
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RPGGAME INUNITYWITHPROCEDURALELEMENTS
RPG HRA V UNITY S PROCEDURÁLNÍMI PRVKY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SAMUEL LÍŠKA
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ MILET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2021/2022

 Zadání bakalářské práce

Student: Líška Samuel
Program: Informační technologie
Název: RPG hra v Unity s procedurálními prvky
 RPG Game in Unity with Procedural Elements
Kategorie: Počítačová grafika
Zadání:

1. Nastudujte herní engine Unity, procedurální generování a tvorbu her.
2. Navrhněte hru a herní mechaniky s procedurálními prvky.
3. Implementujte navrženou hru v Unity.
4. Uživatelsky hru otestujte a zhodnoťte výsledky.
5. Vytvořte demonstrační video.

Literatura:
Gregory, Jason. Game engine architecture. crc Press, 2018. ISBN 1351974289,
9781351974288
Bishop, Lars, et al. "Designing a PC game engine." IEEE Computer Graphics and
Applications 18.1 (1998): 46-53.
Adams, Ernest, and Joris Dormans. Game mechanics: advanced game design. New Riders,
2012. ISBN 0321820274, 9780321820273

Pro udělení zápočtu za první semestr je požadováno:
Body 1 a 2 a kostra aplikace.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Milet Tomáš, Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2021
Datum odevzdání: 11. května 2022
Datum schválení: 1. listopadu 2021

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/24680/2021/xliska20 Strana 1 z 1

Abstract
The main objective of this thesis is to create 2D top-down RPG game with a focus on
procedural generation in Unity. This thesis contains a summary of information about
videogames, procedural content generation, game engines, and Unity itself. This thesis also
contains solution design and implementation of the game. Perlin noise and its processing
into the biome with the usage of Whittaker diagram has been used. Multiple systems to
enhance gameplay are described as well. Lastly, this thesis contains testing and evaluation
with a small survey.

Abstrakt
Hlavnou úlohou tejto bakalárskej práce je vytvoriť 2D RPG s procedurálnymi prvkami,
ktorá má pohľad z vtáčej perspektívy. Hra je implementovaná v hernom engine Unity. Ob-
sah tejto práce je zložený z teoretických informácií o videohrách, procedurálnom generovaní
obsahu a informáciach o herných enginoch a Unity. Práca taktiež obsahuje návrh riešenia a
implemetačnú časť hry. Na procedurálne generovanie sveta bol použitý Perlinov šum a jeho
následné spracovanie pomocou Whittakerovho diagramu. Práca popisuje viacero systémov
ktorých ulohou je vylepšiť pôžitok zo samotnej hry. Na záver práca obsahuje testovanie a
zhodnotenie pomocou krátkeho dotazníka.

Keywords
game development, computer game, procedural generation, RPG elements, Unity, Game,
C#, 2D, navmesh, AI, Perlin Noise

Kľúčové slová
herný vývoj, počítačová hra, procedurálne generovanie, RPG prvky, Unity, Hra, C#, 2D,
navmesh, umelá inteligencia, Perlinov šum

Reference
LÍŠKA, Samuel. RPG Game in Unity with Procedural Elements. Brno, 2022. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Tomáš Milet, Ph.D.

RPG Game in Unity with Procedural Elements

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Tomáš Milet Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Samuel Líška
May 9, 2022

Acknowledgements
My deepest gratitude belongs to the thesis supervisor Mr. Tomáš Milet. The completion
of this thesis would not have been possible without his guidance, suggestions and great
consultations.

Contents

1 Introduction 3

2 Overview 5
2.1 Games with similar concepts . 6

2.1.1 Diablo . 6
2.1.2 Don’t Starve . 6

2.2 Game presentation . 7

3 Theory 10
3.1 Video games . 10

3.1.1 Genres . 10
3.2 Game engines . 14

3.2.1 Unity Engine . 15
3.3 Procedural Content Generation . 16

3.3.1 What is content? . 17
3.3.2 Deterministic or stochastic approach 17
3.3.3 Requirements for PCG solution . 17
3.3.4 Random number generators . 18
3.3.5 Noises . 18
3.3.6 Procedural world generation . 19

4 Solution Design 22
4.1 Concept . 22
4.2 Scope definition . 23
4.3 Game rules . 23

4.3.1 Controls . 23
4.3.2 The main quest . 24
4.3.3 World . 25

4.4 World generation . 28
4.4.1 Biome generation . 28
4.4.2 Objects and vegetation . 28

4.5 Characters . 29
4.5.1 Movement . 29
4.5.2 Skills and abilities . 30

4.6 Combat and gameplay . 32
4.6.1 Enemy design . 32

4.7 Menu and HUD . 34

1

5 Implementation 35
5.1 Map controller . 37
5.2 Health system . 40
5.3 Player Controller . 41
5.4 Enemy Controller . 44
5.5 Sound and visual effects . 45
5.6 Save System . 46
5.7 User interface . 47

6 Testing and evaluation 48

7 Conclusion 50

Bibliography 52

2

Chapter 1

Introduction

Motivation
The games industry has never been larger and it constantly grows. Since computers started
to be more accessible to the public, games started to show their potential. Computer games
do not represent only mindless punching buttons to achieve the highest score anymore. The
technology they are built on has come much farther and has transformed into beautiful
works of art with breathtaking stories and audio-visual aspects. Games no longer require
huge development teams to deliver. In recent years, small teams with only several people,
are able to create amazing products. This development is known as indie development.
Indie game development is at its peak and multiple game titles have proven that in recent
years.

Goal
The goal of this thesis is to create a 2D RPG game. RPG stands for a role-playing game
in which participants adopt the roles of imaginary characters. The game consists of two
different parts. The first is procedural generation, and the second is the RPG side of the
game. Both of these are completely different challenges and extend games‘ potential in a
different ways.

Creating large worlds, filled with plenty of enjoyable content is often a big challenge for
the game development industry. No doubt the best results are done by crafting everything
player encounters by the hand. However, this approach requires enormous time and usually
a great number of people to work on them. The result, however, will always be some kind
of finite challenge for the player, that will result in repetition. Game with this type of
world must focus on other aspects, such as a rich story or mind-blowing gameplay. Another
way to tackle this problem is to let the computer create content for players. This method
is referred to as procedural content generation, and it is the fundamental concept of this
thesis.

Another aspect implemented in the game, are simple RPG elements. These elements
might be implemented in various ways. From creating player‘s own look of character, skill
trees that allows the player to determine his path, to experience a system that influences
the player‘s capabilities. But the main idea stays the same. The player is able to interfere
with the world and character, in which he wanders in.

3

For creating games, game engines have been developed to make their development easier.
There are several game engines such as Unreal Engine, CryEngine, Godot, Unity engine,
and many more. Unity is the perfect engine for indie developers, it is very popular and
has an enormous community base, and that is the choice for this thesis. A more detailed
description of the game is given in the overview chapter 2.

4

Chapter 2

Overview

This chapter roughly describes the game itself. To outline what the actual game consists of,
some of the most popular games and their mechanics that inspired this thesis are described
here. Some concepts and game mechanics are inspired by the games mentioned below, while
others expand these ideas and might not be that obvious. Also, multiple genres, and their
features and possible integration are mentioned here.

The game is an uncompromising RPG game full of action, combat, and challenge. With
the map being procedurally generated, each playthrough slightly differs in terms of map
design. The goal of the game is to find and complete four missing keys, hidden within
crystals located throughout the map. This is known as The Main Quest. The player
can encounter multiple enemies, each being slightly different in terms of speed, attacks,
and overall strength. Game rules and crucial information about the gameplay are slightly
presented in the game presentation 2.2 chapter and described more in detail in the solution
design chapter 3.3.6.

Figure 2.1: Player wandering it the Forest biome. Healthbar in the bottom left corner
indicates low health.

5

2.1 Games with similar concepts
All of the games described below shaped how the final product was intended to look. Several
games influenced the idea, however, their influence was minor compared to these titles.

2.1.1 Diablo

Diablo is an action role-playing1 video game developed by Blizzard Entertainment in 1997.
The player moves and interacts with the environment mostly by the usage of a mouse.
Character‘s capabilities, such as casting a spell are performed on a keyboard. Player can
acquire items, gain experience to learn new spells, defeat enemies and interact with NPCs 2.

Figure 2.2: Player explores the catacombs.
Level up button indicates the character has
attribute points available to distribute.

Dungeons are procedurally gener-
ated with specific themes for each level.
What that means is, for instance, the cat-
acombs have long closed corridors, whereas
caves are not so linear. As the player en-
ters a dungeon, a random number of quests
are assigned to him. Quests are optional
but usually offer significant rewards. As
the player progresses, his character is be-
coming more and more powerful, and he
is revealing more of the story. Diablo has
also introduced a character classes system,
that hugely affects the gameplay experi-
ence. Each class has its advantages and
limitations, such as class unique items, dif-
ferent preferable attributes, and so on. The
classes are The Warrior, The Rogue, and the Sorcerer. Last but not least multiplayer3 is
available for up to four players, where they can be either aggressive towards themselves or
play co-operatively.

2.1.2 Don’t Starve

Gamespots’ review [7], defines Don’t Starve as an action-adventure game with a randomly
generated open world and elements of survival4 and roguelike5 gameplay, where combat is
handled by pointing and clicking with the mouse. Other activities such as usage of the
toolbar are controlled by a keyboard. The goal is to survive as long as possible. While
Wilson is the main protagonist of Don’t Starve, he has no special abilities. Besides Wilson,
there are several playable characters, that offer different limitations and benefits that change
gameplay drastically.

The important part of this game is procedurally generated world. Want a new
map? At any time there is a possibility to generate a new unique and challenging world.

1sub-genre of video games that combines elements of action game and role-playing genre
2NPC - non-player character
3more than one person can play in the same game environment at the same time
4sub-genre of action video games, usually set in hostile, intense, open-world environments
5sub-genre of role-playing video games characterized by a dungeon crawl through procedurally generated

levels

6

World in Don’t Starve consists of biomes. Biomes usually differ by the type of terrain
they are composed of. Each type of biome usually contains the same type of resources
and creatures, that may or may not be specific to that biome. Each world generation has
a different configuration that generates different content. The complete process of world
generation is quite sophisticated and is publicly available to read here: [5].

Figure 2.3: Wilson using an item next to beefallo creatures that are located specifically in
Savannah biome. In the bottom is players inventory followed by equipped items, and on
the left side is the game tab. Upper right corner shows day-night cycle and players survival
stats such as hunger, health and sanity.

2.2 Game presentation
After the introduction of games with similar concepts, this section describes the product of
this thesis. This segment acts as a showcase of the game.

The game is a role-playing genre with procedural elements. It uses a top-down per-
spective, which refers to a camera angle that shows the player and the area around him
from above. It is sometimes referred to as birds-eye view, god view, or overhead view. A
top-down perspective is commonly associated with 2D role-playing games. The player is
placed in the procedurally generated world. Primary objective is to finish the Main Quest
described below.

The Main Quest

The primary and single quest in the game is called the Main Quest and reads as follows:
Acquire four missing keys to finish the game. The world consists of four biomes, each differs
by terrain type and creatures that occupy them. Four missing keys and four types of biomes
are not a coincidence. Each key can be found exclusively in one biome, but there might be
multiple biomes of the same type across the generated world, without sharing any border at
all. The key itself is located in a crystal, generated somewhere in a specific biome.

7

World

As mentioned before, the world is procedurally generated which means every time a new
world is created, it offers a new gameplay experience. However, some rules and aspects of
the world remain the same. Those are:

• Island: Generated world is an island. The island has a square like structure and is
surrounded by the ocean that acts as a natural barrier.

• Climate: Heat is unevenly distributed across the island. The highest temperatures
are near the equator (center of the island). As latitude increases, temperature drops.
The outcome of this behavior is, that hotter biomes are distributed near the equator
while colder are more towards the poles.

• Biomes there are four main biomes. Hot biomes are the Jungle and the Desert, cold
is the Ashland and in between is the Forest. There is also Beach that connects the
sea, coast, and inland.

Figure 2.4: Character moving across the Ashland, while being healed by the heal spell.

Figures 2.4 and 2.5 specifies two out of four accessible biomes in the game. The Ashland
is usually starting biome and is located either on the north or the south of the island. Biomes
and their enemies are closely outlined in its subsection in solution design here 4.4.1.

8

1

Figure 2.5: Border between three biomes, the forest, the Desert and the Rainforest. Player
is fighting Skeleton entity unique for the forest. Red arrow above one of lock icons indicates
direction towards missing key.

1

Figure 2.6: This figure shows main menu after launching the game. Menu consist of seed
slider on the left, determining seed number to be used to generate the world, and Play,
Load and Quit buttons respectively.

9

Chapter 3

Theory

This chapter consists of the description of all concepts, related to the thesis. Although video
game genres were once fairly clear-cut, it is simply not the case these days anymore. There
is a growing variety of genres and sub-genres to understand, especially as game developers
mix and blend different types of games in new and unexpected ways. Various mechanics and
concepts are described in this chapter. Mechanics such as, how randomness is implemented
in the games, what is a game engine and what is procedurally generated content.

3.1 Video games
The definition of a video game can get stuck in debate as to what exactly games are. It
does not apply just to video games but games in general. There are multiple definitions
of games but let us stay with the Oxford English Dictionary definition: Game played by
electronically manipulating images produced by a computer program on a monitor or other
display [8].

A video game is a type of game that is played on an electronic device and involves user
interaction with input devices, such as a joystick, mouse, or keyboard. User interaction
usually creates a visual response to the player. Key components of video games are rules,
challenges and interaction with the player. Most video games tend to feature some type
of victory or winning conditions, such as a scoring mechanism, final quest, or a final boss
fight.

3.1.1 Genres

Video game genres can refer to individual styles of gameplay, with a focus on different
mechanics of the game. As mentioned in Video Games: An Introduction to the Industry
[4]: Most games are not pure breeds of a specific genre, but rather hybrids with many
overlapping traits. This is commonly known as sub-genre1. Video games and their division
into genres are actually rather inconsistent. Each source of information is slightly different.
This section describes some of the best-known and most common video game genres. Main
source of information was book Video Games: An Introduction to the Industry [4] and an
article The Many Different Types of Video Games & Their Subgenres [10] from iDTech’s
blog.

1a subdivision of a genre of literature, music, film

10

Action

Action games are characterized by their action in real-time, focusing on hand-eye coordina-
tion and reaction time. Genres name came directly from the fact, that player is thrown in
the middle of the action. Because action games are commonly the easiest to start right away,
they are among the most popular games. The genre includes a big variety of sub-genres
described below.

• Action-adventure: Most frequently incorporate two key mechanics from two genres.
Combat from action games, and multiple story-related features such as quests, items,
and similar concepts from an adventure. - God of War, The Last of Us, Tomb Raider,
etc.

• Platformer: Platformers get their name from the fact that character interacts with
platforms, Running through obstacles, falling is actual gameplay. - Super Mario,
Donkey Kong, etc.

• Shooter: Shooters let players use weapons to engage in the action, with the goal
usually being to take out enemies or opposing players. Mostly categorized by player
perspective, FPS, TPS2 and top-down shooters. - Half-life, Halo, Call of Duty, etc.

• Fighter: Focused mostly on hand-to-hand combat. Most fighters have a feature of
a stable variety of characters with different specializations. - Mortal Kombat, Street
Fighter, etc.

• Beat-em up: Also focused primarily on combat, but instead of facing a single op-
ponent, players face multiple waves of enemies. - Disney’s Hercules, Double Dragon,
etc.

Role-playing game (RPG)

Probably the second most popular genre predates much of what we know of modern com-
puter games, as role-playing in a fictional world has existed for some time in tabletop forms
such as Dungeons & Dragons. RPG games allow a player to define or alter the course of the
game and the character‘s development, meaning RPGs often do not follow a linear story.

• Action RPG: Sub-genre that merges action and RPG elements from both genres.
Combat takes place in real-time and is dependent on the player’s speed and accuracy,
while also depending on the character’s attributes like strength and agility - Witcher
3: Wild Hunt, Diablo, Mass Effect, etc.

• MMORPG : Combining MMO3 with an RPG. This genre evolved as graphical
variations of MUDs4 which were developed in 1970s. MMORPGs involve hundreds
of players actively interacting with each other in the same world. Players control
a character that can be improved over time as they complete missions and quests.
Worlds levels and game data are persistent and are hosted on remote servers. - World
of Warcraft, Guild Wars, etc.

2third person shooter
3massively multiplayer online
4multi user dungeon (usually text-based)

11

• Roguelike : Genre name based on the name of the game that inspired it. Rogue was
a 2D dungeon crawler from 1980. The game featured a text interface and random
level generation. - Hades, The Binding of Isaac, etc.

• Tactical RPG: Player more like traditional board games, where the action is turn-
based rather than real-time. Tactical aspects of the game require players to use almost
chess-like strategy to defeat their foes. - Divinity Series, XCOM 2, etc.

(a) Action role-playing game with a third-person perspective Witcher 3: Wild Hunt (2015)

(b) Classic FPS game with a linear story set in
second world war. Call of duty (2003)

(c) One of the first ever 3D fps games Wolfenstein
3D (1992)

Figure 3.1: Figures above shows examples of very popular games in action and RPG genres
respectively.

12

Strategy

Defined by the point of view from above, these games require players to manage the creation,
collection, and allocation of resources and tactics to defeat their enemies. Gameplay is based
on traditional strategy board games, and tends to give players godlike access to resources
and a ”god view“.

• 4X: name is derivated from four primary goals of these games: explore, expand,
exploit and exterminate. Most of these have historical settings and span eons5 of a
civilization’s history. - Sid Meier’s Civilization, Stellaris, etc.

• Real-time strategy (RTS): Require players to collect and maintain resources to
expand bases, build armies and command units in real time. Fast tactical thinking
and strategy is required to overcome enemies. - Starcraft, Command and Conquer,
etc.

• Real-time tactics (RTT): Primarily focused on the combat side of strategy, typ-
ically does not feature resource-gathering base building or economic management. -
Total War: Rome II, Desperados, etc.

Others

There are many more video game genres in existence that are worthy of mention. Several
genres that feature interesting concepts or gained huge popularity are described below.
Adventure and Sandbox are the most common genres to merge with others mentioned
above to create sub-genre.

• MOBA: Multiplayer Online Battle Arena attracts massive crowds to live events and
usually has a very popular competitive scene. MOBAs might be also considered a
strategy sub-genre. Players control a single character in one of two teams. Both
teams try to eliminate each other to destroy the other team’s base. Dota 2, League
of Legends, etc.

• Simulations: All simulations are designed to emulate real or fictional reality, to
simulate a real situation or event. Exists largely within the PC platform. Simulations
can focus on vehicle simulation, management, construction, and even live cycles and
evolution. - Microsoft Flight Simulator, Farming Simulator, etc.

• Sports Games: Extremely popular genre to simulate sports, that might be more fo-
cused on reality(simulation), of playable aspect(arcade). Can be divided into multiple
groups such as racing, team sports, or sports-based fighters. - FIFA, F1, etc.

• Adventure: Genre defined by the style of gameplay, not the story or content. Play-
ers usually interact with the environment and other characters to solve puzzles and
progress in the story. Genre alone is not very popular, but merging it with genres
mentioned above is a very popular choice recently. - Adventure (Atari 2600), Zork,
etc.

5very long period of time

13

• Sandbox: Sandbox or open-world, is a non-linear, free-roaming gameplay environ-
ment where the player can choose to discover and interact with any part of the gaming
world. Extremely popular in combination with any of the above-mentioned genres. -
Minecraft, Terraria, etc.

(a) Very popular MOBA game developed and
published by Valve Dota 2 (2013)

(b) Historical RTS developed by Firefly Studios
Stronghold: Crusader (2002)

(c) 17th NHL series sports video game by EA
Sports. NHL (2008)

(d) Sandbox and the best selling game of all time
Minecraft (2011)

Figure 3.2: Shows examples of video game genres mentioned above.

3.2 Game engines
According to Oxford English Dictionary, Engine is a software system, not a complete
program, responsible for a technical task.

As Alan Thorn mentioned in his book, the game engine represents everything that is
abstract and applicable to all or most games [12]. A game engine is a software designed for
the development of video games. The game engine generally includes multiple libraries and
support programs. The idea is that the game engine is the heart or core containing almost
all the generalizable components that can be found in a game. The game engine consists
of multiple essential manager components as shown in Figure 3.3

14

(a) Common set of managers for a game engine
(b) Game engine and its relationship to other
parts of game development

Figure 3.3: Game engine managers, and relationship between game engine and other parts
of game development according to Game Engine Design and Implementation [12]

Engines design followed by the RAMS 6 principles often benefits the game developer
in many ways. Some engines are free such as CryEngine, Unity Engine, or Unreal engine
whereas others might be licensed and thus unable to freely use, for example, Frostbite
Engine(EA) or Red Engine(CD Projekt Red).

3.2.1 Unity Engine

Unity has been around since 2005. It was launched in June and aimed to democratize
game development by making it accessible to more developers according to Samuel Axon
[1]. Unity has been a popular choice for indie developers since then. It supports not only
2D and 3D game development but can also be applied to virtual reality. The engine is
constantly maintained and updated. Unity is free software so everyone can start using it.

Unity is a cross-platform engine, meaning its products can work across multiple plat-
forms. Unity editor is supported on Windows, macOS, and Linux. The engine itself can turn
on 19 different platforms. Officially supported platforms as of Unity 2020 LTS according
to Unity’s manual page [11] are :

• Desktop platforms Windows, Mac, Linux

• Mobile platforms Android, iOS, tvOS

• Web platforms WebGL

• Console platforms Playstation, Xbox, Nintendo Switch, Stadia
6RAMS - essential principles of game engine design (recyclability, abstractness, modularity, and simplic-

ity)

15

• Virtual/Extended reality Oculus, Playstation VR, Steam VR, Google Cardboard,
Windows Mixed Reality, Holo Lens, Magic Leap

The thesis is developed in Unity Engine mainly because of its significant community, open-
source, and support for indie development.

GameObject

According to Unity’s manual in the GameObject section: ”GameObjects are the fundamen-
tal objects in Unity that represent characters, props, and scenery. They do not accomplish
much in themselves but they act as containers for Components, which implement the real
functionality.“ [11]

GameObject has always attached transform component(or rect transform for UI), where
position of the GameObject could be altered. Position could be relative to its parent, or if
GameObject is parentless directly to the world space.

Components

Components define the behavior of the GameObject they are attached to. Most of the
component’s properties can be adjusted in the Unity Inspector itself, without interfering
with the script. Although Unity’s inspector is a powerful tool, with deeper adjustments
scripting is a critical part of the work. Script is also considered as a component. More
about components can be found in Unity’s manual in section Components [11].

Figure 3.4: Marked on the left side are GameObjects in the shown scene, whereas marked
on the opposite side are components attached to the Player GameObject

3.3 Procedural Content Generation
In the book Procedural Content Generation in Games [9], Procedural Content Generation
(PCG) is defined as a algorithmic creation of game content with limited or indirect

16

user input. In other words, PCG is software that can create game content on its own, or
with human interaction.

3.3.1 What is content?

Content is most of what is contained in the game, starting with levels, maps, items, music,
etc. Game Engine or non-player characters (NPCs) are not considered to be content. Terms
procedural and generation refer that we are working with procedures or algorithms to create
something.

The most obvious reason to procedurally generate is that it removes the human element
when creating content. Humans are much slower and much more expensive. PCG method
makes it possible for small teams or individuals without great resources to develop great
games. But PCG can open doors for completely new types of games. We have software that
can generate game content at a very high speed, that is about to be consumed by the players.
This content is different every time. With a proper procedural content generator, the game
will be with every generation slightly different. For everyone who has been disappointed by
not having more levels, and more areas to explore, this is a solution.

Newly generated content can be also tailored to each player‘s needs. Combining PCG
with human interaction we can create player adaptive games.

3.3.2 Deterministic or stochastic approach

Deterministic PCG is able to regenerate the same content given the same starting point and
parameters. On the other hand using a stochastic approach, recreating the same content is
not possible. The generation in Minecraft is a perfect example of deterministic PCG. The
world can be regenerated multiple times with a specific seed.

3.3.3 Requirements for PCG solution

The desirable or required results differ for each application. The usual tradeoffs involved
are speed and quality of generated content. There are several aspects when dealing with
PCG which must be taken into account [9]:

• Speed: Can vary quite a lot. Some content might be generated in a moment, while
others might take several hours or even more. This is a huge factor when doing
PCG in games. When dealing with endless worlds, content is being generated during
gameplay and may outcome in stuttering or huge fps drops.

• Reliability: Some PCGs are capable of creating content satisfying given criteria
regularly, while others might extend to the edges resulting in unsolvable, or broken
content. From creating a hill that looks odd to generating a key element of the game
within an area that cannot be reached, are two completely different stories. Where
one is just aesthetic fault, the other one is completely breaking the game.

• Controllability: Generators often requires to be controllable to suit specific aspects
of the content. Smoothing various aspects of content, or the opposite making them
sharper

• Expressivity and diversity: If a generator is creating minimum differences such as
changing minor aspects, the content will become tedious. Creating heavily random

17

content without any rules that players can learn from will result in the opposite
outcome. The key is for generated content to have its signature. When generating a
map, a player should recognize specific expressivity of content to learn from.

• Creativity and believability: There are multiple ways to generate content that
does not look like it is procedurally generated. This is what we are trying to achieve
in most cases.

3.3.4 Random number generators

Pseudorandom numbers have been used in the game industry for a long time. From rolling
dice to card games, to any other random element has been done by random number gener-
ators (Ryan Watkins) [13]. Random element adds unpredictability to our games, and that
is what makes them exciting in most cases. PRNs 7 and its generators are deterministic
algorithms, generating seemingly random numbers. However, after some time sequence for
given inputs starts to repeat. This problem is solved by altering the inputs of the generator.
Input data for generators are called seeds, and for multiple initializations with the same
seeds, output data will always be identical. This behavior may or may not be desired.

3.3.5 Noises

Noise is a series of random numbers, typically arranged in a line as a matrix. Noise functions
are commonly used in computer graphics because they add random elements. In signal,
processing noise is typically not desired aspect, and we want to avoid it. On the other
hand, with intent to generate something that looks natural, noise is typically what we
want. Coherent noise is a type of smooth pseudorandom noise that is generated by a
coherent-noise function which has three important properties.

1. Passing in the same input value will always return the same output value.

2. A small change in the input value will produce a small change in the output value.

3. A large change in the input value will produce a random change in the output value.

Perlin Noise

Perlin noise is a function for generating coherent noise over a space. While normal RNGs
8 produce outputs that are completely independent from each other, Perlin noise generates
random numbers that follow a smooth gradient. This means that for two nearby points,
two similar results will be returned. Perlin noise is based on noise functions, and is created
by the sum of the same function but with different amplitude and persistence. A number
of noise functions used are called octaves. Perlin noise is very popular and widely used in
game development. Libnoise’s documentation says that key attributes for coherent noises
are [3]:

• Amplitude - the frequency of each successive octave is equal to the product of the
previous octave’s frequency and the lacunarity value.

7Pseudo random number
8Random number generator

18

• Frequency - the number of cycles per unit length that a specific coherent-noise
function outputs.

• Lacunarity - a multiplier that determines how quickly the frequency increases for
each successive octave9 in a Perlin-noise function.

• Octave - one of the coherent-noise functions in a series of coherent-noise functions
that are added together to form Perlin noise. The number of octaves controls the
amount of detail of Perlin noise. Adding more octaves increases the detail of Perlin
noise, with the added drawback of increasing the calculation time.

• Persistence - a multiplier that determines how quickly the amplitudes diminish for
each successive octave in a Perlin-noise function.

3.3.6 Procedural world generation

With knowledge acquired from section 3.3, it would be appropriate to describe a specific
part of PCG, and that is procedural world generation. To represent the terrainheight map
described below is required. To generate the height map noise functions such as Perlin
Noise are used. This process basically takes coordinates and returns seemingly random
values for each given coordinate.

Plain Perlin noise itself, generates rather uninteresting results. The solution is, however,
very simple. Simple multiplication and addition are the keys to distinguishing and alter
noise results. These are persistence and lacunarity attributes. Persistance is affecting
length of frequency of the function, while lacunarity is affecting volume of function. Global
attributes that affect every generator are known as seeds. Seeds, determines the structure
of the terrain. Generated values could be altered by noise octaves, which is basically
overlapping multiple values of the noise, smoothing and strengthening the result.

Heightmap

A heightmap is simply a 2D array. The advantage of a heightmap is that it is easy to
implement and fast to generate. However, there are a few disadvantages, such as when
there is a large amplitude, the terrain could look extremely spiky. This could, in some
cases, tear down the feeling of smooth randomness. Some terrain generators use a voxel-
based engine, which instead of using a 2D array, uses a 3D array. This allows for more
complex structures like caves.

To popoulate the heightmap, a simple call of noise function to every single element of
the array is a reasonable approach. Noise functions such as Perlin Noise or Simplex usually
return float values between 0.0 and 1.0. In the heightmap higher values means bigger height.

The same approach could be used in maps representing different attributes of the terrain
since noise functions offer huge variability in altering the results. Such as average temper-
ature called heat map or average rain fall called precipitation map. Combining multiple
maps could be further used to form biomes. More detailed information about heightmaps
and their usage in the terrain generation can be found in the Study of procedural terrain
generation in plain and spherical surfaces [2].

9The frequency of each successive octave is equal to the product of the previous octave’s frequency and
the lacunarity value.

19

Biomes

A biome is a region in a world with distinct geographical features, such as vegetation, tem-
perature humidity, etc. Biomes separate every generated world into different environments,
such as forests, jungles, and deserts.

Multiple aspects can have an impact on selecting the proper biome, and they vary by
level of difficulty to implement. From easiest to hardest. Well, known aspects are [6]:

• altitude: higher altitude means lower temperatures and lower humidity. This will
result in more snow-capped mountains.

• ocean proximity: being closer to the sea brings the temperature closer to the average
temperature of the planet, and increases the humidity.

• atmospheric circulation cells: modeling the global winds, regional movements of
the air around areas of high and low pressure.

• negative rain shadows: like the previous approach but with the integration of the
altitude windward. This produces deserts like the Chilean desert.

• positive rain shadows: Take the directional derivative of the altitude and multiply
it with the convolution map from the atmospheric circulation cells step. This produces
forests like the Pacific Northwest.

• ocean currents: Fluid simulation of the ocean portions of the planet to determine
the temperature of the water, sending heat towards polar regions and helping tropical
areas cool off.

Whittaker diagram

Whittaker diagram requires two known aspects to determine the biome. The first is tem-
perature and the second is humidity. As shown in Figure 3.3.6 these two aspects determine
the type of a biome. To generate proper biomes with the Whittaker diagram, the key is to
distribute heat and humidity values correctly. Both can be influenced by various aspects
mentioned here 3.3.6.Robert Whittaker matched vegetation type to regional climate to cre-
ate a triangular figure within which all biomes fall. This topic is closely described in the
book by Whittaker himself called Communities and ecosystems [14]. Whittaker terms are:

• physiognomy: characteristics or appearance of ecological communities or species

• biome: grouping of terrestrial ecosystems on a given continent that is similar in
vegetation structure, physiognomy, environmental features, and animal community
characteristics.

• formation: a major type of plant community on a given continent

• biome type: grouping of convergent biomes or formations from different continents,
defined by physiognomy

• formation type: a grouping of convergent formations
Tropical climate zones have mean annual temperatures of 20∘C - 30∘C and mean annual

precipitation of 0 - 400+ cm. Temperate climate zones have mean annual temperatures
of 5∘C - 20∘C mean annual precipitation of 0 - 300+ cm. Boreal and Polar climate zones
have mean annual temperatures of < 5∘C mean annual precipitation < 200 cm.

20

Figure 3.5: Whittaker diagram is used to determine correct biome. Clearly shows dependece
between temperature and precipitation and its relation to biomes.

Figure 3.6: Shows heat map, height map, moisture map and biome map respectively. Re-
sulting biome map was constructed by merging three previous maps into one with usage of
Whittaker diagram 3.5

.

21

Chapter 4

Solution Design

This chapter is trying to elucidate to the reader the main concepts of the game. One of
the most important steps is scope definition. After general clarification of the game, game
mechanics are closely described. Beginning with procedural map generation, followed by
character specification, enemy design winding-up with a global user interface.

4.1 Concept
In this game, the player is able to venture through the lone island deep in the ocean. The
player can move and quickly discovers, that has abilities to use to defeat foes. The island
has a variety of places to discover, with a different environment surrounding it. The island
is also home to plenty of hostile creatures that attack the player on sight.

The game follows a player that wanders this island. The island is always different due
to procedural generation, however, the idea is to have the island follow a specific pattern
that can influence the player’s knowledge during another playthrough. The main idea is to
have multiple distinguishable biomes scattered around the island.

The player has to overcome obstacles to achieve the goal. Obstacles in form of the ene-
mies that try to eliminate the player at any cost. Multiple biomes do offer multiple varieties
of enemies wandering on the island. Enemies with different sprites, sounds, and difficulty
to beat are the key element in the game. Enemies design is adapted to a procedurally
generated world with obstacle avoidance and a pathfinding algorithm.

With playable character and enemies, a proper combat system is extremely important.
The combat system is only in the melee variant, with a simple targeting system to deal
with multiple enemies. The player also disposes of multiple usable abilities to defeat foes.
Combat system uses health system to determine the state of a character, whether it is alive
or dead. An RPG game’s signature system is that numbers pop up when dealing damage
or healing to enhance the experience. This system closely relates to health and combat
systems. The game also saves the progress of the player.

Last but not least UI experience is an important part of the game. A simple starting
menu to start a new game or load previously played is extremely important. Save system,
is in some cases automatic but the player can save manually in the pause menu as well.

The game should present a classic RPG game with a 2D top-down view and a simple
goal game-winning condition.

22

4.2 Scope definition
Defining the scope of a video game is always a difficult task. The main reason is, that it is
quite easy to add more features as the game progresses through the development. However
with limited time and focus on appropriate aspects, this game consists of a procedurally
generated map, multiple enemies, and a combat system related to the RPG genre. Game
mechanics can be divided into two sections. The first section is related to creating the
world. This part explains processing Perlin Noise into a scalable and adjustable world. The
second section outlines gameplay-related problems.

The map has a square structure with 512x512 dimensions. Each time player starts the
game, a seed is evaluated and a map is constructed. The whole process from seemingly
random numbers, all the way to the map is described in section 4.4. The map consists of an
island surrounded by the ocean, where multiple biomes and enemies can be found. These
biomes are the Ashland, the Forest, the Desert, and the Rainforest. Biomes and enemies
are further described in sections 4.3.3 and 4.6.1 respectively.

Player is able to control main character. Main character has assigned several abilities
further described in section 4.5.2, and health in section 4.6. If players health drops to zero
game is over, on the contrary winning conditions are achieving four missing keys described
here 4.3.

4.3 Game rules
The player is thrown into the generated world. His main objective is to collect all the
missing keys to finish the game. Each key can be found within a different biome across the
map. Each biome consists of exactly one key, however, there might be multiple biomes of
the same type. Gathering all missing keys is required for the player to finish the
game, however difficulty differs by the biome itself and enemies that can be found within
them. The main purpose of this design is to make game playthrough more variable as the
player explores the world.

4.3.1 Controls

The gameplay consists of the character’s movement, attacks, and ability usage during com-
bat. Character’s movement across the world can be controlled by WASD input keys.
Combat consists of regular attack that can be performed by left mouse click near target’s
position. Player is given five abilities. These abilites and assigned keys are:

Dash (SPACE) - quick movement burst in running direction.

Shied (RIGH MOUSE) - absorption of damage

Heal (Q) - heals character after casting of the spell is done

Tornado invocation (F) - instantly casts 8 tornadoes hurting everything in its
direction.

23

Sword clash (E) - AOE1 spell that spawns swords on top of enemies within range
and damages them.

Each ability is further described in section 4.5.2 below. Camera movement is stuck to the
player’s position, meaning the player is always in the center of its view.

4.3.2 The main quest

As mentioned above, the goal is to find four missing keys that can be found within each
biome. These keys are hidden within the spheres. Spheres can be interacted with, and after
a short period of interaction, a key is acquired. Interacting with all four spheres is required,
afterward winning screen is shown and the game is completed. Spheres are guarded by the
Cultist enemies. After acquiring the key, guards no longer spawns, and the sphere remains
broken. Also, the lock icon in HUD is unlocked and the arrow pointing towards the sphere
is gone as shown in Figure 4.1. Enemies and their stats can be inspected in the table 4.1
below.

name health damage movement speed attack time attack range
Undead 185 16 - 21 1.4 2 2
Necromancer 125 20 - 26 1.1 2 7
Skeleton 200 9 - 14 1.6 1 5
Goblin Beast 250 25 - 35 1 3 5
Goblin 125 5 - 12 2 1.2 5
Cultist 125 20 - 40 0.7 3.5 7

Table 4.1: Shows enemies and their basic attributes. Health makes enemies more durable.
Higher attack time means, more time is required between each attack. Attack range defines
how far attack can reach before missing.

(a) HUD with four incomplete keys. (b) Player approaching found keystone.

Figure 4.1: Shows Heads-up display visible during gameplay. Figure 4.1a indicates that
there are 4 keys to be found, and arrows above them acts as a guide. Figure 4.1b on the
contrary shows that player has collected all missing keys, meaning the game is complete.

1Area of effect - is a spell type found in RPG games that affect a wide area on the ground where everything
within that area takes damage/healing

24

4.3.3 World

Procedurally generated map has dimensions 512x512. Map is constructed of tiles2 that
differs by the biome and position. Some tiles can be walked on while others can not. Player
can encounter six different biomes.

• The Ocean - located around the island.

• The Ashland - located on the poles of the island.

• The Forest - region between poles and hot locations near equator.

• The Rainforest - hot, moisture biome located near center of the map

• The Desert - hot, dry biome located near center of the map alongside The Rainforest.

• The Beach - conects ocean and other terrestrial biomes.

Each biome consists of different vegetation and enemies and offers a slightly different expe-
rience. Biomes worth noting are mentioned below.

The Ashland

Biome that is located in the very north and south of the island. Player usually spawns
within this biome. The Ashland is dead land full of dried plants and bones. Vegetation
does not exist, only a few trees can be found within this biome. Enemies wandering these
lands are the Undead. They are average paced and their attacks are easy to dodge.

Figure 4.2: Player in The Ashland. Bottom left corner shows water(lava) type related to
this biome. In the right side are spawned undead enemies.

2The smallest portion of the map

25

The Forest

Usually located between The Ashland and The Rainforest of the Desert. This biome consists
of a great number of vegetation such as flowers, grasses, and trees. Tree occurrence is
common and quite dense. Skeletons are player’s enemies in this biome. They are faster
than the Undead, however, deals less damage but are more durable.

Figure 4.3: Player moving around The Forest, while being noticed by skeletons that are
ready to attack.

The Desert

The occurrence of this biome is related to high-temperature locations. This means that
this biome is usually located in the center of the island. Vegetation is similar to The
Ashland biome, however, the enemy found within this biome is called the Necromancer.
Necromancer’s attacks are hard to dodge due to the big attack range.

The Rainforest

Its occurrence is also in hot regions, meaning near the center of the island. It usually
borders The Desert and The Forest. Vegetation is very dense, especially trees. Two types
of monsters can be found within this biome. Goblin is very fast but deals little damage
while having low health points. The second type of monster is the Goblin Beast. Goblin
Beast (bottom right of the 4.5 figure) is a huge monster that is very slow-paced. Also, his
attacks are slow but deal much bigger damage. It is the most durable monster in the game.

26

Figure 4.4: The Desert biome and its emptiness. Usually located near the Rainforest.
These two biomes are exactly the opposite. While the rainforest offers a huge variety of
vegetation, the desert is extremely hot and devastated land scattered only with rocks and
sand.

Figure 4.5: Player in The Rainforest moving throught the dense forest. In the bottom right
is one of the enemies Goblin Beast. Navigate through this biome is not an easy task, and
requires to be alert all the time.

27

4.4 World generation
First of all, there must be a world to work with, for the character to walk on and enemies
to spawn within. Generating terrain requires putting random values into the heightmap as
mentioned in chapter 3.3.6. Generating all the values directly into the heightmap is not the
best idea, since the result will look too noisy.

The map is a 2D array divided into chunks and tiles. One chunk consists of 256 tiles.
Each tile stores values of height, moisture, and heat. These values are generated by the
Perlin Noise function. As mentioned, three noise maps are generated to achieve desired
world generation. Each of these maps represents different attributes of the world.

Heightmap generator attributes are frequency and exponential of the noise. The higher
the frequency, the further apart the sample points will be, which means the values will
change more rapidly. Increasing the exponential of the noise will result in samples being
more aggressive. The terrain was designed to always generate island structure, meaning the
edges of the map are naturally bordered by the ocean as shown in Figure 4.6. The altitude
of the tiles could potentially affect temperature, meaning overall biome selection, however,
this functionality did not provide sufficient results.

4.4.1 Biome generation

Generating biomes was achieved using precipitation and temperature noise maps, and their
subsequent application in the Whittaker diagram. The precipitation map represents average
rainfall. Its attributes are persistence and lacunarity. Distributing precipitation and heat
properly was a difficult task to achieve generation in sufficient form.

4.4.2 Objects and vegetation

Objects and trees are generated in a different way. Trees are generated using their own Perlin
Noise map. This map is subsequently processed, where in the specified radius (radius differs
for each biome) the highest perlin value is selected and that position is marked as a tree.
Trees do not require to be saved, because of the usage of Perlin Noise. Noise is generated
using world seed with offset, meaning trees are always placed in the same positions. Their
assigned sprites, however, have to be stored in JSON files.

Objects, on the other hand, are placed within each chunk completely randomly. An
array of tiles within the chunk is shuffled with the Fisher-Yates shuffle algorithm, and the
maximum number of objects is consequently placed. Objects require to be saved in a JSON
file for each chunk. The position of the object and its according sprite are saved for every
single object spawned within the world. A maximum number of objects for a chunk is fixed
to 20. Objects and trees pooled from the Object pool design pattern.

28

Figure 4.6: First row shows three crucial noise maps, moisture map representing average
rainfall, height map stands for altitude and heat map showing average temperature (respec-
tively). These are further merged and processed to form biomes. Second row from the left
shows world generation in early stages, while right figure shows properly generated world
with hills and cliffs.

4.5 Characters
Character sprites are basic and are 48x48 rectangular images. Each character consists
of animations, such as walking, attacking, and so forth. These animations work in four
directions. Up, down, left and right and are dependent on the current situation within the
game.

4.5.1 Movement

Each frame must be triggered in different stages to perform the animation or idle state.
Walking animations are dependent on input keys, therefore no other calculations are re-
quired. On the contrary, while dealing with mouse-related animations, the angle between
the horizontal vector and the mouse position vector is calculated to determine the proper
direction of animation to be played. This system is described on the figures 4.8 below.

The player’s anchor point is handy during this calculation. The horizontal vector moving
through the anchor is compared with the position of the mouse. As shown in Figure4.8.
This action is performed every frame within the Animation Controller script.

29

(a) Walking down animation used in the game consists of eight frames

(b) Attacking animation towards left side

(c) Kneeling animation in upwards direction is used in shield ability.

Figure 4.7: Figures shows few of many animation sprites used throughout the game. Sprites
are in PNG format, and are rendered by sprite renderer component in Unity. Animations
are done by Unity’s Animator component with appropriate controller.

Figure 4.8: Calculating angle between horizontal vector, and vector from character position
towards position of the mouse. This action is performed every on frame for each character
present in the world.

4.5.2 Skills and abilities

Player has 6 active3 abilities, and one passive4 ability to work with. Active abilities can
be divided into defensive, offensive, and utility, each usable in different scenarios offering
different effects on gameplay. Abilities are closely bounded with the HUD system described

3Active ability requires player’s interaction and usually requires player’s precise timing and skill.
4Passive Abilities are passive, always-active modifiers to either game mechanics, abilities, or hero behav-

iors.

30

in section 5.7. Each spell has assigned different cooldown time5. The remaining cooldown
time is shown on top of the ability icon after being cast. Abilities also work with the Popup
system that is described in the section 4.6, whether it means dealing damage, healing, or
absorbing damage.

Dash

Dash is a blink/movement/travel skill which causes the skill user to quickly move in the
movement direction. It is considered to be a utility skill to become more mobile. Its primary
function is to dodge attacks and travel faster. Dash can be performed by SPACE key. Has
cooldown of 5 seconds.

Shield

The shield is a defensive ability that causes to absorb incoming damage from the enemies.
While shielding character is unable to move. Shield has 100 hp and has no cooldown. The
shield can be invoked by holding RIGHT MOUSE BUTTON. After the shield is broken,
the player’s health is damaged until the shield regenerates.

Shield regeneration

The only passive ability in the game. When shield’s health points are not full and the
player is not in combat, the shield ability starts to slowly regenerate. This behavior can be
seen by observing the popup system while playing.

Heal

Heal ability is the only ability that requires the player to cast6. After cast time is done (5
seconds), the player is healed for 15 - 45 health. Heal can be cast by Q key. The player
must wait for 20 seconds before using heal again.

Tornado invocation

Instantly invokes eight tornadoes, moving in 8 directions and hurting every enemy it touches.
Tornadoes travels for 1.5 second and deals 10 damage on contact. Tornado invocation has
10 seconds cooldown. Tornado invocation can be performed by F key, followed by a left-
click.

Sword clash

Spawns swords on top of enemies within radius range and deals 12 damage. Extremely
useful when fighting multiple enemies at once. Has 8 seconds cooldown. Swords can be
cast by E key.

(a) Dash icon (b) Shield icon (c) Heal icon (d) Sword clash (e) Invocation

5The minimum length of time that the player needs to wait after using an ability or item before it can
be used again.

6Cast time - the time needed to cast a spell or ability before it takes effect

31

(a) Player casting Sword clash ability on necro-
mancer enemy entity. Both are within range of
the spell.

(b) Showcase of tornado invocation. Tornadoes
will travel further away from player in spawned
directions.

(c) Player after casting Heal. As popup (de-
scribed in 4.6) indicates, player is being healed
for 44 points, and must wait for 20 seconds as
shown in the HUD.

(d) Player absorbing necromancer’s attack by us-
ing shield ability. Popup shows that damage is
being absorbed. Shield health is show in the bot-
tom right.

Figure 4.10: Showcase of four abilities throughout gameplay, each used in different situation
and biome.

4.6 Combat and gameplay
The gameplay experience is the most important part of the game. The biggest part of
the gameplay is to encounter enemies and defeat them. The main parts of the combat
system are health system and multiple active and passive abilities required to use in order
to progress. Targeting system, abilities, and enemy design are closely described below.

4.6.1 Enemy design

While playing the game, player has to overcome some obstacles to keep entertainment.
For this purpose enemies were designed. Enemy entities do spawn on every loaded chunk,
however, their spawn number is random in a predefined range. There might be zero enemies
within the loaded chunk. Enemy entities are designed in melee7 combat only. Each enemy
has a predefined range of attack damage, health points, movement speed, attack speed, and
attack range. Each enemy is also assigned to spawn in a specific biome. Special kind of
enemy is cultist. This entity only spawns in swarms near the keystones to defend it.

7Any combat that involves directly striking an opponent at ranges generally less than a meter, especially
using martial arts or melee weapons

32

Behavior of the enemy is based on random values. After spawning, enemy entity starts
to wander in various directions, but still remains near its spawn point. If player’s character
comes closer, pathfinding algorithm calculates the closest path from the entity’s position
to the player’s position and it starts to follow. If an enemy is close enough to the player
(distance differs by the actual enemy) pathfinding stops and the entity starts to attack. If
for some reason, the player is no longer within aggro radius8, the enemy will follow until
the last known position.

Health and combat system

To be able to actually implement a combat system, the health system has to be present.
Health is an attribute that determines the maximum amount of damage that a character
can take before dying. Each entity has a health bar attached to it to be able to perform
combat actions. The Health system and targeting system are closer described in chapter
5.2. If entities health drops to 0 it is considered to be dead and no longer a threat.

Targeting system requires a direction vector from the player towards the mouse position
to be calculated. Afterward, attack animation is played. To handle multiple enemies near
the player, the relation between the closest enemy to the player and the mouse position is
used. Working example is shown in Figure 4.11.

Figure 4.11: Player performing basic attack on entity. Health bar is visible above entity’s
head, and popup system shows actual damage amount dealt to the entity.

8The distance at which the entity will attack

33

4.7 Menu and HUD
The menu and heads-up display are the two most important parts of the UI9 in the game.
It is also responsible for navigating the player through multiple scenes and saved games.
The player is also able to stop the game while playing with the ESCAPE button, leading
to the pause menu.

After launching the game, the first thing that the player will encounter is the main
menu scene. This menu consists of three buttons to play a game, load a game and quit a
game. The next thing on the screen is the seed slider. This slider determines the seed of
the world when selecting the play button. Saved games are located underneath the load
button. This scene includes every saved game divided by the seed number. Custom names
for the saves are not supported, meaning the player has to remember the seed number in
order to load the correct game. The main menu can be seen in Figure 2.6 in the overview
chapter.

The heads-up display(HUD), is the most noticeable part of the UI during gameplay.
HUD consists of the player’s health bar. Shield’s health bar is visible during activation of
the shield. The biggest part of the HUD is the action bar. The action bar consists of usable
abilities and their responsive cooldowns. After the usage of any of the usable abilities, the
ability icon is grayed out, and the cooldown number in seconds is displayed instead. If an
ability is ready once again, the player will be alerted with the corresponding sound, and
the icon within the HUD is grayed out no more. HUD, alongside other things, is visible in
Figure 4.12.

Figure 4.12: Shows a screenshot taken from the game. The figure contains descriptions
of individual parts of the UI and the game itself. Figure is in the exploded-view format
describing the scene composition and relation between the UI and the game. Player’s health
bar, action bar, objective guidance and shield’s health bar are considered as HUD.

9User Interface

34

Chapter 5

Implementation

This chapter contains information about the implementation of the game, as the develop-
ment progressed multiple problems to solve naturally occurred. The game was implemented
in Unity Engine version 2021.2.13.f1, which offers a choice between UnityScript and C#
languages. C# language was chosen for its huge variability and integration, and huge sup-
port throughout the developers‘ community. Also, Unity announced they are deprecating
UnityScript, and will no longer be supported.

As mentioned the whole game was implemented in C# language and was handwrit-
ten. No external script assets were used and the main source of information was Unity’s
documentation. Visual Studio Code was primary IDE1 for its great integration with C#
language and Unity Engine.

The game itself and its components were solved in multiple stages. These stages are
chronologically mentioned in this chapter as they were implemented. Starting with the
implementation of the world and its optimization, followed by the implementation of the
player’s movement around the world and basic attacks. Afterward designing the enemies
and implementing the health system followed by HUD2 and menus. Lastly, implementation
of sounds and visual effects was made to enhance the gameplay experience. Rough structure
of the game is shown in Figure 5.1.

1Integrated development environment is software for building applications that combines common devel-
oper tools into a single GUI.

2Heads up display - details of the player visible in the screen

35

Figure 5.1: Shows game and its components in block scheme. Figure also shows each
component’s main implementation source. Some components are implemented purely by
using C# language, such as Sound manager and Save manager. In particular Save manager
benefits from System’s JSON serialization. Others derivated directly from MonoBehaviour
3 and are attached to GameObjects. Health system and Enemy controller on the other
hand, utilizes both System libraries as well as MonoBehaviour provided by Unity Engine.

36

5.1 Map controller
As mentioned several times, map is procedurally generated with the usage of Perlin Noise,
which is further processed and modified to match the desired output. The detailed process
of the whole generation is described below. Perlin Noise is implemented in Unity’s Mathf
library.

Processing the noise

Beginning in the ChunkGenerator class, three Perlin noise maps are generated, one
representing height, while other two representing moisture and temperature of the world.
Each map is generated with different parameters but with the same world seed to generate
non-identical results.

Height map is further processed in MakeIslandMask method (algorithm can be found
here: 1), which is responsible for cutting out corners of the map, while moisture map is
populated ordinarily. After this process, height noise values on the edges of the map
are approximating zero, resulting in generating a square-like island as shown previously in
Figure 4.6. Temperature map is constructed in gradient structure. The highest temperature
is near the center while approaching the north and south edges of the map, temperatures
drop to cold values. This transition is done by simple calculation 5.1 and should imitate
the earth’s temperature conditions.

ℎ𝑒𝑎𝑡 =
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

𝑚𝑎𝑝_ℎ𝑒𝑖𝑔ℎ𝑡
2

* 𝑡𝑒𝑚𝑝𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
𝑡𝑒𝑚𝑝_𝑙𝑜𝑠𝑠 (5.1)

𝑑← 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐸𝑑𝑔𝑒(𝑥, 𝑦);
if 𝑖 < 𝑚𝑖𝑛𝐼𝑠𝑙𝑎𝑛𝑑 then

𝑙𝑎𝑛𝑑𝑚𝑎𝑠𝑠← 𝑓𝑎𝑙𝑠𝑒;
return 0; /* outside of desired island, return height 0 */

else
if 𝑑 ≥ 𝑚𝑎𝑥𝐼𝑠𝑙𝑎𝑛𝑑 then

𝑙𝑎𝑛𝑑𝑚𝑎𝑠𝑠← 𝑡𝑟𝑢𝑒;
return 𝑜𝑙𝑑𝑉 𝑎𝑙𝑢𝑒; /* return generated height */

else
𝑓𝑎𝑐𝑡𝑜𝑟 ← 𝐺𝑒𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝑥, 𝑦);
if (𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑜𝑙𝑑𝑉 𝑎𝑙𝑢𝑒) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑙𝑎𝑛𝑑𝑚𝑎𝑠𝑠← 𝑡𝑟𝑢𝑒;
else

𝑙𝑎𝑛𝑑𝑚𝑎𝑠𝑠← 𝑓𝑎𝑙𝑠𝑒;
end
return 𝑜𝑙𝑑𝑉 𝑎𝑙𝑢𝑒× 𝑓𝑎𝑐𝑡𝑜𝑟; /* return if tile is solid or not */

end
end

Algorithm 1: MakeIslandMask method for island structure (simplified). This
method is called for every single tile on the map.

Generated heat, height, and moisture maps are subsequently merged. By merging their
values, each tile can be assigned a biome to distinguish diverse parts of the map. For that
purpose, BiomePreset 5.2 was designed. Results are shown in Figure 5.3a.

37

(a) Perlin noise attributes for world generation. (b) BiomePreset class in Unity’s inspector.

Figure 5.2: Shows Unity’s interface with two different windows. Figure 5.2a is script com-
ponent attached to the Map GameObject that contains attributes for ChunkGenerator’s
generating method. Each attribute affects generation in different manner. For example in-
creasing frequency of the height, will result in more hilly terrain. Figure 5.2b shows preset
instance of the class editable in the inspector panel. Each biome is based on this class.
Tiles that meets these requirements, will be evaluated as Rainforest biome.

Evaluating noise into tiles and map

TDMap class represents map structure, while tile is the smallest portion of the map that is
represented by TDTile class. According to specified criteria of the biome (such as these for
the Rainforesh 5.2b), each tile’s biome is evaluated. Rules for determining corresponding
biome are minimum and maximum values of height, moisture and temperature as shown
in Figure 5.2b. Decision of which biome should be assigned to each tile, is done by Eu-
clideanDistance method within BiomePreset class. This method simply uses 5.2 formula,
for calculation of Euclidean distance between generated values of the tile and each biome’s
preset values. Shortest distance is then assigned as final biome. Results are quite satisfying
and can be seen in Figure 5.3a.

𝑑 =
√︀
(𝑛𝑜𝑖𝑠𝑒𝐻𝑒𝑎𝑡− 𝑏𝑖𝑜𝑚𝑒𝐴𝑣𝑔𝐻𝑒𝑎𝑡)2 + (𝑛𝑜𝑖𝑠𝑒𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒− 𝑏𝑖𝑜𝑚𝑒𝐴𝑣𝑔𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒)2 (5.2)

Optimization

The current map size is fixed to 512x512 tiles, however, this number could be potentially
infinite. Rendering the whole map is also a waste of resources, and generating that many
GameObjects for every single tile would be a huge performance drawback, that is why
chunks and object pools were implemented.

One chunk is represented by WorldChunk class that hold crucial information about
chunk itself. It has attached mesh component, that is divided into 32x32 quads. Chunk
GameObjects are called ChunkPrefab with ChunkCreator script component attached
to it as shown in Figure 5.3a. This script is responsible for dividing and texturing the mesh.
Specifically CreateTileMesh method is responsible for calculating uv coordinates for every
single tile and set proper textures for each quad. This resulted in huge performance boost
when creating single GameObject whereas before 1024 were required. Single ChunkPrefab
GameObject, and its mesh divided into quads can be seen in Figure 5.3b.

38

Another performance boost was achieved by implementing the object pool interface.
Instead of constantly instantiating and destroying GameObjects, a pool of objects is created
in the beginning, and periodically are being loaded and unloaded into the scene. This system
is also extremely useful later on when dealing with entities and vegetation.

With player moving around the world, chunks and their contents are regularly being
loaded and unloaded depending upon the player’s position.

(a)

(b)

Figure 5.3: Figure 5.3b presents fully rendered map with chunk loading turned off. Map
consists of 256 chunks. One chunk GameObject is highlighted, while on the right side in
inspector window are its attached components. In Figure 5.3b single ChunkPrefab GameOb-
ject is rendered in wired view. Individual quads of the mesh are visible.

39

5.2 Health system
Health system is fundamental part of the combat. System is built in two part. First is
HealthSystem class that is defines basic behaviour for the system as shown in structure 2.

Class HealthSystem contains
// notifies observers about health being changed
event EventHandler<ShieldEventArgs> OnHealthChanged;
int health;
int healthMax;
void HealthSystem(int maxHealth);
void SetHealth(int amount);
int GetHealth();
void Damage(int damageAmount);
void Heal(int healAmount);
void HealMax();
float GetHealthPercent();

end
Algorithm 2: Health system class (simplified). Attributes and methods are self-
explanatory. OnHealthChanged notifies all subscribers that the health of this instance
changed. Subscriber is HealthBar attached to entity.

Second part consists of HealthBar GameObject. This GameObject has multiple child
GameObjects to perform tasks required as shown in Figure 5.4. Its only job is to show
the player current health status of each entity. Every health-related tasks are performed
only by the HealthSystem, which relies on C#’s events to notify HealthBar when change
to health occurs. ParticleSystem component is also attached to enhance visuals when the
entity is damaged by imitating blood.

Figure 5.4: HealthBar GameObject’s structure in Unity Inspector. This GameObject is
instantiated alongside with each entity(player included). HealthBar and ParticleSystem
components are also attached as show in the bottom left.

40

5.3 Player Controller
Player controller consists of multiple components as shown in Figure 5.7. Each handles
different problems encountered during the development stage.

The Player has attached the Rigidbody 2D component which is responsible for physics
related to 2D sprites. This component is used mostly for all movement-related work. Move-
ment is done simply by Unity’s input listeners in Update() function meaning for each frame
input key is checked, whether it is pressed down or not. Physics-related work is done in
frame-rate independent FixedUpdate() method designed for physics calculations. Simple
movement is done by:

𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦2𝑑.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑚𝑜𝑣𝑒𝐷𝑖𝑟 *𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑;

Animation Controller is responsible for all animations related to characters. Funda-
mental part is system described previously in chapter 4.8. One of Player GameObject’s
children is AggroCollider. It is responsible for enemies within range to attack the player.
Method OnTriggerEnter2D() is attached to CircleCollider2D with specified radius. If
entity triggers this event, observer pattern is used and entity subscribes to player. This
solution is performance-wise extremely effective.

(a) Enemy is out of collider. (b) Enemy within collider. (c) Enemy attacking.

Figure 5.5: Shows functionality of AggroCollider component. In Figure 5.5a enemy is not
interested in player, since it is out of radius. On the other hand, in Figure 5.5b enemy has
triggered OnTriggerEnter2D and started A* pathfinding towards player. Figure 5.5c shows
that enemy has reached player and starts to attack.

When facing multiple enemies around player, targetting correct one is important. This
is achieved by using GetClosestPosition(attackPosition, attackRange) method within Ene-
myController script which is basic sequential search.

Abilities

Dash ability works with movement. Main implementation is in Dash() method in the
PlayerController script (pseudo-code shown in 3). During dash ability player becomes
invincible. This is achieved by BecomeTemporarilyInvincible() coroutine, which lasts
for dashes duration. If the player is attacked during this time period, a miss will occur
instead of damage dealt. Ability is also controlled in terms of irregular dashes. Such as

41

Method Dash is
𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒(𝐵𝑒𝑐𝑜𝑚𝑒𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦𝐼𝑛𝑣𝑖𝑛𝑐𝑖𝑏𝑙𝑒());
𝑑𝑎𝑠ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛← 𝑝𝑙𝑎𝑦𝑒𝑟𝑃𝑜𝑠+ 𝑑𝑖𝑟 * 𝑑𝑎𝑠ℎ𝐴𝑚𝑜𝑢𝑛𝑡;
if 𝐶ℎ𝑒𝑐𝑘𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑑𝑎𝑠ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) == 𝑓𝑎𝑙𝑠𝑒 then

𝑆𝑜𝑢𝑛𝑑𝑀𝑎𝑛𝑎𝑔𝑒𝑟.𝑃 𝑙𝑎𝑦𝑆𝑜𝑢𝑛𝑑(𝑆𝑜𝑢𝑛𝑑.𝐸𝑟𝑟𝑜𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑃𝑜𝑠);;
return

else
𝑟𝑎𝑦𝑐𝑎𝑠𝑡← 𝑃ℎ𝑦𝑠𝑖𝑐𝑠2𝐷.𝑅𝑎𝑦𝑐𝑎𝑠𝑡(𝑝𝑙𝑎𝑦𝑒𝑟𝑃𝑜𝑠, 𝑑𝑖𝑟, 𝑑𝑎𝑠ℎ𝐴𝑚𝑜𝑢𝑛𝑡);
if 𝑟𝑎𝑦𝑐𝑎𝑠𝑡 ̸= 𝑛𝑢𝑙𝑙 & 𝑢𝑖𝐻𝑎𝑛𝑑𝑙𝑒𝑟.𝐷𝑎𝑠ℎ𝐶𝑜𝑜𝑙𝑑𝑜𝑤𝑛() then

𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦2𝑑.𝑀𝑜𝑣𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑟𝑎𝑦𝑐𝑎𝑠𝑡.𝑝𝑜𝑖𝑛𝑡);
𝑆𝑜𝑢𝑛𝑑𝑀𝑎𝑛𝑎𝑔𝑒𝑟.𝑃 𝑙𝑎𝑦𝑆𝑜𝑢𝑛𝑑(𝑆𝑜𝑢𝑛𝑑.𝐷𝑎𝑠ℎ, 𝑝𝑙𝑎𝑦𝑒𝑟𝑃𝑜𝑠);
𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦2𝑑.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ← 𝑑𝑎𝑠ℎ𝐷𝑖𝑟 * 𝑑𝑎𝑠ℎ𝐴𝑚𝑜𝑢𝑛𝑡;

end
𝑆𝑜𝑢𝑛𝑑𝑀𝑎𝑛𝑎𝑔𝑒𝑟.𝑃 𝑙𝑎𝑦𝑆𝑜𝑢𝑛𝑑(𝑆𝑜𝑢𝑛𝑑.𝐸𝑟𝑟𝑜𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑃𝑜𝑠);;
return

end
end

Algorithm 3: Dash method (simplified). Thes method is called after SPACEBAR is
pressed. If dash can not be performed because of wrong landing position or cooldown,
SoundManager notifies the player by error sound. Dash itself is executed by adding
velocity.

dashing into the obstacles or over the cliff. RayCast2D is used to determine dash landing
location, so if raycast hits a collider, the position is set into collision position.

Shield attaches another HealthBar instance to the player. While shield is active, its
HealthSystem is taking damage instead of the player’s main health. Shield’s visuals are
achieved by using Unity’s Particle system and Shader Graph. A particle system is bound
on RIGHT MOUSE hold to start emitting emissions, creating shield’s visual effect. Also,
shield’s HealthBar is visible in HUD during the shield’s activate period.

Tornado Invocation ability is simple ability with 2 stages. After pressing bound
hotkey4, the script enters the first stage that acts as guidance. This stage uses Unity’s
Line Renderer component to expose trajectories of tornadoes about to spawn. After using
left mouse click in this stage, tornadoes will invoke and start moving in their predefined
patterns.

Sword Clash is also a simple offensive AOE ability. Main part of functionality is
handled by the GetEntitiesWithinRadius() method, which after passing position and
radius returns list of entities. Afterwards, each entity is damaged, followed by instantiating
sword GameObjects on top of each entity.

4a key or a combination of keys providing quick access to a particular function within a computer program.

42

Figure 5.6: Shield’s Shader Graph attached to Particle System component in shield
GameObject. Shader Graph acts as particle as its emmision creates desired visual ef-
fect. Fresnal effect on the left, is the effect of differing reflectance on a surface depending
on viewing angle. Blend node in the center blends two normal maps defined by inputs
together, normalizing the result to create a valid normal map. In this case Fresnal effect is
base and defined color is second input resulting in final bluish bubble effect.

Figure 5.7: Shows player and all related components attached. Animation Controller is
responsible for animating the sprites in various situations. Camera Controller is supposed
to makek sure that camera always follow player. Combat mostly consist of usage of Health-
System and implementation of abilities.

43

5.4 Enemy Controller
Enemy has similar components and attributes as player. Entity GameObject consists of
Rigidbody2D to simulate physics and CapsuleCollider2D to specify entity’s body size. An-
imations are handled by AnimationController script.

EntityPreset is ScriptableObject5(as well as BiomePreset), holding data about each
individual enemy. Enemies are instantiated in ObjectPools within each chunk. When acti-
vating chunk and its contents (enemies included), Unity’s OnEnable() function is called.
OnEnable is used to instantiate entity’s HealthBar and set proper data from EntityPreset.
EntityPreset’s contents are shown in Figure 5.8a.

(a) EntityPreset example in Unity’s inspector. (b) Entity GameObject’s attached components.

Figure 5.8: Shows two separate windows in inspector. Figure 5.8a shows ScriptableObject
defined for goblin entity that is further used in EnemyController script to properly set
attributes for every enemy type. Figure 5.8b shows all necessary components for enemy to
work.

Enemy behavior

InAggroRadius is an important event related to AggroCollider mentioned above. Ene-
mies are spawned on top of the random spawnable tile within the chunk. Behaviour is based
on a simple cycle. If an entity is not InAggroRadius, a random tile near its spawn point
is selected for the entity to wander towards. After the entity reaches the selected tile, a
random quantum of time is selected for entity to observe. This cycle repeats until the entity
is not in an aggressive state. If entity is InAggroRadius, A* pathfinding algorithm starts
navigating towards player’s position (shown in Figure 5.5). New path is being calculated
continuously throughout InAggroRadius is subscribed. The enemy tries to avoid obstacles
such as trees or stones along the way, with simple obstacle avoidance detection using ray-
casts. This system could do much better, but time shortage required it to be implemented
in a very simple and not the most effective way. After InAggroRadius unsubscribes from
the player, the latest known position is reached, and the entity starts to wander once again.
A* pathfinding is optimized with a heap data structure.

5Data container used to save large amounts of data, independent of class instances.

44

5.5 Sound and visual effects
SoundManager class is responsible for managing all the sounds in the game. Basic sounds
are played by the PlaySound() method which basically instantiates the GameObject and
uses PlayOneShot() function attached to the AudioSource component. Simple sound effect
such as attack sound or hit sound shares 1 GameObject since it is not necessary to spawn
each sound individually.

More complex sounds, such as walking requires a sound collision check. CanPlaySound()
method does exactly that. For a given delay, SoundManager checks, whether the given
sound was played within the specified offset or not. SoundManager also handles looping
the main music. Looping short simple sounds, such as casting heal, was implemented using
coroutine. SoundManager is also capable of playing 3D sound when provided the position
of the object. When the game launches, the main menu theme starts to loop, as soon as a
specific map is loaded the main theme is continuously looped instead.

DamagePopup

To enhance HealthSystem’s feedback to player, DamagePopup system was implemented. It
is a simple GameObject with text mesh attached to it indicating damage or healing done
to the entity. This system is visible in most combat-related figures shown previously such
as 4.11. DamagePopup system instantiates GameObject, alters the text mesh component
attached to it with custom color and string. Afterwards GameObject has movement and
disappear effect implemented in DamagePopup script.

Unity’s Particle system was heavily used in terms of visual effects. Particles occur
during dealing damage, usage of the shield and dash abilities, and in the main menu scene.

Figure 5.9: Shows DamagePopup GameObject being instantiated when dealing damage to
the necromancer entity. Instantiated GameObject will last for 1 second, slowly moving and
eventually disappears before destroying the GameObject occurs. Little sound icon on top
of the necromancer indicates, that the SoundManager has played hurt sound effect of the
enemy.

45

5.6 Save System
SaveSystem class is handling IO system operations when saving and loading data. Class
is written without derivating from Monobehaviour provided by Unity. It is core component
for any reading or writing in to the memory, and consists of two main methods Save() and
Load(). Writing and reading is handled using File class provided by System.IO library.

GameHandler class, on the other hand, is directly attached to Unity. This class is
among other things, responsible for saving data directly from the game. Two main methods
Load() and Save() are implemented as generic methods, meaning any class provided to
them can be saved or loaded from the memory. Provided classes must meet serialization
requirements (attributes such as int2 provided by Mathf library are not serializable and
can not be used).

The file format for storing and reading data is JSON6. JSON proved to be the best
solution since pure byte writing caused much more limitations when serializing. Saved data
are divided by the world seed number, and each chunk is saved individually.

Class [System.Serializable] SavePosition contains
Vector3 position;
int healthAmount;
int shieldAmount;

end
Algorithm 4: Class for saving and loading data related directly to player character.
This class is passed into the generic Load() or Save() methods in the GameHandler.

Method T Load<T> is
𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔 ← 𝑛𝑢𝑙𝑙;
if 𝑐𝑜𝑜𝑟𝑑𝑠 ̸= 𝑛𝑢𝑙𝑙 then

𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔 ← 𝑆𝑎𝑣𝑒𝑆𝑦𝑠𝑡𝑒𝑚.𝐿𝑜𝑎𝑑(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑠𝑒𝑒𝑑, 𝑐𝑜𝑜𝑟𝑑𝑠);
else

if 𝑜𝑏𝑗𝑒𝑐𝑡 == 𝑂𝑏𝑗𝑡𝑦𝑝𝑒.𝐾𝑒𝑦𝑂𝑏𝑗𝑒𝑐𝑡 then
𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔 ← 𝐾𝑒𝑦𝑂𝑏𝑗𝑒𝑐𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟();

else
𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔 ← 𝑆𝑎𝑣𝑒𝑆𝑦𝑠𝑡𝑒𝑚.𝐿𝑜𝑎𝑑(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑠𝑒𝑒𝑑);

end
end
𝑟𝑒𝑡𝑉 𝑎𝑙← 𝑑𝑒𝑓𝑎𝑢𝑙𝑡(𝑇);
if 𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔 ̸= 𝑛𝑢𝑙𝑙 then

𝑟𝑒𝑡𝑉 𝑎𝑙← (𝑇)𝐽𝑠𝑜𝑛𝑈𝑡𝑖𝑙𝑖𝑡𝑦.𝐹𝑟𝑜𝑚𝐽𝑠𝑜𝑛 < 𝑇 > (𝑠𝑎𝑣𝑒𝑆𝑡𝑟𝑖𝑛𝑔);
end
return retVal;

end
Algorithm 5: Generic Load method in GameHandler class. Generic method is used
for multiple types of classes (such as 4) being stored throughout the game. Method
uses SaveSystem to read data from given files, then serializes to JSON from using
JsonUtility.

6JSON (JavaScript Object Notation) is an open standard file format and data interchange format that
uses human-readable text to store and transmit data objects consisting of attribute-value pairs and arrays
(or other serializable values)

46

5.7 User interface
Most of the user interface is implemented with the usage of Unity’s UI library. This library
provides basic elements, such as canvases, buttons, and sliders. Heads-up display is closely
related to ability usage. Ability and its cooldown are bound to the corresponding icon.
UIButton script is responsible for handling usage feedback toward the player. If the ability
is recharging, the UIButton script displays a gray overlay over the icon with a countdown.
Also if the player tries to use the ability during this time period, it responds with an
error sound from the SoundManager . This behavior is implemented using coroutines.
Another important script is UIHandler which is attached to the user interface, and bound
individual icons with it. It consists of getting properties for each button’s cooldown.

The heads-up display is enhanced with a guidance locks. Each lock is bound to a specific
Keystone and is pointing towards it. This is implemented with simple position subtraction
and usage of the inverse angle formula.

Method GetAngleFromVectorFloat is
𝑑𝑖𝑟 ← 𝑑𝑖𝑟.𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑;
𝑛←𝑀𝑎𝑡ℎ𝑓.𝐴𝑡𝑎𝑛2(𝑑𝑖𝑟) *𝑀𝑎𝑡ℎ𝑓.𝑅𝑎𝑑2𝐷𝑒𝑔;
𝑖𝑓(𝑛 < 0)𝑛← 𝑛+ 360;
return n;

end
Algorithm 6: Conversion from passed vector to angle with the usage of inversion.
Returns the amount of rotation from the first vector to the second vector. This vector
is passed as a single argument called dir representing direction.

Figure 5.10: shows quest arrow pointing towards objective in the heads-up display. Ques-
tUIPointer script is attached to every arrow to perform calculations mentioned in algo-
rithm 6.

Menus also work on top of components provided by Unity.UI library. SceneLoader
script is responsible for asynchronously load game scene from start menu. This is per-
formed with Unity.SceneManager. LoadSceneAsynchronously() method is responsible
for loading the scene, while indicating to user progress bar. This is achieved using coroutine
in combination with AsyncOperation.

47

Chapter 6

Testing and evaluation

Testers were given the final product to evaluate the game quality and usability, to enhance
gameplay outcomes, such as playability and enjoyment. Setting proper values for various
attributes was also the goal of the testing process. Such as setting enemy health points,
damage, ability cooldowns, and similar values. Also, the goal of testing was to make sure
that every map seed is properly, so no impossible maps to finish will occur. Testing was
done on five respondents. Each of them was given alongside the game, six questions to
answer. The questions were:

Please evaluate the following
1a. Fun factor horrible 2—2—2—2—2—2 fantastic
1b. Visual and music horrible 2—2—2—2—2—2 fantastic
1c. Replayability horrible 2—2—2—2—2—2 fantastic
2. Do you think it has potential to become fully finished game?

2 Yes.
2 No, the game lacks identity and is boring.
2 Not sure.

3. What do you think would enhance the game the most?
2 Levelling system
2 Story
2 Boss fights
2 New combat possibilities (long range, magic etc.)
2 Other:

4. Overall did you enjoy the game? 2 absolutely 2 not really because:

5. Difficulty easy 2—2—2—2—2 hard
6. Is the game challenging to finish?

2 Yes.
2 No.
2 Reasonable.

6c. How is your enjoyment of the game when losing?
horrible 2—2—2—2—2 fantastic

48

Alongside these questions, testers have provided multiple bug occurrences that required
fixing.

Reviews have shown, that the game is rather fun to play. Respondents complained about
the lack of boss fights, however, the overall gameplay experience was satisfying. Each
respondent showed a different enhancement preference. While 2 of them preferred boss
fights, leveling system, story, and new combat possibilities also received implementation
preference respectively. Visuals and music received very positive ratings. Replayability
ended up right in the middle and could be enhanced much more with a variety of systems.
The map although procedurally generated follows a specific predictable pattern. Reviews
have shown that when a player is losing, game tends to become frustrating. The game is
quite fast paced, so fast reactions are sometimes crucial for the enjoyment of the game.
Several respondents claim that the game feels like a demo and has great potential to be
upgraded with several concepts to fulfill it.

49

Chapter 7

Conclusion

The main objective of this thesis was to create a fully functional 2D procedural game. For
this purpose Unity Engine was used for its huge advantages for development in small teams.
Unity also provides amazing documentation and incredible community.

Game development is an enormous industry with various totally different products.
Knowing this, the first step was to consolidate the idea of the final product. Procedural
generation of the world was the first step of development. Various methods for a procedural
content world were studied and taken into account. Implementation with the usage of noise
functions and their subsequent processing was considered to be the right choice. The cre-
ation of a world that somehow meets expectations was not an easy task and took enormous
time. Optimization of the world was not ideal and required to put some work. Dividing the
world into chunks, and usage of the object pool design pattern was the right thing to do.
However, this caused the implementation of multiple aspects to be much more complicated.
This allowed for an incredible procedural generation knowledge acquisition. During this
process, a study of the engine itself was a big part to understand how complicated game
development actually is. After map generations proved to meet the requirements, character
to walk on the map was required. Unity provides great tools to simulate physics and handle
user inputs. This task was significantly easier to implement, maybe due to the time spent
in the engine itself while dealing with the world generation. The next step was to design
the obstacles for the player. The way that enemies are designed has a significant bearing
on gameplay. Knowing this and knowing that the world has multiple unmistakable regions,
enemies had to be designed in a way that the difficulty throughout the world slightly differs.
That is why multiple enemies were implemented and preset for each biome. Because the
world has multiple height levels, enemies had to be enhanced with a pathfinding algorithm.
A* proved to be the right choice since it is widely used in the game development industry.
To give the game the RPG genre feeling, the damage had to be popping out while dealing
damage. This system was implemented alongside the health and combat system after de-
signing the enemies. Experience gained before has come in handy since these systems were
implemented significantly faster. Main development ended with a user interface, sound
manager, and menu system followed by bug fixing. Alongside problems mentioned earlier,
linear algebra-related problems were the main logical obstacles to solve.

The purpose of this thesis was to create a 2D RPG game as close to the final product
as possible. Time pressure caused multiple systems to be skipped, such as leveling system,
inventory, and item system, and similar. Also, a dialogue system and basic plot could be
implemented and would fit the game concept perfectly. In the end, the thesis proved that

50

a single person is able to create a simple procedurally generated RPG game in matter of
months.

51

Bibliography

[1] Axon, S. Unity at 10: For better—or worse—game development has never been
easier [online]. 2016 [cit. 2022-1-27]. Available at:
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-
development-has-never-been-easier/.

[2] Belda Calvo, L. de. Study of procedural terrain generation in plain and spherical
surfaces. 2021. Master’s thesis. LAB University of Applied Sciences & Universitat
Politécnica de Valencia (UPV).
Https://www.theseus.fi/handle/10024/505164?show=full.

[3] Bevins, J. Libnoise glossary [online]. 2003 [cit. 2022-4-23]. Available at:
http://libnoise.sourceforge.net/glossary/#persistence.

[4] Bossom, A. and Dunning, B. Video Games: An Introduction to the Industry. 1st
ed. December 2015. ISBN 9781472567116.

[5] Fandom. World Generation. 2022. Available at:
https://dontstarve.fandom.com/wiki/World_Generation.

[6] Lisbdnet.com. What Factors Determine Biomes? [online]. December 20, 2021 [cit.
2022-4-21]. Available at: https://lisbdnet.com/what-factors-determine-biomes/.

[7] Meuneir, N. Don’t Starve Review [online]. 2014 [cit. 2022-1-28]. Available at:
https://www.gamespot.com/reviews/dont-starve-review/1900-6407882/.

[8] Oxford. World Encyclopedia. 1st ed. Philip’s, 2004. ISBN 9780199546091.
Available at: https://www.oxfordreference.com/view/10.1093/acref/
9780199546091.001.0001/acref-9780199546091.

[9] Shaker, N., Togelius, J. and Nelson, M. J. Procedural Content Generation in
Games: A Textbook and an Overview of Current Research. 1st ed. Springer, 2016.
ISBN 978-3319427140.

[10] Steffano, V. The Many Different Types of Video Games & Their Subgenres
[online]. iD Tech, 2018 [cit. 2022-5-1]. Available at:
https://www.idtech.com/blog/different-types-of-video-game-genres.

[11] Technologies, U. Unity User Manual 2021.3 (LTS). 2022. Available at:
https://docs.unity3d.com/560/Documentation/Manual.

[12] Thorn, A. Game engine design and implementation. 1st ed. Sudbury, Mass. : Jones
& Bartlett Learning, 2011. ISBN 978-1-4496-5648-5.

52

https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
http://libnoise.sourceforge.net/glossary/#persistence
https://dontstarve.fandom.com/wiki/World_Generation
https://lisbdnet.com/what-factors-determine-biomes/
https://www.gamespot.com/reviews/dont-starve-review/1900-6407882/
https://www.oxfordreference.com/view/10.1093/acref/9780199546091.001.0001/acref-9780199546091
https://www.oxfordreference.com/view/10.1093/acref/9780199546091.001.0001/acref-9780199546091
https://www.idtech.com/blog/different-types-of-video-game-genres
https://docs.unity3d.com/560/Documentation/Manual

[13] Watkins, R. Procedural Content Generation for Unity Game Development. 1st ed.
Packt Publishing, 2016. ISBN 1785287478.

[14] Whittaker, R. H. Communities and ecosystems. 2nd ed. Macmillan, 1975. ISBN
0-02-427390-2.

53

	Introduction
	Overview
	Games with similar concepts
	Diablo
	Don't Starve

	Game presentation

	Theory
	Video games
	Genres

	Game engines
	Unity Engine

	Procedural Content Generation
	What is content?
	Deterministic or stochastic approach
	Requirements for PCG solution
	Random number generators
	Noises
	Procedural world generation

	Solution Design
	Concept
	Scope definition
	Game rules
	Controls
	The main quest
	World

	World generation
	Biome generation
	Objects and vegetation

	Characters
	Movement
	Skills and abilities

	Combat and gameplay
	Enemy design

	Menu and HUD

	Implementation
	Map controller
	Health system
	Player Controller
	Enemy Controller
	Sound and visual effects
	Save System
	User interface

	Testing and evaluation
	Conclusion
	Bibliography

