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Abstract

This thesis deals with the Model-Driven Development of Big Data tasks in the Apache Spark
environment. In the beginning, the reader is introduced to the Apache Spark framework and
necessary details. Afterward, a closer look at the Model-Driven Development methodology
is provided, and its advantages and disadvantages are described. The second part describes
the designed meta-model for modeling Spark tasks. The designed Profile diagram features
that extend the Class diagram are described in detail. Afterward, the code generator is
implemented. The input of the generator are models that satisfy the designed meta-model.
The thesis also contains example models and their evaluation.

Abstrakt

Tato diplomova praca sa zaoberda modelom riadenym vyvojom Big Data tloh v prostredi
Apache Spark. Na zaciatok je Citatelovi predstaveny framework Apache Spark a potrebné
detaily. Dalej sa priblizi problematika modelom riadeného vyvoja a popisu sa jeho vyhody a
nevyhody. V druhej c¢asti je popisany navrhnuty meta-model pre modelovanie tiloh Sparku.
Detailne st popisané vlastnosti navrhnutého profilového diagramu, ktory rozsiruje diagram
tried. Nasledne je implementovany generator kédu, ktorého vstup st modely vyhovujtce
navrhnutému meta-modelu. Préaca taktiez obsahuje priklady modelov a ich vyhodnotenie.
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Rozsireny abstrakt

Svet sa dinom, ¢o dilom vyvija vpred a ludia sa snazia pochopit, ¢o sa deje. Na to aby niekto
mohol nieco spravne pochopit, musi analyzovat déata, ktoré méa k dispozicii. V dnesnej
dobe je ale tychto dat coraz viac a viac a ich objem rastie exponencidlne. S postupnym
vyvojom internetu sa zacali objavovat terminy ako Big Data. Pojem Big Data popisuje data,
ktoré mozu byt réznorodé, a prichddzat rychlo a vo velkom objeme. Aby boli pocitacové
systémy schopné tieto data spracovavat, zacalo vznikat niekolko distribuovanych rieseni.
Jednym z tychto technolégii je prave Apache Spark. Casto povazovany za nislednika Apache
Hadoop a jeho vypocetného modelu Map Reduce. Spark pouziva inovativny pristup k
distribuovanému spracovaniu dat v podobe acyklickych orientovanych grafov.

S neustalym rastom mnozstva dat a vykonom technolédgii na ich spracovanie je potrebné,
aby aj ludia pracujtci s tymito technolégiami dokézali udrziavat tempo. Metodologia mode-
lom riadeného vyvoja prinasa niekolko vyhod pre analytikov, vyvojarov a inych odbornikov.
Zakladom tejto metodoldgie je grafickd reprezenticia systému diagramom a nésledne vy-
generovanie vysledného kédu. Abstrakcia, ktord modelom riadeny vyvoj prindsa, poméaha
zvysSovat produktivitu pri analyze a vyvoji systému, ale aj pri komunikécii medzi expertami
z roznych pozicii. Modelom riadeny vyvoj pokracuje v stopach objektovo-orientovaného
pristupu k vyvoju, ale snazi sa ¢o najlepsie abstrahovat technolégiu a kéd, tym ze sys-
témy maju detailne definovany doménovy model, z ktorého je mozne vytvorit plne funkény
systém.

Cielom tejto diplomovej prace je preskiimat a navrhnuf sposob, ako spojif modelom
riadeny vyvoj a spracovanie Big Data pomocou tloh v Sparku. V préaci st najprv detailne
priblizené obe tématiky - Spark a Modelom riadeny vyvoj (MDD). Po zozndmeni sa s
potrebnymi konceptami st predstavené riesenia, ktoré sa zameriavali na podobny problém.

V druhej casti je popisany navrhnuty meta-model, ktory sa pouziva pri modelovani tloh
v Sparku. Tento meta-model vychiadza z navrhnutého doménového modelu. Meta-model
bol realizovany ako profilovy diagram rozsirujuci diagram tried. Doménovy model vychadza
z pristupu Sparku k spracovaniu rozsiahlych dat. Je reprezentovany ako subor acyklickych
orientovanych grafov. Profilovy diagram a diagram tried bol vybrany z dévodu vysokej
podpory existujucich nastrojov a celkovej znalosti v sfére objektovo-orientovaného vyvoja.
Profilovy diagram definuje niekolko stereotypov, ktoré rozsiruju slovnik triedneho diagramu.
Tieto stereotypy obsahuju tzv. tagged values, ktoré umoznuju konfigurovat konkrétne entity.
Dalej st popisané detaily, ako sa s meta-modelom pri tvoreni konkrétneho modelu pracuje,
aby bol vygenerovany kod Sparku validny.

V casti implementacie je popisany Eclipse Acceleo generator. Acceleo pouziva Standard
od Object Management Group (OMG) zvany M2T - Model to Text. Implementovany gen-
erator zo vstupného modelu generuje kéd v jazyku Scala. Vygenerovany kdéd je navrhnuty
tak, aby bol ako model, tak aj meta-model rozsiriteIny. Tak isto je navrhnuty tak, aby bolo
mozné potencidlne opacné generovanie modelu z kddu.

V poslednej ¢asti je navrhnuty meta-model a implementovany generator vyhodnoteny
a predstaveny na stubore ukazkovych Spark tloh, konkrétne; WordCount - povazovany za
Hello, World! program v kontexte Big Data tloh, PageRank - algoritmus, ktory Google
Search pouziva na vyhodnotenie relevancie stranky, a spracovanie dat roéznych typov, ktoré
poukazuje na ostatné vlastnosti meta-modelu. Tieto tlohy sa snazia ukézat ako vyhody,
tak aj nevyhody tohto riesenia. Rovnako ukazuji aj vylepsenia oproti predstavenym, uz
existujucim rieseniam. Zdrojové subory generatora a Eclipse Papyrus projekt meta-modelu
boli zverejnené ako open-source na serveri GitHub.



Na zaver je vyhodnoteny cely pristup a vystup diplomovej prace, su priblizené vyhlady
na budicu pracu v tejto problematike, ako napriklad priblizenie abstrakcie, aby modely
neboli viazané na Scalu alebo opacné generovanie modelov zo zdrojového kodu.
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Chapter 1

Introduction

With the world constantly evolving day to day, people want to understand what is hap-
pening. To properly understand something, one needs to analyze data. In today’s age,
the volume of the produced data rises exponentially. The term Big Data was first coined
in 2005 and was a direct consequence of the development of Web 2.0. Many distributed
frameworks were developed with the need to process data that contains greater variety,
arriving in increasing volumes and with more velocity. One of these frameworks is Apache
Spark. The successor to Apache Hadoop’s Map Reduce uses an innovative programming
model for distributed data processing. Chapter 2 describes Spark in more detail and men-
tions some details and workflows necessary for this thesis.

As the volume of the data increases, the need to develop applications in processing
frameworks follows the same trend. To reduce the necessary work to develop these applica-
tions, people search for an optimization. One possible approach is to formalize the design
and then automate the development. A Model-Driven Development approach introduces
a way to develop software using graphical modeling. Afterward, the source code of the appli-
cation is generated. An overview and advantages of Model-Driven Development and Model-
Drive Architecture can be found in chapter 3.

This thesis’ motivation is to design a method to formally model Big Data processing
tasks in Spark and implement the solution. With the rundown of the essential concepts out
of the way, the next chapter 4 describes the related and already existing work in this field.
Previous projects offer inspiration but also an insight into what can be improved.

Chapter 5 goes over the proposed meta-model design while describing it in detail. An-
alyzing the previous solutions turned out the already existing ecosystem for modeling is
designed with extensibility in mind. The meta-model to describe Spark tasks is an ex-
tension of the UML Class diagram using the UML Profile diagram. By using already
established tools, the meta-model becomes easier to extend and also learn.

The aim of chapter 6 is to take a closer look at the implementation of the code generator
in Eclipse Acceleo. Acceleo implements the ,MOFM2T* standard, from the Object Man-
agement Group, for performing the model-to-text transformation. The generator consists
of OCL templates and Java services and produces any text from a model input.

In the last chapter 7, I evaluate the proposed meta-model and the implementation
of the generator using sample test cases. The first test is a Word Count application often
considered to be the ,Hello, World!“ program for Big Data processing. The next test case
is the Page Rank algorithm used by Google Search. This case focuses on presenting more
features and the possibility of modeling a more complex task. Finally, the last example
showcases the use of the remaining features and type system using Spark’s datasets.



Chapter 2

Apache Spark

Apache Spark is an open-source framework that enables data scientists, data engineers, and
machine learning engineers to run large-scale data processing distributed across a cluster,
mainly Big Data processing. It ensures necessary features, such as data parallelism and
fault tolerance. Spark provides expressive and intuitive API for several popular languages -
Python, Scala, Java, SQL, and R. The Spark ecosystem also offers many tools and settings
to make Big Data processing more straightforward. One of these tools is a command-line
interface in Python and Scala used for quick ad-hoc data analysis and simple applications.
It was designed to effectively support various types of workloads - batch processing, stream
processing, interactive queries and interactive algorithms, machine learning training, and
graph analysis. That means Spark is a good choice for developers since they only need
to use one engine for multiple types of data processing.

2.1 Apache Hadoop Map Reduce

Spark is considered a successor to Map Reduce of the Apache Hadoop framework. Both
technologies analyze Big Data, but their approach is very different. Apache Spark claims
to be 3X - 100X faster than Map Reduce [7].

To understand the differences between these two popular processing engines, let us
look at Map Reduce. Hadoop’s Map Reduce distributed processing is as simple as three
operations or steps.

e« Map: each worker node inside a cluster applies the map function and produces new
data stored in temporary storage.

e Shuffle: Worker nodes now redistribute data created by map in the previous step
with their output key.

¢ Reduce: workers now apply the reduce function on shuffled data.

Because of the simple nature of this approach, multiple aspects might be improved
upon. First, the Map Reduce API is too complicated and requires a lot of boilerplate
code. Secondly, it lacks the possibility of combining other data processing workloads such
as machine learning tasks or stream processing. Finally, complex data processing tasks
need to chain multiple Map Reduce operations. That makes Map Reduce tasks very disk
dependent. The data are written back to the local disk of each worker node after every
Map Reduce stage.



2.2 Spark’s design and architecture

To improve these shortcomings, other data processing frameworks were developed. One
of these frameworks is Spark which uses a multi-stage approach to distributed processing
instead of a two-stage one. Spark uses in-memory storage after each computation. Also,
it includes libraries for workloads such as interactive queries (Spark SQL), real-time data
stream processing (Structured Streaming), machine learning (MLIlib), and graph processing
(GraphX). Under the hood, Spark constructs a directed acyclic graph for its computation.

Spark’s design philosophy centers around four key characteristics [5].

Modularity

As mentioned above, Spark operations can be applied across many types of workloads and
written in any of the supported programming languages mentioned above. In addition,
Spark also provides highly documented libraries that include the following modules - Spark
SQL, Spark Streaming, MLlib, and GraphX.

These modules can all be used together in a single application without the need to learn
different engines and libraries to process the desired task.

Extensibility

Spark design focuses on its fast in-memory processing engine. That makes decoupling
of computation engine and storage possible. Moreover, since the storage is wholly decou-
pled, an extensive range of input data sources can be used - such as Apache Hadoop, Apache
Cassandra, Apache HBase, MongoDB, Apache Hive, Apache Kafka, cloud storages Azure
Storage and Amazon S3.

The community even maintains a list of libraries that enriches the Spark ecosystem.
That would not be possible if Spark’s design was not extensible or easy to use.

Ease of use

Using Spark, one can build Big Data processing applications with a simple programming
model in popular languages. The primary abstraction of data is called Resilient Distributed
Dataset (RDD). RDDs bring simplicity to the API. Higher data abstractions are constructed
upon it - DataFrames and Datasets. Programming Spark application is then simply using
actions and transformations on these data structures.

I will describe the Resilient Distributed Dataset and other data abstractions below
in more detail 2.2.2.

Speed

As already mentioned, Spark outperforms Hadoop in speed. Futhermore, Spark is able
to utilize computer hardware thanks to its fundamental architecture design fully. Spark
transforms computations to directed acyclic graphs (DAG). DAGs are then processed and
optimized by graph algorithms and redistributed to worker nodes across the cluster for par-
allel execution.



2.2.1 Spark architecture

As already mentioned, Spark is a distributed data processing system. That means multiple
machines inside a cluster collaborate to execute the submitted task. Let us take a look
at the architecture of this distributed engine [3] [6]. Spark uses a standard master/worker
pattern shown in 2.1.

e Driver - The machine responsible for initiating the computation. This machine has
multiple roles. First, it is responsible for instantiating and hosting the SparkContext
inside its JVM process. Second, it requests resources from the cluster manager node,
such as memory or CPU. Finally, it transforms Spark code into DAG and distributes
it to worker nodes. That means the driver is responsible for coordinating workers and
the overall execution of submitted tasks.

o Cluster manager - is the master node of a cluster. It manages the resources of work-
ers and makes them run the executor program. Spark is compatible with multiple
implementations of cluster managers closely described in 2.2.2.

e Workers - also known as slaves - are responsible for executing the calculation. They
are the compute nodes where the executor program lives. When the SparkContext
is initialized each worker node starts its executor (JVM process). This process does
not stop after every step and waits for more commands from the driver. Thanks
to this Spark worker nodes are able to compute received operations of constructed
DAG faster.

The fact that the executor is a JVM process makes both horizontal(multiple worker
nodes) and vertical (multiple executors on a single node) scalability possible.

(worker node)

Spark Executor |
Task Task Task

" J

— | Spark Executor |
(worker node)
Spark Driver C{I;S‘;::er:ﬂﬁfr
Task Task Task

\_ J

Spark Executor
(worker node)

Task| Task| Task

\_ J

Figure 2.1: Cluster architecture of Apache Spark nodes



2.2.2 Spark ecosystem

Spark creators have won a prestigious award for one of their publications, describing Spark
as a ,Unified Engine for Big Data Processing® [19]. As shown in 2.2, Sparks unified stack
offers multiple modules, cluster managers, and APIs. Unlike all the other processing
frameworks, Spark unifies all components under a single engine. Although Sparks con-
tains its own modules, it is still possible to develop open-source libraries or packages -
https://spark-packages.org/. All of these modules are separate from the core computa-
tional fault-tolerant engine. That means every Spark application, whether using all or no
modules or written either in Python or Scala, is still processed and decomposed into DAG,
which the Spark core executes. Using a modular ecosystem brings multiple advantages.
The first is the nature of the layered structure. If a component on the lower level is opti-
mized, all the components on any higher level become faster as well. Second, modules were
designed to be highly compatible. As a result, when developers need to integrate multiple
workloads, they need to set up and maintain only one system. That reduces a lot of cost
and time to use.
Now let us talk about the parts in more detail.

Spark Core

Spark Core is the base of Spark functionality. It is responsible for the main features of Spark
- tagk dispatching, memory management, communication with the data sources, and much
more. It is also the place that provides the specialized data structure called RDD (Resilient
Distributed Datasets) 2.2.2. Spark Core offers API for this structure.

Spark SQL

Spark SQL is used to work with structured data. It offers an abstraction built on RDD called
DataFrame. This structure offers more information about the data than the RDD interface.
That means Spark SQL is able to optimize the calculations and store them in permanent
or temporary tables. Spark also supports SQL and HQL (Hive Query Language) used
in Apache Hive. Sparks SQL also follows standard ' and can be used as a pure SQL engine.
Thanks to this module, one can read data stored in various RDBMS or structured file
formats such as CSV or JSON.

Spark Streaming

Big Data is often created in real-time, and there is a need for real-time stream processing.
Spark Streaming is a module that solves this issue. It provides an API to manipulate and
process stream data similar to the Spark Core RDD fault-tolerant usage. The advantage
of this module is that developers can use both stream and static data inside a single appli-
cation. For example, they can treat logs from a web server as they would static data inside
a table. Also, streams can be consumed from various data sources such as Kafka, Kinesis,
HDEFS, or Twitter. This is a perfect example of Spark’s ease of use and modularity.

"https://en.wikipedia.org/wiki/SQL:2003


https://spark-packages.org/

MLIib

With the rise of machine learning (ML) and its computational heavy training algorithms,
Spark also implemented the support to distribute the computation to multiple machines.
MLIib also contains a new data abstraction called Dataset. Dataset APIs offer multiple
algorithms, including classification, regression, decision trees, clustering, and many more.
As mentioned above, Spark is faster than Hadoops Map Reduce in many ways. MLIlib
claims to run a logistic regression algorithm 100X faster [1].

GraphX

The last tightly integrated module is GraphX. It can be used to compute graph algorithms
in parallel. This module can be easily used with MLIlib, SQL, and Streaming which only
broadens the possibilities of the Spark framework.

Cluster managers

Cluster managers, also known as task schedulers, are mainly responsible for resource allo-
cation across the worker nodes inside a cluster. A cluster manager decides what node and
when should run the task executor. Since the Spark computation cluster might contain
hundreds to thousands of nodes, this job is essential. Because of the modular approach
of Spark, it is possible to use different kinds of managers, as stated in Spark documentation
[16].

e Standalone - the out-of-the-box solution. It is native to Spark, and its main goal is
to be easy to use. It only supports FIFO (First in First Out) scheduling which might
not be optimal.

¢ YARN - released with Apache Hadoop version 2.0, and the advantages are the data
locality inside HDFS and better scheduling and resource management than the stan-
dalone deployment.

o Mesos
o Kubernetes (experimental)

e Amazon EC2
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; Spark
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Figure 2.2: Unified stack of Apache Spark

Resilient distributed datasets

Spark achieves its high speed by using a data abstraction called Resilient Distributed
Dataset. They can be described as read-only collections of objects with assured fault-
tolerant parallel processing, hence the name RDD. They were first introduced in the paper
[21]. Let us go over these features in more detail [6]:

Resilient - fault-tolerant, RDD can be recalculated after a fault of a node or when
a partition is missing. That is possible because a lineage graph of all operations is
kept.

Distributed - data reside on several nodes of a cluster

Dataset - collections of data with primitive or structured values that represent
records of the data you work with.

In-Memory - as previously mentioned, Spark calculates and holds data in memory
to make the processing faster. It tries to keep as much data and as long as possible
to optimize time and size.

Immutable - RDDs are read-only structures. That means they do not change after
they are created. After using a transformation on RDD a new RDD is created.

Lazy evaluated - another feature that can optimize the calculation is lazy evaluation.
It means RDD is only calculated after an action prompts the execution. That means
that multiple transformations might be chained before the evaluation.

Cacheable - even though Spark uses in-memory computations, it is still possible
to hold data in persistent storage.

Parallel - since the data is distributed across the cluster, parallel processing is pos-
sible.



e« Typed - RDD records have types - primitive, e.g., Int, String, or structured, e.g.,
tuples (Int, String) or objects.

o Partitioned and Location-Stickiness - records of RDD are split into logical par-
titions and distributed across the cluster. One can also define placement preference
for RDD.

Users can manipulate RDD with two types of operations. Let us describe them in more
detail.

e Actions - unlike transformations, action calls do not return another RDD. Actions
start the worker nodes’ evaluation of the chain of transformations. Actions results are
sent back to the driver node. Examples of these operations are count, reduce, foreach,
and others. Actions can also save the result to data storage instead of sending it back
to the driver node, such as the saveAsTextFile function.

e Transformations - operations applied on existing RDD that create new RDDs.
DAGs that are later optimized consist of a chain of these operations. Transformations
use lazy evaluation, and two types of transformations exist.

Transformations can be described as having either narrow or wide dependencies. The two
types of transformations are illustrated on 2.3

Any transformation that can be evaluated from a single partition as input is nar-
row. Narrow transformation is computed on a single partition of RDD without the need
for knowledge of the other partitions - without any exchange of data between nodes. Some
examples of these transformations are map, filter, union, or flatMap.

The second type is so-called wide transformation. Computing this transformation will
collect data from multiple nodes, process it, and shuffle it. This transformation can lead
to repartitioning of data and even a change in the number of partitions. These operations
are time-consuming since a ton of data has to move around. Examples of these operations
are groupBy or orderBy.

Narrow transformation Wide tranformation

—
-

Figure 2.3: Two types of RDD transformations

10



DataFrame and Dataset

With the development of Spark and its module came a need and a possibility to create
new data abstractions. A new data structure abstraction called DataFrame has been in-
troduced in the Spark version 1.3 release. A few versions later, specifically 1.6, the next
abstraction was added called Dataset. In the major version of Spark 2.0, these were merged
[18]. DataFrame is only an alias for Dataset[Row] in Scala programming language or
Dataset<Row> in Java. That means it is Dataset with the type Row. These data structures
are heavily tied to the Spark SQL module.

DataFrame

DataFrame takes features from both RDD and relational database tables. That makes it
immutable, distributed, fault-tolerant, and structured in columns and rows. They were de-
signed to make data processing easier with higher-level structured abstraction. In addition,
providing SQL-like language to manipulate the data makes it possible for a wider audience
of developers.

Dataset

Datasets are the newest data structure in the Spark ecosystem. It provides benefits of both
RDDs (strongly typed, lambda functions) and Spark SQL’s execution engine. Even though
the Dataset API is available only in Scala and Java, Python and R are still able to utilize
multiple benefits due to their dynamic nature.

Let us take a look at why merging Dataset and DataFrame APIs was beneficial.

e Static typing- Syntax and semantic analysis are already being checked at compila-
tion which prevents possible run-time errors.

o Highly abstract data structure - as I already mentioned, DataFrame is an alias
for Dataset [Row]. That makes the data highly structured with the possibility to map
it to a user-defined class in a supported language.

« Ease of use - the API offers functions similar to SQL aggregation operations. It may
lead to a reduced number of operations from the use of RDDs.

e Performance - Spark SQL uses an optimizer called Catalyst. Thanks to this opti-
mization, using DataFrames can lead to better performance than RDDs which do not
use any built-in optimizer. The part of Catalyst is the Tungsten memory manager.
Tungsten converts data to binary form that takes up less memory than serialized
data.

2.4 Example of Spark code in Scala

Finally, let us look at some code snippets of the Spark framework in Scala. These snippets
will be helpful when discussing the code generation of the Spark application.

I already mentioned that a new RDD is created after using a transformation on an al-
ready existing RDD. There must be a way to create RDD from pure data. Listing 2.1 shows
how new RDD can be created in Scala. The usage of transformation and action operations
are displayed on listing 2.2. Finally, usage of Dataset and conversion back to RDD is shown
in listing 2.3 taken from [17].
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// sc - SparkContext

// create rdd using parallelize

val rddl = sc.parallelize(l until 10)

// create rdd from file

val rdd2 = sc.textFile("/path/to/data/file.txt")

Listing 2.1: How to create new RDD

// sc - SparkContext

// transformation of previously created rdd

val odd = rdd.filter(x => x%2 == 1)

// action does not return new rdd

odd.foreach(println)

// prints out: (the order is random because RDD is distributed)
//
//
//
//
//

O W O N~

Listing 2.2: Usage of transformation and action on RDD

val linesDS = sc.parallelize(Seq("Spark is fast", "Spark has Dataset", "Spark
Dataset is typesafe")).toDS()

val words = linesDS.flatMap(_.toLowerCase.split(" ")).filter(_ != "")

val groupedDS = words.groupBy("value")

val countsDS = groupedDS.count ()

countsDS. show ()

val rddFromDS = countsDS.rdd

// +————— +-———- +
// | valuelcount|
/] +———————= +-——— +
/7| fast]| 1]
// | is| 2|
// | spark| 3|
// | dataset| 2|
// | has| 1]
// ltypesafel 1|
// +——————- +-———- +

Listing 2.3: Usage of Dataset
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Chapter 3

Model-driven Development

Model-driven Development is a methodology of building complex software with the use
of simplified abstractions of already existing components. The main idea is to move the de-
velopment to a higher level of abstraction that is later used to generate the source code.
These components are visual building blocks that show the application and the business
needs instead of looking through complicated lines of code. MDD helps bridge the gap
between developers and business domain experts.

Model is the fundamental part of the MDD paradigm. It defines the behavior, structure,
and functionality of a system or a part of it. The MDD approach focuses on the construction
of a visual representation of a software model. The model specifies how the system works
and is used to generate the necessary code.

MDD methodology claims to have multiple advantages:

e It increases developers’ productivity because most of the code is generated from
the model or its components.

e The fact that MDD increases the system’s abstraction level makes the communication
between developers and other business experts easier. Business experts often do not
understand the complex code but can communicate their ideas to developers using
a simple graphical representation.

e Since the code is generated, it becomes more consistent across the codebase because
of reusable components.

o With enough support for code generation, modeling a system is independent of the un-
derlying technology.

In any technical decision, there always comes a trade-off. So let us mention some flaws
that might hold MDD back.

e The complexity of some artifacts might be too high to model properly with abstract
modeling. That may lead to manually editing the generated code, creating inconsis-
tencies across the codebase.

e The usage of models or UML is very different across the developers. Some may sketch
the model to get the idea across. Others might use it to design the software, later
coded by the developers. These two approaches differ from the MDD methodology
of using modeling as a programming language.
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e To create proper code generation tools, most of the MDD notations need to be stan-
dardized.

There are still a few things a developer could question, such as performance, maintainability,
or scalability. Performance could be compared to traditional compilers, where it took
a long time and effort to create optimal compilers, while MDD is still a developing concept.
Maintainability comes from the usage of MDD. If the developer changes the code without
reflecting the change in the model, they can introduce many inconsistencies. This problem
could be solved with a reverse code generation to regenerate the graphical model from code.
Finally, scaling is the biggest advantage MDD offers. Providing a higher level of abstraction
to a system worked on by hundreds of developers can hold the generated codebase and
diagrams more consistent across the company [15].

Model-driven architecture

MDA is an approach to software design, development, and implementation introduced by
The Object Management Group '. MDA offers guidelines for structuring software repre-
sented by models. It separates the business and application logic from the underlying plat-
form. That means platform-independent models of applications or systems can be realized
on virtually any platform. It also means the separation of the two that creates a possibility
for each to develop at their own pace. The business quickly responds to business needs,
and the technology improves with the new development [10].

3.1 UML - Unified Modeling Language

The Unified Modeling Language is a formally defined and standardized modeling language
to specify, design, and document software systems (or other systems). It is a programming
language independent. UML is widely known and used to model systems, especially object-
oriented software.

There are three common ways people use UML [8]:

e as a sketch - usually by hand without the need of modeling tools

e as a blueprint - with the use of modeling software to generate parts of the source
code

e as a programming language - the model is designed so it can run without any
other interaction

In UML, we want to work with the abstraction of reality, and with different language
means, we create the abstraction of the system - the model. In this model, we try to capture
relationships between different elements of the designed system. As the systems we try
to design can be pretty complex, we need to use multiple types of diagrams. Therefore,
UML offers several types of diagrams that can be categorized into views. This categorization
helps capture only the relevant parts for the modeling and ignore the others.

The set of views that is known as the 4+1 Views of Software Architecture(see figure
3.1) with examples of a diagram is as follows [20]:

"https://www.omg.org/
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o logical view - an abstract description of the structure of units of implementations;
modeling of its components and relationships(class diagram, sequence diagram)

o process view - the model of system behavior (activity diagram)

o deployment view - model the components required for deploying the system (de-
ployment diagram)

o implementation view - describes how components are organized in packages and
modules (component diagram)

« use case view - captures the user requirements of a system (use case diagram)

CONCEPTUAL PHYSICAL

Logical View Implementation View

Class, Object, Package,
Composite Structure,

State Machine . Component
Use Case View
Use Case, Activity
Process View Deployment View
Sequence,
Communication,
Activity, Timing,
Interaction Overview Deployment

Figure 3.1: UML views

3.2 UML profile

UML, on its own, is a very generic modeling tool. However, when a developer wants to model
a domain-specific problem, the standard UML might not be sufficient. The need for an ex-
tension of UML that would specify the domain-related problem made the OMG consortium
include an extension mechanism called UML profile [12]. Profile package included in UML
provides the means to extend UML meta-classes that still follow the UML standard. The
usage of profiles can lead to adjusted UML for a specific domain problem. That means the
code generators for a specific domain can be developed easier. This technique is not used
to create a new type of diagram; instead it extends an already existing type. Most UML
editing software (CASE - Computer-Aided Software Engineering) supports the creation
and usage of profiles because they only graphically extend elements of already existing and
well-known diagrams.
To define UML profile we use three standard elements as defined in [8]:
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Stereotypes

Stereotypes signify that an element has a particular use or intent. Stereotypes are most often
shown by specifying the name of the stereotype between two guillemots - «stereotype>».
The number of stereotypes an element can be extended by is not limited. In that case, they
are separated by a comma: «stereotypel», <stereotype2». Asshown in figure 3.2, while
modeling Java classes, we can define stereotypes such as Entity Bean and Session Bean that
inherit from the Bean stereotype. Other well-known stereotypes often used in the use-case
diagram are «include» and «extend>».

Tagged values

Tagged values are tied to stereotypes. A stereotype may have multiple tagged values asso-
ciated with it. A piece of extra information is provided in a key-value manner. Figure 3.3
shows how tagged values are graphically represented. They can also be displayed in a note
attached to the stereotyped element. As stated, tagged values are used to extend the proper-
ties of UML and are most commonly used for code generation, version control, configuration
management, or authorship.

Constraints

Although stereotypes and tagged values are graphically represented in a diagram, con-
straints are not. Constraints impose rules and restrictions on model elements. Constraints
can be defined in informal language or using OCL - Object Constraint Language. Most
diagram editing software supports this language and can check the validity of the diagram
based on these constraints.

=< Stereotypa=>
Bean {Component)
=< 5tereotypas> << 5tereotypa=>
Entity {Component) Session (Component)
state | Enum
== Stereotype>> == Sterectype>> <= Sterectypa=>
Remaote (Class) Home (Class) JAR (Artifact)

Figure 3.2: Example of stereotype

Two fagged values — — —|§ F'"':fg"u .

{wersion = "2.1%}
-name
-address

Figure 3.3: Example of tagged values
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3.3 Eclipse Papyrus

Eclipse Papyrus is an open-source graphical editing tool for UML 2 as defined by OMG.
Eclipse Papyrus targets to implement 100% of the OMG specification. It provides an ed-
itor for almost all UML diagrams and supports UML profiles [13]. Papyrus also provides
complete support to SysML to enable model-based system engineering. It includes an imple-
mentation of the SysML static profile and the specific graphical editors required for SysML.
Papyrus is an excellent addition to the Acceleo workflow and Eclipse ecosystem overall.

3.4 Eclipse Acceleo

Eclipse Acceleo is a code generator implementing the Model-to-text specification [11] de-
fined by OMG. Acceleo lives in the Eclipse ecosystem, which is rich in modeling features.
Acceleo is not only a code generator but has many features to extend Eclipse IDE with
helpful tooling. Acceleo can generate any kind of code with its MTL (Model to Text) lan-
guage that is compatible with any EMF-based model (Eclipse Modeling Framework) such
as UML or SysML. The code generation language uses a template-based approach. A tem-
plate is a text containing dedicated parts where the resulting code is then calculated from
the input model. The dedicated parts are expressions specified on the element of the input
model to extract pieces of information defined in it. Acceleo uses OCL (Object Constraint
Language) to extract these pieces of information.

Acceleo supports incremental generation. This feature allows people to modify pieces
of generated code without losing these modifications when the code is regenerated, allowing
the usage of generators to be more flexible. These areas are defined using the [protected]
tag.

Acceleo is written in Java and is deployed as an Eclipse plugin and integrated into
the Eclipse IDE. This plugin also brings multiple tools for the development of an Acceleo
generator, such as an editor with syntax highlighting, auto-completion, error detection,
a debugger to check the state of generation step by step, and a profiler.

Since only running an Acceleo generator using Eclipse IDE is not optimal, Acceleo
can also be used as a stand-alone application. The parsing and the generation engine
are generated as a Java class that allows an Acceleo generator to be programmatically
integrated into any Java application.

i

Input Model

Acceleo —
I
|
I

[ / ] Generated Code

Code Template

Figure 3.4: Eclipse Acceleo °

Zhttps:/ /www.eclipse.org/acceleo/overview.html
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Java services

Using OCL inside [query] construct in Acceleo might not always be enough to extract or
modify the relevant information. Therefore, Acceleo offers an option to invoke Java code
inside an Acceleo template. These services allow developers generate even the most complex
requests. In order to use a Java service, use the Acceleo invoke operation in order to tell
Acceleo to call your Java method and return the result. Java services are limited to param-
eters and return values with a type from one of the meta-models used in the generator or
a primitive type (String, Integer, Real, Boolean, etc.).

18



Chapter 4

Related work

With the continuous rise of MDD several other projects with a similar goal in mind have
been developed. The goal of this thesis is to design and implement a model-driven tool
to create Spark applications. By closely inspecting already existing solutions we can pin-
point the advantages and disadvantages of the given solution.

4.1 Executable UML

First described in a book Executable UML: A Foundation for Model-Driven Architecture
[2]. Both a method and language to develop software, Executable UML (xUML) offers
highly abstract and platform independent solution to generate source code from defined
model. Even though xUML is a subset of Unified Modelling Language - UML, it uses
slightly different semantics. The model does not include any code, but parts of the model
are mapped to specific code snippets for target platform. Executable UML is a perfect
example of Model-driven architecture in practice.

4.2 Map Reduce generator

With the rise of the need for Big Data processing applications the field also tries to develop
tools to make the analytic work more straightforward. The first proof of concept for Model-
driven Development of Big Data processing applications was published in [14]. Designing
a meta-model for Map Reduce applications and subsequently generating a working source
code proved that a Model-driven approach could be applied to processing tasks to bridge
the gap between developers and complex systems by abstraction. Even though this project
uses a Map Reduce approach to data processing it still brings valuable insight into how
Spark application can be modeled. The conclusion of this paper showed that MDD approach
increased the productivity without any noticable performance overhead.

4.3 The custom Spark generator

This project was developed as a master thesis [4] with a similar goal. The meta-model
of this solution does not follow any standard. That makes it harder to learn. Even though
the solution works, the modeling approach is quite complex. Using this meta-model you
could model very complex applications as it is quite similar to modeling a Scala program
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by assigning variables, calling and defining a function, and determining the order of execu-
tion. The takeaway from this solution is the need for a meta-model to design the application
with a much less complex diagram by trying to reduce the modeling space of an application.
Also, the new meta-model has to use standard modeling language instead of a custom one,
to make it easily integrable to Acceleo.

4.4 StreamGEN

A very robust solution described in paper [9]. They developed a system with a simi-
lar approach and technical stack using UML profile and Eclipse Acceleo. StreamGEN is
a system to generate Streaming Applications to multiple platforms - Apache Flink and
Apache Spark. StreamGEN consists of a modeling language - StreamUML and an Acceleo
code generator - StreamCGM. The meta-model is defined using UML profile to extend
the Class diagram and the Composite Structure diagram. The authors decided to gener-
ate the application source code as Java code because it is widely supported by different
platforms. Since this solution is mainly focused on streaming applications it defines mul-
tiple domain-specific stereotypes such as a WindowTransformer, WindowedStream,
or RandomlyPartitionedStream. Because the meta-model mainly focuses on stream
processing some features are missing
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Chapter 5

Meta-model design

In this chapter, I will introduce the designed meta-model that can be used to create a model
of Big Data processing in Spark. I will describe its usage, advantages and disadvantages,
and thought processes behind the design.

As the previous chapter indicates I decided to extend the existing UML diagram with
UML profile to add vocabulary to already existing, well-known language. UML and various
domain-specific stereotypes are well known and have great support for both modeling and
code generation - especially Eclipse Acceleo. To keep the trend of well-known principles I
decided to extend the most common UML diagram - the Class diagram.

The advantages of this approach are extensibility, reusability, and ease of use. The class
diagram can be easily extended with different profiles and used by different generators
to create a more robust solution. The class diagram is also well known and more easily
read than code. Finally, as stated in the previous chapter the Model-driven design makes
diagrams reusable solutions as they can easily model parts of the system.

The proposed design also brings a few disadvantages. The designer needs to understand
the Spark framework and Scala programming language. It does not abstract the internals
enough to seamlessly work without a prior knowledge of Spark. Also, the more advanced
features of Spark are unable to be modeled (Streaming, MLIib) as their workflow is struc-
tured differently than the generic Spark processing pipeline.

This design is mostly inspired by the related work [9], that was mentioned earlier. They
took a similar approach by extending both the Class diagram and the Composite Structure
diagram. Although this approach can bring better and more robust abstraction, I find using
only one diagram more maintainable and reusable. This can bring a few hurdles that I will
discuss later.

Now let us take a look at a Domain model of a typical Spark application. As we can
see in figure 5.1, a Spark application structure is rather simple. An instance of Spark appli-
cation has its own configuration. Most Spark applications use the command-line interface
with provided arguments for control. After the Spark application is configured the flow
of the program can be represented as a directed acyclic graph. This is similar to how Spark
actually works on the inside. These processing graphs begin with the source node. After-
ward, multiple transformations can chain to modify the input data provided by the source
node. The last type of processing node is the action node. Action node represents an action
on computed RDD (or Dataset).
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Figure 5.1: Domain model of Spark Application

Up until now, the order of generated code did not matter because the RDDs or transfor-
mation nodes were not evaluated. If the respective transformations were chained correctly
the flow of the program was apparent. The problem arises when a single Spark application
uses multiple actions. Their order must be deterministic because a premature action can
modify the not yet evaluated source. That can be avoided by explicitly selecting the priority
of a specific action.

With this domain model in mind I will define the meta-model in more detail. Figure 5.2
and table 5.1 show the designed UML profile. As already mentioned UML profile extends
the most common diagram - the Class diagram. The most important types of elements
of a UML diagram, or more specifically the Class diagram, are relationships (meta-class
Association) and classifiers (meta-class Class). The meta-model also extends a less known
meta-classes - Model and Datatype, to display the model with a better composition and
provide a tuple data structure often used in Spark.

5.1 Description of provided stereotypes

In this section I will describe the designed profile diagram and defined stereotypes in detail.
It is necessary to mention the designed meta-model is designed with the Scala programming
language in mind. Many tagged values of stereotypes require the user to specify Scala code
snippets to define a function or an array of some sort.

First I will describe miscellaneous elements that diagram provides. These elements
all contribute to the type system of the meta-model. The Snippet primitive is defined
to distinguish the fields that expect String primitive or Scala code snippet to be pro-
vided. The structered DataTypes Option and Program Argument are defined as types
used in the meta-model to introduce structured tagged values. Option is key-value map
where key is a string literal and value is a Scala code snippet (either a string literal in quo-
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tation marks or a variable name). Program Argument defines Spark Application program
arguments, their data types and default values. Enumaration File Source Type narrows
down the values for «<File Source» stereotype.

e «Spark Application» - this model stereotype defines Spark Application as a whole.
Spark applications usually need a configuration. The most common attribute - master
is defined as an explicit tagged value. Next tagged value is conf. Conf uses the de-
fined Option type to configure the Spark object using key-value pair configuration.
Similiarly arguments define input arguments for Spark Application and their default
values. Imports is a list of packages to be imported into the Spark Application.
Last, initialCodeBlock is used to inject specific code at the start of the generated
application.

e «Processing Node» - the processing of input with transformations and finally evalu-
ating it with action is the core of Spark applications. The processing node stereotype
is abstract and defines the processing graph node. Multiple stereotypes extend it.

e «Source» - the entry point of the data processing. Source node represents the initial
creation of RDD (or Dataset). Tagged value priority is used to determine the or-
der of execution to prevent any undefined behaviour occuring. Source stereotype is
extended by specific ways of RDD creation.

e «RDD Parallelize» - the most basic creation of RDD. The tagged value array rep-
resents a Scala code snippet of an array of data, for example - array="Seq(1,2,3)".

e «File source» - Spark supports multiple file types to load the data from. The type
of file can be selected using the tagged value format and the File source types enu-
meration. The enumeration is used to limit the input scope. The path to the input
file is configured using the filePath tagged value. Similar to conf in Spark Appli-
cation stereotype, file source can be configured with options tagged value. The fact
that Spark application can load both RDD and Dataset from files means it might be
necessary to provide a data type for Dataset.

e «SQL» - represents the SQL query from the Spark SQL storage. Using the tagged
value query to define an input query. Also uses datatype tagged value.

e «JDBC» - the last supported data source is by loading data from a database. The URL
tagged value is self-explanatory. The options and datatype work the same as in
the file source. The necessary options are also explicitly used as tagged values - user,
password, tableName.

e «Transformation» - transformation nodes are the central part of the processing
graph. The designed meta-model supports both RDD and Dataset transformations
that make this stereotype abstract. The tagged value that both transformations in-
herit is the func value. It is used to define the transformation provided by the Scala
Spark API'. For example, if we want to use the map function to double the value
of records in RDD we would set the tagged value as follows: func="map(x => x*2)".

e «RDD transformation» - stereotype representing the RDD transformation. Doesn’t
contain any tagged values because it inherits func from abstract transformation.

"https://spark.apache.org/docs/latest /api/scala/org/apache/spark/index.html
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«Dataset Transformation» - works similar to RDD transformation but for Dataset
API. The purpose of this stereotype is to be able to tell the generator to convert
the RDD to Dataset.

«Action» - the next defined stereotype extending the Class meta-class represents
the last node of the graph - the Action. Actions’ func values work the same way
as in terms of transformations. Most of the action functions just return a value.
«RDD Action» and «Dataset Action» stereotypes are also defined and work similarly
to transformation.

«Code Block» - even though Spark Application mostly consists of the previously
mentioned processing graphs, there is still need of some utility code either to display
or format outputs or assign values to variables. The tagged value code contains a Scala
code snippet. The stereotype is also part of the processing graph and the provided
code is generated while traversing the graph. The output of the previous node is
injected into the code using $out variable.

«Variable» - in some specific cases we need to introduce a variable into our compu-
tation. We might need to iterate in a loop while joining constantly changing RDD
with another RDD. Or we just want our mapper to use program arguments. The need
of this stereotype might be more apparent when I discuss it’s usage in a later chap-
ter. It is possible to store a specific output of a processing node by connecting this
stereotype with Information Flow relationship to it. Tagged value dataType defines
the dataType variable will hold and isRDD is a bool flag to tell the generator variable
will contain RDD of the provided data type.

«Flow» - this stereotype extends Information Flow relationship and is used to increase
the ability to define the order of execution and reuse already defined transformations.
Priority is used when a transformation output is sent to multiple nodes. The gen-
erated code will traverse the graph in depth-first search manner. Tag helps to name
a specific flow in the graph. It is only useful if a specific transformation has input
from two different nodes. The output of this transformation for each of these nodes
is accessed via the same tag. If the Information Flow relationship does not use this
stereotype the priority is always considered to be traversed last. Also the graph is
generated for each tag from the input flows.

«Argument» - extends the association relationship. Some of the transformations pro-
vided in Spark API use another RDD/Dataset to process the input e.g. zip, join
or intersect. This relationship helps to inject a Variable stereotype as a function
argument to a transformation node.

«Tuple» - while working with RDDs in Spark one can use transformations, such as
groupByKey or reduceByKey, that need tuples as their data type. This stereotype
extends DataType meta-class making it possible to use it as a data type in model
when necessary.

«Loop» - similarly to «Spark Application» stereotype this stereotype also extends
the Model meta-class to display a proper composition of the application. «Iteration
Loop» and «Conditional Loop» stereotypes define the loop condition since this
stereotype is abstract. Both iterations and condition tagged values are Scala
code snippets and represent the behaviour of the loop.
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5.2 The usage of the profile

There are a few non-standard design choices that need to be described to understand
the usage of the proposed meta-model. In this section I will go over the details that are
necessary to understand to use the designed meta-model properly.

Order of execution

The source node and the action node can have multiple outputs and inputs respectively.
The transformation node can have both multiple inputs and outputs. This creates a situa-
tion where one diagram can define multiple processing pipelines. To determine which code
is generated first, the source nodes and Information Flow relationships have priority values.
The order of generation is as follows:

1. find the highest priority source node

2. generate the code representing graphs in depth-first search manner where higher num-
ber has higher priority

3. select next source node and repeat

In many Spark Application the processing nodes might only contain one output. To make
the modeling process more straight-forward, even the Information Flow relationships with-
out the «Flow» can be used to model the computation. These relationships are then con-
sidered to have the lowest priority when possible branching occurs.

Data Types

The graph, created using Information Flow relationships as edges and processing nodes
as nodes, instantiates the processing pipeline of the application. Each edge must contain
data type of the RDD that is being processed. This data type is selected using conveyed
property of the Information Flow relationship.

To define data types used by different elements across the diagram, such as Informa-
tion Flow relationships, variables, and sources, the package element of a Class diagram
is used. If the package is contained inside the «Spark Application» stereotype model
element, the appropriate data structures are also created by the code generator. Class
diagram offers primitive data types - Integer, Real, Boolean and String. It is also possible
to modify the multiplicity of the attribute to create a list. Meta-model supports the defi-
nition of a structure type with primitive data types and their multiplicity. The generated
case classes and data types are later described in chapter 6. On the other hand, some
data structures, or in this case Scala case classes, can include properties that can not be
modeled in the UML Class diagram. The meta-model can still support these data types
as an imported anonymous data type. To import the data types, use the imports tagged
value of the «Spark Application» stereotype. Afterward, create a package element with
a DataType element inside. This element does not need to have any properties defined,
but requires the name to match the imported name. The difference between imported and

«

generated data type can be seen in figure 5.3

26



«Spark Application»|

=1 App
[ Imported Package
«DataType»
[e?] DataTypel
[E3] + Propertyl: String [1 ~ «DatalType»
[=] + Property2: Integer [1 <] ImportedDataType

Figure 5.3: Difference between generated and imported data type

Loops

The analyzed related projects did not include any form of loops in their design. Therefore,
the addition of loops to the meta-model brought the possibility to model more complex ap-
plications. To properly include this feature, both the readability and functionality of the di-
agram must be considered. Similarly to the Application element, loops are also represented
as the model element of the Class diagram. The model element can display what nodes of
the computation are inside. Now it is crucial to determine when the loop scope starts and
where it ends. As the generator traverses the computational graph, when the first node
with a new loop scope is visited, the loop header will be generated. The closure of the loop
happens when the generator visits the first node outside of the model element. The meta-
model also supports nested loops and thanks to the model element the diagram remains
readable.

Tags

The meta-model is designed to be a Class diagram. Classes are not meant to represent
objects already instantiated in the application. The overall thought behind the meta-
model design is that the nodes represent the structure and the template of computations,
while Information Flow relationships instantiate them inside the application’s main method.
Therefore, all the nodes inside the diagram must be unique. Tagged value tag in the «Flow»
stereotype aims to prevent a definition of multiple classes with the same method, but
different name. When the computation requires to process multiple inputs with the same
function, it is possible to connect these inputs to a processing node. These input edges
must then be distinguished by tagging them with a specific value. To differentiate between
the output flows, the same tag must be used in the out-coming relationship. If no tag is used
in the output Information Flow relationship, all the inputs are processed and the generator
continues to generate the pipeline for each of them. It is important to mention that if
only single Information Flow relationship is used it can only hold a single conveyed data
type, whereas the inputs types to the processing node may differ. The use of tags is shown
in the Dataset processing test case described in the section 7.3.
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Datasets

When using Spark’s Dataset API, it is often necessary to use the name of the input Dataset
variable. An example can be seen in listing 5.1. However, the name of the generated
variable holding the value is unknown. Therefore it is necessary to provide this functionality
to the model designer somehow. Test case 7.3 shows the code snippet of the solution.
Because outputs from all the nodes are cast to RDD, the transformation and action methods
need to use API with the $ notation. The input Dataset is then renamed to this using
an alias method.

people.filter("age > 30")
.join(department, people('"deptId") === department("id"))
.groupBy (department ("name"), "gender")
.agg(avg(people("salary")), max(people("age")))

Listing 5.1: Dataset API using the name of Dataset variable

Variables

Another fairly non-standard feature is the use of variables. This element defines a variable
in the main method of the application. The name of the element matches the variable
inside any Scala code snippets. The injected variable also uses the same identifier inside

the transformation and action function.

Stereotype Inherits from Type

«Spark Application» Model Concrete
«Computation Node» Class Abstract
«Source» «Computation Node» Abstract
«File Source» «Source» Concrete
«SQL» «Sourcey Concrete
«Parallelize» «Source» Concrete
«JDBC» «Source» Concrete
«Transformation» «Computation Node» Abstract
«RDD transformation» «Transformation» Concrete
«Dataset transformation» «Transformation» Concrete
«Action» «Computation Node» Abstract
«RDD Action» «Action» Concrete
«Dataset Action» «Action» Concrete
«Flow» «Information Flow» Concrete
«Code Block» Class Concrete
«Variable» Class Concrete
«Tuple» DataType Concrete
«Loop» Model Abstract
«Iteration Loop» «Loop» Concrete
«Conditional Loop» «Loop» Concrete
«Argument» Association Concrete

Table 5.1: The list of defined stereotypes
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Chapter 6

Implementation details

For this chapter, I will go over the implementation details of the Spark Application code gen-
erator. Both the meta-model definition and code generator are integrated into the Eclipse
modeling ecosystem. Futhermore, both Papyrus and Acceleo follow OMG standards. There-
fore the designed solution is technologically independent in theory.

The code generator is implemented in Acceleo and can be divided into two parts. First,
the generation of necessary Scala classes, and second, the generation of the computational
graph. The implementation also contains two kinds of source files. Acceleo .mtl template
files and Java services, both found in src folder. Java services are mostly used to generate
the complex computational graph while templates are used to define the folder structure
and class implementations.

The final generated main/scala/{app__name}/ folder has the following structure:

o actions/ - folder containing action classes

o dataTypes/ - folder containing dataType case classes

» sources/ - folder containing source classes

» transformations/ - folder containing transformation classes

o {app__name}App.scala - file with the application object and the main method

The generated folder structure represents the application source code. The best ap-
proach to folder structure is to include the generated folder in the src/ folder of the project.
The generator does not generate the whole project but only the needed source code.

6.1 Scala classes

The generator creates multiple classes. To make the model more extensible, each node
of the computational graph is represented as a Scala class. Also, the data types defined
in the model are generated as Scala case classes. Scala’s case classes represent immutable
data defined as a data structure with methods. A sample generated data type is shown
in listing 6.1. If the case class needs to be enriched with potential methods to modify data,
the already mentioned [protected] tag is used and represented as a user code comment.
This section can be modified and is not included in the model. This code block is not lost
after a subsequent generation of the application if a change occurs.
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case class WordCount (
var Word: String,
var Count: Long,
M
//Start of user code WordCount
//End of user code
}

Listing 6.1: The generated Counter class

As per Scala’s best practices, each class is generated into its own file. This approach
to class-based code generation is different than how most Spark Application code is written.
I believe that this approach is more extensible and robust, even though it creates more
boilerplate code. An example of a generated class can be seen on listing 6.2.

Multiple important details might be pointed out. The class consists of a single method
and multiple properties. These properties do not influence the generated application in any
way. They serve to demonstrate the potential possibility of reverse model generation.
In the future, a tool might be developed that would complement Acceleo’s M2T generation
by reversing it to Text to Model transformartion. By introducing these properties it is
possible to define the stereotype and tagged values of a class.

class Counter() {
val S_rDDTransformation = true
val TV_func = """reduceByKey(_+_)"""

def transform[T: TypeTag] (rdd: RDD[T]) = {

type0f [T] match {

case typel if typel =:= typeOf [(String, Long)] =>
rdd.asInstance0f [RDD[(String, Long)]]
.reduceByKey (_+_)

}
}
//Start of user code Counter
//End of user code

}

Listing 6.2: The generated Counter class

Every single computational node; source, transformation and action contain a single
method - source, transform and action respectively. This method implements the logic
provided by tagged value func. The method uses generic types and reflection because
a single transformation or action can have multiple inputs with different types. The use of
reflection is closely described in section 6.6. The use of multiple data type inputs to a single
processing node can be seen later in section 7.3. Both transformation nodes and action
nodes extend RDD and Dataset operations. To abstract away the communication between
them, every output is defined as RDD[T] of the specific type. This leads to the need of re-
typing RDD to Dataset using toDS() method, when Dataset action or transformation is
used.
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6.2 Computational graph

The more complex part of the code generation that creates the flow of the application is
the generation of the computational graph. Because of the complex nature most of the gen-
eration is located in Java services. The implementation of the computation is located in
the main method of the App object. If the previous generated code was represented by
classes of the model, this part is represented by Information Flow relationships that instan-
tiate the classes and produce outputs. A few other necessary elements are also included in
this part of the generation, namely loops, code blocks and variables.

First, all necessary classes are instantiated. All nodes are stored in variables with a spe-
cific name - prefix S_, T_ and A_ and properly formatted name of the class in the diagram.
After that, the graph is traversed depth-first while creating necessary statements. The out-
put of each node is then stored in a variable with a similar name to the node it was produced
by. Starting with prefix s_, t_ and a_ and the name of the node, and ending with suffix
_{tag_name}. The suffix is omitted if the particular flow does not contain any tag.

6.3 Loops

Some Big Data processing tasks might include a specific loop to process data, e.g., tasks
such as k-means clustering, linear regression, or page rank calculation (described in chapter
7 in more detail). Including loops in the meta-model brought many hurdles implementation-
wise. Since loops extend model, the graph node must have been searched for recursively in
the application model.

Looking at how the loop is structured in code, we can see it wraps statements inside it.
To correctly generate the loop while traversing the graph, the header is generated before
the node statement when the computation enters a new loop scope. The recursive traversal
of the graph keeps track of the loops in the model and currently active loops - meaning
loops where the end of the scope is yet to be generated. When processing a new node,
the generator checks the scopes it is inside of. If any active loops are missing, the proper
loop scope is closed.

As previously mentioned, new variables are defined for each output of a node. Therefore,
some of these variables can be defined inside the loop’s scope. During the first prototyping
of loop implementation, a problem arose when these variables needed to be accessed outside
the loop’s scope. This situation happens when the graph leaves the loop and uses the out-
put of the last node inside the loop. The implemented code generator handles the problem
by defining the variables located inside the loop at the beginning of the graph. Only neces-
sary variables are defined to lower the amount of generated boilerplate code. The solution
can be seen in a sample code snippet shown in listing 7.3.

6.4 Data Types

Scala as a programming language is statically-typed. That means all necessary data types
must be known during the compilation of a program. The fact that the generator creates
much boilerplate code to make the model more extensible also removes the possibility
of utilizing Scala’s type inference feature. Also, the type system in UML modeling is
fairly limited. As previously mentioned, it is only possible for a few primitive types, their
multiplicity, or the user-defined structure of these primitives. The import and data type
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definition outside the model element feature attempts to include more complicated data
types. These data types are then generated as {datatype_name}. See the code snippet
in section 7.3.

It is necessary to mention the use of primitive types of the UML, especially Integer and
Real. The internal conversion between Dataset and RDD using toDS() and rdd methods,
introduces a possible typing problem. To prevent this Integer is represented as Long data
type in Scala and Real is Double. This fact is also necessary to understand when modeling
a Spark task using the meta-model. As seen in figure 7.1, the Count Adder class uses 1L
to define the number as Long.

6.5 Arguments, code blocks and variables

Spark Applications might need to use other code than RDD actions and transformations.
This issue is solved by including code blocks and variables. These parts of code are also
considered to be processing nodes in the diagram. The generator first defines all variables
in diagram with their assigned data type and null value. If the variable is part of the compu-
tational graph connected by Information Flow relationship, then a re-assignment statement
is generated as the variable is already defined.

Code blocks nodes and initialCodeBlock tagged value are generated at appropriate
places as Scala code snippets are used to introduce custom functionality or possibility
to model specific work-arounds.

Finally, program arguments are generated as shown in listing 6.3. They represent the ap-
plication input and can take value of any primitive data type. Futhermore, if a node needs
to use it as an argument, simply define «Variable» stereotype with the same name. When
the generator creates the variable definitions it omits the variables defined in program
arguments, because the generated code would throw variable already defined error.

var argMaster = if (args.length > 0) args(0).toString else "local[*]"
var argInt = if (args.length > 1) args(1l).tolLong else 1

var argReal = if (args.length > 2) args(2).toDouble else 1.1

var argBool = if (args.length > 3) args(3).toBoolean else true

Listing 6.3: Generated program arguments

6.6 Reflection

To fully utilize the advantages of model-driven development, we want to reuse already
modeled processing nodes as much as possible. With the introduction of tags in the meta-
model, it is possible to distinguish the incoming flows to a transformation or action. These
flows might convey different data types while still being compatible with the node’s function.
To support this approach, the generated code uses type reflection and type assertion to limit
the generated boilerplate code.

Even though Scala programming language supports method overloading, it can only
be used on types without type parameters. As we already know, the processing graph
always produces RDD[T]. Therefore, type overloading would not work. The next Scala
feature that enables this approach is compound types'. Thanks to compound type a Scala

https://docs.scala-lang.org/tour/compound-types.html
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method returns values that act as multiple types at once. To distinguish the proper type,
the generator uses type casting with the method asInstanceOf [T] in the computational
graph code. The section 7.3 takes a closer look at the advantages and code snippets of this
approach.
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Chapter 7

Sample test cases

This chapter will demonstrate the usage, discuss and evaluate the solution. I prepared
multiple relevant test cases that display the general usage and some of the features and
quality of life design choices in the meta-model. By showing these test cases, I intend
to demonstrate the advantages of the meta-model while also pointing out where the model-
driven solution to Spark tasks might come short. The diagrams, model meta-files and
the generated sources, have also been submitted with this thesis for further inspection.

7.1 Word Count

Word Count is considered to be the ,Hello, World!“ program for Big Data processing. This
application counts the amount of each word in an input text. The sample model is shown

in figure 7.1.

l«Spark Application:
£ WordCount

«Parallelize» «RDD «<RDD 1 «RDD Transformation»| «RDD Action»
] paralioizer ] wordspiitter = countadder ] counter | printer
= = _«Code Block»
F---> possesE  pooeg > ] Result Printer
String WordCount —
String WordCount

.

\
S 1

T T
1 I
1 1
i i 1
«Parallelize» ! «RDD Transformation» Il «RDD Action»
array=Seq("hello world", "hello spark”, "spark uml* func=map(x=>(x,1L) I func=collect()
priority=0 ‘l
!
1 I
1 I
1

|
«DataType»

«RDD Transformation» «Code Block»
func=reduceByKey(_+_) code=printin($out.mkString(* *))
«Tuple»

[c03]
[2%] wordCount «Spark Application»
master=argMaster

«RDD Transformation»
func=flatMap(x=>x.split(" )

(&) + Word: String [1
) imports=(scala.math.random, scala.io.Stdin
Sl aCountinteoegl initialCodeBlock

Figure 7.1: Word Count diagram
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As seen in the figure, the diagram is a simple directed graph inside a model ele-
ment. The quick overview of the algorithm is quite simple. First, the input RDD is
created. Although it is most often created from a text file, for demonstration purposes,
the «Parallelize» stereotype is used. Then, the input is split into RDD of strings of
specific words using flatMap. After that, the Counter transformation processes the in-
put to output defined key-value tuples. These tuples are then reduced by key to calculate
the occurrence of each word in the source text. Finally, the action node is used to collect
the desired result.

As we can see, the diagram uses the «Tuple» stereotype to introduce key-value pair data
structure. Every Information Flow relationship conveys a specific data type, as previously
discussed, these types represent the type of the RDD sent between two nodes of the graph
(for example RDD[(String, Long)] for the tuple WordCount). The only Information
Flow relationship without any data type is used when the graph finishes with the «Code
Block» stereotype node. The output value from the previous node is accessed using $out
variable. The diagram also shows the need to use Long instead of Integer in the Count
Adder class.

As already stated, the generator creates a bunch of boilerplate code to make it more
extensible or potentially introduce a possibility to support reverse model generation. Listing
7.1 shows only the part of the main method, where the computation resides.

val s_parallelizer =
S_parallelizer.source() .asInstanceOf [RDD [String]];

val t_wordSplitter =
T_wordSplitter.transform(s_parallelizer).asInstanceOf [RDD[String]];

val t_countAdder =
T_countAdder.transform(t_wordSplitter) .asInstanceOf [RDD[(String, Long)]l];

val t_counter =
T_counter.transform(t_countAdder) .asInstance0f [RDD[(String, Long)l];

val a_printer = A_printer.action(t_counter);

println(a_printer.mkString(" "))

Listing 7.1: The generated Word Count computation

One may notice, that the generated computation seems very uniform and easy to read,
that is because the code generator executes in the order of the computational graph. This
uniform code also simplifies the potential reverse generation.

An argument can be had that this algorithm is only a simple sequence of steps without
any complexity. However, the next test case introduces a more complex problem.

7.2 Page Rank

The next chosen test case is the Page Rank algorithm. Google Search uses this algorithm
to measure the importance of a website page. Not only is this algorithm used with Big
Data, but it also uses a loop. This fact makes it an excellent example to demonstrate
the usage of the designed meta-model. The integration into the Eclipse ecosystem that
already has modeling features turns out to be a good choice for any modeling task. Papyrus
offers the possibility only to display the selected elements. As shown in figure 7.2, some
of the elements are hidden, so the diagram is more readable while still holding the necessary
information to generate the final application. Now let us look at some of the features used
in this diagram.
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First, we can see two tuples defined. The first defines a typical key-value pair already
seen in the Word Count example. The second one differs in the multiplicity of the value
element. This tuple is produced by the groupByKey operation. This tuple data type then
represents RDD [String, Iterable[String]].

Next, we can see that two nodes have multiple outputs. To determine the exact order
of the execution, the «Flow» stereotype has been used for the higher priority path. As I
already mentioned, Information Flows without the stereotype are evaluated last in an un-
defined order. In this diagram, the generator first generates the path to the ranks node
with the «Variable» stereotype. This variable holds the output of the previous node. As
can be seen in the diagram, the variable ranks data type is RDD[(String, Double)].

The computation node Contribs uses the previously defined variable in its transfor-
mation. We can see the «Argument» stereotype being used to inject the variable into
the transformation. In a typical Spark application program, the transformation’s anony-
mous function could reach out of its scope and use all variables defined in the app’s main
method. Since all nodes are generated as separate classes, all necessary variables must be
provided to the method scope. This approach introduces more modeling work but increases
the transparency of the used transformation and might also prevent bugs by using variables
out of scope. An example of Linear Regression implementation with the transformation
using variable out of the anonymous function scope can be seen in an official Spark example
on GitHub'.

Loop

Now let us discuss the loop. Listing 7.3 shows the full generated computation of the Page
Rank diagram. The first thing to point out are the variable definitions for the nodes inside
the loop. If the variables were not defined before hand, the last statement in the listing
would fail, because the t_calculateRanks would only be defined in the scope of the loop.
The diagram shows that the path enters do loop when the Splitter node sends data
to the Contribs node. Because of this transition, the appropriate loop header was gener-
ated. When the generator enters the Collector node, it closes the loop because the node
is not inside the model element.

The main reason to use a loop inside a Spark application is to modify inputs for a trans-
formation. In this example, we need to modify the ranks variable in each iteration. If we
tried to model the diagram differently, we might come across a problem. If the Calculate
Ranks tried to overwrite the data inside the variable node, it would exit the model ele-
ment, and the variable re-assignment would close the loop. Furthermore, if the meta-model
allowed to define multiple classes with the same name, it would disobey the UML standard.
That is why the variable re-assignment is modeled as the «Code Block» stereotype. This
situation shows that the meta-model might be improved, but also that it is flexible enough
to allow a specific program requirements to be modeled.

This test case aimed to present multiple features of the meta-model. The loops, the func-
tion arguments, and the execution priority were proven to work correctly and offer a rel-
atively intuitive modeling experience. This example also highlights the advantages of this
solution compared to already existing ones. Improving the ability to model more com-
plex tasks while also keeping the graphical model readable is one of the essential parts

"https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/
examples/SparkLR.scala
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of the model-driven approach. The last example test case will go over the remaining fea-
tures supported by the integrated meta-model.

var t_contribs: RDD[(String, Double)] = null
var t_calculateRanks: RDD[(String, Double)] = null

val s_fileSource = S_fileSource.source(filePath).asInstanceOf [RDD[String]l];

val t_splitter = T_splitter.transform(s_fileSource).asInstanceOf [RDD[(String,
Iterable[String])1];

val t_countAdder =
T_countAdder.transform(t_splitter).asInstanceOf [RDD[(String, Double)]l];

ranks = t_countAdder

for(loop <- 1 to iters.tolInt) {

t_contribs = T_contribs.transform(t_splitter,
ranks) .asInstance0Of [RDD[(String, Double)]];

t_calculateRanks =
T_calculateRanks.transform(t_contribs) .asInstanceOf [RDD[(String,
Double)]];

ranks = t_calculateRanks

¥

val a_collector = A_collector.action(t_calculateRanks);

Listing 7.2: The Page Rank computation

7.3 Dataset processing

The final test case highlights the remaining features and provides a deeper look at how mul-
tiple data flows can be modeled in a single diagram. The modeled Spark task is relatively
simple. We load data from three different CSV files. The first file contains a list of an ab-
breviation and the full name of American states. The two remaining files, which data we
want to modify, are lists of American cities and Sports teams, both containing a state name
in their records. In this task, we want to change the state’s name to its abbreviation while
highlighting the polymorphism of a single processing node. Afterward, to show the possi-
bility of working with specific flows, we filter out all but NBA teams from the team flow.
The model also uses a single node to save the modified data. This is accomplished using
code block nodes that modify a variable.

The modeled diagram is shown in figure 7.3. First, let us mention the imported package
outside the Spark Application element. Defining data types outside the model element
allows us to utilize it in the diagram, while the generator does not generate the correspond-
ing Scala case class. However, the generator still has access to the name of the data type
to generate typecasting properly. The imported class can be found in the submitted source
files of this test case in the imported/ folder.

The computation starts with the highest priority source node - the AbbrSource node,
loading data and storing the resulting RDD in the abbrs variable. The tagged values
of the variable define its type as RDD[Abbr]. This variable is then injected into the Re-
placeStateWithAbbr transformation. As previously stated, all processing node outputs
are converted back to RDDs. Therefore, the function definition of the Dataset transfor-
mation must explicitly cast the abbr variable to Dataset using the toDS() method. We
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can also see the usage of the alias this inside the function that refers to the input RDD(or
Dataset after implicit cast).

def transform[T: TypeTag] (rdd: RDD[T], abbrs: RDD[Abbr]) = {
import spark.implicits._
typeOf [T] match {
case typel if typel =:= typeOf [City] =>
rdd.asInstanceOf [RDD [City]]
.toDS() .as("this").joinWith(abbrs.toDS() .as("abbr"), $"this.State"
=== $"abbr.State", "inner"
.map(x => x._1.copy(State =
X._2.Abbreviation)).as[City].rdd
case type2 if type2 =:= typeOf [Team] =>
rdd.asInstance0f [RDD [Team]]
.toDS() .as("this") . joinWith(abbrs.toDS() .as("abbr"), $"this.State"
=== $"abbr.State", "inner")
.map(x => x._1.copy(State =
X._2.Abbreviation)) .as[Team] .rdd

Listing 7.3: Using reflection to determine the RDD type parameter

Next, the CitySource node produces the input RDD and creates a flow tagged with
city tag. The transformation that replaces the state name with its abbreviation has three
output Information Flow relationships. Since the path is using the city tag, one of them
is ignored. Traversing the graph using the higher priority flow, the next visited node is
the code block node. This node is used to change the contents of outputPath variable,
which is used in the next generated node to execute the defined action to store the data
inside a file.

Finally, the team flow is generated similarly to the city flow. After the abbreviation
replacement the traversal continues with the only edge being tagged with the team tag.
We filter teams only to include the NBA teams to show that the flows are separated again.
Now the code block modifies the outputPath variable so the same action node can be
used to store the result.
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Chapter 8

Conclusion

This thesis aimed to design a meta-model for Big Data processing tasks in the Apache
Spark framework and develop a tool to generate the target source code of the modeled
task. First, I had to get familiar with Spark to accomplish this goal. The essential details
to understand the framework are described in chapter 2.

Afterward, the concept I had to get familiar with was Model-Driven Development
(MDD). The advantages, disadvantages, and details are discussed in chapter 3.

After I researched the necessary concepts to understand the problem, I took a look
at already existing tools that try to solve a similar problem. An overview of model-driven
tools to solve Big Data processing is in chapter 4.

The integral part of this thesis is chapter 5 that goes over the designed meta-model and
the reasoning behind specific choices. In addition, it describes the UML Profile diagram
and its stereotypes in detail. Furthermore, the choices behind the generated code structure
are also discussed.

The details and highlights of the generator implementation are in chapter 6. This
chapter brings a further insight into how the implemented Eclipse Acceleo code generator
works and how the specific snippets of source code are generated.

In the last chapter 7, a few test cases are presented to make the reader more familiar
with the meta-model and to show the specific features in use. The test cases provide a mix
between a simple processing pipeline, complex algorithm, and the processing of data with
different structures.

Finally, I published the source code, meta-model and model files as open source. The
project can be found on GitHub'. In this next section, I will evaluate the solution and
propose a possible future work to improve the modeling ecosystem.

8.1 Ewvaluation and future work

I would like to evaluate the designed meta-model, code generator, and the overall approach
to Model-Driven Development of Big Data processing tasks. The designed meta-model
improved upon the disadvantages of several previous projects. The possibility of modeling
a more complex, more readable diagram in a standardized (UML) environment definitely
improves the overall MDD approach. The meta-model introduces features that abstract
the code behind a relatively comprehensive graphical diagram.

"https://github.com/MarekSalgovic/spark-m2t-generator
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The first issue with the modeling approach of Spark tasks is that using this meta-
model might actually take more time than provisioning the solution with code. In simple
processing applications, the generated code does not have enough volume to justify using
a diagram instead of code. Furthermore, code completion and general IntelliSense features
of code editors improve productivity more than the diagram’s abstraction. The value of us-
ing a diagram comes from introducing a uniform or a standard way to design applications
while generating reusable code components. Furthermore, graphical diagrams might also
convey more information about the application logic.

The second issue comes from the robust typing system of the meta-model. While writing
Spark code in Scala, the developer can rely on Scala’s type inference feature. In addition,
code editors would still highlight possible semantic errors. The implemented generator must
explicitly generate the type notation to produce reusable, object-oriented code. The fact
that the designer must always select appropriate data types in specific model parts also
reduces productivity.

Several solutions to these issues come to mind while preserving the diagram’s abstract,
reusable and straightforward way of expression. As mentioned multiple times in this thesis,
a reverse text to model generation tool could heavily improve the productivity of the work-
flow. The generated code was designed with this specific idea in mind. Also, OCL con-
straints could be added to the meta-model to introduce semantic analysis similar to code
editors. The data type issue could be solved if the meta-model was designed with a specific
target programming language in mind. Spark framework also supports dynamically-typed
Python. However, altering the meta-model to exclude the type system would tie it to a spe-
cific technology. This approach would not work if the meta-model was to be used with a Java
code generator. Java is statically-typed and does not support similar type inference as Scala
does.

In conclusion, I consider this project a step in the right direction for a model-driven ap-
proach to data processing applications. However, there is still room for several refinements
and supporting tools since Model-Driven Development is still a developing methodology.
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Appendix A

Memory media contents

The submitted memory media contains source files of the thesis’s text, .pdf file, Eclipse
Papyrus projects and diagrams of the examples task and the meta-model, source code of
the generator, compiled Java classes of the generator, . jar files of the used libraries, and
finally the generated Scala code for the example tasks.

The structure is as follows:

o bin/ - the compiled generator
o doc/ - thesis source files
o libs/ - . jar files of used libraries

o out/ - generated Scala code, project setup and input files for example tasks and
Makefile to run the generated tasks

o src/ - source code of the generator

o spark-metamodel/ - Eclipse Papyrus project of the meta-model Profile diagram
o sparkWordCount - Eclipse Papyrus project of the first example task

» sparkPageRank/ - Eclipse Papyrus project of the second example task

» dataset-processing/ - Eclipse Papyrus project of the third example task

o Makefile - contains the commands to run the generator and generate output
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Appendix B

Software versions

The list of used software and their version to compile and run the project:

e Apache Spark - 3.2.1

e sbt-1.6.2

o Eclipse IDE - 2021-12 (4.22.0)

e Eclipse Acceleo - 3.7.11.202102190929
e Scala - 2.12

e Java - openjdk version ,,17.0.2“ 2022-01-18 LTS
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