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Abstract
The goal of this work is to propose an improved unwinding mechanism for the 2LS formal
verification tool. 2LS is a static analysis framework for C programs based on reasoning
about programs using an SMT solver. It combines multiple common verification techniques
into an algorithm called 𝑘I𝑘I. One of the crucial parts of the algorithm is loop unwind-
ing. Unfortunately, the existing solution does not correctly support unwinding of loops
containing operations with dynamically allocated memory. Our proposed solution is based
on unwinding loops in a GOTO program rather than the SSA form, making it possible to
correctly handle dynamic objects and operations over them. The proposed solution has
been implemented in the 2LS framework and our experiments on a set of benchmarks from
the International Competition on Software Verification (SV-COMP) show that it improves
soundness of analysis of programs working with dynamic objects.

Abstrakt
Cílem této práce je navrhnout vylepšený mechanismus rozbalování smyček pro analyzátor
2LS. 2LS je nástroj pro statickou analýzu C programů založený na usuzování o programech
pomocí SMT solveru. Kombinuje několik běžných verifikačních technik do algoritmu zva-
ného 𝑘I𝑘I. Jednou z klíčových součástí tohoto algoritmu je rozbalování smyček programu.
Současné řešení bohužel neumožňuje správně rozbalovat smyčky obsahující operace s dy-
namicky alokovanou pamětí. Námi navrhované řešení je založeno na rozbalování smyček
v GOTO programu namísto SSA formy, díky čemuž je možné správně pracovat s dyna-
mickými objekty a operacemi s nimi. Navržené řešení bylo implementováno v nástroji 2LS
a naše experimenty na sadě testů z mezinárodní soutěže ve verifikaci software (SV-COMP)
ukazují, že zvyšuje korektnost analýzy programů pracujících s dynamickými objekty.
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Rozšířený abstrakt
2LS je nástroj pro statickou analýzu C programů založený na odvozování invariantů pomocí
SMT solveru. Díky kombinaci více různých verifikačních technik dokáže 2LS nalézt chyby
v programech i dokázat platné vlastnosti programů. 2LS se v současnosti zaměřuje na
analýzy jako např. správnost operací s ukazateli, terminace, neterminace a neporušení
hranic polí.

Invarianty v 2LS jsou odvozovány pomocí algoritmu 𝑘I𝑘I, který kombinuje principy
abstraktní interpretace, 𝑘-indukce a bounded model checking (BMC) způsobem, který do
značné míry eliminuje slabé stránky jednotlivých přístupů díky vzájemné komplementaci.
Důležitou součástí metod 𝑘-indukce a BMC je rozbalování smyček programu, které umož-
ňuje rozbalit přechodovou relaci programu a tím např. detekovat chyby pomocí BMC. Sou-
časná implementace využívá jednoduchého rozbalení smyček v interní reprezentaci single
static assignment (SSA), kdy je tělo smyčky jednoduše nakopírováno před smyčku. Tento
přístup ovšem nedokáže zajistit plnohodnotnou podporu pro analýzu programů pracujících
s dynamickou pamětí kvůli paměťovému modelu využívanému v 2LS. Dokonce analýza
takových programů často vede k nekorektnímu výsledku analýzy. Navíc je současné řešení
nedostatečně zdokumentované, což komplikuje jeho údržbu. Cílem této práce je navrhnout
alternativní přístup k rozbalování smyček, který umožní rozbalování smyček všech pro-
gramů, které 2LS momentálně podporuje, a zároveň správně podporuje operace s dynamic-
kou pamětí.

Navržené řešení rozbaluje smyčky v interní reprezentaci GOTO programů (které odpoví-
dají grafům toku řízení). Díky tomu je po rozbalení možné provést úpravy alokací dyna-
mických objektů (které jsou zaváděny právě v této reprezentaci) a následně spočítat novou
formu SSA pro další analýzu. Díky tomuto sledu úprav je při výpočtu nové SSA formy
možné po rozbalení smyček korektně zohlednit nový stav dynamických objektů v programu,
a tedy správně reprezentovat operace s dynamickou pamětí. Nad nově spočtenou SSA for-
mou je poté nutné udělat některé modifikace, které provádělo i původní řešení a jsou nutné
pro některé typy analýz. V případě 𝑘-indukce nebo BMC jsou přidány tzv. předpoklady,
aby mohla být následná analýza přesnější.

Navrhované řešení bylo implementováno v nástroji 2LS. Nástroj 2LS je postaven nad
knihovnou CProver, která poskytuje mnohá užitečná rozhraní, např. pro práci s GOTO
programy. V rámci této práce jsme aktualizovali verzi knihovny CProver využívanou v 2LS
(původní byla více než 4 roky stará a od té doby proběhlo mnoho změn a oprav), aby-
chom mohli využít nejnovější rozhraní pro rozbalování smyček v GOTO programech a také
usnadnili budoucí vývoj 2LS. S naimplementovaným řešením jsme prováděli experimenty
nad sadou úkolů z mezinárodní soutěže ve verifikaci software (SV-COMP). Experimenty
ukázaly, že implementované řešení dosahuje lepších výsledků na úlohách obsahujících práci
s dynamickou pamětí (např. v kategorii Memory Safety), ovšem je zde zhoršení v jiných
kategoriích z důvodu nevyužívání inkrementálního SAT solveru.

Na základě toho jsme implementaci řešení upravili způsobem, že nový přesnější mecha-
nismus pro rozbalování smyček je využit jen v případě, kdy se v programu vyskytují operace
s dynamickou pamětí, jinak je použit starý a výkonnější algoritmus. Takto implemento-
vané řešení dosahuje lepších výsledků než řešení původní napříč všemi našimi experimenty
a zásadně rozšiřuje verifikační schopnosti 2LS při práci s programy s dynamickou pamětí.
Dále také práce pojednává o novém řešení, které by kompletně nahradilo řešení původní
a zároveň by využívalo inkrementální SAT solving. Toto řešení ovšem nebylo implemen-
továno.
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Chapter 1

Introduction

Research in the field of software verification is evolving very fast. There are a lot of tools be-
ing developed, often using different approaches, each with its advantages and disadvantages.
Oftentimes, tools focus on analysing only a single type of property and while excelling at
such analysis, they fail to analyse complex programs since those usually require analysis of
a combination of properties.

One of the tools combining multiple approaches into a single scalable framework is 2LS.
By using a combination of common verification techniques, 2LS can find errors in the system
as well as prove its true properties. 2LS focuses on analysing the most common properties
of sequential C programs, such as reachability of assertions, validity of pointer operations,
array bounds, or termination.

The analysis in 2LS is based on translating a program into a single static assignment
(SSA) form, computing inductive invariants of loops, and reasoning about the program
properties using an SMT solver. This is all connected in an algorithm called 𝑘I𝑘I that
combines common verification techniques, namely abstract interpretation, 𝑘-induction, and
bounded model checking. The main principle of 𝑘-induction and bounded model checking
is checking correctness of a program by unrolling its transition relation. In order to analyse
loops using these methods, they must be unwound during the analysis, making the algorithm
for loop unwinding crucial for verification in 2LS.

Unfortunately, the current implementation of the unwinding algorithm does not sup-
port correct representation of operations over dynamically allocated memory according to
the memory model utilised in 2LS. This prevents usage of 𝑘-induction and bounded model
checking for some programs as their verification would be unsound. Moreover, the current
unwinder implementation is not documented very well, which makes it difficult to be main-
tained, as was shown by a significant bug being discovered only recently even though it has
been present for a long time. To address the mentioned issues, the goal of this work is to
propose and implement an alternative approach to loop unwinding supporting all types of
analysis that 2LS currently allows while also correctly handling operations with dynamic
memory. Contrary to the previous unwinder of 2LS which directly unwinds the SSA form,
our solution is based on unwinding the GOTO program (a CFG-based representation com-
ing from the CProver framework which 2LS is built on) and updating the dynamic objects
inside the GOTO program. This approach facilitates correct representation of operations
over dynamic memory.

The proposed solution has been implemented in the 2LS framework. It can correctly
analyse programs operating with dynamic memory inside loops, as well as soundly detect
memory leaks. Based on experiments with benchmarks from the International Competition
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on Software Verification (SV-COMP), the solution improves verification capabilities of 2LS.
We have observed a notable increase in correctly verified tasks, as well as of the overall
score. As a part of this work, we have also updated the version of the underlying CProver
framework used in 2LS.

The rest of this text is organised as follows. In Chapter 2, we introduce the most essential
concepts of program verification in 2LS, mainly focusing on those that are related to loop
unwinding and intermediate representations. Chapter 3 gives an overview of the state-of-
the-art of loop unwinding and gives more insight into the current state of unwinding in 2LS.
Our proposed solution and its components are described in Chapter 4. An overview of the
CProver update and other implementation details are described in Chapter 5. Chapter 6
gives an overview of the experiments and benchmarks performed in order to evaluate the
implemented solution.

This thesis extends work which was previously done as a part of Project Practice 1 and
Project Practice 2 courses. In particular, some parts of Chapter 2 were taken from the
reports written in these courses.
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Chapter 2

Foundations of the 2LS Tool

The main goal of this thesis is to improve unwinding in the 2LS tool. The unwinder is
one of the core components of the tool, its functionality is crucial in most of the performed
analyses. This chapter briefly describes the main concepts used in 2LS, mainly focusing on
those that are related to unwinding.

2LS is a static analysis framework aimed at analysing sequential C programs. It is built
upon the CProver framework which provides basic functionality for program analyses and
working with internal representations. 2LS allows verification of user-defined assertions,
memory safety, array bounds, and termination and non-termination properties.

Since it would be difficult to directly analyse C source code, analysers often make use
of various internal representations. Section 2.1 describes the representations used in 2LS,
namely GOTO programs (provided by the CProver framework) and single static assignment
(SSA) form. The analysis in 2LS is based on inference of inductive invariants using an algo-
rithm called 𝑘I𝑘I that combines common verification techniques – abstract interpretation,
𝑘-induction and bounded model checking. Section 2.2 gives an overview of these concepts
and how they tie together into a single algorithm.

2.1 Intermediate Representations in 2LS
In order to conveniently and efficiently analyse source programs, 2LS utilises two types of
intermediate representations. First, the source program is converted into a control flow
graph, called a GOTO program, using the CProver framework. A GOTO program consists
of GOTO functions that correspond to the functions of the original program. Each GOTO
function is then transformed into a single static assignment (SSA) form which allows con-
structing a logical formula describing the semantics of the function. 2LS uses these formulae
to verify correctness of the source program.

2.1.1 GOTO Programs

GOTO program is a language-independent representation similar to the ones used in com-
pilers [8]. A GOTO program consists of GOTO functions, each of which is a list of GOTO
instructions. Every instruction has a distinct type, a code expression, a guard expression,
a source code location, and, optionally, targets for the next instruction which form the
program into a control flow graph. At the time of writing, there are 19 types of instruc-
tions of various types, e.g., computational (ASSIGN or GOTO) or informational (LOCATION or
DEAD). From the point of view of program verification, important instructions are those for
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assumptions and assertions about the code, called ASSUME and ASSERT, respectively. An
assumption makes the thread of execution expect the guard expression to hold, whereas
an assertion expresses that the guard expression should hold for all possible executions.
Oftentimes, the goal of verification is to prove that all assertions of the given program hold
(or to find a counterexample if they do not hold).

The conversion from C to GOTO takes place in two phases [8]. At first, each instruction
in the source program is converted into its GOTO instruction equivalent, however at this
point, control flow aspects of the program are not encoded yet. These are added later
in the second phase; if-else and while constructions are replaced by equivalent GOTOs
and instructions are grouped into basic blocks starting with labels. Moreover, variables
are extended with information about their lifespan using DECL and DEAD instructions for
variable declaration and variable deletion, respectively. A conversion of a simple C program
can be seen in Figure 2.1. One of the advantages of this representation is the possibility to
serialize and deserialize it, e.g., to a binary format.

1 void main() {
2 int x = 0;
3

4 while (x < 10) {
5 x++;
6 assert(x <= 10);
7 }
8 assert(x == 10);
9 }

main
// line 2
DECL x : signedbv[32]
x = 0
// line 4

1: IF x >= 10 THEN GOTO 2
// line 5
x = x + 1
// line 6
ASSERT !(x >= 11)
GOTO 1

// line 8
2: ASSERT x == 10

DEAD x

Figure 2.1: Conversion of a simple C program to GOTO program

As mentioned above, each instruction contains a guard expression and a code expression.
The guard expression represents a condition under which the instruction is executed [8] and
the code expression represents the effect of the instruction, e.g., an assignment. Expressions
of the program inside GOTO programs can be thought of as subtrees of the Abstract Syntax
Tree (AST) known from compilers [3]. A node of an expression can be of various types,
e.g., based on the children count we can differentiate unary and binary expressions. This
forms an inheritance hierarchy of expressions in the CProver framework. Figure 2.2 shows
a simple expression calculating the sum of two integer constants.
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Figure 2.2: Expression tree of sum of two integer constants

2.1.2 Single Static Assignment Form

Single Static Assignment (SSA), as the name suggests, is an intermediate representation of
programs within which each variable is assigned to at most once. One of the advantages
of this representation is that it is simple to convert it to a logical formula representing
the program semantics as the conjunction of formulae corresponding to individual program
statements.

A translation from GOTO to SSA requires splitting each variable 𝑣 into several variables
𝑣𝑖 at each assignment to 𝑣 where 𝑖 is the location of the assignment. Every R-value usage of
𝑣 is replaced by the corresponding variable 𝑣𝑖, where 𝑖 is the last node where 𝑣 was assigned
to before the given use of 𝑣 [11]. In order to ensure that there is always a single such
node, additional assignments must be introduced at joint points (e.g., at the beginning of
loops) of the program. These are called Φ (phi) nodes and have the form of an assignment
𝑥 = Φ(𝑦, 𝑧) meaning that 𝑥 is assigned the value of 𝑦 if the control reaches this node via
the first entering edge (e.g., from before the loop), and 𝑥 is assigned the value of 𝑧 if the
node is reached via the second entering edge (e.g., from the end of the loop).

In 2LS, the standard SSA is extended with control flow information. To achieve this,
special variables called guards are introduced. For each program location 𝑖, a boolean
variable 𝑔𝑖 describes the condition under which the given location is reachable.

In order to use the generated formula with an SMT solver, 2LS makes the SSA acyclic
by cutting loops at their end of the body. This is done by replacing each variable coming
from the end of a loop body by a fresh unconstrained variable (called a loop-back variable).
Moreover, the choice in the corresponding Φ node between the loop-back variable (coming
from the end) and the variable coming from before the loop is made non-deterministic
by using an unconstrained boolean variable (a so-called loop-select variable) [2]. This
transformation is crucial for verification in 2LS since it over-approximates the control flow
of the program by using the free variables. The precision of this representation is then
typically improved by computing a loop invariant which reduces the possible values of the
loop-back variable. A loop invariant describes a property that holds at the end of any
iteration of the loop. An example of this transformation can be seen in Figure 2.3. The
loop has been cut at the end of its body: a free loop-back variable 𝑥lb2 is passed to the loop
head instead of the actual value of 𝑥 expressed by 𝑥2. The choice of the value in the Φ node
is based on a free boolean loop-select variable 𝑔ls2 . Variables 𝑥lb2 and 𝑔ls2 are free variables,
making this representation an over-approximation of the original program semantics.

Figure 2.4 shows translation of a program introduced in Figure 2.1 to its SSA over-
approximation. Line 1 is the entry of the program; it is always reachable, therefore 𝑔1 is
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before the loop (𝑥0)

loop head multiplexer
𝑥phi1 = 𝑔ls2 ? 𝑥lb2 : 𝑥0

loop body
𝑥2 = . . .

end of loop body (𝑥lb2 )

after the loop

𝑥lb2

Figure 2.3: Encoding of a loop into SSA used in 2LS

true. The variable 𝑥 is defined and initialised at line 2. The loop head at line 5 is reachable
if the previous location is also reachable, therefore its guard 𝑔4 is equal to 𝑔2. The guard 𝑔7
expresses that the loop body is reachable if the loop itself is reachable (𝑔4 is true) and if the
loop condition is true (𝑥phi5 < 10). Guard 𝑔8 represents the assertion inside the loop; the
assertion must be true in order for the program to get past it. The program can reach the
statement following the loop (represented by guard 𝑔12) only if the loop was reachable and
the loop condition was false. Line 13 represents the final assertion. Once it is reachable, the
value of 𝑥 must be equal to 10. Finally, the end of the function is reachable if the assertion
is reachable and if it was satisfied.

1 void main() {
2 int x = 0;
3

4 while (x < 10) {
5 x++;
6 assert(x <= 10);
7 }
8 assert(x == 10);
9 }

1 DECL x : signedbv[32]
2 x = 0
3

4 1: IF x >= 10 THEN GOTO 2
5

6 x = x + 1
7

8 ASSERT !(x >= 11)
9

10 GOTO 1
11

12 2: ASSERT x == 10
13

14 DEAD x
15 END_FUNCTION

1 𝑔1 = 𝑡𝑟𝑢𝑒
2 𝑥2 = 0
3

4 𝑔4 = 𝑔1
5 𝑥phi

5 = (𝑔ls10 ? 𝑥
lb
10 : 𝑥2)

6 𝑥6 = 𝑥phi
5 + 1

7 𝑔7 = ¬(𝑥phi
5 ≥ 10) ∧ 𝑔4

8 𝑔8 = ¬(𝑥6 ≥ 11)
9

10 // loop back
11

12 𝑔12 = 𝑥phi
5 ≥ 10 ∧ 𝑔4

13 𝑥phi
5 = 10 ∨ ¬𝑔12

14

15 𝑔15 = 𝑥phi
5 = 10 ∧ 𝑔12

Figure 2.4: Encoding of a simple GOTO program into SSA

2.1.3 Memory Model Used in SSA

Among C constructions whose encoding into SSA is challenging are those dealing with
pointers and dynamically allocated memory. To this end, we describe them in detail in this
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section. In 2LS, dynamic memory allocations are encoded using so-called abstract dynamic
objects. Each abstract dynamic object represents a set of concrete dynamic objects allocated
at the same allocation site (allocated by the same malloc) [13]. Each call of malloc is
replaced by a new abstract dynamic object1, the replacement at location 𝑖 follows the
pattern:

malloc(sizeof(x)) −→ &𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$𝑖. (2.1)

where the type of 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑜𝑏𝑗𝑒𝑐𝑡$𝑖 is 𝑥.
The conversion of pointer dereferencing operations to SSA is done using a static points-

to analysis which for each pointer computes a set of objects in memory which it can be
dereferenced into in each program location where the pointer is used [11]. Based on this
analysis, operations via pointers (i.e., reads and writes to memory) are encoded using a
case-split of objects which a pointer can be dereferenced into. Let us assume that a pointer
𝑝 can be dereferenced into a set of objects 𝑂 at a program location 𝑖. To facilitate encoding
of memory operations at 𝑖, we introduce a new variable 𝑑𝑟𝑓(𝑝𝑖) representing a dereference
of 𝑝 at 𝑖.

Then, an R-value (memory read) expression 𝑝 → 𝑓 is represented by an SSA for-
mula [13]: ⋀︁

𝑜∈𝑂
𝑝 = &𝑜 ⇒ 𝑑𝑟𝑓(𝑝).𝑓 = 𝑜.𝑓 ∧ ((

⋀︁
𝑜∈𝑂

𝑝 ̸= &𝑜) ⇒ 𝑑𝑟𝑓(𝑝).𝑓 = 𝑜⊥) (2.2)

where 𝑜⊥ represents an unknown object. Accessing the value of an unknown object can be
thought of as a program error. Formula 2.2 consists of two main parts, the first describing
the fact that if the pointer 𝑝 points to one of the objects from the set 𝑂 (computed by the
points-to analysis), then the value of the field 𝑓 of the pointer 𝑝 is equal to the value of the
field 𝑓 of the object that 𝑝 points to. The second part describes that if 𝑝 does not point to
any object in the set 𝑂, then the value of the field 𝑓 is unknown, i.e., the read is invalid.

Similarly, writing to a memory through an L-value expression 𝑝 → 𝑓 , can be represented
by the formula [13]: ⋀︁

𝑜∈𝑂
𝑜.𝑓 = (𝑝 = &𝑜 ∧ 𝑔𝑜𝑠𝑖 ) ? 𝑑𝑟𝑓(𝑝).𝑓 : 𝑜.𝑓 (2.3)

expressing the fact that 𝑜.𝑓 gets updated if 𝑝 points to the object 𝑜, otherwise its value
remains intact. A new unconstrained Boolean variable 𝑔𝑜𝑠𝑖 is introduced to ensure that the
value of field 𝑓 is changed in only one of the concrete objects abstracted by 𝑜 and the others
remain unchanged.

This approach brings a significant advantage with regard to performance since it is
sufficient to compute the points-to analysis only once (before the main analysis) which
removes the need of keeping track of pointers during abstract interpretation of the program.
However, it also has its drawbacks. It is not possible to modify sections of SSA which
manipulate the dynamic memory model since the changes could influence the set of objects
which a pointer can be dereferenced into and hence the points-to analysis would have to
be recomputed. This is especially a problem for unwinding of loops that contain memory
allocations, as described in detail in Section 3.2.2.

1In some cases, multiple abstract objects are used for an allocation site to ensure soundness. This is not
relevant for this work, though, hence, for simplicity, we only assume a single abstract dynamic object for
each malloc.
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Verifying Memory Safety When analysing programs with dynamic memory, often-
times errors stem from invalid pointer operations rather than user-defined assertions. 2LS
supports analysis of such errors by instrumenting the processed GOTO program with new
assertions which check that the memory operations present in the program are valid. This
includes assertions for pointer dereferencing safety, free safety and absence of memory
leaks.

To check for dereferences of null, for each expression containing a dereference *𝑝 at
location 𝑖, we need to verify that the assertion 𝑝𝑗 ̸= 𝑛𝑢𝑙𝑙 holds with 𝑝𝑗 being the version of
𝑝 valid at i [13].

When checking if a free call is valid, we need to make sure that the given pointer has not
been freed already (this is an error referred to as double free). The same property should
be verified when dereferencing a pointer. To facilitate this type of analysis, 2LS introduces
a new special variable, its full name is __𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑, for simplicity, we will
refer to it as 𝑑𝑒𝑎𝑙𝑙. This variable is initialised to null and it is then non-deterministically
set to the address of the object to be freed in a free call. In particular, a call of the form
𝑓𝑟𝑒𝑒(𝑝) at a program location 𝑖 is replaced by a formula 𝑑𝑒𝑎𝑙𝑙 = 𝑔𝑑𝑒𝑎𝑙𝑙𝑖 ? 𝑝𝑗 : 𝑑𝑒𝑎𝑙𝑙𝑘 with
𝑝𝑗 and 𝑑𝑒𝑎𝑙𝑙𝑘 being versions of 𝑝 and 𝑑𝑒𝑎𝑙𝑙 valid at 𝑖, respectively, and 𝑔𝑑𝑒𝑎𝑙𝑙𝑖 being a free
Boolean variable.

Then, similarly to null dereference analysis, 2LS must verify that in every location
containing a pointer dereference *𝑝 or a 𝑓𝑟𝑒𝑒(𝑝) call, the assertion 𝑝𝑗 ̸= 𝑑𝑒𝑎𝑙𝑙𝑘 holds. This
approach is sound thanks to 𝑑𝑒𝑎𝑙𝑙 being an over-approximation of all the freed addresses.
However, it is also often imprecise; for an abstract object representing a set of concrete
objects, freeing one concrete object does not mean that all the objects were freed [13].
Precision of this approach is improved by modifying the way malloc calls are transformed
to the SSA form. At each allocation site, 2LS introduces one more concrete object 𝑎𝑜𝑐𝑜𝑖
which is guaranteed to be allocated only once (this is ensured by checking that no pointer
points to this object). Then, for each malloc and free call, we only allow these special
concrete objects to be assigned to 𝑑𝑒𝑎𝑙𝑙, hence the free safety check is also done only on
the concrete objects, which reduces imprecision.

Absence of memory leaks is verified similarly to the free safety. A new variable,
__𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑒𝑎𝑘, is introduced for this purpose; it is initialised to null.
Inside malloc calls, the variable is non-deterministically set to the result of the given
malloc call. Then, inside free calls, if the value of __𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑒𝑎𝑘 is
equal to the pointer freed in the given free, __𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑒𝑎𝑘 is reset to
null. Finally, 2LS verifies that at the end of the program the assertion __𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_-
𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑒𝑎𝑘 = 𝑛𝑢𝑙𝑙 holds.

2.2 Techniques Used for Verification
There are a lot of approaches in the field of software verification, each with its own advan-
tages and disadvantages. For example, inference of inductive invariants is a sound method
(meaning that if the verification claims that the program is correct with regard to the spec-
ification, it is indeed correct), however, this approach does not scale well to larger systems.
On the other hand, bounded model checking scales significantly better but it cannot prove
correctness of the system and hence can be only used to find errors.

2LS tries to combine multiple approaches into a single algorithm called 𝑘I𝑘I which aims
to mitigate the downsides that each approach would have on its own. This section gives an
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overview of its main components – abstract interpretation, 𝑘-induction and bounded model
checking – and describes how they are all connected.

2.2.1 Representing Programs as Logical Formulae

Since it is difficult to analyse C programs directly, most analysers make use of internal
representations during analysis. 2LS uses logical formulae which can easily be created from
the SSA form described in Section 2.1.2. The main advantage of using logical formulae for
analysis is the possibility of passing the formulae directly to an automatic SMT or SAT
solver while reasoning about the program’s properties.

The state of a program is defined by an interpretation of logical variables corresponding
to the program variables. For a vector of variables 𝑥, a predicate 𝐼𝑛𝑖𝑡(𝑥) describes the initial
set of states. A transition relation of the program is described by a formula 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′).
Based on these two predicates, the set of reachable states can be computed as the least
fixed-point of the transition relation starting from the set of states described by 𝐼𝑛𝑖𝑡(𝑥).
The transition relation in 2LS is encoded using the SSA form. Since the SSA form is
computed from a valid C program without syntactic and semantic errors (this is checked by
the CProver framework) and it is acyclic (as described in Section 2.1.2), the formula derived
from the SSA form is satisfiable (there are no contradictions in a valid source program).
Henceforth, we will consider the transition relation 𝑇𝑟𝑎𝑛𝑠(𝑥,𝑥′) to be satisfiable in the
following sections.

Oftentimes, the goal of verification is to show that the set of reachable states is error-
free. In the following sections, we will use a predicate 𝐸𝑟𝑟(𝑥) in order to describe that the
state 𝑥 (described by the values of program variables) contains an error, e.g., an assertion
does not hold.

2.2.2 Abstract Interpretation

Abstract interpretation is one of the most prominent methods in the area of static analysis.
Instead of focusing on concrete states of a program (which is problematic as the set of all
reachable states may not be computable), abstract interpretation focuses on their abstrac-
tion. This is often sufficient because analyses usually reason only about some properties of
the program. For example, instead of focusing on all possible combinations of all program
variables, we only focus on a variable 𝑥 whose values we want to reason about.

For a concrete domain 𝑃 of program states, abstract interpretation defines the abstract
domain Q where each element corresponds to an element in the concrete domain. We also
define the concretisation (𝛼 : 𝑃 → 𝑄) and abstraction (𝛾 : 𝑄 → 𝑃 ) functions mapping
between these two domains.

An abstract interpretation 𝐼 of a program is then a tuple [5]:

𝐼 = (𝑄,⊔,⊑,⊤,⊥, 𝒯 #) (2.4)

where

• 𝑄 is the abstract domain with its concretisation and abstraction functions,

• ⊤ ∈ 𝑄 is the supremum of Q,

• ⊥ ∈ 𝑄 is the infimum of Q,
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• ⊔: 𝑄 × 𝑄 → 𝑄 is the join operator combining multiple abstract states into one,
(𝑄,⊔,⊤) is a complete semilattice,

• ⊑⊆ 𝑄×𝑄 is an ordering on (𝑄,⊔,⊤) defined as 𝑥 ⊑ 𝑦 ⇔ 𝑥 ⊔ 𝑦 = 𝑦,

• 𝒯 #: 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛×𝑄 → 𝑄 defines the interpretation of abstract transformers.

The framework of abstract interpretation approximates the set of reachable states by
computing the least fixpoint of 𝒯 # in the abstract domain. In order to ensure soundness of
the analysis, there must be a Galois connection on (𝑃,≤, 𝑄,⊑) meaning that ∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑄:

𝑝 ≤ 𝛾(𝑞) ⇔ 𝛼(𝑝) ⊑ 𝑞. (2.5)

The computed abstract value is an over-approximation of the set of all reachable concrete
program states, hence this approach suffers from possible false positives (i.e., a situation
when a property does not hold in the abstract interpretation framework but holds for the
set of reachable program states).

2.2.3 Bounded Model Checking

While abstract interpretation over-approximates the semantics of a program, another tech-
nique, Bounded Model Checking (BMC), under-approximates the program in order to find
violation of properties and the corresponding counterexamples [1]. BMC is based on check-
ing program paths bounded by a chosen integer 𝑘 ∈ N and unwinding the transition relation
of the program. BMC introduces a predicate 𝑇 [𝑘] describing 𝑘 steps of the transition rela-
tion:

𝑇 [𝑘] =

𝑘−1⋀︁
𝑖=0

𝑇𝑟𝑎𝑛𝑠(𝑥𝑖,𝑥𝑖+1) (2.6)

BMC also defines a predicate 𝑃 [𝑘] describing 𝑘 states being error-free:

𝑃 [𝑘] =
𝑘−1⋀︁
𝑖=0

¬𝐸𝑟𝑟(𝑥𝑖) (2.7)

Using 𝑇 [𝑘] and 𝑃 [𝑘] as defined above and 𝐼𝑛𝑖𝑡(𝑥) describing the set of initial states,
finding property violations up until an unwinding limit 𝑘 using BMC can be formalised as
checking the satisfiability of the formula:

∃𝑥0 . . .𝑥𝑘.𝐼𝑛𝑖𝑡(𝑥0) ∧ 𝑇 [𝑘] ∧ ¬𝑃 [𝑘 + 1] (2.8)

This approach, however, suffers from false negatives depending on the bound 𝑘. It is
a situation where a property holds for the 𝑘th unwinding but it does not hold for some
𝑙th unwinding where 𝑙 > 𝑘. In order to avoid the choice of a fixed bound 𝑘, incremental
bounded model checking (IBMC) can be used [2]. It repeatedly uses BMC starting from
𝑘 = 0 and increasing linearly. In each step, it assumes that the previous steps were error-
free, simplifying the test for property violation:

∃𝑥0 . . .𝑥𝑘.𝐼𝑛𝑖𝑡(𝑥0) ∧ 𝑇 [𝑘] ∧ 𝑃 [𝑘] ∧ 𝐸𝑟𝑟(𝑥𝑘) (2.9)
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2.2.4 𝑘-Induction

The 𝑘-induction technique can be seen as an extension of IBMC that can find property
violations as well as prove true properties [2]. The concept of IBMC is extended with the
concept of a 𝑘-inductive invariant which is a predicate 𝐾𝐼𝑛𝑣 having the following property:

∀𝑥0 . . .𝑥𝑘.𝐼[𝑘] ∧ 𝑇 [𝑘] =⇒ 𝐾𝐼𝑛𝑣(𝑥𝑘) (2.10)

where 𝐼[𝑘] represents the fact that 𝐾𝐼𝑛𝑣 must hold for all previous states:

𝐼[𝑘] =
𝑘−1⋀︁
𝑖=0

𝐾𝐼𝑛𝑣(𝑥𝑖). (2.11)

A system is safe if and only if there is a 𝑘-inductive invariant 𝐾𝐼𝑛𝑣 which satisfies [2]:

∀𝑥0 . . .𝑥𝑘.(𝐼𝑛𝑖𝑡(𝑥0) ∧ 𝑇 [𝑘] ⇒ 𝐼[𝑘])∧
(𝐼[𝑘] ∧ 𝑇 [𝑘] ⇒ 𝐾𝐼𝑛𝑣(𝑥𝑘))∧
(𝐾𝐼𝑛𝑣(𝑥𝑘) ⇒ ¬𝐸𝑟𝑟(𝑥𝑘))

(2.12)

2.2.5 Template-based Verification

One of the main problem of 𝑘-induction is that the inference of 𝑘-inductive invariants is
costly. Moreover, directly using a solver to find 𝐾𝐼𝑛𝑣 would require handling second-
order logic. Reasonably efficient solvers of such kind are currently not available, hence 2LS
reduces the problem to first-order logic by iteratively using a first-order solver. This is done
by restricting the form of the inductive invariant 𝐾𝐼𝑛𝑣 to the form 𝒯 (𝑥, 𝛿) where 𝒯 is a
fixed expression, a so-called template, over program variables 𝑥 and template parameters
𝛿. Choosing a fixed template corresponds to the choice of an abstract domain in abstract
interpretation – it only captures some properties of the program. By using a template,
invariant inference is reduced to a first-order search for template parameters 𝛿 [2]:

∃𝛿.∀𝑥0 . . .𝑥𝑘.(𝐼𝑛𝑖𝑡(𝑥0) ∧ 𝑇 [𝑘] =⇒ 𝒯 [𝑘](𝛿))∧
(𝒯 [𝑘](𝛿) ∧ 𝑇 [𝑘] =⇒ 𝒯 (𝑥𝑘, 𝛿))

(2.13)

where 𝒯 [𝑘](𝛿) =
𝑘−1⋀︀
𝑖=0

𝒯 (𝑥𝑖, 𝛿). Although the problem is now expressible in first-order logic,

the formula contains quantifier alternation which poses a problem for the current SMT
solvers. 2LS solves this by iteratively checking the negated formula (to turn ∀ into ∃) for
various choices of constants 𝑑 as candidates for the values of the parameters 𝛿. The template
formula 𝒯 (𝑥, 𝑑) is an invariant if Formula 2.14 is unsatisfiable.

∃𝑥0 . . .𝑥𝑘.¬(𝐼𝑛𝑖𝑡(𝑥0) ∧ 𝑇 [𝑘] =⇒ 𝒯 [𝑘](𝑑))∨
¬(𝒯 [𝑘](𝑑) ∧ 𝑇 [𝑘] =⇒ 𝒯 (𝑥𝑘, 𝑑))

(2.14)

The algorithm for invariant inference takes an initial value of 𝑑 = ⊥ and iteratively
solves the second part of the disjunction in Formula 2.14 using an SMT solver:

𝒯 [𝑘](𝑑) ∧ 𝑇 [𝑘] ∧ ¬𝒯 (𝑥𝑘, 𝑑). (2.15)
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If the formula is unsatisfiable, then the formula 𝒯 (𝑥𝑘, 𝑑) is an invariant; otherwise the
model of satisfiability returned by the solver is joint with the previous abstract value 𝑑
using a domain-specific join operator [2].

Guarded Templates Since 2LS uses the SSA form rather than control flow graphs,
templates cannot be used directly. Instead, so-called guarded templates are used. A guard-
ed template is a conjunction of expressions, so-called template rows, where each row 𝑟
follows the form 𝐺𝑟 =⇒ 𝒯𝑟. The formula 𝐺𝑟 is a conjunction of the SSA guards associated
with the definition of variables occurring in 𝒯𝑟. This makes sure that the computed property
is valid only if the variables used inside it are defined.

For instance, a guarded loop invariant of a loop modifying a vector of variables 𝑥𝑙, has
the form:

(𝑔𝑙ℎ ∧ 𝑔𝑙𝑠𝑙ℎ) =⇒ 𝒯 (𝑥𝑙, 𝛿) (2.16)

where 𝑙ℎ is the program location of the loop head of loop 𝑙 and guard 𝑔𝑙ℎ expresses the
reachability of the loop 𝑙 from the beginning of the program. Guard 𝑔𝑙𝑠𝑙ℎ is a free loop-select
variable driving the choice between values of variables coming from before the loop and
from the end of the loop body as described in Section 2.1.2. If 𝑔𝑙ℎ ∧ 𝑔𝑙𝑠𝑙ℎ is equal to true,
the loop has been reached and the loop-back variables are defined hence the loop invariant
defined by the template 𝒯 (𝑥𝑙, 𝛿) constraining the values of variables 𝑥𝑙 can be used.

Following the example given in Figures 2.1 and 2.4, we demonstrate how loop invariants
are calculated for the template polyhedra abstract domain, in particular its special type,
the interval abstract domain. In the example, there is only one loop-back variable, hence
𝑥𝑙 = [𝑥lb10]. The template for interval abstract domain has the form:

𝒯 ([𝑥lb10], (𝑑1, 𝑑2)) ≡ 𝑥lb10 ≥ 𝑑1 ∧ 𝑥lb10 ≤ 𝑑2 (2.17)

where 𝑑1 and 𝑑2 are template parameters which are to be inferred during the analysis. The
template expresses that all reachable values of 𝑥lb10 lie in the interval [𝑑1, 𝑑2]. To simplify
the example, we will only consider 1-inductive invariants which transforms Formula 2.15 to
the form:

𝒯 (𝑥0, 𝛿) ∧ 𝑇𝑟𝑎𝑛𝑠(𝑥0, 𝑥1) ∧ ¬𝒯 (𝑥1, 𝛿). (2.18)

Since the transition relation 𝑇𝑟𝑎𝑛𝑠(𝑥0, 𝑥1) in 2LS is represented using the SSA form de-
scribed in Section 2.1.2 which has been made acyclic, we can assume that it is satisfiable.
Moreover, in every iteration, we only solve the current instances of the invariant. In For-
mula 2.18, there are two instances of the template. The first instance, 𝒯 (𝑥0, 𝛿), describes
the loop invariant for the program state before the execution of the loop. Its guarded form
is:

(𝑔4 ∧ 𝑔ls10) =⇒ 𝒯 ([𝑥lb10], (𝑑1, 𝑑2)). (2.19)

The second instance of the template, 𝒯 (𝑥1, 𝛿), describes the loop invariant after execu-
tion of the loop. For the variable 𝑥, the SSA instance corresponding to its value from the
end of the loop is 𝑥6. Its definition is guarded by guard 𝑔7. Therefore, the guarded form of
the second template instance is:

(𝑔4 ∧ 𝑔7) =⇒ 𝒯 ([𝑥6], (𝑑1, 𝑑2)). (2.20)
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The inference begins with setting the initial value 𝛿 = ⊥ with 𝒯 (𝑥,⊥) ≡ 𝑓𝑎𝑙𝑠𝑒. The
initial formula to solve (described in Formula 2.18) is:

(𝑔4 ∧ 𝑔ls10) =⇒ 𝑓𝑎𝑙𝑠𝑒 ∧ ¬((𝑔4 ∧ 𝑔7) =⇒ 𝑓𝑎𝑙𝑠𝑒). (2.21)

To satisfy the formula, 𝑔4 ∧ 𝑔ls10 must evaluate to 𝑓𝑎𝑙𝑠𝑒. Since 𝑔4 is trivially true,
the only way to find a model of the formula is to set 𝑔ls10 = 𝑓𝑎𝑙𝑠𝑒. This corresponds to
the first iteration of the loop, since the Φ node gets the value of 𝑥 from before the loop
(𝑥phi5 = 𝑥2 = 0). The value of 𝑥 from the end of the loop is 𝑥6 = 1 and it is used to improve
the current invariant such that 𝑑1 = 𝑑2 = 1.

In the second iteration, the newly updated invariant is used and the formula to solve
becomes:

(𝑔4 ∧ 𝑔ls10) =⇒ (𝑥lb10 ≥ 1 ∧ 𝑥lb10 ≤ 1)∧
¬((𝑔4 ∧ 𝑔7) =⇒ (𝑥6 ≥ 1 ∧ 𝑥6 ≤ 1)).

(2.22)

To satisfy this formula, the solver must use 𝑔ls10 = 𝑡𝑟𝑢𝑒, 𝑥lb10 = 1, and hence 𝑥6 = 2. Using
this computed value causes the template to be updated to 𝑑2 = 2; the candidate invariant
after the second iteration is:

𝑥lb10 ≥ 1 ∧ 𝑥lb10 ≤ 2. (2.23)

Similarly, the template would be enhanced in the subsequent iterations until the formula
is unsatisfiable. This occurs once the template has the form (including the guards):

(𝑔4 ∧ 𝑔ls10) =⇒ 𝑥lb10 ≥ 1 ∧ 𝑥lb10 ≤ 10 (2.24)

meaning that the equation to solve by the solver is:

(𝑔4 ∧ 𝑔ls10) =⇒ (𝑥lb10 ≥ 1 ∧ 𝑥lb10 ≤ 10)∧
¬((𝑔4 ∧ 𝑔7) =⇒ (𝑥6 ≥ 1 ∧ 𝑥6 ≤ 10)).

(2.25)

In this case, the guard 𝑔7 = ¬(𝑥phi5 ≥ 10) ∧ 𝑔4 is 𝑓𝑎𝑙𝑠𝑒 and 𝑥6 ≥ 1 ∧ 𝑥6 ≤ 10 is false too,
hence the second part of the conjunction is false and the whole formula is unsatisfiable. The
computed invariant can be then used to prove that the assertions in the program always
hold.

2.2.6 𝑘I𝑘I Algorithm

In the previous sections, we gave an overview of common verification algorithms, each with
its own advantages and main areas of use. Generally, these can be summarised as follows:

Abstract Interpretation is useful for proving true properties of a program by over-
approximating its semantics in an abstract domain. However, it suffers from false
positives.

Bounded Model Checking may be used for finding property violations along with coun-
terexamples. It is not suitable for proving true properties due to possible false nega-
tives caused by the choice of bound 𝑘.
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𝑘-induction can prove true properties as well as find violations and counterexamples.
However, computing 𝑘-inductive invariants is rather expensive.

2LS uses a combination of these approaches called the 𝑘I𝑘I algorithm. Its main concept
can be seen in Figure 2.5. Initially, it sets 𝑘 = 1 and checks whether the initial program
states contain errors. Afterwards, a 𝑘-inductive invariant is computed in an abstract domain
and assumptions that the checked property holds for all previous states are added. The
computed invariant is checked whether it is sufficient to prove safety [2]. If a property
was violated, BMC is used to check whether the violation is reachable. In case it is not
reachable, the counterexample may be spurious and the process is repeated with a higher
𝑘. This algorithm may produce an inconclusive result if a maximal 𝑘 is reached and a
counterexample or a sufficient invariant have not been found up until this point.

IBMC 𝑘-induction Abstract
Interpretation

Test ∃𝑥0�

Init(𝑥0) ∧ Err(𝑥0)

Find KInv � ∀𝑥0, . . . ,𝑥𝑘�

(Init(𝑥0) ∧ P [𝑘] ∧ T [𝑘] ⇒ K [𝑘])∧
(P [𝑘] ∧K [𝑘] ∧ T [𝑘] ⇒ KInv(𝑥𝑘))

Test ∃𝑥0, . . . ,𝑥𝑘�

P [𝑘] ∧K [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

Test ∃𝑥0, . . . ,𝑥𝑘 � Init(𝑥0)∧
P [𝑘] ∧K [𝑘 + 1] ∧ T [𝑘] ∧ Err(𝑥𝑘)

𝑘 ++

C/E Safe

UNSAT

SAT

UNSAT

UNSATSAT

SAT

Figure 2.5: The 𝑘I𝑘I algorithm [2]
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Chapter 3

Loop Unwinding in Software
Verification

Loop unwinding (also referred to as loop unrolling) is a technique commonly utilised in
compilers (as an optimisation technique) [16] and in software verification. The concept
of this technique is simple; a loop is prepended with several copies of the loop body. In
compilers, this may reduce the overhead of a loop (by reducing the number of jumps) and
also enable more complex optimisations to take place [16].

In software verification, the main use-cases for loop unwinding are Bounded Model
Checking and 𝑘-induction which unroll the transition relation of the program as described
in Section 2.2.3 and Section 2.2.4. In order to unroll the transition relation and check for
violation of properties in programs with loops, the loops must first be unwound so that
the BMC framework can analyse the program. Another common task where unwinding
may be used is non-termination analysis [12]. One of the approaches to non-termination
analysis incrementally unwinds the given loop and tries to find two unwindings in which
the program states (defined by interpretation of program variables) are identical [14].

Many state-of-the-art analysers utilise loop unwinding of some sort, e.g., CBMC [18][9],
ESBMC [6][15], Dartagnan [10], or Ultimate Automizer [7]. The verification approach in
2LS is, however, vastly different from these tools due to using an SSA form (and a special
dynamic object representation) with an SMT solver, therefore, loop unwinding requires
a special approach. 2LS already features a specific method for loop unwinding, however,
it suffers from many problems. The most important one is that it cannot be used for
programs working with dynamically allocated memory, which greatly limits its applications.
Therefore, in this work, we propose a way to improve the loop unwinding in 2LS. To this
end, we use the unwinding method from the CProver framework, which underlies 2LS.

In this chapter, we describe the current state of this method in CBMC – the C Bounded
Model Checker from the CProver framework – and also give an overview of the current
unwinding method in the 2LS framework. We describe its special properties and concentrate
on its defects.

3.1 Loop Unwinding in CBMC
Since CBMC is a part of the CProver framework, it makes use of the GOTO program
intermediate representation described in Section 2.1.1. For verification purposes, unwinding
is performed in the usual manner based on backwards GOTO instructions (which are in most
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cases a result of transformation of while and for loops) with one caveat. The loop body
is copied 𝑘 times with each copy being guarded by an if statement containing a condition
equivalent to the condition of the loop that is being unwound. The if statements are
necessary to cover cases where 𝑘 is larger than the actual number of iterations required [4].
To ensure that the chosen bound 𝑘 is sufficient, a new assertion called unwinding assertion
is introduced after the copies of the loop body containing the negation of the former loop
condition. If the bound 𝑘 does not completely unwind the loop, the BMC framework will
find a counterexample for the unwinding assertion and increase the unwinding bound, or
report to the user that the specified bound is not sufficient. The concept of unwinding
assertions is demonstrated in Figure 3.1 on an example of a simple loop which is unwound
two times and an assertion is added after the two copies of the loop body.

1 while (x < 10)
2 x++;

1 if (x < 10)
2 x++;
3 if (x < 10)
4 x++;
5 assert(!(x < 10));

Figure 3.1: Unwinding of a simple loop in C with an unwinding assertion

The unwinding strategy used in CBMC revolves around fully unwinding a single loop us-
ing an incremental approach before proceeding to the next loop [18]. For use-cases different
from BMC (e.g., program pre-processing), the unwinding assertion may not be necessary,
hence the CProver framework also provides 2 alternative modes. The first mode is referred
to as partial unwinding; it is identical to the behaviour described above, however the un-
winding assertion is not introduced. The second mode is referred to as the continue mode:
the original loop is kept intact and new copies of the loop body are prepended.

3.2 Loop Unwinding in 2LS
In the current implementation of 2LS, loops are unwound in the SSA form. Unlike in
CBMC, 2LS unwinds all loops up to the given bound 𝑘 rather than unwinding a single
loop until it is fully unwound. Unwinding is performed in the usual manner; the loop body
is simply copied [2]. The unwound SSA nodes are suffixed with a number based on the
current unwinding (suffix 0 denoting the original loop) to distinguish between nodes in
various unwindings.

The topmost loop head multiplexer is kept and its loop-back variable is constrained
with the bottommost unwinding. The variables inside a new unwinding must be connected
to the existing loop or unwindings using new SSA equalities. After the loop, values of
variables from potential loop exits must be merged since the loop may exit at various
points. This is done using a choice based on the satisfiability of guard conditions of the
individual unwindings. An unwinding of a simple loop in SSA can be seen in Figure 3.2. We
can observe that the original loop along with the newly unwound loop body now form the
new loop which is represented using unconstrained loop-back and loop-select variables as
discussed in Section 2.1.2. The new unwinding is connected to the loop body using variable
equalities and the exit value of the loop is merged from the potential exit points based on
the guard and the condition of the unwound body.
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before the loop (𝑥0)

loop head multiplexer
𝑥phi1 %1 = 𝑔ls2 %0 ? 𝑥lb2 %0 : 𝑥0

loop body 1
𝑥2%1 = . . .

connect unwinding
𝑥phi1 %0 = 𝑥2%1

loop body 0
𝑥2%0 = . . .

end of loop body (𝑥lb2 %0)

exit point merge
𝑥phi1 = 𝑔1%1 ∧ 𝑐1%1 ? 𝑥phi1 %1 : 𝑥phi1 %0

after the loop

𝑥lb2 %0

Figure 3.2: Unwinding of a simple loop in SSA in 2LS

The way unwinding is performed is incremental, in the sense that the construction of
the formula for the solver is monotonic [2]. This allows 2LS to make use of incremental
SAT solving which increases its efficiency when unwinding is being performed.

3.2.1 Assertion Handling in 2LS Unwinder

When operating in the BMC or the 𝑘-induction modes, 2LS also manipulates the assertions
present in the program to improve precision of its analysis. These modifications are done
starting from the second unwinding, meaning that the innermost unwinding is always kept
untouched.

Firstly, assertions in the unwindings are converted to so-called constraints. Unlike asser-
tions, constraints are pushed to the SAT solver (i.e., it is assumed that they hold) instead
of being checked for satisfiability. This behaviour corresponds to the IBMC assumption
that the previous states have been checked and are proven to be error-free as described
in Section 2.2.3. Figure 3.3 demonstrates a program where this modification facilitates
verification. In the second iteration of the loop, the values of variables 𝑥, 𝑦, and 𝑧 return
to their initial state. Henceforth, by introducing a constraint after the second unwinding,
2LS can now verify that the assertion in the original loop body holds based on the equality
of variables in the loop and in the second unwinding.

Secondly, if the analysed program contains an assertion after a loop, so-called hoisted
constraints are newly introduced to the unwinding when 2LS is operating in the 𝑘-induction
mode. These logically connect the condition under which a loop is exited with an assertion
after the loop. For each assertion 𝑎 present after the given loop, a constraint in the form
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1 void main() {
2 int x = 1, y = -1, z = 1;
3

4 while (1) {
5 z = y;
6 y = x;
7 x = -x;
8 assert(x == z);
9 }

10 }

Figure 3.3: A simple non-terminating program where constraints facilitate verification

𝑐𝑜𝑛𝑑 =⇒ 𝑎 is introduced where 𝑐𝑜𝑛𝑑 is a condition under which the given assertion is
reachable – a disjunction of exit conditions from all unwindings in the preceding loop. For
some programs, this enables proving true properties using 𝑘-induction, e.g., when there is
an assert(0) call after a loop which does not terminate. An example of such a program
is given in Figure 3.4. Starting from the second unwinding, 2LS adds a constraint in the
form 𝑔4%𝑛 ∧ 𝑐4%𝑛 =⇒ ¬𝑔9 with 𝑛 being the current unwinding number, 𝑐4 the condition
under which the loop exits, 𝑔4 the guard of the loop, and ¬𝑔9 being the assertion condition.
By assuming that such a constraint holds, if the SAT solver returns a model where the
condition is false (and hence the loop never ends), 2LS can verify that the assertion after
the loop holds thanks to the hoisted constraint.

1 void main() {
2 int x = 1, y = -1, z = 1;
3

4 while (x != y) {
5 z = y;
6 y = x;
7 x = -x;
8 }
9 assert(0);

10 }

Figure 3.4: A simple non-terminating program where hoisted constraints facilitate verifica-
tion

3.2.2 Deficiencies of the Approach

The implemented approach is very efficient, however it has some problems as was outlined in
Section 2.1.3. One of the minor downsides is that the unwound SSA is not easily readable
by humans since the output order does not match the program control flow. What is
much more problematic is the fact that the simple copying and renaming approach does
not support programs working with dynamic memory. Figure 3.5 shows a simple example
C program where the current implementation fails while using 𝑘-induction (2LS claims that
the program is correct making the analysis unsound). A linked list of an unknown length
is constructed, all nodes contain the value 1 except for the third node which contains the
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value 2. The second loop then expects all the nodes to contain value 1, which does not hold
in all executions.

1 int main() {
2 List t;
3 List p = 0;
4 int i = 0;
5 while (__VERIFIER_nondet_int()) {
6 t = (List) malloc(sizeof(struct node));
7 t->h = i == 2 ? 2 : 1;
8 t->n = p;
9 p = t;

10 i++;
11 }
12 while (p != 0) {
13 assert(p->h == 1);
14 p = p->n;
15 }
16 }

Figure 3.5: A simple program using dynamic memory with an error

The problem with the current implementation is that abstract dynamic objects of the
program are introduced once, before the beginning of analysis. During the construction
of SSA, the static points-to analysis is computed based on the dynamic object instances.
Then, pointer operations are encoded based on this analysis as described in Section 2.1.3.
However, when unwinding the loops, the call to function malloc is copied, which should
result in new dynamic objects being introduced. This addition should also invalidate the
previously calculated points-to analysis since the pointer inside the loop can now also point
to the new dynamic objects created in the unwinding. Henceforth, it is also necessary to
update the memory reads and writes in the SSA form. This is not achievable by simply
copying the relevant parts of the SSA form since dynamic objects are computed only once
before the analysis and inserted into the GOTO program representation.
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Chapter 4

Design of the New Unwinding
Solution

To overcome the issues described in the previous chapter, we propose an alternative solution
to unwinding for 2LS. By unwinding in the GOTO program representation rather than in
the SSA form, we can update the set of dynamic objects in the program as well as compute
a new points-to analysis based on the newly introduced dynamic objects. Section 4.1 gives
an overall overview of the proposed approach, the individual components of our solution
are then expanded on in further sections.

4.1 The Main Unwinding Loop
Unwinding in 2LS is done on demand during analysis, either before abstract interpretation
(if the user requests it) or incrementally as a part of the BMC and the 𝑘-induction modes.
When unwinding is requested, we first need to unwind all loops in the GOTO program.
Since one of the important features of 2LS is inference of loop invariants, we need to make
sure that loops exist even after the unwinding is done. Hence, we use the continue mode
of CProver’s GOTO unwinder. Afterwards, further modifications to the GOTO program
are required to make the program suitable for analysis by 2LS. These include correctly
introducing new dynamic objects and updating checks related to correctness of memory
operations based on the new dynamic objects. We also need to correctly connect the
unwound loops; in order for some analyses to work correctly, the original loop and the
newly unwound body must be part of a larger loop as was shown in Figure 3.2.

We must consider that unwinding may be done multiple times during analysis (e.g., as a
part of 𝑘-induction). By modifying the loop connections to form the large loop covering all
the unwindings, we remove information about the original loops. If we were to unwind such
program multiple times, we would copy not just the original loop but also the previously
unwound loop body along with it, which is not a desired behaviour. Therefore, we need to
keep track of the original loop connections in the program and reset the loop connections to
their original state before every unwinding so that only a single body is copied. Figure 4.1
gives an example of this process; first a loop is unwound and the target of its backwards
GOTO is modified to form the full loop including the unwinding (Figure 4.1b). Then, before
unwinding the GOTO program for the second time, the loop connection is reset (Figure 4.1c)
so that the instructions to be unwound can be detected correctly.
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1: IF x >= 10 THEN GOTO 2
x = x + 1
GOTO 1

2: ...

(a) Original loop

1: IF x >= 10 THEN GOTO 2
x = x + 1
IF x >= 10 THEN GOTO 2
x = x + 1
GOTO 1

2: ...

(b) Unwound loop
IF x >= 10 THEN GOTO 2
x = x + 1

1: IF x >= 10 THEN GOTO 2
x = x + 1
GOTO 1

2: ...

(c) Reset loop connection before the
next unwinding

Figure 4.1: Connecting loops inside GOTO program

Once all these modifications to the GOTO program are done, we can compute the new
SSA representation. During this process, a new points-to analysis is computed, henceforth
the dynamic objects in SSA reflect the new state of dynamic objects inside the GOTO
program. At last, several modifications to the computed SSA have to be performed, e.g.,
constraints and hoisted constraints are introduced as described in Section 3.2.1. Figure 4.2
gives an overview of all the steps required during unwinding.

Unwind GOTO Update dynamic objects Connect loops Compute SSA

Update SSA

Program Verification

Figure 4.2: The main unwinding loop

4.2 Unwinding of Dynamic Objects
As previously described, dynamic objects are initialised before creating the SSA and their
names are set based on the number of the GOTO location where they are created. However,
the GOTO unwinder provided by CProver cannot correctly handle unwinding of these
objects since they are specific to 2LS. After unwinding, we need to rename the objects
based on the new location numbers. Creating of a dynamic object can be detected based
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on the #malloc_result flag which 2LS sets on the assignment expression containing a
malloc call.

The expression tree of such an assignment must be traversed and the old dynamic objects
are renamed in all subtrees of the AST according to the freshly renamed dynamic objects.
While updating the assignment, it is also necessary to update the condition under which the
concrete dynamic object (used for verifying free safety, see Section 2.1.3) is allocated since
the set of dynamic objects has changed. The recursive AST traversal renaming dynamic
objects can be seen in Algorithm 1. The location in dynamic objects is updated based on
the new location numbers and concrete object selection condition is updated based on the
new dynamic objects.

Algorithm 1: Renaming dynamic objects
1 Function renameDynamicObjects(𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟):

Input: 𝑙𝑜𝑐: GOTO location of the malloc call
𝑒𝑥𝑝𝑟: AST subtree being processed

2 if 𝑒𝑥𝑝𝑟 is dynamic object then // Update existing object
3 update location number in 𝑒𝑥𝑝𝑟 to 𝑙𝑜𝑐
4 else if 𝑒𝑥𝑝𝑟 is concrete object selection then
5 re-compute selection condition in 𝑒𝑥𝑝𝑟
6 end
7 foreach 𝑜𝑝 ∈ operands(𝑒𝑥𝑝𝑟) do
8 renameDynamicObjects(𝑙𝑜𝑐, 𝑜𝑝)
9 end

4.3 Unwinding of Memory Leak Checks
Memory leak checks inside 2LS are currently not implemented strictly as was described
in Section 2.1.3. Due to how abstract objects are handled, the variable keeping track
of leaked pointers is not updated non-deterministically but rather is always set to the
resulting pointer inside malloc calls. This introduces unsoundness of memory leak checks
when multiple allocation sites are present (e.g., when a loop containing malloc has been
unwound). Henceforth, additional adjustments of the unwound GOTO program are needed.

Rather than using a single variable for the entire program scope, we introduce a new
variable for tracking memory leaks for each allocation site. In particular, for a location
𝑖 containing a malloc call, we introduce the variable __𝐶𝑃𝑅𝑂𝑉 𝐸𝑅_𝑚𝑒𝑚𝑜𝑟𝑦_𝑙𝑒𝑎𝑘$𝑖.
Then, let 𝑀𝐿 be the set of all such variables. For each 𝑣 ∈ 𝑀𝐿, we insert the GOTO
code depicted in Figure 4.3 right after each free call. This is done at the beginning of the
analysis as well as after each unwinding.

IF v != ptr THEN GOTO N
v = null

N: ...

Figure 4.3: GOTO code to be inserted after each free call for a variable 𝑣 and a freed
pointer 𝑝𝑡𝑟
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Finally, at the beginning of the program, we initialise all variables from 𝑀𝐿 to null
and then at the end of the program, we check if the assertion⋀︁

𝑣∈𝑀𝐿

𝑣 = 𝑛𝑢𝑙𝑙 (4.1)

holds. This approach allows us to soundly track memory leaks and moreover, we can also
provide information about the origin of the possible memory leak, i.e., an allocation site
where the object was allocated, which is something that has not been possible in 2LS before.

4.4 Unwinding for 𝑘-induction and BMC
As discussed in Section 3.2, support for 𝑘-induction and BMC inside 2LS requires some extra
modifications during unwinding. Firstly, all the unwound loop bodies must be connected
into a single loop. Secondly, assertions in the SSA form need to be updated.

4.4.1 Connecting Unwound Loops

Connecting loop bodies into a single loop can be done by post-processing the unwound
GOTO program after updating the dynamic objects. In order to be able to perform the
loop modification, we need to detect the topmost unwinding and then update the target
of the corresponding backwards GOTO instruction to the beginning of the first unwinding.
Hence, we need to keep track of what has been unwound. This can be achieved using
CProver’s capabilities to set arbitrary flags onto expressions. After unwinding a single
loop, CProver provides GOTO program pointers which allow distinguishing between the
newly added unwindings. With this information, we can set an integer flag on the first
instruction of each unwinding describing which unwinding starts on the given instruction.
This integer flag will be further referred to as the unwind number.

Then, we can utilise this information to correctly reconnect the loop connections to
facilitate 𝑘-induction and BMC while backing up the original loop connections. While
iterating through a GOTO program, the topmost unwinding can be detected based on
the unwind number flag being equal to the current unwinding. In order to support nested
loops, we need to keep track of the topmost unwindings in a stack; upon finding a backwards
GOTO, we change its target to the instruction kept on top of the stack and then pop it
from the stack. As explained in the overall unwinding loop design (see Section 4.1), we
also need to be able to reset the loop connections to their original states in order to be
able to perform unwinding of only a single loop body. For this purpose, we keep track
of the original GOTO targets in a map and then reset the GOTO targets before unwinding
the next time. Algorithm 2 describes how the loops are connected after unwinding the
GOTO program. We keep track of topmost unwindings and upon finding a backward GOTO
instruction, we modify its target to the latest encountered topmost unwinding and store
the original connection.

4.4.2 Updating Assertions

Once a new SSA form has been computed based on the unwound GOTO program, we need
to update its assertions as described in Section 3.2.1 in order to improve the precision of
the analysis. We can iterate the computed SSA and if the unwind number is higher than
2, we transform assertions into constraints and add hoisted constraints. However, these
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Algorithm 2: Updating connection of loops
Input: 𝑢: The current number of unwindings

𝑓 : The unwound GOTO function
Result: Backup of the original connections

1 𝑆 = makeStack()
2 foreach 𝑖𝑛𝑠𝑡 ∈ 𝑓 do
3 if unwind number of 𝑖𝑛𝑠𝑡 = 𝑢 then
4 𝑆.𝑝𝑢𝑠ℎ(𝑖𝑛𝑠𝑡)
5 end
6 if 𝑖𝑛𝑠𝑡 is backwards GOTO then
7 back up the target of 𝑖𝑛𝑠𝑡
8 𝑡 = 𝑆.𝑝𝑜𝑝()
9 set target of 𝑖𝑛𝑠𝑡 to 𝑡

10 end
11 end

transformations cannot be done when dynamic memory is used. This is caused by the fact
that we introduce new dynamic objects to the program, and therefore we cannot assume
(and add a constraint) that the assertion holds in the previous unwindings because, unlike
with simple arithmetic without heap, we have not actually proven the previous unwinding
to be error-free due to how dynamic objects are represented in 2LS.

4.5 Incremental Unwinding Design
While the approach described above is sound and allows correctly analysing programs with
dynamic memory using 𝑘-induction, it does not scale as well as the original unwinding
implementation. This is mainly because the SSA form must be freshly recomputed after
each unwinding and hence incremental SAT solving cannot be used. As a part of this work,
we propose a high-level design of an approach which uses our new unwinding method but
makes use of incremental SAT solving as much as possible.

Suffixing SSA variables The overall approach to unwinding remains similar; we still
need to unwind the GOTO program, rename dynamic objects, and then update the SSA.
However, to make use of incremental SAT solving, we need to reuse as many parts of the SSA
between unwindings as possible. That way, the SAT solver does not need to re-evaluate
these parts and hence runs much faster. Hence, rather than recomputing the SSA from
scratch after GOTO modifications, we only add new SSA nodes based on the unwound loop
bodies. To distinguish between unwindings, a similar approach to the old SSA unwinding
can be used – suffixing the SSA variables with the unwinding number. The semantics of
this suffix must, however, slightly change. Previously, the loop body was copied, suffixed
with the current unwinding number, and then connected as the outermost unwinding. On
the other hand, when unwinding a loop in a GOTO program, the new unwound bodies
are above the loop (the innermost unwinding). This means that previously going from the
start of the program, unwindings were suffixed in descending order, whereas with the new
approach, they will be in ascending order.
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Modifications of the SSA The order of unwinding indices also influences further modi-
fications of the SSA. Previously, 2LS modified assertions as described in Section 3.2.1 in the
newly created loop bodies. However, with unwindings being created directly above the loop,
we need to modify the previously created unwinding rather than the new one as constraints
are not introduced in the innermost unwinding. For example, after the second unwinding
during 𝑘-induction, we need to modify assertions in the previously created unwinding (the
first unwinding). On the other hand, this simplifies forming of the whole loop enclosing
all the unwindings, as it is sufficient to create the main Φ node once, when unwinding for
the first time. Afterwards, the new unwindings need to be only connected to the previous
unwinding and to the original loop body by using variable equalities and new merge exit
conditions need to be introduced for this branch. To simplify these modifications and also
operations with the unwound SSA (e.g., non-termination analysis), we propose introducing
a map which maps an unwinding number to the beginning and the end of the SSA section
containing the given unwinding.

Handling of dynamic objects In order to correctly support operations with dynamic
objects, points-to analysis needs to be recomputed once the objects in GOTO programs
are updated. However, by modifying the points-to analysis, SSA equalities representing
operations with dynamic memory become invalid. Henceforth, we need to keep track of
such nodes and calculate them again based on the newly computed points-to analysis. The
previous equalities representing operations with dynamic memory need to be removed from
the solver and the new equalities must be introduced. The incremental solver used in 2LS
operates as a stack of contexts with each context containing logical formulae. To facilitate
the changes to dynamic objects, we propose keeping all formulae of the SSA related to
dynamic memory in a special context at the top of the context stack and popping it from
the stack after each unwinding. This partially defeats the purpose of incremental SAT
solving, however due to the memory model of 2LS, combination of incremental SAT solving
and dynamic objects is not possible when unwinding is required.
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Chapter 5

Implementation

The solution proposed in Chapter 4 has been implemented in 2LS without the usage of
incremental SAT solving described in Section 4.5. At the time of writing, a pull request
introducing the changes to unwinding is undergoing code review on the upstream repository
of 2LS on GitHub1. In this chapter, we give a brief overview of some of the more significant
implementation details. As a part of this work, we have also updated the version of the
underlying CProver framework used in 2LS, this process is described in Section 5.1.

5.1 Update of CProver Framework in 2LS
As mentioned above, the CProver framework plays a crucial role in 2LS; it provides parsing
of C programs to GOTO programs and many more useful interfaces (e.g., an abstract
interpretation framework) which 2LS utilises for verification. However, previously 2LS
used an old release of the CProver framework that most importantly contained multiple
bugs. At the time of beginning the update process, 2LS employed CProver’s 5.6 release,
while the latest release was 5.37. These releases were more than 4 years apart and the range
of releases encapsulated more than 15,000 commits.

Using an old version of a framework introduces various problems in the development
process, e.g., outdated documentation, missing support from the upstream development
team or missing features which have been added in a later version (and are listed in the
current documentation of the framework but cannot be used in the code base utilising the
library). The main motivation for the update in the context of this work was to get access
to the latest GOTO unwinding implementation from the CProver framework available.

The update process to the latest CProver framework posed several problems. Firstly, as
already discussed, the number of changes to the CProver framework was large. Moreover,
changes to the interface (e.g., of classes) were not done in respect to semantic versioning [17]
and oftentimes they were done in a minor release. Some of the changes made 2LS uncompi-
lable, sometimes even whole classes which 2LS relied on were removed from the framework,
making it necessary to find a substitute. Furthermore, some changes were purely semantic,
meaning that 2LS would compile but would not behave as with the previous version. Fixing
such errors turned out to be the most difficult aspect of the whole process.

Secondly, 2LS uses its own fork of the CProver framework. This fork contains extra
commits which can be classified into 3 categories:

1https://github.com/diffblue/2ls/pull/161
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• Back-ported bug fixes from the main repository of CProver which were implemented
in later releases.

• 2LS-specific feature implementations, such as memory leak instrumentation options.

• Fixes related to International Competition on Software Verification (SV-COMP) and
its witness format which has been changing throughout the years. Since 2LS uses
CProver for creating witnesses, it was necessary to adjust the implementation.

Lastly, the whole process is very prone to error as there are a lot of changes that need
to be done. Hence, it is necessary to carefully review the code changes and make it easy
to review them. The commit history that will then be merged should also be as clean as
possible. These problems make it impossible to update the version to the latest one in a
single pull request as there would be too many changes (even semantic) to make 2LS work
correctly and reviewing such a pull request properly would be very difficult.

With respect to all of the above, we came up with the following solution. Instead of
doing one big update, we split the update process into multiple steps, each dealt with only
updating CProver (and 2LS) to the next version, making the number of changes to review
smaller. The goal was to have a correctly working 2LS version after each step of the update
process, which would act as a backup.

Before doing all the upgrades, we first classified the extra CProver commits that 2LS
uses and evaluated whether they are still necessary or if (and when) they were applied in
CProver. The first step of each version update was rebasing our extra commits on top of a
newer CProver version. During this step, the commits that we had classified as unnecessary
or duplicate were removed. This step oftentimes caused a merge conflict which had to be
resolved. Then, we created a pull request against the 2LS-specific CProver fork containing
only the necessary commits.

The second step focused on adjusting 2LS to the new CProver changes. To make
reviewing the changes to 2LS easier, we created a commit for each type of change describing
why that change was necessary. The adjustments were often inspired by how CProver
handled the change in its code base. In a lot of cases, the removed or modified methods were
marked as deprecated and mentioned an alternative which could be used as a replacement.
In other cases, the commit message or the pull request which introduced the change provided
more context of how the adjustment should be done. To check for correct functionality
and semantics, the regression test suite of 2LS was used. After thorough reviews of both
created pull requests, the 2LS changes were squashed into a single commit containing a
list of changes, in order to maintain a clean commit history (where every commit can be
compiled without errors). Both pull requests were merged at the same time along with a
patch version update.

At the time of writing, 2LS has been successfully updated to CProver 5.37 release via
GitHub pull requests2. In total, these pull requests contained approximately 1900 code
additions and 1500 code deletions which highlights the large scope of the required changes.
Below are listed some of the major changes that affected 2LS code base the most:

• Constant propagation module in CProver has undergone changes and in certain re-
leases replaced variables which were not constants. This required turning off constant
propagation in 2LS and re-enabling it in a later release once it was fixed.

2Update to 5.7 (https://github.com/diffblue/2ls/pull/148), 5.8 (https://github.com/diffblue/2ls/pull/149),
5.9 (https://github.com/diffblue/2ls/pull/150), 5.10 and 5.11 (https://github.com/diffblue/2ls/pull/151),
5.12 (https://github.com/diffblue/2ls/pull/152), 5.37 (https://github.com/diffblue/2ls/pull/155)
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• Simplified interface for GOTO program parsing allowed removal of some 2LS code
segments which were duplicated from CProver.

• CProver modified memory assertions for structure dereferencing. Previously, expres-
sion 𝑝 → 𝑛 where 𝑝 is a pointer and 𝑛 is a structure field would result in an assertion
checking the validity of a pointer 𝑝. After the changes, the assertion checks the validity
of the pointer 𝑝 with the correct offset to point to the field 𝑛.

• Multiple import paths have either been changed or completely removed, often being
replaced by the C++ standard library modules.

• Class property_checkert which 2LS checkers inherited from was completely re-
moved. However, its members, such as an enumeration of potential results, were
added to a new module in CProver.

• Abstract interpretation interface has been modified to more closely resemble its the-
oretical foundations as described in Section 2.2.2.

• Expressions now require being explicitly typed in order to access their operands.

• Incremental solver in CProver now offers an interface for adding new contexts and
popping the existing ones, hence this logic could be removed from 2LS.

5.2 Employing GOTO Unwinder in 2LS
The proposed solution has been implemented as an unwinding middle layer inside 2LS so
that all of the necessary transformations described in Chapter 4 can be performed in an
abstract manner; without modifying the existing analysis code.

To be able to keep track of where individual unwindings start (see Section 4.4), we
utilise a simple implementation trick. In order to unwind the GOTO program, we make
use of CProver’s lowest level unwinding interface which unwinds the loop upon passing it
the pointers to the loop head and backwards GOTO. This approach provides us with the
most control over the process. Upon finding a backwards GOTO instruction, we follow its
target to find the loop head. Then, by creating a new instruction pointer and moving it
one instruction backwards, we arrive at the last instruction prior to the loop. Hence, when
we unwind the loop using the goto_unwindt interface, we can now safely start iterating
from the previously saved instruction pointer and find the beginnings of unwindings based
on the list of iterators which CProver returns as iteration_points.

5.2.1 Unwinding Strategy Selection

Since the extension of the unwinder exploiting incremental SAT solving has not been fully
implemented, we can observe a notable performance regression if only the new unwinder is
utilised. The exact numbers can be found in Section 6.2. In order to overcome this issue,
we have introduced a general unwinder abstract class which both the old SSA unwinder
and the new GOTO unwinder inherit from and implement its methods.

Then, we conditionally switch between the two strategies to unwinding based on the
analysed C program. If dynamic memory is present (this is detected based on the presence of
malloc calls) and any form of unwinding is requested, our new solution is used. Otherwise,
the old pure SSA unwinder is utilised for better performance. Such approach is the best
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combination; it is sound when operating with dynamic memory and sound and performant
otherwise.

The unwinder consists of 2 abstract classes. The first one, local_unwindert, contains
logic for unwinding a single function. The second, unwindert, then encapsulates all the local
unwinders and allows access to them based on function names. This relation is depicted
in Figure 5.1 (note that the class diagram is not complete; most implementation details of
the individual classes have been left out).

unwindert

+ init(mode)
+ init_localunwinders()
+ unwind_all(k)
+ get(fname)

ssa_unwindert

- unwinder_map
- ssa_db

goto_unwindert

- unwinder_map
- ssa_db
- goto_model

local_unwindert

+ init(mode)
+ unwind(k)
+ loop_continuation_conditions()
+ unwinder_rename(var, node, pre)

ssa_local_unwindert

- SSA
- loops

goto_local_unwindert

- goto_function
- ssa_db

Figure 5.1: Class diagram of the classes related to unwinding

5.2.2 Non-termination Analysis

The newly implemented GOTO unwinder does not provide support for non-termination
analysis. The current implementation of non-termination analysis in 2LS heavily relies on
suffixes of SSA variables inside unwindings exactly in the form the old solution provided
them. They are, however, not present in the new GOTO unwinder because the SSA is
recomputed from scratch. The analysis would have to be partly reimplemented in order for
this approach to work.

Implementing support for non-termination analysis into the new GOTO unwinder would
be possible, however, it is not strictly necessary due to what types of analysis 2LS currently
supports. Combination of termination or non-termination analysis with dynamic memory
is not supported at all and since we are turning on the new solution only when dynamic
memory is present (as described in Section 5.2.1), for the purposes of non-termination
analysis, using the old solution is always sufficient. However, the possibility of combining
non-termination analysis with dynamic memory operations may be an interesting area of
further research once the solution proposed in Section 4.5 is implemented.
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Chapter 6

Results and Experiments

To evaluate the impact and properties of our unwinding implementation, we have performed
a series of experiments. Firstly, we checked the correctness of our solution using 2LS regres-
sion tests and we have also introduced new tests. This is described in Section 6.1. In order
to evaluate the improvements brought by the implemented solution, we experimented with
the benchmarks from the International Competition on Software Verification (SV-COMP).
The results of these benchmarks are presented in Section 6.2.

6.1 2LS Regression Tests
2LS contains a suite of regression tests covering the currently supported analyses. These
are often simple programs verifying the basic functionality, only some of the tests are more
complex (e.g., those coming from SV-COMP). We used this test suite to verify that our
unwinding solution (without strategy switching) does not break the supported analyses.
This turned out to be the case, with the exception of non-termination which is not supported
as described in Section 5.2.2. However, once strategy switching was turned on, all regression
tests passed.

As the next step, since our solution expanded the capabilities of 2LS, we added new
tests to the regression test suite. Firstly, some tests were marked as known bugs inside 2LS;
these were often related to dynamic memory and unwinding. We updated and relabelled
several such tests since they now work correctly with the new implementation. Secondly,
we introduced new tests in the heap data category. This category features programs whose
verification requires combined analysis of dynamic memory allocation and reasoning about
the data in the allocated structures. Before this work, 2LS was only able to prove true
properties in this category, but it lacked the unwinding method to check for counterexample
reachability. This was made possible with our approach, hence we introduced false versions
(versions containing errors) of the tests present in the category. In addition, the tests in
this category were contributed to SV-COMP by the 2LS team and we plan to do the same
with the new tests.

We also introduced some more arbitrary tests checking 𝑘-induction. Lastly, we added
2 tests for verifying the effect of our changes to memory leak safety; one being a benchmark
from SV-COMP (where a circular doubly linked list of length 3 is non-deterministically
freed and a leak occurs inside one of the 6 possible free orders) and the other being a
simplified version of the program which failed in the previous implementation.
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The results of running the updated regression test suite show that our changes did not
have any negative effects on 2LS and that they improved verifying capabilities of 2LS.

6.2 SV-COMP Benchmarks
One of the most respected collections of benchmarks in the verification community is the
collection from International Competition on Software Verification (SV-COMP). The goal of
SV-COMP is to compare state-of-the-art analysers with regard to their proving capabilities
and performance. The collection consists of multiple benchmark categories which are further
divided into subcategories. Each subcategory then contains individual benchmarks which
consist of a C program and a property to be verified. The most important subcategories for
this work are Heap Safety and Memory Safety since they deal with dynamic objects whose
handling was not correct in the previous implementation of the unwinder.

In SV-COMP, the overall result is expressed using a score that is calculated based on the
number of correct and incorrect verification conclusions. The scoring for each benchmark
is as follows:

• +1 for finding an error inside an incorrect program (correct false).

• +2 for proving a correct program to be error-free (correct true).

• -16 for reporting an error in a correct program (incorrect false).

• -32 for reporting correctness of an incorrect program (incorrect true).

• 0 for an unknown result, including analyser crashes.

We have executed 2LS multiple times on a subset of SV-COMP to analyse the effect of
the CProver update, as well as of the new unwinder (both on its own and with strategy
switching). Our runs included the entire Memory Safety category, a single subcategory
for Termination (as unwinding is important there), Heap Reachability, and 3 more sub-
categories from the Reach Safety category which are more focused on pure performance –
Loops, Floats, and Control Flow. The experiments were run on an Intel Xeon 5000 CPU at
3.5 GHz running Ubuntu 16.04. The runs were limited to 15 GB of memory and 5 minutes
of CPU time to replicate the environment of SV-COMP (which uses a 15-minute timeout)
as closely as possible without the benchmarks running excessively long.

6.2.1 Experimenting with the CProver Update

Table 6.1 gives a comparison of scores between the old 2LS (built on top of CProver 5.6)
and the updated 2LS (built on top of CProver 5.37, without the unwinding modifications)
to show the effect of the framework update. Note that this version has already been used in
SV-COMP 2022 where it showed better results compared to the previous years. However,
the collection of benchmarks may have slightly changed between the years, hence we try to
make a more fair comparison.

We can observe that while some issues in 2LS have been fixed (e.g., inside Reach Safety),
some new were introduced during the update of the CProver framework. The new incorrect
results are mainly in the Memory Safety category which is caused by the fact that it is
the most fragile analysis in 2LS which previously relied a lot on specific GOTO instruction
sequences coming from CProver and in many cases these have changed. However, some of
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Table 6.1: A comparison of 2LS built on top of CProver 5.6 and 2LS built on top of CProver
5.37

Reach Safety Memory Safety Termination
1574 tasks 408 tasks 250 tasks

Before After Before After Before After
Correct results 776 776 111 92 164 164

Correct true 592 603 55 55 116 116
Correct false 184 173 56 37 48 48

Incorrect results 5 2 0 3 0 0
Incorrect true 3 1 0 1 0 0
Incorrect false 2 1 0 2 0 0

Score 1240 1331 166 83 280 280
CPU time per task (s) 104.2 104.2 42.2 47.5 58.4 57.6

these issues can be fixed further down the line if more time is dedicated to their resolution.
Overall, we can see that the CProver update had a neutral effect in terms of performance
in benchmarks, however there is still the added benefit of more convenient development of
2LS.

6.2.2 Comparing the Unwinding Solutions

In our second experiment, we used the same collection of benchmarks in order to check
efficiency of our implemented solution. Table 6.2 compares the performance of the old
unwinding solution with the new unwinding implementation without switching unwinding
strategies.

Table 6.2: A comparison of unwinding with the old SSA unwinder and with the new GOTO
unwinder without strategy switching

Reach Safety Memory Safety Termination
1574 tasks 408 tasks 250 tasks

SSA GOTO SSA GOTO SSA GOTO
Correct results 776 625 92 143 164 116

Correct true 603 432 55 81 116 116
Correct false 173 193 37 62 48 0

Incorrect results 2 0 3 6 0 0
Incorrect true 1 0 1 2 0 0
Incorrect false 1 0 2 4 0 0

Score 1331 1057 83 96 280 232
CPU time per task (s) 104.2 108.0 47.5 47.5 57.6 20.44

We can observe multiple interesting facts from these results. Firstly, we can see that
while non-termination analysis is not supported correctly in the new unwinder, termination
still works. Secondly, there is a large increase in correctly verified memory safety tasks
thanks to the new handling of dynamic objects and also of memory leak instrumentation.
Lastly, we can see more correct false results in the Reach Safety category; based on our
inspection, these are from the Heap Reachability subcategory. On the other hand, there is
also a large drop in correct true tasks. As hinted by the CPU time per task, this stems from
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the fact that a lot more tasks resulted in a timeout due to the performance regression caused
by not using incremental SAT solving. Many of the executed benchmarks, especially those
in the loops subcategory, are very performance-focused and often require tens or hundreds
of unwindings, where the lack of incremental SAT solving hurts the performance of 2LS.

6.2.3 Evaluating Strategy Switching

Based on the results of the first experiment with unwinding, we implemented the condi-
tional unwinding strategy switching presented in Section 5.2.1. Comparison of the old SSA
unwinder and the final solution with strategy selection can be seen in Table 6.3.

Table 6.3: A comparison of unwinding with the old SSA unwinder and combination of SSA
and GOTO unwinder which uses strategy selection

Reach Safety Memory Safety Termination
1574 tasks 408 tasks 250 tasks

SSA Switching SSA Switching SSA Switching
Correct results 776 814 92 143 164 164

Correct true 603 622 55 81 116 116
Correct false 173 192 37 62 48 48

Incorrect results 2 1 3 6 0 0
Incorrect true 1 0 1 2 0 0
Incorrect false 1 1 2 4 0 0

Score 1331 1420 83 96 280 280
CPU time per task (s) 104.2 107.4 47.5 47.5 57.6 57.6

We can see improvements in score across all the categories; the performance regressions
inside Reach Safety category have been worked around by the strategy switching leading
to an increase in both correct false and correct true results thanks to supporting dynamic
memory.

On the other hand, there are a few new incorrect results inside the Memory Safety
category; 3 of the 6 incorrect results are identical to the old version and are related to some
different bugs in 2LS. We have tried to investigate the failures and they seem to be related
to the way how 2LS tracks object deallocation and dereferencing of freed objects. This
may be a similar issue to handling memory leak checks (which we solved), however trying
a similar solution introduced even more problems. Hence, we assume that the solution will
not be trivial. These few benchmarks need to be further investigated, the score potential of
the new solution is very high (as seen by the number of correct benchmarks in the Memory
Safety category) if they are fixed.

Note that while the new incorrect results seem like a regression in soundness of 2LS, it
is in fact an improvement. When running SV-COMP benchmarks, a so-called competition
mode is used. Inside competition mode, no unwinding was ever done when dynamic memory
was detected and hence errors related to unwinding of dynamic objects were hidden away,
otherwise there would be significantly more incorrect results in the old version.
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Chapter 7

Conclusion

In this work, we proposed a novel mechanism for loop unwinding for the 2LS framework.
The solution unwinds loops in a GOTO program (a CFG-based representation coming from
the CProver framework) rather than in the SSA form as the original solution in 2LS did.
This enables updating the set of dynamic objects in the program and correctly representing
operations with dynamic memory in the SSA form. The proposed approach allows 2LS to
soundly unwind programs which operate with dynamic memory inside loops and hence find
counterexamples if an error is introduced in one of the iterations.

The proposed solution has been implemented in the 2LS framework. As a part of our
implementation, we have updated the underlying CProver framework used in 2LS to its lat-
est version, which simplifies future development of 2LS. We performed several experiments
with the implementation using benchmarks from International Competition on Software
Verification (SV-COMP) and the results show that 2LS with our extension can now cor-
rectly analyse more programs dealing with dynamic memory. In other words, our extension
has improved verification capabilities of 2LS.

The performed experiments also demonstrate that the newly implemented solution does
not scale as well as the old mechanism due to not exploiting incremental SAT solving. Based
on these findings, we implemented an unwinding strategy selection which utilises both of
the approaches based on the program being analysed. Overall, this improves the score of
2LS in SV-COMP. We also present a proposal for an alternative approach which would
have the advantages of the newly implemented approach as well as utilise the incremental
SAT solving.

In future, we would like to implement the mentioned approach and completely remove
the original SSA unwinder. Correct unwinding of dynamic objects opens up multiple di-
rections for further development of 2LS, for example combining termination analysis with
dynamic objects (which is not currently supported) or improving the internal representa-
tion of dynamic objects in a way that would allow reasoning about more properties. Lastly,
having the GOTO program synchronised with the SSA form even after unwinding possibly
facilitates implementation of support for recursive function calls.
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Appendix A

Contents of the Included Storage
Media

The included storage media contains source files of 2LS with our extension, as well as the
source files of the thesis. The structure of the root directory is the following:

/
2ls/..............................................................2LS directory

lib/
cbmc/ ......................... Source code of CBMC (CProver framework)

src/......................................................Source files of 2LS
regression/..........................................Regression tests of 2LS

doc/...............................................LATEX source files of this text
README...........................................................README file

The 2ls/src directory contains the implementation of 2LS including our extension. The
directory is divided into multiple subdirectories, most of our work has been done inside the
2ls/src/ssa directory in modules related to unwinding and SSA transformations.

Source code of the CProver framework can be found inside 2ls/lib/cbmc directory.
This source code is based on CProver’s 5.37 release with 2LS-specific extensions as discussed
in Section 5.1. The directory doc contains the source LATEX files of this text as well as the
PDF version.
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Appendix B

Compilation and Running

The project can be compiled and run using the source files present on the included stor-
age media. The most convenient way for compiling the project is by using the build.sh
script under the 2ls directory which compiles CBMC (including the Glucose SAT solver)
and then compiles 2LS. These steps can also be performed manually, e.g., by running make
glucose-download && make inside the 2ls/lib/cbmc/src directory and then make inside
the 2ls/src directory. The compiled executable is present inside the 2ls/src/2ls direc-
tory.

2LS can be run using the command 2ls SOURCE_FILE OPTIONS where SOURCE_FILE is
a valid compilable C program and OPTIONS are flags for 2LS. Some of the options most
relevant for this work, are --unwind N, --k-induction, --incremental-bmc, and their
combination with --heap, --pointer-check, and --memory-leak-check.

We recommend using 2LS regression tests as examples of potential ways to use our
extension. Each regression test contains a test.desc file which describes the options which
are to be used for the test. For example, analysis of our motivation example presented in
Section 3.2.2 could be performed using the following command:

$ 2ls regression/heap/simple_false_kind2/main.c --heap --intervals
--no-propagation --k-induction.
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Appendix C

2LS Regression Tests

2LS contains a suite of regression tests; they are included on the storage media inside
2ls/regression directory. All the tests can be run using the present Makefile. The tests
are divided into categories based on the type of analysis they check. Each category has its
own Makefile and can be run on its own. There are currently 10 categories:

heap Contains tasks using heap manipulation. We relabelled list_iter, list_unwind
and array_unwind tasks since 2LS can now analyse them correctly, as well as added
our motivation example under simple_false_kind2.

heap-data Contains tasks that require reasoning about data inside data structures dynam-
ically allocated on the heap. As a part of this work, we added false counterparts to
some of the existing tasks.

instrumentation Contains tests for GOTO program instrumentation with computed in-
variants.

interprocedural Tasks requiring interprocedural analysis.

invariants Tests the computing of invariants in various domains.

kiki Tests focusing on aspects of the 𝑘I𝑘I algorithm, mainly 𝑘-induction.

memsafety Contains task focused on all kinds of memory safety (free safety, null deref-
erence safety, leak safety). We extended this category with nondet_free_kind,
nondet_free_leak_kind, null_deref_kind and simple_leak_kind tasks.

nontermination Tasks focused on non-termination analysis.

preconditions Contains tasks aimed at computing backward and forward preconditions
and postconditions of functions in the analysed program.

termination Tasks focused on termination analysis.
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