
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

OPTIMIZATION OF DDOS MITIGATION RULE
INFERENCE
OPTIMALIZACE ODVOZOVÁNÍ DDOS FILTRAČNÍCH PRAVIDEL

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ELENA CARASEC
AUTOR PRÁCE

SUPERVISOR MARTIN ŽÁDNÍK, Ing., Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Systems (DCSY) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Carasec Elena
Programme: Information Technology
Title: Optimization of DDoS Mitigation Rule Inference
Category: Networking
Assignment:

1. Nastudujte dostupnou literaturu o objemových DoS útocích a způsobech jejich potlačení
s využitím strojového učení.

2. Seznamte se s nástroji a prostředím pro měření a analýzu síťového provozu v infrastruktuře
CESNET.

3. Navrhněte možnosti optimalizace metody pro odvození pravidel pro blokování DoS paketů.
V navržených optimalizacích uvažujte rozšíření metody, aby umožňovala nasazení do reálné
infrastruktury.

4. Navržené optimalizace implementujte.
5. Implementaci ověřte v laboratorním i reálném prostředí, pokud to bude možné.
6. Zhodnoťte dosažené výsledky a diskutujte možnosti pokračování této práce.

Recommended literature:
Dle pokynů vedoucího.

Requirements for the first semester:
Splnění bodů 1 až 3 zadání.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žádník Martin, Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: October 29, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24640/2021/xcaras00 Page 1/1

Abstract
This thesis discusses the possibility of using machine learning algorithms for DDoS protec-
tion. For classical and incremental (online) learning are considered explainable supervised
learning methods, particularly decision trees. Furthermore, some possible optimisations are
introduced to increase traffic classification accuracy and decrease the amount of blocked le-
gitimate traffic.

Abstrakt
Tato práce se zabývá možností využití algoritmů strojového učení pro ochranu proti DDoS
útokům. Pro klasické a inkrementální (online) učení jsou uvažovány vysvětlitelné metody
učení s učitelem, zejména rozhodovací stromy. Dále jsou představeny některé možné opti-
malizace pro zvýšení přesnosti klasifikace provozu a snížení množství blokovaného legitim-
ního provozu.

Keywords
DDoS attack, filtration, machine learning, classification, supervised learning, incremental
learning, data stream, decision tree, Explainable AI (XAI).

Klíčová slova
DDoS útok, filtrace, strojové učení, klasifikace, učení s učitelem, inkrementální učení, da-
tový tok, rozhodovací strom, vysvětlitelná umělá inteligence.

Reference
CARASEC, Elena. Optimization of DDoS Mitigation Rule Inference. Brno, 2022. Bache-
lor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Martin Žádník, Ing., Ph.D.

Rozšířený abstrakt
Problematika kybernetické bezpečnosti dnes přitahuje pozornost každého, kdo používá

výpočetní techniku, protože se nesmírně rozšířila a hraje zásadní roli v současném životě.
Většina podniků, neziskových organizací a vládních služeb je do značné míry propojena s in-
formačními technologiemi, což je činí efektivnějšími a více orientovanými na klienty. Jednu
z největších hrozeb představují distribuované útoky typu odepření služby, které vyčerpávají
výpočetní a paměťové zdroje oběti, až nebude schopna poskytovat potřebné služby. Ne-
jvětším problémem jsou relativně nízké náklady na DDoS útoky ve srovnání s výdaji na
vytvoření ochrany před nimi.

Sdružení vysokých škol ČR a Akademie věd ČR (CESNET) vyvíjí projekt DDoS Protec-
tor, jehož cílem je zajistit adaptivní ochranu proti DDoS útokům. S důrazem na adaptaci
je součástí DDoS Protectoru modul strojového učení, který na vstupu přijímá dva soubory
ve formátu pcap (jeden s legitimními pakety a druhý s útočnými pakety) a jako výstup
poskytuje odvozené filtrační pravidlo ve formátu BPF. Tato práce se zabývá návrhem a
implementací modulu strojového učení a jeho optimalizací.

Současný prezentovaný návrh zahrnuje dvě možná řešení a obě se týkají rozhodovacích
stromů, protože odkazují na vysvětlitelné strojové algoritmy, které jsou považovány za
důvěryhodnější než jiné neprůhledné metody a lze je snadno interpretovat bez jakýchkoli
matematických nástrojů. První přístup využívá klasickou offline metodu učení s učitelem
z knihovny scikit-learn s názvem "Decision Tree Classifier". Další se učí inkrementálně
na měnicích se datových tocích, který byl zaveden, aby se vypořádal s měnícími se vek-
tory útoků pro přesnější předpovědi a odvodil pravidla relevantní v určitém okamžiku.
Navržené optimalizace zahrnují ladění hyperparametrů pomocí mřížkového vyhledávání a
zavedení parametru "Poměr legitimního provozu", který poskytuje modulu strojového učení
dodatečné informace o procentuálním podílu legitimního a útočného provozu, aby se snížila
míra legitimních paketů blokovaných odvozenými pravidly.

Experimenty provedené za účelem vyhodnocení výkonnosti navržených modulů ukazují,
že algoritmus offline učení poskytuje lepší výsledky než metoda inkrementálního učení a je
rychlejší, což je pro reakci na DDoS útoky zásadní kritérium. Nejlepší výsledky klasifiká-
toru rozhodovacího stromu jsou více než 98% skutečně pozitivních výsledků a méně než
3% falešně pozitivních výsledků. Zatímco "Hoeffding Adaptive Tree Classifier" vykazuje
na stejných datových sadách po vyladění hyperparametrů 89% skutečně pozitivních a 6%
falešných pozitivních výsledků.

Další testy probíhaly na různém poměru legitimního a útočného provozu po zahá-
jení útoku. Algoritmus offline učení vykázal intuitivně srozumitelné výsledky, kdy se s
poklesem míry útoku vysoce zvýšila míra falešně pozitivních výsledků, neboť se zvýšil i
počet chybně označených legitimních vzorků. Zatímco inkrementální algoritmus vykazo-
val naprosto kolísavé výsledky, což znamená, že se na něj nelze spolehnout. Je patrné, že
všechny legitimní vzorky jsou po zahájení útoku označeny jako útočné, protože jakékoli
metody jejich oddělení a správného označení vedou k irelevantnosti aplikace metod stro-
jového učení.

Optimalizace pomocí parametru míry legitimního provozu pomáhá snížit vedlejší účinek
zmírnění útoku (blokování toků legitimních uživatelů), když útočné toky zabírají pouze 50%
nebo méně příchozího provozu. Tato optimalizace snižuje blokování legitimního provozu z
horní hodnoty 90% na 10%, což je znatelné zlepšení.

Přestože experimenty s klasifikátorem rozhodovacího stromu a jeho optimalizací prokázaly
uspokojivý výkon, stále existuje prostor pro minimalizaci poměru legitimního provozu
blokovaného odvozenými pravidly. Do té doby je třeba výstupní pravidla aplikovat obezřetně

a budoucí aktualizace algoritmu může být implementací úrovně důvěryhodnosti poskyto-
vané programem. Pravděpodobně by byla založena na míře podobnosti vzorků útočného
provozu a poměru útočného a legitimního provozu v průběhu útoku.

Optimization of DDoS Mitigation Rule Inference

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Martin Žádník, Ing., Ph.D. The supplementary information
was provided by Mr. Jan Kučera, Ing. I have listed all the literary sources, publications
and other sources used during the preparation of this thesis.

. .
Elena Carasec
May 10, 2022

Acknowledgements
I would like to express my gratitude to my supervisor Martin Žádník, Ing., Ph.D., for his
support, valuable advice, and regular consultations during all stages of this work. Also,
I would like to thank the whole team working on the DDoS protector project for their
willingness to help and provide all the necessary information.

Contents

1 Introduction 2

2 Distributed Denial of Service Attacks 3
2.1 Botnets and Communication . 3
2.2 Classification of Attacks . 5
2.3 DDoS Protection Techniques . 7
2.4 CESNET and ”DDoS Protector“ . 9

3 Machine Learning for Traffic Filtration 11
3.1 Machine Learning Overview . 11
3.2 Explainable Machine Learning . 12
3.3 Decision Trees . 13
3.4 Incremental Learning and Online Decision Trees 15

4 Design and Implementation of Filtration Rules Inference 17
4.1 Design Considerations . 17
4.2 Dataframe Structure . 19
4.3 Offline learning with Decision Tree Classifier 20
4.4 Online learning with Hoeffding Adaptive Tree. 21

5 Optimisations 23
5.1 Hyper-parameter Tuning with Grid Search 23
5.2 Legitimate Traffic Rate . 24

6 Experiments and Evaluation 27
6.1 Datasets . 27
6.2 Evaluation Metrics . 28
6.3 Decision Tree Classifier . 29
6.4 Hoeffding Adaptive Tree . 34
6.5 Results Evaluation . 38

7 Conclusions 41

Bibliography 42

1

Chapter 1

Introduction

In the last decades, informational and computational technologies have become vital in our
lives. They bring a wide variety of possible applications such as online shopping, search en-
gines, social media and cloud computing. IT helps businesses, governmental structures, and
non-profit organisations be more efficient and client-oriented and benefits decision-making,
inventory management and other data storage. It became accessible and widespread, and
the significance of cybersecurity increased simultaneously.

One of the oldest and most dangerous types of cyberattacks is distributed denial of
service (DDoS) attacks, which aim to cause a temporary or complete outage of the victim’s
systems. The risks for the victims are high because they are not able to provide services
during an attack, which conduces to reputation loss and loss of trust from unsatisfied clients,
and therefore financial problems. Arrangement of protection from DDoS attacks is costly,
but DDoS-as-a-service can be purchased for a relatively small price.

This work aims to design and optimise the solution for automatised DDoS filtration
rules inference using such machine learning algorithms as decision trees. The final program
will become an ML module for the CESNET’s DDoS Protector project. The module’s goal
is to infer blocking rules for attack traffic in BPF format, covering as less legitimate traffic
as possible. This work compares two distinct approaches: one operates with classical offline
supervised learning, and the other is online (incremental) learning on evolving data streams
with drift detection.

Chapter 2 discusses the problematics of DDoS attacks, their types and existing preven-
tion techniques and applications. Also, it describes the DDoS Protector project objectives
and its inner structure. The following Chapter 3 presents the possibilities of machine learn-
ing methods use for automating filtration rules inference and discusses their benefits and
shortcomings. Chapter 4 introduces the concept of the designed approaches for offline
and online learning strategies using Decision Tree Classifier from scikit-learn and Hoeffding
Adaptive Tree Classifier from River Python library correspondingly. Chapter 5 proposes
certain optimisations for the methods from Chapter 4. Chapter 6 demonstrates the results
of the designed programs and examines their performance. Finally, Chapter 7 deliberates
the conclusions based on the information from 6 and suggests possible improvements.

2

Chapter 2

Distributed Denial of Service
Attacks

This chapter discusses distributed Denial of Service attacks, why they represent a threat and
the existing solutions to protect from them. Section 2.1 classifies the types of communication
of a botnet. Section 2.2 analyses DDoS attack subtypes and specific attacks. Section
2.3 examines the current state of research on existing methods of protection from DDoS
attacks, including prevention, detection and mitigation methods. The solution provided by
CESNET is presented in Section 2.4.

2.1 Botnets and Communication
Denial of Service attacks and their distributed types constitute a category of cyberattacks,
which aim to restrict access to a network resource or a machine for its use or even make it
inaccessible to end-users. To prevent access, attackers flood the target system by sending
an overwhelming number of requests, causing delays in responding to legitimate users or,
ultimately, stopping responding. Another group of Denial of Service attackers tends to find
vulnerabilities and exploit them to crash the target system. However, it is beyond this
thesis’s goals.

Distributed Denial of Service attacks are described as attacks in which multiple malicious
systems are involved. They cooperate on performing a synchronised DoS attack that floods
the bandwidth or other resources, including CPU time, RAM, or disk space. Assuming
the distributed nature of the attacks, they are considered more dangerous than their non-
distributed version because the number of generated traffic scales up with adding a new
machine to the malicious network. Another problem with blocking such types of attacks lies
in difficulties distinguishing malicious traffic from legitimate when coming from distributed
resources that are likely to be spread throughout the world.

The basis of DDoS attacks are botnets. A botnet is a network of computers or other
devices that have been infected with malware and remotely controlled by the main attacker,
also called a ”bot herder“. The term ”botnet“ is a combination of the words ”robot“ and

”network“ [9], and the infected device is called a ”bot“ or sometimes a ”zombie“. To perform
an attack, a botnet should have the ability to receive instructions from its bot herder, such
as changing the target IP address, stopping an attack, or changing the attack pattern.

There are two primary communication design classes in a botnet: client/server and
peer-to-peer models. The client/server botnet model resembles a remote workstation work-

3

flow when each computer connects to a centralised server or one of the servers and obtains
information from it. When all bots receive instructions from a command-and-control centre
(CnC) resource like a web domain or an IRC channel, it is easy to update them since they
should be changed only in the botnet’s repository. The topology of the client/server botnet
model can vary and includes the star, multi-server, and hierarchical network topology (Fig-
ure 2.1). Nevertheless, this approach has its shortcomings. The price of an uncomplicated
information update is the vulnerability of the client/server model. For an attack to be
blocked, only the server (or a group of servers in case of multi-server network topology)
must be disrupted as the bots themselves cannot perform a severe attack without being
controlled.

CnC

(a) Star network topology.

CnC CnC

CnC

(b) Multi-server network topology

CnC

(c) Hierarchical network topology.

Figure 2.1: Client/server botnet model.

With the progress in attacks mitigation, botnets also evolve towards decentralisation.
The peer-to-peer model lacks the imperfection of a centralised approach, so stopping these
attacks is an arduous task. Each bot becomes both a command-and-control centre and a
client simultaneously, so it receives updated instructions from its peers and simultaneously
propagates them, as shown in the Figure 2.2. If all malicious information comes from a
server, it is necessary to safeguard only it, which is typically strongly protected. However, in
a decentralised network, bots are prone to becoming controlled by someone else, so botnet
creators make them encrypted to limit potential access [9].

Although every business may become a victim of a DDoS attack, some areas are more
frequently exposed to them. In 2021, the main targets were banks and financial institutions,
but other businesses and industries are commonly targeted, including:

4

CnC

CnC

CnC

CnC

CnC

CnC

CnC

CnC

CnC

CnC

CnC

CnC

Figure 2.2: Peer-to-peer botnet model.

• educational institutions and remote learning services

• wired and wireless telecommunication carriers

• online gaming and gambling

• healthcare organisations

• governments and their agencies

• ISP, hosting, and related services

• technology companies [56].

2.2 Classification of Attacks
Undertaking an attack requires fewer resources than its prevention, especially with the pro-
liferation of the Internet of Things (IoT) devices, which often come with default usernames
and passwords that are not always changed [43]. Another reason why prevention of a DDoS
attack is a challenge is a wide variety of DDoS attack subtypes. Even if a network is pro-
tected from a category of attacks by using mitigation strategies, it does not necessarily
mean that it is protected from all of them.

Generally, DDoS attacks can be grouped into three categories:

1. Volumetric attacks

2. Protocol attacks

3. Application attacks

Volumetric attacks, also called volume-based, have the objective of saturating the
victim’s bandwidth by sending enormous volumes of traffic and creating traffic jams. The
speed of volume-based attacks is measured in bits per second (bps). UDP, ICMP, and other
spoofed packet floods represent this class of DDoS attacks.

5

Protocol Attacks are designed to consume the processing capacity of the network
infrastructure, including servers, firewalls, and load balancers, sending malicious connection
requests. Consequently, legitimate traffic cannot reach its target, and the victim may not
even have the resources to respond to legitimate requests that have already reached it.
Layer 3 and 4 requests attacks are measured in packets per second (pps). Protocol attacks
are represented by TCP SYN, TCP ACK Attacks, Ping of Death, ICMP Attack, Smurf
Attack, and more.

Application layer attacks, or Layer 7, mimic legitimate and innocent requests and
exploit the weaknesses of Layer 7. They often open connections and initiate process and
transaction requests, consuming finite resources such as the server’s CPU time, disk space,
and available RAM. Magnitude is measured in requests per second (rps). They are repre-
sented by low-and-slow attacks, GET/POST floods, attacks targeting Apache, Windows,
or OpenBSD vulnerabilities [20][8].

Although this classification is the most common, alternative classifications can also be
found. For instance, Hadeel S. Obaid classifies DDoS attacks into weakness-based and
flooding attacks [42].

2.2.1 Specific DDoS Attack Types

Some of the most common and dangerous DDoS attacks are discussed below.

1. UDP flood attack. As its name indicates, during an attack, the attacker sends a
massive number of User Datagram Protocol (UDP) packets to a specific or a random
port to inundate it. Normally, when a UDP packet is received, the server tries to
identify the application type on the specified port. In case when no application is
associated with the port, it responds with ICMP Destination Unreachable message.
The attacker continues to flood the victim using spoofed IP addresses until it is out
of the available resources [37].

2. ICMP flood attack. This type is also called a ping flood attack. Generally, ICMP Echo
Request packets are sent to check whether a remote host is alive. In case of success,
it replies with ICMP Echo Reply, notifying about the possibility of establishing a
connection. During a DDoS attack, ICMP Echo Request packets are sent with the
broadcast destination IP address, so they are delivered to all the machines in the
victim’s network [37]. However, when the target is only one machine, the packet
contains its specific address. Replying to these requests is very resource consuming.

3. TCP SYN attack. To establish a TCP connection before the data transmission, the
client sends a SYN message to the server, which subsequently replies with a SYN-
ACK message, and then the client acknowledges with the ACK message. It is called a
three-way handshake. After starting an attack, the attacker sends many SYN packets
again using spoofed IP addresses; the server fills in its table of TCP connections
but never receives ACK messages, so all the connections are incomplete. Since the
number of connections is limited, new legitimate users will not be able to establish
connections with the victim server [62].

4. Ping of Death. An IP packet’s maximum size is 65535 bytes. However, Data Link
Layer (Layer 2) usually limits the maximum frame size; it can be, for example, 1500
bytes. Then a large IP packet is split into multiple packets called fragments, and
the host reassembles them into a complete packet. However, in the case of a Ping of

6

Death attack, the initial packet is malformed somehow. The host gets an IP packet
larger than 65535 bytes as a result, which leads to allocated memory buffers overflow
and crashes the system [20].

5. DNS query flood. When a DNS resolver receives a request and has no response in its
cache, it sends a request to a recursive DNS server. If the attacker plans his requests so
that no addresses are known and kept in the server’s cache, the victim will constantly
send recursive requests. Taking into consideration the fact that recursive resolution
is a pretty slow process, the servers quickly become overwhelmed [11].

2.3 DDoS Protection Techniques
DDoS defence mechanisms aim to protect victims from an immense amount of fake users
packets. The following strategies ensure network protection from traffic inundation: pre-
vention, detection, tolerance and mitigation, and response.

2.3.1 Prevention

Various prevention methods can be grouped into load balancing, honeypot, and sundry
filtering mechanisms [36].

Load balancing is a resource distribution issue which pledges maximum utilisation of all
the available resources. In general, the utilisation of network resources includes balancing
between computing nodes named L7 balancing and balancing of network equipment, also
called the L4 balancing technique [3].

Honeypots attract attackers, pretending to be a vulnerable part of the system to collect
information about the initiated attack. They send responses imitating the existing system,
making the attackers believe they succeed; meanwhile, they waste the resources. AmpPot
[29] is an example of honeypots developed for amplification attacks monitoring. It allows
observing the ongoing attacks and the techniques used by attackers. However, it stops
responding when it is facing an attack itself. Ruchi Vishwakarma et al. [59] have presented
a honeypot framework that uses machine learning techniques to derive information about
attacks from the collected data logs. The advantage of collecting data from honeypots over
datasets is that in case of a zero-day attack, the model will be learnt from the previously
unknown attack types and find new patterns, based not only on the information of former
well-known attack types.

Various filtering mechanisms are designed to help to prevent DDoS attacks. They
include ingress filtering, cutting off traffic that does not match the domain prefix, egress
filtering that forestalls the attack on other domains, and route-based and history-based
packet filtering [36]. Cheng Jin et al. [22] have introduced Hop-Count filtering, which bases
on the assumption that hop-count values are not consistent with the IP addresses at the
moment of arrival to the victims. Abraham Yaar et al. [60] propose to filter traffic that
was previously marked with a path identifier, which represents its path from source to a
destination over the Internet. When a mark is identified as belonging to attack traffic, its
part, defined by the threshold with the same mark, is dropped. As declared in the previous
chapter, the attacks may be high-rate and slow-rate. Both need an individual approach
for their recognition, so S. Toklu et al. have suggested a two-layer approach for filtering
both high-rate and slow-rate attacks. High-rate DDoS attack flows are filtered using DAF
(detection with average filter), and the rest of the traffic goes through DDFT (detection

7

with discrete Fourier transform) filters, which can block slow-rate attacks [57]. Tao Peng
et al. [46] have introduced a History-based IP Filter mechanism for the edge-router: the
router, which provides access to the Internet for the subnet, which is under defence. They
propose to create an IP address database based on previous successful connections, which
will become a kind of white-list in case of an attack. The advantage of this approach is the
high confidence in filtration during DDoS attacks.

2.3.2 Detection

Dileep et al. [14] proposed the three classified categories of DDoS attack detection methods:
statistical, knowledge-based, and soft computing.

Statistical methods compare new incoming instances to average traffic statistics and
detect anomalies if the current traffic significantly differs. Feinstein et al. presented the
solution based on entropy values, as the range shrinks when a network is under attack, and
chi-squared statistics for discrete values [12]. Another entropy-based anomaly detection
method involving a variation of Lyapunov exponent was introduced by Ma and Chen [35].
One of the most well-known statistically-based detectors is D-WARD [40], which is an
inline system for an end network exit router. It collects per-destination and per-connection
statistics for ingress and egress traffic.

Knowledge-based detection systems compare incoming traffic to already investigated
attack patterns. Shabtai et al. [53] presented a knowledge-based temporal abstraction
intrusion detection method on time-oriented data for mobile devices. Lin and Theng [31]
propose to create detection knowledge from three sources: knowledge acquisition (KA)
framework, domain experts and Characteristic Trainer. MULTIOPS [16] heuristics helps
for attack detection by collecting data about traffic characteristics, where each network
device maintains its data structure.

Dileep et al. [14] describe soft-computing methods as techniques that tolerate impreci-
sion. Most of the approaches falling into this category are based on artificial intelligence
algorithms. Pei et al. proposed a DDoS attack detection method based on random forest
[45]. Meanwhile, Li et al. presented intrusion detection using neural networks [30].

2.3.3 Mitigation and Response

The practical strategies that are used as intrusion response are rate-limitation and filtration.
Malialis et al. [38] introduced a novel scalable reinforcement learning approach named

Multiagent Router Throttling, which rate-limit traffic towards the victim server. Another
distributed, coordinated, responsive method named ARROS [24] uses both of the techniques
and can block or bandwidth-limit the intrusion. Kholidy et al. presented Autonomous
Cloud Intrusion Response System (ACIRS) [26] providing defence for cloud systems. Fessi
et al. [13] proposed a multi-attribute genetic algorithm model (MAGAM) for intrusion
response. Yaar et al. [49] presented a Stateless Internet Flow Filter (SIFF), which clas-
sifies traffic flows into privileged and unprivileged. SIFF allows blocking individual flows
selectively.

All three stages of DDoS defence are equally important. However, this work focuses on
the last of them, aiming to present a filtration mitigation strategy for DDoS attack selective
blocking using decision trees.

8

2.4 CESNET and ”DDoS Protector“
Along with already presented commercial solutions for protection from DDoS attacks in-
cluding AppTrana from Indusface, DDoS Attack Protection from Cloudflare, Azure DDoS
Protection from Microsoft, DDoS-Guard, DDoS Protection from Akamai and many more,
CESNET (Czech Education and Scientific NETwork) is developing its own product.

CESNET is an association of Czech universities and the Czech Academy of Sciences,
which operates and develops the national electronic infrastructure for science, education
and research, comprising a computer network and computational grids, data storage, and
a cooperative environment.

Within the scope of the AdaptDDoS project [7] the DDoS protector was created with
the support of the Ministry of Interior of the Czech Republic. This project aims to provide
advanced protection from attacks on the availability of the services, which are widely known
as DDoS attacks. CESNET’s research and development team works on the project. It
deals with the issues of adaptation to a changing vector of DDoS attacks, user procedure
automation, and the use of information sources from external sources. The goal of the
DDoS protector is not only to achieve a rapid and effective response to possible attacks
from the perspective of accuracy but also to economise on financial expenses.

TAP / SPAN
port

"Passive" DDoS
protector

Database server "Active" DDoS
protector

ACL classifier

PCAP capture

Legit

Attack
Wrapper

ML algorithm

Daemon

BPF rule
actualization

rules

statistics

rules

statistics

ACL classifier

Mitigation
methods

BPF filter

...

Switch
legit and attack traffic cleaned traffic

Figure 2.3: DDoS protector architecture.

The crucial feature of the DDoS protector is attacking traffic filtration, letting only
legitimate traffic pass to the defended network. Figure 2.3 represents the inner architecture
of the DDoS protector. It can work in two modes depending on the circumstances. If the
traffic rate is lower than the network card can process (currently, CESNET’s traffic filtering
FPGA technology allows up to 400 Gb/s [25]), it drops no packets and only collects the
statistics about the traffic for the future use. Whenever the traffic rate exceeds the thresh-
old, declared the point when the defended network cannot process the current amount of
traffic, the DDoS protector starts to clean traffic actively. Along with the other filtration
methods, such as reputation IP address database from external sources, the machine learn-
ing algorithm starts to work taking as input two pcap (Packet CAPture) files: a legit file
with previously collected packets and an attack file collected after the moment of exceeding
the threshold limit. It is noteworthy that the attack pcap file will definitely contain legit

9

https://www.indusface.com/managed-ddos-protection-mitigation.php?utm_source=PPC&utm_medium=Google-Ads-Search&utm_campaign=GSA-EU-Search-BOFU-Product&gclid=Cj0KCQjwmPSSBhCNARIsAH3cYgYMukAEjDylaqy5NQCReftpfA1FJtoX5rObuZBhri-2zkyAwur5UoQaArmrEALw_wcB
https://www.cloudflare.com/lp/ppc/ddos-x/?&_bt=560662323027&_bk=ddos%20protection&_bm=e&_bn=g&_bg=130172010672&_placement=&_target=&_loc=2203&_dv=c&awsearchcpc=1&gclid=Cj0KCQjwmPSSBhCNARIsAH3cYgZ_fK5_-Pdl3I40SLj-fgQV3ADaOO-dxg3VxEQICdBmdIBH4OJZFlQaAvgxEALw_wcB&gclsrc=aw.ds
https://azure.microsoft.com/cs-cz/services/ddos-protection/#overview
https://azure.microsoft.com/cs-cz/services/ddos-protection/#overview
https://ddos-guard.net/en
https://www.akamai.com/solutions/security/ddos-protection

traffic since, after an attack starts, legitimate users still try to get the service. The output
of the machine learning algorithm is a BPF rule derived from the tree structure of the
model output, which is actualised every time a new attack pcap arrives. The BPF filtering
rule declares which part of traffic should be dropped. Every time the database with rules
is updated, the DDoS protector can work with the improved information to drop attack
traffic with higher accuracy.

DDoS protector and all its modules are built using the DPDK (Data Plane Development
Kit) framework1, which is an open-source set of user-space libraries and drivers for network
interface cards created by Intel and now managed by Linux Foundation. DPDK was de-
signed to accelerate packet processing workloads running on various CPU architectures,
including x86, ARM, and PowerPC.

1https://www.dpdk.org/about/news/

10

Chapter 3

Machine Learning for Traffic
Filtration

Whenever the project aims to automate user processes, the use of artificial intelligence
comes to mind. This chapter is about applying machine learning algorithms, a part of
artificial intelligence, for DDoS defence. Section 3.1 covers the classification of machine
learning algorithms. The role of explicability of machine learning algorithms is reviewed in
Section 3.2 as long as the decision trees’ key features. Section 3.3 explains algorithms of
decision trees construction. The two approaches: offline learning and incremental learning,
are discussed in Section 3.4 and from the perspective of their possible utilisation for attack
traffic filtration.

3.1 Machine Learning Overview
Machine learning algorithms lie at the intersection of statistics and computer science. This
area of study has become so prominent due to the following reasons: accessibility and a
massive amount of available online data, and low computational costs [23].

As the classification of machine learning methods varies from one source to another,
some categories are described in all, while others are less common. In this chapter, the
ML methods classification overview will be in accordance with the book ”Foundations of
Machine Learning, Second Edition“ [41].

Machine learning algorithms differ in the types of available training data, the data
receiving order and method, and the test data for evaluation purposes.

• Supervised learning. The learner obtains a set of labelled training data and makes
predictions for previously unseen data. It is the most typical scenario for classification
and regression problems. Spam detection is one of such problem example.

• Unsupervised learning. The learner receives only unlabelled data and tries to
group them by features, which is the only available information. It is sometimes hard
to evaluate the model as the test data are also unlabelled. The most common example
of unsupervised learning is clustering.

• Semi-supervised learning. The learner obtains both labelled and unlabelled ex-
amples and tries to predict all the unseen points. These machine learning algorithms
are popular in areas where it is easy to get unlabelled data and costly to label it.
The expectations of this approach are based on the assumption that the distribution

11

of unlabelled data can help the learner achieve better performance than using less
representative labelled data for supervised learning. Nevertheless, the conditions for
obtaining better results using semi-supervised learning methods are in the research
stage.

• Transductive inference. It is similar to semi-supervised learning because it also
receives unlabelled and labelled samples. However, its goal is to label the unlabelled
but previously seen examples. The circumstances under which the model will perform
better are also under research, along with semi-supervised learning.

• Online learning (incremental learning). Contrary to the previously mentioned
scenarios, the learner receives an unlabelled point, tries to predict it, and then learns
its label. The aim is to minimise the cumulative loss, also called regret. The shortage
of this approach is catastrophic forgetting because the model cannot keep information
about all the examples as their number grows in time.

• Reinforcement learning. Similarly to online learning, training and testing rounds
are intermixed in this type of learning. The learner actively interacts with the en-
vironment to collect the necessary information, gaining reward in passing for each
action. It maximises the reward, taking actions and interacting with the environ-
ment. In reinforcement learning problems, the learner is faced with the exploration
versus exploitation dilemma. There are two available strategies: collecting new un-
explored information that may bring less reward if the current solution is optimal or
exploiting the already collected information.

• Active learning. The learner interactively collects unlabelled training points, com-
monly by querying an oracle to label them. The aim is the same as in the case of
semi-supervised learning: to obtain at least as good performance as in supervised
learning but with fewer labelled examples. Since the learner chooses which exam-
ples to label, the number of points to be labelled by the oracle or teacher is much
less than for supervised learning algorithms. For instance, active learning is used for
computational biological applications.

3.2 Explainable Machine Learning
Nowadays, machine learning is widely used in different domains, including health care, en-
tertainment and commercial, for various tasks, including recommendation systems, image
annotation and classification, diagnosis prediction, and more [52]. Deep learning approaches
perform better than humans in some types of tasks. At the same time, they have short-
comings, which are not only related to data quality, computational time and engineering
efforts. The central problem is that these algorithms are incredibly opaque. Even though
their mathematical background is understandable, deep learning approaches still suffer from
a lack of declarative knowledge [18].

Because of social, ethical and legal reasons, it is desired for learning algorithms to pro-
vide comprehensive information about logical chains that influence their decisions, predic-
tions, or actions [1]. According to European GDPR regulations, if any automated decision-
making systems are used, the data subject should be able to receive meaningful information
about the chain of reasoning behind that system and the possible consequences [6].

12

A.Adadi et al. [1] have formulated four main reasons for the need for explainable
results of machine learning algorithms: to justify results, to control the system (to debug),
for more straightforward model improvement, and gain new knowledge. Rationalising the
results is helpful when the model makes unexpected decisions. Also, it ensures, if needed,
that the outcomes are fair and ethical and that the algorithm complies with the criteria of
Responsible Artificial Intelligence. Explainable machine learning enables enhanced control
over the model’s vulnerabilities and decreases the number of possible errors since they can
be corrected fast. Moreover, it helps to improve the model when the information about the
logic chain is not hidden by providing necessary additional data. New knowledge gain is
impossible with the usage of only non-transparent algorithms. For example, it is desirable
for a Go-player machine not only to win the game but also to describe its playing strategy.
In the future, it would be highly beneficial if explainable models have the ability to derive
new knowledge in natural sciences.

According to Belle V. et al. [2], the algorithms that are called transparent and, as a
consequence, more trustworthy are:

• Logistic/Linear Regression

• Decision Trees

• K-Nearest Neighbours

• Rule-Based Learners

• Generative Additive Models

• Bayesian Models.

However, speaking about algorithmic transparency, most of the results of the algorithms
from this list are too complex to be analysed without mathematical tools. The only class
of algorithms a human without a mathematical background can understand is Decision
Trees. Decision Trees are sequential models which contain a sequence of simple conditional
statements; at each non-leaf node, a numeric attribute is tested against a threshold value
or a set of possible values in the case of nominal attributes [28].

Considering the reasons mentioned above, including that the explainable and transpar-
ent models are the most trustworthy, they were chosen for DDoS defence goals. The results
of Decision Trees can be converted to a set of traffic filtration rules, which are understand-
able to a network administrator without the need for complex mathematical tools and solid
mathematical background.

3.3 Decision Trees
Inductive inference is the process of generalisation. The main objective is to learn how
to classify objects using a given set of already labelled instances typically represented as
attribute-value vectors. Each instance belongs to a class, and the task is to map unlabeled
examples from attribute values to classes. Both labelled and unlabelled instances should
be meticulously classified by this mapping [47].

A decision tree is a recursive structure expressing such mappings. It may consist of only
one leaf associated with one class. However, commonly, such a tree consists of a sequence
of test nodes, where each of them has a threshold, creating mutually exclusive outcomes,

13

and each of the outcomes also consists of similar sub-trees. For an object classification, it
has to be tested by a path of testing nodes starting from the root until it reaches a leaf.
Then the class label of the reached leaf will be assigned to the object [48].

An algorithm strives to do the best possible split for each iteration until it reaches
stopping criteria, or no further split is possible because it does not lead to higher purity of
the outcomes. If there is only one class in a leaf’s subset, it is called pure; otherwise, it is
impure. Each splitting iteration should lead to purer leaves of the decision tree as described
in the Algorithm 25.

DT(Instances, Target_feature, Features)
If all instances at the current node belong to the same category
then create a leaf node of the corresponding class
else
{

Find the features A that maximizes the goodness measure
Make A the decision feature for the current node
for each possible value v of A
{

add a new branch below node testing for A = v
Instances_v := subset of Instances with A = v
if Instances_v is empty
then
{

add a leaf with a label the most common value of
Target_feature in Instances;

}
else
{

below the new branch, add a subtree
DT(Instances_v,Target_feature,Features - {A})

}
}

}

Listing 3.1: A pseudo-code for building a decision tree [28].

The construction of decision trees is a challenging and computationally expensive prob-
lem. For a classification task regarded as tiny, the number of possible decision trees may be
extremely high. For instance, in the case in which there are four discrete attributes, half of
them with two possible values and the second half with three, and two classes, the number
of decision trees exceeds 2.2 * 104 [48].

Some types of heuristics were introduced to deal with complexity: heuristics based
on information or entropy, heuristics based on error, and heuristics based on statistical
significance [48]. ID3 and C4.5 algorithms use information gain for attribute selection,
which is an entropy-based heuristic [19].

Information gain is calculated with the use of entropy, which has the formula:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝐶∑︁
𝑖=1

𝑃 (𝑥𝑖) log2 𝑃 (𝑥𝑖), (3.1)

14

where 𝐶 expresses the number of classes and 𝑃 (𝑥𝑖) is the probability of randomly picking
an element of class 𝑖.

𝐼𝐺(𝑇,𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇)−
∑︁
𝑣∈𝐴

|𝑇𝑣|
𝑇

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇𝑣), (3.2)

where 𝑇 means target column, 𝐴 is the feature (column), we are testing, and 𝑣 means
all possible values in 𝐴. If the result is positive, the split using the feature 𝐴 lowers the
entropy. The goal is to find the higher possible information gain value and do the split on
that feature [33].

The CART algorithm uses Gini index for decision tree construction. The Gini index
is calculated using the formula:

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1−
𝑛∑︁

𝑖=1

(𝑃 (𝑥𝑖))
2, (3.3)

where 𝑃𝑖 is the probability of an element being classified for a specific class, same as in
3.1. The Gini index varies from 0 to 1 inclusive, where 0 stands for perfect classification.
Consequently, a feature with less Gini index will be chosen for a split [58]. The Gini index
belongs to the group of heuristics based on error.

Another splitting criterion, which is used primarily for imbalanced data streams, is
Hellinger distance. Hellinger distance between two normal distributions 𝑃 and 𝑁 is
defined as:

𝑑𝐻(𝑃,𝑁) =

⎯⎸⎸⎷1−

√︃
2𝜎1𝜎2
𝜎2
1 + 𝜎2

2

𝑒
− 1

4
(𝜇1−𝜇2)

2

𝜎2
1−𝜎2

2 , (3.4)

where 𝜇1 is mean of 𝑃 , 𝜎2
1 is its variance and 𝜎1 - standard deviation, and 𝜇2, 𝜎2

2 and 𝜎2
refer to 𝑁 correspondingly [34]. It is used in online (incremental) learning by Hoeffding
Trees also called Very Fast Decision Trees, which will be closely discussed in Section 3.4.

3.4 Incremental Learning and Online Decision Trees
Traditional machine learning methods work under the well-known scenario: all the data
are in disposition before the training step. Therefore hyper-parameter setting and model
selection takes into account the whole training dataset; meanwhile, the model in the training
phase relies on the fact that the data is static [15]. However, in the context of network
traffic and protection from DDoS attacks, the data is dynamic, and the attack vector may
change anytime. The sector of machine learning algorithms which deals with evolving data
streams is online (incremental) learning.

As opposed to traditional ML methods, an incremental model should be able to gather
new knowledge from incoming data, memorise it and at the same time preserve the old one
[32]. It should be able to make predictions based on the most recently available data at
any moment. Furthermore, the most challenging is that it is lifelong learning on an infinite
stream (without the ability to return to the already seen examples) that happens using
limited resources such as time and memory [50].

Such decision tree algorithms as ID3 and C4.5 mentioned in Section 3.3 require all
training data to be available before training starts. These methods cannot be applied to
possibly infinite data streams, so they refer to offline learning algorithms. The opposites

15

to them are decision trees, which are capable of changing on the go with new incoming
data, named online decision trees. The Very Fast Decision Tree (VFDT) is an illustrative
example of online learners. It progressively grows with the new examples’ arrival, and at
the same time, it can reduce its branches’ depth or turn its sub-tree into a node if necessary.
The VFDT does not accumulate all the previously seen examples and considers only the
actual ones. It helps to save memory resources and processing time [39]. However, it may
cause problems if the behaviour of knowledge forgetting after concept drift is unsatisfactory.

A similar problem is described in the literature about deep learning algorithms such
as neural networks. With the incoming of new data, the prior knowledge gets less weight
by a backpropagation algorithm so that further information gets prioritised. It has an
undesired impact on the performance of the previously learned examples. This effect is
known as catastrophic forgetting. The model needs to be stable enough to sustain the
current knowledge and sufficiently plastic to collect new information simultaneously for the
effects of catastrophic forgetting reduction. Meeting both requirements at the same time is
extremely challenging. This problem is called a stability-plasticity dilemma [32].

Neural networks severely suffer from the phenomenon of catastrophic forgetting. As a
consequence, many articles about the possible ways of overcoming catastrophic inference
(catastrophic forgetting) exist related to neural networks [17, 51, 27]. Parisi et al. [44]
distinguish three ways of overcoming this phenomenon:

1. replay of previously learned knowledge, including rehearsal and pseudo-rehearsal,

2. regularisation approaches regarding the old knowledge weights,

3. network expansion.

In the context of incremental learning, replay techniques are also applicable. A.Robins [51]
describes rehearsal as learning new information and model retraining on the previously seen
data meantime. However, this approach has a constraint and is not suitable when old data
is unavailable. Then another variant of replay called pseudo-rehearsal becomes useful. In
a pseudo-rehearsal process, instead of actual examples, the model relearns using pseudo-
items, which are artificially generated samples representing the classes (in classification
problems). Pseudo-rehearsal approach becomes even more efficient with the increase in the
number of target classes as rehearsal requires more memory space for keeping representative
items of multiple classes.

Considering the fact that for DDoS protection purposes, only two classes named legit-
imate and attack will be identified, the rehearsal approach is applicable because of down-
to-earth memory requirements.

16

Chapter 4

Design and Implementation of
Filtration Rules Inference

This chapter describes the design of the algorithm for DDoS attack flow filtration. This work
aims to propose and subsequently implement DDoS mitigation rules inference optimisations.
This work is the continuation of the previous year’s bachelor thesis named ”Inference of
DDoS Mitigation Rules“ [21]. Section 4.1 is dedicated to revising Jacko’s design, which will
also serve as an introduction to the problem. The author has implemented a program using
the Decision Tree Classifier algorithm, which requires pcap files as input and generates
Berkeley Packet Filter (BPF) filter rules for attack traffic as output. The features for the
dataset are presented in Section 4.2. Section 4.4 describes the designed alternative to the
classical supervised machine learning algorithms for DDoS protection presented in Section
4.3. It deals with the possibility of applying online learning methods to derail mitigating
rules, particularly online decision trees. The output rules of both approaches are in BPF
format.

4.1 Design Considerations
The primary source of information for this and the following section is [21] and the infor-
mation provided by my supervisor.

The choice of using machine learning algorithms was influenced by the aim of reducing
user intervention in the process of rules derivation. The intent of less user involvement in the
mitigation process arose on the assumption of faster speed and more advanced generalisation
abilities of machine learning algorithms compared to humans. When a DDoS attack starts,
the speed of reaction to it plays a crucial role in the system’s protection because a prolonged
system outage discourages legitimate users from using the provided services again.

Machine learning methods are not always suitable. They may fail in non-deterministic
problems, and they may not be applicable if a lack of data or, even worse, a lack of good
data infers to receive statistically significant results [55]. The reasons why machine learning
algorithms are considered to apply to the problem of DDoS mitigation rules inference are
the following:

1. Availability of data. The input data for the inference is network traffic, where each
packet represents a vector of information. The network flows can be monitored and
stored in suitable file formats such as ”pcap“ or ”pcapng“. Consequently, the dataset
is representative and is not prone to measurement errors.

17

2. Peculiarities of attack traffic. Assuming that the bots in a botnet, which send
malicious packets to the victim, are headed by a central source of information, there
may be distinctive features in the packets common either for all attack traffic or at
least for its part.

3. Distinctions between legitimate and attack traffic. The features of legitimate
traffic are supposed to be so diversified that it is not possible to find the common ones,
or they will cover a huge part of attack traffic along with the legitimate. However, the
expectation is that the attack traffic will differ from the legitimate in some features.
Otherwise, the filtration rules will cover a considerable part of legitimate traffic, and
it will lead to blocking access to benign users, which is the attackers’ goal. That will
mean that the attack is successful and the victim cannot afford it.

D.Jacko considers one more reason in his work [21]: after an attack starts, the majority
of packets in the traffic are actually sent by attackers. Nevertheless, the experiments
have shown that it is possible to detect attack flows using certain optimisations even if it is
mixed with legitimate traffic in proportions, where legitimate traffic takes 50% and more.
The designed optimisations are discussed with more details in Section 5.2.

The problem of mitigation rules inference can be solved using supervised learning algo-
rithms due to the volumetric DDoS attack course. The first step is benign traffic capture.
For the period when the traffic rate is lower than the defined threshold, the flows are labelled
as legitimate. Even if there is a part of attack traffic, it cannot cause any damage to the
system until it is capable of processing all the incoming packets at its usual speed. When
the traffic rate exceeds the threshold, the system alerts an attack start. All the packets
after that moment are labelled as attack. There might be a part of legitimate traffic during
an attack, as declared above. However, due to the ML algorithm’s generalisation abilities,
it should be able to divide benign flows from the malicious if the amount of traffic captured
in the peaceful period is massive enough and outweighs the number of legitimate packets
labelled as attack. Immediately upon the fall of incoming traffic rate under the threshold,
the traffic will be labelled as legitimate again, irrespective of whether the attack stopped or
the inferred mitigation rules blocked it. This method of labelling packets allows receiving
the two-class continuously updated dataset.

Decision trees were chosen for the DDoS protection among the supervised machine
learning algorithms. The crucial role of explainable algorithms for trustworthiness in arti-
ficial decision-making agents was more thoroughly discussed in Section 3.2. In summary,
people tend to be sceptical of the results of black-box algorithms as they might have a
skewed view of the dataset and find only locally optimal solutions without generalisation
attempts. Furthermore, even explainable machine learning algorithms’ outputs may not
be effortlessly understandable for people without specific qualifications. The majority of
the algorithms’ results should be interpreted using mathematical tools. On the contrary,
the outputs of decision trees are understandable even for people without a mathematical
background. They represent a sequence of decision nodes with the result at the leaf nodes.
This characteristic is significant because the users of the designed program are supposed to
be network administrators.

Furthermore, a considerable advantage of decision trees is that it does not require much
data preparation. They need no data normalisation, one-hot encoding or blank values
removal. Blank values are not expected to appear in examples constructed from packets,
but lack of normalisation is fundamental for explicability. Due to all the reasons discussed

18

in this section, decision trees were chosen as the most suitable approach for DDoS rule
inference.

4.2 Dataframe Structure
The input data for the designed program are pcap files with legit and attack traffic. They are
parsed using Python module dpkt1. The information for the input dataset extracted from
the pcap files concerns IP and transport layers (Layers 3 and 4). However, the application
can be extended, and it is possible to extract information from other layers. The information
is extracted from IPv4, TCP and UDP headers. The choice of protocols was primarily
affected by the available datasets (pcap files) with attacking packets. The final dataframe
contains data from the colored fields in Figures 4.1, 4.2 and 4.3.

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

Figure 4.1: IPv4 protocol fields used to create the dataframe.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

Figure 4.2: TCP protocol fields used to create the dataframe.

1https://dpkt.readthedocs.io/en/latest/

19

https://datatracker.ietf.org/doc/html/rfc791#section-3.1
https://datatracker.ietf.org/doc/html/rfc793#section-3.1
https://dpkt.readthedocs.io/en/latest/

Figure 4.3: UDP protocol fields used to create the dataframe.

The destination IP address is not represented in the dataframe, even though this infor-
mation can increase classification accuracy because the goal was to prove that the algorithm
can find similarities in other fields. Otherwise, it would predominantly focus on the victim’s
address, making the task easier for the model.

The final dataframes always contain either columns from IPv4 with TCP or combine
the columns from IPv4 with UDP. They are not joined into one dataframe because it would
contain a lot of empty attributes; it would slow down processing time, which is unacceptable
for mitigation rules inference. Moreover, with the addition of other protocol support, the
number of blank values would increase proportionally.

4.3 Offline learning with Decision Tree Classifier
The next stage after the dataframe creation is model training. DecisionTreeClassifier2

algorithm from scikit-learn [5] was chosen for the rules inference. Scikit-learn decision
tree implementation uses an optimised version of the CART (Classification and Regression
Trees) algorithm. The algorithm uses the feature and threshold for binary tree construction
that brings in the maximal information gain at each node.

get legit pcap parse legit pcap

get attack pcap parse attack pcap

train model

get BPF rules add rules to DB

create dataframe

ML algorithm

Figure 4.4: Scheme of rule inference using Decision Tree Classifier.

After the training step, the model is ready for making predictions and classifying exam-
ples. However, instead of proceeding to the testing phase, the final model is used to derail
the rules, as Figure 4.4 shows. The tree structure is flattened and converted to a BPF filter.
The testing stage is only used for the experiments, which are needed to prove the method’s
applicability and comparison of different approaches to tree construction.

2https://scikit-learn.org/stable/modules/tree.html#tree-classification

20

https://www.rfc-editor.org/rfc/rfc768.html
https://scikit-learn.org/stable/modules/tree.html#tree-classification

4.4 Online learning with Hoeffding Adaptive Tree.
Online or incremental learning is a contrasting approach to classical machine learning. It
deals with sequential data, when the whole dataset either is not available at some point and
the predictions should be made on an incomplete set, or when the flow of data is infinite,
and a model cannot process it in a sensible timespan. Another reason for appealing to
incremental learning methods is concept drift. Concept drift appears when the statistical
properties of a target variable are unstable and unpredictably change over time. It is
pertinent in the context of DDoS attack filtration as the vector of an attack may change
anytime.

The Decision Tree Classifier cannot be used for data streams and requires the whole
dataset to be available before the training step. Instead of it, we decided to use Hoeffding
Adaptive Tree with Adaptive Windowing (HAT-ADWIN) [4]. Hoeffding Adaptive Tree is
a method for decision tree construction, which has evolved from Hoeffding Window Tree
(HWT). It can learn from a data stream without fixed window size specification. The
perfect window size calculation is not a trivial task for users. It requires predicting the
rate of distribution changes, and it gets more complex if the data stream changes are
unforeseeable.

For the training step I used HoeffdingAdaptiveTreeClassifier3 from River4 library devel-
oped for streaming machine learning. It implements the Hoeffding Adaptive Tree algorithm
with bootstrap sampling improvement, which helps to avoid overfitting.

get legit pcap parse legit pcap

append to
dataframe

parse attack pcapget attack pcap

train model on
new example

trigger?
YesNo

get BPF rules add rules to DB

ML algorithm

Figure 4.5: Scheme of rule inference using HAT-ADWIN.

The whole process of BPF rules inference using online is quite similar to the offline
learning approach, which is visible from the comparison of Figures 4.4 and 4.5. Nevertheless,
there are some slight differences. The first one is the opportunity of pre-training on the
legit data before an actual attack starts, as the goal is to stop the attack as fast as possible.
A further advantage is that the model does not store information about all the incoming
packets but only about the most recent ones. It allows to save memory resources, and it
helps to protect classification from wrong labelling in case of previous legit users’ infection.
In addition, the model will only consider actual attack flows if the vector of attack changes,
which should increase the accuracy of the classification and decrease the number of output
blocking rules. However, suppose the moment of ready rules in offline learning is determined
as it is prepared right after training. In that case, the online model learns continuously,
and it is not needed to have new rules after every learned example. It requires a kind of

3https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/
4https://riverml.xyz/latest/

21

https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/
https://riverml.xyz/latest/

a trigger, which would enforce the model to pause learning and activate the conversion of
the tree structure to BPF rules. This trigger may be in the form of a timeout, when the
activation starts after a time period, for example, every 5 minutes. The alternative is to
trigger when an event is happening, and it may be an attack start or attack vector shifting.
This approach is more advanced and requires drift detection notifications, and was not
implemented in this version of the program.

During the accuracy tests of HAT-ADWIN, the results of which will be discussed in
Chapter 6, the problem of catastrophic forgetting appeared. After the model was trained
on legitimate traffic examples, it learned attack examples. However, it unexpectedly started
to completely forget the benign ones with the arrival of other attack samples and strength-
ening knowledge about them. The rehearsal approach is used to overcome the problem.
At the stage of attack leaning, some legitimate random samples are injected in 5 : 1 pro-
portion. It reminds the algorithm that it should take into account the recently appeared
attack examples and keep the information about the legitimate instances. Another possible
solution is to mix all the available examples and learn the model on them, but it would be
the same as using offline learning methods. It would undermine the whole point of using
incremental learning algorithms and all the advantages it was meant to bring.

22

Chapter 5

Optimisations

This chapter will describe the suggested and implemented optimisations that improve both
offline and online algorithms. They are used to increase the models’ accuracy and decrease
the rate of false positives. Section 5.1 introduces hyper-parameter tuning, and Section 5.2
proposes to provide additional information about the rate of legitimate traffic after the start
of the attack to decrease the amount of legitimate traffic blocked by the inferred rules.

5.1 Hyper-parameter Tuning with Grid Search
In the ”Inference of DDoS Mitigation Rules“ thesis are described various experiments with
the hyper-parameters of Decision Tree Classifier are described, including ”max_depth“,

”min_samples_leaf“, ”min_samples_split“ and ”max_leaf_nodes“. The first proposed
optimisation stands on the assumption that it would be beneficial to involve all the hyper-
parameters, which may simultaneously influence the tree model’s depth.

Scikit-learn library presents two different approaches as a solution to finding the best
hyper-parameters combination: Grid Search and Randomized Search.

The grid search generates model candidates under the given lists of hyper-parameters
values. After cross-validation for each model from the grid, the model with the best score
is chosen for future testing. This approach may be computationally exhaustive since it fits
each model from the grid on the training dataset.

Randomised search optimises the grid search algorithm, and each setting is sampled
from a distribution over possible parameter values. Only a part of the model candidates
will be investigated depending on the budget. This approach leads to a faster best model
finding, skipping statistically unattractive ones. Among the advantages described by its
authors is that additional parameters, which do not influence the performance, do not
decrease the RandomizedSearchCV’s efficiency.

Notwithstanding the above-presented advantages of the randomised search algorithm,
GridSearchCV was chosen for optimisation. It allows to not only look up for the best
possible model but also to investigate the trends in the output scores, which is meaningful,
considering the possible different top hyper-parameters for different datasets from available
attack pcap files. Another significant assumption for algorithm selection is the number of
candidates in the grid. Since the grid for the experiments is four-dimensional, the time
for the computations proliferates compared to the experiments with only one parameter
at a time. Finally, it was stated that within the range of parameters from the previous

23

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV

experiments, the calculation time for the grid search will be held during a reasonable time
but will be more information-rich than the randomised search algorithm.

Various hyper-parameters for the HAT-ADWIN incremental learning model are also
at the disposal to improve its performance. They differ from the Decision Tree Classifier
except ”max_depth“ and include ”grace_period“, ”split_confidence“ and ”tie_threshold“.
Unfortunately, an analogue of multi-core grid search is not implemented in the River li-
brary, and the available SuccessiveHalvingClassifier is not suitable for comparison to offline
learning purposes. That is why the nested loops analogue of grid search was used for testing.

5.2 Legitimate Traffic Rate

5.2.1 The meaning of the ”Legitimate rate“ parameter

When a tree classifier model is built, its output is converted into rules that declare which
part of the traffic should be blocked. However, this set may cover more traffic than expected.
It leads to a higher False Positive rate, which means that part of legitimate traffic will be
blocked while trying to stop the attack, and the attacker has reached his goals.

t

threshold

Legit traffic Legit traffic

Attack traffic
+

Legit traffic

t1 t2

Figure 5.1: A simplified course of traffic during an attack.

A new parameter called the ”Legitimate rate“ was introduced to decrease the number of
legitimate packets marked as attack. This parameter declares the ratio of legitimate traffic
to the overall traffic. Even though it is simply an input parameter, it would be helpful to
know how it is calculated.

One of the crucial criteria of network systems is its bandwidth, which is typically mea-
sured in bits per second (bit/s or bps) or data packets per second (p/s or pps). Since the
target for blocking are attack packet flows consisting of individual packets, it is appropriate
to make measurements, particularly in data packets per second. As long as it is necessary
to know the system’s bandwidth, another measurement, the mean packet rate, will also
come in handy for future calculations.

The mean packet rate value should be continuously calculated and monitored. So, when
an atypical increase in the traffic rate is detected (as is shown as 𝑡1 in Figure 5.1), it would
be possible to determine the alleged ratio of legitimate traffic to the overall flow.

After the blocking rules are derived from the tree classifier, the next step is to compare
the input ”Legitimate rate“ parameter and the ratio of the legitimate leaves from the

24

resulting tree. If the second one is less than the input parameter, applying the rules will
lead to a higher false positives rate because more traffic would be blocked than expected.

However, when the tree tends to block more packets than needed, it can be solved by
picking a subset of rules that will ”fit in“ the legitimate traffic rate and block the rest.
Unfortunately, just sorting the rules by the number of legit packets in the resulting tree’s
leaves does not solve the problem because the leaves’ impurity plays a crucial role here. The
goal is to choose the purest nodes with the most legitimate packets and leave those least
representing. This problem can be efficiently mapped to the ”0/1 Knapsack problem“.

5.2.2 0/1 Knapsack problem

The 0/1 Knapsack problem is described as follows. A thief enters a store and sees 𝑛 items.
Each item has a value 𝑉𝑛, and its weight is 𝑊𝑛. He cannot take all of them because he
can only carry a limited weight 𝑊 in his knapsack. Of course, he wants to take as much
valuable load as possible. Which items should he take and which leave? Note that the
thief either takes an item or leaves it behind; he cannot take a fraction of an item nether
take them twice or more times. The 0/1 points out this limitation [10]. Another version
of this NP-full problem is the fractional knapsack problem, which is not suitable for the
goals described in the subsection 5.2.1. It is impossible to pick a part of the rule because it
would cause even a more extensive traffic part selection, or, in an edge case, it would not
have any effect on blocking.

For the implementation of the knapsack problem, the dynamic programming algorithm1

16 was chosen, which finds the globally optimal solution in contrast to the Greedy approach.

def Knapsack(W, weights, values, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]

for i in range(n + 1):
for w in range(W + 1):

if i == 0 or w == 0:
K[i][w] = 0

elif weights[i-1] <= w:
K[i][w] = max(

values[i-1] + K[i-1][w-weights[i-1]],
K[i-1][w])

else:
K[i][w] = K[i-1][w]

return K[n][W]

Listing 5.1: Dynamic programming algorithm for 0/1 Knapsack problem.

Regarding the knapsack problem, 𝑛 is the number of rules. The ”weight“ is the number
of packets in the corresponding rule for each rule. As mentioned above, the purest nodes
with the most examples should be picked, so the formula 5.1 was proposed, where 𝑥 is
impurity and 𝑦 is the number of legitimate packets in the node.

1https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

25

https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

𝑉 (𝑥, 𝑦) = 𝑥2𝑦

=

(︂
𝑙𝑒𝑎𝑓_𝑙𝑒𝑔𝑖𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑙𝑒𝑎𝑓_𝑙𝑒𝑔𝑖𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠+ 𝑙𝑒𝑎𝑓_𝑎𝑡𝑡𝑎𝑐𝑘_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

)︂2

𝑙𝑒𝑎𝑓_𝑙𝑒𝑔𝑖𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

=
𝑙𝑒𝑎𝑓_𝑙𝑒𝑔𝑖𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠3

(𝑙𝑒𝑎𝑓_𝑙𝑒𝑔𝑖𝑡_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠+ 𝑙𝑒𝑎𝑓_𝑎𝑡𝑡𝑎𝑐𝑘_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)2

(5.1)

This formula emphasises the importance of the impurity parameter; nevertheless, it
involves the number of legitimate packets, too. Otherwise, the algorithm would first choose
the purest rules with the least number of examples in the node.

26

Chapter 6

Experiments and Evaluation

This chapter describes the procedure of experiments and evaluation methods. They are
necessary to prove the design’s applicability or disprove the hypothesis about the possibility
of benefiting from specific approaches for filtration rules inference. Section 6.1 concerns the
data for test conduction. Evaluation metrics are introduced in Section 6.2, while the results
of individual tests are discussed in Sections 6.3 and 6.4. A great emphasis is put on the
false positives rate in Section 6.5 with the evaluation of the results. The main goal is not to
let the attackers block access to legitimate users, and it will not be reached if the machine
learning algorithm blocks the benign flows itself.

6.1 Datasets
All the experiments were held on the same datasets, which are described in [21]. The
intention was to make the tests as closer to reality as possible. The legitimate traffic was
captured on the core network between the Austrian national research and education network
(ACONET) and Czech Education and Scientific Network (CESNET). The captured traffic
pcap was split into two separate pcap files representing the course of an attack, as Figure
5.1 demonstrates. The first part, named LEGIT, contains about 76800 packets, where
TCP:UDP ratio is about 4 : 6 and represents legitimate traffic until 𝑡1, and the second
part, named MIX, represents the legitimate traffic flows between 𝑡1 and 𝑡2. All the LEGIT
pcap samples are marked as ”legitimate“ (encoded as ”0“) for both the training and testing
stages. Even though the MIX pcap contains legitimate packets, we treat them differently.
After the start of an attack, surpassing the threshold, all packets are labelled as ”attack“
(encoded as ”1“). Both datasets, attack and MIX, are assumed as attack for training.
However, for the testing stage, the packets from the MIX pcap are labelled as ”legitimate“.
It helps to assess the decision tree’s generalisation abilities properly. All the attack samples
are labelled as ”attack“ for the training and testing stages.

A part of the attack datasets is from CICDDoS2019 dataset [54], which Canadian In-
stitute for Cybersecurity published. It contains 13 different types of DDoS attacks. SYN
flood, UDP flood, DNS and NTP amplification were picked. The second part was obtained
by using tools for DDoS attack generation. These tools are LOIC1, HULK Python script2

and Torshammer3. As the datasets contained only a few source IP addresses, the addresses
1https://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
2https://allabouttesting.org/hulk-ddos-tool-complete-installation-usage-with-examples/
3https://sourceforge.net/projects/torshammer/

27

https://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
https://allabouttesting.org/hulk-ddos-tool-complete-installation-usage-with-examples/
https://sourceforge.net/projects/torshammer/

Table 6.1: Multi-vector attack datasets.

Name Mix of datasets
SYNDNS SYN,DNS
ALLUDP DNS, LOIC, NTP, UDP
ALLTCP TORSHAMMER, SYN, HULK
ALL DNS, LOIC, NTP, UDP,TORSHAMMER, SYN, HULK

were changed to random to make the task more complicated. Each attack pcap file contains
4000 packets. Since the results of the tests on each particular attack type are too good,
they were joined into multi-vector attack datasets according to the Table 6.1.

As Figure 6.1 depicts, for the training dataset creation, 60% of the LEGIT dataset and
60% of the attack dataset are used, and 40% of the LEGIT and attack datasets are used
for testing correspondingly. The number of packets from the MIX dataset is chosen as
3 : 7 to the attack packets for most experiments, so the attack traffic consumes 70% of the
resources. All the packets from the MIX dataset created for training are used for testing.

Training Testing

LEGIT LEGIT

MIX

Attack Attack

MIX

60% : 40%

60% : 40%

100% : 100%

Figure 6.1: Dataset mix of legitimate and attack traffic.

6.2 Evaluation Metrics
To evaluate the classification performance of a model and draw a comparison between
models with different parameters, all ML libraries implement a confusion matrix 6.2. It
keeps the information about the number of wrongly and rightly classified samples. Absolute
numbers from the matrix were converted to percentages, where each row adds up to 100%.

The graphs in the following sections depict True Positives and False Positives evolution
using different parameters.

28

Predicted
Positive (1) Negative (0)

Actual
Positive
(1) True Positive (TP) False Negative (FN)

Negative
(0) False Positive (FP) True Negative (TN)

Table 6.2: Confusion matrix.

For the experiments with grid search, the comparison based on two parameters simulta-
neously is impossible. Only one parameter named score is needed. There are many various
scoring formulas in the scikit-learn library. However, they do not meet our requirements, as
the aim is to have as low False Positive rate as possible and a reasonably high True Positive
rate. The formula used for scoring is:

𝑆𝑐𝑜𝑟𝑒 =
1
3(𝑇𝑃 + 𝑇𝑁 + (100− 𝐹𝑁)) + 3(100− 𝐹𝑃)

4

=
1
3(𝑇𝑃 + 𝑇𝑁 + 𝑇𝑃) + 9

3𝑇𝑁

4

=
2𝑇𝑃 + 𝑇𝑁 + 9𝑇𝑁

12

=
𝑇𝑃 + 5𝑇𝑁

6

(6.1)

The formula 6.1 emphasises that right labelling of legitimate packets is 5 times more im-
portant than right labelling of attack packets.

6.3 Decision Tree Classifier
This section describes the results of experiments with the Decision Tree Classifier from the
Python scikit-learn library.

Figures 6.2–6.5 depict True Positive and False Positive rate for the ”max_depth“,

”max_leaf_nodes“, ”min_samples_leaf“ and ”min_samples_split“ parameters. Each fig-
ure demonstrates the results of testing on 4 available datasets: ALL, ALLTCP, ALLUDP
and SYNDNS from the Table 6.1. All the tests on individual parameters use the datasets
where attack to MIX ratio is 70% : 30%.

The shown values of True Positives vary from 80% to 100% because the values under
80% are unsatisfactory. The shown values of the False Positive rate are up to 15% because
this range covers the majority of the results, and at the same time, higher values are
unacceptable.

6.3.1 Maximum Depth

The first examined parameter is the maximum depth of the tree. The choice was based
on the assumption that a tree with unlimited depth is predisposed to overfitting and thus
a high False Positives rate for testing because of the MIX dataset. The hypothesis has
been confirmed. As Figure 6.2 demonstrates, the increase of allowed maximum depth also
heightens the False Positive rate for all the available datasets. The same goes True Positive

29

rate, growing up to 100% in all cases. If the tree is too limited and has a maximum height
of less than 5, it cannot take the uttermost from the available features.

True positive
False positive

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALL

0

5

10

15

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALLTCP

True positive
False positive

0

5

10

15

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALLUDP

True positive
False positive

0

5

10

15

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset SYNDNS

True positive
False positive

0

5

10

15

Figure 6.2: Decision Tree Classifier: maximum depth.

6.3.2 Maximum leaf nodes

True positive
False positive

10 20 30 40 50 60
Max leaf nodes

80

85

90

95

100
Dataset ALL

0

5

10

15

10 20 30 40 50 60
Max leaf nodes

80

85

90

95

100
Dataset ALLTCP

True positive
False positive

0

5

10

15

True positive
False positive

10 20 30 40 50 60
Max leaf nodes

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

10 20 30 40 50 60
Max leaf nodes

80

85

90

95

100
Dataset SYNDNS

True positive
False positive

0

5

10

15

Figure 6.3: Decision Tree Classifier: maximum leaf nodes number.

A similar situation is with the ”max_leaf_nodes“ parameter, which limits the number of
leaf nodes instead of the depth. A higher parameter value also raises True Positive and False
Positive rates, which is visible from Figure 6.3. The advantage is that the tree can construct
a long sequence of decision nodes if needed according to the values of the features. However,

30

they are limited in the amount and are not likely to overfit. A tree with the maximum depth
𝑛 can have up to 2𝑛 leaf nodes. Nonetheless, a Decision Tree Classifier with a maximum
depth of 4 shows relatively low performance, and a tree with 16 leaves is close to the best
possible results for all datasets.

6.3.3 Minimum samples in a leaf.

These experiments concern the ”min_samples_leaf“ parameter. The aim is to discourage
the model from creating too pure leaves, which, again, due to the labelling of the MIX
dataset, may lead to a high False Positives rate. The parameter’s values presented in
Figure 6.4 vary from 0% to 6,5% of the training dataset. The results are not so unequivocal
as for the previous two tested parameters. Opposite to the supposition, in all the datasets
except SYNDNS, the most uncomplicated attack to detect, the False Positive rate tends
to increase as long as the True Positives rate decreases. The optimal value appears to be
about 2%.

0.00 0.02 0.04 0.06
Minimum Samples in Leaf (fraction)

80

85

90

95

100
Dataset ALL

True positive
False positive

0

5

10

15

0.00 0.02 0.04 0.06
Minimum Samples in Leaf (fraction)

80

85

90

95

100
Dataset ALLTCP

True positive
False positive

0

5

10

15

True positive
False positive

0.00 0.02 0.04 0.06
Minimum Samples in Leaf (fraction)

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

0.00 0.02 0.04 0.06
Minimum Samples in Leaf (fraction)

80

85

90

95

100
Dataset SYNDNS

True positive
False positive

0

5

10

15

Figure 6.4: Decision Tree Classifier: minimum samples in a leaf.

6.3.4 Minimum samples for a split.

The last examined parameter of the Decision Tree Classifier is ”min_samples_split“. The
supposition about its adjustment was similar to the ”min_samples_leaf“. A node cannot
be split until it has enough samples to do it. If the number is too small, the model will
overfit; if it is too big, the model will underfit. The tested percentages are again up to 6,5%.
Here, the results were more predictable than for the last parameter. A more considerable
fraction leads to less False Positive, keeping a high True Positive. However, a fraction bigger
than 5% leads to a False Positives increase because the model cannot be specific enough to
make precise predictions as Figure 6.5 depicts.

31

0.00 0.02 0.04 0.06
Minimum Samples for Split (fraction)

80

85

90

95

100
Dataset ALL

True positive
False positive

0

5

10

15

0.00 0.02 0.04 0.06
Minimum Samples for Split (fraction)

80

85

90

95

100
Dataset ALLTCP

True positive
False positive

0

5

10

15

True positive
False positive

0.00 0.02 0.04 0.06
Minimum Samples for Split (fraction)

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

0.00 0.02 0.04 0.06
Minimum Samples for Split (fraction)

80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.5: Decision Tree Classifier: minimum samples in a leaf for a split.

6.3.5 Grid Search

One of the designed optimisations was choosing the best parameters using grid search. It
allows to combine of individual parameters’ advantages and thus achieves a better perfor-
mance score. As Table 6.3 demonstrates, the achieved results are above 98% of the True
Positive rate and under 3% of the False Positive rate. The experiments have shown that
maximum depth restriction is not that important, and other parameters may successfully
limit the model. The maximum leaf nodes limitation plays a crucial role here and prevents
overfitting. The best result of 10-15 nodes is similar to the best score from testing the
parameter ”max_leaf_nodes“ individually. The most unpredictable hyper-parameter min-
imum samples in a leaf turned out to be left closer to its default value of 1. At the same
time, the results of the best minimum samples for a split parameter in combination with the
other parameters do not coincide with testing the hyper-parameter individually. The overall
tendency is to enforce generalisation for a multi-vector attack using ”min_samples_split“
together with ”max_leaf_nodes“. The evidence of the maximum leaf nodes’ significance
is valuable knowledge because the consequence is that the resulting number of BFP rules
concatenated in one rule will always be lower than 15.

Dataset max_ max_ min_ min_ Results
depth leaf_ samples_ samples_ (TP, FP)

nodes leaf split
SYNDNS ≥5 10 0.005 0.005 99.94%, 0.93%
ALLUDP ≥7 15 0.005 0.01 98.31%, 0.64%
ALLTCP ≥5 10 0.005 0.06 100%, 0.94%
ALL ≥7 12 0.005 0.005 98.32%, 2.86%

Table 6.3: Decision Tree Classifier: grid-search results for the individual datasets.

32

6.3.6 MIX to attack samples ratio

This section of experiments aim to examine Decision Tree Classifier’s performance with
different ratio of MIX dataset size to attack datasets. The bigger is the percentage of
samples from the MIX dataset, more truly legitimate packets are marked as attack. For
this bunch of experiments, the model with the following parameters was used:

• max_depth = 10

• max_leaf_nodes = 12

• min_samples_leaf = 0.005

• min_samples_split = 0.005

The choice of the values was influenced by grid search results, where models with these
parameters resulted in the mean best performance. Following the supposition, the True
Positive rate is relatively stable because the actual attack dataset does not change in these
experiments. At the same time, the increase in the percentage of the MIX dataset also
grows the False Positive rate because the LEGIT dataset cannot overweight it after a
certain percentage, about 50%, anymore. The overall tendency is that with more samples
in the LEGIT dataset and the simpler the attack vector is, the lower is False Positive rate,
which is noticeable in Figure 6.6.

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALL

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALLTCP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALLUDP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: SYNDNS

True positive
False positive

0

10

20

30

40

Figure 6.6: Decision Tree Classifier: percentage of legitimate packets marked as attack.

6.3.7 Knapsack results

The optimisation was implemented to reduce the False Positive rate, which provides ad-
ditional information to the model about the actual rate of attack packets using the 0/1
knapsack algorithm. Comparing Figures 6.6 and 6.7, we see a considerable decrease in
the False Positive rate for all datasets when the attack rate is 50% or less, keeping attack
detection with more than 50% rate still on quite sensible values. We observe an abrupt

33

decrease in the True Positive rate at some points, which is a disadvantage of this approach.
Consequently, it is better to use this optimisation only when the attack rate is less than
50%.

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALL

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALLTCP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALLUDP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: SYNDNS

True positive
False positive

0

10

20

30

40

Figure 6.7: Decision Tree Classifier: percentage of legitimate packets marked as attack with
0/1 knapsack optimisation.

6.4 Hoeffding Adaptive Tree
The following group of experiments were held to understand if decision trees for evolving
data streams are applicable for solving the problem of attack and benign packet classifi-
cation. First of all, the results of using different values of positives weight parameter are
discussed to overcome the catastrophic forgetting. Figures 6.9–6.12 demonstrate the results
of experiments on individual parameters of the Hoeffding Adaptive Tree Classifier from the
River library using the best found ”positives_weight“ parameter value. These four hyper-
parameters are presented because the experiments with the others showed flat graphs and
did not influence the results. The last two experiments are the same as were described for
the Decision Tree Classifier: test the model on different MIX to attack dataset ratio and
test the ”Legitimate rate“ using 0/1 knapsack algorithm optimisation.

6.4.1 Positives weight

The ”positives_weight“ parameter is not one of the hyper-parameters of the Hoeffding
Adaptive Tree Classifier. It means the weight of each sample labelled with ”0“ or ”legitimate“,
and the negative weight is 1 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑤𝑒𝑖𝑔ℎ𝑡, correspondingly. This parameter was in-
troduced to balance the rate of legitimate samples during rehearsal as described in Section
4.4. As the number of LEGIT samples during the rehearsal is less than the number of
attack samples, only values equal to or greater than 0,5 are presented.

Figure 6.8 demonstrates that the True Positive rate value is higher when the parameter’s
value is closer to 0,5. However, the False Positive rate results at that point are unacceptable.

34

The optimal value of the ”positives_weight“ is 0,65 because with greater values come True
Positives rate fall-down. This value is used for the subsequent experiments with Hoeffding
Adaptive Tree Classifier’s hyper-parameters.

True positive
False positive

0.5 0.6 0.7 0.8 0.9
Positives weight

80

85

90

95

100
Dataset ALL

0

5

10

15

True positive
False positive

0.5 0.6 0.7 0.8 0.9
Positives weight

80

85

90

95

100
Dataset ALLTCP

0

5

10

15

True positive
False positive

0.5 0.6 0.7 0.8 0.9
Positives weight

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

0.5 0.6 0.7 0.8 0.9
Positives weight

80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.8: Hoeffding Adaptive Tree Classifier: positives weight.

6.4.2 Maximum depth

The maximum model’s depth is the only identical hyper-parameter of the Decision Tree
Classifier and Hoeffding Adaptive Tree Classifier. Again, Figure 6.9 shows that, when the
tree is too restricted and has less than five nodes in a sequence allowed, it poorly recognises
the attack flows and suffers from underfitting. It finds its optimum at six and does not
require future limitations because of pre-pruning, presumably.

6.4.3 Grace period.

The ”grace_period“ hyper-parameter value tells how many instances a leaf observes before
doing a split. It is pretty similar to the ”min_samples_split“ from scikit-learn. However,
it has a 100 times bigger default value because two is too little for possibly infinite data
streams and cannot significantly influence the distribution. By default, it has a value of
200, and it is pretty reasonable as the results from the Figure 6.10 present, as the best
results, a provided by models with ”grace_period“ between 200 and 300.

6.4.4 Split confidence

Split confidence expresses the allowed error rate, and the closer to 0 it is, the longer it takes
the model to decide, but the better predictions it makes. The Figure 6.11 demonstrates that
smaller values indeed provide better results. Nevertheless, assuming the fact that model
training and classification time are essential for DDoS protection, the optimal remains the
default value of 10−7.

35

True positive
False positive

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALL

0

5

10

15

True positive
False positive

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALLTCP

0

5

10

15

True positive
False positive

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

2 4 6 8 10 12
Max depth

80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.9: Hoeffding Adaptive Tree Classifier: maximum depth.

6.4.5 Tie threshold.

The last examined individual hyper-parameter ”tie_threshold“ is a ”threshold below which
a split will be forced to break ties“4. When there are two feature candidates for splitting,
which have similar values of information gain, it takes a lot of computational resources to
decide the best one. When the ”tie_threshold“ value is used as a comparing condition, the
candidate node is split on the current best attribute [61]. So, the tree splits its nodes more
often with smaller values of the tie threshold.

It is conspicuous that the tree model provides better results with a threshold value of
0,2 and greater (Figure 6.12), which is bigger than the default value of 0,05; so the leaf
nodes do not split too often, which encourages pre-pruning and generalisation.

6.4.6 Grid search

Like for the Decision Tree Classifier, the aim was to show that a model can perform better if
a suitable combination of parameters is found. Looking at the results in the Table 6.4, the
True Positives rate in ALLUDP and ALL datasets catch the eye as they do not ever reach
90%. Moreover, the 5,66% of False Positives is far from a superb result. Entirely unexpected
is the uniformity of the best parameter combinations. Again as in the case of the Decision
Tree Classifier, maximum depth does not need to be restricted. The ”grace_period“ and

”tie_threshold“ hyper-parameters values coincide with the individual test results.

6.4.7 Mix to attack ratio

This part of the experiments test the incremental model’s performance on different MIX
to attack dataset ratio with the best-found combination of parameters. Compared to the
Decision Tree Classifier, there is no clear tendency for the True Positive rate. On the
contrary, the trends of False Positive values are almost identical to those which the offline

4https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/

36

https://riverml.xyz/latest/api/tree/HoeffdingAdaptiveTreeClassifier/

True positive
False positive

200 400 600 800 1000
Grace period

80

85

90

95

100
Dataset ALL

0

5

10

15

True positive
False positive

200 400 600 800 1000
Grace period

80

85

90

95

100
Dataset ALLTCP

0

5

10

15

True positive
False positive

200 400 600 800 1000
Grace period

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

200 400 600 800 1000
Grace period

80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.10: Hoeffding Adaptive Tree Classifier: grace period.

Dataset positives_ max_ grace_ split_ tie_ Results
weight depth period confidence threshold (TP, FP)

SYNDNS 0,8 ≥12 300 any ≥0,2 99,93%, 0,46%
ALLUDP 0,7; 0,8 ≥12 300 any ≥0,2 89,53%, 3,95%
ALLTCP 0,7 ≥12 400 any ≥0,2 100%, 2,53%
ALL 0,8 ≥12 300 any ≥0,2 89,90%, 5,66%

Table 6.4: Grid-search results for Hoeffding Adaptive Tree Classifier for the individual
datasets.

classifier has shown. False Positives results for ALLUDP and SYNDNS are about 10% and
for ALL and ALLTCP are above 30% in the worst cases.

However, the erratic results of the True Positive rate, presented in Figure 6.13, demon-
strate that the incremental decision tree cannot be used for the future application for DDoS
defence, at least without the necessary optimisations.

6.4.8 Knapsack results for incremental learning

The ”Legitimate rate“ with a 0/1 knapsack algorithm helped the Decision Tree classifier
decrease the False Positive rate when the MIX to attack dataset rate was greater than 50%.
A similar effect was expected in online learning on data streams. Nevertheless, it has not
lived up to the expectations and demonstrates an extremely high False Positive rate even
where the model did relatively good without the optimisation. Moreover, even worse are
the results of the True Positive rate as Figure 6.14 illustrates. It concludes that providing
additional information about the rate of attack samples in the stream does not improve the
incremental model’s performance and should be used only for offline learning.

37

True positive
False positive

10 8 10 6 10 4 10 2

Split confidence
80

85

90

95

100
Dataset ALL

0

5

10

15

True positive
False positive

10 8 10 6 10 4 10 2

Split confidence
80

85

90

95

100
Dataset ALLTCP

0

5

10

15

True positive
False positive

10 8 10 6 10 4 10 2

Split confidence
80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

10 8 10 6 10 4 10 2

Split confidence
80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.11: Hoeffding Adaptive Tree Classifier: split confidence.

6.5 Results Evaluation
The results of Decision Tree Classifier performance described in Section 6.3 conclude that
the offline learning algorithm can be applied as a module for DDoS Protector. It has
demonstrated a False Positive rate under 10% for all the datasets, where the attack rate was
60% or higher, even without the optimisation of the ”Legitimate rate“ parameter (Figure
6.6). The optimisation helps to decrease the False Positives rate when the attack traffic
is only a half or less of the incoming traffic, especially for ALL and ALLTCP datasets, as
Figure 6.7 illustrates.

In comparison with the offline approach, the incremental learning algorithm performs
worse. Figure 6.13 demonstrates unacceptable results of True Positive rate of Hoeffding
Adaptive Tree Classifier algorithm, which are not only lower than provided by the offline
approach but also absolutely unpredictable. Unfortunately, even the designed optimisations
do not save the situation, as is visible in Figure 6.14.

38

True positive
False positive

0.05 0.20 0.40 0.60
Tie threshold

80

85

90

95

100
Dataset ALL

0

5

10

15

True positive
False positive

0.05 0.20 0.40 0.60
Tie threshold

80

85

90

95

100
Dataset ALLTCP

0

5

10

15

True positive
False positive

0.05 0.20 0.40 0.60
Tie threshold

80

85

90

95

100
Dataset ALLUDP

0

5

10

15

True positive
False positive

0.05 0.20 0.40 0.60
Tie threshold

80

85

90

95

100
Dataset SYNDNS

0

5

10

15

Figure 6.12: Hoeffding Adaptive Tree Classifier: tie threshold.

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALL

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALLTCP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: ALLUDP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets

marked as attack

80

85

90

95

100
Dataset: SYNDNS

True positive
False positive

0

10

20

30

40

Figure 6.13: Hoeffding Adaptive Tree Classifier: percentage of legitimate packets marked
as attack.

39

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALL

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALLTCP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: ALLUDP

True positive
False positive

0

10

20

30

40

0 10 20 30 40 50 60 70
Percentage of legitimate packets
marked as attack using knapsack

80

85

90

95

100
Dataset: SYNDNS

True positive
False positive

0

10

20

30

40

Figure 6.14: Hoeffding Adaptive Tree Classifier: percentage of legitimate packets marked
as attack using 0/1 knapsack optimisation.

40

Chapter 7

Conclusions

This work’s primary goal is to design an automatic traffic classifier for DDoS attack flows
and optimisations. The decision trees were chosen because they belong to explainable
machine learning algorithms, which are more trustworthy than opaque algorithms. Another
reason is the ease of their output interpretability, which does not require any mathematical
tools or a mathematical background from the end-users. A program using decision trees for
offline supervised learning and online learning on data streams was implemented to infer
filtration rules in BPF format, which are added to the database. As a bonus, the algorithm
enables to obtain the output rules in Wireshark format.

One of the designed optimisations is grid search for finding the best hyper-parameters
combination instead of tuning only one hyper-parameter and observing the tendencies of
traffic classification of various models. Another optimisation is the introduction of the

”Legitimate rate“ input parameter, which provides the algorithm information about the
anticipated rate of legitimate packets in traffic, which aims to decrease the False Positive
rate, i.e. the legitimate packets labelled as attack by the machine learning algorithm.

The incremental learning Hoeffding Adaptive Tree Classifier was supposed to benefit
from changing attack vector detection and inference of blocking rules. Unfortunately, the
inconsistent results of the algorithm learned on the data stream for one complex attack
conclude that it cannot be used as an ML module for the DDoS protector. It is better to
use the offline learning decision tree, which is not only more precise but also faster. The
Decision Tree Classifier achieves above 98% of attack traffic recognition and less than 3%
of False Positives even for relatively complex attack vectors, where the attack to legitimate
traffic ratio is 3 : 7. The ”Legitimate rate“ optimisation using the 0/1 knapsack algorithm
helps diminish the side effect of attack mitigation – blocking legitimate users – when attack
flows take only 50% or less of the incoming traffic. This optimisation reduces the legitimate
traffic blocking up to 10%, which is a noticeable improvement.

Even though the experiments with the Decision Tree Classifier and its optimisation have
shown a satisfactory performance, there is still a space for future optimisations to minimise
the rate of legitimate traffic blocked by the inferred rules. Until then, the output rules
should be applied cautiously, and the future algorithm’s update can be the implementation
of the level of trustworthiness provided by the program. It would probably be based on
the degree of similarity of attack traffic samples and the ratio of attack to legitimate traffic
since the experiments show the best results when the rate of the attack traffic is 70% and
above.

41

Bibliography

[1] Adadi, A. and Berrada, M. Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI). IEEE Access. 2018, vol. 6, p. 52138–52160.
DOI: 10.1109/ACCESS.2018.2870052. ISSN 2169-3536. Available at:
https://ieeexplore.ieee.org/document/8466590/.

[2] Belle, V. and Papantonis, I. Principles and Practice of Explainable Machine
Learning. Frontiers in Big Data. 2021, vol. 4. DOI: 10.3389/fdata.2021.688969. ISSN
2624-909X. Available at:
https://www.frontiersin.org/article/10.3389/fdata.2021.688969.

[3] Belyaev, M. and Gaivoronski, S. Towards load balancing in SDN-networks during
DDoS-attacks. In: 2014 International Science and Technology Conference (Modern
Networking Technologies) (MoNeTeC). Los Alamitos, CA, USA: IEEE Computer
Society, Oct 2014, p. 1–6. DOI: 10.1109/MoNeTeC.2014.6995578. ISBN
978-1-4799-7595-2. Available at:
https://doi.ieeecomputersociety.org/10.1109/MoNeTeC.2014.6995578.

[4] Bifet, A. and Gavaldà, R. Adaptive Learning from Evolving Data Streams. In:.
August 2009, p. 249–260. DOI: 10.1007/978-3-642-03915-7_22. ISBN
978-3-642-03914-0.

[5] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A. et al. API
design for machine learning software: experiences from the scikit-learn project.
In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning.
2013, p. 108–122.

[6] Bussmann, N., Giudici, P., Marinelli, D. and Papenbrock, J. Explainable
Machine Learning in Credit Risk Management. Computational Economics. January
2021, vol. 57, no. 1, p. 203–216. DOI: 10.1007/s10614-020-10042-0. Available at:
https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-020-10042-0.html.

[7] CESNET. Adaptivní ochrana proti DDoS útokům [online]. 2019 [cit. 2022-10-02].
Available at:
https://www.cesnet.cz/projects/adaptivni-ochrana-proti-ddos-utokum/?lang=en.

[8] Chickowski, E. Types of DDoS attacks explained [online]. AT&T Cybersecurity, 8.
july 2020 [cit. 2022-04-10]. Available at: https://cybersecurity.att.com/blogs/
security-essentials/types-of-ddos-attacks-explained.

[9] Cloudflare, Inc.. What is a Botnet? [online]. 2017 [cit. 2022-03-09]. Available at:
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/.

42

https://ieeexplore.ieee.org/document/8466590/
https://www.frontiersin.org/article/10.3389/fdata.2021.688969
https://doi.ieeecomputersociety.org/10.1109/MoNeTeC.2014.6995578
https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-020-10042-0.html
https://www.cesnet.cz/projects/adaptivni-ochrana-proti-ddos-utokum/?lang=en
https://cybersecurity.att.com/blogs/security-essentials/types-of-ddos-attacks-explained
https://cybersecurity.att.com/blogs/security-essentials/types-of-ddos-attacks-explained
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/

[10] Cormen, T., Cormen, T., Leiserson, C., Books24x7, I., Technology, M. I. of
et al. Introduction To Algorithms. MIT Press, 2001. Introduction to Algorithms.
ISBN 9780262032933. Available at: https://books.google.cz/books?id=NLngYyWFl_YC.

[11] Fang, L., Wu, H., Qian, K., Wang, W. and Han, L. A Comprehensive Analysis of
DDoS attacks based on DNS. Journal of Physics: Conference Series. 1st ed. IOP
Publishing. sep 2021, vol. 2024, no. 1, p. 012027. DOI:
10.1088/1742-6596/2024/1/012027. Available at:
https://doi.org/10.1088/1742-6596/2024/1/012027.

[12] Feinstein, L., Schnackenberg, D., Balupari, R. and Kindred, D. Statistical
approaches to DDoS attack detection and response. In: Proceedings DARPA
Information Survivability Conference and Exposition. 2003, vol. 1, p. 303–314 vol.1.
DOI: 10.1109/DISCEX.2003.1194894.

[13] Fessi, B., Benabdallah, S., Boudriga, N. and Hamdi, M. A multi-attribute
decision model for intrusion response system. Information Sciences. 2014, vol. 270,
p. 237–254. DOI: https://doi.org/10.1016/j.ins.2014.02.139. ISSN 0020-0255.
Available at:
https://www.sciencedirect.com/science/article/pii/S0020025514002527.

[14] G, D., Rao, C., Singh, M. and Satyanarayana, G. A Survey on Defense
Mechanisms countering DDoS Attacks in the Network. International Journal of
Advanced Research in Computer and Communication Engineering (IJARCCE). july
2013, vol. 2, p. 2599–2606.

[15] Gepperth, A. and Hammer, B. Incremental learning algorithms and applications.
In: European Symposium on Artificial Neural Networks (ESANN). Bruges, Belgium:
ESANN, 2016. Available at: https://hal.archives-ouvertes.fr/hal-01418129.

[16] Gil, T. M. and Poletto, M. MULTOPS: A Data-Structure for Bandwidth Attack
Detection. In: 10th USENIX Security Symposium (USENIX Security 01).
Washington, D.C.: USENIX Association, August 2001. Available at:
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-
structure-bandwidth-attack-detection.

[17] Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M. and Kanan, C. REMIND
Your Neural Network to Prevent Catastrophic Forgetting. In: Vedaldi, A.,
Bischof, H., Brox, T. and Frahm, J.-M., ed. Computer Vision – ECCV 2020.
Cham: Springer International Publishing, 2020, p. 466–483. DOI:
10.1007/978-3-030-58598-3_28. ISBN 978-3-030-58598-3.

[18] Holzinger, A. From machine learning to explainable AI. In: IEEE. 2018 world
symposium on digital intelligence for systems and machines (DISA). 2018, p. 55–66.
DOI: 10.1109/DISA.2018.8490530. ISBN 978-1-5386-5102-5.

[19] Huang, L., Huang, M., Guo, B. and Zhang, Z. A New Method for Constructing
Decision Tree Based on Rough Set Theory. In: 2007 IEEE International Conference
on Granular Computing (GRC 2007). IEEE, 2007, p. 241–241. DOI:
10.1109/GrC.2007.13. ISBN 0-7695-3032-X.

43

https://books.google.cz/books?id=NLngYyWFl_YC
https://doi.org/10.1088/1742-6596/2024/1/012027
https://www.sciencedirect.com/science/article/pii/S0020025514002527
https://hal.archives-ouvertes.fr/hal-01418129
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-structure-bandwidth-attack-detection
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-structure-bandwidth-attack-detection

[20] Imperva. DDoS attacks [online]. Imperva, 2021 [cit. 2022-04-10]. Available at:
https://www.imperva.com/learn/ddos/ddos-attacks/.

[21] Jacko, D. Odvozování pravidel pro mitigaci DDoS útoků. Brno, CZ, 2021.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https://www.fit.vut.cz/study/thesis/23920/.

[22] Jin, C., Wang, H. and Shin, K. G. Hop-Count Filtering: An Effective Defense
against Spoofed DDoS Traffic. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security. New York, NY, USA: Association for
Computing Machinery, 2003, p. 30–41. CCS ’03. DOI: 10.1145/948109.948116. ISBN
1581137389. Available at: https://doi.org/10.1145/948109.948116.

[23] Jordan, M. I. and Mitchell, T. M. Machine learning: Trends, perspectives, and
prospects. Science. 2015, vol. 349, no. 6245, p. 255–260. DOI:
10.1126/science.aaa8415. Available at:
https://www.science.org/doi/abs/10.1126/science.aaa8415.

[24] Karunanidhi, K. ARROS: Distributed Adaptive Real-Time Network Intrusion
Response. In:. 2006.

[25] Kekely, L., Cabal, J., Puš, V. and Kořenek, J. Multi Buses: Theory and
Practical Considerations of Data Bus Width Scaling in FPGAs. In: Proceedings -
Euromicro Conference on Digital System Design, DSD 2020. IEEE Computer
Society, 2020, p. 49–56. DOI: 10.1109/DSD51259.2020.00020. ISBN
978-1-7281-9535-3. Available at:
https://www.fit.vut.cz/research/publication/12341.

[26] Kholidy, H. A., Erradi, A., Abdelwahed, S. and Baiardi, F. A Risk Mitigation
Approach for Autonomous Cloud Intrusion Response System. Computing. Berlin,
Heidelberg: Springer-Verlag. nov 2016, vol. 98, no. 11, p. 1111–1135. DOI:
10.1007/s00607-016-0495-8. ISSN 0010-485X. Available at:
https://doi.org/10.1007/s00607-016-0495-8.

[27] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences. 2017, vol. 114, no. 13, p. 3521–3526. DOI:
10.1073/pnas.1611835114. Available at:
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114.

[28] Kotsiantis, S. B. Decision trees: a recent overview. Artificial Intelligence Review.
2011, vol. 39, p. 261–283.

[29] Krämer, L., Krupp, J., Makita, D., Nishizoe, T., Koide, T. et al. AmpPot:
Monitoring and Defending Against Amplification DDoS Attacks. In: Bos, H.,
Monrose, F. and Blanc, G., ed. Research in Attacks, Intrusions, and Defenses.
Cham: Springer International Publishing, 2015, p. 615–636. DOI:
10.1007/978-3-319-26362-5_28. ISBN 978-3-319-26362-5.

[30] Li, J., Liu, Y. and Gu, L. DDoS attack detection based on neural network. In: 2010
2nd International Symposium on Aware Computing. 2010, p. 196–199. DOI:
10.1109/ISAC.2010.5670479.

44

https://www.imperva.com/learn/ddos/ddos-attacks/
https://www.fit.vut.cz/study/thesis/23920/
https://doi.org/10.1145/948109.948116
https://www.science.org/doi/abs/10.1126/science.aaa8415
https://www.fit.vut.cz/research/publication/12341
https://doi.org/10.1007/s00607-016-0495-8
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

[31] Lin, S.-C. and Tseng, S.-S. Constructing detection knowledge for DDoS intrusion
tolerance. Expert Systems with Applications. 2004, vol. 27, no. 3, p. 379–390. DOI:
https://doi.org/10.1016/j.eswa.2004.05.016. ISSN 0957-4174. Available at:
https://www.sciencedirect.com/science/article/pii/S0957417404000417.

[32] Luo, Y., Yin, L., Bai, W. and Mao, K. An Appraisal of Incremental Learning
Methods. Entropy. 2020, vol. 22, no. 11. DOI: 10.3390/e22111190. ISSN 1099-4300.
Available at: https://www.mdpi.com/1099-4300/22/11/1190.

[33] Lutes, J. Entropy and Information Gain in Decision Trees [online]. 2020. Available
at: https://towardsdatascience.com/entropy-and-information-gain-in-decision-
trees-c7db67a3a293.

[34] Lyon, R., Brooke, J., Knowles, J. and Stappers, B. Hellinger Distance Trees for
Imbalanced Streams. Proceedings - International Conference on Pattern Recognition.
may 2014. DOI: 10.1109/ICPR.2014.344.

[35] Ma, X. and Chen, Y. DDoS Detection Method Based on Chaos Analysis of Network
Traffic Entropy. IEEE Communications Letters. 2014, vol. 18, no. 1, p. 114–117.
DOI: 10.1109/LCOMM.2013.112613.132275.

[36] Mahajan, D. and Sachdeva, M. DDoS Attack Prevention and Mitigation
Techniques - A Review. International Journal of Computer Applications. 1st ed.
april 2013, vol. 67, no. 19, p. 21–24. DOI: 10.5120/11504-7221.

[37] Mahjabin, T., Xiao, Y., Sun, G. and Jiang, W. A survey of distributed
denial-of-service attack, prevention, and mitigation techniques. International Journal
of Distributed Sensor Networks. 1st ed. december 2017, vol. 13, no. 12. DOI:
10.1177/1550147717741463.

[38] Malialis, K., Devlin, S. and Kudenko, D. Distributed reinforcement learning for
adaptive and robust network intrusion response. Connection Science. Taylor &
Francis. 2015, vol. 27, no. 3, p. 234–252. DOI: 10.1080/09540091.2015.1031082.
Available at: https://doi.org/10.1080/09540091.2015.1031082.

[39] Minegishi, T. and Niimi, A. Detection of fraud use of credit card by extended
VFDT. In:. March 2011, p. 152 – 159. DOI: 10.1109/WorldCIS17046.2011.5749902.

[40] Mirkovic, J. and Reiher, P. D-WARD: a source-end defense against flooding
denial-of-service attacks. IEEE Transactions on Dependable and Secure Computing.
2005, vol. 2, no. 3, p. 216–232. DOI: 10.1109/TDSC.2005.35.

[41] Mohri, M., Rostamizadeh, A. and Talwalkar, A. Foundations of Machine
Learning. 2nd ed. Cambridge, MA: MIT Press, 2018. Adaptive Computation and
Machine Learning. ISBN 978-0-262-03940-6.

[42] Obaid, H. Denial of Service Attacks: Tools and Categories. International Journal of
Engineering Research and Technology. 1st ed. IJERT. april 2020, V9, no. 03. DOI:
10.17577/IJERTV9IS030289.

[43] Palmer, D. DDoS attacks are cheaper and easier to carry out than ever before
[online]. ZDNet, 11. november 2020 [cit. 2022-04-10]. Available at:

45

https://www.sciencedirect.com/science/article/pii/S0957417404000417
https://www.mdpi.com/1099-4300/22/11/1190
https://towardsdatascience.com/entropy-and-information-gain-in-decision-trees-c7db67a3a293
https://towardsdatascience.com/entropy-and-information-gain-in-decision-trees-c7db67a3a293
https://doi.org/10.1080/09540091.2015.1031082

https://www.zdnet.com/article/ddos-attacks-are-cheaper-and-easier-to-carry-
out-than-ever-before/.

[44] Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. and Wermter, S. Continual
lifelong learning with neural networks: A review. Neural Networks. 2019, vol. 113,
p. 54–71. DOI: https://doi.org/10.1016/j.neunet.2019.01.012. ISSN 0893-6080.
Available at:
https://www.sciencedirect.com/science/article/pii/S0893608019300231.

[45] Pei, J., Chen, Y. and Ji, W. A DDoS Attack Detection Method Based on Machine
Learning. Journal of Physics: Conference Series. IOP Publishing. jun 2019,
vol. 1237, no. 3, p. 032040. DOI: 10.1088/1742-6596/1237/3/032040. Available at:
https://doi.org/10.1088/1742-6596/1237/3/032040.

[46] Peng, T., Leckie, C. and Ramamohanarao, K. Protection from distributed denial
of service attacks using history-based IP filtering. IEEE International Conference on
Communications, 2003. ICC ’03. 2003, vol. 1, p. 482–486 vol.1.

[47] Podgorelec, V., Kokol, P., Stiglic, B. and Rozman, I. Decision Trees: An
Overview and Their Use in Medicine. Journal of medical systems. november 2002,
vol. 26, p. 445–63. DOI: 10.1023/A:1016409317640.

[48] Quinlan, J. Decision trees and decision-making. IEEE Transactions on Systems,
Man, and Cybernetics. 1990, vol. 20, no. 2, p. 339–346. DOI: 10.1109/21.52545.

[49] Ragsdale, D., Carver, C., Humphries, J. and Pooch, U. Adaptation techniques
for intrusion detection and intrusion response systems. In: Smc 2000 conference
proceedings. 2000 ieee international conference on systems, man and cybernetics.
’cybernetics evolving to systems, humans, organizations, and their complex
interactions’ (cat. no.0. 2000, vol. 4, p. 2344–2349 vol.4. DOI:
10.1109/ICSMC.2000.884341.

[50] Read, J., Bifet, A., Pfahringer, B. and Holmes, G. Batch-Incremental versus
Instance-Incremental Learning in Dynamic and Evolving Data. In: Hollmén, J.,
Klawonn, F. and Tucker, A., ed. Advances in Intelligent Data Analysis XI.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 313–323. DOI:
10.1007/978-3-642-34156-4_29. ISBN 978-3-642-34156-4.

[51] ROBINS, A. Catastrophic Forgetting, Rehearsal and Pseudorehearsal. Connection
Science. Taylor & Francis. 1995, vol. 7, no. 2, p. 123–146. DOI:
10.1080/09540099550039318. Available at:
https://doi.org/10.1080/09540099550039318.

[52] Seeliger, A., Pfaff, M. and Krcmar, H. Semantic web technologies for
explainable machine learning models: A literature review. PROFILES/SEMEX@
ISWC. 2019, vol. 2465, p. 1–16.

[53] Shabtai, A., Kanonov, U. and Elovici, Y. Intrusion detection for mobile devices
using the knowledge-based, temporal abstraction method. Journal of Systems and
Software. 2010, vol. 83, no. 8, p. 1524–1537. DOI:
https://doi.org/10.1016/j.jss.2010.03.046. ISSN 0164-1212. Performance Evaluation

46

https://www.zdnet.com/article/ddos-attacks-are-cheaper-and-easier-to-carry-out-than-ever-before/
https://www.zdnet.com/article/ddos-attacks-are-cheaper-and-easier-to-carry-out-than-ever-before/
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://doi.org/10.1088/1742-6596/1237/3/032040
https://doi.org/10.1080/09540099550039318

and Optimization of Ubiquitous Computing and Networked Systems. Available at:
https://www.sciencedirect.com/science/article/pii/S0164121210000762.

[54] Sharafaldin, I., Lashkari, A. H., Hakak, S. and Ghorbani, A. A. Developing
Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy.
In: 2019 International Carnahan Conference on Security Technology (ICCST). 2019,
p. 1–8. DOI: 10.1109/CCST.2019.8888419.

[55] Stewart, M. The Limitations of Machine Learning. 2019. Available at: https:
//towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6.

[56] The Hacker News. Reasons Why Every Business is a Target of DDoS Attacks
[online]. 2022 [cit. 2022-03-09]. Available at: https:
//thehackernews.com/2022/01/reasons-why-every-business-is-target-of.html.

[57] Toklu, S. and Şimşek, M. Two-Layer Approach for Mixed High-Rate and Low-Rate
Distributed Denial of Service (DDoS) Attack Detection and Filtering. ARABIAN
JOURNAL FOR SCIENCE AND ENGINEERING. april 2018, vol. 43, p. 7923–7931.
DOI: 10.1007/s13369-018-3236-9.

[58] Tyagi, N. Understanding the Gini Index and Information Gain in Decision Trees
[online]. 2020. Available at: https://medium.com/analytics-steps/understanding-
the-gini-index-and-information-gain-in-decision-trees-ab4720518ba8.

[59] Vishwakarma, R. and Jain, A. K. A Honeypot with Machine Learning based
Detection Framework for defending IoT based Botnet DDoS Attacks. In: 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI). IEEE,
April 2019, p. 1019–1024. DOI: 10.1109/ICOEI.2019.8862720. ISBN
978-1-5386-9439-8.

[60] Yaar, A., Perrig, A. and Song, D. StackPi: New Packet Marking and Filtering
Mechanisms for DDoS and IP Spoofing Defense. IEEE Journal on Selected Areas in
Communications. 2006, vol. 24, no. 10, p. 1853–1863. DOI:
10.1109/JSAC.2006.877138.

[61] Yang, H. and Fong, S. Moderated VFDT in Stream Mining Using Adaptive Tie
Threshold and Incremental Pruning. In: Cuzzocrea, A. and Dayal, U., ed. Data
Warehousing and Knowledge Discovery. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, p. 471–483. DOI: 10.1007/978-3-642-23544-3_36. ISBN
978-3-642-23544-3.

[62] Yusof, M. A. M., Ali, F. H. M. and Darus, M. Y. Detection and Defense
Algorithms of Different Types of DDoS Attacks. International Journal of
Engineering and Technology. 1st ed. october 2017, vol. 9, no. 5, p. 410–414. DOI:
10.7763/IJET.2017.V9.1008.

47

https://www.sciencedirect.com/science/article/pii/S0164121210000762
https://towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6
https://towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6
https://thehackernews.com/2022/01/reasons-why-every-business-is-target-of.html
https://thehackernews.com/2022/01/reasons-why-every-business-is-target-of.html
https://medium.com/analytics-steps/understanding-the-gini-index-and-information-gain-in-decision-trees-ab4720518ba8
https://medium.com/analytics-steps/understanding-the-gini-index-and-information-gain-in-decision-trees-ab4720518ba8

	Introduction
	Distributed Denial of Service Attacks
	Botnets and Communication
	Classification of Attacks
	DDoS Protection Techniques
	CESNET and [0pt][0pt]''d扬煵⁀瑥 㴀刀䐀䐀漀匀 倀爀漀琀攀挀琀漀爀嬀　瀀琀崀嬀　瀀琀崀✀✀摢汱甠䁴攠=R

	Machine Learning for Traffic Filtration
	Machine Learning Overview
	Explainable Machine Learning
	Decision Trees
	Incremental Learning and Online Decision Trees

	Design and Implementation of Filtration Rules Inference
	Design Considerations
	Dataframe Structure
	Offline learning with Decision Tree Classifier
	Online learning with Hoeffding Adaptive Tree.

	Optimisations
	Hyper-parameter Tuning with Grid Search
	Legitimate Traffic Rate

	Experiments and Evaluation
	Datasets
	Evaluation Metrics
	Decision Tree Classifier
	Hoeffding Adaptive Tree
	Results Evaluation

	Conclusions
	Bibliography

