated in the cockpit
consisting of the the mid-fuselage section of a Light Sports Aircraft (LSA). The cockpit is
equipped and instrumented to match the original aircraft cockpit.

The flight dynamics model of the SimStar framework has been adjusted to represent
high-wing SEP handling characteristics similar to Cessna 172 aircraft. The model has
been in integrated into the X-Plane 111 simulator, which provide simulation data to other
framework subsystems.

In terms of flight visualization, the simulator features a subsystem consisting of 3 large
screens which introduce the simulation to a virtual environment surroundings. Thanks to
displays, the pilot is able to navigate his virtual aircraft through the environment with the

1X-plane 11: https://x-plane.com/
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Figure 5.1: SimStar simulation framework.

use of outside references such as natural horizon, buildings and natural features. Overall,
the pilot can enjoy field of view a 115 ° in the horizontal plane and 45 ° in the vertical plane.

Another important aspect of the visualization subsystem is the visualization of the flight
instruments on the instrument panel. The pane featuring 6 main flight instruments in the
T-arrangement:

• ASI — Airspeed Indicator

• AI — Attitude Indicator

• ALT — Altimeter

• TC — Turn Coordinator

• HI — Heading Indicator

• VSI — Vertical Speed Indicator

On the left side of the instrument panel are two indicators for the elevator and aileron
trims respectively. In the central part of the instrument panel is the Timer and Distance
Measuring Equipment (DME). The Timer is used to check elapsed time since the beginning
of respective maneuver. The tachometer indicating engine’s RPM is placed on the right
side of the instrument panel. Overall layout of the dashboard is depicted in figure 5.2.

Important part of the framework is the audio subsystem providing spacial reproduction
of both, external and internal sounds of the aircraft from the cockpit position. Majority
of these sounds are engine and airstream noises. Overall reproduction is provided through
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Figure 5.2: SimStar instrument panel.

the high quality headset. Integrated audio system also enables to communication between
the pilot and the operator or other crew member.

The last, but not least important part of the simulator, is the haptic subsystem pro-
viding the pilot with accurate tactile cues. Thanks to the two-axis active force-feedback
mechanism, the pilot is able to experience maneuver relevant forces acting on the control
stick. This pressure can be moderated with the use of respective trims. The subsystem
contributes to the overall fidelity of the simulator, with the overall experience is shifted to
high level closer to authenticity.

5.4 Data Acquisition
Two types of data were measured and recorded — gaze-related data for the purpose of gaze
analysis, and flight data used to evaluate pilot performance and for data pre-processing
discussed further in this chapter.

5.4.1 Gaze Data

For the purpose of eye movement capture and recording, Pupil Core eye tracker developed by
Pupil Labs2 company was used. Pupil Core is an eye tracking platform designed for a wide
range of research purposes. It provides two options of eye tracking headset setups. One of
the setups is only capable of pupil tracking for pupillometry purposes with only two eye
cameras. Second one, used in this thesis, adds the world camera, so actual gaze data can
be recorded. The advantage of this platform is in its modularity and openness, supported
by an open source software suite with available Application Programming Interface (API).
The software suite also includes data recorder and player for real-time gaze capture and
preview.

As has already been mentioned, the eye tracker headset setup with two eye cameras and
one world camera has been used. The headset with its component is shown in figure 5.3.

The recording frequency was set to 60 Hz with the video resolution of 720p. Respective
eye fixations are detected using dispersion-based method called the Dispersion-Threshold

2Pupil Labs: https://pupil-labs.com/

57



Right eye camera

Left eye camera

World camera

Nose support

Figure 5.3: Pupil Core eye tracker with two eye cameras and one world camera.
Taken from [41].

algorithm (I-DT). Two parameters are required for this method, namely the dispersion and
duration thresholds. Without going into details, the duration threshold determines the
minimum duration for a single fixation, while the dispersion threshold indicates the maxi-
mum distance between two extreme fixation points of a group of consecutive fixation points
forming a single fixation. In our case, the dispersion threshold was set to 1.5 °. Regarding
the duration setting, it was set to 50 ms, as it provided optimal system results [46].

For a more comfortable gaze data post-processing, the Pupil Core API provides tool
to annotate tracked fixations by respective area of interest labels. First, region containing
those AOIs has to be defined. In Pupil Labs terminology, this region is referred to as surface,
as it represents planar surface in measured environment. The number of these surfaces is
not limited. The area of each surface is defined by one or more AprilTag type markers, while
a single marker can be part of multiple surfaces. Having these surfaces defined, positions
of individual AOIs can be defined within these surfaces. In our case, a single surface is
defined, where each AOI represent individual flight instrument. Trim indicators, Timer
and DME were ignored in this thesis. Windscreen area is also not considered. Together
with the surface region, each AOI has assigned a unique numerical ID and a short name.
If the pilot is not fixated within any AOI, but still inside the surface area, ID of the area
is assigned instead. Full scheme of the instrument panel and respective instrument AOIs is
presented in figure 5.4. Overall, 7 instrument AOIs are defined: (1) ASI, (2) AI, (3) ALT,
(4) TC, (5) HI, (6) VSI, (7) RPM.

Fixation positions are first expressed in the world’s camera coordinate system with
particular AprilTags also tracked by the world camera. Then, based on the knowledge of
each marker’s position in the coordinate system, homography technique is used to remap
fixations into the coordinate system of the corresponding planar surface.

Gaze Tracking Output

The gaze tracking software output from a single measurement is a *.csv file containing all
relevant information regarding the gaze tracking. Format of the filename containing gaze
tracking data has following form: <prefix>__eyeFixation.csv.

Overall, the Pupil Core based system outputs 11 measured features. The first feature
is a unix timestamp (Timestamp) measured in nanoseconds, which indicates starting time
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of each recorded fixation. Another time information included in the file is the duration of
the fixation (Duration_ms) measured in microseconds.

Regarding the fixation positions, 𝑋 and 𝑌 coordinates in two coordinate systems
are provided. First coordinate system is the original world camera frame (Norm_pos_x,
Norm_pos_y). Second system is the respective planar surface system, into which recorded
fixations are remapped, and where all AOIs are defined (Norm_area_x, Norm_area_y). All
coordinates are normalized according to defined width and height of the respective surface.

Another information included in the output file are IDs and short names of both, area
and AOI in which the fixation is detected (Area_ID, Area_of_interest, Cluster_ID,
Cluster_name). Last two features are dispersion and confidence (Dispersion, Confidence).
Dispersion tells what was the dispersion during the fixation detection process, while confi-
dence indicates how certain the algorithm was with left and right eye pupil detection.

5.4.2 Flight Data

The X-plane software provides a large number of various variables that can be logged or
set. Individual variables can be accessed using the so called datarefs. A full list of these
datarefs with a short description, including variable units and supported X-plane version,
is available at the official X-plane website3.

For performance analysis and data pre-processing, only the most relevant flight data
variables were logged during each flight. Set of logged variables is listed in table 5.1.
International System (SI) units in the table 5.1 were for the analysis converted into units
matching with those on flight instruments.

Data were logged with Aeroworks’s in-house script using NASA’s XPlaneConnect 4 tool-
box. It allows user to access all provided datarefs, and set all writable ones. It consists of
XPlaneConnect plugin, which has to be activated in X-Plane, and library of functions used
for User Data Protocol (UDP) communication between user program and plugin. Func-

3X-plane datarefs: https://developer.x-plane.com/datarefs/
4XPlaneConnect plugin: https://github.com/nasa/XPlaneConnect
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Table 5.1: Logged flight variables.

Variable Unit Dataref

Latitude ° sim/flightmodel/position/latitude
Longitude ° sim/flightmodel/position/longitude
Altitude m sim/flightmodel/position/elevation
Indicated Airspeed kts sim/flightmodel/position/indicated_airspeed
Vertical Speed m·s−1 sim/flightmodel/position/vh_ind
Heading ° sim/flightmodel/position/true_psi
Turn Rate °/s sim/flightmodel/position/R
Bank Angle ° sim/flightmodel/position/true_phi
Pitch Angle ° sim/flightmodel/position/true_theta

tions are provided in all major programming languages: C/C++, Java, Python/Python3,
and also for Matlab.

The output file with recorded X-plane data is of type .csv containing unix timestamp
(Timestamp) and respective flight variables data, where column name of each flight vari-
able is equal to the respective dataref name defined in table 5.1. Filename format as the
following: <prefix>__Xplane.csv

5.5 Data Preprocessing
Prior to any analysis and data processing for classification purposes, raw data had to be
preprocessed. Preprocessing procedure included the definition of time periods of individual
flight phases (maneuvers) according to pilot calls, AOI subclustering and machine learning
dataset preparation.

5.5.1 Flight Phases Division

Prior to each experiment, pilots were given instructions to follow the communication with
the operator during each flight. Thanks to the communication, appropriate labels were
created, so individual flight phases could be defined. For an easier maneuver labels extrac-
tion, a special hardware push button was also used as backup solution, with every press
recorded. Every time the pilot calls the start and termination of the maneuver, the button
was pressed. Signals from the button were recorded, so timestamp of each press became
available. During the pre-processing, every two consecutive presses were used to define
individual maneuver. Logged flight data were used to double-check, whether all labels
correctly define specific maneuver. In case of inappropriate or missing labels (presses), in
combination with the communication record, flight data were used to recover those labels.

The result of this pre-processing procedure is another *.csv file for each measured ex-
periment, where format of the filename is as following: <prefix>__Phases.csv. This file in-
cludes timestamp of the maneuver initiation (Start), duration of the maneuver in nanosec-
onds (Duration), phase/maneuver name (Phase), and phase/maneuver ID (Phase_ID) de-
noting the class of the maneuver used for classification purposes.
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Figure 5.5: Example of a single flight partitioning into individual flight phases according
to pilot calls.

5.5.2 Areas of Interest Subdivision

The original idea was to try to classify basic flight maneuvers based on pilot’s gaze using
detection of fixated instruments on the highest level only. Meaning, only whole AOIs
representing individual instruments were considered, without any further subdivision of
individual instrument AOIs into another sub-clusters. This showed to be a difficult task
after some trials and analyses. It has been observed, that if a pilot performs the maneuver
well enough while using a stable scanning pattern, at the end of the maneuver, there is a low
diversion between utilization of individual instruments during individual maneuvers.

An example of how experienced pilot scans instrument panel during individual phases
can be seen in figure 5.6, which clearly shows, that all instruments are used similarly across
all flight maneuvers. As a small exception, we can mention the vertical speed indicator,
where we can see a hint of a distinction between vertical and horizontal maneuvers. Note,
that the AI plays a major role in the pilot’s scanning strategy during each maneuver.
Based on the knowledge presented in chapter 2, this outcome is understandable, since the
AI is considered a master instrument in all commonly used scanning strategies. Another
explanation of this phenomena is, that the AI as a single instrument provides two key
information to the flight control, pitch and bank angle.

Results of analyzes presented above led to an idea of the division of some AOIs into
individual sub-clusters, as some of them are capable of distinguishing individual maneuvers
if they are divided correctly.

Division of the Attitude Indicator

It has been already mentioned and presented in the previous section, that the AI, as a master
instrument, plays a major role in the pilot’s scanning strategy in all flight maneuvers. Also,
it combines two instruments together - pitch and bank indicators. Thus, the AI is naturally
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Figure 5.6: An example of utilization of individual instruments expressed in percentage for
each of 6 maneuvers in a single flight.

chosen as the first candidate for further logical partitioning of the original AOI into multiple
sub-sections.

At first, the original AOI was divided into two new regions representing pitch and roll
parts of the AI. The division was made with the use of the common clustering method
K-Means. Inputs of the K-Means algorithm consisted only of fixations mapped into the
original attitude indicator AOI.

Green rectangle indicates Roll_mid AOI, while the red one indicates Roll_side AOI.
Dashed rectangle indicates the original width of the middle section.

Newly defined AOIs however, would still not have enough power to distinguish between
at least longitudinal and lateral maneuvers. If we think about the principles of the AI,
we know that while the scale of the bank angle rotates as the angle changes, the triangle
indicating current angle is actually static. Thus, pilot has to look all the time into the middle
section of the roll indicator, in order to obtain current angle of bank. If pilot maintains same
heading during the straight-and-level flight, the triangle in the middle indicates 0 °. This
situation is depicted in figure 5.7a. Then, when heading changes, the triangle still located
in the middle, indicates different bank angle values as the scale is rotated accordingly.
As a result, during each fixation into the region of bank angle indicator, pilot obtains a
different value while looking into the middle section. Example of the scale rotation with
30 ° bank angle can be seen in figure 5.7b.

Having this in mind, two AOIs were defined — Roll_mid and Roll_side. Roll_mid
AOI represents the range of bank angle scale between -10 ° and 10 °, while Roll_side groups
two extreme ranges of the scale together. These are ranges, where the scale indicates angles
greater than 10° and lower than -10 °. Boundaries of new AOIs for 0° bank angle are
shown in figure 5.7a. Green rectangle represents Roll_mid AOI, whereas Roll_side AOI
is represented by red rectangles.

Then a middle section region in the planar surface system is defined. It is used to
control the remapping process. Width of this section is set to fit between indicators of -10 °

62



0°

(a) 0° angle of bank

30°

(b) 30° angle of bank.

Figure 5.7: The division of the roll indicator into two sections according to the current
angle of bank.

and 10 ° bank angle range on the scale for 0 ° bank angle situation, as it is shown in figure
5.7a. In this figure, the middle section has same proportions as the green rectangle. The
middle section is used to decide, where the fixation is located with respect to this section.
Indicated location is further used in the process of new AOI assignment to the fixation.
Note the middle section and Roll_mid AOI each have different meanings. In this case,
Roll_mid and Roll_side represent the information the pilot obtains from the instrument
rather than some region with static boundaries.

Having Roll_mid and Roll_side AOIs, bank angle data from X-plane and fixation
location with respect to the middle section are used, to determine to which AOI each
fixation will be remapped. New AOI of each fixation is selected according to the fixation
position and current bank angle value. If the fixation was detected inside the middle section
region boundaries, and the bank angle at the time of the fixation was in range ± 10 ° bank
angle, Roll_mid AOI was assigned. If the pilot was looking outside of the middle section,
fixation was mapped on Roll_side AOI. In case the bank angle was greater than 10 ° and
the fixation was to the left of the middle region, Roll_mid AOI was assigned, otherwise,
fixation was mapped on Roll_side. Similar logic applies for the angle lower than -10 °.

As the angle exceed ± 20 °, for every degree above 20 ° or below −20 °, border of the
middle section is expanded by 5 % against the Roll_mid AOI. This expansion can be seen
in figure 5.7b, where the dashed rectangle represent the middle section. Green rectangle
represent Roll_mid AOI, while red rectangle is the boundary of Roll_side. However, since
pilots were briefed to perform standard-rate turns, which corresponds to approximately 15°
bank angle at around 100 kts, for the majority of time, width of the middle section did not
change.

Similar logic of the AOI partitioning was applied onto the pitch angle scale, where a sin-
gle AOI was replaced by two — Pitch_mid and Pitch_vert. The height of the middle sec-
tion was set to match the range of pitch angle from -2 ° to 5 °. If the pitch angle exceeded
± 10 °, using same logic as in case of roll indicator, middle section is expanded by 15 % of
the original height against the Pitch_mid.
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Figure 5.8: Mid-and-Vert layout of AOIs.

Division of the Vertical Speed Indicator

If we consider, that an experienced pilot maintains desired rate of climb and airspeed, the
pitch angle does not change in such a scale as roll angle. In a stabilized climb, the pitch
angle barely exceeded 10 °, while during the descents the threshold was at around -5 °. As
the space on the pitch scale between the range of ± 5 ° is quite narrow, there is a high
change of assigning of Pitch_mid to most of fixations. This can result in the low sensitivity
and low ability to distinguish between some maneuvers, especially between straight-and-
level flight and climbs/descents. Furthermore, during the analysis was observed, that some
pilots did not use pitch angle scale as much as the roll angle scale.

Figure 5.9: Divided VSI AOI into a middle and vertical sections.

To enhance ability to distinguish vertical maneuvers from horizontal, and to support low
sensitivity of pitch angle scale, the VSI was also divided, as it provides an instant response
to an altitude change. In fact, it is the most sensitive instrument on the SimStar instrument
panel. The advantage of this instrument is, that its dial is divided into two parts. Each
indicates individual trend and the needle also does not spin around the whole dial as in
the case of the ALT. Similarly to the pitch scale, the VSI was divided into two sections
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— VSI_mid and VSI_vert. Since the target climb/descent rate was set to 500 ft · min−1,
middle section boundaries should be set somewhere between ±500 ft ·min−1. For the higher
sensitivity, vertical boundaries of the middle section were set on the level, where the tip of
the needle indicates vertical speed of ±200 ft · min−1. Final look of the VSI partitioning
into two respective sections is shown in figure 5.9. Final layout of the AOIs, in this thesis
referred to as Mid-and-Vert layout, is introduced in figure 5.8. Respective AOIs are: (1)
ASI, (2) Roll side, (3) Roll middle, (4) Pitch vertical, (5) Pitch middle, (6) ALT, (7) TC,
(8) HI, (9) VSI vertical (10) VSI middle and (11) RPM.

Separation of Ascending and Descending Maneuvers

In order to distinguish between ascending and descending maneuvers, vertical regions of
both VSI and Pitch AOIs were further divided into respective clusters, each corresponding
to one of the two vertical directions — VSI_down, Pitch_down, VSI_up and Pitch_up.
Final layout of all AOIs after the partitioning process, referred to as Up-and-Down layout,
is depicted in figure 5.10. The layout is defined by 13 AOIs in total: (1) ASI, (2) Roll side,
(3) Roll middle, (4) Pitch up, (5) Pitch down, (6) Pitch middle, (7) ALT, (8) TC, (9) HI,
(10) VSI up, (11) VSI down, (12) VSI middle and (13) RPM.
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Figure 5.10: Up-and-Down layout of AOIs

5.5.3 Dataset Preparation

For the machine learning purposes, a dataset had to be prepared in order to train and eval-
uate respective models. In total, three classification cases were implemented and evaluated.
Individual dataset for each case was prepared.

All three datasets consisted of samples representing single phase of each flight of each
pilot. Every sample consists of series of AOI IDs, each representing a single fixation.
Fixations inferior to 100 ms were discarded, while consecutive fixations were maintained.
Thus, individual fixations instead of dwells were considered. As two different layouts of
AOIs were defined, two of three datasets shared the same layout of AOIs.
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Data of each sample were stored in a *.csv file with a single column AOI. Each row
of the column stores a single AOI ID. Labels of respective maneuver and proficiency level
were included in the filename of each sample in the following format:
<pilot_ID>___<f_number>___<maneuver_ID>___<prof_ID>___<phase_name>.csv, where
maneuver_ID represent the maneuver label and prof_ID is the proficiency label.

5.6 Proficiency and Maneuver Classifier
Overall, designed proficiency and maneuver classifier utilizes two different classification
techniques, one for each classification problem. At first, pilot’s proficiency is inferred using
the SVM model. Then, based on the result of the inference, an appropriate maneuver
classification model is selected (“amateur” or “experienced” class model) to infer flight
maneuver type. Each class’s classification model consists of respective number of HMM
models, one for each basic flight maneuver. Result of the inference is a tuple of inferred
proficiency level and executed maneuver. Scheme of the implemented classifier can be seen
in figure 5.11. In this figure, 𝑦𝐿 denotes classified proficiency level and 𝑦𝐶 is the classified
maneuver class.

...

Proöciency level 
model

Amateur class
maneuver model

(yL, yC)

Experienced class
maneuver model

Select
model

yL

if yL == -1 if yL == 1

Figure 5.11: Designed classification framework scheme.
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5.6.1 Technologies Used

The whole classification framework was implemented in programming language Python 3.8
in combination with numerous libraries. Regarding the data processing, the most utilized
libraries are NumPy and Pandas. Machine learning related implementation parts utilized
mainly Scikit-learn and Hmmlearn libraries.

NumPy

NumPy5 is an open source library providing wide range of tools for scientific computations.
It’s functionality ranges from simple and basic mathematical functions to high dimensional
data processing. Due to an indexing and vectorization techniques, processing of high di-
mensional data is very fast and effective, which makes of NumPy today’s standard for this
purposes. In addition, NumPy is not restricted to only numerical values, but it is capable
of processing data various types [16].

Pandas

Pandas6 is another powerful, easy to use, open source library for an easy and fast data
processing and analysis. It introduces an efficient object called DataFrame for a fast data
indexation and manipulation. Pandas is capable of high performance merging and joining
multiple data sets. Missing data values can be efficiently handled according to developer
needs. It allows to read and write data from multiple data formats such as *.csv, *.json,
Microsoft Excel or SQL databases. Data stored in the DataFrame object can also be
converted into NumPy arrays. Similarly to the NumPy, Pandas provides a wide range of
functions for data manipulation [39].

Scikit-learn

Scikit-learn7 is library featuring wide range of algorithms and models for machine learning
purposes. In particular, it provides algorithms for classification, regression and cluster-
ing problems. In addition, another tools to facilitate work with machine learning related
problems are provided such as data preprocessing, tools for models and parameters se-
lection and validation, and also algorithms for dimensionality reduction. It is an easy to
use library, which can be utilized for a fast and efficient development of machine learning
applications [30].

Hmmlearn

Hmmlearn8 is open source library, dedicated to the unsupervised learning of HMMs. It
is an easy to use library build on Scikit-learn library and tries to follow its API as close
as possible. Overall, 3 different HMM types are provided, each utilizing different emission
distributions [23]:

• Gaussian emissions,

• Gaussian mixture emissions,
5NumPy: https://numpy.org/
6Pandas: https://pandas.pydata.org/
7Scikit-learn: https://scikit-learn.org/stable/index.html
8https://hmmlearn.readthedocs.io/en/latest/
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• multinomial (discrete) emissions.

Additionally, base HMM model for creation of models with custom emission distribution
is provided.

5.6.2 Level of Proficiency Classification

First level of the classifier represents the proficiency classification process. As has been
mentioned, for the purpose of proficiency classification, SVM machine learning algorithm is
utilized, as it is an optimal choice for binary classification. Another advantage of the selected
algorithm is effectiveness in high dimensions, simplicity and its robustness against the high
dimensional data, i.e. when the number of features exceed the number of observations. This
was not the case of this thesis in particular. However, if we wanted to use KNN, we would
need much more samples in order to overcome “curse of dimensionality” problem, since
final feature vector has over 20 features and the total number of samples is around 580.

Feature Selection

The class, representing experienced pilots, was given the label value 1, while -1 was assigned
for amateurs class. Out of all available metrics of gaze tracking, only a transition matrix
was selected for the feature vector construction. A two-way probability transition matrix
was used in particular. It proved to be a flexible metric independent on the maneuver
type. For the computation of two-way transition matrix, consecutive fixations were grouped
together, so dwells were created. Because this transition matrix is symmetric, values on and
below the diagonal were discarded. If consecutive values would be maintained and diagonal
values would be considered, other transitions would not stand out due to significantly high
occurrences of self-transitions. Remaining values were concatenated into a single feature
vector. To decrease a high dimensionality of the feature vector, Principal Component
Analysis (PCA) analysis was used to reduce the number of features. As a result, size of
the feature vector was reduced down to 24 feature for Mid-and-Vert AOI layout, and 30
features for Up-and-Down AOI layout respectively, while 95 % of the variance is explained
by respective principal components.

Model and Hyperparameters Selection

For the purpose of classifier implementation, SVM model from the Scikit-learn library was
used. Specifically, SVC model for C-support vector classification was used. Prior to the
hyperparameters tuning, the whole dataset was randomly shuffled. Then, the dataset was
divided into train and test sets in the 80:20 ratio. Test set was used for the hyperparameters
selection. Hyperparameters of the model were obtained by using ten-fold cross-validation
technique, individually for different AOI layouts. Obtained parameters giving best results
are presented in the table 5.2.

Training process

As during the process of hyperparameters tuning using a ten-fold cross-validation was ob-
served the model is capable of generalization on training set, the model was retrained solely
on the training set without the use of a validation set. Final model was evaluated using
the test set.
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Table 5.2: Parameters of the SVM model and number of principal components for different
number of maneuver classes. PC stands for principal components.

AOI Layout PC
SVM Parameters

C gamma kernel

Mid-and-Vert 24 4 scale rbf
Up-and-Down 30 50 scale rbf

5.6.3 Flight Maneuver Classification

In the second step of the classification process, maneuver class is inferred. Overall, two
classification models were trained, each for one proficiency class. Each of two models were
trained solely on data of the respective proficiency class. In the inference process, the model
is selected according to the result of the proficiency classification.

For the maneuver classification, HMMs were utilized. They were selected due to their
ability of processing data series, which are the form of fixation sequences. Specifically,
the first computational problem of the HMM is utilized, that is, the determination of the
probability the model generates given series of observations.

...

Class 1 Class 2

MAX

... Class K

yC

P(O|λ1) P(O|λ2) P(O|λk)

Figure 5.12: Scheme of a single maneuver classification model for 𝐾 maneuver classes.

As has been mentioned, two independent maneuver classification models were imple-
mented. One for each level of proficiency. These two models further consist of multiple
HMM models, each representing a respective maneuver class. Scheme of a single classifica-
tion model with respective HMM models for 𝐾 maneuver classes is depicted in figure 5.12.
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Given an unknown series of fixation observations 𝑂, every HMM model 𝜆𝑘 outputs the
log-likelihood 𝑃 (𝑂|𝜆𝑘) the model generates the observation sequence. These probabilities
are compared, and maneuver represented by the model giving the highest log-likelihood
is considered as correct classification. In this thesis, it is considered that every unknown
input series was generated by one of the HMM models, i.e. no other maneuver classes than
those on which the maneuver classifier was trained are considered. Otherwise, appropriate
techniques validating classifier confidence of the inference would need to be implemented.

Model and Hyperparameters Selection

Since the set of possible observations is finite, when each of the observation represents one
of defined AOIs, a MultinomialHMM() model from the Hmmlearn library is selected in the
implementation. Every AOI in the input observation sequence is represented by an unique
numerical ID. Every HMM model is from the implementation perspective, considered as
a “black box”, where the number of hidden states does not correspond to the number
of maneuver classes. Thus, unsupervised learning is utilized, where no prior knowledge
about the emission, transition and initial distributions are known. All these parameters are
subject of learning procedure.

Regarding the model hyperparameters, the most important which had to be set prior to
the training process was the number of hidden states. Since every HMM model represents
a single maneuver model, the number of hidden states is not related to the number of
maneuver classes. Thus, some optimal number had to be found and selected. Based on the
experiments, 7 hidden states were selected as an optimal trade-off between the low and high
complexity of the model. Regarding other relevant hyperparameters, maximum number of
iterations of the EM (Baum-Welsch) algorithm was set to 15 and convergence threshold
to 0.01.

Training process

Each HMM model was trained solely on the series related to the respective maneuver class.
For each maneuver, 70 % of samples were used for training and 30 % was reserved for the
evaluation process. Due to a limited size of the dataset, validation dataset consited of
randomly picked samples from the training set. Prior to learning phase of each model,
datasets of each maneuver class had been randomly shuffled. Then, during the training
phase of each maneuver model, multiple HMM models were trained, while the one with
the best score on the validation data was selected as the final model. Overall, 50 models
were trained and validated, on the hold-out validation set. Score was represented by the
log-likelihood with which the model generates the series of observations from the validation
set.
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5.6.4 Classification Framework Interface

Simple command line interface of the classifier was implemented, to provide access for
learning, validation and inference procedures. Entry point of the classifier is classifier.py
Python script. It requires two positional arguments:

- N — Number of maneuvers to be classified. Three possible values are supported: 2, 4
or 6 maneuver classes.

- M — Operating mode. Three modes are available: training (T), evaluation (E) and
inference (I).

Training Mode

In training mode, individual classifiers are trained. To select training mode, positional
argument T should be set. Multiple flags are available for training mode:

- lp DATASET_PATH [M_EXPORT_PATH] [E_EXPORT_PATH] — Trains proficiency clas-
sifier model. It requires dataset directory path (DATASET_PATH) to be set. If model
(M_EXPORT_PATH) and PCA (E_EXPORT_PATH) export paths are set, it stores model in
the respective files using pickle module for serialization.

- lm E_DATASET_PATH A_DATASET_PATH [EXPORT_PATH] — Trains maneuver classifier
models. It requires two dataset — “experienced” class maneuvers (E_DATASET_PATH)
and “amateur” class maneuvers (A_DATASET_PATH). If one of the paths is set to ’_’, re-
spective classifier is not trained. If export path (EXPORT_PATH) is set, it stores both
models into the .JSON file format. It contains all parameters and hyperparameters
of all HMM models from both classifiers.

- e — Provides evaluation of individual classifiers at the end of the training processes.
In this case, training datasets are split into train and test sets. Otherwise, loaded
datasets are considered as training sets.

Evaluation Mode

In this mode, classifiers are evaluated. Script performs individual evaluation of selected
classifiers. Evaluation provides following information:

• Precision,

• Recall,

• F1 Score,

• Confusion matrix

Confusion matrix is printed on the standard output and also plotted in the matrix
graph. Available flags are:

- ep DATASET_PATH MODEL_PATH PCA_PATH — Evaluates proficiency classifier. Be-
sides the test dataset (DATASET_PATH), paths to classifier (MODEL_PATH) and PCA
(PCA_PATH) models need to be specified.
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- em E_DATASET_PATH A_DATASET_PATH MODEL_PATH — Evaluates maneuver classi-
fiers. Paths to test datasets (E_DATASET_PATH, A_DATASET_PATH) and file containing
parameters of classifier models (MODEL_PATH) are required. If one of the dataset paths
are set to ’_’, respective classifier is not evaluated.

Inference Mode

This mode provides inference of proficiency and maneuver for a single input sequence.
Output of the inference is a tuple in the form of (𝑦𝐿, 𝑦𝑀 ), where 𝑦𝐿 denotes proficiency
level and 𝑦𝑀 indicates inferred maneuver from inferred proficiency class.

Required flags are:

- i INPUT — Input file containing sequence to be inferred.

- m PROF_PATH PCA_PATH MAN_PATH — Loads trained models, required for infer-
ence. PROF_PATH is path to proficiency classifier model, PCA_PATH is path to fitted
PCA model and MAN_PATH is path to file containing parameters of maneuver classifier
models.
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Chapter 6

Evaluation

In this chapter, results of evaluation of proficiency and maneuver classifiers under various
conditions are provided. Overall, three different cases were tested and evaluated. At first,
classification of two classes of maneuvers, longitudinal and lateral, were tested. Proficiency
level classifier using Mid-and-Vert layout was also evaluated. Then, two maneuver classes
were split into classes corresponding to 4 basic flight maneuvers including straight-and-level
flight, level turn, descent and climb. This time, proficiency level was evaluated on Up-and-
Down layout. Finally, all six flight maneuvers performed by all participants were classified
including vertical turns.

Results of individual cases include confusion matrices and four common evaluation met-
rics utilized to evaluate classifier models — precision, recall, F1 score and accuracy in
tabular form.

6.1 Longitudinal and Lateral Maneuvers
In the first evaluation experiment, the simplest classification case was tested. Maneuvers
were divided into two classes — longitudinal and lateral maneuvers. Longitudinal class
includes straight-and-level flights, climbs and descents, whereas level turns were represen-
tatives of lateral maneuvers. In this evaluation setup, Mid-and-Vert AOIs layout was used.

At first, proficiency level classifier based on the SVM was tested. Confusion matrix in
figure 6.1 presents ratios of correct and incorrect classifications for each class. Over 90 % of
both classes were correctly assigned. Overall, 91.2 % accuracy was reached. Table 6.1 hows
results of precision, recall and F1 score metrics.

Table 6.1: Evaluation statistics of proficiency classification with Mid-and-Vert layout of
AOIs used.

Proficiency Level Precision Recall F1 Score Accuracy

Experienced 0.958 0.862 0.908 0.912
Amateur 0.875 0.962 0.917

Looking at two-way transition matrices samples (figures B.3, B.4) from initial climb
phase for both classes, different distribution of individual AOI pairs can be observed. In
pilot case, transition matrix is sparse and more structured.
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Figure 6.1: Confusion matrix for proficiency classifier with Mid-and-Vert layout of AOIs
used.

Results of flight maneuvers classification can be seen in figure 6.2. Regarding class
“experienced”, majority of maneuvers were correctly inferred, reaching a total accuracy of
93 %. In case of the class “amateur”, only 84 % longitudinal and lateral maneuvers were
correctly assigned. Samples of emission matrices for both classes can be seen in figures
B.1 and B.2. In both cases, effects of roll section division can be clearly observed. Much
stronger utilization of roll indicator is present within class “experienced”, whereas amateurs
used mainly the HI for lateral control.

Table 6.2: Evaluation statistics of longitudinal and lateral maneuvers classification with
Mid-and-Vert layout of AOIs used.

Maneuver
Experience (Acc.: 0.928) Amateur (Acc.: 0.839)

Precision Recall F1 Score Precision Recall F1 Score

Longitudinal 0.900 0.964 0.931 0.788 0.929 0.852
Lateral 0.962 0.893 0.926 0.913 0.750 0.824
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Figure 6.2: Confusion matrices for longitudinal and lateral maneuvers with Mid-and-Vert
layout of AOIs used.

6.2 Classification of 4 Basic Flight Maneuvers
In another evaluation case, maneuvers were divided into four classes — straight-and-level
flight, level turns, climb and descents. In this case, vertical turns were not included in
the dataset. For proficiency classification, Up-and-Down AOI layout was used. Looking at
confusion matrix in figure 6.3 and evaluation metrics in the table 6.4, we can see similar ac-
curacy to the previous case. Figures B.7 and B.8 show samples of utilization of instruments
during initial climb phase for both classes.
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Figure 6.3: Confusion matrix for proficiency classification with Up-and-Down layout of
AOIs used.

Regarding the maneuver classification, classifier for class “experienced” correctly clas-
sified 86 % of tested samples. As can be seen in figure 6.4a, confusion matrix shows, that
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Table 6.3: Evaluation statistics of proficiency classification with Up-and-Down layout of
AOIs used.

Proficiency Level Precision Recall F1 Score Accuracy

Experienced 0.985 0.838 0.905 0.906
Amateur 0.848 0.975 0.907

longitudinal maneuvers were mainly misclassified to another longitudinal maneuvers. Few
samples of level turns were also incorrectly inferred.

Significantly low accuracy was reached on the “amateur” class classifier. Due to probably
more unstructured and more variable scanning strategies across individual participants, the
classifier were able to reach only 70 % of accuracy. We can see in figure 6.4b, that as in the
case of experienced pilots, longitudinal maneuvers namely climb and descent, were mainly
misclassified to another two longitudinal maneuvers. This may be caused by the fact, that
amateur pilots struggled to maintain the altitude during the straight-and-level flight, so
there were intensive cross-checks of instruments indicating climbing/descending trends and
values. In case of level turns, higher number of misclassifications could be caused by higher
utilization of heading indicator rather than roll indicator. Utilization of individual AOIs
during individual maneuvers for both classes are presented in figures B.5 and B.6.
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84.2% 15.8% 0.0% 0.0%

26.3% 57.9% 0.0% 15.8%

21.1% 0.0% 73.7% 5.3%

30.8% 0.0% 7.7% 61.5%
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(b) Class “amateur”

Figure 6.4: Confusion matrix for 4 basic flight maneuvers with Up-and-Down layout of
AOIs used.

6.3 Classification of 6 Basic Flight Maneuvers
Last evaluation case was dedicated to test ability of classifiers to distinct between 6 basic
flight maneuvers including vertical turns divided into two classes — climbing turn and
descending turn. No more validation of proficiency classifier was performed, as the same
layout as in the previous case was used. Results of the evaluation can be observed in figures
B.9 and 6.5 .
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Table 6.4: Evaluation statistics of 4 basic flight maneuvers classification with Up-and-Down
layout of AOIs used.

Maneuver Experienced (Acc.: 0.857) Amateur (Acc.: 0.700)

Precision Recall F1 Score Precision Recall F1 Score

Straight-and-Level Fl. 0.857 0.947 0.900 0.552 0.842 0.667
Level Turn 0.941 0.842 0.889 0.786 0.579 0.667
Climb 0.789 0.789 0.789 0.933 0.737 0.824
Descent 0.846 0.846 0.846 0.667 0.615 0.640

As you can see, introduction of vertical turns brought a high uncertainty to the classifi-
cation of turn maneuvers. Almost half of level turn samples were missclassified to vertical
turns. Also some climb/descent samples were incorrectly assigned to newly introduced
vertical turns. Climbs were mistaken for climbing turns, while descents for descending
turns.

These misclassifications occurred probably due to a fact, that vertical turn as a ma-
neuver is a difficult for a coordination. Some pilots tends to divide the maneuver into two
separate maneuvers. This may lead to a higher similarity between level and vertical turns,
or climbs/descents and vertical turns. Thus, it is more difficult to distinguish between these
maneuvers. Also because some level turns were not perfectly horizontal, so vertical trend
indicators were more utilized, leading to biased classification towards vertical turns. Similar
problem can be expressed for climbs/descents and vertical turns.

In case of the class “amateur”, accuracy dropped down to 58 %. This may be the result
of higher utilization of performance instruments rather than the AI as a main source of
information. For this reason, almost half of the samples was misclassified. Figures B.9 and
B.10 shows utilization of individual AOIs.

Table 6.5: Evaluation statistics of 6 basic flight maneuvers classification with Up-and-Down
layout of AOIs used.

Maneuver Experienced (Acc.: 0.760) Amateur (Acc.: 0.583)

Precision Recall F1 Score Precision Recall F1 Score

Straight-and-Level Fl. 0.857 0.947 0.900 0.619 0.684 0.650
Level Turn 0.733 0.579 0.647 0.474 0.474 0.474
Climb 0.875 0.737 0.800 0.800 0.632 0.706
Descent 0.769 0.769 0.769 0.750 0.462 0.571
Climbing Turn 0.625 0.769 0.690 0.500 0.615 0.552
Descending Turn 0.667 0.769 0.714 0.400 0.615 0.485
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S. L. Fl. L. Turn Climb Descent C. Turn D. Turn
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94.7% 5.3% 0.0% 0.0% 0.0% 0.0%
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0.0% 0.0% 7.7% 76.9% 0.0% 15.4%
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Figure 6.5: Confusion matrix for 6 basic flight maneuvers of class “experienced” with Up-
and-Down layout used.
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68.4% 10.5% 0.0% 0.0% 5.3% 15.8%
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23.1% 0.0% 7.7% 46.2% 7.7% 15.4%
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Figure 6.6: Confusion matrix for 6 basic flight maneuvers of class “amateur” with Up-and-
Down layout of AOIs used.
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Chapter 7

Conclusion

The goal of this thesis was to design and implement pilot proficiency classification frame-
work, which would be able based on the pilot’s gaze to (1) classify pilot’s proficiency level,
and (2) infer the maneuver which was performed by the pilot. Overall two proficiency
levels — “experienced” and “amateur” were classified. Concerning flight maneuvers, three
different cases were tested.

At first, state of the art study was made on possible techniques for analyzing visual scan-
ning strategies, and machine learning approaches for classification. Based on the acquired
knowledge and data analysis, design of the classification framework was made. Unlike other
related studies, a different approach of selecting AOI layouts was used. Instead of consid-
ering individual instruments as a whole, some instrument AOIs were further divided into
sub-parts to highlight certain properties, which can be observed from these instruments. In
some cases, dynamic changes of these instruments also had to be taken into account.

The designed framework consists of two parts. First part infers pilot’s proficiency level.
Proficiency level classifier is based on the SVM algorithm, known as a simple yet powerful
machine learning algorithm widely used for binary classification. Another advantage is its
ability to deal with low datasets and higher number of features. Feature vector for the
classification consists of values of two-way transition matrix of individual AOIs. Based on
the inference result, appropriate maneuver classification model, for either “experienced” or
“amateur” class, is selected. Each model consists of multiple HMM models, each represent-
ing one class of maneuvers. The HMMs for maneuvers classification were selected for their
efficiency in processing sequential data, which was the case in this thesis.

Finally, multiple evaluation cases were performed to evaluate both classifiers and inves-
tigate, if there are any significant differences between both classes. Results confirmed, that
differences between visual strategies of two tested classes exist. Proficiency level classifier
reached high classification accuracy. Concerning maneuver classifiers, three different cases
were evaluated. In first two cases (2 and 4 flight maneuver classes), classifier trained and
evaluated on data of experienced pilots performed well. As vertical turns were introduced
and became subject of classification, the classifier did have problem mainly to distinguish
between level and vertical turns. However, this was probably due to a high complexity of
vertical turns, so some pilots divided these flight maneuvers into two individual maneu-
vers — lateral and longitudinal. Overall, classification results of this class satisfied initial
expectations. These results were reached mainly due to the logical division of original AI
and VSI AOIs into individual sub-sections, each uncovering originally hidden information
relevant for maneuver determination process.
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Unlike the classifier of level class “experienced”, accuracy of the second class classifier
was inferior. As the number of maneuver classes increased, classifier accuracy decreased.
This was caused probably due to a high utilization of performance instruments rather than
the AI, which was one of the subjects to AOI division. Thanks to this, the classifier were
not able to distinct between individual flight maneuvers more accurately.

7.0.1 Potential Further Development

Subject of further development on the basis of achieved results could be the investigation
of existence of differences in visual scanning strategies between pilots with different qualifi-
cations. Because an efficient scanning strategy is a sign of experience, this could lead to its
utilization in pilot training. Instructor would have another tool of evaluation of pilot’s skill
in performance of individual maneuvers. Another utilization could be in the determination,
if the pilot is in condition, in which he is able of performing desired tasks according to some
standards and if the is not safety risk.
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Appendix A

Content of the Enclosed Medium

• /doc — documentation source codes

• /src — classifier source codes

• /models — trained models

• xrutad00_DP.pdf

• README.md
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Appendix B

Evaluation Charts

Longitudinal and Lateral Maneuvers

HI ALT R. Mid. R. Side P. Mid. P. Vert. ASI VSI Mid. VSI Vert. TC RPM

Longitudinal

Lateral

25.9% 13.0% 12.8% 4.8% 1.4% 2.1% 3.4% 14.2% 22.6% 0.0% 0.0%

30.9% 12.1% 7.1% 10.8% 1.7% 3.8% 2.9% 13.2% 16.6% 1.0% 0.0%

0

10

20

30

Figure B.1: Emission matrix of 2 maneuver classes from a sample flight performed by an
amateur pilot representative. Mid-and-Vert layout of AOIs is used. High utilization of HI,
and performance instruments overall, in both maneuver classes can be observed.

HI ALT R. Mid. R. Side P. Mid. P. Vert. ASI VSI Mid. VSI Vert. TC RPM

Longitudinal

Lateral

12.0% 14.4% 26.0% 13.8% 2.1% 2.6% 14.3% 6.4% 6.6% 1.5% 0.4%

14.1% 14.7% 10.9% 29.7% 1.0% 0.8% 14.6% 6.3% 5.6% 2.4% 0.0%

0

10

20

30

Figure B.2: Emission matrix of 2 maneuver classes from a sample flight performed by an
experienced pilot representative. Mid-and-Vert layout of AOIs is used. Both classes can be
easily distinguished based on the utilization of individual roll indicator sections.
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HI ALT R. M. R. S. P. M. P. V. ASI VSI M. VSI V. TC RPM

HI

ALT

Roll Mid.

Roll Side

Pitch Mid.

Pitch Vert.

ASI

VSI Mid.

VSI Vert,

TC

RPM

0.0% 0.5% 3.4% 0.0% 2.9% 5.3% 1.0% 1.0% 1.0% 0.5% 0.0%

0.5% 0.0% 2.9% 0.0% 4.3% 6.3% 1.0% 2.4% 2.4% 0.0% 0.0%

3.4% 2.9% 0.0% 1.4% 5.3% 9.2% 1.0% 1.0% 1.0% 0.0% 0.0%

0.0% 0.0% 1.4% 0.0% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0%

2.9% 4.3% 5.3% 0.0% 0.0% 17.9% 3.4% 2.4% 1.0% 0.5% 0.0%

5.3% 6.3% 9.2% 1.4% 17.9% 0.0% 4.3% 3.4% 3.9% 0.0% 0.0%

1.0% 1.0% 1.0% 0.0% 3.4% 4.3% 0.0% 1.9% 1.0% 0.0% 0.0%

1.0% 2.4% 1.0% 0.0% 2.4% 3.4% 1.9% 0.0% 5.3% 0.0% 0.0%

1.0% 2.4% 1.0% 0.0% 1.0% 3.9% 1.0% 5.3% 0.0% 0.0% 0.0%

0.5% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0

2.5

5.0

7.5

10.0
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15.0

17.5

20.0

Figure B.3: Transition matrix between individual AOIs from a sample of initial climb phase
performed by an amateur pilot representative. Mid-and-Vert layout of AOIs is used.
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HI ALT R. M. R. S. P. M. P. V. ASI VSI M. VSI V. TC RPM

HI

ALT

Roll Mid.

Roll Side

Pitch Mid.

Pitch Vert.

ASI

VSI Mid.

VSI Vert,

TC

RPM

0.0% 1.3% 4.9% 0.3% 0.5% 1.3% 1.3% 1.0% 0.5% 0.8% 0.0%

1.3% 0.0% 7.3% 0.5% 1.0% 0.8% 1.3% 2.1% 3.9% 0.0% 0.0%

4.9% 7.3% 0.0% 4.2% 1.3% 8.1% 15.4% 3.9% 12.5% 1.0% 0.0%

0.3% 0.5% 4.2% 0.0% 0.3% 0.0% 1.6% 0.5% 2.3% 0.3% 0.0%

0.5% 1.0% 1.3% 0.3% 0.0% 2.9% 1.3% 0.0% 0.5% 0.0% 0.0%

1.3% 0.8% 8.1% 0.0% 2.9% 0.0% 2.9% 0.8% 2.3% 0.3% 0.0%

1.3% 1.3% 15.4% 1.6% 1.3% 2.9% 0.0% 0.8% 3.6% 0.5% 0.0%

1.0% 2.1% 3.9% 0.5% 0.0% 0.8% 0.8% 0.0% 3.6% 0.0% 0.0%

0.5% 3.9% 12.5% 2.3% 0.5% 2.3% 3.6% 3.6% 0.0% 0.3% 0.0%

0.8% 0.0% 1.0% 0.3% 0.0% 0.3% 0.5% 0.0% 0.3% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure B.4: Transition matrix between individual AOIs from a sample of initial climb phase
performed by an experienced pilot representative. Mid-and-Vert layout of AOIs is used.
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Classification of 4 Flight Maneuvers

HI ALT R. Mid. R. Side P. Mid. P. Up P. Down ASI VSI Mid. VSI Up VSI Down TC RPM

Straight-and-Level Fl.

Level Turn

Climb

Descent

29.1% 14.6% 13.9% 4.3% 1.4% 1.1% 1.1% 6.3% 19.7% 6.0% 2.5% 0.0% 0.0%

30.8% 12.7% 10.3% 8.9% 2.7% 5.8% 0.0% 1.7% 16.8% 5.5% 4.8% 0.0% 0.0%

20.2% 11.5% 13.0% 3.5% 1.9% 2.6% 0.0% 1.3% 6.2% 39.2% 0.6% 0.0% 0.0%

30.3% 12.6% 10.2% 8.1% 0.3% 0.9% 0.0% 1.5% 18.6% 0.6% 16.8% 0.0% 0.0%
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Figure B.5: Emission matrix of 4 maneuver classes from a sample flight performed by an
amateur pilot representative. Up-and-Down layout of AOIs is used. There is no significant
difference between level turn and other longitudinal maneuvers. Climb and descent classes
can be clearly distinguished based on VSI AOIs.

HI ALT R. Mid. R. Side P. Mid. P. Up P. Down ASI VSI Mid. VSI Up VSI Down TC RPM

Straight-and-Level Fl.

Level Turn

Climb

Descent

12.6% 17.1% 28.9% 12.5% 0.8% 1.0% 0.7% 12.5% 4.3% 3.6% 3.1% 1.8% 1.1%

16.0% 14.9% 11.5% 31.5% 1.1% 0.7% 0.5% 15.8% 3.8% 1.6% 1.4% 1.4% 0.0%

11.4% 12.0% 25.9% 16.3% 2.0% 1.8% 0.4% 15.6% 5.2% 6.8% 1.2% 1.5% 0.0%

12.7% 17.9% 19.4% 6.3% 6.0% 1.9% 4.5% 13.4% 3.7% 1.1% 12.3% 0.7% 0.0%
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Figure B.6: Emission matrix of 4 maneuver classes from a sample flight performed by an
experienced pilot representative. Up-and-Down layout of AOIs is used. Climb and descent
classes can be distinguished mainly based on VSI AOIs.
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HI ALT R. M. R. S. P. M. P. U. P. D. ASI VSI M. VSI U. VSI D. TC RPM

HI

ALT

Roll Mid.

Roll Side

Pitch Mid.

Pitch Up

Pitch Down

ASI

VSI Mid.

VSI Up

VSI Down

TC

RPM

0.0% 0.5% 3.2% 0.0% 2.8% 2.3% 2.8% 0.9% 0.9% 0.5% 0.5% 0.5% 0.0%

0.5% 0.0% 2.8% 0.0% 4.1% 2.3% 3.7% 0.9% 2.3% 1.4% 0.9% 0.0% 0.0%

3.2% 2.8% 0.0% 1.4% 5.1% 1.4% 7.4% 0.9% 0.9% 0.5% 0.5% 0.0% 0.0%

0.0% 0.0% 1.4% 0.0% 0.0% 0.9% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2.8% 4.1% 5.1% 0.0% 0.0% 7.4% 9.7% 3.2% 2.3% 0.5% 0.5% 0.5% 0.0%

2.3% 2.3% 1.4% 0.9% 7.4% 0.0% 0.9% 0.9% 0.5% 0.9% 0.5% 0.0% 0.0%

2.8% 3.7% 7.4% 0.5% 9.7% 0.9% 0.0% 3.2% 2.8% 0.5% 1.8% 0.0% 0.0%

0.9% 0.9% 0.9% 0.0% 3.2% 0.9% 3.2% 0.0% 1.8% 0.0% 0.9% 0.0% 0.0%

0.9% 2.3% 0.9% 0.0% 2.3% 0.5% 2.8% 1.8% 0.0% 1.4% 3.7% 0.0% 0.0%

0.5% 1.4% 0.5% 0.0% 0.5% 0.9% 0.5% 0.0% 1.4% 0.0% 3.7% 0.0% 0.0%

0.5% 0.9% 0.5% 0.0% 0.5% 0.5% 1.8% 0.9% 3.7% 3.7% 0.0% 0.0% 0.0%

0.5% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Figure B.7: Transition matrix between individual AOIs from a sample of initial climb phase
performed by an amateur pilot representative. Up-and-Down layout of AOIs is used.
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HI ALT R. M. R. S. P. M. P. U. P. D. ASI VSI M. VSI U. VSI D. TC RPM

HI

ALT

Roll Mid.

Roll Side

Pitch Mid.

Pitch Up

Pitch Down

ASI

VSI Mid.

VSI Up

VSI Down

TC

RPM

0.0% 1.3% 4.9% 0.3% 0.5% 1.3% 0.0% 1.3% 1.0% 0.5% 0.0% 0.8% 0.0%

1.3% 0.0% 7.2% 0.5% 1.0% 0.8% 0.0% 1.3% 2.1% 2.3% 1.6% 0.0% 0.0%

4.9% 7.2% 0.0% 4.1% 1.3% 8.0% 0.0% 15.2% 3.9% 12.4% 0.0% 1.0% 0.0%

0.3% 0.5% 4.1% 0.0% 0.3% 0.0% 0.0% 1.6% 0.5% 2.3% 0.0% 0.3% 0.0%

0.5% 1.0% 1.3% 0.3% 0.0% 2.8% 0.0% 1.3% 0.0% 0.5% 0.0% 0.0% 0.0%

1.3% 0.8% 8.0% 0.0% 2.8% 0.0% 0.0% 2.8% 0.8% 2.1% 0.3% 0.3% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1.3% 1.3% 15.2% 1.6% 1.3% 2.8% 0.0% 0.0% 0.8% 3.4% 0.3% 0.5% 0.0%

1.0% 2.1% 3.9% 0.5% 0.0% 0.8% 0.0% 0.8% 0.0% 2.6% 1.0% 0.0% 0.0%

0.5% 2.3% 12.4% 2.3% 0.5% 2.1% 0.0% 3.4% 2.6% 0.0% 0.8% 0.0% 0.0%

0.0% 1.6% 0.0% 0.0% 0.0% 0.3% 0.0% 0.3% 1.0% 0.8% 0.0% 0.3% 0.0%

0.8% 0.0% 1.0% 0.3% 0.0% 0.3% 0.0% 0.5% 0.0% 0.0% 0.3% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Figure B.8: Transition matrix between individual AOIs from a sample of initial climb phase
performed by an experienced pilot representative. Up-and-Down layout of AOIs is used.
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Classification of 6 Flight Maneuvers

Figure B.9: Emission matrix of 6 maneuver classes from a sample flight performed by an
amateur pilot representative. Up-and-Down layout of AOIs is used. VSI AOIs have strongs
ability to distinguish between ascending and descending manevers.

Figure B.10: Emission matrix of 6 maneuver classes from a sample flight performed by an
experienced pilot representative. Up-and-Down layout of AOIs is used. VSI AOIs have
decent ability to distinguish between ascending and descending manevers.
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Appendix C

Designed Flight Pattern
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NOT CLASSIFIED NOT CLASSIFIED

NOT CLASSIFIED NOT CLASSIFIED

NOT CLASSIFIED

Figure C.1: Designed flight pattern with respective constraints of individiual maneuvers.
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Appendix D

Simulation Framework Photos

Figure D.1: Visualization subsystem of the SimStar simulation framework.
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Figure D.2: Control background of the SimStar simulation framework.

Figure D.3: Instrument panel of the SimStar simulation framework.
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Figure D.4: Simulator operated by one of the participants.
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