
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CHAOS TESTING OF THE STRIMZI PROJECT USING
THE LITMUS PLATFORM
TESTOVANIE PROJEKTU STRIMZI S VYUŽITÍM CHAOSU A PLATFORMY LITMUS

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. HENRICH ZRNČÍK
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNÁR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Master's Thesis Specification

Student: Zrnčík Henrich, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Information Systems and Databases
Title: Chaos Testing of the Strimzi Project Using the Litmus Platform
Category: Software analysis and testing
Assignment:

1. Familiarise yourself with principles of Chaos engineering and tools supporting it, especially
the Litmus platform.

2. Get acquainted with the Kubernetes, Apache Kafka, and Strimzi projects.
3. Design scenarios for chaos testing of the Strimzi project, including both already known

possible experiments (such as deleting pods or network failures) as well as new ones
designed specifically for Strimzi/Kafka.

4. Implement the proposed scenarios.
5. Using the implemented scenarios, perform experiments with a deployment of the Strimzi

project that will simulate a production environment of its users.
6. Discuss the obtained results and their possible improvements.

Recommended literature:
1. Poulton, N.: The Kubernetes Book. Independently published, 2017. ISBN 978-1521823637.
2. Narkhede, N., Shapira, G., Palino, T.: Kafka, The Definitive Guide. O'Reilly Media, 2017.

ISBN 978-1491936160.
3. Rosenthal, C., Jones, N.: Chaos Engineering: System Resiliency in Practice. O'Reilly

Media, 2020. ISBN 978-1492043867.
4. LitmusChaos Authors: Litmus 2021, available online at https://docs.litmuschaos.io/. [checked

Oct. 29, 2021]
5. Strimzi Authors: Strimzi -- Apache Kafka on Kubernetes, available online at https://strimzi.io/

. [checked Oct. 29, 2021]
6. Red Hat, Inc.: Red Hat OpenShift, available online at https://www.openshift.com/. [checked

Oct. 29, 2021]
Requirements for the semestral defence:

The first two items of the assignment and at least some work on the third item.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomáš, prof. Ing., Ph.D.
Consultant: Stejskal Jakub, Ing., RedHatCZ
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24687/2021/xzrnci00 Page 1/1

Abstract
The last decade in software engineering has seen a trend towards automation and abstrac-
tion with increasing use of micro-service architecture. The trend towards micro-service
architecture has brought with it a need to rethink how we implement software quality as-
surance. Running micro-services in the cloud with multiple distributed components requires
additional management of shared and inter dependent components. This in turn requires
additional testing of the system’s resilience. A possible answer is chaos engineering, which
is often considered the next logical step after end-to-end and integration testing.

This thesis will focus on the gaps in testing created by the move to micro-service archi-
tecture and how chaos engineering can fill them. In particular it will focus on Apache Kafka
deployed onto a kubernetes platform (Strimzi) and how the Litmus framework can be used
to implement Chaos testing against this deployment. As our use-case was to have long run-
ning Kafkas deployed on kubernetes we had to adapt and extend the Litmus framework and
build experiments that could test both long running kafkas and long running kubernetes.
This thesis will demonstrate how we did this.

Abstrakt
Posledná dekáda v poli softwarového inžinierstva sa niesla v duchu automatizácie a ab-

strakcie. Vzostup nového spôsobu písania a menežovania softwaru (taktiež známeho ako
architektúra mikroslužieb) so sebou taktiež priniesol nové výzvy v rámci zaručovania kval-
ity softwaru. Beh systému v cloudovom prostredí s množstvom komponentov, ktoré sú
roztrúsene po rôznych uzloch vyžaduje uvažovanie o závislostiach medzi týmito komponen-
tami a dodatočné testovanie ktoré potvrdí odolnosť systému. Riešením je chaos inžinierstvo,
často považované za logický krok po testovaní systému ako celku.

Táto práca sa zaoberá riešením problému nedostatočných možností pre aplikáciu chaosu
(a to prostredníctvom projektu Litmus) do produktu Apache Kafka, ktorý je nasadený na
Kubernetes platforme ako súčasť projektu Strimzi. Inými slovami, aby sme mohli aplikovať
chaos na projekte Strimzi, či iných systémoch ktoré ho používajú, musíme vytvoriť úplne
nové časti Litmusu. Čo sa samotnej aplikácie chaosu týka, fakt že Strimzi je systém sám o
sebe, avšak často súčasť iných systémov, znamená že budeme potrebovať vytvoriť rozšírene-
jšie riešenia. Práca je zavŕšená výslednými experimentami a potvrdením odolnosťi projektu
v reálnom nasadení.

Keywords
Apache Kafka, Kubernetes, container Orchestration, Kubernetes operators, Strimzi, Open-
shift, Distributed systems, Chaos engineering, observability, Litmus

Klíčová slova
Apache Kafka, Kubernetes, Orchestrácia kontajnerov, Kubernetes operátori, Strimyi, Open-
shift, Distribuované systémi, Chaos inžinierstvo, Pozorovatelnosť, Litmus

Reference
ZRNČÍK, Henrich. Chaos Testing of the Strimzi Project Using the Litmus Platform. Brno,
2022. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor prof. Ing. Tomáš Vojnár, Ph.D.

Rozšířený abstrakt
Posledné roky sa nesú v znamení veľkého posunu od monolitickej architektúry smerom k

mikroslužbám. Tento prechod v architektúre a uvažovanie o software ide ruka v ruke s pre-
chodom z datacentier na cloud. Okrem jasných výhod ktoré tato nová architektúra nesie (a
ktoré väčšinou plynú z dekompozície) prináša táto nová architektúra aj nové výzvy. Cloud
je okrem iného veľmi známy tým, že komponenty občas zlyhajú, čo môže byť zapríčinené
čímkoľvek od mechanickej poruchy až po distribuovaný útok. Po prechode na cloud, skôr
či neskôr začneme zažívať výpadky jednotlivých častí systému. Keďže sa tento problém
naskytol v datacentrách pri monolitických aplikáciách len zriedkavo, a obvykle znamenal
výpadok celého systému, väčšina systémov nemala praktickú skúsenosť s budovaním odol-
nosti voči týmto novým čiastočným a frekventovaným výpadkom. Jednou z odpovedí na
tieto výpadky a nezvyčajné podmienky je práve chaos inžinierstvo. To môže byť definované
ako úmyselné vytváranie turbulentných podmienok a sledovanie toho, ako na ne systém
reaguje.

Každý spomenutý postup a prechod bol umožnený vďaka sérii technologických pokrokov
v oblasti virtualizácie softwaru. Od inštalácie systémov na fyzické počítače sme sa cez vir-
tuálne stroje a kontainerizované aplikácie dostali až k používaniu orchestračných nástrojov.
Najznámejší z nich je Kubernetes, ktorý sa stal praktickým štandardom v oblasti orchestrá-
cie softwaru. Toto globálne prijatie bolo hlavne vďaka dvom faktorom, a teda tomu, že
Kubernetes je open source a takisto jednoduchému spôsobu ktorým ho je možné rozšíriť.
Jedným z týchto rozšírení je aj projekt Strimzi. Ten umožňuje jednoduché nasadenie Apache
Kafka v cloudovom prostredí. Samotne Apache Kafka si kladie za úlohu zjednodušovanie
komunikácie medzi entitami, kde slúži ako prostredník pre prijímanie a posielanie správ
(tzv. Event Streaming).

Cieľom tejto práce je poskytnúť možnosť jednoduchého aplikovania chaos inžinierstva
pre ostatné systémy, ktoré Strimzi používajú, rovnako ako aj aplikovať tento Chaos na
produkčný systém. Toto je docielené vďaka rozšíreniu ďalšieho Open Source projektu,
ktorý sa nazýva Litmus. Litmus obsahuje viac ako päťdesiat existujúcich vzorov, ktoré
môžu byť použité na vytvorenie konkrétnych druhov chaos experimentov.

Kedže Strimzi predstavuje sériu operátorov, jeho správne fungovanie zahrňuje množstvo
udalostí a komponent. Tieto situácie su pomerne špecifické a preto vzory poskytnuté Litmu-
som nebudú dostačovať pre všetky prípady. Práca teda začína návrhom a implementáciou
vhodných vzorov, z ktorých je následne možné vytvárať konkrétne experimenty. Tieto
vzory budú zverejnené a voľne používané pre aplikáciu chaosu na projekte Strimzi. V
momente kedy sú tieto vzory naimplementované, je možné ich použiť rovnako ako všetky
ostatné už existujúce vzory, ktoré sú poskytnuté Litmusom. Tieto vzory sú použité pre
implementácie sady testov, ktoré môžu byť použité voči akejkoľvek generickej konfigurácii
projektu Strimzi. Poslednou časťou implementácie je príprava špecifických experimentov
pre produkčné prostredie, v ktorom je Strimzi nasadené ako súčasť systému. Všetky tieto
nasadania následne ukazujú odolnosť projektu Strimzi napriek turbulentným podmienkam,
ktoré môžu nastať v prostredí ich nasadenia.

Chaos Testing of the Strimzi Project Using the
Litmus Platform

Declaration
Hereby I declare that this Master’s thesis was prepared as an original author’s work under
the supervision of professor Ing. Tomáš Vojnár Ph.D. The supplementary information was
provided by Ing. Jakub Stejskal from Red Hat Czech s.r.o. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Henrich Zrnčík

May 20, 2022

Acknowledgements
I thank my supervisors, professor Ing. Tomáš Vojnár PhD, for his time and help, and to
Ing. Jakub Stejskal for all reviews, materials, and guidance.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Kubernetes . 6

2.1.1 Early Stages . 6
2.1.2 Motivation for Orchestration . 8
2.1.3 Architecture . 10
2.1.4 Objects . 11
2.1.5 Controllers . 14
2.1.6 Extensions . 16

2.2 Apache Kafka . 18
2.2.1 Basis . 18
2.2.2 Clients . 20
2.2.3 Kafka Cluster . 21
2.2.4 Kafka Connect . 22

2.3 Strimzi . 23
2.3.1 Origin and Motivation . 23
2.3.2 Architecture . 24
2.3.3 Configuration . 27

3 Chaos Engineering 28
3.1 Discipline . 28

3.1.1 Origin . 28
3.1.2 Motivation . 29
3.1.3 Definition and Principles . 31
3.1.4 Chaos Experiment . 32
3.1.5 Adoption . 33

3.2 Litmus . 34
3.2.1 Framework . 34
3.2.2 Architecture . 34
3.2.3 Chaos Experiment On Litmus . 36

4 Design 39
4.1 Considerations . 39

4.1.1 Strimzi’s Weaknesses . 39
4.1.2 Choice of Approach . 41

4.2 Communication . 42
4.3 Chaos Experiments on Project Strimzi . 43

1

4.3.1 Generic Chaos Experiments . 43
4.3.2 Strimzi Specific Chaos experiments 45

4.4 Application Of Chaos Experiments . 47
4.4.1 Extension of Existing System Tests 47
4.4.2 Experimenting in Production . 48

5 Implementation 49
5.1 Components’ Communication . 49
5.2 Templates . 51

5.2.1 Preliminaries . 51
5.2.2 Resource Delete . 55
5.2.3 Kafka Rolling Update . 56
5.2.4 Worker Delete . 56

5.3 Application of Chaos . 56
5.3.1 System Tests Extension . 57
5.3.2 Chaos Test Suite . 59
5.3.3 Production Environment . 62

6 Monitoring, Evaluation, and Experiments 67
6.1 SUT Monitoring . 67

6.1.1 Motivation . 67
6.1.2 Tools . 68
6.1.3 Configuration . 69

6.2 Running and Evaluation . 70
6.2.1 Setup . 70
6.2.2 Sequences . 70
6.2.3 Results . 71
6.2.4 Experiments . 75

7 Future work and ideas 78
7.1 Advanced templates . 78
7.2 Decoupled probes . 79

8 Conclusion 81

Bibliography 82

A CD content 85

B Role based access control 86
B.1 Resources . 86
B.2 Operators . 88

C Kafka Configuration 89
C.1 Problem of configuration . 89
C.2 Entities and properties . 90

D Kafka Streams 92
D.1 Other extensions of Kafka . 93

2

Chapter 1

Introduction

Chaos engineering (also referred as chaos experimenting) is often considered to be a logical
step after end-to-end testing. The whole idea behind it is relatively simple; identify the
steady-state in which the system works the way we expect it to, inject fault (Chaos), and
verify regaining of the steady-state within a reasonable amount of time. Depending on
this simple process, we either gain confidence that our system works correctly even under
turbulent conditions or discover weaknesses. In other words, we want to make sure our
system will withstand turbulent conditions, which naturally occur when we are running
systems in production. Not every system requires the application of chaos engineering.
The need for it has roots in new ways of running our systems, which are becoming more
distributed than ever before, running on machines scattered around the globe. Distributed
applications now resemble complex systems, mostly known for their unpredictable behaviour
under specific conditions. Projects that had moved to the cloud from data centres (i.e., from
infrastructure where the fantastic mean time between failure gave the impression that failure
is indeed a rare thing) had to face outages and other unpredictable conditions on an almost
daily basis. These traits of a system are the direct result of having numerous components
which depend on one another, with multiple direct or transitive dependencies, as visible in
Figure 1.1.

Figure 1.1: A realistic architecture of a microservice. Inspired by [22].

3

The mission statement for this thesis is; Provide a consistent way to apply chaos en-
gineering principles to the Strimzi project. This is accomplished by creating experiments
to target Kafka instances and their dependencies deployed with Strimzi. The first step
to achieving our objectives is to understand the technology stack Kafka depends on. The
project itself provides a way to run Apache Kafka on a Kubernetes cluster. Strimzi addi-
tionally incorporates Kafka and all manipulation necessary for its correct functioning. The
trade-off for this functionality is abstraction and dependencies. As a result, the number of
components that need to work and interact correctly increases exponentially.

The rising level of abstraction and components is rather a global trend. Projects that
used to be monolithic, as illustrated in Figure 1.2 (a), undergo a shift to microservices,
illustrated in Figure 1.1. Microservices represent an architectural paradigm where we build
software from small components that interact with each other. These systems also require
additional inputs to keep running smoothly (e.g., performing updates, scaling, deploying),
exactly where tools for containerization and orchestration came in. Because of the growing
number of components that need to communicate with each other, systems often incorporate
entities that will simplify the communication. In most cases, this is an Event Backbone (e.g.,
Apache Kafka), also visible in Figure 1.2 (b).

(a) Monolithic application.

Event Backbone

(b) Microservices application

Figure 1.2: Different examples of application’s architecture

The Mentioned shifts in architecture and deployment, especially if connected with mov-
ing to the cloud, bear one crucial trait; i.e., an application or service which runs there
suddenly depends on a whole set of components, all of which have the potential to fail.
Running an application in the Kubernetes cluster means that we have to think about count-
less additional cloud problems (e.g., network latencies, CPU hogs), Kubernetes events (e.g.,
node restarts), and other application-related problems. Despite our application being with-
out a single bug, it may still behave unexpectedly in case of these turbulent conditions.
Kafka and Kubernetes address the issue of failure and disaster recovery in their own way.
After examination of relations between components and identification possible weakspots,
we either implement new way how to simulate these conditions, or use already existing
templates to do so. This step includes proposing chaos experiments, i.e., formulating hy-
pothesis about our system’s behavior, injecting chaos, and ensuring observability. When the
chaos experiments are concluded, we will either have confidence in our deployment or have
identified areas for additional engineering to improve resilience. Solution’s suitable design
and implementation require addressing many issues (e.g., configurability of underlying tech-
nologies, diversity of infrastructure), which may lead us to compromise in implementation
and experimentation.

4

The implementation proved to be more extensive than initially expected. Originally two
templates were proposed for future chaos experiments; however, we identified two additional
needed templates, bringing the total to four. We implemented our four templates and after-
wards used them alongside additional Litmus templates targeting generic and production
systems. The application of these experiments confirmed that our Kafka deployments were
resilient to its dependant underlying platforms and components being subjected to the ap-
plication of faults. In addition to the feedback from the Litmus experiments, independent
monitoring of the cluster verified the outcomes

The key contributions of related work lies in the pioneering implementation of chaos
engineering principles in new levels of abstraction by applying chaos (and also providing
an easy way for others to apply chaos) into a system which is to be used as part of other
systems. The first and most crucial part is providing a generic way to apply chaos by
nothing more than specifying a few key parameters for all other projects that use Strimzi.
This is accomplished by combining implementation and know how concerning Strimzi and
concepts and necessary steps in Litmus chaos. The given code is open sourced, and after
merging to the main branch1 templates will be usable also from the Litmus user interface.
The second part is implementing the test suite, which can inject chaos into generic Strimzi
deployment, implemented in such a manner that targeting different environments takes no
effort and incorporating new chaos templates requires only a few lines of new code. The
last contribution lies in applying chaos to the production environment while monitoring its
impacts on the system’s normal functioning. The combination of all these three contribu-
tions can then be summarized as the provision of an easy way to apply chaos to the project
Strimzi for the general public, create new templates which could later serve for the creation
of chaos experiments, and finally, the actual application of chaos into all sort of Strimzi
deployment, including production environment.

The structure of the thesis is the following. Chapter 2 describes all preliminaries for
this thesis. The purpose of this is to understand project Strimzi (described in Section 2.3).
This project simplifies running Apache Kafka (an event-streaming platform) on Kubernetes.
Kafka and Kubernetes are described in Sections 2.2 and 2.1, respectively. Kubernetes and
its components are repeatedly used until the end of this thesis. Kafka represents underlying
software which is the core of the validated system. Chapter 3 describes Chaos Engineering,
its origin, and formalization. Afterwards, Section 3.2 contains details about the chaos
framework Litmus. Chapter 4 contains all details about the design of experiments and
proposed integration of application of chaos engineering on project Strimzi using the Litmus
chaos framework. Afterwards, Chapter 5 covers all details about implementation, changes,
and additions necessary made to the solution. Finally, Chapters 6 and 7 discuss evaluation,
monitoring, and future ideas.

1Github repository with the code – https://github.com/henryZrncik/litmus-go/tree/
xzrnci00

5

https://github.com/henryZrncik/litmus-go/tree/xzrnci00
https://github.com/henryZrncik/litmus-go/tree/xzrnci00

Chapter 2

Preliminaries

This chapter provides essential information about the technologies used in this thesis. A
correct understanding of these concepts is the key factor to comprehend later chapters as
they build on these preliminaries.

The first section of this chapter describes Kubernetes1, which we can define as a plat-
form for orchestration of container-based applications. Running applications on Kubernetes
simplifies the shift towards microservices, as it solves countless problems (e.g., deployment,
scaling) that have discouraged organizations from this shift.

The second section describes Apache Kafka2, which is distributed event-streaming plat-
form. It addresses several problems (e.g., tightly coupled services, different communication
protocols, loss of information due to lack of possibility to replay events) of applications with
multiple services and growing volume of data by providing an event backbone with durable
event storage. The section is based on Kafka documentation [6], several books [28, 17, 19],
and other resources.

The last part of this chapter describes project Strimzi3. Running Kafka correctly for a
specific use-case is still quite a tedious task, and running it correctly on Kubernetes bears
even more complications. Information provided in this section describes the motivation and
functioning behind these technologies but is only deep enough for a reader to understand
the concept and implementation of this thesis.

2.1 Kubernetes
The following pages describe why there was even a need for a platform such as Kubernetes,
technological concepts, and paradigms that stand behind it. Lastly, its extendability, as it
allows the creation of projects built on top of Kubernetes.

2.1.1 Early Stages

Every application runs on top of the operatin -system. Several new approaches were de-
veloped since running applications directly on a physical server. Each new one primarily
focused on solving most emergent problems that the previous solution had failed to resolve:

1Kubernetes – https://kubernetes.io
2Apache Kafka – https://kafka.apache.org
3Strimzi – https://strimzi.io/

6

https://kubernetes.io
https://kafka.apache.org
https://strimzi.io/

Physical servers

Developers and users knew exactly what software was running on each machine. Each server
used to bear names after composers or gods from Greek mythology. Engineers treated
servers like beloved pets4. When an application runs on a physical server, spawning more
than one instance means that the admin has to take care of each instance separately, assign
different ports and estimate memory and CPU consumption ahead [32]. Furthermore, there
is no isolation between applications, and a crash of one may eventually bring down even
the whole server. Most of the applications were large monolith5 which are easy to deploy
but hard to manage as project growth. In time, progress on work often started to stagnate,
as no one could understand the whole repository, and the distance between developers and
operation teams was enormous due to the need to deploy and manage every new dependency
manually.

Virtualization

The next stage in the evolution of running applications was virtualization, i.e., the process
of virtualizing the operating system on top of the running one. Software that creates and
runs virtual machines is called a hypervisor. Thanks to it, we can host multiple virtual
machines on a single physical server, each having separated resources, e.g., memory, CPU,
and ports. Virtualization resolves security problems (in terms of isolation) and price, but
virtualizing the whole operating system burdens memory and booting time.

Containerization

Containerization is considered to be lightweight virtualization. Unlike hypervisor virtual-
ization, where one or more independent machines run virtually on physical hardware via an
intermediation layer, containers instead run in userspace on top of an operating system’s
kernel. As a result, container virtualization is often called operating-system-level virtualiza-
tion. Same as virtualization, it involves encapsulating or packaging up software code and
its dependencies to run uniformly and consistently on any infrastructure. Nevertheless,
there are a few key differences, described in the following lines and also visible in Figure
2.1, where we can see a solution for the deployment of a simple Java application that needs
to communicate with the Redis database6. Containers come with the following advantages:

• Container networks – It is straightforward for containers to communicate, so there
is no need to keep all parties that need to communicate within a single unit (container
and virtual machine, respectively).

• Unit of scale – We can start to scale only parts which truly require scaling (instead
of the whole virtual machine).

• Size – As there is no need to virtualize the whole operating system, we inherently
save most of the space the operating system would otherwise need. Regardless, every
container still has its filesystem and ports.

• Fast booting – As there is no longer a need to boot up the operating system.
4Cattle vs Pet is the term used to describe a new approach we should take towards servers. Instead of

unreplaceable pets, which require much care, we should not depend on a specific server and instead, replace
it automatically with a sign of the first problem.

5Entire app built into one executable/package
6Redis – https://redis.io/

7

https://redis.io/

Host Operating
System

Containerization
Containers

App-1 App-2 App-8

App-3 App-4 App-11

Bare Metal Machine

Host Operating
System

Virtualization

Virtual
 Machine

App-1

App-8

Bare Metal Machine

App-7

Virtual
 Machine

App-2

App-9

Hypervisor

Figure 2.1: Virtualization (left side), containerization (right side)

One of the most used platforms for containerization is Docker7. The name comes from
the British slang expression for a worker who unloads cargo from ships. Docker’s simple
architecture, shown in Figure 2.2. We create images which serve as a template for contain-
ers. We can define a container as a running instance of the image. Docker Architecture can
be explained communication of following three entities:

• Image registry – Register of all available images, which can be downloaded and
afterward used for the creation of containers or as a base images for new images.

• Client: Usually command-line interface client for interacting with the daemon.
• Docker daemon – Docker runs a process that waits for API commands from the

client. Afterwards manipulates images and containers [34]. If it does not have the
image for creating the container, it looks for it in the remote image registry.

Other containerization frameworks work in a very similar manner. For this work, it is
not essential to understand Docker perfectly; instead, to be familiar with containerization
principles because orchestration builds on top of it. A good example is a switch from incre-
mental updates on one server with a growing stack of dependencies to a simple replacement
of the image our application is built on. Instead of slowly fixing a single virtual machine
or physical server, we create a new image. By doing so, we preserve history in case of need
for rollback while considering the current version to be immutable.

2.1.2 Motivation for Orchestration

Google open-sourced the Kubernetes project in 2014, and it became part of CNCF8. It
was described as a platform for managing containerized workloads and services. Today
Kubernetes combines the best of ideas from the community and countless years of Google’s

7Docker – https://www.docker.com
8CNCF - Cloud Native Computing Foundation, more at https://www.cncf.io/

8

https://www.docker.com
https://www.cncf.io/

Client Daemon process Host

Images

Containers

App-1 App-2 App-8

Image Register

Images

...

Figure 2.2: Docker architecture.

experience running production workloads at scale. The name originates from the Greek
word, meaning pilot or helmsman9 [7]. The following lines explain the reasons and the
main benefits for the usage of container orchestration and specifically Kubernetes.

Declarative approach and abstraction

Kubernetes works in declarative manner, i.e., the user only specifies the desired state of
the cluster. Kubernetes is cloud-agnostic; all underlying manipulating with infrastructure
stays abstracted, as seen in Figure 2.3. This makes the deployment, scaling, and adminis-
tration of components much more effortless. This serves as an alternative to the imperative
configuration when we specify a set of steps that are supposed to lead to the desired state.

2x

1x

Declaration

App-2
App-1

App-1

Figure 2.3: User only specifies the desired state, Kubernetes handles the rest

Uptime

With growing numbers of deployable components and larger data centres, it becomes in-
creasingly challenging to configure, manage, and keep the whole system running smoothly.
Furthermore, it is harder to figure out where to put each of those components to achieve
high resource utilization and thereby maintain the hardware costs down [20]. In addition,
the software industry has evolved to the level where services are updated hourly, and users

9Commonly used Abbreviation K8s instead, as there are eight letters between the first and last letter in
word Kubernetes

9

expect constant uptime, even if the software they are running is changing constantly [11].
Using Kubernetes, there can be multiple updates within a single day while maintaining a
highly available service.

Self-healing and scaling

When Kubernetes receives a desired state configuration, it does not simply take a set of
actions to make the current state match the desired state a single time. Instead, it continu-
ously takes steps to ensure that the current state matches the desired state [11]. Once there
are more replicas than expected, it can also destroy them. The whole concept of self-healing
and scaling goes even further with Operators, which are described in Section 2.1.6.

Others

Functional changes from embracing orchestration (with Kubernetes) imply organizational
changes for different roles. For example, developers packaged the whole system and handed
it to the operation team at the end of each long cycle. In case of failure, the operation
team would migrate applications to a healthy server, often by hand [30]. However, today
developers may deploy containerized applications themselves, migrations and scaling are
done automatically, and administrators can work directly with the whole cluster. The
trade-off for all of these improvements is that we need an understanding of orchestration
and a dedicated cluster.

2.1.3 Architecture

Cluster structure

A Kubernetes cluster is a collection of hosts (nodes) that provide computing, storage, and
networking resources. Kubernetes uses them to run the system’s workloads [20]. The cluster
comprises two types of nodes (namely, master and worker) as depicted in Figure 2.4.

• Master node: A Master node is the control plane of Kubernetes. It consists of 4
components. These components are often on the same node, but technically they can
be on different nodes:

– API server – API server exposes an HTTP API that lets end-users, differ-
ent parts of your cluster, and external components communicate with one an-
other [7]. Before this, each request first goes through authentication and au-
thorization. API provides CRUD10 operation for manipulation with all objects
within the cluster.

– Scheduler – Scheduler is component which finds a suitable worker node for the
creation of the requested object, possibly also selecting the best one. Kubernetes
generally tries to keep all nodes equally loaded regarding memory and CPU.

– Controller manager – Cluster technically consists of multiple Controllers
(specialized for concrete resources) such as services, deployments, stateful sets,
namespaces, and other resources described in the following sections.

– Cluster store – Cluster store is cluster brain, as the Scheduler and Controllers
act based on data stored here. All communication with a store is possible only

10CRUD – is a commonly used acronym for Create, Read, Update and Delete operations on some resources.

10

via the API server. The store itself is based on etcd11 database, which prefers
consistency over availability and stores data as key-value pairs.

• Worker node – Node that provides resources, i.e., environment for running contain-
ers in the cluster is called Worker. To work properly it needs to run following three
processes:

– Container runtime – Container runtime is process needed by worker to pool
images and create containers. Most often used options nowdays are docker and
crio12.

– Kubelet – Kubelet is the process of Kubernetes itself. It monitors the API
server for Pods that have been scheduled to the node, registers node as ready,
and reports back all events which happen inside resources present in the concrete
node.

– Proxy – Originally, Kubernetes used a proxy process that accepted connections
and afterwards directed communication to the Pod. Today, this process con-
figures iptables to perform load balancing or more effective routing within the
cluster.

Worker Node

API Server

Scheduler Controller
Manager

Master Node

Kubelet Proxi

Pod A Pod B Pod C

ETCD

Figure 2.4: Architecture of Kubernetes nodes.

2.1.4 Objects

Almost every Kubernetes object includes four object fields that fully describe it. The
object’s kind, metadata, spec, and status. These fields describe what kind of object
it is, its name, the object’s specifications and its current status. The following lines describe
most13 of the objects that users either create or manipulate most often.

11Etcd – https://etcd.io/
12Cri-o – https://cri-o.io/
13Kubernetes ecosystem is much wider than is possible to capture within the scope of this work. Although

the correct design and implementation will require a proper understanding of advanced concepts, it is not
strictly necessary to be familiar with them to understand the implementation and ideas behind this thesis

11

https://etcd.io/
https://cri-o.io/

Pods

The Pod is the smallest unit of abstraction and scaling. This allegory in name14 is probably
due to the representation of containerized applications as a whale. When we create a Pod,
it contains one or many containers. IP is assigned per Pod, and containers within the same
Pod can communicate using the localhost interface, visible in Figure 2.5.

1 kind: Pod
2 metadata:
3 name: pod−a
4 spec:
5 containers:
6 - name: redis
7 image: redis
8 - name: my−app
9 image: java/app

10 ports:
11 - port: 5000

Listing 2.1: A yaml manifest of the Pod
from Figure 2.5.

pod-a
redismy-app

:5000
10.0.0.1

Figure 2.5: An example of a Pod with
two containers and one open port.

The Pod itself is ephemeral and is considered healthy only in case all its containers
work correctly. It is up to the Pod to execute its containers’ readiness checks and health
checks. These checks ensure that the application running inside the container still works as
expected. Once the Pod dies, so do its IP address and data, which are the traits that the
following two components try to resolve.

To deploy Pods (and all other Kubernetes resources) in a declarative manner, all the
user has to do is specify traits of this Pod. Then, all it takes are a few lines of code (also
shown in the Listing 2.1) and afterwards, apply it. Most of the resources are specified in
YAML15 format, which is most commonly used mainly due to its readability.

Services

The main trait of this component is its static IP. It does nothing else than accept and
redirect traffic to selected16 pods. We use Service whenever we need some static IP (e.g.,
connect to a database, provide IP outside of the cluster). As we can see in Figure 2.6, every
Pod within the cluster may now communicate with the database or any other container
under this Service.

Internally this works due to the Kube proxy, which adds rules to iptable; afterwards,
the Service redirects traffic to a random Pod, which is the Endpoint of the Service. Figure
2.6 depicts a very simple type of service called ClusterIP. Other services which build on
top of ClusterIp are NodePort and LoadBalancer. In a nutshell, the former type of Service
allows external communication, and the latter adds load balancing.

14Pod’s name comes from the pod of whales, which is like a herd of whales.
15YAML – https://yaml.org/
16Service knows which pods are of its concern thanks to the next Kubernetes concept called labels.

12

https://yaml.org/

pod-b
my-app

:8088
10.0.0.3

pod-c
my-app

:8088
10.0.0.4

pod-a
my-app

:8088
10.0.0.2

Service foo

8.8.8.8
:80

Rest Of
The Cloud

 Endpoints:
 10.0.0.2
 10.0.0.3
 10.0.0.4

Dest: foo:80 Dest: 10.0.0.3:8088

Figure 2.6: Relationship of Pods and Services.

Volumes

In Kubernetes, storing data permanently is something the user needs to take care of ex-
plicitly. Once Pod dies, all its data is gone. Some applications cannot afford to lose data,
so they have to save data directly into some persistent storage, i.e., Volume. There are two
types of volumes:

• Local volumes – An application running inside the Pod, writes data directly into the
node it is running on, instead of virtual space. These kinds of Volumes are hostPath,
gitRepo, and emptyDir. The user must keep in mind that if the Pod dies, data stays
on the node, so if a new Pod is created on a different node, the application will be
without original data.

• Remote volumes – These volumes may reside outside of the cluster; therefore,
working with them is a bit trickier. Kubernetes provides a series of objects that help
with mounting these volumes. A pod can use this kind of Volume with the help of
VolumeClaim, which allows binding of the Pod’s storage directly to Volume.

ConfigMaps

ConfigMap is an object for storing configuration data. These data are mostly the config-
uration of containers (pods). Although configuration can be passed as a file, environment
variables, or arguments, all of these methods are static, and not very organized. Storing
specific configurations as arguments or environment variables in manifest requires multiple
images. Whereas configuration from ConfigMap can be referenced by key, so manifest does
not need to change every time values of data do. We use ConfigMap for non-confidential
data, but there is also another resource called Secret17, for those that are confidential.

Namespaces

It is a resource that allows splitting and categorizing of cluster into multiple namespaces.
In other words, it provides scope for the names of objects. However, not all resources are
namespaced, e.g., Custom resource definitions 2.1.6, Nodes. Namespaces work well also for
applying quotas for different parts and users of the cluster, with the help of additional ob-
jects such as RoleBindings and Roles. If a namespace is not provided, the default namespace
is assigned.

17Work with them does not differ much from working with ConfigMap.

13

2.1.5 Controllers

Kubernetes is all about Objects and Controllers.Objects (e.g., Pod, Namespace, ConfigMap)
are persistent entities in the Kubernetes system. They represent the state of the cluster.
Controllers, on the other hand, are, in a nutshell, infinite loops that check the current
state of the cluster, compare it with the desired state, and act upon it in case of any
divergences [35]. Controllers’ purpose is simplistically summarized in Figure 2.7.

controller-a
Controllers

pod-b
pod-b

service-foo

Objects System Resoruces

Watch & Update

Figure 2.7: Controllers interacting with Objects and System resources.

The following lines describe some of the Controllers, their structure, and how they
accomplish desired properties.

ReplicaSet

The role of ReplicaSet is to make sure that the exact number of healthy Pods that match
its selector exist at a given moment, also depicted in Figure 2.8. When Pod stops working,
ReplicaSet replaces it with a new one. This process is known as self-healing. There are
two more Controllers of a similar kind. ReplicaController, which is the predecessor of
ReplicaSet, but was marked as deprecated and slowly replaced by ReplicaSet, which has
more advanced options regarding selectors. The next one is DaemonSet, which ensures the
existence of precisely one Pod of the desired type per node. ReplicaSet, just like Pod, is
not often used alone. Instead, as part of higher abstraction, specifically Deployment or
Stateful.

replicaset-a
Template Spec:

replicas:2
name: p

 label: blue

p-0 p-1Worker
Nodes

Watch
&

Update

Figure 2.8: ReplicaSet with 2 instances

Deployment

The need for this component arose from the often-repeated task of updating applications.
We would either need user interaction or a script to do that to accomplish this. Both of
these solutions are prone to errors, the latter due to possible network problems. Deployment

14

provides all that ReplicaSet (it internally uses ReplicaSets), but also additional operations,
i.e., Rolling Update and Rollback. The rolling update allows the user to update his applica-
tion (using a new image). The exact behaviour of Deployment depends on the strategy we
choose. Still, all it essentially does is that it creates a new ReplicaSet and updates the old
one to hold zero instances (replicas). Old ReplicaSet will delete all its instances afterwards,
while the new one creates its own with the desired version of the application. Deployment
keeps track of its former ReplicaSet, as visible in Figure 2.9, which makes the switch to a
previous version (i.e., Rollback) very simple.

replicaset-a

Template Spec:

replicas:0

replicaset-b

Template Spec:

replicas:2

deployment-a

Spec:

replicaSet:b

Figure 2.9: Deployment with its ReplicaSets.

Deployment is a simple option for many applications, but almost all are stateless. All
pods within the same Deployment share the same Volume (claimed by the same Volume-
Claim), which does not allow for the scale of stateful application. When ReplicaSet scales
the number of replicas down, we do not know which instances it removes. These traits are
not shortcomings, but this behaviour is insufficient for most larger stateful applications,
which is also motivation for the last major Controller.

StatefulSet

StatefulSet works almost like deployment but with following key differences:

• Pod identity – Whereas pods managed by Deployment have a random hash ap-
pended as a suffix of their name, pods managed by StatefulSet are ordered with a
zero-based index.

• Scaling – Pods are scaled up and down in order, based on their index. We always
know which Pod will be deleted.

• Volumes – Each pod has its own VolumeClaim (and volume). Each Pod has its
private persistent storage; if this Pod dies, a new one will take its claim. This storage
is preserved even in case the number of Pods is scaled down, so data are once again
available once this number goes back.

Job

The Job creates the specified number of pods and continues to retry the execution of their
work until the specified number of Pods terminates successfully. We typically use it to
execute some work just once18, e.g., database backup.

18There is also another Controller called CronJob, which works the same way as Job, but it runs period-
ically.

15

2.1.6 Extensions

Although StatefulSet and Deployment provide enough options for running all sorts of ap-
plications, they alone would not be beneficial for more extensive applications with some
extra logic. For example, if we had some Postgres applications with three replicas, each
having its Volume, we would still need to synchronize these databases independently. In
addition, each application may have its unique requirements regarding starting, scaling, and
self-healing. These operations would typically require the user’s (Operator’s) intervention.
Because the main ideology of Kubernetes is automatization, Kubernetes solves this problem
by Operators and custom resources, which are described in the following subsections.

Custom resource Definitions and custom resources

Custom resources are API extension mechanism in Kubernetes [15]. An additional type
of object called CustomResourceDefinition defines the CustomResource. After applying
CustomResourceDefinition, we are capable of deploying these new types of objects defined
by CustomResource. Once we create a CustomResourceDefinition for our new resource and
then create this resource with the help of CustomResource, this resource will have no other
use than being some structure of data. The whole concept of CR and CRDs19 was invented
to provide more domain-related objects, which can be manipulated by Operators. All of
these can be seen in Figure 2.10, where we provide CRD for the creation of websites and
accept specifications describing replicas and URL properties.

kind: CRD
metadata:
 name: web.crd
spec:
 names:
 singular: web

 properties:
 replicas: int
 url: string

web-crd.yml

Spec:
replicas: 5
url: f.com

Web
CR

example-web

Spec:
replicas: 2
url: a.com

Web
CR

a-web

Figure 2.10: User firstly provide CRD describing new resource (i.e., website), than create
two new resources of this kind.

Operators

A Kubernetes Operator is an application-specific Controller that extends the functionality
of the Kubernetes API to create, configure, and manage instances of complex applications
on behalf of a Kubernetes user [2]. Unlike other Controllers, it also has domain-specific
knowledge and acts upon CustomResources. Concerning CRs and CRDs, we can rewrite
the definition of Kubernetes Operator. An Operator is a custom Kubernetes Controller
watching a CR type and taking application-specific actions to make reality match the
specification in that resource, formally written as Algorithm 1. As a result of this, users

19CR and CRDs are commonly used abbreviations for CustomResources and CustomResourceDefinitions

16

can afterwards work directly with new CRs, like Kafka, ChaosEngine, Website, or any other
resource, which is much more domain-specific in comparison with trying to do so with pods
and other Kubernetes native primitives.

Algorithm 1 Operator. The Desired state is given by custom resources
1: procedure main ◁ Every operator in a nutshell.
2: while 𝑡𝑟𝑢𝑒 do ◁ Operator continues in endless loop
3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒()
4: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒← 𝑔𝑒𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒()
5: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 ̸= 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒 then
6: makeChanges(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑡𝑎𝑡𝑒)

These actions can be visible in the fictive example operator in Figure 2.11. The Op-
erator’s manipulation can be done using HTTP communication with the Kubernetes API
server, from within or outside the Kubernetes cluster. However, we will mostly see Operator
running inside a Pod which is within Deployment [27].

Spec:
replicas: 1
url: f.com

Web
CR

example-web
Spec:
replicas: 3
url: a.com

Web
CR

a-web

example web

Watch
&

Update

a-weba-weba-web-1

operator

Figure 2.11: An Operator works on our newly created CRs. It uses values from specification,
creates new pods with specified number of replicas which then start serving requests for
specified url or any other reasonable activity.

Over the last years, Kubernetes has become a standard for orchestration. Numerous
benefits for all members of the team, e.g., developers and administrators. These benefits are
self-healing, easy deployment, declarative approach, and advanced automatization gained
widespread popularity. This shift can be seen in platforms as well. Example of it is Red
Hat Openshift20 platform, which is completely managed by OpenShift operators [13]. The
extendibility that Kubernetes provides, which is very benevolent regarding development
(choice of language or need to be present in the cloud), allowed the start of many projects21

through the use of operators; Both Strimzi 2.3 and Litmus 3.2 are examples of them.
Deployment of an operator on a cluster requires the provision of several other resources

(besides operator and custom resource definitions); these are described in Appendix B.
20Openshift – https://www.redhat.com/en/openshift-4
21Operatorhub – https://operatorhub.io/ is the hub with numerous currently available Kubernetes

native technologies, all managed by operators.

17

https://www.redhat.com/en/openshift-4
https://operatorhub.io/

2.2 Apache Kafka
Kafka (Apache Kafka) can, in its simplest form, be defined as a event-streaming plat-
form [19]. In other words, it captures data in real-time from event sources, e.g., databases,
sensors, cloud services, or mobile devices, in the form of a stream of events (which is a
durable, ordered, and unbounded sequence of records). Kafka may therefore be used when-
ever we work with lots of logs, e.g., website activity tracking, metrics monitoring, and
message brokering.

Section 2.2.1 starts with basis, which are further explored in Section 2.2.2 with focus
on clients. Afterwards Section 2.2.3 describes architecture of Kafka cluster and whole
description of Kafka ends with additional description of its extensions in Section 2.2.4.

2.2.1 Basis

One of the authors, Jay Kreps, explained that name Kafka was given after somebody who
wrote a lot, as it is a system optimized for writing. As for language, the authors decided to
write Kafka in Java because of the possibility of running it almost everywhere [33]. Back
before 2011, most companies did not need to solve the problem with communication of many
services; at LinkedIn22 it became a problem of much higher magnitude. As we can see in
Figure 2.12, there is a tight coupling even between very few communicating components,
not to mention the need to know all of the others’ services protocols for communication.

source a source b source c source n source m

client a client b client c client d client e

Figure 2.12: Point-to-point communication between increasing number of services

Mess in communication led to the usage of Event-driven architecture23. Instead of direct
communication between applications, they (i.e., entities that either emit or consume data)
communicate only using channels. This channel is Kafka, and it consists of entities called
Brokers24. Because both the Producer and Consumer can communicate only with Kafka
brokers (which serve as a hub), there is no longer coupling between them (Producer does not
even know if there is some consumer [24]). The Following figure 2.13 shows communication
(using Kafka) between applications.

22Linkedin – http://www.linkedin.com is an American business and employment-oriented online ser-
vice.

23Event-driven paradigm – paradigm promoting the production, detection, and reaction to events
24A person who buys and sells goods or assets for others.

18

http://www.linkedin.com

Kafka

consumer a consumer b consumer c consumer d consumer x

producer a producer b producer c producer d producer e

Figure 2.13: Communication of several application through Kafka.

Data

Kafka splits data into topics. Database analogy for the topic would be a table, but the
catch here is that data in the topic are not necessarily homogeneous [28]. The important
thing in Kafka is that data inside the topic are further split into partitions. The whole
reason behind the split is that it will allow us to achieve higher level of parallelism. Each
partition can be seen from a user’s perspective as an append-only log. Because Kafka is an
event streaming platform, it has to store streams in total order. This constraint does not
allow for big scalability, and therefore total order is guaranteed only within partitions. Each
record has its offset (a unique incremental number that represents the order of record within
the partition), which identifies each record inside the concrete partition, as can be seen in
Figure 2.14. Communication itself takes place in the form of messages. Each message may
consist of multiple records, and each record consists of a header, data, and key. Data itself
are optional, as well as key and header25. The key’s purpose is that records with the same
key end up in the same partition.

Topic
Partition 1
Partition 2
Partition 3

Figure 2.14: A Kafka topic with its partitions.

There are four main traits when it comes to data in Kafka:

• Scalability – Splitting topics into partitions makes it is easy to split the load inside
the cluster. We can talk (read/write) to different brokers while still working on the
same topic. Whole communication in Kafka Ecosystem is quite more complicated
and will be further explained in Section 2.2.3

25Unless we are debugging or using some canary service, the absence of data is rarely the case

19

• Durability – Kafka is highly configurable, which in terms of durability means that
we can configure Kafka to keep data on disk instead of memory based on time, size,
or even both of these parameters. We can configure Kafka to keep data forever.

• Safety – Kafka allows replication of partition with custom factor n, which means
that each partition will exist on n brokers, and thanks to that, data can withstand
up to 𝑛− 1 broker failures at the same time without losing data.

• High throughput – Kafka gains this trait thanks to the way it stores the data. It
is an append-only log (file) with a unique offset.

2.2.2 Clients

Kafka allows three main ways to produce or consume data in the Kafka ecosystem, i.e.,
Consumer, Producer, and Streams libraries. Both Producer and later described Consumer
are implemented in various programming languages (e.g., Go, Python, Java); since Kafka
is written in Java, it is also the most up-to-date version of these clients.

Producer

The Producer produces messages into a known set of topics. It can choose whether it
wants to produce records into a specific partition or leave the decision up to Kafka. The
algorithm used to split unspecified records into partitions is Round Robin. Besides expected
configuration, such as addresses of servers or serialization, we can configure much more
properties. All relevant configuration is explained in Appendix C.

Consumer

It is a set of libraries that allow easy implementation of an application that reads data
(records) from Kafka. The Consumer can read topics from the broker on its own, but
most often, Consumers form Consumer Group; it is a set of Consumers, which are each
consuming their disjoint part of partitions within the same topic. We distinguish Consumer
groups by their unique id. There can be multiple consumer groups per single topic (as it
only means that there are multiple readers). Consumer alone or consumer group with at
least one Consumer has to read all the partitions within the consumed topic. The reason for
the formation of consumer groups is that it allows concurrent consumption of data within
the same topic (mainly because a single consumer cannot handle the volume of produced
data on his own). As depicted in Figure 2.15, every consumer group must consume the
whole topic. Furthermore, a Consumer can join or leave a consumer group dynamically.
Both of these events cause another event called partition rebalance, i.e., reassignment of
partitions. If the Consumer leaves the group, the group will split its partitions amongst the
rest of the active consumers. If a new Consumer arrives within one group, partitions will be
reassigned to obtain an approximately fair number of consumed loads for each Consumer.

To keep data consumption within a consumer group in a relatively stable manner,
consumer besides consuming data covers two extra functionalities:

• Commit offset – Based on the configuration (Appendix C), the Consumer saves
information about its offset within the partition. Although the Consumer knows
which data he should ask for next, Kafka’s broker needs to know this information
independently of the Consumer. For example, in case of failure of this informed
Consumer, a new consumer would know how much data from the topic had already

20

Consumer Group 1

consumer a

consumer b

topic-a
Partition 1
Partition 2

Kafka

Consumer Group 2

consumer a

Partition 3

P1

P2

P3

P1
P2

P3

Figure 2.15: Communication using Kafka cluster

been read. Internally this is done by saving positions for pairs of consumers and
partitions into the special topic called __consumer_offsets.

• Send heartbeat – Consumer informs Kafka about his ability to consume data. It is
done by reading data or periodically sending a message, i.e., heartbeat.

2.2.3 Kafka Cluster

Kafka cluster is a group of Kafka broker instances. Each of the brokers within the cluster is
identified with a unique, zero-based index. There are several roles that a broker may take
in the cluster (as can be seen in Figure 2.16), and depending on these roles, the broker is
also assigned different responsibilities:

• Controller – One broker is always elected to be the cluster controller. Its main
responsibility is to make sure other nodes work correctly. Besides that, also assign
partition leaders and their followers for concrete topics.

• Partition leader – Broker that handles all writes and reads for concrete partition.
Besides partition leader, there is also a role called the preferred leader. This broker
is the one that would be the optimal leader from the perspective of effectiveness.

• Partition Follower – Brokers (in the context of a concrete topic) that only replicate
messages from a specific topic’s partition leader is called a follower. These serve as
backup.

• Consumer group coordinator – The Coordinator is the broker responsible for
getting heartbeats from a concrete consumer group. Heartbeats should signalize that
these consumers are still active. If a consumer does not respond, other consumers
from the same group will take care of what was formerly its partitions.

Zookeeper

Till Kafka version 2.8.0, it was heavily dependant on Zookeeper26. Its responsibility was
cluster management (e.g., the election of the cluster controller and keeping track of ac-
tive brokers). From version 2.8.0 on, the Kafka community is working on getting rid of
Zookeeper27 and tries to manage all metadata internally in a single dedicated topic.

26Zoeekeper – https://zookeeper.apache.org/
27KIP-500 – https://cwiki.apache.org/confluence/display/KAFKA/KIP-500 (Kafka improve-

ment proposal 500) proposes the removal of Zookeeper and replacing it with self-managed quorum

21

https://zookeeper.apache.org/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500

Brokers:
0,1,2,3,4

Controller: 2

Zookeeper
 Cluster

Broker 0

Broker 1

Broker 2

Broker 3 Partition 1

Broker 4

Kafka
Cluster

consumer

P1

Producer

Partition 1

Partition 1 P1

Figure 2.16: Communication and roles within Kafka cluster. Broker 2 is controller, and
together with broker 4 it is also partition follower. Broker 3 is partition leader.

2.2.4 Kafka Connect

When Kafka came out, the already mentioned API was fundamentally all it provided.
Using Producer and Consumer alone, we can accomplish things such as storing/loading
data to/from applications that communicate via Kafka protocol, copying all data from one
Kafka cluster to another one, or additionally processing these data within seconds since
their creation. All these tasks would be tedious and require a lot of repeated code. Over
the years, this led to the implementation of several extensions. For the sake of this thesis,
we will focus on one particular extension, which is Kafka Connect. The rest of them are
briefly described in Appendix D.

Kafka Connect is all about data integration. Almost every system needs data from
other systems or data sources. Therefore, we will need to write much code that will help
with transferring and transforming data to a desirable state, which will eventually lead to
high coupling and divergence from focus on business logic [10]. Kafka Connect is a data
integration framework that provides a scalable and reliable28 way to move data between
Kafka and other data stores, possibly even different combinations of stores, while serving
as a middleman. This makes it the perfect choice for transferring data from one database
to another, aggregating data from different sources, and all of that with minimal coupling
between individual sources.

We need to address the problem here: each data store or application that can provide
data may have a different way of storing and accessing them. Therefore Kafka Connect
uses plugin architecture. The only thing which a developer, or generally any organization,
which is interested in the creation of these plugins, has to do, is to extend Connect and
Task Java classes. Connect plugins are currently created and managed by the community
or authors of different databases, data stores, and services. On one side, it provides enough
flexibility to handle the diversity of end objects. On the other side, the amount of additional
configuration may become overwhelming [8]. The following list describes all components
which we either need to take care of or are part of the Kafka Connect framework (see
Figure 2.17):

28Currently, at least once delivery, which means that data may end up delivered twice.

22

• Worker – The cluster itself comprises workers. When we are talking about Kafka
Connect cluster, we mean a set of workers which identify themselves with the same
group id parameter. These workers are fault-tolerant and self-managed. If one worker
crashes, others split the work amongst them.

• Connector plugin – A Kafka Connect plugin is a set of JAR files containing the
implementation of one or more connectors, transforms, or converters [4]. Depending
on whether we want to store data from source to cluster or the other way around, we
implement either SourceConnector or SinkConnector classes. The main responsibil-
ity of this class is to manage tasks (i.e., start, configure, split the load, and overall
manage). For example, the JDBC source connector will connect to the database,
discover the existing tables to copy, and, based on that, decide how many tasks are
needed [28].

• Connector – Once a plugin is installed in the cluster, we may configure details spe-
cific to our needs and thus create our Connector (using REST API). Each connector
instance coordinates a set of tasks that copies the data from source to Kafka or vice
versa [5]. The Connector passes configuration to each task, so it can work individually
as a separate process.

• Task – Notion of Task is the same as in the case of Connectors, there are two types.
SinkTask for SinkConnector and SourceTask for SourceConnector. Its responsibility
is to communicate (transfer data) with the data store according to the configuration
given by the Connector. Splitting the workload of transferring data into multiple
tasks is how Kafka Connect provides built-in support for parallelism. It is mostly
up to Connector plugin (implementation) to decide how many tasks we can start for
a specific Connector. There is also configuration parameter tasksMax for the upper
bound of task count.

• Convertor – The worker uses Convertor to convert data into appropriate format
(e.g., JSON) when writing to or reading from Kafka.

All that is left to the user (at least in most common use cases) is to provide correct
configurations. This means that data integration can now be solved in a simple, declarative
manner thanks to Kafka Connect and already implemented plugins.

2.3 Strimzi
This section describes project Strimzi, its components, architecture, and place in Cloud
Native world. Information is primarily based on Strimzi documentation [8] and several
blog posts. Text will build on knowledge about Apache Kafka and Kubernetes, described
respectively in Sections 2.2 and 2.1.

2.3.1 Origin and Motivation

Project Strimzi, whose aim is to simplify the process of running Apache Kafka in a Ku-
bernetes cluster, started in 2017 as the work of three developers. From that time onward
project gained considerable traction, and since the year 2019, Strimzi has been a part of the
Cloud Native Computing Foundation projects. By the time of writing these lines, several
big tech companies use Strimzi in the production environment [14].

Strimzi brings Kubernetes native experience for running Kafka by providing a collection
of Operators which simplifies work with Kafka [8]. The term “Kubernetes native” means

23

Kafka Cluster

Worker 0
Worker 1 Worker 2

Connector

Task 1 Task 2 Task 3 Task 4 Task 5

Task yTask x

Plugins
Plugins Plugins

Transformation Phase

Convert Phase

Data Store

Figure 2.17: Kafka Connect architecture. Inspired by Strimzi documentation [8].
.

that we are referring to tools and applications that have been built specifically to be run
on Kubernetes platforms, and thus making full use of Kubernetes API and components.
Strimzi additionally supports Kafka by deploying and running a Kafka cluster, managing
access, brokers, topics and users. Some reasons why to use Strimzi (as well as challenges
Strimzi has to overcome) are summarized in the following points:

• Straightforward routing and broker failure handling – Once the Kafka broker
dies, its replacement needs to take its exact place (its configuration) to be recognized
as the same instance being recreated instead of a new broker added.

• Updates – If we run Kafka Pods as part of the Deployment, we can change the image
and run rolling update (Section 2.1.5)

• Readiness and liveness – Alive Kafka broker and the ready one can be two different
things. A container that does not match the liveness condition is restarted, whereas
a ready container (i.e., Pod) can be added as an endpoint to the appropriate Service.

• Abstraction and automatization – Are accomplished with usage of the Operator
Pattern (Section 2.1.6). This may go as far as to simplify the whole management of
Kafka and its components by updating a few custom resources.

2.3.2 Architecture

Due to Strimzi’s Kubernetes native nature, we can think of its architecture in terms of
Operators, custom resources it operates upon, and of course, Kafka’s parts.

24

Operators

Project Strimzi consists of four operators. As already mentioned(Section 2.1.6), when we
simplify it, all Operator does is manage custom resources due to changes in the cluster and
vice versa. Specific operators are described in the following lines:

• Cluster Operator – This is the primary Operator that operates upon the whole
Strimzi cluster, deploys Entity Operator, Apache Kafka cluster, and all other compo-
nents already described in Section 2.2, e.g., MirrorMaker, Kafka Connect. When we
omit all extra resources, once this Operator is deployed, our cluster would look like
the one on Figure 2.18

Strimzi managed namespaces

Cluster
Operator

Legend:
Strimzi
Operators:

Pod:

Operator
Cluster Operator

Kubernetes
Cluster

Figure 2.18: Deployed Strimzi Operator runs as a pod which does nothing more than
monitor its namespaces in order to operate upon newly created custom resources.

• Entity Operator – This Operator is deployed by Cluster Operator. It Comprises
User and Topic Operators.

– Topic Operator – Topic Operator manages Kafka topics. The custom resource
representing topics from Kafka is KafkaTopic. Manipulations such as deletion,
creation, or change of specification of a topic in Kafka brokers are reflected to
concrete resources and vice versa29. This means that Topic Operator watches
for any changes to the topics inside the Kafka cluster and reflects these changes
in KafkaTopic custom resources. The same kind of reflection applies to the
other way. The Topic Operator reflects these changes to the Kafka cluster if a
KafkaTopic is created, deleted, or updated.

– User Operator – User Operator manages Kafka users. Acts in the same way
as Topic operator, but regarding KafkaUser resources and only in one direction.
Unlike topics, users in Kafka are not expected to be manipulated by both Kafka
and custom resources. Parameters such as quotas, authorization (access control
lists and support for Keyclock or Hydra30 servers as well) and authentication
(TLS, SCRAM-SH) mechanism can be specified here. The custom resource rep-
resenting users from the Kafka cluster is KafkaUser.

Custom resources and components

Custom resource definitions (and consequently custom resources) provided by Strimzi, re-
flect to rather high degree components of Kafka Ecosystem which are described in Sec-
tion 2.2.4:

29This configuration can be forbidden, in case of need
30Hydra – https://www.ory.sh/hydra/docs

25

https://www.ory.sh/hydra/docs

Strimzi namespace

Entity Operator

Entity Op.
Kafka Topic

CRtopic-a Partition 1

Partition 2

Kafka Cluster

topic-b Partition 1

Partition 2

topic-a

Kafka Topic
CR

topic-b

Legend:
Strimzi
Operators:

Pod:

Custom
Resource:

Topic:

Operator

Partition

CR

Kubernetes
Cluster

Figure 2.19: Topic Operator (running as container inside Entity Operator pod), watches
over KafkaTopics custom resources.

• Kafka – Kafka represents cluster of broker nodes. Part of the specification is the
number of brokers and the number of required Zookeeper brokers. Concrete Brokers
need to store data, which means that StatefulSet is used. An example of this custom
resource is in Listing 3.7 and also in the Figure 2.20

Strimzi namespace

Cluster Operator

Cluster
Operator

Kafka-0 Kafka-2

Kafka-1

Legend:
Strimzi
Operators:

Pod:

Custom
Resource:

Operator
Kafka

CR
Kafkas: 3
Zookeepers:1
Listeners:
 Plain:9092

9092

90929092

Zoo-0

Other components

Kubernetes
Cluster

Figure 2.20: Cluster Operator act upon creation of new Kafka custom resource.

• KafkaBridge – This component technically serves as a proxy for integrating HTTP-
based clients for Kafka Cluster in the form of Rest API. Two main exposed resources
are consumers and topics. Besides typical operations, such as creating and reading,
there are plenty of options regarding the assignment of partitions, committing offsets,
or subscribing consumers to a topic. Clients can produce and consume messages
without the requirement to use the native Kafka protocol.

• KafkaRebalance – KafkaRebalance works together with Cruise control component,
which balances Kafka cluster concerning disk, network, and CPU utilization. Cruise
Control is deployed alongside the Kafka cluster to monitor its traffic, propose more
balanced partition assignments, and trigger partition reassignments based on those
proposals [8].

• KafkaConnector – This custom resources represents specification about same work
as is described in Section 2.2.4. To work properly, KafkaConnector binds to Kafka-
Connect CustomResource, and by transitive law, also to Kafka CustomResource.

26

Workers from KafkaConnect are now created as Pods, and these are assigned tasks
by a specific KafkaConnector.

2.3.3 Configuration

One of the many benefits of Strimzi is that it simplifies the configuration (Appendix C) of
Kafka. For example, listening 3.7 shows the specification of the whole Kafka cluster using
Strimzi and Kafka custom resources.

1 apiVersion: kafka.strimzi.io/v1beta2
2 kind: Kafka
3 metadata:
4 name: my−kafka−cluster
5 spec:
6 kafka:
7 version: 3.0.0
8 replicas: 3
9 listeners:

10 - name: plain
11 port: 9092
12 type: internal
13 config:
14 offsets.topic.replication.factor: 3
15 storage:
16 type: ephemeral
17 zookeeper:
18 replicas: 1
19 storage:
20 type: ephemeral
21 entityOperator:
22 topicOperator: {}
23 userOperator: {}

Listing 2.2: Specification of Kafka Cluster with 3 Kafka brokers and 1 zookeeper node.

27

Chapter 3

Chaos Engineering

This chapter describes Chaos Engineering1 as a discipline, its origin, principles frameworks,
and projects that are built in this area. Section 3.2 describes details about project Litmus2,
its architecture and experiments. The description provided in the following pages is based
mostly on books [12, 23, 29] and the Litmus documentation [3].

3.1 Discipline
This section describes Chaos Engineering, which is formally defined as the discipline of
experimenting on a system in order to build confidence in the system’s capability to with-
stand turbulent conditions in production [1]. Later parts describe its origin (Section 3.1.1),
motivation for it (Section 3.1.2), principles (Section 3.1.3), experiments (Section 3.1.4), and
lastly its overall adoption (Section 3.1.5).

3.1.1 Origin

Chaos Engineering has its roots in Netflix3, specifically at the moment when the company
decided to move from the data centre to the cloud. The motivation for this migration was
elimination of the problem with the single point of failure (i.e., datacentre).

The most common trait of cluster components is that they often fail. The reason for
that may be anything from cheaper hardware to network problems. There were several ways
to increase the uptime of services in the cluster, e.g., redundant nodes, automatization of
service discovery, and self-healing of services. Many of these were readily available by using
Kubernetes (described in Section 2.1) and thus making them robust enough to withstand
occasional vanishing of instances. Nevertheless, all of these failures and consequent fixes
resulted from unintentional problems.

The first broadly accepted approach that had prevailed was using Chaos Monkey4, a
simple application that periodically picked one instance from each cluster and turned it
off, which had simulated the vanishing of instances in production. This, as a result, forced
developers to act proactively towards possible future failures and make the system resilient.
The primary motivation for all of this was to build software resilient enough to withstand

1Choas Engineering – also known as Chaos testing or chaos experimenting, more info can be found there
https://principlesofchaos.org/

2Litmus – Cloud-Native Chaos Engineering Framework, more at https://litmuschaos.io/
3Netflix – https://ir.netflix.net/
4Chaos monkey – https://github.com/Netflix/chaosmonkey

28

https://principlesofchaos.org/
https://litmuschaos.io/
https://ir.netflix.net/
https://github.com/Netflix/chaosmonkey

turbulent events in production with as little downtime for the end-user as possible. Netflix
took this concept even one step further with Chaos Kong5 This simulates the falling of the
whole region of clusters.

Netflix’s original approach, explicitly using Chaos monkey and Chaos Kong, served to
build the resilience of their project by injecting Chaos directly into the production. From
the beginning, every day, the most important task that needed to be solved was a problem
with fallen instances in production. Only afterwards could they continue in regular work.
After two years of this approach, Netflix finally decided to build a team to formalize The
new Discipline called Chaos Engineering.

3.1.2 Motivation

Building confidence in monolithic systems did not need more than conventional methods
of quality assurance, e.g., acceptance, integration, end to end testing. No matter what
kind of application we have, the task remains the same; make our application resilient.
The definition of a system’s resilience is, in this context, extended as follows; that being
system’s ability to withstand different sorts of failures or turbulent conditions. In the case
of microservices and the cloud environment, we need to address the system’s complexity
and prepare for failures beyond the scope of the application.

Complex distributed system

A generalized problem of distributed application written in the form of microservices may
look like the one in Figure 3.1

User Service 1 Service 2

Figure 3.1: A schema of a simplified microservice.

Although the behaviour (i.e., interface) of Service 1 and Service 2 from Figure 3.1
can be clearly defined, to have confidence in this type of distributed system, we need to
have answers for what should happen if Service 2 dies or start to respond slowly. What
happens if Service 2 comes back after going down for a while or a connection problem
occurs. Furthermore, most important, what does all of this mean to the user [23]? The
example from Figure 3.1 is simplistic, but the services described here may include numerous
other components. Most of the distributed systems have traits of the complex system, with
nonlinear6 behavior. This kind of system may behave unexpectedly due to interaction
between its components. Validation and verification of bigger projects (e.g., Strimzi) is
harder than the sum of verification and validation of its components. Concrete Operators
often need to spawn a series of other Kubernetes objects to ensure the proper functioning
of the system. When the situation with microservices gains a bigger scale (e.g., Netflix’s

5Chaos Kong built on the success of Chaos monkey, and same as Chaos Monkey was inspired by actual
events (Whole Amazon Region went down) – https://netflixtechblog.com/chaos-engineering-
upgraded-878d341f15fa.

6Nonlinener system – A system in which the change of the output is not proportional to the change of
the input. Taken from https://news.mit.edu/2010/explained-linear-0226

29

https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://news.mit.edu/2010/explained-linear-0226

television subscription service with more than one hundred million users worldwide), we
would get architecture like the one in Figure 3.2.

Figure 3.2: More realistic example of microservices and traffic between components. These
services can be databases, cache, load balancers, API. Inspired by [22].

Example of this may be cluster with internal DNS7 service. The cluster works correctly
until a rising number of components that need to communicate with the server bring the
service down. Afterwards, this behaviour periodically repeats as services increase the rate
of requests to the DNS server. Nevertheless, there may not be any sign of a problem until
the first fall of the DNS server. These faults are often called Dark debts, and the anomalies
they generate are complex system failures [23]. Generally

Resilliency dependency

Any application intended to run on the cloud and written as microservices depends on whole
stack of other components:

• Infrastructure – Physical form of hardware bears with itself countless options of
failure (e.g., power loss, heat, environmental disasters). This includes as well virtual
machines, or cloud providers’ Infrastructure-as-a-Service (IaaS).

• Kubernetes – Kubernetes is still relatively young, and there are many upgrades al-
most every few months; each of these upgrades can be considered a threat to resilience.

• Network – Application on cloud is possibly open to the whole outside world, prob-
lems with network present plenty of scenarios (e.g., unexpected traffic) which can
create a turbulent environment.

• Other services – Databases, monitoring tools, load balancers, CoreDns, and any
other middleware or service which is either necessary for the functioning of a cloud-
native environment or provides some essential service.

7Domain Name System – https://www.cloudflare.com/en-gb/learning/dns/what-is-dns/

30

https://www.cloudflare.com/en-gb/learning/dns/what-is-dns/

Infrastructure

Kubernetes

Network

Other Services

Application

Figure 3.3: The resilience of the application

The resilience of all of these components must match expectations before we even start
considering the resilience of the application itself, as depicted in Figure 3.3. It is safe to
assume that most of the resilience of service that runs on Kubernetes depends on other
components and infrastructure most of the time [26].

3.1.3 Definition and Principles

The current definition of chaos engineering is the following: It is the discipline of experi-
menting on a distributed system to build confidence in the system’s capability to withstand
turbulent conditions in production. The base unit of Chaos experimenting is chaos exper-
iment, described in Section 3.1.4. In the field of quality assurance, we can classify Chaos
engineering as follow:

• Experimenting – Chaos Engineering is a form of experimenting, not testing per
se. Tests make an assertion based on existing knowledge, and then running the test
collapses the valence of that assertion, usually true or false. Experimentation, on the
other hand, creates new knowledge [12].

• Verification – Chaos Engineering is mostly interested in the following question.

”Does the system work“, rather than building some system model. Due to this fact,
chaos engineering can be used for setting SLOs8 which engineers can easily focus on,
such as the success ratio of requests even during chaos injection. This is also the most
important trait that distinguishes chaos engineering from fault testing; the latter is
also interested in how the system works exactly.

Chaos Engineering follows several principles, all of which are based empirically. The
degree to which these principles are pursued vigorously correlates to the confidence we can
have in a distributed system at scale [1]. It is important to note that these principles are
not all or nothing and the possibility of abiding by them is not always absolute.

• Hypothesis build around steady-state – Focus is on the expected behavior of
the system, often by looking at key performance indicators (KPIs) or other metrics,
the focus is on overall output instead of searching for cause [12].

8SLO – Service level objective.

31

• Vary Real-World Events – Instead of trying to terminate an instance, fill up
the disk and turn off the network on instances, which are all relatively easy tasks
that, from orchestration’s viewpoint, accomplish the same thing (i.e., instance stop
responding). We should focus on events that are more likely to be caused by users,
such as varying latency. Prioritization of events should reflect both potential impact
and estimated frequency.

• Run Experiments in Production – The environment in which we run these ex-
periments is the one in which we build confidence.

• Minimal blast radius – Chaos should not involve any unnecessary parts (i.e., for
that specific experiment) of the system. If we run experiments in the production
environment, we should make an effort to minimize the way customer is impacted.

• Continuous run – Chaos experiments should be invoked at least each time any
change is introduced to any of the components of the underlying technology stack
that the application is running on.

3.1.4 Chaos Experiment

The base unit of Chaos Engineering is Chaos Experiment. Once the experiment is over, it
either passes or fails. In the former case, we have more confidence in our system, as it can
withstand turbulent conditions simulated by the experiment. In the latter one, we have
new knowledge, and we can either update our experiments or system according to weakness,
which was discovered before it could cause severe damage. All of these steps are depicted
in the following Figure 3.4.

Observability

Steady state

Hypothesis

ExecutionResult

Resilience
(Pass)

Fix of fault

(Fail)
Fault discovered

Figure 3.4: Chaos experiment workflow

All of the tools described in Section 3.1.5 implement chaos engineering in almost an
entirely different manner, but every chaos experiment itself always matches the following
structure:

• Observability – Each Chaos experiment starts with observability. It is the key factor
in chaos engineering. We need to tell somehow how the experiment ended and what
components or variables (e.g., the load of CPU, a crash of website, reachable endpoint

32

present pod) were affected by the experiment. The key factor here is to reliable see
any metric we are interested in. While doing so, we have to take into account that
observing an experiment alone may itself alter its result9. For example, the process
for measuring CPU load may end up using more CPU than the application itself [29].

• Defined steady state – We define the state of system tan can be considered to be
healthy or desired, both before and after the experiment. This is done by focusing on
variables, which should, to a high degree, reflect the healthy state of the system.

• Formulate hypothesis – We run these experiments with some expected behaviour.
This includes checking the desired state after the experiment in terms of implemen-
tation. A hypothesis may often represent only a hint or expectation about system
properties.

• Run experiment – Injection of chaos.
• Application of changes – Upon conclusion of the experiment, we should be able

to evaluate the result and, with the help of gained metrics and further investigation,
suggest and implement fixes in an attempt to fix discovered issues.

Actual examples of applied experiments may be a situation that includes turbulent
conditions, e.g., the responsiveness of the website during CPU spike, recovery of the Pod
after CPU spike, a recreation of lost resources, and survival of service despite several lost
replicas.

3.1.5 Adoption

Resilience is context-sensitive and improving it needs to be looked at as a practice rather
than a specific set of tasks [26]. Each system has multiple features that can fail in dif-
ferent manners. However, the same problem most technical giants and systems face is an
outage. With the rising adoption of Kubernetes, so does the need to ensure the stability
of applications and systems running on it. This means making our application resilient
towards typical problems within the cloud (and Kubernetes) environment. Shift to cloud
and microservices made this problem only more urgent, and a proactive reaction to it is
Chaos engineering.

Despite this discipline being still young, it has started to be widely incorporated by
technical organizations such as Amazon, Linkedin, Google, and Microsoft. It was primarily
the shift to the cloud and Kubernetes’ widespread that brought it to the spotlight. Each
organization approached chaos engineering in its way and had its reasons to do so (e.g., split
Monolith into microservices, shift to the cloud). Some of the currently most widespread
chaos testing tools are Chaos Mesh10, Gremlin11 which is often considered to be an improved
version of the already mentioned Chaos Monkey, as it allows safely and efficiently simulate
system outages (and, of course, countless other features), and many others, such as Litmus,
which is described in the following section.

It is essential to know where to draw a line where Chaos Engineering becomes for
system necessity. Several factors may contribute to this decision, e.g., the need to ensure
availability, mission-critical software, and the vast scale of the system. The higher level of
abstraction, new functionality, and making service more available (e.g., use of redundancies,

9Most famous example of this phenomenon is double-slit experiment - https://en.wikipedia.org/
wiki/Double-slit_experiment

10Chaos Mesh – https://chaos-mesh.org/.
11Gremlin – https://www.gremlin.com/

33

https://en.wikipedia.org/wiki/Double-slit_experiment
https://en.wikipedia.org/wiki/Double-slit_experiment
https://chaos-mesh.org/
https://www.gremlin.com/

horizontal scaling) will inevitably cause that system to gain on itscomplexity. In that case,
once chaos Engineering is applied, it brings numerous benefits (i.e., proven resilience, found
weaknesses, prevention of losses in revenue, reputation, reduction of downtime).

3.2 Litmus
This section covers project Litmus; open-source Chaos Engineering platform designed for
cloud-native infrastructures and applications [31]. The section starts with its overview and
continues with its architecture, terminology, and specific experiments. Information provided
here are based mainly on documentation [3] and several blogposts [31, 16, 26].

3.2.1 Framework

Litmus is a complete framework for finding weaknesses in Kubernetes platforms and their
applications. It adheres to four principles of cloud-native framework: Open source, Kuber-
netes native, extensible, and with broad community adoption [21]. All of these traits make
it the perfect choice for Chaos Engineering on project Strimzi 2.3.

Litmus uses the Operator pattern and relies on Custom Resource Definitions, also de-
scribed in Section 2.1.6 [16]. The main difference between Litmus and most other tools
for chaos testing is that Litmus does it in Kubernetes Native way. While doing so, it also
supports several container runtimes (including cri-o). It thus makes it possible to inject
Chaos in the Kubernetes cluster on several platforms12.

3.2.2 Architecture

Installing Litmus means that we deploy the Operator and apply several other resources
(almost the same situation as in Strimzi’s case 2.3). Kubernetes native nature of Litmus
allows us to think about its architecture from the viewpoint of the Operator and the re-
sources upon which it operates. These components form the backbone of Litmus which
users can interact with.

Chaos API

Following components are Operator and custom resources that users can interact with.
Communication between these components and application is described in following lines:

• Operator – Manages the lifecycle of the chaos Custom resources (that includes Chaos
experiments). The Operator itself (and most of the experiments) are written in
Golang. An example of deployed chaos operator is visible in Figure 3.5

• ChaosExperiment – This resource defines the type of experiment and its key pa-
rameters [25]. These resources are pre-build and YAML specifications for these custom
resources are hosted at the public ChaosHub13, which serves as a store for all chaos
experiments which are currently available. The configuration provided in this resource
can be considered rather static and should require changes rarely.

12Supportig of cri-o container runtime makes Litmus compatible also with OpenShift platform
13ChaosHub – hub with existing chaos experiments. https://v1-docs.litmuschaos.io/docs/

chaoshub/

34

https://v1-docs.litmuschaos.io/docs/chaoshub/
https://v1-docs.litmuschaos.io/docs/chaoshub/

Chaos Namespace

Chaos-op
Kafka-0

Legend:
Chaos
Operators:

Litmus Pod:

Pod (AUT)
running

Operator

9092

Chaos Operator

Figure 3.5: Deployment of chaos operator.

• ChaosEngine – This Custom Resource links an application instance with one or more
chaos experiments. This is done by the specification of the target application using
labels, kind, and optionally annotation. It serves as the main user-facing resource as
well as providing options to override default parameters passed to Chaos by Chaos
Experiments specification. Most importantly, it serves as the single source of truth
for evaluating the execution of the concrete experiment. Once ChaosEngine and
respective ChaosEngine are supplied, an operator can start to take action for actual
chaos injection. This behaviour is depicted in Figure 3.6.

• ChaosResult – There is one ChaosResult Custom Resource per ChaosEngine. Its
role is to provide information about the results of running it, and contrary to ChaosEn-
gine or ChaosExperiment, it is runtime built.

Chaos Namespace

Chaos-op

Kafka-0

Legend:
Chaos
Operators:

Litmus Pod:

Custom
Resource:

Pod (AUT)
deleted

OperatorChaosEngine
CR

9092

Pod-delete-1

ChaosExperiment
CR

Pod-delete-1 CR

env
 app: kafka-0
 duration: 30

run-image: go1

Chaos-go1

ChaosResult
CR

Pod-delete-1

Chaos Operator

Figure 3.6: Roles of litmus custom resources demonstrated within single example of Pod
deletion experiment.

Execution

In reality, actual execution includes several other steps. Previously mentioned parts of
architecture describe part of Litmus architecture that holds information. This part covers
execution. The Operator creates an object called ChaosRunner which afterwards spawns
ChaosJob. The architecture of execution can be visible in Figure 3.7.

35

Legend:

Chaos
Operators:

Litmus Pod:

Custom
Resource:

(AUT)

Operator

Bind Bind ChaosEngine
CR

CR

ChaosExperiment
CR

 ChaosExperiment
CR

Watch

Create

Chaos-op pod-c

ChaosRunner

Create/Update

Chaos Injection

ChaosJob-a

Create/Update

ChaosJob-b

Spawns

ChaosResult
CR

ChaosResult
CR

pod-a

pod-b

Application
(SUT)

Update

Chaos Operator

Figure 3.7: Execution of chaos experiments

• ChaosRunner – This component maintains life cycle of experiment. Execution of
Chaos itself is done using Jobs 2.1.5. It acts as a bridge between the Chaos-Operator
and the LitmusChaos experiment jobs. Before creating Job, ChaosRunner checks
all dependencies that the experiment requires (e.g., presence of ConfigMaps Volumes,
permissions). It takes arguments, commands, environment, variables from both Chao-
sExperiment and ChaosEngine, and after all necessary checks, spawn and monitor
ChaosJobs. ChaosRunner then watches ChaosResult and updates ChaosEngine.

• ChaosJob – Technically it is Kubernetes Object, (Job Controller from Section 2.1.5).
This component injects Chaos (and several other steps as well) and updates Chaos-
Result with each of its steps. Subsection Chaos Experiments 3.2.3 will further explain
all steps and technical details. From a communication point of view.

3.2.3 Chaos Experiment On Litmus

Chaos experiments are the core part of Litmus. The whole project is written in an extensible
manner. This is accomplished by publishing experiments on ChaosHub, and providing
support for different libraries, e.g., Native-Litmus, PowerfulSeal14, and Pumba15 [26].

14PowerfulSeal – https://github.com/powerfulseal/powerfulseal
15Pumba – https://github.com/alexei-led/pumba

36

https://github.com/powerfulseal/powerfulseal
https://github.com/alexei-led/pumba

Existing experiments

Litmus currently provides more than 50 experiments (including appropriate RBAC re-
sources) on ChaosHub. To avoid confusion, we will further address these litmus Chao-
sExperiments as templates. The template’s primary purpose is to reference the actual
implementation of desired chaos experiment. Which is then configured for a specific use
case with the help of environment variables in the specification of another custom resource
(i.e., ChaosEngine). Following templates cover the most common problematic situations
we can encounter:

• Pod chaos – There are templates for deletion of the selected number of Pods, killing
of containers, or manipulation with the Pod’s resources (e.g., Disk Fill, Pod CPU hog,
Pod IO stress, Pod Network Latency).

• Node chaos – Failure of a node is not a rare condition. There are also occasions
when we need to restart nodes (e.g., upgrade of the Kubernetes version).

• Service chaos – These experiments kill services on worker modes, e.g., kubelet.
• Application specific chaos – Litmus provides also template for injecting chaos

into Kafka applications. This experiment is built especially to ensure the proper
functioning of Kafka while some of its instances are killed.

If provided templates do not match our use cases, we can create our own. All that
needs to be done is provide an implementation that matches the expected workflow of the
experiment. Then, new experiments can be created the same way as in the previously
mentioned templates.

Experiment’s workflow

Experiment workflow describes steps executed once the experiment of a given type begins.
All these steps are depicted in Figure 3.8 as well.

Once ChaosEngine and ChaosExperiments are applied inside the cluster, the Operator
spawns Chaos Runner, which will spawn Job. The following lines describe the situation
from figure 3.8. ChaosJob starts its work by reading input (all parameters such as image,
arguments, commands, and environment variables) provided in ChaosEngine and Chaos-
Experiment.

After initialization of ChaosResult experiment checks Steady-state conditions. This
check differs for different experiments, but we have to check if the system under test works
as expected before injecting Chaos. For example, in the case of a simple experiment such as
deletion of the Pod, we would have to make sure this Pod exists and is in a running state.
If the actual state does not match the expected one experiment fails. Otherwise, execution
continues with launching additional resources (such as a helper Pod with privileges to mount
volumes or kill containers for specific experiments). Chaos is injected once these steps are
done (network goes down, a node is drained, Pod deleted). This step can be repeated if
we allocate a long enough duration for a single experiment. Once the time for injection of
Chaos ends, we verify that cluster is in the expected state and if it is so, we consider the
experiment as successful; otherwise, it fails.

During all these steps, we generate events that will be present in ChaosResult, ChaosEn-
gine, and also Chaos Operator. The reason for that is to have all events aggregated but also
separated for further usage. The single source of truth for each experiment is ChaosEngine.

37

Litmus native resource

Legend

Process
Input

Inicialized

Steady
State
Check

Experiment
End

Fail

Update

Pass

Launch Chaos
Resources

Inject Chaos
(Iterations)

Post
 Chaos
Check

Pre-Chaos

Summary

Post-
Chaos FailPass

Fail

Pass

Steps of experiment

Litmus/Kubernetes events

Failed experiment
Passed experiment.

Chaos
Inject

Chaos
Experiment

CR

Chaos
Engine

CR

ChaosResult
CR

Get

Implementation
Input

Figure 3.8: Workflow inside Chaos Job

Probes

The existence of pre-created chaos experiments on the chaos hub allows fast adoption of
chaos experimenting using Litmus. These experiments are by default configurable enough to
fit most of the required use cases. For example, we can test Pod deletion on Pods managed
by different Controllers in different namespaces. However, sometimes, checks executed by
these experiments are insufficient, and we need some additional checks. To avoid the need for
writing new experiments, we can add additional probes to existing generic ChaosExperiment.
These probes are pluggable checks that can be defined within the ChaosEngine for any
chaos experiment [3]. For the experiment to pass, all these checks have to pass. Probes are
specified as part of chaosEngine specification and can be executed before, during, or after
chaos injection. Currently, supported probes are:

• cmd – Function that is implemented as a shell command. A typical example of this
kind of check can be the presence of some records in the database.

• http – Http request inside cluster, with support for Get and Post methods. Check
itself is done by comparing obtained and expected status codes.

• k8s – CRUD operations against Kubernetes resources.
• prom – Match prometheus metrics for specific criteria.

38

Chapter 4

Design

Section 4.1 describes the main weaknesses of project Strimzi, which we can (not necessar-
ily) address. This part serves as a base for reasoning about the best possible design and
proposed solution (and alternatives) for implementation. Section 4.2 then extends informa-
tion about Litmus architecture (Section 3.2) and describes how our component can interact
with Litmus’ custom resources, e.g., chaosExperiment. The following Section 4.3 describes
specific chaos templates. It starts with existing templates and discusses what functionality
is needed to inject different kinds of Chaos. Finally, Section 4.4 describes the application
of chaos engineering concerning the needs of the Strimzi project and the principles of chaos
engineering.

4.1 Considerations
The design and implementation of chaos experiments are tightly coupled. The first step is
identifying the properties of the system with which we want to experiment. Once we do
this, we can decide what level of abstraction and what type of framework best suits our
needs.

4.1.1 Strimzi’s Weaknesses

The nature of the Strimzi project (an operator that incorporates Kafka running on Ku-
bernetes), and the fact that it is usually part of other systems, means there are countless
viewpoints regarding possible weaknesses and demands regarding its resilience:

• Containers and pods – An application always runs inside a container (Section
2.1.1), which runs inside a Pod (Section 2.1.4). That means container runtime pro-
cesses, containers, and Pods can crash or become unresponsive. A typical problem
that needs to be addressed is Pods’ readiness and health check. Each Pod and its
containers may start to consume too much memory, cause too many writing opera-
tions on disk, and take too many CPUs or RAM. This affects the Pod itself and the
whole node the container is running on. On top of that, as was already mentioned,
pods are known for their ephemerality.

• Kubernetes – By running our application inside the Kubernetes cluster, we are
counting on the correct functioning of countless services. Both types of nodes (i.e.,
master and worker, described in Section 2.1.3) may stop working correctly, and in the
case of workers, it means that a significant part of the system goes down as well:

39

– Master nodes – Control plane of Kubernetes consist of several components
that need to function properly (i.e., etcd, API server, scheduler, controllers).
These components may fail under specific conditions and cause undesired be-
haviour in other components. For example, etcd uses distributed consensus
algorithm called Raft1, if we bring down at least half of the master nodes, it will
make etcd unavailable.

– Worker nodes – Worker node needs three processes to work correctly, specifi-
cally container runtime, kubelet (i.e., Kubernetes process), and Kube proxy. All
of them are already described in Section 2.1.1). A crash of any of them will
make this node either unresponsive or unable to work correctly. There are also
options for disrupting routing (by corrupting iptables or killing the proxy pod
responsible for their maintenance).

• Cloud and network – There are a series of services communicating with each other
using a network. Besides communication within the cluster, services that incorporate
Strimzi are often public (e.g., it communicates with services or clients outside of
the cluster). This means that besides common networking problems (i.e., packet
corruption, packet loss, latency), we may encounter other turbulencies (e.g., spikes of
traffic, DOS attacks2).

• Implementation – Strimzi is implemented using Java programming language and
operator pattern (described in Section 2.1.6) to simplify work with Kafka inside the
Kubernetes cluster.

– Operator – There are plenty of objects that are responsible for the correct
functioning of our application (e.g., Services, configuration maps, Pods). They
can succumb to failure, be removed, or be replaced. Strimzi operator runs inside
the Pod as well and therefore can also easily succumb to failure.

– Java – most of Strimzi components (e.g., Strimzi Kafka Bridge, Apache Kafka,
Apache ZooKeeper) run inside JVM3. We can easily inject failure directly into
JVM and cause unexpected exceptions, but most of these scenarios are already
tested within the scope of conventional quality assurance. Although project
Strimzi, like most of the other projects of that scale, involves a series of tests
(i.e. unit, integration, end-to-end tests), thus most of the troubles connected to
concrete implementation are already covered.

• Kafka – Strimzi is Kubernetes native project which may be involved in mission-
critical software; it is necessary to enforce this quality in the Strimzi (if desired)
as well. Depending on the concrete configuration of Kafka, a user may require high
availability or other traits covered in Section 2.2. Most of the experimenting will need
to verify that proper functioning (i.e., availability or guarantee of delivery) is ensured
even during chaotic conditions. Strimzi is a highly configurable project with many
additional features (e.g., Bridge, metrics) that will require experimenting with many
configurations. Concerning the used Kafka version, we will also consider Zookeeper
and its quorum dependent algorithm.

1Raft - More at https://raft.github.io/
2DOS attack - Denial-of-Service attack, more at https://en.wikipedia.org/wiki/Denial-of-

service_attack
3JVM - Java Virtual Machine

40

https://raft.github.io/
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

4.1.2 Choice of Approach

The choice of design (and coupled implementation) may make some experiments imprac-
tical to maintain or implement. Despite the relatively straightforward structure of chaos
experiments from Section 3.1.4, even simple experiments such as killing a Pod may be
approached from many perspectives.

There are two main factors regarding the choice of the chaos design. The first one is to
cover most of Strimzi’s weaknesses. The second one is fulfilling the criteria regarding the
correct approach to chaos engineering (Section 3.1.3) and allowing us to create maintainable
chaos experiments (Section 3.1.4).

Imperative design and implementation

Strimzi is a Kubernetes native project. Kubernetes always depends on some containerized
solution, e.g., docker. This means that we have quite a big choice in the desired level of
chaos experiment’s abstraction :

• Linux utilities – The Most common choice for simple experiments is writing scripts.
The biggest advantage of this approach is that we have access to all low-level param-
eters. We could use Linux utilities (e.g., df4, ab5, tc6) for manipulation of the system
system resources, i.e., CPU, RAM, storage, network.

• Containerized solutions – Represents approach with higher level of abstraction.
Instead of working with processes, we manipulate containers directly (working with
containers is briefly explained in Section 2.1.1). This can be done using third party
libraries, e.g., Pumba7.

The higher level of abstraction significantly decreases problems with maintainability and
depends less on concrete solutions (i.e., scripts, systems, runtimes). The need for incon-
sistent solutions often makes these types of designs rather impractical for bigger projects.
Continuous run can be accomplished with use of utility called cron8, or using some continu-
ous integration and delivery software, e.g., Jenkins9. However, problems with observability
remain, as well as blast radius (especially in the case of lower abstraction). An example can
be killing processes or causing higher traffic between database and service. This scenario
can be accomplished using Linux utilities or additional libraries. Still, unless being specific
with names of processes or the node’s location (which may be even virtual), we may induce
Chaos elsewhere.

Declarative design and implementation

When we start using the Kubernetes API, the simple addition of a few YAML files with
a description of resources allows for the creation of rather advanced chaos experiments.

4df - abbreviation for disk free, more at https://en.wikipedia.org/wiki/Df_(Unix)
5ab - Apache Benchmarking tool, more at https://httpd.apache.org/docs/2.4/programs/

ab.html
6tc - (Traffic control) manipulate traffic control settings, more at https://man7.org/linux/man-

pages/man8/tc.8.html
7Pumba - chaos testing command-line tool for Docker containers, more at https://github.com/

alexei-led/pumba
8cron - https://en.wikipedia.org/wiki/Cron
9Jenkins - Continuous integration and delivery automation software, more at https://

www.jenkins.io/

41

https://en.wikipedia.org/wiki/Df_(Unix)
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://en.wikipedia.org/wiki/Cron
https://www.jenkins.io/
https://www.jenkins.io/

An example of this can be using toxiproxi10, a simple framework for simulating network
conditions on a Kubernetes cluster. Users can specify almost all of Chaos’s parameters in
a declarative manner. With the help of similar tools, we could accomplish an almost fully
declarative chaos design. The following lines describe vital options for fully declarative
chaos engineering on the Kubernetes cluster:

• PowerfulSeal – Is a chaos engineering tool for Kubernetes. Implementation of chaos
experiments is afterwards accomplished by writing Yaml files. We can write any
number of scenarios, each listing the steps necessary to implement, validate, and
clean up after a given experiment [29].

• Litmus – Besides the numerous benefits that Litmus has, there are two points which
we later consider regarding our needs. The first one is that Litmus is the youngest
of mentioned projects. Therefore, it may still undergo some significant changes, and
the second is that some experiments, although provided, may not be possible on a
specific infrastructure, e.g., experiments with nodes.

• Others – Besides already meantioned approaches, there are also numerous other
options (i.e., tools and frameworks) for application of chaos engineering on Kubernetes
cluster, e.g., ChaosToolkit11, kraken12.

Considering all previously mentioned attributes, regarding project Strimzi, a declarative
approach to Chaos seems more durable and with lower blast radius. Moreover, with the help
of frameworks and libraries, this approach also provides sufficient options for observability
and options to accomplish continuous run.

4.2 Communication
If we decide to implement templates and inject Chaos into some production project or ar-
tificial system in a Kubernetes native way, we will work primarily with CustomResources.
The whole communication can be visible in Figure 4.1. Assuming that Chaos Operator and
respective ChaosExperiment CustomResource already exist, each experiments starts with
creation of ChaosEngine CustomResource. This is all interaction regarding the initialization
of Chaos we will need from the user. After a series of steps explained in Section 3.2.2, even-
tually, the Pod containing the specified image is created. It contains all the specifications
it needs in the form of environment variables and arguments it was executed with.

Besides execution of Chaos itself, pod is also responsible for continual updating of chaos
custom resources (i.e., chaosResult, chaosEngine). Once Job (Pod) is finished with the
experiment’s execution, it updates the ChaosResult, and afterwards, the experiment is done.
Users can then verify messages and results present in chaosResult and examine chaosEngine
(this resource is supposed to be the single source of truth for a given experiment). Based
on the specified cleaning policy, the user can evaluate logs from Pod responsible for chaos
injection and other additional resources involved in the chaos experiment.

10toxiproxi - more at https://github.com/Shopify/toxiproxy
11ChaosToolkit - https://chaostoolkit.org
12Kraken - https://github.com/cloud-bulldozer/kraken

42

https://github.com/Shopify/toxiproxy
https://chaostoolkit.org
https://github.com/cloud-bulldozer/kraken

Legend:

 Other Litmus
 components

 Implementation:

 Custom
 Resource:

 Time

ch-e-1
Chaos-

Experiment
CR

Chaos Operator

Chaos-op

ChaosRunner

main(){

 }

chaos-runner-my-exp

Create & Pass Specificationsarg: -n my-exp
image:go-runner
envs:
 time: 20

arg: -n my-exp
envs:
 time:30
 appName: aut

go-runner

ch-e-1
Chaos-
Engine

CR

ch-e-1
Chaos-
Result

CR
Result:

envs:
 time: 30
 appName: aut

Read

Create specified Pod
with desired environment variables

Update

Figure 4.1: Communication between our template and other components of Litmus.

4.3 Chaos Experiments on Project Strimzi
The focus is on replicating the events that are likely to happen in our system. For example,
the application will go down, networking will be disrupted, nodes will not be fully available
all the time, and human errors will occur [36]. Section 4.1.1 describes common concerns
we should address in Strimzi and similar projects. These factors represent categories of
potential problems that may occur within the scope of Litmus chaos experiments. Litmus
chaos experiments serve as templates for creating chaos experiments. For simplicity further
called templates. Each template follows the structure of chaos experiments, as was already
described in Section 3.1.4. Implementation of desired chaos experiments can be accom-
plished using provided generic templates (i.e., creating Litmus Chaos Engine components
bound to these templates). These generic experiments are described first. Afterwards, we
will suggest and describe the implementation of brand new templates (these will also be
available on Chaos Hub) for situations where we cannot accomplish desired behaviour with
provided generic templates. These templates can be later used in the same manner as other
already existing templates, just like all other existing templates.

4.3.1 Generic Chaos Experiments

When we think about chaos experiments (in the scope of using Litmus on our project), we
must consider that each chaos experiment is bound to options provided by a template (i.e.,

43

litmus chaos experiment). This section is called generic because to create these experiments,
it is possible to reuse existing templates (i.e., litmus chaos experiments described in Section
3.2.3).

For example, if we want to test that our Operator will work correctly even if that
Operator Pod dies or that communication with the Kafka Bridge is restored once the
problem with the Kafka Bridge pod is resolved. Because Strimzi and its components are
running inside Pods, the correct functioning of these components depends on the proper
functioning of these Pods. We could easily accomplish this with templates for pod deletion
or container kill. These templates refer to specific chaos executions. With the help of
environment variables and other components (i.e., ChaosEngine), we can set up this chaos
experiment to the desired form. In our case, it can be done simply by selecting the Pod and
the appropriate Controller. In the case of controlling correct behaviour, from the Kafka
Bridge example, we may also use probes (described in Section 3.2.3). We are explicitly
checking the availability of the HTTP endpoint once chaos duration (i.e., the time after
which we expect the system to regain its former state) ends. Provision of the system under
test for this simple scenario may look something like the one in Figure 4.2. Some other
scenarios that may use generic templates are the following:

Bridge
pods

Bridge
Service

Kafka
Service

Kafka
Pods

Figure 4.2: System under test in case of chaos experiment with simple Kafka Bridge.

• KafkaConnect process kills – The way how Kafka connect works is already de-
scribed in Section 2.2.4. This experiment can use templates for container kill and, by
doing so, disrupt the correct functioning of this component. The expected behaviour
is that work will continue, and new tasks are created in place of those killed.

• Broker killed – Kafka broker pod deletion is already provided as a template by
Litmus. Different types of brokers and their roles are described in Section 2.2.3. This
experiment allows us to verify the undisrupted flow of messages during the event of
killing some brokers. This template may need slight adjustments to observe correct
functioning under the circumstances of killing different brokers with different roles
(e.g., partition leader, cluster controller) and with varying configuration goals (e.g.,
availability). The problem with Kafka itself may become even more complex, as
Litmus does not provide a way to identify the different roles of brokers. The bigger
problem is the fact that due to the already mentioned KIP 500 (Section 2.2.3), we will

44

need to execute these experiments even in the absence of the Zookeeper. The current
implementation of Litmus does not yet provide support for this Kafka’s improvement.

• Kubernetes chaos – Lot of components that help with the provision of functionality
are pods and services as well. Besides these, we will also inject Chaos into the essential
services and processes (e.h., container runtimes) and indulge network and CPU hogs.

Templates (and experiments that can be built on top of them) described in previous
points cover most of the general requirements. However, because Strimzi is an Operator,
our needs are slightly different. As a result, several types of these provided templates will
be redundant, while some additional cases need even more specific approaches.

4.3.2 Strimzi Specific Chaos experiments

As was already mentioned, Litmus provides more than 50 already implemented templates.
Unfortunately, most of them are not suitable for our use case (e.g., templates for injection
of Chaos to other operators, injection of Chaos into Kubernetes internal components13).
To be able to inject a specific type of Chaos (i.e., aimed to disrupt precisely our resources),
we have to design and implement our own additional chaos templates first.

Templates should implement some basic general behaviour. Additionally, they should
allow users (these templates will be available from the chaos hub to the whole commu-
nity) to specify scenarios based on their needs, i.e., specify application under test, mark
resources, and provide all necessary configurations for their specific application. This means
implementing the logic of the experiment that will be part of the runner image, afterwards
creating necessary resources for sufficient minimal permissions, i.e., service account, role,
and role binding (all of them described are described in Appendix B). The following parts
describe two main templates that will need to be implemented to create desired chaos ex-
periments afterwards. Once these templates are implemented, we can use them to create
chaos experiments.

Resources Deletion

Strimzi operators and any other operators operate with numerous other components. In the
case of Strimzi cluster operator, it should be able to recover lost resources (e.g., configuration
maps, secrets). Deleting these resources is not something that would happen as often as
failures of pods. Still, because they are managed by the Operator and are likely to be
part of larger systems with numerous other similar resources, they may be removed due to
other activities, such as human error or invalid scripts. Deleting or losing some of these
components may also cause different events (e.g., deletion of specific secrets may cause
rolling update of the whole cluster).

The workflow of a template can be visible in Figure 4.3. It matches the desired speci-
fication of Litmus chaos experiments. Implementation of this is simplified due to provided
bootstrap14 in the Go language. This provides the implementation for generating basic
events and parsing input.

Besides controlling that expected resources are recreated, the experiment also verified
that this interference (i.e., Chaos) did not touch the consumption of data from Kafka.

13Behavior in these cases in most cases is already well documented.
14Repository with the implementation of existing templates – https://github.com/litmuschaos/

litmus-go

45

https://github.com/litmuschaos/litmus-go
https://github.com/litmuschaos/litmus-go

Duration
over

Check health
status of Strimzi

Post Chaos Check

Fail Pass

Fail Pass

Experiment Inputs Attach producer
and consumer

Verify Existence of resources and
consumption of topic

Wait

ChaosEngine
CR

ChaosEngine
CR

ChaosResult
CR

Send

Litmus native resources

Legend

Steps of template (exp.)

Failed experiment
Passed experiment.

Implementation

Delete targeted
 resources

Derive resources
targeted for deletion

No

Yes

Figure 4.3: Workflow of Strimzi specific implementation (using Golang) of Litmus Chaos
Experiment, focused on Strimzi’s capability to restore its kubernetes resources.

Update Resilience

In Kubernetes, one of the weakest points15 of any service’s availability, is during its update
(it is usually rolling update, also described in Section 2.1.5). Kafka’s update means that
every broker goes down and is replaced with a new one. This can mean a problem with
availability if we configure Kafka to accept data only once all followers are synchronized,
and also a significant vulnerability if we have only a few replicas for any of the topics. The
whole process represents a weak spot not only because there is one missing component for
the entire duration of this event but also because several things may go wrong with the
update itself. Implementation of this template use lot of the same steps as the previous
template. The main difference here is that we need to force the recreation of Kafka’s Pods.
This can be accomplished with the renewal of certificates, already mentioned upgrade of
Kafka brokers, or updating Kafka resources to such degree16 that update will be required,
e.g., the addition of internal listener.

15Situation like this is when we need to drain all Kubernetes nodes, but this situation is already handled
with the help of another Strimzi component called drain cleaner (https://github.com/strimzi/drain-
cleaner), and it uses even more advanced Kubernetes principles.

16Strimzi support dynamic changes, i.e., it does not need to recreate Kafka pods in case of minor changes.

46

https://github.com/strimzi/drain-cleaner
https://github.com/strimzi/drain-cleaner

4.4 Application Of Chaos Experiments
With all templates implemented and chaos experiments designed, all we need to do is to
apply them to the system under test. This step is trickier than it seems, as we want to follow
several practices. We want observability, continuous run, easy deployment, and preferably
some production system to apply this Chaos on. Setting up the system under test itself is
no easy task. Even a simple experiment of bringing down a few pods from Kafka Bridge
requires the presence of operators, services, and multiple pods (all visible in Figure 4.2).

Two main possible options to accomplish this are an extension of existing Strimzi system
tests or an application on the system (either real or one created exclusively for the purpose
of Chaos engineering). These variants have trade-offs and are further examined in the
following lines.

4.4.1 Extension of Existing System Tests

Chaos engineering should match the needs of the system under test. In our case, it is Strimzi,
which is technically an Operator. This means we have to cover many possible scenarios,
different configurations, and deployed components. Setting up all these configurations of
Strimzi (e.g., Kafka, Zookeeper, KafkaConnect) only using YAML files may be tedious.
Nevertheless, Strimzi system tests provide implementation with available builder17.

The whole process of running chaos experiments can be accomplished with the use
of Azure18 pipelines or Jenkins jobs; in simple terms, Azure pipelines (and Jenkins jobs
as well) have several features (i.e., step, stage, task). Within a step, we can specify the
concrete command. A set of these steps builds our testing environment. These steps prepare
tools, such as Java and Kubernetes clusters. Depending on our needs from the underlying
infrastructure, we can use one-node (i.e., Minikube, which is used Azure pipeline) or a
multi-node Kubernetes cluster. In Figure 4.4, we can see two main parts of these pipelines.
The first part is the preparation of the execution environment and the second one is the
arrangement and logic of execution. The preparation phase consist of steps required to
provide concrete machine with environment suitable for chaos experiment execution (e.g.,
download Strimzi repository19 , Java, docker). The verification phase uses the predefined
experiments (written in YAML), test cases annotated with ”chaos“ (This will allow maven20

to identify chaos experiments that should be executed), and finally the chaos test suite.
These three components are the backbone of the proposed design of chaos engineering on
the Strimzi project. Specific Results, logs, and metrics can be later visible in reports.

Download
Java

Checkout
and Build
 Strimzi

Set up
Kubernetes

Run Strimzi
System Test Result Report

Step 1 Step 2 Step n Step n + 1 Step n + 2 Steps 3 ... (n-1)

Prepartion Verification

Preparation
Steps

Figure 4.4: Workflow within azure pipeline/jenkins job, which is executing chaos tests.
17Builder is a design pattern used for the construction of complex objects step by step.
18more at https://azure.microsoft.com/en-us/
19Strimzi repository – https://github.com/strimzi/strimzi-kafka-operator
20Maven - Maven is a build automation tool used primarily for Java projects.

47

https://azure.microsoft.com/en-us/
https://github.com/strimzi/strimzi-kafka-operator

Two main drawbacks of this solution would be that we are not testing any particular
running system, which is a missed opportunity as we would also provide confidence in
that system. The second one is over-complication of the result pipeline, i.e., significant
communication overhead in the code.

4.4.2 Experimenting in Production

In contrast to applying Chaos with CI-driven execution, this approach monitors and man-
ages Chaos for a specific configuration of Strimzi in the long run. The first variant is a
dedicated cluster with artificial Strimzi and some workload running on top of it. We can de-
ploy only one or very few Strimzi Kafka clusters. Continuous scheduling and application of
Chaos can be accomplished with the Litmus component called ChaosScheduler (described
in part 3.2.2). Both Litmus and Strimzi provide support for the export of metrics. So
information such as the number of online brokers, incoming and outcoming traffic, CPU
or memory usage, and countless other metrics that accompany the functioning of Strimzi
under conditions of injecting Chaos can be monitored with Prometheus and additionally
displayed with the help of Grafana dashboards.

A slight variant of this is the application of Chaos on an already existing system. The
only disadvantage of this would be that this kind of system may not use all features of
Strimzi, so there would not be a need (unless forced) to create chaos experiments for them.

48

Chapter 5

Implementation

This chapter covers the actual implementation of the solution proposed in Chapter 4.
Firstly, Section 5.1 briefly describes how we accomplish communication with Litmus custom
resources. After that, the main focus is on the implementation of new templates (Section
5.2). Finally, the chapter ends with implementation of the actual application of chaos, i.e.,
the execution of specific chaos experiments against the running system (Section 5.3).

5.1 Components’ Communication
To inject chaos into our system, we need to transfer much information between different
components managed by autonomous entities, e.g., Kafka Pods managed by the Strimzi
cluster operator. All communication springs from chaos runner, so naturally, Litmus pro-
vides implemented ways to simplify repetitive needs to obtain and propagate information
from the Litmus native components.

Invocation of the desired template is accomplished by passing the proper flag as part
of the ChaosExperiment resource (Section 3.2.2), also shown in Listing 5.1. This property
is then propagated and used inside the Pod executing actual chaos, which is shown in
Listing 5.2. Main function simply parse provided flag and invokes the according branch.

1 kind: ChaosExperiment
2 metadata:
3 name: strimzi−pod−delete
4 spec:
5 image: "litmus/go-runner:ci"
6 args:
7 - ["-c", "./experiments -n

strimzi-pod-delete"]
8 command: /bin/bash
9 env:

10 - name: CHAOS_DURATION
11 value: ’30’

Listing 5.1: Definition of chaos
experiment.

1 package main
2

3 import (
4 nr "experiments/litmus/..."
5 spd "experiments/litmus/..."
6)
7 func main() {
8 name := flag.String("n")
9 switch *name {

10 case "node-restart":
11 nr.NodeRestart()
12 case "strimzi-pod-delete":
13 spd.PodDelete()
14 // other experiments

Listing 5.2: Determining which
experiments to be invoked.

49

The rest of the input (by input we mean specification provided in custom resources
responsible for chaos invocation) resides in a resource called chaosEngine. Its attributes
are passed to running containers as environment variables, so reading them is simply a
question of extracting them directly from the environment and storing them inside desired
structures.

The second part of communication represents a process of sending information about
the progress of the experiment to the Kubernetes. This means updating resources (i.e.,
chaosResult and chaosEngine) and generating Kubernetes’ events. Litmus implements nec-
essary interfaces to allow usage of Kubernetes client1 upon its resources. This client is a
library for communicating with Kubernetes’ resources, generating events (as is required by
Litmus) depicted in Figure 3.8 is then accomplished easily with the help of the client, as
shown in Listing 5.3. Here we can see function which takes as input all necessary specifi-
cation of event and afterwards use with usage of client invokes creation of this event in the
cluster. Manipulation of all other Kubernetes resources2 can be accomplished in a similar
manner.

1 import (
2 apiv1 "k8s.io/api/core/v1"
3 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
4)
5

6 func CreateEvent(eventName, ns string, details *EventDetail, ...) error{
7 event := &apiv1.Event{
8 ObjectMeta: metav1.ObjectMeta{
9 Name: eventName,

10 Namespace: ns,
11 },
12 Message: eventsDetails.Message,
13 Reason: eventsDetails.Reason,
14 Type: eventsDetails.Type,
15 Count: 1,
16 // other properties ...
17

18 _, err := client.CoreV1().Events(ns).Create(event)
19 return err
20 }

Listing 5.3: Communication with rest of Kubernetes from inside of Pod.

The last part is about using data regarding the results of an experiment. This informa-
tion is stored inside ChaosResult custom resource, and it will be up to another system to
parse this resource. We will implement two different approaches to accomplish this. The
first will be for the evaluation of results in Section 5.3.2, and the second one takes place is
in Chapter 6.2.4 where we will visualize some of the results.

1Kubernetes client library – https://github.com/kubernetes/client-go
2Another essential library for manipulating Kubernetes objects can be found here https://

github.com/kubernetes/apimachinery

50

https://github.com/kubernetes/client-go
https://github.com/kubernetes/apimachinery
https://github.com/kubernetes/apimachinery

5.2 Templates
We implement four own templates in this thesis. Our choice of language is, in this case,
Golang, which allows us to extend repository3 containing most of the currently existing
experiments. Implementation of each of the templates follows the structure described in
Section 3.2.3. Complete implementation of template requires also relevant access resources,
such as role, roleBinding, serviceAccount. These resources provide all means necessary for
correct authorization and authentication in a Kubernetes cluster and are further explained
in Appendix B.1. The scope of privileges we have to give to the entity executing the
experiment depends on the resources it will need to manipulate.

Besides two originally proposed templates (Section 4.3.2), e.i., Kafka Rolling Update
and resource deletion, two additional are implemented. This decission is the direct result
of updates of underlying technologies (e.g., new version of Kafka) and the fact that Lit-
mus did not reflect these changes in templates which it provides. The content and reasons
for addition of these templates will be further explained in following sections. In order to
better understand quite tangled concepts in implementation, this section is further split,
beginning with Section 5.2.1, which describes all additional implementations needed for the
smooth functioning of every single templates template from the perspective of implemen-
tation of the first template, called Pod delete. Afterwards, the rest of this section describes
implementation of the three remaining templates.

5.2.1 Preliminaries

The templates we have implemented within this thesis require additional logic and work-
ing with specific custom resources Therefore, we will start with a description of a simple
template and additional components we will implement and use in all other implemented
templates.

Broker pod delete

Litmus already implements template for pod deletion, as well as another template called
kafka-broker-pod-delete. Unfortunately, none of these templates can cover all of our needs
in regard to actually injecting chaos to all our environments. The first template does
nothing more than delete Pod and verifies that it is recreated after the chaos is over. If
we assume that Kubernetes works correctly, this behaviour is expected, and experimenting
with it alone would be much more about testing Kubernetes itself than the ability of our
application to withstand the actual condition of brokers going down. The problem with
the second provided template is that Litmus did not make the template flexible enough to
overcome the update of Kafka to version 3.0.0. As was mentioned in Section 2.2.3, Kafka is
working on getting rid of its dependency on Zookeeper. Despite it not being fully reached,
Zookeeper usage as an option when connecting to Kafka is no longer supported. So instead,
an additional template is implemented. This can overcome the mentioned issue by working
with Kafka instead of Zookeeper. It also provides flexibility by allowing users to choose
possible other ways to connect to Kafka. Another imporant point here is also addition of
options to communicate with Kafka despite it being secured, but this is the topic which
will be described further in following Section.

3More at – https://github.com/litmuschaos/litmus-go

51

https://github.com/litmuschaos/litmus-go

This template aims to provide users with enough functionality to experiment with dif-
ferent scenarios of Kafka broker Pods unavailable instances (potentially even different Pods,
such as Zookeeper). Identification of desired Pods is possible in three ways, i.e., by names,
labels, or the function of the pod4. The purpose of this experiment, in a nutshell, com-
prises the identification of Pods (depicted in Figures 5.1 and 5.2), their deletion, and finally,
checking that they are recreated. Of course, all of this must be done within the expected
time.

group=zookeeper

Figure 5.1: Identification of Pods by their
labels.

zoo-1kafka-2

Figure 5.2: Identification of Pods by their
names.

Clients

To read and manipulate custom resources (Section 2.1.6), we have to implement an ap-
propriate Kubernetes client. To do so, we start with the provision of models, i.e., data
structures which will represent given custom resources in our running instances of code.
We will do this for all Strimzi custom resources we will work with, e.g., KafkaTopic, Kafka,
etc.

There are no advanced tools for the automatic creation of builders or already imple-
mented reliable clients in Golang, so the minimal client is implemented by hand. Libraries
used for this extension are already mentioned at the beginning of Section 5.2. The minimal
client refers here to the fact that we will provide only necessary methods and allow access
only to the necessary properties of given resources. Doing more without an automated
solution would be counterproductive in cases such as this5.

Specific methods and reasons for their support are described in Table 5.1.

Liveness stream

Liveness stream is not a template on its own. Instead, it extends existing templates, e.g.,
resource-delete or broker-pod-delete. This extension is the actual solution to the problem
with Zookeeper, described in the previous section. This part aims to provide a way to
ensure that the functioning of Strimzi (from the client’s viewpoint) was not damaged and
it managed to recover, depending on its specification. We will ensure this with the creation
of Consumer and Producer from Section 2.2.2 and check that they work as we expect
them, i.e., make sure no messages are lost. There were two ways how to accomplish the
creation of Producer and Consumer. First, implement them inside a running container
and let it handle all the production and consumption. This solution is straightforward
but not a good one, as all responsibilities lie in one Pod that should only take care of
the execution of the experiment itself. Instead, we will use a separate container for both

4We allow a user to kill the partition leader, this will be explained in Section 5.2.1
5Composition of custom resources may change in subsequent versions

52

Table 5.1: Method supported by client for given custom resources.

 Resource Operations Usage

KafkaTopic Get, Patch, Delete,
Create

Experiments that support liveness need to support
manipulation with Kafka topics. This includes creation at
the beginning of the chaos experiment and deleting the

given Kafka topic at the need of it.

Kafka Get, Patch

Kafka custom resource represents the Kafka cluster.
Custom resource holds Kafka's desired and actual state

by keeping its specification. We can patch this
specification and thus (under specific circumstances)

cast update.

KafkaConnector Get
KafkaConnector contains information about workers

(from the KafkaConnect cluster) performing tasks. We
then can identify these Pods quickly.

Producer and Consumer. Figure 5.3 depicts this situation. A part of the specification
given inside chaosEngine and chaosExperiment resources specifies desired properties of
the Kafka topic, Consumer, and Producer. This configuration is retrieved and passed
again as environment variables to create containers for the Producer and Consumer. To
minimize the number of required attributes provided by the user, we have default values for
Consumer configuration. These follow default values for a specific configuration that Kafka
also assigns (Appendix C.2), so we also prevent the addition of confusion in parameters. The
only responsibility of the Producer image is to implement Kafka Producer with the desired
configuration and send the requested number of messages. Respective work is required from
consumer image.

...
createTopic(spec)
createCons(spec)
createProd(spec)
...

runner-1

envs:
 topic: a
 consumer: c
 producer: p

go-runner
KafkaTopic

CR

KafkaTopic-a

spec:
 topic: a

producer-pod

consumer-pod

spec:
 prod: p

spec:
 cons: c

Create

Communication

Rest of Cluster

Figure 5.3: Chaos runner creates during its execution producer and consumer containers.

The choice of image for the Producer and Consumer is up to the user. There are no
hardcoded scripts that would make other changes impractical; instead, a few commonly
known6 parameters are passed. The extension also provides additional default images,

6These parameters are described in Appendix C.

53

so the user does not need to solve this problem from scratch. Strimzi comes with several
examples in its repository7. Implementation of the used images is in Java, which is preferred
due to the fact already mentioned in Section 2.2.2, which is that Java clients are always
the most up to date. Listing 5.4 shows a part of the Consumer’s work. Its core is a loop in
which the consumer accepts data consumed from the given topic and afterwards commits
offset about the position of the last read message.

1 public class ExampleKafkaConsumer{
2 public static void main(String[] args){
3 // setup ...
4 KafkaConsumer consumer = new KafkaConsumer(props);
5 consumer.subscribe(Collections.singletonList(config.getTopic()));
6

7 while (receivedMsgs < config.getMessageCount()) {
8 ConsumerRecords records = consumer.poll(Duration.ofMillis(Long.

MAX_VALUE));
9 for (ConsumerRecord<String, String> record : records) {

10 log.info(record.value());
11 receivedMsgs++;
12 }
13 consumer.commitSync();
14 }

Listing 5.4: Consumer reading data and committing offset.

A liveness stream can be afterwards used in a chaos experiment by enabling it in the
provided environment variable, shown also in Listing 5.5. Here, we enable creation of
liveness stream and also specify the name of Kafka cluster which will be targeted by our
chaos experiment.

1 kind: ChaosEngine
2 metadata:
3 name: example
4 spec:
5 appinfo:
6 applabel: ’app=kafka’ # identify pods
7 experiments:
8 - name: strimzi−pod−delete
9 spec:

10 components:
11 env:
12 - name: STRIMZI_KAFKA_CLUSTER_NAME
13 value: ’my-cluster’
14 - name: LIVENESS_STREAM
15 value: ’enable’

Listing 5.5: ChaosEngine representing chaos experiment with intention of killing partition
leader while keeping Kafka fully available.

7Strimzi example clients – https://github.com/strimzi/client-examples

54

https://github.com/strimzi/client-examples

By applying ChaosEngine from Listing 5.5 we can create numerous different situation.
The ChaosEngine is configured to kill the partition leader of the test topic without en-
countering significant disruption in the production and consumption of a given topic. Once
the partition leader is killed, a new one is selected from brokers with all the messages.
Afterwards, when the broker (i.e., Pod with running Kafka broker) is recreated, it reads
all messages produced in its absence and becomes synchronized. Consumer and Producer
will notice the change of partition leader and start to communicate instead with the newly
elected partition leader. Otherwise, their proper functioning is not disrupted. All of this
also depicted in Figure 5.4.

Prod.

Kafka-2

Cons.

Kafka-1

Kafka-0
New p.lead

Killed

Producing

consuming

sync.Killed

success

success

Legend
Existence of pod
as the time goes

Pods

Partition (topic)
leader

Synchronized
replica of partition

Pod being deleted/
Message failed

Events

experiment's time axis

Figure 5.4: Situation in cloud from start to end of chaos experiment.

The only trade-off for providing a liveness stream is that it includes many configurable
parameters. Even after reducing all unnecessary configuration and rather a simplistic choice
of images (the default Producer image is preconfigured regarding the size of messages, which
would otherwise need additional configuration), we still introduce fifteen new variables to
consider. The solution for this is the implementation of logical defaults, countless examples,
and possibly providing additional documentation. The following two templates use precisely
this type of liveness stream, and we will continue discussing them with having this part of
implementation at our disposal.

5.2.2 Resource Delete

Strimzi creates and updates a lot of other resources in order to work correctly. Essential re-
sources for this purpose are Secrets, Configmaps, and Services. Litmus provides a template
for Pod deletion, but not for all other resources we mentioned in the previous sentence.
According to one of the developers, this is because there is only rarely some controller
(Section 2.1.5) that would recreate them. Therefore a failure of these resources would be

55

permanent. This behaviour is a shortcoming in the case of Operators. Nevertheless, be-
cause Kubernetes already provides clients for communication with native resources, we can
use it. Therefore, there was no need to implement a client of our own as in the case of
Strimzi custom resources.

The user is allowed to specify resources he wants to delete while also (same as in the
case of all other experiments) specifying details about the liveness stream. Deletion of
various resources may cause a different set of events. For example, deletion of the specific
certificate (i.e., Secret) causes the whole Kafka cluster to restart.

5.2.3 Kafka Rolling Update

There are several ways to initiate updates on the Strimzi Kafka cluster. The easiest is
annotation i.e., strimzi.io/manual-rolling-update=true. However, to simulate
Kafka Rolling Update in a real environment, we will update the Kafka configuration, specif-
ically creating or deleting one internal listener. This configuration of Kafka is held within
the specification of Kafka custom resource, which will be patched with the use of an imple-
mented client (Section 5.2.1). The described change of configuration (i.e., a configuration
of Kafka custom resource) forces Strimzi to update all Kafka brokers, as their configuration
cannot be changed dynamically 8 The experiment expects the update to finish within the
expected time while still keeping Kafka fully available.

This behaviour can be seen in Figure 5.5 with some of the actual events accompanying
this occasion. Based on the correct configuration of Producer and Consumer, we may
assume that cluster remained perfectly available, as all messages were delivered, and what
is more, this delivery took place without additional delay.

5.2.4 Worker Delete

Worker is the name of a Pod that constitutes the Kafka Connect cluster. Principles of how
Kafka Connect works are described in Section 2.2.4. Regarding Strimzi, Kafka Connect is
specified in the KafkaConnect custom resource. The main focus of this experiment is on
tasks. Workers which are assigned tasks are identified from a specification of KafkaConnec-
tor. Chaos itself includes either deletion of tasked workers or any random workers (this may
or may not include tasked workers). Regain of a healthy state is observed by reassigning
tasks to new workers.

A similar experiment could also be casting Rolling Update inside Connect cluster. Im-
plementation of this would be simple because most of the needed methods are already
implemented. We would again patch the KafkaConnect resource and wait for the recre-
ation of all resources. While Kafka Connect cluster resembles the Kafka cluster, workers (in
contrast to brokers from the Kafka cluster) are pending in their normal state. Real work
takes place only once some Connector is applied, and therefore KafkaConnect does not
represent that crucial component, and this experiment (i.e., another template) is omitted.

5.3 Application of Chaos
This section describes an application of both newly implemented templates and those pro-
vided by Litmus. In Section 5.3.1, we propose an extension of the Strimzi system’s tests

8Strimzi allows changing some of the configurations in such manner, but this must not involve configu-
ration written directly in broker’s specification.

56

Prod.

Kafka-2

Cons.

Kafka-1

Kafka-0

Killed

Producing

consuming

sync.

success

success

Killed

experiment's time axis

New p.lead

sync.

Killed sync.New p.lead

Figure 5.5: All Kafka broker pods are being updated (i.e., deleted and being replaced by
never versions). Consumer and Producer works as nothing would happen.

as the primary approach to the implementation of chaos application. In order to follow
the Principles of Chaos Engineering and the nature of the tested system as much as possi-
ble, This solution is eventually split into two different parts. The first part (Section 5.3.2)
is the creation of new tests that run chaos experiments against a simple cluster running
Strimzi and its components. The second part (Section 5.3.3) is an application of all suitable
experiments against the system running in production.

5.3.1 System Tests Extension

As mentioned in Section 4.4.1, this approach is based on extending the already existing
system’s tests. The proposed implementation relied on the provisioning of desired Strimzi
cluster, which would be accomplished with implemented builders. Once the system under
test is up and running, the prepared configuration of ChaosEngines will be applied. After-
wards, there is a period of waiting for the end of chaos by observing either ChaosResult
or the state of the system under test. This architecture is shown in Figure 5.6. As shown
in the the Figure, the main part of this is the creation of the new Chaos package, which
will use provided utilities for all provisioning. Firstly, to provide the desired system un-
der test, and secondly, to apply provided ChaosEngines’ specifications to produce desired
chaos. Concrete test cases then sequentially make these calls and evaluate the results of
chaos injections.

This solution bears its pros and cons. As is shown from Figure 5.6, the main benefit
of using this approach is that there are many implemented utilities at disposal, e.g., an
implemented builder for provision of the desired system under test.

57

Chaos
Resources

Chaos-1

Chaos
Resources

Chaos-1

Chaos
Case -1
Case -2
Case -3
Case -n

System
Tests

Utilities
System

Under Test

Builder
Clients

... Chaos
Resources

Kafka-1Kafka-1Kafka-1

Chaos-1
Engine-1

param-a
param-b
param-c

Engine-1
param-a
param-b
param-c

Read

Instruct

Build, Watch

Read, Specifie Chaos Injection

Figure 5.6: Architecture of system test extension

Each chaos experiment can be implemented as a single test case. This test is located
inside a chaos test suit and consists of several main parts. After the provision of the system,
the implementation is focused solely on chaos, i.e., chaos injection and chaos observation.
Unfortunately, the implementation of these steps proved more complicated than expected.
Moreover, the possible solutions brought other divergences from principles of chaos engi-
neering or involved lousy software engineering practices. The following points summarize
some of these factors:

• Environment – System tests run against environment created only for the reason of
testing. One of chaos principles (Section 3.1.3) is to inject chaos as close to production
as possible.

• Continuos run – It is essential to execute chaos experiments often and continuously.
We can then see if there are some long term damages or unexpected conditions.
System tests allow automation and periodic run, yet this can cover only the first half
of demands regarding the running of chaos.

• Communication – Parts of presented utilities are also clients for communication
with Strimzi and Kubernetes resources. However, most of the communication this
implementation requires is amongst test and Litmus components. This will require
the addition of the client, which will overload the existing one.

• Performance – Even running around thirty chaos experiments may take around
three hours to complete. This number is due to the fact that some events in the cloud
take a longer time, e.g., updates. The additional reason is that when we start to
execute a set of experiments one after another, instead of being completely isolated,
several new events occur. For example, one experiment may bring down several
components whose absence lengthens the next experiment dramatically, maybe even
causing it to fail. The second additional factor comes from the fact that reflection
of desired changes goes throw a lot of components (Section 2.1.6), and propagation
takes additional time per each experiment.

58

• Observabillity – Aside from test results and possible control of Strimzi itself, there
is very little to no observability of events that takes place in the long run. This is
a direct result of the fact that a completely new system is introduced each running
time or that most of its components are replaced.

• Additional chaos experiments – Some experiments are not possible due to the
choice of Litmus. We are still able to compensate for (Section 6.2.4), but not inside
the system test.

This solution bears countless benefits (see Section 4.4.1), but to harvest the most from
chaos engineering and good software principles, the two additional approaches were imple-
mented. Firstly, there is the implementation of a new testing repository, which will solve
problems of performance and communication. Secondly, chaos will be applied to the long-
running system, which will solve the rest. These solutions are described in the following
Sections.

5.3.2 Chaos Test Suite

As mentioned in the previous section, the approach taken concerning applying chaos is
split into two parts. The first one (i.e., this part) is implementing a new repository to
automate the testing of a simple Strimzi cluster. Thus the name Chaos testing is actually
on purpose. The implementation itself is in Golang. This choice is made because most
communication will occur with Kubernetes and Litmus’ resources, all written in the same
language. The main goal is to provide a maintainable, automated way of running chaos
experiments. Figure 5.7 depicts all essential steps of the implementation.

Is Last ?

Deploy
SUT

Fail

Build
Template

Legend

Yaml

Start Test
(Build ChaosEngine)

Obtain Result
(ChaosResult)

Next Engine

Pass

Builder
Implementation

Yaml
Provision

Go
Implementation

Yes
Report

No

Wait

Chaos Pod
Injects chaos

Client lib.
implementation

Create Chaos
Engine

GET

CREATE
PATCH

Figure 5.7: High level workflow of testing.

The implementation starts with an assumption (and also requirement) that the user
has admin access to the cloud9, which has Strimzi and Litmus operators installed. The

9This cloud can be Minikube, Openshift, etc.

59

first step is the provision of the desired cluster and all additional resources. This step (i.e.,
Apply System Under Test) is the only one where YAML files are applied instead of working
directly with the code. Some of this configuration is necessary10 as there are multiple
different resources (e.g., RBAC11) that need to be configured.

With all prerequisites done, the provision of the system begins. This system is simplified
in Figure 5.8. It is a small system with Kafka, Zookeeper, Kafka Connect cluster, Kafka
Bridge, and some additional components (e.g., Services, Pods) managed by Strimzi. Test
cases are implemented so that the user can specify desired replicas of each component, and
they will still work correctly. The scale of system is chosen for simplicity and the possibility
of running locally. All important setup is already preconfigured. The only important thing
here is having a cluster with known names, labels, namespaces, desired numbers of replicas,
and other necessary configurations.

Zookeeper Kafka
Service

Kafka
Pods

Zookeeper
Service

Data
Stores

Kafka
Connect

Kafka
Bridge

Figure 5.8: Ilustrational schema of SUT.

Builders

The following two steps in the workflow (Figure 5.7) are the installation of Templates12 and
the building of ChaosEngines. The decision to build all chaos-related specifications (i.e.,
ChaosEngines and Templates) inside the code has two main reasons.

The first one is maintainability, as keeping tens of declaration files may become hard
to keep up with. Furthermore, every important change would need to be copied to each of
these files. This is tedious, even on a scale of a few experiments, not to mention hundreds
of them.

The second reason is the clarity and focus of implementation. For example, Listing 5.6
shows the creation of the ChaosEngine, which will spawn the chaos experiment respon-
sible for the Kafka Rolling Update and all related events. Whereas specification of this
experiment using builder remains focused and takes just a few lines of code, specification
of the precisely same ChaosEngine would otherwise take forty lines in YAML manifest13.

10It was also possible to use the client for the creation of these resources inside the code, but it would be
hard to follow why there is such vast implementation for one-time usage.

11Role-based access control (see Appendix B).
12This is a reference to the actual object ChaosExperiment.
13Part of this repository is also a folder with examples, which holds more than fifty YAML manifests

which were initially supposed to be used in formerly proposed implementation (Section 5.3.1) .

60

Moreover, we would still need to reference these pre-created ChaosEngines from the code
by the file’s name.

1 func Test_kafka_update_1(t *testing.T) {
2 engineName := "ku-pass"
3 chaosEngineBuilder := engines.ChaosEngineBuilder()
4 chaosEngine := chaosEngineBuilder.
5 SetName(engineName).
6 // term Template used instead of ChaosExperiments in thesis
7 SetExperimentName(experimentNames.KAFKA_UPDATE).
8 SetAppLabel("app.kubernetes.io/name=kafka").
9 AddEnv(envNames.END_CHAOS_INJECTION_ASAP, "enable").

10 AddEnv(envNames.CHAOS_INTERVAL, "400").
11 AddEnv(envNames.STRIMZI_KAFKA_CLUSTER_NAME, "my-cluster").
12 GetEngine()
13 engineEvaluationPass(t, chaosEngine)

Listing 5.6: ChaosEngine builder

Creation of Templates follows the same pattern as the creation process of ChaosEngines,
but with its own builder.

Clients

With ChaosEngine resources created locally, all that needs to be done to start chaos is to
Post this object to the Kubernetes API server; the chaos operator handles the rest. The
Kubernetes API client implementation is mandatory for this step. To implement it, we
provide the implementation of a similar method as in the case of the Strimzi client (Section
5.2.1). From an implementation viewpoint, we have to provide all serialization, models, and
additional methods to provide the necessary attributes to implement the Kubernetes API
interface. The most crucial resource, in this case, is ChaosEngine, and the implementation
of its API interface is shown in Listing 5.7. By implementing all necessary methods for
manipulation (e.g., read, create, delete) for ChaosResults, ChaosEngines, and Templates,
we have all the required means regarding communication for the purpose of chaos testing.

1 type EngineInterface interface {
2 Get(name string, options GetOptions) (*ChaosEngine, error)
3 Create(engine *ChaosEngine, opts CreateOptions) (*ChaosEngine, error)
4 Delete(name string, opts DeleteOptions) error
5 }

Listing 5.7: Create ChaosEngine API method implementation.

Communication

The simplified model assumes communication of four main entities, i.e., Litmus Operator,
ChaosEngine, Test client, and chaos Job. This flow of communication shown in Figure
5.9. ChaosEngine serves as a data structure for storing/providing information. The rest
of the entities must implement a client for communicating with this custom resource. The
chaos operator triggers the creation of chaos Job each time it sees some ChaosEngine

61

resource in the active state (i.e., with a given configuration). All the steps between posting
ChaosEngine resources to the Kubernetes API and the actual creation of chaos Job are
described in section 3.2.2.

Job

Op.

Test
Create: Engine

Notice Engine

success

Legend

Existence

Entities

Events

Time

Create Job

Inject Chaos
Updates Engine

Engine

Chaos Job

ChaosEngine

Read Engine

success

success

Operator Pod

Client for Engine

Figure 5.9: Communication between test client and ChaosEngine.

When chaos Job starts, it continuously updates ChaosEngine and ChaosResult re-
sources. From the tests’ viewpoint, the chaos remains completely transparent, i.e., tests
only wait for the result and possibly other information. Of course, in reality, the client also
communicates with ChaosResult, but in practical terms, ChaosEngine can serve as a single
source of truth for a given experiment.

Evaluation

Each test from this section fails or passes according to obtained result from the ChaosResult
custom resource. However, when a chaos experiment is done, several components involved
in chaos may still be accessible based on a specified policy, e.g., chaos Job, Producer,
Consumer.

Although the implementation of Templates follows the idea to keep all manipulation
on the components level (templates evaluate results of Jobs instead of directly entering
Pods), in comparison with other templates, it also contains additional tunable logging, as
these logs could provide some additional info while debugging unexpected conditions in
the cloud. Furthermore, this represents the possibility of obtaining additional trends and
metrics, which will be further discussed in Section 6.1.

5.3.3 Production Environment

When it comes to chaos Engineering, it is essential to include experiments also in produc-
tion. We build confidence in the environment we apply chaos in, and despite Strimzi’s
specific demands, resilience of generic clusters represents only one side of the coin. The
system which will be used is part of ExcelentProject14. The purpose of this project is to
provide long term observation of Strimzi in production. The system itself resembles the

14More at https://github.com/ExcelentProject

62

https://github.com/ExcelentProject

one from Figure 5.8, but this one is on a much bigger scale, with several other components
(e.g., Cruise Control) and running a monitoring mechanism (More on that in Section 6.1).
There are two most important factors to consider once running chaos inside the production
environment. Firstly, we need to take into account aspect of the access control. This is
briefly described in Section 5.3.3. Secondly, we also need to reconsider what types of chaos
experiments we will apply, precisely, the exact configuration of these chaos experiments.

Access Control

Part of Strimzi we did not consider that much yet is its access control. The entities that
Kafka’s authorization uses are called Access control lists. For the sake of clarity, this
access control is different from Role-based access control (Appendix B), which is used in
Kubernetes.

Strimzi provides ways of specifying desired authorization and authentication for access
and security purposes. Using KafkaUser custom resource, the admin can create a role in-
side the cluster. Afterwards, authorization is managed by specifying desired rights as part
of the custom resource specification. This style of access control follows the one already
used by Kafka (access control list), which specifies allowed operations per given resources.
An example of KafkaUser custom resource is shown in Listing 5.8. Strimzi supports differ-
ent style of authentication, (e.g., TLS15, SCRAM-SHA16), and handles all work regarding
creation and signing of certification. Authentication is configured independently for each
listener. Authorization is always configured for the whole Kafka cluster [8]. This is shown
in Listing 5.9.

1 kind: KafkaUser
2 metadata:
3 name: litmusUser
4 label: strimzi.io/cluster:my−cluster
5 spec:
6 authentication:
7 type: tls
8 authorization:
9 type: simple

10 acls:
11 - resource:
12 type: topic
13 name: litmus−∗
14 patternType: literal
15 operation: Read

Listing 5.8: A KafkaUser custom
resource with access to read all topics
with Litmus prefix.

1 kind: Kafka
2 metadata:
3 name: production−cluster
4 spec:
5 kafka:
6 ...
7 listeners:
8 - name: tls
9 port: 9093

10 type: internal
11 tls: enable
12 authentication:
13 type: tls
14 authorization:
15 type: simple

Listing 5.9: A part of Kafka specification
which sets authentication on given port
and authorization in whole cluster.

15TLS mechanism – as https://datatracker.ietf.org/doc/html/rfc8446
16SCRAM-SHA mechanism – as https://datatracker.ietf.org/doc/html/rfc7677

63

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7677

Once an appropriate KafkaUser custom resource is provided, the only thing the user
has to do is use data stored in the respective Secret resource and provide them as part of
configuration properties when communicating with Kafka cluster. Because different types
of authentication may require different types of parameters, templates need to accept, eval-
uate, and propagate many different variables. Therefore, the implementation of templates
solves the issue of provisioning such a vast number of possible different variables by provid-
ing the choice of specifying custom environment variables and the desired authentication
method.

Chaos Experiments

With access to Kafka resolved, we can prepare all adequate chaos experiments. However,
in comparison with applying chaos inside the test environment (i.e., a cloud that lives only
for the duration of chaos), applying chaos to production may require other adjustments,
i.e., not all experiments applicable in the test environment are suitable. On the other hand,
we will also include some of Litmus’s original chaos experiments.

Naturally, a different environment means different names and labels, a relatively minor
factor. However, the difference in provided memory, number of available nodes, CPUs, and
additional constraints is something completely different. This requires addition of several
parameters in several chaos experiments. The most crucial factor is that this system runs
on the Openshift cluster.

In terms of chaos experiment configuration, this plays a significant role. This is because
Openshift uses crio container runtime, making some chaos experiments more complicated,
as they often work with runtime directly, and some of the templates support docker run-
time exclusively. The second limitation is that Openshift does not provide an option to
connect to the node directly, which makes most of the chaos experiments focused on nodes
impossible (we will demonstrate one of these chaos experiments anyway, but more on this
in Section 6.2.4).

Scheduling

The only remaining factor is the automatization of periodic chaos. There are several con-
sidered possibilities. Among them, the most interesting are usages of the ChaosScheduler
or Workflow custom resource.

The first implemented approach is the usage of Workflow custom resources. The mo-
tivation for preferring this approach to ChaosScheduler is that Litmus makes steps (e.g.,
keeping documentation updated and offering semi-automated creation of resources from
the user interface) to make Workflow a default way of chaos scheduling. Workflow custom
resource has nothing to do with Litmus. It is part of Argo, and all it does is execute defined
steps.

The steps defined in this Workflow represent the actual application of custom resources,
which will consequently trigger chaos experiments, also shown in Listing 5.10. The men-
tioned workflow consist of goals, and each of goals consequently consist of steps. Afterwards,
each step is nothing more specification of specific commands which are supposed to be ex-
ecuted. The silent rule of Litmus in regard to workflow is that first goal is always called
chaos. Because most of configuration is supposed to be done automatically, user may stay
unaware of this fact.

64

1 kind: Workflow
2 metadata:
3 name: example−wf
4 spec:
5 goals:
6 - name: chaos
7 steps:
8 - name: install−chaos−experiments
9 - name: pod−delete

10 - name: install−chaos−experiment
11 inputs:

Listing 5.10: Simplified specification of steps in Workflow custom resource. The goals is
chaos which consist of steps install-chaos-experiment and pod-delete.

The primary motivation from Litmus’s viewpoint is that they want to hide internal
dependencies of ChaosEngine, EchaosExperiment, and ChaosSchedule custom resources.
Nevertheless, this resource bears more cons than pros for our use case (and many others).
Firstly, the specification of Workflow custom resources is very wordy (two hundreds line
of configuration on average), as they need to cover many steps that are to be done and
incorporate other resources’ specifications. Moreover, because Workflow keeps the specifi-
cation of other resources as a string value, it does not offer any validation before the actual
attempt of creation.

The second problem is that this approach is still relatively young and not crated by
Litmus natively, which bears additional negatives from a practical viewpoint, e.g., the need
for additional extensive Controler. An additional level of abstraction and hidden manipula-
tion with custom resources may also cause unexpected behaviour, e.g. if Template already
existing in the cluster specification provided in some part of Workflow will not be applied.
Instead, this Template is bound to the newly created ChaosEngine. The most significant
problem is that Litmus still does not provide required manifests with a specification of
Kubernetes objects needed for the correct working of the Workflow component. Whereas
we still can investigate this problem and configure our resources (this configuration can be
found in provided implementation), it would bear additional negatives in the scope of secu-
rity and access, which we cannot allow in production, i.e., we would provide too extensive
access to entities responsible for chaos Scheduling. To conclude, the usage of Workflow is an
excellent idea for development. Once Litmus provides all necessary means to specify these
resources and provide all necessary Kubernetes resources responsible for granting desired
minimal permissions, it will also be suitable for the production environment.

ChaosScheduler is a simple abstraction over ChaosEngine that creates or activates given
ChaosEngine every given time. It is another custom resource with a straightforward Con-
troller (i.e., Operator). ChaosScheduler custom resource itself contains all necessary details
for creating exactly one ChaosEngine and several additional fields that specify desired
scheduling. For example, listing 5.11 depicts a chaos experiment which will be injected
every fifth minute. The schedule part of the specification is later translated into indi-
vidual cron expression and afterwards invoked adequately. Invocation later results either
in creation of brand new ChaosSchedule custom resource, or configuration of the existing
one.

65

1 kind: ChaosSchedule
2 metadata:
3 name: scheduler−example
4 spec:
5 schedule:
6 properties:
7 minChaosInterval:
8 everyNthMinute: 5
9 engineTemplateSpec:

10 ...

Listing 5.11: Simplified specification of ChaosSchedule custom resource specification. The
rest of the specification is afterwards very simmilar to the one from Listing 5.5.

The only job remaining is that either an admin or a script initiates these resources
(Figure 5.10). Communication after the creation/activation of ChaosEgine is already de-
scribed in previous parts. The most significant benefit of this approach is its simplicity. A
correct application of this approach in the Opensshift cluster required significantly smaller
overhead regarding additional resources and very few new resources for necessary access
requirements.

JobEngine

Chaos Job

Init
Create:

Legend

Existence
of Nth entity

Event by
 Nth entity

Time

Scheduler

Create eng.
Create eng.

Create eng. activate activate
activate activate

Chaos
Scheduler

Chaos
engine

Initiator

Figure 5.10: Role of ChaosScheduler in automatic scheduling and applying of chaos.

66

Chapter 6

Monitoring, Evaluation, and
Experiments

This chapter completes the practical part of this thesis. Firstly, Section 6.1 covers moni-
toring of chaos, why we want it, how it is accomplished, and what benefits it brings to our
solution. Afterwards, Section 6.2 discusses all details about all different types of injection
of chaos, the impact it has, results we obtained, and the importance it has for the system
as a whole. This part concludes all chaos experiments (created by templates), which we
apply in both production and generic environment.

Once we evaluate the resilience of these systems, we will discuss and demonstrate ad-
ditional alternative experimenting (e.g., proposal of changes in system configuration, new
ways of chaos injection, etc.), which may either increase system resilience or be otherwise
valuable to consider regarding applied chaos engineering.

6.1 SUT Monitoring
Although monitoring can mean many things in many spheres, we will focus solely on the
purpose of chaos monitoring (and its overall impact on the system). Therefore, in Sec-
tion 6.1.1, the discussion starts with the establishment of the situation and creating the
case for monitoring. Afterwards, Section 6.1.2 describes tools used for this purpose, and
lastly, Section 6.1.3 shows what and how needs to be set up in order to monitor chaos
correctly.

6.1.1 Motivation

Consider a Kafka Rolling Update chaos experiment with three Kafka brokers and a liveness
stream with a minimum of two synchronized replicas1. The rest of the configuration is set to
make the Producer resistant enough. We expected the experiment to pass, but it failed, and
our most accurate source of data are the statuses of Pods and logs (including error messages)
from chaos Pod (Listing 6.1) and from clients (we consider only Producer), which is visible
in Listing 6.2.

1The configuration means that unless at least two replicas (including the replica contained in the partition
leader) write a message, the Producer is not acknowledged about successful write. For further explanation
see Appendix C.1

67

1 time="22:56" msg="[Info]: Chaos injection begins
2 time="22:57" msg="[Wait]: Chaos Interval Duration=400
3 time="23:17" msg="[Wait]: Time 20/400. Updated kafka pods:1/3"
4 time="24:17" msg="[Wait]: Time 80/400. Updated kafka pods:2/3"
5 time="25:46" msg="[Wait]: Time 179/400. Updated kafka pods:3/3"
6 time="25:42" msg="[Info]: ending successful chaos injection ASAP"
7 time="25:44" msg="[Liveness]: Producer failed"

Listing 6.1: Logs from chaos Job

1 2022-04-15 22:23:17 INFO - Sending messages "Hello world - 1"
2 2022-04-15 22:23:18 INFO - Sending messages "Hello world - 2"
3 2022-04-15 22:23:19 INFO - ISR Set(2) is insufficient, have 1"

Listing 6.2: Logs from liveness Producer

Even if we use all logs, events, and results, we may still be only hardly able to reconstruct
what led to this situation. Meanwhile, the actual root cause is depicted in Figure 6.1,
showing us that while one of the three brokers was updated, another one was eventually
killed by a different chaos experiment. Then, suddenly the logs make complete sense, and
the situation becomes understandable.

Info - Sending msg 1
Info - Sending msg 2
Info - ISR Set(1) is insuff.
to satisfy the min.isr
requirement of 2 Logs

Legend
Kafka Pod

Producer

Chaos Pod

Info: Time 140/400. Updated kafka pods:2/3
Info: Time 179/400. Updated kafka pods:3/3
Info: ending successful chaos injection ASAP
Info: [Liveness]: Producer failed"

Logs

Restart of Pod

Kafka Pod down

Another chaos Pod

Figure 6.1: The situation inside cluster during a failure of the chaos experiment.

With the proper tools, we can set up our cluster to collect desired data and help us
understand the situation in the cluster at a given moment.

6.1.2 Tools

The primary tool we will be using to obtain and evaluate data is Prometheus. It is an open-
source, metric-based monitoring system with its own data model and query language [9].
We will simplify it to three main components (Figure 6.2), i.e., Retrieval, Storage, and
HTTP server.

Data (i.e., metrics) are obtained using the pulling method. In other words, monitored
components expose data (e.g., CPU status, request count, space usage), and Prometheus

68

HTTP ServerRetrieval Storage

Pulling of data Time series DB PromQL

Legend

Prometheus

Figure 6.2: Prometheus simplified architecture

scrape them. Data are stored in a time-series database. We can store three types of data:
counters, the current value of a given variable, and histograms. Furthermore, these data
are finally exposed by the Prometheus HTTP server for further use. We can request data
from this server with the help of the PromQL2 language.

6.1.3 Configuration

With the Prometheus server up and running, all that needs to be done inside the cluster
is configuring data sources (i.e., components that expose their data) and later query the
Prometheus server. The three main parts of the cloud that are of interest for obtaining
data relevant to chaos are Kubernetes, Strimzi, and Litmus. The following description is
also illustrated in Figure 6.3

The exposure of data can be accomplished with the use of libraries. Because Prometheus
is practically a standard in monitoring technologies, Kubernetes already implements auto-
matic exposure of all metrics it has (e.g., pods, nodes, CPU usage) by default. Litmus and
Strimzi simplify the process of configuring monitoring by providing exporters. An exporter
is usually a Pod or container which monitors all crucial data from a given system and ex-
poses its own HTTP server with a metric endpoint available. The provision of a Strimzi
exporter and a Litmus Exporter is accomplished using additional Deployments.

kafka-0

Exporter

/metrics

Strimzi

Exporter

/metrics

Chaos Resources

Chaos

CRs

---- HTTP
Server

Retrieval

/metrics

Grafana
Pulling

Service
Monitor

Pod
Monitor

Pod
Monitor

Legend

Dashboards

User

Service Discovery

Pulling

Pulling

Manipulate Dashboards

Query

Query

Watch
Over

Figure 6.3: Prometheus simplified architecture.

Retrieval of data is done by querying the HTTP server. We will also use additional tool
that will help visualise these data. This tool is called Grafana3. It is a simple, yet powerful

2More at – https://prometheus.io/docs/prometheus/latest/querying/basics/
3Grafana official website – https://grafana.com/

69

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://grafana.com/

visualization application. It queries the Prometheus server, so some provided visualization
will be created without the need to even communicate with Prometheus directly.

The last part that needs to be done is creating a new Dashboard. The dashboard
structure can be relatively simply specified using Grafana UI. However, the correct provision
of data is more complicated, as we use Promql, which has several unique concepts, and a
correct application is rather a slow process.

6.2 Running and Evaluation
The evaluation covers all platforms, provided systems under tests, specific templates (and
chaos experiments based on them), and different types of sequences used to test the re-
silience of Strimzi and systems that use it. The section starts with a brief description of
what needs to be set. Afterwards, Section 6.2.2 describes sequences of application chaos
experiments and their consequences. Section 6.2.3 covers the results of chaos experiments,
system resilience as a whole, and also its components. Finally, Section 6.2.4 describes the
way to accomplish other beneficial traits and covers some details about additional experi-
ments.

6.2.1 Setup

Chaos Engineering on Project Strimzi was a unique task right from the beginning. The fact
that Strimzi is an Operator (Section 2.1.6), and one specific Application, we need to cover
several additional factors. The solution should cover both main orchestration platforms,
i.e., Kubernetes and Openshift. Another concern is that we want to induce chaos into
systems with a different configuration of Strimzi. We simply keep the same naming and
layout of provided systems under test to accomplish this. By doing so, we can reuse most of
the manifest in several configurations4. The only exception to this is Tealc (Section 5.3.3)
which has its own layout, naming convention, components, etc. Therefore we will need to
use different sets of chaos experiments. Moreover, different combinations of these chaos
experiments, their durations, and order will also be used. In any of these cases, monitoring
is set up. Figure 6.4 summarizes this reasoning.

6.2.2 Sequences

Injecting chaos from the test suit is straightforward. We simply run all of the tests (with
parallelism disabled). This is done because most chaos does not make sense if run in parallel
mode, and specific chaos experiments would mostly fail on waiting for the steady state. So
instead, a new ChaosEngine is posted to the API server (and afterwards converted into
an appropriate chaos experiment) only once the previous one is finished. The gain from
this approach is that we inject chaos in an unknown order and ensure that the system
withstands the chaos; it also regains a state capable of handling other unknown chaotic
conditions. Figure 6.5 depicts this kind of chaos execution, where we can see a range of
time in which the given chaos experiment (these experiments are focused on the deletion
of different resources) was active.

Applying Chaos with ChaosScheduler means that we can simply specify cron-like ex-
pressions with desired scheduling of the given chaos. Scheduling was done in such a manner

4This is also accomplished thanks to the fact that Templates implemented for using Strimzi are not
dependant on specific kinds of Orchestration Platform.

70

Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Res.

Generic
SUT

Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Kafka-1Stargate

Tealc (Production) SUT
Scheduler

Applied

Chaos Tests

Scheduler

Legend
Chos experiment
created Active Entity Grafana Prometheus Time

Implemented
Suit

Figure 6.4: Architecture of running chaos.

Figure 6.5: Serial chaos experiments execution sequence.

that as long as it could make any sense, different chaos experiments sometimes overlap.
This brings systems under even greater stress. An example of this execution can be seen in
Figure 6.6 where we can see that while the chaos experiment with the aim of casting Kafka
Rolling Update was taking place, another chaos experiment started deleting ConfigMap
and Services (i.e., Resources) belonging to Zookeeper of given Kafka.

Figure 6.6: Parallel chaos experiments execution sequence.

6.2.3 Results

When injecting Chaos into systems under test (including Tealc), we used thirteen Tem-
plates. Nine of these templates are implemented by Litmus, i.e., memory hog, CPU and

71

traffic spikes, killed Pods and containers, a restart of node, corrupted network, etc. The
remaining four templates are part of this thesis implementation and are already described
in previous Sections. The results we gained are obtained by monitoring the execution and
impact of each chaos experiment and by long-term monitoring of key attributes of systems.
Therefore, most trends, results, and behaviours explained in the following lines will focus
on critical components and factors that play an important role in the system’s functioning.

The most notable of factors here is that the system keeps on repairing itself despite
numerous choas injections. System Strimzi is additionally used in many other projects (e.g.,
Managed Kafka5), the key factor which is also the most common part of SLO6 incorporated
by these project is service availability. Therefore, we will also start our evaluation by
considering the exact same factor. Figure 6.7 depicts how easily Operator can recreate
deleted/damaged Pods. Kafka brokers are recreated in a few seconds despite facing chaos
of various scales; therefore, most of the simple choas injections are not even visible7, so the
number of broker Pods is visible only when several chaoses overlap and make some of the
brokers unavailable for a more extended time.

0

1

2

3

4

5

6

10:05 11:17 12:29 13:41 14:53 16:05 17:17 18:29 19:41 20:53 22:05

Brokers Online

Figure 6.7: Resilence of Brokers.

Claim that chaos experiments are passing as expected almost always bears two im-
portant consequences. Firstly, the single chaos experiment pass bears assurance that the
system can withstand given chaos if it is in a given situation (i.e., in a given state of com-
ponents and with expected time to recover all concerned parts). As will be demonstrated
in further lines and figures, Strimzi is perfectly capable of recovery and withstanding the
type of chaos expected from a given configuration. Secondly, it is impossible to claim one
hundred per cent success when injecting chaos into the production environment; This is
only natural as spikes, traffic, or any other problems may occur even during the kind of
chaos which cannot afford such a thing.

To clarify the impact of chaos, we will briefly describe chaos from one of the metrics,
which are of the customers’ concerns, i.e., produced messages per given time. Another
reasonable metric is message lag, but it is very variable even in normal conditions (the
network would be a too variable factor to cover). Figure 6.8 shows the traffic8 in a cluster

5Managed Kafka – More at https://www.redhat.com/en/blog/introducing-red-hat-
openshift-streams-apache-kafka

6Service level objective are agreed upon as a means of measuring the performance of the Service.
7If for example Pod is deleted and recreated within such a short time as ten seconds, it may be not even

visible (as scraping in the cluster usually takes place with larger steps between two individual data pulls).
8This traffic is still relatively low. Strimzi in a given configuration is capable of handling a much higher

load, on a scale of tens of thousands of messages per second.

72

https://www.redhat.com/en/blog/introducing-red-hat-openshift-streams-apache-kafka
https://www.redhat.com/en/blog/introducing-red-hat-openshift-streams-apache-kafka

without injecting chaos on purpose. Nevertheless, there is visible that sometimes traffic
fails even without the interference of chaos experiments.

0

1000

2000

3000

1:40 4:04 6:28 8:52 11:16 13:40 16:04 18:28

Total Incoming Messages Rate

Figure 6.8: Day in a life of the system without chaos.

Nevertheless, after applying chaos for an extended period, we will end up with results
similar to those depicted in Figure 6.9. There are no dramatic spikes in traffic (which are
used here to indicate the overall state of the cluster within a single diagram). The scale of
chaos induced is in such a scale that experiments may overlap, but if so, usually some less
damaging chaos, e.g., memory or CPU spikes. The visible spike in traffic is caused due to
messages being suddenly delivered at once.

0

1000

2000

3000

4000

5000

6000

11:14 12:26 13:38 14:50 16:02 17:14 18:26 19:38

Total Incoming Messages Rate

Figure 6.9: System under reasonable chaos.

Of course, if we keep on injecting chaos frequently, allow different chaos to overlap and
focus chaos primarily on sources of messages, we could bring down the number of incoming
messages to zero, but chaos of such extent is practically equal to bringing down the whole
infrastructure.

The two other crucially essential parts of the cluster which have to work correctly are
Kafka Connect and Zookeeper. Zookeeper plays a significant role in keeping all metadata
and allowing most of the needed election, which takes place inside Kafka. The chaos
introduced here was in the form of spikes, failed containers, and deleted Pods. Figure 6.10
depicts the capability of Zookeeper to handle Pod failures. Although Zookeeper can work
correctly only while at least most than half of the nodes remain working correctly. Because
Strimzi assigns Volumes (Section 2.1.4) to these Pods, they can be easily recreated even
after the failure of all of them without losing any of the data.

73

0

200

400

600

800

22:19 22:33 22:48 23:02 23:16 23:31 23:45

M
ill
io
ns

Zookeeper Pods Memory Usage (Mib)

anubis-zookeeper-0 anubis-zookeeper-1 anubis-zookeeper-2

Figure 6.10: Zookeeper recovery.

When it comes to the Kafka Connect cluster (Section 2.2.4), the cluster itself handles
failures just as smoothly as the Kafka cluster itself. Any time one of the tasks is killed
(i.e., Worker assigned with this task), the new one is created within seconds, and the new
assignment takes place in a short time after, as also visible in Figure 6.11.

0

2

4

6

8

10

22:33 22:48 23:02 23:16 23:31 23:45 0:00 0:14

Number of Running Tasks (Connect)

Figure 6.11: Kafka Connect tasks recreation

The only difference here is that Workers are part of Deployment instead of StatefulSet.
The implication is that new Pods of created each time the previous one fails; instead of
recreating the one with the given name, the new one is created. Figure 6.12 shows Workers
and how they handle failure, there is also visible that the load on given Pods is eventually
more or less balanced.

Besides the capacity of the critical components to handle failures, there are also several
other factors. For instance, memory usage and potential drain of all resources. One of the
templates wastes a big part of memory available to a given Pod. The problem may occur
once the application starts to waste resources on such a scale, making the scheduling of
new Pods impossible.

Tealc does not need to take care of this as there are enough resources to cover spikes
needs and the fact that it is a system built especially for handling this kind of traffic
and conditions. When it comes to smaller clusters, Kubernetes allow the specification of
Limits on given resources (Strimzi provides options to specify these limit in Kafka custom
resource). Figure 6.13 shows the cluster which does not limit memory assigned to given
Pods, which leads to starvation of other brokers.

74

0,00

0,05

0,10

0,15

0,20

22:45 22:59 23:14 23:28 23:42 23:57 0:11

Connect Cluster Worker CPU Usage

hathor-connect-6cc74fd84 hathor-connect-6cc74fd hathor-connect-6cc74fd848

hathor-connect-6cc74fd848 hathor-connect-6cc74fd848 hathor-connect-7fff8b78f

hathor-connect-7fff8b78f hathor-connect-7fff8b78f hathor-connect-7fff8b78f

hathor-connect-7fff8b78f hathor-connect-7fff8b78f

Figure 6.12: Workers’ recovery and load balance

0

5

10

15

0:26 0:41 0:55 1:09 1:24 1:38 1:53

Bi
llio

ns

Memory Usage By Broker (GiB)

kafka-0 kafka-1 kafka-2

Figure 6.13: Memory wasting

After applying chaos to several systems (i.e., different configurations of Strimzi and one
specific production environment) and seeing that experiments are passing almost all the
time, we could conclude that Strimzi does provide desired traits regarding resilience.

6.2.4 Experiments

The end of this Chapter is dedicated to configuring, managing, and otherwise manipulating
custom Kafka clusters into specific possible scenarios.

Thrughput

Strimzi is capable of recovering the cluster into a healthy state. However, frequent overlap-
ping of chaos (e.g., deletion of resources needed for correct recreation of brokers) significantly
increases the time for which the cluster remains in a weakened state, e.g., not allowing data
consumption or production. The general solution for the increase of throughput lies in full
usage of existing brokers, i.e., higher replication factor with reasonable settings regarding
the acknowledgement of Producer about successful write of a message. Figure 6.14 depicts
the root of decreased rate in production and later consumption of messages. Once the

75

partition leader dies, production is blocked by the Producer retrying to communicate with
the fallen instance.

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

23:26 23:55 0:24 0:53 1:21 1:50

Produce Request Rate

Total Produce Request Rate Failed Produce Request Rate

Figure 6.14: Increased rate of failed requests after deletion of some of brokers.

With proper configuration (i.e., high replication factor, small requirement regarding
synchronized replicas), we can obtain relatively smooth throughput even during almost
constant chaos, as is also visible in Figure 6.15. Firstly, production continues even with
a higher number of broker downs. The spikes in traffic are caused by the asynchronous
production of messages, with each one being resent numerous times in case of failure. As a
result, once the partition leader against works, all messages are delivered at once.

0

1000

2000

3000

4000

5000

6000

7000

11:14 12:26 13:38 14:50 16:02 17:14

Total Incoming Messages Rate

Figure 6.15: Increase of resielence by change of default configuration

Security

Most of the scenarios described in this Chapter did not cover the deletion of Security
resources. This is mainly because these resources play an essential role in access, and if
destroyed, repair of the cluster would afterwards require human intervention. An example
of this is the deletion of signing certificates for clients, which would cause all newly created

76

pods to fail. The reason for this is that Kafka tries to find an old certificate, which is
simply missing. This kind of chaos is even more fatal as it may also cause problems with
the exporting of metrics, and before doing any hard restarts, Figure 6.16 depicts all that
can be obtained once such a problem occurs. The problem only propagates itself a few
minutes later when brokers die and needs to be restarted. Monitoring of cluster fails in
precisely the same manner afterwards.

0

1

2

3

4

5

6

23:12 23:40 0:09 0:38 1:07 1:36 2:04 2:33 3:02 3:31

Kafka Brokers Online

Figure 6.16: Certificate failure.

Others

Not all experiments (i.e., types of templates provided by Litmus) were applied in imple-
mentation. There are several reasons for that. Some of these templates are much more
focused on Kubertnes itself than our system or at least some components they interact
with. These templates are deletion of kubelet or container runtime. Other templates are
impossible with the usage of crio runtime or on Openshift cluster. A Member of this cat-
egory of experiments is also Node Restart. Restart of a node is an event that can happen
in a cluster even on a daily base. Although we cannot use a Litmus template to inject this
kind of chaos, we can use Kubernetes API to instruct it.

Similarly, as in the previous experiment, this chaos may result in actual deletion of
monitoring and even other chaos injections. This is done if the Pods responsible for the
given task are located in the restarted node. However, the effect this chaos has on the
system itself is not very significant. One or at most two replicas of brokers may get deleted,
but we already tested the system against even more severe chaos. The assurance that node
failure will not cause that big harm in regard to the number of deleted brokers is obtained
by using the Kubernetes feature called Node Affinity. This setting instructs Kubernetes
to disperse replicas controlled by given Controllers amongst all suitable nodes, therefore
making the application resilient.

77

Chapter 7

Future work and ideas

Templates (provided by Litmus) available on ChaosHub are expected to work correctly and
be flexible enough to cover most of the desired use cases. Two originally proposed templates
(i.e., Resource Deletion and Kafka Rolling Update) will be merged to the Litmus Go reposi-
tory1 and will become publicly available with the next release. This publication of templates
will require additional work in the future, as underlying components will evolve, e.g., Kafka
and Strimzi. However, together with the rest of implemented templates and those provided
by Litmus, these templates are already applied in the production environment as part of
ExcelentProject.

7.1 Advanced templates
Strimzi also has several additional components that play a part in specific scenarios in the
cluster. This thesis does not cover them as they are even more advanced components used
sporadically or under specific conditions. Implementation of this scale would require addi-
tional consideration and would either need different implementation for different underlying
Orchestration platforms, a particular configuration of system under test, additional compo-
nents, or cast special Kubernetes events in whole the cluster. Examples of these components
are Drain Cleaner, Cruise Control, and MirrorMaker. More about these components can
be found in [8].

The most straightforward is MirrorMaker, which transfers data from one Kafka cluster
to another. However, it relies on processes (Pods) that do the actual work. The provided
template would then inject chaos into the data transfer process.

Kafka Cruise Control keeps new brokers loaded equally compared to existing ones, so
this kind of template requires the creation of load, increased Kafka brokers replica count,
and actual chaos inside brokers.

Nevertheless, the most advanced template is the usage of Drain Cleaner, as this compo-
nent takes over the management of the update of the whole Kubernetes cluster. A template
of this scale is still possible but requires significantly more consideration and knowledge
about advanced Kubernetes configuration.

1Litmus Go Github – https://github.com/litmuschaos/litmus-go

78

https://github.com/litmuschaos/litmus-go

7.2 Decoupled probes
This extension refers to the Litmus component described in Section 3.2.3. The whole idea is
built around separating the specification of probes from the specification of chaos. Although
this is currently not possible, changes in Litmus implementation to accomplish this would
not be invasive. With growing adoption and an increasing number of experiments, Litmus
has to develop a way to keep existing templates reusable for much more generic purposes.
For example, Litmus already provides several templates for Pod deletion. The things which
they primarily differ in are checks and additional Kubernetes Jobs they create. If we find a
way to make these checks separately, these templates could be highly simplified, and what
is more important, there would not be a need to create a new template each time we want
to create very specific liveness checks.

Litmus provides a way to check for additional conditions during the chaos with the help
of formerly mentioned probes. This could be very easily used to provide options to create
custom liveness streams. So theoretically, we could implement all liveness checks outside of
the actual template and instead only reference (inside ChaosEngine custom resource) the
kind of liveness stream we wish in the chaos.

Currently, the problem is that these probes are a part of the ChaosEngine specification
and offer minimal options to configure own images (and consequently jobs), which could
be spawned from them. Consider templates designed in Section 4.3.2. The liveness stream
provided here must be implemented inside the template and configured inside the given
ChaosEngine resource. Chaos Job later spawns Pods with Producer and Consumer images.
Afterwards, chaos Job collects these Pods’ results and finishes the chaos experiment. This
is visible in figure 7.1. Here, we can see that the user specifies the configuration of probes
and ChaosEngine separately. The probe contains all configurations related to the liveness
stream, and ChaosEngine contains significantly fewer configurations, focused solely on the
purpose of chaos itself.

Cons.

Job

Prod.

Eng.

Create

Create

Legend

Existence

Entities

Events

Time

Chaos Job

ChaosEngine

success

success

Configuration

Producer, Consumer
successCreate

Inject Chaos

Figure 7.1: Chaos workflow in case of liveness applied.

In case of the addition of support for Probes to run configurable images on their own,
we could easily accomplish workflow from Figure 7.2.

79

Cons.

Job

Prod.

Eng.

Create

Create

Inject Chaos

Probe
success

probe complete

Legend

Existence

Entities

Events

Time

Chaos Job, Probe

ChaosEngine

success

success

Configuration

Producer, Consumer

successCreate

Figure 7.2: Chaos workflow in case of separated responsibilities.

The configuration of these probes can be solved by allowing each probe to specify
its environment variables. There is no need to create separated custom resources (e.g.
ChaosProbe), but it would be a perfect addition, and several templates could be significantly
simplified, and some even removed.

80

Chapter 8

Conclusion

This thesis examined the problem of Chaos Engineering on project Strimzi. The whole
work started with identifying key features and weaknesses the project has: dependency on
Zookeeper, need to withstand Rolling Updates, and creation of numerous additional re-
sources. Then, the central part focused on the proposal and implementation of the suitable
way to cover all needs of the Strimzi project concerning Chaos Engineering, particularly:
injecting chaos into generic Strimzi clusters and also into a production environment. The
last part was mainly about finding and configuring a reasonable way to monitor all pa-
rameters which either influence or are influenced by the chaos itself, which also helped
with the correct evaluation of the overall findings and results, which are also described in
Section 6.2.3.

Because chaos engineering is not yet very standardized, and all frameworks and tools
this thesis works with (i.e., Litmus, Strimzi, etc.) are changing, so did parts of the design
and implementation of this thesis. For instance, the addition of two more templates needed
to be implemented due to the new needs of Kafka, which were not yet reflected in the Lit-
mus ecosystem. Another example of this is the actual decision to split the implementation
into two different parts, focusing on entirely different systems. Consequently, we gain con-
fidence in Strimzi running smoothly with all expected resistance while deployed in different
configurations and environments. There are three main parts of the implementation. The
first part of implementation are four templates; these will become available on ChaosHub;
it will be possible to apply them in other projects that use Strimzi. The second part is
the implementation of a generic test suite for new possible Strimzi configurations with all
necessary utilities for building, deploying and obtaining all necessary chaos components for
the addition of future templates and chaos experiments. The final part of implementation is
the creation, configuration, setup, and monitoring of chaos experiments in the Production
environment.

Despite this thesis’s rather extensive scope, injection of chaos did not disrupt the system
(deployed Strimzi) into extent in which significant changes would be needed. On the other
hand, we got confidence in the project’s ability to withstand turbulent conditions. Nev-
ertheless, the overall work can be considered a beginning of chaos engineering on Strimzi
on an even larger scale, as there are still many use cases and components that we did not
yet cover and play a significant role in the system’s behaviour. Additionally, this future
implementation can be done in much more manageable way, with new way of implementing
probes. Details about these changes are already described in Chapter 7.

81

Bibliography

[1] authors, C. P. Chaos Principles [online]. 2019 [cit. 2021-11-25]. Available at:
https://principlesofchaos.org/.

[2] authors, R. H. What is a Kubernetes operator? [online]. Red Hat, Inc, may 2020
[cit. 2021-10-14]. Available at: https:

//www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator.

[3] Authors, T. litmus. Using Litmus [online]. 2021 [cit. 2021-11-18]. Available at:
https://v1-docs.litmuschaos.io/docs/getstarted/.

[4] Authors, T. C. How to use Kafka Connect - Getting Started [online]. 2021 [cit.
2021-10-18]. Available at:
https://docs.confluent.io/home/connect/userguide.html.

[5] Authors, T. C. Kafka Connect Concepts [online]. 2021 [cit. 2021-10-18]. Available at:
https://docs.confluent.io/platform/current/connect/

concepts.html#connect-tasks.

[6] Authors, T. K. Apache Kafka documentation [online]. 2021 [cit. 2021-08-14].
Available at: https://kafka.apache.org/documentation/.

[7] authors, T. K. Kubernetes [online]. 2021 [cit. 2021-08-10]. Available at:
https://kubernetes.io/.

[8] Authors, T. S. Using Strimzi [online]. 2021 [cit. 2021-11-18]. Available at:
https://strimzi.io/docs/operators/latest/overview.

[9] Brazil, B. Prometheus: Up Running: Infrastructure and Application Performance
Monitoring. 1st ed. O’Reilly Media, Inc., 2018. ISBN 1492034142.

[10] Brebner, P. Apache Kafka Connect Architecture Overview [online]. 2018 [cit.
2021-10-10]. Available at: https:

//www.instaclustr.com/apache-kafka-connect-architecture-overview/.

[11] Brendan Burns, K. H. Kubernetes: Up and Running: Dive into the Future of
Infrastructure. 2nd ed. O’Reilly Media, 2019. ISBN 978-1492046530.

[12] Casey Rosenthal, N. J. Chaos Engineering: System Resiliency in Practice. 1st ed.
O’Reilly Media, 2020. ISBN 1492043869.

[13] Colman, G. The New Kubernetes Native [online]. 2020 [cit. 2021-11-25]. Available at:
https:

//graemecolman.medium.com/the-new-kubernetes-native-d19dd4ae75a0.

82

https://principlesofchaos.org/
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://v1-docs.litmuschaos.io/docs/getstarted/
https://docs.confluent.io/home/connect/userguide.html
https://docs.confluent.io/platform/current/connect/concepts.html#connect-tasks
https://docs.confluent.io/platform/current/connect/concepts.html#connect-tasks
https://kafka.apache.org/documentation/
https://kubernetes.io/
https://strimzi.io/docs/operators/latest/overview
https://www.instaclustr.com/apache-kafka-connect-architecture-overview/
https://www.instaclustr.com/apache-kafka-connect-architecture-overview/
https://graemecolman.medium.com/the-new-kubernetes-native-d19dd4ae75a0
https://graemecolman.medium.com/the-new-kubernetes-native-d19dd4ae75a0

[14] Developers, S. Strimzi Apache Kafka Operator joins the CNCF [online]. 2019 [cit.
2021-11-26]. Available at: https://strimzi.io/blog/2019/09/06/cncf/.

[15] Dobies, J. Kubernetes Operators. 1st ed. O’Reilly Media, 2020. ISBN
9781492048053.

[16] Domnu, R. Chaos Engineering With LitmusChaos [online]. October 2021 [cit.
2021-11-28]. Available at:
https://cloud.redhat.com/blog/chaos-engineering-with-litmuschaos.

[17] Gwen Shapira, R. S. and Petty, K. Kafka: The Definitive Guide, Real-Time Data
and Stream Processing at Scale. 2nd ed. O’Reilly Media, 2017. ISBN
978-1-492-04301-0.

[18] kafka.apache.org. Streams [online]. 2017 [cit. 2021-10-10]. Available at:
https://kafka.apache.org/0102/documentation/streams/.

[19] Koutanov, E. Effective Kafka: A Hands-On Guide to Building Robust and Scalable
Event-Driven Applications with Code Examples in Java. 1st ed. Independently
published, 2020. ISBN 9798628558515.

[20] Luksa, M. Kubernetes in Action. 1st ed. Manning, 2018. ISBN 978-1617293726.

[21] Manna, N. A Beginner’s Practical Guide to Containerisation and Chaos
Engineering with LitmusChaos 2.0 [online]. June 2021. Available at:
https://dev.to/neelanjan00/part-2-a-beginner-s-practical-guide-to-

containerisation-and-chaos-engineering-with-litmuschaos-2-0-253i.

[22] Manna, N. Chaos Engineering Made Simple [online]. 2021 [cit. 2022-02-20]. Available
at: https://thenewstack.io/chaos-engineering-made-simple/.

[23] Miles, R. Learning Chaos Engineering: Discovering and Overcoming System
Weaknesses Through Experimentation. 1st ed. O’Reilly Media, 2019. ISBN
1492051004.

[24] Mitch, S. Mastering Kafka Streams and ksqlDB Building real-time data systems. 1st
ed. O’Reilly Media, Inc., 2021. ISBN 1492062499.

[25] Mukkara, U. Cloud native chaos engineering – Enhancing Kubernetes application
resiliency [online]. November 2019 [cit. 2021-11-28]. Available at:
https://www.cncf.io/blog/2019/11/06/cloud-native-chaos-engineering-

enhancing-kubernetes-application-resiliency/.

[26] Mukkara, U. Chaos Engineering With LitmusChaos [online]. August 2020 [cit.
2021-11-28]. Available at:
https://www.cncf.io/blog/2020/08/28/introduction-to-litmuschaos/.

[27] Mwila, L. Kubernetes Controllers | Complete Guide for 2021 [online]. ContainIq,
october 2021 [cit. 2021-10-16]. Available at:
https://www.containiq.com/post/kubernetes-controllers.

[28] Neha Narkhede, T. P. Kafka: The Definitive Guide: Real-Time Data and Stream
Processing at Scale. 1st ed. O’Reilly Media, 2017. ISBN 979-8703756065.

83

https://strimzi.io/blog/2019/09/06/cncf/
https://cloud.redhat.com/blog/chaos-engineering-with-litmuschaos
https://kafka.apache.org/0102/documentation/streams/
https://dev.to/neelanjan00/part-2-a-beginner-s-practical-guide-to-containerisation-and-chaos-engineering-with-litmuschaos-2-0-253i
https://dev.to/neelanjan00/part-2-a-beginner-s-practical-guide-to-containerisation-and-chaos-engineering-with-litmuschaos-2-0-253i
https://thenewstack.io/chaos-engineering-made-simple/
https://www.cncf.io/blog/2019/11/06/cloud-native-chaos-engineering-enhancing-kubernetes-application-resiliency/
https://www.cncf.io/blog/2019/11/06/cloud-native-chaos-engineering-enhancing-kubernetes-application-resiliency/
https://www.cncf.io/blog/2020/08/28/introduction-to-litmuschaos/
https://www.containiq.com/post/kubernetes-controllers

[29] Pawlikowski, M. Chaos Engineering: Site reliability through controlled disruption.
1st ed. Manning, 2021. ISBN 1617297755.

[30] Poulton, N. The Kubernetes Book. 1st ed. Independently published, 2021. ISBN
979-8703756065.

[31] Rodal, R. 5 Best Chaos Engineering Tools [online]. October 2021 [cit. 2021-11-25].
Available at: https://harness.io/blog/chaos-engineering-tools/.

[32] Sayfan, C. Mastering Kubernetes. 3rd ed. Packt Publishing Ltd., 2020. ISBN
978-1-83921-125-6.

[33] Stopford, B. Designing Event-Driven Systems. 1st ed. O’Reilly Media, Inc., 2018.
ISBN 9781491990650.

[34] Turnbull, J. The Docker Book: Containerization is the new virtualization. 1st ed.
James Turnbull;, 2014.

[35] Velichko, I. Exploring Kubernetes Operator Pattern [online]. Ivan Velichko, january
2021 [cit. 2021-10-10]. Available at:
https://iximiuz.com/en/posts/kubernetes-operator-pattern/.

[36] Viktor Farcic, D. P. The DevOps Toolkit: Kubernetes Chaos Engineering. 1st ed.
Independently published, 2020. ISBN 979-8634359939.

[37] www.oracle.com. What is OLTP [online]. 2020 [cit. 2021-10-10]. Available at:
https://www.oracle.com/database/what-is-oltp/.

84

https://harness.io/blog/chaos-engineering-tools/
https://iximiuz.com/en/posts/kubernetes-operator-pattern/
https://www.oracle.com/database/what-is-oltp/

Appendix A

CD content

• 01-templates – extension of Litmus (i.e., templates)

• 02-test – implementation of test suit

• 03-applied-experiments – all manifest that apply chaos.

• README – more detailed map of CD, and all necessary information to start

• extra – examples, and obtained logs

• install – manifest which are needed for installation of components

• monitoring – manifest for correct monitoring setup

• navody – extra information for applying chaos in different environments

• install-guide – step by step lead to installation and application of all the chaos

In any case, please start with README file.

85

Appendix B

Role based access control

This chapter briefly describes how authorization and authentication works within the Ku-
bernetes clusters. This play crucial role in this thesis as deploying any Operator (Section
2.1.6) and in case of Litmus, also proper working of experiments, requires correct con-
figuration of these resources. Chapter B.1 describes basics of these resources (i.e., Role,
ServiceAccount, RoleBinding), and the following one (B.2) its place within working with
Litmus and Strimzi

B.1 Resources
Communication with the Kubernetes API server allows us to manipulate all resources within
the cluster. Authentication and authorization of applications running within-cluster (i.e.,
within pods) is accomplished by use of serviceAccounts. By providing secrets associated with
given service account, application can easily authenticate itself once it needs to manipulate
some data from API server (Figure B.1). Every pod is assigned exactly one service account.
The assigned service account represents the identity of the application running inside the
pod. Assignment of service account takes place in the time of pod’s creation and cannot
be modified afterwards.

ETCD

Master Node

Resources
 | --- Pods
 | | --- pod-a
 | | --- pod-b
 | --- Services
 | --- ConfigMaps
 | --- Deployments
 |

API

Authorization &
 Authentication

pod-b

Worker Node

pod-a

service-account-1
Communication

Figure B.1: Authentication within the Kubernetes cluster.

Kubernetes’ approach to security can be than visualized and think of as model depicted
in Figure B.2, where application require to execute operation on given object.

86

Resources
 | --- Pods
 | --- Services
 | --- ConfigMaps
 | --- Deployments
 | Nodes
 | Secrets
 |

service-
account-1

....

GET

PUT

POST

DELETE

....

Subject Operation/Verb Resource

service-
account-2

Figure B.2: Authorization and Authentication model that represents subjects, verbs and
resources within Kubernetes cluster.

The subject is entity (mostly application identified by its service account), operations
are methods we know from REST1 API model, and finally resource is everything that is
the content of ETCD storage, and accessible by Kubernetes API server. We can apply this
model with help of two additional Kubernetes objects2, i.e., Role and RoleBinding. The
former object binds operations to specific resources, yet it does not contain any information
about subject (i.e., who wants to perform operation) as is clarified in Figure B.3 and also
in Listening B.1.

1

2 kind: Role
3 metadata:
4 name: example−role
5 label: example
6 rules:
7 − apiGroups: [""]
8 resources: ["pods","services"]
9 verbs: ["create","delete"]

Listing B.1: Manifest of Role object
from the Figure B.3.

Resources
 | --- Pods
 | --- Services

DELETE

CREATE

Subject Operation/Verb Resource

service-
account-1

Role

example-role

Ref. Ref.

service-
account-2

Figure B.3: Role that allows operation delete
and create upon services and pods.

RoleBinding simply binds role to Subjects that may embody it (also visible in Figure
B.4) and Listening B.2. When some object later wants to execute operation, API server
firstly find all roles that are associated with given service account, and allow execution in
case there is at least one role that permits it.

1REST API – more at https://www.techtarget.com/searchapparchitecture/definition/
RESTful-API

2There are also ClusterRoleBinding and ClusterRole which have the same responsibilities as RoleBinding
and Role yet they are not bound to namespace.

87

https://www.techtarget.com/searchapparchitecture/definition/RESTful-API
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API

1

2 kind: RoleBinding
3 metadata:
4 name: example−rb
5 roleRef:
6 apiGroup: ""
7 kind: Role
8 name: example−role
9 subjects:

10 − kind: ServiceAccount
11 name: service−account−1
12 − kind: ServiceAccount
13 name: service−account−2

Listing B.2: RoleBinding bject’s
manifest from the Figure B.4.

Resources
 | --- Pods
 | --- Services

DELETE

CREATE

Subject Operation/Verb Resource

service-
account-1

Role

example-role

Ref. Ref.

service-
account-2

RoleBinding
example-rb

Ref. Ref.

Figure B.4: RoleBinding that binds two ser-
vice accounts to Role defined in Listening B.1

B.2 Operators
When we deploy operator in Kubernetes cluster, part of its work is to monitor state of
cluster, as is in detail described in Section 2.1.6. From authorization and authentication
point of view, we need to provide adequate resources to allow operator to watch over
and manage its resources. For this reasons operators are usually shipped with predefined
Roles and RoleBindings (or their Cluster-wide counterpart) for specific resources. Strimzi
operators has to be able to watch over KafkaTopics Kafkas etc. but also being able to
create all necessary kubernetes native resources (e.g, services, secrets).

More complicated scenario is in case of Litmus. One of the few disadvantages of Litmus
is its need for a lot of previously mentioned resources. Because each experiment that we
will run on our cluster may interfere with different resources, we have to provide pods
responsible for that chaos experiment with different minimal permissions3.

3Running these experiments with admin privileges would be unacceptable.

88

Appendix C

Kafka Configuration

This chapter starts with explanation of configuration problem as such in Kafka (Section
C.1) and continues with individual configurations, what is content of Section C.2.

C.1 Problem of configuration
One of the most notable traits of Kafka is its configurability. It is mostly about which
properties we need for a specific business model. Depending on our settings, we will end up
with compromises between availability and safety, latency and traffic, as well as space and
durability. Everything mentioned till this line is configurable (from how many partitions
should topic have to allowance of unclean election1). The size of batches of messages before
sending them to Kafka, how many times the producer should retry to send data in case of
failure, and what politic should be applied when waiting for acknowledging that data were
successfully stored for. All these configurations represent a trade-off between latency on the
producer side and traffic on the server side.

We speak about one order higher magnitude of problems with configuration once we
start to configure Connects or Mirror Makers. Truth be told, the configurability of Kafka
is a double-edged weapon. On one side, it allows Kafka to match almost every need in
its domain. On the other one, setting up, manipulating monitoring, and validating choices
we made during configuration may be far too unnecessarily complicated2. New solutions
that build on top of the Kafka, such as Confluent3 or Strimzi (described in chapter 2.3) are
trying to minimize the amount of necessary configuration.

We may pass our configuration to Kafka, and especially if it is managed by Strimzi, as
part of specification of several entities:

• Broker – Beside all other configurations, it contains information about storage, its
id, port it is listening on and lot of default properties for topics and clients.

• Topic – When we create Kafka topic we are mostly interested in its count of partitions,
replicas.

• Strimzi – Strimzi firstly automatize most of configuration present in brokers, but
also add some of its own, e.g., separate configuration for internal topics.

1In this case we allow partition which is not fully in sync with fallen partition leader
2There are more than sixty properties to customize just as part of producer’s configuration.
3https://www.confluent.io/

89

https://www.confluent.io/

• Clients – This includes Producer, Consumer, and indirectly also Kafka Connect
cluster. We are interested in specification of connection, how to proceed in case of
failure, and when to consider message written.

C.2 Entities and properties
Each of Kafka’s component (e.g., topic, consumer, broker) has its own set of attributes,
which help with their configuration to setup desired behavior. Configuration in split into
following tables with regard to what we want to do with Kafka, i.e., creation Producer,
Consumer, or Topic.

There are two types of topic, i.e., internal or created by user. The most important of
internal topics is __consumer_offsets from Section 2.2.2. Most important configuration
regarding creation of topic is visible in Table C.1.

Table C.1: Selected Topic creation related configuration

Configuration name Set by Entity Description Works with Default
value

auto.create.topics.enable Strimzi

We can disable clients from creating topics
automatically. A client would otherwise

create topic in case it was not present at
that time

replication.factor Strimzi, Topic Specifies how many replicas we want either
for the given topic or for all of them

offsets.topic.replication.factor Strimzi Replication factor for the given internal topic

num.partitions Strizi,Topic Number of partitions (it is usually a mandatory
parameter when creating a topic)

min.insync.replicas Strimzi, Topic
Specifies how many replicas (including

partition leader) must write a message to
consider it written

replication.factor,
acks (producer)

commit (consumer)

Since its creation, Kafka has switched its default configuration in favour of safety of
produced messages. Following Table (C.2) depicts small part of configuration responsible
for smooth production of data. We will not cover all of configuration that play some role
as it would still leave at least twenty fields, which would be counterproductive.

We omit heartbeats, belonging to group and other things that are already described in
Section 2.2.2. Instead we will only cover configuration that will interfere with our experi-
ments.

90

Table C.2: Selected Producer creation related configuration

Configuration name Description Works with Default
value

bootstrap.servers
List of comma-separated pairs (address:port), which are
addresses of brokers to be used for obtaining metadata

for communication.

retries Specifies how many times should the producer retry to
send a message in case of a potentially transient error delivery.timeout.ms 231 - 1

delivery.timeout.ms We can simplify it as the maximal time to wait for
success or fail regarding creation of the message unmentioned 0

request.timeout.ms The maximum amount of time the client will wait for the
response of a request delivery.timeout.ms 30 000

Acks

How many replicas (including partition leader) must write
a message to consider it written. If set to value all, only

the number of replicas specified by property
min.insync.replicas are required to register it, to consider

it written.

min.insync.replicas
(Topic) all

Table C.3: Selected Consumer creation related configuration

Configuration name Description Works with Default
value

bootstrap.servers
List of comma-separated pairs (address:port), which are
addresses of brokers to be used for obtaining metadata

consumer.timeout.ms This option is deprecated from Kafka 1.0 onwards.

retry.backoff.ms The amount of time to wait before attempting to retry a
failed request 100

reconnect.backoff.ms The amount of time to wait before attempting to
reconnect using a given host bootstrap.servers 1000

enable.auto.commit

The consumer is also a producer (in the case of the
offset topic). This option allows the library to take care of

commits. The consumer cannot commit position if all
acknowledgements are required and not enough replicas

are synchronized.

min.insync.replicas true

auto.commit.interval.ms Specifies How often does the consumer commit his
offset regarding consumption. enable.auto.commit 5000

91

Appendix D

Kafka Streams

Is the most used extension of Kafka. Its purpose is to work with endless data (i.e., data
stream) and apply operations on it. The need for it emerged by natural demands of market.
IoT1, sensors, financial systems, medical records, and other sources provide a large amount
of data. Use cases that are built upon these data require us to process, enrich, transform
and react to them as soon as possible. There were two main approaches to data processing:

• Request/Response processing – In the database world, this approach is known
as OLTP2 when the client requests some data, wait for them to process them, and
repeat to process with the next data.

• Batch processing – The processing system wakes up every scheduled time and pro-
cessed all pilled up data [28]. Not suitable for processing data in real-time, as we
would have to wait often and run a job or query at some interval of our choosing [24].

Kafka Streams implements Stream processing. Stream is an abstraction for unbounded
data set (i.e., as time continues, new data arrive, either as they are created or loaded).
The processing itself goes in an endless continuous manner by leveraging a programming
paradigm called Data Flow Programming3. This means that programming is represented
as a series of inputs, outputs, and processing blocks that form an acyclic graph. Kafka
Streams itself is nothing more than a simple and lightweight client library that provides
few primitives for implementation of these graphs [18]:

• Source processor – Internally is implemented using consumer libraries which read
data from Kafka topic. It can store more records in the buffer, visible in figure D.1.

• Stream processor: Performs transformations, e.g., filter, map. In addition, it sup-
ports local states, enabling even advanced operations such as joins and aggregations.

• Sink processor: Producer part of streams. Store data to destination Kafka topic.
Due to working with data from topics, Kafka Steams depends only on a cluster from
which it can read and eventually write.

Some of the essential benefits that Kafka architecture brings are scalability, reliability,
and speed. The atomic unit of scaling is the partition. Once we have a topic with multiple
partitions, we can spawn a new consumer application that will take care of its part of the

1IOT – Internet of Things
2OLTP stands for online transaction processing, a type of data processing which consists of executing

several transactions occurring concurrently [37].
3Data Flow programming – https://devopedia.org/dataflow-programming

92

https://devopedia.org/dataflow-programming

Stream Applicaiton

topic-source
Partition 1

Partition 2

Kafka

topic-destination

Partition 1

P1consumer P2

Source Processor

Stream Processor

Sink Processor Stream Processor

Sink Processor

Figure D.1: Example of data flow within Kafka Streams application

partitions. Reliability is obtained due to the usage of Kafka as both source and destination.
High throughput due to Kafka’s way of storing and splitting data, and finally, simplicity
that allows developers to focus more on business requirements.

D.1 Other extensions of Kafka
There are some other extensions over base Kafka, i.e., Quotas, Mirror Makers). Mirror
makers are Apache Kafka’s built-in cross-cluster replicators. Today there are two versions
of Mirror Maker. The first version internally uses producers and consumers, but due to
many flaws (mainly with configuration), MirrorMaker 2 was created, which was built on
top of Kafka Connect. Because of this internal usage of Kafka Connect, there is no need to
describe its component as much as in the case of Kafka Streams or Kafka Connect. Mirror
makers are just another example of fast evolution in Kafka. As a whole ecosystem grows
and responds according to the new needs of businesses, some parts are slowly replaced due
to their many flaws. Yet, we can still see them, just like in the case of MirrorMaker 14 and
in no time, Zookeeper as well.

4MirrorMaker 1 is deprecated at the time of writing this thesis

93

	Introduction
	Preliminaries
	Kubernetes
	Early Stages
	Physical servers
	Virtualization
	Containerization

	Motivation for Orchestration
	Declarative approach and abstraction
	Uptime
	Self-healing and scaling
	Others

	Architecture
	Cluster structure

	Objects
	Pods
	Services
	Volumes
	ConfigMaps
	Namespaces

	Controllers
	ReplicaSet
	Deployment
	StatefulSet
	Job

	Extensions
	Custom resource Definitions and custom resources
	Operators

	Apache Kafka
	Basis
	Data

	Clients
	Producer
	Consumer

	Kafka Cluster
	Zookeeper

	Kafka Connect

	Strimzi
	Origin and Motivation
	Architecture
	Operators
	Custom resources and components

	Configuration

	Chaos Engineering
	Discipline
	Origin
	Motivation
	Complex distributed system
	 Resilliency dependency

	Definition and Principles
	Chaos Experiment
	Adoption

	Litmus
	Framework
	Architecture
	Chaos API
	Execution

	Chaos Experiment On Litmus
	Existing experiments
	Experiment's workflow
	Probes

	Design
	Considerations
	Strimzi's Weaknesses
	Choice of Approach
	Imperative design and implementation
	Declarative design and implementation

	Communication
	Chaos Experiments on Project Strimzi
	Generic Chaos Experiments
	Strimzi Specific Chaos experiments
	Resources Deletion
	Update Resilience

	Application Of Chaos Experiments
	Extension of Existing System Tests
	Experimenting in Production

	Implementation
	Components' Communication
	Templates
	Preliminaries
	Broker pod delete
	Clients
	Liveness stream

	Resource Delete
	Kafka Rolling Update
	Worker Delete

	Application of Chaos
	System Tests Extension
	Chaos Test Suite
	Builders
	Clients
	Communication
	Evaluation

	Production Environment
	Access Control
	Chaos Experiments
	Scheduling

	Monitoring, Evaluation, and Experiments
	SUT Monitoring
	Motivation
	Tools
	Configuration

	Running and Evaluation
	Setup
	Sequences
	Results
	Experiments
	Thrughput
	Security
	Others

	Future work and ideas
	Advanced templates
	Decoupled probes

	Conclusion
	Bibliography
	CD content
	Role based access control
	Resources
	Operators

	Kafka Configuration
	Problem of configuration
	Entities and properties

	Kafka Streams
	Other extensions of Kafka

