
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PORTBLOCKALLOCATIONFORNETWORKADDRESS
TRANSLATION
ALOKACE BLOKU PORTŮ PRO PŘEKLAD ADRES

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. TOMÁŠ ODEHNAL
AUTOR PRÁCE

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Master's Thesis Specification

Student: Odehnal Tomáš, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Computer Networks
Title: Port Block Allocation for Network Address Translation
Category: Networking
Assignment:

1. Study the address translation mechanism that uses port block allocation.
2. Study the implementation of address translation in the Linux OS kernel and in the iptables

tool.
3. Based on the supervisor's recommendation, create an implementation that allows per-user

port block allocation.
4. Evaluate the implementation and discuss future extensions.

Recommended literature:
Rosen, R. Linux kernel networking: implementation and theory. New York, NY: Apress,
2014. ISBN 9781430261964.
Perreault, S., Yamagata, I., Miyakawa, S., Nakagawa, A., and H. Ashida, "Common
Requirements for Carrier-Grade NATs (CGNs)", BCP 127, RFC 6888, DOI
10.17487/RFC6888, April 2013, <https://www.rfc-editor.org/info/rfc6888>.

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Grégr Matěj, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: October 13, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24650/2021/xodehn08 Page 1/1

Abstract
This term project aims to study the issue of the Carrier-Grade NAT (CGN) technique,
which has to create log messages with address translation for every new connection. Because
the CGN is stationed between large networks, it may daily record hundreds of thousands
of connections. This amount of records have high memory requirements and even more
difficult is to search for a specific log record. These problems solve the port block allocation
for address translation. The output of this work is the creation of a rule in the iptables
that performs this port block allocation for address translation. It consists of a user part
that processes the rules and a kernel module that implements the functionality of the rule.

Abstrakt
Cílem této semestrální práce je nastudovat problematiku Carrier-Grade NAT (CGN) přís-
tupu, který musí provádět záznam o překladu adres každého nového spojení. Protože
CGN leží na rozhraních rozsáhlých sítí, může denně zaznamenat statisíce spojení. Toto
množšství záznamů má vysoké paměťové nároky a ještě složitější je hledání konkrétního
záznamu. Tyto problémy je možné řešit pomocí alokace bloku portů pro překlad adres.
Výstupem této práce je vytvoření pravidla do iptables, které provádí tuto alokaci bloků
pro překlad adres. To se skládá z uživatelské části, která zpracovává pravidla a kernelovský
modul provádějící funkcionalitu pravidla.

Keywords
Linux, Linux kernel, Linux network stack, CGN, Carrier-Grade NAT, NAT, SNAT, Netfil-
ter, IPTables, IPTables extensions, Port Block Allocation, PBA

Klíčová slova
Linux, Linux kernel, Linux síťový stack, CGN, Carrier-Grade NAT, NAT, SNAT, Netfilter,
IPTables, rozšíření iptables, Alokace bloku portů, PBA

Reference
ODEHNAL, Tomáš. Port Block Allocation for Network Address Translation. Brno, 2022.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Matěj Grégr, Ph.D.

Rozšířený abstrakt
Přechod na IPv6 neproběhl tak rychle jak se předpokládalo. Jeden z důvodů je, že posky-
tovatelé internetu nechtěli udělat první krok i přes to, že vyčerpání adresového prostoru v
IPv4 nastalo již v roce 2011. Jeden z mechanismů, který měl kompenzovat tento nedostatek
místa v adresovém prostoru IPv4 je překlad síťových adres (NAT). Tento mechanismus se
například používá pro přístup více počítačů z lokální sítě do Internetu prostřednictvím
jedné veřejné IP adresy.

Poskytovatelé internetu samozřejmě tento překlad adres také používají. Mají i netriv-
iální překlad adres ve své vnitřní topologii, který se označuje jako Carrier-grade NAT
(CGN). Ten musí denně zpracovat obrovské množství (i v řádech miliónů) spojení, pro-
tože se CGN používá na rozhraních velkých sítí. Navíc musí o každém spojení vytvořit
log záznam. Poskytovatelé internetu jsou ze zákona povinni schraňovat tyto záznamy po
několik měsíců.

Toto ovšem vede na dva problémy. Prvním je, že takto velké množství záznamů má
velké paměťové nároky a to i v případě, kdy se použije komprese obsahu záznamů. Další
problém je s vyhledáním konkrétní stanice, která v daný čas měla aktivní spojení, což
znamená vyhledání konkrétního záznamu.

Možným řešením těchto dvou problémů je technika, na kterou se zaměřuje tato diplo-
mová práce. Označuje se jako alokace bloku portů (angl. Port block allocation -– PBA)
pro překlad adres. Tato metoda umožnuje plně (nebo i částečně) deterministicky v daný
časový okamžik určit, na kterou veřejnou adresu a port se přeložila zdrojová IP adresa z
privátní sítě. Díky tomu úplně (nebo alespoň částečně) odpadá nutnost logovat záznamy o
každém spojení.

PBA funguje tak, že lze mapovat privátní zdrojovou IP adresu na konkrétní veřejnou IP
adresu a blok portů. Velikost bloku portů znamená, kolik portů se nachází v tomto bloku.
Také to určuje, jaký je povolený maximální počet současně aktivních spojení z jedné privátní
zdrojové IP adresy. Toto nastává v případě, kdy je privátní adrese přidělen pouze jeden
blok. Následně, když operátorovi přijde zpráva o možném bezpečnostním incidentu, kdy má
k dispozici čas spojení, veřejnou zdrojovou IP adresu s portem, a potřebuje zjistit privátní
zdrojovou IP adresu. V případě plně deterministického PBA mu stačí pouze konfigurace
PBA v čas, kdy spojení probíhalo, aby zjistil, jak bylo provedeno mapování.

PBA se běžně používá u Carrier-grade NAT, což často bývá specializovaný hardware.
Hlavní motivací této práce je snaha naimplementovat PBA jako rozšiřující kernel modul
do frameworku iptables. Cílem této práce je základní prvotní přiblížení, jestli lze tento
algoritmus vytvořit jako kernelovský modul, a jestli lze využít některé stávající prostředky
z kernelu.

První částí této práce bylo nastudování fungování CGN a především fungování PBA,
které je popsáno v RFC 7422. Tato část také zahrnuje studium, jakým způsobem je zpracov-
áván paket v síťovém zásobníku v kernelu a fungování Netfilter frameworku, který umožňuje
například, filtrovat síťový provoz, provádění překladu adres a další.

Další částí této práce bylo studium, jakým způsobem se vytváří kernelovský modul a jak
se vytváří rozšiřující pravidlo do iptables. Také se zde vytváří návrh implementace a řešení
vzniklých problémů, které se objevily. Například se musela řešit registrace notifikátoru do
modulu, který si drží informace o probíhajících spojení.

Výsledná implementace se skládá ze dvou částí. Uživatelská část, která zpracovává a
kontroluje validitu vytvořeného pravidla v iptables. Druhá část je kernelovský modul, který
implementuje funkcionalitu vytvořeného iptables pravidla. Tento module je pojmenován

PBA. Vytvořené pravidlo má pouze dva parametry: rozsah IP adres (nebo jedna IP adresa)
ve veřejné síti, na kterou se budou překládat IP adresy z privátní sítě a velikost jedno bloku.

PBA modul funguje tak, že při přidání pravidla do iptables si alokuje všechny bloky,
které se budou přiřazovat skupinám spojení, které jsou vytvářeny ze stejných privátních IP
adres. Blok je přiřazen privátní IP adrese při přijetí prvního paketu prvního spojení z této
skupiny spojení. Privátní zdrojová IP adresa tohoto spojení se přeloží na IP adresu bloku
a jeden z portů v tomto bloku. Následujícím spojením jsou z tohoto bloku přiřazeny zbylé
volné porty.

Implementace PBA metody v této práci není plně deterministická, ale bloky se přiřazují
postupně, jak jsou volné. Může se tedy stát, že stejné privátní IP adrese jsou přiděleny v
různé časy různé bloky, tedy se tato IP adresa přeloží na jinou veřejnou IP adresu a porty.
Z tohoto důvodu je při přiřazení bloku privátní IP adrese vytvořena log zpráva, která nese
informaci o mapování dané privátní IP adresy na veřejnou IP adresy a porty. Při odstranění
přiřazení daného bloku se také vytváří log zpráva informující o zrušení tohoto mapování.

Nakonec bylo provedeno základní testování vytvořené implementace. Toto testování
probíhalo na virtuálních počítačích.

Port Block Allocation for Network Address Trans-
lation

Declaration
I hereby declare that I have authored this Master’s thesis as an original work under the
supervision of Ing. Matěj Grégr, Ph.D. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Tomáš Odehnal

May 17, 2022

Acknowledgements
I would like to express my gratitude towards my supervisor Ing. Matěj Grégr, Ph.D., for
his patient guidance and invaluable advice.

Contents

1 Introduction 3

2 Carrier Grade NAT 4
2.1 Deterministic Address Mapping in CGN . 5

2.1.1 Address Space Multiplicative Factor 5
2.1.2 Deterministic Port Ranges . 5
2.1.3 Address-assignment algorithms . 6
2.1.4 The ports Reservation Process . 7
2.1.5 Logging Consideration . 8

2.2 Deterministic CGN Example . 8

3 The Linux Network Stack 10
3.1 The Network Device . 11
3.2 Netfilter . 11

3.2.1 Netfilter Hooks . 12
3.2.2 Registration of Netfilter Hooks . 14

3.3 Connection Tracking . 14
3.3.1 Hashing . 15
3.3.2 Tracking . 15

3.4 IPTables . 17
3.4.1 Target extensions . 18

3.5 Userspace plugin . 20
3.6 NAT . 21

3.6.1 SNAT Example Implementation . 22
3.7 Netlink module . 23

4 Design 24
4.1 Developing and testing setup . 24
4.2 Issues and their possible solutions . 25
4.3 Summary of how the module works . 28

4.3.1 Adding a new connection . 28
4.3.2 Processing of notifications . 30

5 Implementation 32
5.1 Registering notifier . 32
5.2 Userspace program . 33
5.3 Kernel module . 35

5.3.1 Saving of rules . 36

1

5.3.2 Destroy function . 37
5.3.3 Allocating blocks . 38
5.3.4 Hash table . 39

5.4 Testing . 39
5.4.1 One connection . 40
5.4.2 Maximum number of connections . 42

6 Conclusion 44

Bibliography 45

2

Chapter 1

Introduction

Global deployment of IPv6 did not happen as fast as was forecast. Network providers were
hesitant to make the first move while IPv4 was and still is working well. Exhaustion of the
IPv4 address pool occurred in February 2011. Moreover, it becomes increasingly difficult
to obtain new address assignments from Regional or Local Internet Registries. As a result,
the Service Providers started to use Carrier-Grade Network Address Translation (CGN).

The CGN has to handle hundreds of thousands (even millions) of connections every
day because it is stationed between large networks. The CGN must create a log record of
address translation for every connection. This amount of logging records has substantial
memory requirements. The bigger problem is when an operator needs to find a specific log
record. Searching for this particular record is very tedious work.

Both problems are solved by the port block allocation (PBA) technique for the Network
Address Translation, which allows internal network addresses to be mapped to an external
address and port pair. Then there is no need to create a log record for every connection.
Operators only need to know the configuration of the CGN and external IP address and
port to find a specific internal IP address.

The implementation of the PBA in this work is done directly in the Linux kernel network
stack. The Linux stack contains the module Netfilter, which allows performing user-defined
operations on packets. The most known submodule of Netfilter is the iptables framework.
It allows users to create rules, and iptables will add them to the Linux kernel.

First, the document discusses the Carrier-Grade NAT technique and port block alloca-
tion for Network Address Translation (Chapter 2). Chapter 3 examines the function and
implementation of the Linux Network Stack with Netfilter and IPTables modules.

Chapter 4 describes the design and discusses issues that showed up during the design
stage and their solutions.

The implementation details are in chapter 5. Here are described the solutions to the
issues from the Design chapter. It also shows how the implementation was tested.

3

Chapter 2

Carrier Grade NAT

Network Address Translation (NAT) is used between private and public IP networks and
translates private IP addresses to a public IP address. It is designed for IP address con-
servation. NAT dynamically maps one or more IP addresses from a private network to
one or more IP addresses from a public network (globally routable), most commonly using
Network Adress and Port Translation (NAPT) techniques. Typical use of NAT is at home
network gateways to translate multiple private IP addresses of home devices to a single
public IP address that the service provider provisions. Service providers deploy NAT in
such a way that various subscribers can share a single global IP address. The Carrier-Grade
NAT (CGN) is a NAT that scales to several millions of NAT translations and is used by
service providers. This address sharing comes from the increasing difficulty in obtaining a
new IPv4 address from Internet Service Providers due to depleting unallocated IPv4 address
space supplies.

However, sharing addresses with other subscribers creates additional problems/chal-
lenges for Service Providers. Operators must manage service entitlement, public safety
requests, and attack/abuse/fraud reports. Because of that, there is a need to identify a
specific user associated with an IP address. In response to such a request or service en-
titlement, for every user-initiated connection, operators will need to map their internal
private source IP address and source port with the global public IP address and source
port provided by CGN.

All CGN connections must be logged to satisfy the need to identify attackers and respond
to abuse/public safety requests. However, that imposes significant operational problems on
operators. In lab testing, CGN log messages are approximately 150 bytes long for NAT444.
In 2014, according to [RFC7422, 1.], reports from several US operators set the average
household number of connections at approximately 33 000 connections per day. Further-
more, because every connection must be logged, this makes log data size of approximately
5 MB per subscriber per day or 150 MB per month (but individual message size might
vary). Based on this information, if Service Provider has 1 million subscribers, it generates
approximately 150 terabytes of logging data per month. Data volume is still too high even
though Service Providers use compression techniques.

This data volume poses a problem for both the law enforcement agency (LEA) and
operators. It makes it harder and longer to locate data required to investigate an abuse
report for the public safety community. Moreover, on the operator side, it requires putting
more resources into infrastructure when implementing CGN. The following section describes
a technique that reduces this impact and, at the same time, improves abuse response.

4

To reduce the volume of CGN logging, we can assign port ranges instead of individual
ports. Then there is only a need to log the assignment of a new port range. This technique
might significantly reduce logging volume. How significant this reduction can be, depend on
the length of the assigned port range or if the port range is static or dynamic. However, even
after this reduction, there is still an impact on operators for CGN logging and searching [7]
[3] [2].

2.1 Deterministic Address Mapping in CGN

We can design and configure the CGN to deterministically map internal addresses to the pair
external address with port range to algorithmically calculate this mapping. Then we can
only log inputs and configuration of the used algorithm. This approach reduces both logging
and time to identify a user. In some cases, when we use total deterministic allocation, it can
even eliminate the need to log CGN translation. So this technique significantly reduces the
burden on operators and, at the same time, offers the ability to map the inside IP address
of the user to an external IP address and port (observed on the Internet). The term address
space multiplicative factor must be described before showing the configuration parameters
of deterministic CGN.

2.1.1 Address Space Multiplicative Factor

The purpose of sharing public IPv4 addresses is to increase the addressing space. Address
space multiplicative factor is a parameter by which service providers want or need to mul-
tiply IPv4 public address space, and the consequence is the number of users who share the
same public IPv4 address. Service providers use this parameter when they need bigger pub-
lic IPv4 address space. The inverse is called the compression ratio. The compression ratio
can be expressed as (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑖𝑑𝑒 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 / 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠).

When the multiplicative factor is large, the average number of ports per subscriber is
small. Different service providers might have different requirements. A service provider with
a stable number of subscribers may have a small existing address pool (small multiplicative
factor, less than 10). Service providers for a new line of business will require a much bigger
multiplicative factor (e.g., 1000).

2.1.2 Deterministic Port Ranges

A subscriber can use thousands of connections per day, but most of the subscribers use far
fewer resources at any given time. When service providers have a low compression ratio
(For example, the ratio of the number of public IPv4 addresses allocated to CGN to the
number of subscribers is closer to 1:10 rather than 1:1000), then each subscriber could have
access to thousands of TCP/UDP ports at any given time. Service providers do not need
to log every connection. They can use deterministic CGN. It deterministically maps the
customer’s internal private address, received on the inner side of the CGN (customer-facing
interface of the CGN), to the public IPv4 address and public ports, on the outer side of the
CGN (Internet-facing interface of the CGN). So when operators receive a report of abuse
with a public IPv4 address and port, they can identify the subscriber’s internal private
address without examining the CGN translations logs. Thanks to this algorithm, operators
do not have to transport and store massive amounts of logs from the CGN and then process
them to identify a subscriber [7].

5

The algorithmic mapping can be expressed as:

(external IP address, port range) = function 1 (internal IP address) (2.1)

internal IP address = function 2 (external IP address, port number) (2.2)

Where function 1 is a mapping function that maps an internal IP address to an external
IP address and port. This is what we require from NAT. Function 2 is its inverse function.
It maps an external IP address with a port to an internal IP address. This function is used
when, for example, a report comes in and the operator needs to look up a specific internal
IP address. It is recommended that the CGN provide a method to test both mapping
functions.

Deterministic Port Range allocation requires configuration of the following parameters:

• I – Inside IPv4 / IPv6 range.

• O – Outside IPv4 address range.

• C – Compression ratio (inside IP addresses I / outside IP addresses O).

• D – Dynamic address pool factor, to be added to the compression in order to create
an overflow address pool.

• M – Maximum ports per user.

• A – Address assignment algorithm (see 2.1.3)

• R – Reserved TCP / UDP port list

A subscriber is identified by an internal IPv4 address. However, those hosts, who share
an internal IP address (there is another address translation on the inner side of the CGN),
cannot be retrieved because the algorithm is not designed this way [7].

2.1.3 Address-assignment algorithms

It is possible to use several address-assignment algorithms. Service providers can use pre-
defined algorithms (described next) depending on their requirements. These simplify the
process of reversing the algorithm when needed. Nevertheless, the CGN used by service
providers can support additional algorithms, and it is not required to support all the algo-
rithms described next. For example, a subscriber might be restricted to ports from a single
IPv4 address or could have allocated ports across all addresses in a pool [7].

The following algorithms and corresponding values of A (in parameters in 2.1.2) are as
follows:

0: Sequential – for example, the first block goes to address 1. the second block to address
2, and so forth.

1: Staggered – for example, for every 𝑛 (𝑛 is number of public addresses) between 0 and
((65536 − R)/(C + D)) − 1, address 1 receives ports 𝑛 * C + R, address 2 receives
ports (𝑛+ 1) * C + R, etc.

6

2: Round robin – for example, the subscriber receives the same port number across a
pool of external IP addresses. If the subscriber is to be assigned more ports than
there are in the external IP pool, the subscriber receives the next highest port across
the IP pool, and so on. So if there are 10 IP addresses in a pool and a subscriber is
assigned 1000 ports, the subscriber would receive a range such as ports 2000 - 2099
across all ten external IP addresses.

3: Interlaced horizontally: for example, each address receives every Cth port spread
across a pool of external IP addresses.

4: Cryptographically random port assignment – If this algorithm is used, the service
providers must keep the keying material and specific cryptographic function to support
reversibility.

5: Vendor-specific – other vendor-specific algorithms also might be supported [7].

2.1.4 The ports Reservation Process

When the CGN has all required parameters and defined algorithms, it then reserves ports
as follows:

1. Firstly the CGN removes reserved ports (R) from the port candidate list (for ex-
ample, 0-1023 for TCP and UDP). Nevertheless, at minimum, it is recommended
that the CGN should remove system reserved ports from the port candidate list for
deterministic assignment.

2. Then the CGN must calculate the total compression ratio (C+D). Then it allocates
1/(C+D) of the available ports to each internal IP address. Moreover, the CGN has
configured an assignment algorithm (A), so it can allocate specific ports deterministi-
cally. Any remaining ports are allocated to the dynamic pool. If parameter D is set to
0, it disables the dynamic pool. This option eliminates the need to log per-subscriber
connections, limiting the number of concurrent connections that ”demanding users“
can initiate.

3. When a subscriber makes a connection, the CGN must create a translation mapping
between the subscriber’s internal private IP address and port and the CGN’s external
public IP address and port. The CGN must use one of the allocated ports from step
2 for the translation as long as these ports are available. Furthermore, the CGN
has to allocate ports randomly within the ports range assigned by the deterministic
algorithm (A) to increase subscriber privacy. The CGN maintains its mapping table,
but it does not need to generate log entries for translation mappings created in this
step. However, the CGN still needs to generate log entries for dynamic translation
mappings (created in the next step).

4. If the dynamic address pool factor (D) is greater than 0, the CGN will have a pool
of ports left for dynamic assignment. If the subscriber requires more than the ports
range allocated in step 2 but fewer than the configured maximum ports per subscriber
(M), the CGN must assign a block of ports from the dynamic assignment range for
such a connection. However, the CGN must log these dynamically assigned port
blocks to facilitate subscriber-to-address mapping.

7

5. Lastly, the configuration of reserved ports (for example, system reserved ports) is left
to the operator [7].

The CGN will maintain translation mapping for each connection within its internal
translation tables thanks to this process. It only needs to log translations for dynamically
assigned ports.

2.1.5 Logging Consideration

This technique, however, is not entirely without any form of logging. Service providers need
to identify a subscriber based on observed external IPv4 address, port, and timestamp.
The timestamp is required when the CGN configuration can change, and the subscriber’s
IP address is translated to a different external IP address between two connections. An
operator needs to know how the CGN was configured concerning internal and external IP
addresses, dynamic address pool factor, maximum ports per user, and reserved port range
at any given time. Thus, the CGN has to generate a record with configuration every time
any of these parameters are changed. The CGN should generate a log message when any of
these parameters are changed. Alternatively, if the CGN does not generate any log message,
it is up to the operator to maintain version control of the CGN configuration.

If any log message is generated, it must, at minimum, include the timestamp, inside
prefix (I), the inside mask, outside prefix O, the outside mask, D, M, A, and reserved port
list R [7].

2.2 Deterministic CGN Example
This section is a simple example to demonstrate the function of deterministic CGN. The
example is taken from RFC7422. The service provider operator configures an inside address
pool (I) of 198.51.100.0/28 and one outside address (O) of 192.0.2.1. Then he set the
dynamic address pool factor (D) to value 2. The total compression ratio (C) is then
1:(14+2) = 1:16. Reserved ports (R) are only system ports (< 1024). The CGN will,
according to the configuration, pre-allocate (65536-1024)/16 = 4032 TCP/UDP ports per
inside IPv4 address. To keep this example simple, let us assume that the ports are allocated
sequentially (198.51.100.1 maps to 192.0.2.1 ports 1024-5055, 198.51.100.2 maps to 192.0.2.1
ports 5056-9087, to 198.51.100.14 maps to 192.0.2.1 ports 53440-57471). The dynamic port
range then contains ports 57472-65535. The port allocation can be seen in the table 2.1.
And finally, the operator sets the maximum ports per subscriber (M) to 5040.

When subscriber 1 with inside address 198.51.100.1 uses a low volume of connections
(< 4032 concurrent connections), the CGN will map the outgoing source address/port to
the pre-allocated range. An important aspect is that these translation mappings are not
logged.

If subscriber two (with inside address 198.51.100.2) needs to use more connections than
allocated 4032 ports simultaneously, the CGN allocates up to additional 1008 ports using
bulk port reservations. The CGN allocates 1008 ports because 1008 + 4032 = 5040, the
maximum number of ports per subscriber. In this example, subscriber two uses outside
ports 5056-9087 and then 100-port blocks between 58000-58999. Moreover, connections
that use outside ports 5056-9087 are not logged, while 10 log entries are created for ports
58000-58099, 58100-58199, ..., 58900-58999.

It is advised that content providers should log the source address, source port, and
timestamp for all log entries. Because if there is a need to identify a subscriber behind

8

Inside Address (Pool) Outside Address + Port
Reserved 192.0.2.1:0-1023
198.51.100.1 192.0.2.1:1024-5055
198.51.100.2 192.0.2.1:5056-9087
198.51.100.3 192.0.2.1:9088-13119
198.51.100.4 192.0.2.1:13120-17151
198.51.100.5 192.0.2.1:17152-21183
198.51.100.6 192.0.2.1:21184-25215
198.51.100.7 192.0.2.1:25216-29247
198.51.100.8 192.0.2.1:29248-33279
198.51.100.9 192.0.2.1:33280-37311
198.51.100.10 192.0.2.1:37312-41343
198.51.100.11 192.0.2.1:41344-45375
198.51.100.12 192.0.2.1:45376-49407
198.51.100.13 192.0.2.1:49408-53439
198.51.100.14 192.0.2.1:53440-57471
Dynamic 192.0.2.1:57472-65535

Table 2.1: Port allocation to inside IPv4 addresses.

a CGN, public safety agencies need to collect these three values from content providers’
log files. Then if there is any abuse report from 192.0.2.1 and port 2001, the operator can
reverse the mapping algorithm to determine that the internal IP address (198.51.100.1)
belongs to subscriber one. The critical fact is that operator can determine this address
without consulting the CGN logs. If there is another abuse report from 192.0.2.1 and port
58204, the operator knows that this port is within the dynamic address pool range. Thus
he needs to consult the log file and correlate report data with the connection records, and
the operator finds that subscriber two generated this traffic.

There are no log entries for most subscribers in this example because they only use
pre-allocated ports. Logging only needs subscribers who exceed their pre-allocated ports
and obtain extra bulk port assignments from the dynamic pool range [7].

9

Chapter 3

The Linux Network Stack

According to Open Systems Interconnection (OSI) model, there are seven logical networking
layers. The lowest layer is the physical layer, which contains hardware. The highest layer
is the application layer, where userspace software is running. Figure 3.1 (left) shows the
seven layers according to the OSI model. Simple description of seven layers:

Physical

Data Link

Network

Transport

Session

Presentation

Application

L2

L3 (IPv4, IPv6)

L4 (TCP/UDP,...)

Figure 3.1: The OSI seven-layer model (left) and The Linux Kernel Networking layers
(right).

1. The physical layer – Contains all hardware aspects of the computer network (electrical
signals, low-level details).

2. The data link layer – Handles data transfer between network interfaces, and the most
known data link layer is Ethernet.

3. The network layer – Contains host addressing and packet forwarding. The most
common network protocols are IPv4 and IPv6.

4. The transport layer – Handles sending data between nodes and running applications
on ports.

5. The session layer – Handles sessions between endpoints.

10

6. The presentation layer – Handles delivery and formatting.

7. The application layer – Provides network services to end-user applications.

Figure 3.1 (right) also shows the three layers that the Linux Kernel Networking stack
handles. The L2, L3, and L4 layers correspond to the OSI seven-layer model’s data link,
network, and transport layers. The Linux kernel handles only these three layers. It does
not handle the physical layer (L1) and any layer above L4. The Linux kernel stack passes
incoming packets from L2 (the network device drivers) to L3 (the network layer, mostly
IPv4 or IPv6). Then passes the packet to L4. If an incoming packet is for local delivery,
it is at the L4 layer passed to, for example, TCP or UDP listening sockets. Alternatively,
it is passed back to the L2 layer for transmission if the packet should be forwarded. If the
packet is locally generated and is outgoing, it is passed from L4 to L3 and then to the L2
layer for transmission by the network device driver [9].

3.1 The Network Device
The lower layer, L2, is the data link layer. It contains network device drivers. This net-
work device is in the Linux kernel, represented as net_device structure. This structure
is huge and consisting network device parameters. It contains, for example, the MTU of
the device, the IRQ number of the device, the MAC address, the name of the device (like
eth0), flags of the device, and other vital device parameters. This structure is located in
<include/linux/netdevice.h>. The main tasks of the network device driver are these:

• If the packets are destined for the local host, they are passed to L3 (the network
layer). And from there to the L4 (the transport layer).

• Transmit outgoing packets that were generated locally and sent outside.

• Alternatively, forward packets that were received locally.

Incoming or outgoing packets, including their headers, are in the Linux kernel stack
represented as sk_buff structure. This structure is called socket buffer (and stands for
SKB). The socket buffer (sk_buff) structure is a large structure. An SKB API must
be used when someone wants to work with SKBs. For example, when we want to use
skb->data pointer, we do not do it directly, but with the function skb_pull_inline().
L4 header can be accessed from SKB by calling the skb_transport_header() method.
Similarly, the L3 header is accessed by calling the skb_network_header() method or the
L2 header by calling the skb_mac_header() method. The following section describes what
Netfilter is and how it works [9].

3.2 Netfilter
This section discusses the Netfilter subsystem. The Netfilter is a framework that was created
in 1988 by Rusty Russell. It is an improvement of the older implementation of ipchains. The
Netfilter subsystem framework enables registering callbacks in various vital points (Netfilter
hooks) of packet traversal in the Linux kernel stack. These callbacks perform various
operations on packets, such as changing addresses or ports, dropping packets, logging, and
more.

11

The incoming packet traversal (described here) is illustrated in figure 3.2. When receiv-
ing packets, the ip_rcv() is the primary IPv4 method, which is the handler for all incoming
IPv4 packets. This method mainly checks if the incoming packet is valid. This method’s
end is the NF_INET_PRE_ROUTING Netfilter hook, which is invoked by calling the
NF_HOOK macro. Every Netfilter hook (callback) is invoked by calling this macro. Regis-
tered callbacks (described later in <section>) are passed to macro as pointer parameters.
The real work is done in the ip_rcv_finish(), and a lookup in the routing subsystem
should be performed immediately after calling the function. The received packet might be
forwarded and handled by the ip_forward() method, or it might be destined for the local
machine and is handled by ip_local_deliver() method.

If the packet is destined for the local machine, it will reach ip_local_deliver()
method. Here, the packet is checked whether it is fragmented, and if it is, the ip_defrag()
method is called to handle the reassembling of all the fragments of the packet. At the end
of the ip_local_deliver() method is the NF_INET_LOCAL_IN Netfilter hook, which is in-
voked by the NF_HOOK macro. After that packet will reach the ip_local_deliver_finish()
method.

If the packet is to be forwarded, it will be handled by the ip_forward() method. Here,
the outgoing packet is checked if it has not a bigger size than the outgoing MTU. The ttl
(Time to Live) field is the IPv4 header counter which is decreased by 1. If the ttl reaches
0, the packet is dropped, and the corresponding time exceeded ICMPv4 is sent. At the
end of this function is another call of NF_HOOK macro for NF_INET_FORWARD Netfilter hook.
Then the packet is handled by the ip_forward_finish() method, which updates statistics
and checks if the IPv4 packet includes IP options. If it does, then it will handle them. In
the end, the dst_output() method receives the packet, and the only thing this method
does is invoke skb_dst(skb)->output(skb) [9].

3.2.1 Netfilter Hooks

There are five critical points in the Linux kernel stack where Netfilter hooks (red ones in
figure 3.2) are placed. The names of hooks are the same for IPv4 and IPv6 (the network
stack methods were described above):

• NF_INET_PRE_ROUTING – This hook ends with the ip_rcv() method in IPv4 and
ip6_rvc() in IPv6. All the valid incoming packets (with no exceptions) hit this
hook. This hook is reached before the routing decision. The Destination Network
Translation (DNAT) is implemented in this hook.

• NF_INET_LOCAL_IN – This hook is in the local_deliver() method in IPv4 and the
ip6_input() method in IPv6. All the incoming packets going to the local machine
reach this hook. After performing routing, the packets reach this hook after passing
the NF_INET_PRE_ROUTING hook point.

• NF_INET_FORWARD – This hook is in the ip_forward() method in IPv4 and the
ip6_forward() method in IPv6. Packets that are not addressed to the local ma-
chine and going through the machine reach this hook. After performing a routing,
the forwarded packets reach this hook after passing the NF_INET_PRE_ROUTING hook
point.

• NF_INET_POST_ROUTING – This hook is in the ip_output() method in IPv4 and
the ip6_finish_output2() method in IPv6. Source Network Address Translation

12

Network Driver

ip_finish_output()

NF_INET_POST_ROUTING

ip_output()ip_rcv()

Transport Layer (TCP/UDP, ...)

NF_INET_FORWARD

Forwarding

ip_forward_finish()

NF_INET_PRE_ROUTING

ip_rcv_finish() Routing Subsystem

ip_local_deliver()

NF_INET_LOCAL_IN

ip_local_deliver_finish()

Forwarding

ip_forward()

Figure 3.2: Simplified diagram of receiving IPv4 packets in the Linux kernel. Taken from
[9].

(SNAT) is registered to this hook. Packets that are forwarded and passed the
NF_INET_FORWARD hook point reach this hook. Furthermore, packets created in the
local machine and outgoing will reach this hook after passing the NF_INET_LOCAL_OUT
hook point.

• NF_INET_LOCAL_OUT – This is the only hook point that is not in the figure 3.2. This
hook is in the __ip_local_out() method in IPv4 and in __ip6_local_out() method
in IPv6. All outgoing packets created in this local machine reach this hook before
reaching the NF_INET_POST_ROUTING [9, 5].

The return value of the Netfilter hook must be one of the following values (also termed
Netfilter verdicts):

• NF_DROP (0) – Discard the packet silently. If multiple methods are attached to a
hook, the packet will be dropped if a single method returns NF_DROP.

• NF_ACCEPT (1) – Packet continues its traversal in the Linux kernel network stack.
It means that the next hook attached to that point will be called.

13

• NF_STOLEN (2) – Indicates that the packet has been consumed hook callback.
The packet does not continue traversal in the Linux kernel network stack, but it is
processed by the hook method.

• NF_QUEUE (3) – Queue the packet for userspace so that the userspace program will
process the packet instead of the kernel stack.

• NF_REPEAT (4) – Indicates that the hook method should be called again [9, 5, 6].

3.2.2 Registration of Netfilter Hooks

A nf_hook_ops structure must be defined to register a hook callback at one of the five
hook points. Hooks are per-protocol. Thus, one structure can only be registered on the
protocol. So more hooks must be registered as an array of nf_hook_ops. There are two
methods to register Netfilter hooks. The first (nf_register_hook()) method registers a
single nf_hook_ops object and the second (nf_register_hooks()) registers an array of
nf_hooks_ops objects. The structure with main attributes is defined like this:
struct nf_hook_ops {

nf_hookfn *hook;
struct module *owner;
u_int8_t pf;
unisgned int hooknum;
int priority;

}

These are some vital members of the nf_hook_ops structure:

• hook - The hook callback to registering.

• pf - The protocol family (NFPROTO_IPV4 for IPv4 and NFPROTO_IPV6 for
IPv6).

• hooknum - Is one of the five Netfilter hooks mentioned earlier.

• priority - More hook callbacks can be registered on the same hook. Callbacks with
lower priorities are called first [9, 8].

3.3 Connection Tracking
The days when packet filtering policies were based uniquely on the packet header informa-
tion, such as the IP source and destination addresses and ports, are over. There is also
a need to consider cases when the traffic is based on sessions, for example, FTP sessions,
where a session is a sequence of expected events. So, the Connection Tracking layer stores
information about the state of a connection in a memory structure. This layer’s primary
goal is to serve as the basis of NAT. The IPv4 (and IPv6) NAT module cannot be built
if CONFIG_NF_CONNTRACK_IPV4 (CONFIG_NF_CONNTRACK_IPV6) is not set
[9, 5].

Firstly Connection Tracking hooks must be defined (initialized) as an array of nf_hook_ops
objects. Then these hooks must be registered as any other hooks.

The essential data structure is nf_conntrack_tuple (see figure 3.3 of simplified rep-
resentation). This structure represents a flow in one direction by its network-layer and

14

transport-layer addresses. The structure use unions to contain protocol-specific fields and
generic fields in dst.u. These unions make the source code easier to understand and allows
new protocol-specific fields to be added without breaking the existing code [9, 6].

struct nf_conntrack_tuple

struct nf_conntrack_man src

union nf_inet_addr dst.u3

union { __be16 udp.port, ... } dst.u

u_int8_t dst.protonum, dst.dir

Figure 3.3: Simplified structure nf_conntrack_tuple. Taken from [6].

A Connection Tracking module for each transport layer (L4) protocol implements the
protocol-specific part. The modules conform to the interface defined by struct nf_conntrack_l3proto
and struct nf_conntrack_l4proto. These structures contain function pointers that are
initialized to the appropriate functions in the protocol-specific modules [6].

3.3.1 Hashing

The Connection Tracking stores the states of active connections in a hash table for optimized
performance. The method nf_conntrack_raw() returns 32 bit hash of a tuple. The hash
value is based on the source and destination IP addresses and protocol-specific identifiers.

Figure 3.4 shows Connection Tracking entry nf_conn with an array of nf_conntrack_tuple_hash
structure. This structure stores this Connection Tracking entry in the hash table and con-
tains a tuple and pointer to a linked list of Connection Tracking entries associated with the
tuple. The linked list is used to handle hash collisions.

The following is a description of some of the crucial members of the nf_conn structure:

• ct_general – A reference count.

• tuplehash – The array contains two tuplehash objects: tuplehash[0] is the orig-
inal direction, and tuplehash[1] is the reply. They are usually referred to as
tuplehash[IP_CT_DIR_ORIGINAL] and tuplehash[IP_CT_DIR_REPLY].

• status – The status of the entry.

• master – An expected connection.

• timeout – When the connection entry expires. It contains a list of timers related to
the connection state. These are typically timers that handle protocol timeouts and
connection expiration [6].

3.3.2 Tracking

The Connection Tracking modules use three Netfilter hooks to track incoming and outgoing
packets. Registered callbacks at hook points NF_INET_PRE_ROUTING and NF_INET_LOCAL_OUT

15

struct nf_conn

struct nf_conntrack ct_general

spinlock_t lock

struct nf_conntrack_tuple_hash tuplehash[2]

unsigned long status

struct nf_conn *master

struct timer_list timeout

union nf_conntrack_proto proto

struct nf_conntrack_tuple_hash

struct hlist_nulls_node hnnode

struct nf_conntrack_tuple tuple

Linked list

Figure 3.4: Structure nf_conn with structure nf_conntrack_tuple_hash. Taken from [6].

call nf_conntrack_in() method. Hook NF_INET_POST_ROUTING calls nf_conntrack_confirm().
The method nf_conntrack_in() is the main function of the Connection Tracking module.

When processing the packet, the initial steps of the nf_conntrack_in() methods are
to get network-layer and transport-layer protocols. If the protocols can be tracked (was
registered), then structures nf_conntrack_l3proto and nf_conntrack_l4proto are ini-
tialized. Then the function checks protocol-specific error conditions (for example, in the
case of UDP, it checks malformed packets with invalid payload size or invalid checksums).
The resolve_normal_ct() method is called if these checks are successful [6].
The resolve_normal_ct() method performs the following:

• Calculates the hash of the tuple by calling the hash_conntrack_raw() method (men-
tioned earlier).

• With the calculated hash, it performs a lookup for a tuple match.

• If there is no match, it creates a new nf_conntrack_tuple_hash object by calling
the init_conntrack() method. This nf_conntrack_tuple_hash object is added to
the list of unconfirmed tuplehash objects. If any other Netfilter modules do not drop
the packet, the packet should be observed by the nf_conntrack_confirm() method
at the NF_INET_POST_ROUTING hook. This function checks that other modules did
not drop a packet belonging to a connection.

• Next is called the nf_ct_timout_lookup() method to decide the timeout policy
suitable for the flow. For example, UDP flows set the timeout to 30 seconds for
one-direction connections and 180 seconds for bidirectional connections.

16

• Then the protocol-specific packet() method is called (for example, the upd_packet()
for UDP or the tcp_packet() method for TCP). The udp_packet() method extends
the timeout according to the status of the connection. It will be set to 30 seconds for
connections without reply, and for replied connections, it will be set to 180 seconds
[6, 9].

In the next section is described the iptables module.

3.4 IPTables

The Iptables framework is probably the most known part of the Netfilter framework. There
are two parts. The kernel part - the core is in net/ipv4/netfilter/ip_tables.c for IPv4,
and in net/ipv6/netfilter/ip6_tables.c for IPv6. Then there is the userspace part,
most familiar from using the iptables(8) command. It provides a frontend for accessing the
kernel iptables layer (example: adding and deleting rules). Each table is represented by the
xt_table structure (defined in include/linux/netfilter/x_tables.h). Moreover, the
iptables (Xtables) framework can add features (extensions). These features are implemented
as kernel modules that register against this framework.

The network namespace object contains IPv4- and IPv6-specific objects (netns_ipv4
and netns_ipv6). Both of these objects contain pointers to xt_table objects. For IPv4,
in structure, netns_ipv4 is, for example, iptable_filter, iptable_mangle, nat_table,
and more.

struct xt_table

unsigned int valid_hooks

struct module *me

u_int8_t af

int priority

const char name[XT_TABLE_MAXNAMELEN]

Figure 3.5: Structure xt_table with important attributes.

The following is a description of some of the main attributes of the xt_table structure:

• valid_hooks – the bitmask that may contain zero or more of the five flags matches
the hook points in 3.2.1.

• me – This is used for the Linux kernel infrastructure. It serves for reference counting
so that the module is not unloaded while a rule exists. It is set to THIS_MODULE or
NULL.

• af – Protocol family (NFPROTO_IPV4 for IPv4 or NFPROTO_IPV6 for IPv6).

• priority – Same as a priority in section 3.2.2

17

• name – Unique name of the table XT_TABLE_MAXNAMELEN is 32 characters, including
’\0’, which leaves 31 characters for the name of a table.

Kernel module initializing function needs to call xt_register_table() function. This
function is called on module loading. Later, when unloading the module, the table must be
unregistered again. The table is unregistered by calling xt_unregister_table() function
[9].

3.4.1 Target extensions

Before showing the implementation of SNAT using iptables, there is a need to describe how
to define target extensions.

The target is in iptables represented as xt_target structure. This structure is defined in
include/linux/netfilter/x_tables.h. Here is the description of the xt_target struc-
ture without internal fields (with parameters structures):

struct xt_action_param {
const struct xt_target *target;
const void *targinfo;
const struct net_device *in, *out;
unsigned int hooknum;
uint8_t family;

};
struct xt_tgchk_param {

const char *table;
const void *entryinfo;
const struct xt_target *target;
void *targinfo;
unsigned int hook_mask;
uint8_t family;

};
struct xt_tgdtor_param {

const struct xt_target *target;
void *targinfo;
uint8_t family;

};

struct xt_target {
const char name[XT_EXTENSION_MAXNAMELEN];
uint8_t revision;
unsigned short family;
const char *table;
unsigned int hooks;
unsigned short proto;

unsigned int targetsize;
unsigned int (*target)(struct sk_buff *skb,

const struct xt_action_param *par);
int (*checkentry)(const struct xt_tgchk_param *par);

18

void (*destroy)(const struct xt_tgdtor_param *par);

struct module *me;
};

The number of arguments to the functions has grown over time, and it became a long
process to update all of them whenever an API change was required. Moreover, many
extensions do not use all parameters. Thus, the parameter structures were created and
named struct xt_*_param to collect all the arguments. The xt_action_param are pa-
rameters for targets’ callbacks. The xt_tgchk_param are parameters for target extensions’
checkentry functions. The xt_tgdtor_param are parameters for target destructor [8].

The following is a description of essential attributes of the xt_target structure:

• name – Unique name of the table XT_EXTENSION_MAXNAMELEN is 29 characters, includ-
ing ’\0’, which leaves 28 characters for the name of a target.

• revision – An integer that can be used to denote a ”version“ or feature set of a given
match.

• family – Type of family the xt_target structure handles. Protocol family (NFPROTO_IPV4
for IPv4 or NFPROTO_IPV6 for IPv6).

• table, hooks, and proto – These fields can limit where the match may be used. No
table, hook, or protocol restriction will be applied if the field is not provided.

• targetsize – This field specifies the size of the private structure

• target – Method that is called when a packet is passed to the module.

• checkentry – Called when inserting rule.

• destroy – Called when removing rule.

Kernel module initializing function needs to call xt_register_target() function. This
function is called on module insertion. Later, when removing the module, the target must
unregistered again. The target is unregistered by calling xt_unregister_target() func-
tion [8, 9].

Each rule can be assigned a target, which can be seen as an ”action“ that is to be done.
Target extensions need to return a verdict. Depending on the nature of the target, either
NF_ACCEPT or NF_DROP is chosen for terminating targets.

Possible verdict return values for the function are:

• XT_CONTINUE – used for targets that do not cause traversal to stop.

• NF_DROP – stop traversal in the current table hook and indicate packet drop.

• NF_ACCEPT – stop traversal in the current table hook and indicate packet acceptance.

• XT_RETURN – return to the previous chain or default chain policy [8].

In the following section is an description of ´the userspace plugin.

19

3.5 Userspace plugin

The idea for the output of this work is to implement the iptables rule that will do the
PBA algorithm. However, this rule needs parameters for its initialization. A userspace
program (plugin) must be implemented to parse this rule and react to iptables commands.
The primary responsibility of the userspace program is to fill the private structure with the
values provided by a user of rule parameters. Moreover, an iptables extension is a tool to
interact with the user.

The vital part of the userspace program is the structure struct xtables_target that
defines the vtable1 for one address family of a target extension. It is available from
xtables.h. The following structure description includes only the crucial parameters or
the most frequently used.

struct xtables_target {
const char *version;
const char *name;
uint8_t revision;
uint16_t family;

size_t size;
size_t userspacesize;

void (*help)(void);
void (*init)(struct xt_entry_target *target);
int (*parse)(int c, char **argv, int invert, unsigned int *flags,

const void *entry, struct xt_entry_target **target);
void (*print)(const void *entry,

const struct xt_entry_target *target,
int numeric);

void (*save)(const void *entry,
const struct xt_entry_target *target);

const struct option *extra_opts;
};

The following is a description of essential attributes of the xtables_target structure:

• version – is always initialized to XTABLES_VERSION. This value avoids loading old
modules with newer, potentially incompatible iptables versions.

• name – specifies the name of the module. It has to match the name set in the kernel
module.

• revision – specifies that this xtables_target can only be used with the same-
revision Xtables target kernel module.

• family – specifies what IP family this target operates on. The available variants are
IPv4 (NFPROTO_IPV4), IPv6 (NFPROTO_IPV6), or NFPROTO_UNSPEC, which acts as a
wildcard.

1A virtual function table is a mechanism used in a programming language to support run-time function
binding.

20

• size – specifies the size of the private structure in total. The kernel module will get
this structure as a parameter in its functions.

• userspacesize – specifies the part of the structure relevant to rule matching when
replacing or deleting rules.

• help- - whenever a user enters command ’iptables -m module -h’, this function
is called. It should show the available options and a brief description.

• init – it can initialize the private structure with default values before the parse
function is called.

• parse – is called a new rule is entered (added into the iptables). It has to validate
the arguments. This function is vital because it verifies if the arguments are used
correctly.

• print – it aims to print information about the rule. The command ’iptables -L’,
calls this function. The function is similar to the save function, but its output might
be whatever we want.

• save – it has to interpret the private structure, where rule parameters are stored.
The produced output must be options as can be passed to iptables.

• extra_opts - an array of elements that specify the extra options for the target rule.
Every option is mapped to a single user-defined parameter using the structure struct
option from <getopt.h> library.

The attributes parse and extra_opt have newer variants (with x6_ prefix) and allow
easier parameter parsing. It is possible to omit the init, print, and save members (func-
tions). However, the help and parse functions must be defined. Every userspace plugin
must register to the iptables program (or ip6tables) by calling xtables_register_target.
This function is wrapped in the _init function that is called when iptables load the module
[8].

In the following section is an implementation description of the SNAT module.

3.6 NAT

The Network Address Translation (NAT) module deals mostly with IP address translation
or port manipulation. As said in chapter 2, one of the most common uses of NAT is to enable
a group of hosts with a private IP address on a Local Area Network (LAN) to access the In-
ternet via some residential gateway. It can be achieved by setting a NAT rule. The Netfilter
subsystem has NAT implementation for IPv4 (in net/ipv4/netfilter/iptable_nat.c)
and IPv6 (in net/ipv6/netfilter/ip6table_nat.c).There are many types of NAT se-
tups. The two common configurations are SNAT (source NAT), where the source IP address
is changed, and DNAT (destination NAT), where the destination IP address is changed.
SNAT or DNAT can be selected by the -j flag in the rule. The implementation of both
DNAT and SNAT is in net/netfilter/xt_nat.c [8].

21

3.6.1 SNAT Example Implementation

In this example, The SNAT implementation with revision = 1 is described. This module
requires a range of addresses and possible port range that the NAT engine may use. The
SNAT target is only valid in the nat table. The nf_nat_range structure represents the
range:
struct nf_nat_range {

unsigned int flags;
union nf_inet_addr min_addr;
union nf_inet_addr max_addr;
union nf_conntrack_man_proto min_proto;
union nf_conntrack_man_proto max_proto;

};

The structure contains the IP address range as two IP addresses with the lowest and
highest values. The port range is represented the same way. Attribute flags indicate how
the address mapping uses the ranges.

The SNAT target is represented as the xt_target object. It is registered on two hooks
NF_INET_POST_ROUTING and NF_INET_LOCAL_IN:
static struct xt_target xt_nat_target_reg[] __read_mostly = {

...
{

.name = "SNAT",

.revision = 1,

.checkentry = xt_nat_checkentry,

.destroy = xt_nat_destroy,

.target = xt_snat_target_v1,

.targetsize = sizeof(struct nf_nat_range),

.table = "nat",

.hooks = (1 << NF_INET_POST_ROUTING) |
(1 << NF_INET_LOCAL_IN),

.me = THIS_MODULE,
},
...

};

The array xt_nat_target_reg does contain more revisions of SNAT and DNAT imple-
mentations. Registration and unregistration of targets is done by calling xt_nat_init()
and xt_nat_exit() methods.
static unsigned int
xt_snat_target_v1(struct sk_buff *skb, const struct xt_action_param *par);

The most important function is xt_snat_target_v1() which is called for every packet
that matches the chain of match modules. The first step is to get nf_nat_range object
from xt_action_param *par. Then the function will get connection tracking (nf_conn
structure) and tuple hash (see chapter 3.3) for the skb parameter. The function will pass
the connection tracking structure, IP address, port range, and type of IP address alteration
(NF_NAT_MANIP_SRC for SNAT) to the nf_nat_setup_info() function.

The nf_nat_setup_info() method tries to set up an info structure to map into a given
range using Connection tracking. Firstly, the method checks if the info structure has already

22

been created for the ct structure. If it has, the method will return NF_ACCEPT. Then the
method calls the get_unique_tuple() function to obtain an external IP address and port
number (in the case of UDP). The tuples in the Connection tracking are then updated with
the new external IP address and port number. Because the tuples were changed, the hash
value of the tuples will no longer point to the correct entry in the Connection tracking
module’s hash table. So, the hash value is recalculated, and the Connection tracking status
is moved accordingly [6].

3.7 Netlink module
The Netlink is a socket-based protocol for Inter-Process Communication (IPC), and it is
based on RFC 3549 (”Linux Netlink as an IP Service Protocol“). This mechanism allows
a bidirectional communication channel between userspace and the kernel or among some
parts of the kernel itself. It is an extension of the standard socket implementation. The
connection tracking code implements Netlink API (next used as CT Netlink API), which
can notify about changes in the records in the connection tracking table. (reference: Linux
kernel networking - implementation and theory)

The userspace has Netlink libraries that can receive notifications from the connection
tracking module in the kernel. This library can even edit the connection tracking table or
create new records (connections) [9].

Many programs can use this library, for example:

• ulogd2 - userspace logging daemon for netfilter/iptables related logging

• conntrack-tools - is a set of tools targeted at system administrators. They are
conntrack, the userspace command-line interface, and conntrackd, the userspace
daemon. Using the conntrack, one can view and manage the in-kernel connection
tracking state table from userspace. Moreover, the conntrackd covers the specific
aspects of stateful firewalls.

This chapter describes vital resources and tools to design and implement the solution
to this work. The next chapter shows the research process of resources and their issues that
were directly used in the design and later in the implementation.

23

Chapter 4

Design

This chapter addresses the research of current resources, which were essential for the func-
tionality and implementation of this thesis. The work must implement the Port Block
Allocation algorithm (used next as PBA) in the Linux system (CentOs 7). Programs
started to be created for kernel version 5.4.53, which was changed to version 5.4.186 during
implementation. All research and implementation were for this system and kernel versions.
Fortunately, there are no differences in functionality between versions that would affect the
implementation of the module.

The idea was to use resources that are available in the Linux system. For example, the
kernel of the system already implements SNAT. So, the implementation in this thesis tries
to use some of its parts. The design of the solution was created simultaneously with this
research, so it would be possible to implement it in the kernel.

4.1 Developing and testing setup
The work was developed and tested on virtual computers. The figure 4.1 shows how these
computers are connected.

External network

192.168.2.0/24

Internal network

192.168.1.0/24

192.168.1.2 192.168.2.2192.168.1.1 192.168.2.1

User PC SNATPBA PC Service PC

Figure 4.1: The virtual PC setup is used to develop and test the PBA module.

The user computer with IP address 192.168.1.2 is located in the internal network
(192.168.1.0/24) and connects to the network interface of the SNATPBA PC with IP
address 192.168.1.1. The service computer with IP address 192.168.2.2 is located in the

24

external network and is connected to the network interface with IP address 192.168.2.1 of
SNATPBA PC. The user PC initiates connections to the service PC. These connections go
through SNATPBA PC, which performs address translation. The behavior of the SNAT
rule was tested before the implementation of the PBA module.

4.2 Issues and their possible solutions
The first part of the implementation (and design) is a basic structure. When looking at ipt-
ables rules, the SNAT rule is the closest to the PBA algorithm. The SNAT is implemented
as a target rule, and logically the PBA should be implemented the same way. Like the
SNAT rule implementation, the PBA structure will consist of a user program and a kernel
module. The userspace program process iptables commands. The most important part of
this program is to parse the PBA rule when added into iptables and sends its parameters
to the kernel module. The kernel module receives parameters for specific rules. When a
packet triggers one of the rules, the target function (see target functions) will perform the
PBA algorithm.

An important part of the design is to determine which parts of SNAT can be used in the
implementation of this work. Because it is the SNAT rule, only the station in the internal
network can initiate a connection. It implies that the first packet originating the connection
will trigger the target function. When activated, the target function will create connection
tracking for the connection. After this, the ’nf_nat_setup_info()’ method creates the
mapping and accepts parameters: the initialized connection tracking, pool of IP addresses
and ports, and the direction of NAT. The pool, a parameter of the SNAT rule, can be an
address range or a single IP address and a port range or a single port. IP address with a
port from this pool is assigned to the connection, and the SNAT will map the IP address
from the internal network to the assigned IP address and port.

After consultation with the work supervisor, we decided that the PBA algorithm, at
minimum, requires: a pool of IP addresses from an external network and the size of one
block. The block (IP address and port range) represents maximum simultaneous connec-
tions between one IP address from the internal network and various stations in the external
network (next used as a group of connections). Another block represents connections from
a different internal IP address.
Here is what the PBA rule looks like:

iptables -t nat -A POSTROUTING -p <protocol> -s <source> -d <destination>\
-j SNATPBA --to-source <address and port pool>\
--block-size <block_size>

The PBA module as the target rule is named SNATPBA. Description of parameters of
SNATPBA target:

• to-source – is IP addresses and port to which the internal source IP addresses will
translate. It expects a single IP address (without a network mask) or a range of
addresses. It does not require port range like the SNAT rule does.

• block-size – is the number of available ports for one internal source IP address. It
represents the maximum number of simultaneous connections from a single internal
source IP address.

Like SNAT, the PBA rule (and module) requires protocol specification (-p in match
part of the rule). All parameters above are mandatory, and a user must provide them.

25

Example what the PBA rule might look like:

iptables -t nat -A POSTROUTING -p TCP -s 192.168.1.0/24 -d 192.168.2.0/24
-j SNATPBA --to-source 192.168.2.1-192.168.2.2 --block-size 20

This rule matches TCP packets that initiate a new connection from the internal network
192.168.1.0/24 to the external network 192.168.2.0/24. Then send them into the SNATPBA
target that maps IP address with the port from the pool (192.168.2.1-192.168.2.2) as the
source IP address and sends these packets into the external network 192.168.2.0/24.

The goal here was to use the nf_nat_setup_info() function without the necessity to
change the internal working of NAT in the kernel. The target function will get an IP
address with a port range from the pool, which is the size of one block, and pass it as the
argument to the nf_nat_setup_info() function. Next is how the target function will get
the required IP address and port range.

After adding the rule in iptables, the userspace program will call the checkentry()
function with these rule parameters after parsing the parameters. The function can initialize
all required data structures, including all blocks (IP and port range), and put these created
blocks into the linked list. Then these created blocks can be taken from the front of this
list and are assigned to the internal-external connections in the target function. When all
the connections for the particular internal IP address are closed, the block is put back at
the end of the linked list.

The target function assigns one of the created blocks to the new internal-external con-
nection and inserts it into the hash table for a fast lookup. All the following connections
for this particular internal IP address will be linked to the hash table record. The internal
source IP address is used as a hash table key. The station (user) from the particular internal
network has limited simultaneous connections to an external network with this hash table
key.

The problem with designing and implementing the PBA module is that it assigns a
specific block (external source IP address with port range) to the particular internal source
IP address. That means the PBA module must keep track of these assignments. The SNAT
module only assigns the external source IP address with a port (from the provided pool)
to every new connection via the nf_nat_setup_info function. However, the Connection
tracking module (implemented in the kernel) tracks these assignments. The main problem
is removing the connection (and address mapping) from the Connection tracking. The
Connection tracking stores the connection, and the SNAT module does not need to be
notified about its removal (when the connection is closed). Nevertheless, the PBA module
requires notification about this action.

The connection tracking module generates several events: NEW, RELATED, DESTROY, and
others. The PBA module only requires two:

• NEW - When the Connection tracking saw a new connection and created a new record.

• DESTROY – When the entry in connection tracking expires, the Connection tracking
removes this entry.

The target function assigns a block to the group of connections from the same internal
source IP address and inserts it into the hash table. However, at this time, the new
connection is still not established. When the Connection tracking starts tracking this new
connection, it generates and sends the NEW event to the notifier. Now, the block is in the
hash table, and the connection has an assigned port from the block. The PBA module

26

receives a notification with this NEW event and now knows that one port from the block is
not available. If the connection has not been established and is removed from connection
tracking, it waits for the DESTROY event. The Connection tracking does not immediately
send the DESTROY event because there are timers set that must expire first. The PBA module
needs the NEW event to decrease the ’still free ports block’ counter assigned to the internal
source IP address for other connections from the same IP address. The DESTROY event is
required to increment the ’still free ports block’ counter. When the counter indicates that
all block’s ports are free, the block is removed from the hash table and returned to the list
of available blocks.

notification

Connection
Tracking module

CT Netlink API

notification

Connection
Tracking module

CT Netlink API

notification

PBA module

ulogd2, conntrack,
conntrackd, ...

ulogd2, conntrack,
conntrackd, ...

Figure 4.2: Left: The CT Netlink is registered as notifier to the Connection Tracking
module. Right: Between the Connection Tracking module and the CT Netlink is inserted
the PBA module.

As described in section 3.7, the PBA module must register to the CT Netlink API.
However, there is a problem. Before kernel version 2.6.31, this API provided a notifier
chain that other kernel codes could use to get notified about changes in the connection
tracking state table. In the following versions, the implementation was changed. This
new implementation did not use a notifier chain but only one notifier. The module that
requires the notification defines a callback function. The module then registers the callback
as a notifier, which the Connection tracking then calls when there is any change in the
connection tracking state table. The notifier chain was removed because there was only
one module registered in this chain, and it is CT Netlink, and the notifier chain added too
much overhead for only a single client (module). Unfortunately, the result of this change is
that there is no simple way to register a notifier for an out-of-tree kernel module. The left
part of figure 4.2 shows this case [1].

27

Luckily, the implementation of the ipt_NETFLOW [4] kernel module used a little workaround
to get notifications from the connection tracking module and, at the same time, send these
notifications to the CT Netlink. This workaround is described in detail later in the im-
plementation chapter 5.1. The constriction of this solution is that the CT Netlink must
register as a notifier before the PBA module. However, the implementation takes this into
account.

Because the PBA module needs to keep track of the connections from the same in-
ternal source IP address, it stores necessary information in this module’s global variables.
However, this brings a new problem. The PBA module is initialized before a user adds
any SNATPBA rules into the iptables. So there is only one active PBA module for all
SNATPBA rules. Unfortunately, it means there cannot be only one hash table and list of
available blocks. The module has a global list that contains these data structures.

4.3 Summary of how the module works
This section describes how the PBA works after considering all these problems and their
solutions.

4.3.1 Adding a new connection

The figure 4.3 shows the functionality of adding a new connection to the PBA module.
When a packet from an internal network activates the PBA module’s target function, it is
the initial packet of a new connection, whether it is already in a created group of connections
from the same internal source IP address or belongs to a new group.
Here are described individual steps:

• Step 1: The first thing the target function does is to find which rule this packet
belongs to. It is a simple task because the target function has the packet information
and rule parameters from the userspace program.

• Step 2: Next, the function will get the key used in the hash table to find the group
of connections from the same internal source IP address where a packet belongs to.

• Step 3: The function will try to find the record in the hash table for all active
connections from the internal source IP address.

• Step 4.1: If a record exists and it is in the hash table, the function will use the address
with port range to map the original source IP address in the received packet to the
external IP address with port. The significant part of the functionality is that the
module does not know (at execution of the target function) if there are any available
ports in the found record. There is a maximum number of simultaneous connections
for the group of connections from this particular internal source IP address. If there
are no available ports (address translation was not created), the PBA will not receive
any notification.

• Step 4.2: If this record does not exist in the hash table, the function will try to create
a new hash table record for a new group of connections from the internal source IP
address, where the received packet belongs. If there are no available blocks, the target
function will return NF_DROP. If there is at least one available block, it is put into a
new hash table record and removed from the list of available blocks and inserts the

28

record into the hash table. The block in this record is used to map the source IP
address in the received packet to the external IP address with port (from the block).

• Step 5: The target function will now try to create a new record in the connection
tracking, but this new record needs to change the mapping from the internal source
IP address to the external source IP address. At this point, the target function has a
block (address with the range or ports) and can callnf_nat_setup_info() function.
This function change created a connection tracking record, so the new external source
IP address is from the provided block.

Received Packet

Original source IP address

Destination IP address

Calculate KEY

No

Address and port block

Is in Hash table?

Address and port block
Create Hash table

record

Address translation

Get rule
1

2 3

4.1

4.2

5

Figure 4.3: Description of adding new group of internal-external connection.

When the PBA module creates a new record and assigns a block, the module logs this
action into the system logging daemon, so it is possible to track any connections that used
any port from the port range of this block. The following is the format of this log message:

[timestamp]: ipt_SNATPBA: add:<orig_src_ip>:<new_src_ip>:<min_p>-<max_p>

Description:

• timestamp – the PBA module does not fill this field. The system logging daemon fills
it.

• orig_src_ip – the original internal source IP address. From this address is initiated
a new connection.

29

• new_src_ip – the external IP address from the address pool. To this IP address is
mapped the orig_src_ip.

• min_p – the lowest port from the port range of the block.

• max_p – the highest port from the port range of the block.

The following section describes how the module receives and processes the notification
from the Connection tracking module.

4.3.2 Processing of notifications

The PBA module has a registered callback function as a notifier in the Connection tracking
module. The figure 4.4 shows how the function processes the received notifications:

New notification

Yes
Is it for me?

No

Get rule and Hash
table record

IPCT_DESTROY

IPCT_NEW

What is type of
notification?

Remove?

Decrease counter
1

2 3 4

5.1

5.2

Figure 4.4: Diagram of how the PBA module processes received notifications from the
Connection tracking.

• Step 1: When this callback function receives a notification, first, it sends it to the
CT Netlink API, so all userspace programs that use this API work. For example,
conntrack-tools.

• Step 2: This function receives all notifications that the Connection tracking module
sends. It must determine if the received notification is for the PBA module. Firstly it
checks the type of received notification. PBA module processes only IPCT_DESTROY
and IPCT_NEW notifications. If the notification is one of these two types, the method
will continue with Step 3. Otherwise, it will ignore the notification.

• Step 3: Now, the function needs to find the notification’s rule and then the appro-
priate record in the hash table. Determining the appropriate rule is quite simple.
Every notification is about one record in the Connection tracking. The function can

30

compare the external source IP address with the rule address pool, and if this address
falls into this pool, then the notification belongs to this rule. Then the function needs
to find the record in the hash table.

• Step 4: This step only again checks the type of notification. It is more effective to
check the type of notification and then find the rule. If it were the other way around,
then every notification would have to check against every rule in the list where rules
are stored.

• Step 5.1: The IPCT_NEW notification means that the Connection tracking module
created a new record for a new connection belonging to a group of connections that
are from the same internal source IP address. However, the connection did not need
to be established. If the counter value of available ports is greater than zero, the
function will decrement this counter. The situation when the counter is equal to zero
cannot occur.

• Step 5.2: The IPCT_DESTROY notification means an existing connection was closed,
and the Connection tracking module removed its record. It also means that the port
that was occupied by the dropped connection is now available. So, the PBA incre-
ments the counter of the available ports. After this, if the counter has a maximum
value (all ports are available), there are no active connections in this group of con-
nections from the same internal source IP address, and the PBA removes the record
from the hash table.

When the PBA removes a cell from the hash table, the block is no longer assigned to
the group of connections from the same internal source IP address, and the module logs
this action into the system log daemon. The format of this log message and the fields were
described in the section about the add log message:

[timestamp]: ipt_SNATPBA: del:<orig_src_ip>:<new_src_ip>:<min_p>-<max_p>

The following section discusses implementing the userspace program that communicates
with the iptables and the kernel module.

31

Chapter 5

Implementation

The previous chapter described the design of this thesis output, including problems and
their possible solutions. This chapter discusses the implementation in more detail, describes
the implementation of solutions for these issues, and starts with the notifier registration in
the Connection tracking module. The work implementation was done in the C programming
language.

5.1 Registering notifier

The first part of the implementation was registering the PBA module to the Connection
tracking as a notifier. As was written in the section 4.2, the implemented solution in project
ipt_NETFLOW solves the problem with the option to register only one notifier (on callback
function).

The register_ct_events method that registers the module as a notifier was put into
the __init function. By analogy, the unregister_ct_events method that unregisters the
module was put into the __exit function. Every kernel module has at minimum these two
functions. The module is initialized/uninitialized only once.

The register_ct_events function firstly ensures that the CT Netlink API module (in
the system, the module’s name is nf_conntrack_netlink) is loaded (and initialized) before
the PBA module. The CT Netlink module registers itself as a notifier in the Connection
Tracking module at initialization. If the CT Netlink module did not register itself before
the PBA module, all userspace programs that use this library would not work. Moreover, if
the CT Netlink tried to initialize as a notifier later, it would fail because the PBA module
would already be registered as a notifier, and the callback function would be occupied by
it.

After loading the CT Netlink module, the register_ct_events function registers
the set_notifier_cb as initialization function and unset_notifier_cb as exit function.
These functions are put into structure struct pernet_operations. Calling the
register_pernet_subsys method will register these functions. It is not crucial for regis-
tering the notifier, but it allows initializing the module in different network namespaces.
The unregister_ct_events method contains the unregister_pernet_subsys (a clean-
up) method and releases the CT Netlink module.

The function set_notifier_cb implements the actual registration of the callback func-
tion (snatpba_conntrack_event) as a notifier. Firstly, it checks if the CT Netlink notifier
is already registered. If it is not, the snatpba_conntrack_event function is registered.

32

Otherwise, the PBA module stores the pointer to the CT Netlink’s callback function into a
different variable, and the snatpba_conntrack_event function is registered instead. After
this, the PBA module starts receiving the Conntrack tracking notifications.

The unset_notifier_cb function does reverse operations as the set_notifier_cb
function. It unregisters the callback of the PBA module. If the callback of the CT Netlink
module were registered as a notifier, it would be registered back into the Connection track-
ing module.

The following section describes details of the userspace program implementation.

5.2 Userspace program
Because the SNATPBA rule is added (or deleted) into (from) the iptables, it needs a
userspace program that will implement iptables commands. When I was implementing the
userspace program, I took inspiration from the userspace program implementation of the
SNAT rule.

The userspace program and the PBA module use the private structure struct xt_snatpba_info.
The userspace program fills this structure with data from rule parameters, and then it is
given as an argument to the kernel module functions.

struct xt_snatpba_info {
__u8 options;
struct in_addr from_src_in;
uint8_t from_src_mask;
struct nf_nat_ipv4_range from_src;
struct nf_nat_ipv4_multi_range_compat to_src;
__u32 block_size;

};

The following is a description of the xt_snatpba_info structure:

• options – the mask of options (parameters) that the userspace program gives to the
PBA module.

• to_src – the range of IPv4 addresses (address pool) to which the PBA module will
map the internal source addresses.

• block_size – is the size of one block in the kernel-side module (maximum number of
available ports in the group of connections from the same internal source IP address).

As described in section 3.5, the structure struct xtables_target is one of the most
crucial parts of the userspace program (for target extension). The structure is in this work
initialized as follows:

static struct xtables_target snat_pba_tg_reg = {
.version = XTABLES_VERSION,
.name = "SNATPBA",
.family = NFPROTO_IPV4,

As written before, the value of the version field is always XTABLES_VERSION. The name
must be the same as the kernel-side extension module. Moreover, this name specifies the
target in the Iptables commands (for example: ’iptables ... -j SNATPBA ...’). The

33

family is set to NFPROTO_IPV4 because this extension only works with IPv4 addresses in
the internal network.

.size = XT_ALIGN(sizeof(struct xt_snat_pba_info)),

.userspacesize = XT_ALIGN(sizeof(struct xt_snat_pba_info)),

The size and userspacesize attributes are both set to the exact size of the structure struct
xt_snatpba_info because no kernel-private fields should be omitted from the comparison.
The module usually needs to omit the fields that hold some global data. However, it is not
needed for the SNATPBA rules because the PBA module stores these global data.

.help = SNAT_PBA_help,

.x6_parse = SNAT_PBA_parse,

.print = SNAT_PBA_print,

.save = SNAT_PBA_save,

The purpose of these functions was described in chapter 3.5. Their values are pointers
to functions which iptables call at appropriate time:

• help: ’iptables -j SNATPBA -h’

• print: ’iptables -t nat -L -n -v’

• save: ’iptables -t nat -S’

The x6_parse (SNAT_PBA_parse) function is newer variant of the parse function. It
takes argument struct xt_option_call, which at every call of the SNAT_PBA_parse con-
tains all important information about the currently parsed rule parameter. The xtable
automatically parses the rule parameters. The ’––block-size’ is just an unsigned inte-
ger.

Because the xtables parser cannot parse range of IP addresses (only range or ports), it
needs to be parsed manually as a string. Parsing of the ’––to-source’ parameter is done
in the parse_to_src function. The parse function in the xtables SNAT extension inspired
the implementation of this method. First, it checks if the string contains a dash (’–’),
separating IP addresses in the range. If it does not have a dash character, the function uses
the xtables function (xtables_numeric_to_ipaddr) to convert the string to IP address. If
it has a dash character, the method splits the string into two strings and converts them
from strings to IP addresses.

.x6_options = SNAT_PBA_opts,
};

The x6_options is a pointer to the struct xt_option_entry structure array that spec-
ifies parameters and expected values. The array has two elements because the SNATPBA
rule has two parameters. Every element has a name, which has the same format as the
rule parameter; id (a unique value), which the program uses to recognize a parameter in
parse and print functions. Every element has a type that defines how the xtables parser
will parse a parameter (for example, the option XTTYPE_HOSTMASK specifies that the xtables
will parse a parameter as an IPv4 address with a mask). The flags field might define if
the parameter is, for example, invertible, mandatory, and others. Because the PBA module
requires all described parameters, the flags field has a value XTOPT_MAND (mandatory) value.
An example of how is defined one element (’–to-source’ parameter) in this work:

34

{.name = "to-source", .id = O_TO_SRC, .type = XTTYPE_STRING,
.flags = XTOPT_MAND}

This section describes the implementation of the PBA userspace program. The following
section discusses the implementation of the PBA’s kernel-side module.

5.3 Kernel module

After finishing the userspace program, the behavior of the SNATPBA rule must be imple-
mented, which means implementing the kernel-side module. The first part was to implement
the registration of the module into the Connection tracking as a notifier. The finished code
for this registration is in section 5.1.

Then I implemented the target extension, which the iptables call when a user adds the
SNATPBA rule. Chapter 3.4.1 shows what is needed to make the Xtables target extension.
First, the struct xt_target must be set:

static struct xt_target xt_snatpba_target_reg[] __read_mostly = {
{

.name = "SNATPBA",

.checkentry = xt_snatpba_checkentry,

.destroy = xt_snatpba_destroy,

.target = xt_snatpba_target,

.targetsize = sizeof(struct xt_snatpba_info),

.family = NFPROTO_IPV4,

.table = "nat",

.hooks = (1 << NF_INET_POST_ROUTING) |
(1 << NF_INET_LOCAL_IN),

.me = THIS_MODULE,
},

};

The name is set to ”SNATPBA“, which is the same value as the name in the userspace pro-
gram. The checkentry, destroy, and target fields are pointers to xt_snatpba_checkentry,
xt_snatpba_destroy, and xt_snatpba_target functions, which are described below. The
targetsize field is the size of the private structure struct xt_snatpba_info, which is
used in this module, and the userspace program (where it is filled). This structure is a
parameter in this module’s target extension specified functions. The PBA module is re-
stricted to the IPv4 address family and the ”nat“ table in the iptables. The hooks field is
set to the POSTROUTING and LOCAL_IN hook points.

For basic testing, if the PBA module is successfully starting and ending, the checkentry
and destroy functions might be omitted. In the __init function must be called function
xt_register_target, to register this target, and the __exit function must be called func-
tion xt_unregister_target to unregister this target extension.

After this, when the SNATPBA rule is added to the iptables, the userspace program will
parse set parameters. The PBA module is initialized (if it is not already), which registers
the PBA module callback function in the Connection tracking module.

35

5.3.1 Saving of rules

Chapter 4.2 mentions that the PBA module is initialized only once. However, there might
be multiple rules that use this module, and all of them need to track assigned blocks to
groups of connections from the same internal source IP addresses separately. That implies
that the PBA module needs a data structure as a global variable, where individual rules
are stored. I chose the kernel implementation of the linked list as this data structure.

The kernel uses the generic API to manipulate data structures such as linked lists or
hash tables. The following description of the kernel’s linked list behavior will be presented
on the structure that represents one SNATPBA rule.

struct rule_entry {
DECLARE_HASHTABLE(rule_hashtable, 10);
struct list_head avl_blc_list;
struct list_head all_blc_list;
struct xt_snatpba_info info;
struct list_head list;

};

The following is a description of the structure struct rule_entry, but for an explana-
tion of the kernel’s linked list is the essential list field:

• The first field is the declaration of kernel hash table, used for currently assigned blocks
to groups of connections from the same internal source IP addresses. The kernel’s
hash tables’ behavior will be explained later.

• avl_blc_list - the linked list of available blocks that can be assigned.

• all_blc_list - the linked list of all allocated blocks used only for easy deallocation.

• info - the information about the SNATPBA rule.

• list - the same structure as at fields avl_blc_list and all_blc_list, but it is used
to connect the rule_entry elements in a linked list.

At first, this implementation is a little confusing because the more common implemen-
tation is to add a pointer into a structure, which points to the following similar structure
in the linked list. In this approach, there is a need to write code to handle adding/remov-
ing/etc. elements for this structure. In kernel implementation, only the structure struct
list_head field must be added to a structure in the linked list. The structure list_head
only contains two pointers, prev and next, and their purpose is self-explanatory from their
names.

In the rule_entry structure, the avl_blc_list and all_blc_list represent the whole
linked lists, whereas the list field connects instances of the rule_entry structure into the
rule_list list.

Now that the rule_list is initialized, the module can add the new rules. The add_list
function does this.

So, when a new rule is inserted into the iptables, the checkentry (xt_snatpba_checkentry)
function is called. Here, the new rule is initialized from data in the xt_snatpba_info struc-
ture and added at the end of the rule_entry linked list by the list_add_tail method.

36

5.3.2 Destroy function

The xt_snatpba_checkentry allocates blocks and adds rules into the PBA module. But,
there is also a need to free the allocated data. That is why there is also the destroy
function (xt_snatpba_destroy) that should deallocate data. However, the iptables does
not add or remove rules. It replaces whole tables. This might cause problems when there
is allocation in the checkentry function and deallocation in the destroy function. The
following example describes how iptables adds and removes rules.

Let’s already have 2 SNATPBA rules in iptables: rule1 and rule2. When adding a
new rule (rule3), the iptables creates a new inner table with all three rules, and then the
old table is removed. This means that the checkentry function is called for all three rules,
and then the destroy function is called for the first two rules:

After adding the rule3:
checkentry - rule1
checkentry - rule2
checkentry - rule3

destroy - rule1
destroy - rule2

There are now three rules in the iptables. When removing rule3, the process is the
same. The iptables creates a new table with rule1 and rule2 and then removes the old
table.

After removing the rule3:
checkentry - rule1
checkentry - rule2

destroy - rule1
destroy - rule2
destroy - rule3

Most iptables extensions and their attached kernel modules do not need to take appro-
priate actions because they do not perform data allocation and deallocation like the PBA
module does.

Luckily, when I was searching for the solution to this problem, I found an implementation
of the geoip1 module. The solution for this problem in the module is quite simple. A new
variable ref is added into the structure struct rule_entry, which represents one rule.
This variable contains a number of references to this rule. When creating and adding a
new rule, the ref is set to 1. When a rule is in iptables (and in the PBA kernel module),
and the checkentry function is called for it, the ref variable is incremented by 1.

The xt_snat_pba_destroy function must free the rule’s resources: all blocks, cells in the
hash table, all elements of all_blc_list, and avl_blc_list, and the element representing
the rule.

As was written before, the all_blc_list is used for the simple deallocation of created
blocks. So, when the elements of lists and cells of the hash table are freed, the blocks have
been deallocated.

1https://fossies.org/linux/xtables-addons/extensions/xt_geoip.c

37

https://fossies.org/linux/xtables-addons/extensions/xt_geoip.c

5.3.3 Allocating blocks

Like the new rule, the blocks are created in the xt_snatpba_checkentry function. First,
the rule_entry structure is allocated, and its lists and hash table are initialized. After
that, the block must be calculated and initialized. The following is the structure struct
snatpba_block that represents one block:

struct snatpba_block {
struct nf_nat_ipv4_multi_range_compat new_src;
int free_ports;

};

As said in chapter 4.2, the block consists of new_src, the IP address from the address
pool (from the rule parameter ’––to-source’), and the calculated port range. The number
of ports in this range is the same as one block’s size. The free_ports field shows how many
ports are still available. The minimum value is zero, and the maximum value is the number
of ports in one block. The crucial part of why blocks are created this way is that they have
the same format as if the SNAT rule set them. And thanks to that, the nf_nat_setup_info
function can use these blocks, and the nat core implementation creates mappings to ports
in these blocks.

Not every port from all 65536 ports of one address is used for the blocks. The first 1024
(0− 1023) system reserved ports are omitted. That implies that the first port used for the
first allocated block is port 1024. All blocks are allocated using two nested for-cycles. The
outer cycle iterates through a poll of IP addresses, and the inner cycle iterates through the
number of blocks in one IP address. The number of blocks in one IP address:

𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑒𝑟 𝐼𝑃 =
𝑀𝐴𝑋 𝑃𝑂𝑅𝑇𝑆 𝑃𝐸𝑅 𝐼𝑃

𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
,

where 𝑀𝐴𝑋 𝑃𝑂𝑅𝑇𝑆 𝑃𝐸𝑅 𝐼𝑃 is always 64512 (65536− 1024). Because the equation
uses the integer division, there is a possibility that the PBA module won’t use a few of the
last ports (of a current IP address from the address pool).

The possible solution for maximum utilization of available ports to create blocks is
to split the range in the block between two IP addresses. In the previous example a
block might has ranges: 10.0.0.1:65524-65535; 10.0.0.2:1024-1031. The biggest issue
with this approach is that the nf_nat_setup_info function does not accept these ranges
(range of IP addresses with different port ranges). It implies using the nf_nat_setup_info
function two times. The first time is called for the first range, and if that fails, it calls the
function a second time with the second range.

Table 5.1 show example how are blocks allocated for rule with parameters: ––to-source=
10.0.0.1-10.0.0.2, ––block-size=20:

38

IP address Port range
10.0.0.1 1024 - 1043

...
...

10.0.0.1 65504 - 65523
10.0.0.2 1024 - 1043

...
...

10.0.0.2 65504 - 65523

Table 5.1: Example of blocks allocation.

After allocating a block, it is inserted at the end of the avl_blc_list and all_blc_list
linked lists. The pointer that points to the allocated block can be put only into two
structures:

• struct list_record - an element of avl_blc_list and all_blc_list. This struc-
ture contains only two fields. The block field is a pointer to struct snatpba_block,
and the list field is used to link other list_record elements into the linked list.

• struct hashtable_cell - a cell of the rule_hashtable, which is the hash table
of one SNATPBA rule. One cell represents an active group of connections from
the same internal source IP address. It means if a block is in this structure, it is
assigned and occupied. The structure has more fields than struct list_record. It
contains an attribute key, an unsigned int variable used to address cells (find bucket)
in the hash table. The key is made from orig_src_ip (an original source IP address
in the internal network). The block field is the same as in the structure struct
list_record. And the node field is used to connect a cell that falls into the same
bucket.

5.3.4 Hash table

The PBA module uses a hash table to keep track of assigning blocks to groups of connections
from the same internal source IP address. A hash table is used to fast search a particular
group (block).

The kernel implementation of hash tables uses the linked lists described above. Because
the hash tables use a statistically defined array, the hash table size (number of buckets)
must be specified at compile time. Unfortunately, it implies that the size of a hash table
cannot be set at run-time (for example, as a parameter in the iptables rule). The size of a
hash table is specified as a number of bites (size is always a power of two).

The definition of a hash table is creating an array, where one element of an array is
one bucket of a hash table. The array elements contain kernel implemented linked lists to
resolve collisions that might occur.

5.4 Testing
I tested the implementation on the setup that is described in chapter 4.1. The test aims to
check that I can add the SNATPBA rule to the iptables on the SNATPBA PC. Another
part of the test is to create maximum connections from the User PC (192.168.1.2) to the
Service PC (192.168.2.2). The number of connections is limited by the number of ports in

39

one block. So, it should not be possible to establish more connections than the number of
ports in the block. The last part of the test shows how the assigned block is removed from
the hash table.

$ make
$ make install

The PBA module is now installed, but it needs to run before I can add the SNATPBA
rule to the itpables. I will start the module by command insmod. To check that the module
is running is, I use the lsmod command:

$ insmod ipt_SNATPBA.ko
$ lsmod | grep ipt_SNATPBA

Later, when I want to stop the module, the command rmmod is used:

$ rmmod ipt_SNATPBA

Now, I can add a new SNATPBA rule into the iptables. I will use the same rule that I
described in chapter 4.2. The difference between the rule used for testing and the described
one is that I will use a smaller block size from value 20 to 2. That way, I would not have
to create many connections (20), but only two. The other difference is that I will use only
one external IP address, not a range of addresses.

$ iptables -t nat -A POSTROUTING -p TCP -s 192.168.1.0/24 -d
192.168.2.0/24 -j SNATPBA --to-source 192.168.2.1 --block-size 2

The User PC must create connections to the Service PC to test the module. So on
the Service PC, I make a server in brokering mode. That means the server allows multiple
connections to the same listening instance, takes the input from one connection, and sends
it as output to all other connections. This way, I can create and test the number of possible
connections. To create a server, I am using the command ncat. The server is on the port
20000 that the User PC connections will connect to. The following command is how I
create a server:

$ ncat --broker -l -p 20000

The User PC initiates connections to the server on the Service PC by the command nc.
Every command execution with the same parameters creates a new connection that uses
one of the ports from the block. So for this test, to use every port in one block, I must
execute the nc command two times.

$ nc 192.168.2.2 20000

The following is a log message from the PBA module when the block is assigned to the
group (192.168.1.2, 192.168.2.2) of connection. That implies that the first packet of the
new connection has activated the target function.

May 4 22:12:17 kernel: ipt_SNATPBA: add:192.168.1.2:192.168.2.1:1024-1025

5.4.1 One connection

Next is the output of the conntrack -E command that shows how are changed records’
states in the Connection tracking. I can show the output of the conntrack tool, thanks
to the implemented solution (chapter 5.1) of the notifier. The output shows three changes

40

in the state of the new connection. The connection protocol is TCP, which establishes the
connection by a three-way handshake. For better clarity, I numbered changes in the record
state.

1:[NEW] tcp 6 120 SYN_SENT src=192.168.1.2 dst=192.168.2.2 sport=44424\
dport=20000 [UNREPLIED] src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1024

2:[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.2 dst=192.168.2.2 sport=44424\
dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000 dport=1024

3:[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.2 dst=192.168.2.2\
sport=44424 dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1024 [ASSURED]

The first state change is when an SYN packet activates the target function. It means that
this packet generated the above log message about assigning the block. The target function
calls the nf_nat_setup_info, which maps the original source IP address (192.168.1.2)
to the IP address from the pool (192.168.2.1) and port (1024) from the assigned block.
So the first record shows that the Connection tracking saw the SYN packet but did not
see a reply from the server on the Service PC (192.168.2.2:20000). But the Connection
tracking module created the new record and sent a notification with a NEW event, which
the PBA module receives. When the PBA module gets this notification, it will find the
assigned block to the group (192.168.1.2, 192.168.2.2) of connections and decrement
the counter of available ports.

The second state change is when the Connection tracking sees the reply (SYN+ACK
packet) from the server (192.168.2.2:20000) to the User PC. However, the User PC
is located behind NAT, so the response is to the SNATPBA PC (192.168.2.1:1024),
which maps this IP address to the actual recipient, the User PC (192.168.1.2:44424).
The Connection tracking module saw traffic of this connection in both directions, but
the connection is still not established. However, the PBA module has already received
notification about this connection.

The third state change occurs when the User PC reply to the received SYN+ACK
packet from the server with an ACK packet to confirm and establish the connection. The
Connection tracking now sees the connection has been established and sends the ASSURED
notification.

Sometime later, the connection is finished. The following is output from conntrack -E
command. The first two rows show finishing the connection closed from the server. It shows
the finishing packet from the server and the acknowledging packet from the User PC. The
records also show that even if the connection is closed, a timer is still set to 60 seconds that
must expire first.

1: [UPDATE] tcp 6 120 FIN_WAIT src=192.168.1.2 dst=192.168.2.2\
sport=44424 dport=20000 src=192.168.2.2 dst=192.168.2.1\
sport=20000 dport=1024 [ASSURED]

2: [UPDATE] tcp 6 60 CLOSE_WAIT src=192.168.1.2 dst=192.168.2.2\
sport=44424 dport=20000 src=192.168.2.2 dst=192.168.2.1\
sport=20000 dport=1024 [ASSURED]

41

3: [DESTROY] tcp 6 src=192.168.1.2 dst=192.168.2.2\
sport=44424 dport=20000 src=192.168.2.2 dst=192.168.2.1\
sport=20000 dport=1024 [ASSURED]

After the timer expires, the Connection tracking module deletes the record for this
closed connection and releases the occupied port. The PBA module receives the notification
with the DELETE event. It finds the appropriate group (192.168.1.2) of connections and
increments the counter of available ports in this block. If this released port was the last
occupied, it means that all ports are now available, and the block is taken away from this
group of connections and put back into the list of available blocks. The cell in the hash
tables is removed and deallocated, which shows the following log message:

May 4 22:15:08 kernel: ipt_SNATPBA: del:192.168.1.2:192.168.2.1:1024-1025

All packets that belong to the connections that use the assigned block do not need to
be logged. If there is any report to the connection that needs to find a particular source IP
address and this connection falls into the interval between add and del log messages, the
connection was from the User PC.

5.4.2 Maximum number of connections

The previous section shows logs for one connection from the User PC to the Service PC.
This test shows the behavior of the PBA module when a maximum number of connections
are established from a single internal source IP address (192.168.1.2). The maximum
number of connections is two because the SNATPBA rule added into the iptables has the
block-size parameter set to 2.

The following is the output of the conntrack -E command. It shows that two connec-
tions are established. Rows 1-3 were described in the previous section 5.4.1 and are for
the first connection. Lines 4-6 show the same thing, except that they are for the second
connection. Both connections were initiated by executing the nc command two times (nc
192.168.2.2 20000) on the User PC.

1:[NEW] tcp 6 120 SYN_SENT src=192.168.1.2 dst=192.168.2.2 sport=44424\
dport=20000 [UNREPLIED] src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1024

2:[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.2 dst=192.168.2.2 sport=44424\
dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000 dport=1024

3:[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.2 dst=192.168.2.2\
sport=44424 dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1024 [ASSURED]

4:[NEW] tcp 6 120 SYN_SENT src=192.168.1.2 dst=192.168.2.2 sport=44426\
dport=20000 [UNREPLIED] src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1025

5:[UPDATE] tcp 6 60 SYN_RECV src=192.168.1.2 dst=192.168.2.2 sport=44426\
dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000 dport=1025

42

6:[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.1.2 dst=192.168.2.2\
sport=44426 dport=20000 src=192.168.2.2 dst=192.168.2.1 sport=20000\
dport=1025 [ASSURED]

There are two active connections, which is a maximum number of simultaneous connec-
tions from the User PC. Now when I try to make a new connection, it fails because the PBA
module has no available port for the next connection from the IP address 192.168.1.2. If no
new connection is created, the Connection tracking module will not create a new record,
and therefore the PBA module will not receive any notification from the module.

This chapter describes implementation details of issues that appeared in the design
stage of this work and one that occurred during the implementation stage. The following
chapter discusses the conclusion of the work.

43

Chapter 6

Conclusion

This thesis’ goal was to research the algorithm for Address Translation using the Port Block
Allocation and, after discussion with the work supervisor, implement this algorithm as the
iptables’ extension module in the Linux kernel.

The first step of this work was to research recommended materials. The problem with
these materials is that they are relevant for older kernel versions (2.x and 3.x), but the
implementation must be made in kernel version 5.4.53 and later 5.4.186. However, even
though the materials were a little older, they still give a vast amount of information about
how some things work in the kernel, for example, packet traversal, Netfilter hooks, NAT,
and creating iptables extensions.

After research, I started discussing the design of the PBA algorithm with my supervisor.
Here I had to look through the implementation of the SNAT module for how to use part
of it in my implementation. And the ipt_NETFLOW project [4] on how to register the PBA
module as a notifier in the Connection tracking module. The implementation of the kernel
module (PBA) uses the core NAT functionality of the kernel, and the userspace program
uses part of the parsing from the userspace program of the SNAT rule.

Next, I tested the implementation of the userspace program and the kernel-side (PBA)
module on a virtual PC. The setup and network topology are described in chapter 4.1.

The biggest obstacle during the working on this thesis was finding the necessary infor-
mation. Sometimes finding required information about the issue or the possible solution
was tedious (and frustrating) work. For example, the issue with the multiple calling of the
checkentry and destroy functions.

A possible future extensions might be to implement the hash table as dynamic. So there
could be a size of the hash table as a new parameter in the SNATPBA rule. Thanks to
this, a user adding the rule could adjust the size of the hash table to the size of the internal
network (number of users).

Another extension may be to allow more than one block to be assigned to the internal
source IP address. However, this leads to an unlimited maximum number of simultaneous
connections from one IP address. This limit can be specified as an additional SNATPBA
rule parameter.

44

Bibliography

[1] How to register conntrack notifier [online]. 2009 [cit. 2022-04-20]. Available at:
https://netfilter-devel.vger.kernel.narkive.com/V9wwFLzh/how-to-register-
conntrack-notifier.

[2] IP Addressing: NAT Configuration Guide, Cisco IOS XE Release 3S - Carrier Grade
Network Address Translation [Support] [online]. Cisco, 2019 [cit. 2022-01-03]. Available
at: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/
xe-3s/nat-xe-3s-book/iadnat-cgn.html.

[3] Network Address Translation (NAT) FAQ [online]. Cisco, 2021 [cit. 2022-01-03].
Available at: https://www.cisco.com/c/en/us/support/docs/ip/network-address-
translation-nat/26704-nat-faq-00.html.

[4] aabc. Ipt_NETFLOW [online]. 2008-2021 [cit. 2022-04-15]. Available at:
https://github.com/aabc/ipt-netflow.

[5] Ayuso, P. N. Netfilter’s Connection Tracking System. Login Usenix Mag. 2006,
vol. 31.

[6] Boye, M. Netfilter Connection Tracking and NAT Implementation [online]. 2012 [cit.
2022-01-05]. Available at:
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf.

[7] Donley, C., Grundemann, C., Sarawat, V., Sundaresan, K. and Vautrin, O.
Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments
[Internet Requests for Comments]. RFC 7422. RFC Editor, December 2014.

[8] Jan Engelhardt, N. B. Writing Netfilter modules. 2012.

[9] Rosen, R. Linux kernel networking : implementation and theory. New York, NY:
Apress, 2014. ISBN 9781430261964.

45

https://netfilter-devel.vger.kernel.narkive.com/V9wwFLzh/how-to-register-conntrack-notifier
https://netfilter-devel.vger.kernel.narkive.com/V9wwFLzh/how-to-register-conntrack-notifier
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/nat-xe-3s-book/iadnat-cgn.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-3s/nat-xe-3s-book/iadnat-cgn.html
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-nat/26704-nat-faq-00.html
https://github.com/aabc/ipt-netflow
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf

46

	Introduction
	Carrier Grade NAT
	Deterministic Address Mapping in CGN
	Address Space Multiplicative Factor
	Deterministic Port Ranges
	Address-assignment algorithms
	The ports Reservation Process
	Logging Consideration

	Deterministic CGN Example

	The Linux Network Stack
	The Network Device
	Netfilter
	Netfilter Hooks
	Registration of Netfilter Hooks

	Connection Tracking
	Hashing
	Tracking

	IPTables
	Target extensions

	Userspace plugin
	NAT
	SNAT Example Implementation

	Netlink module

	Design
	Developing and testing setup
	Issues and their possible solutions
	Summary of how the module works
	Adding a new connection
	Processing of notifications

	Implementation
	Registering notifier
	Userspace program
	Kernel module
	Saving of rules
	Destroy function
	Allocating blocks
	Hash table

	Testing
	One connection
	Maximum number of connections

	Conclusion
	Bibliography

