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Abstract
Presburger arithmetics (PrA) is a decidable, first-order theory of natural numbers, with ap-
plications in many areas in formal verification of software properties. SMT-solvers — tools
implementing various algorithmic approaches to deciding whether a formula has a solution
— play a crucial role in formal verification. In this work, we document building a novel
automatic SMT solver for PrA based on finite automata — an approach that no SMT
solver currently employs. We provide an overview of challenges and their solutions arising
from the complexity of such a tool, including results from the conducted experiments al-
ready showing problems in which this alternative approach outperforms the state-of-the-art
solvers. We have also identified problems in which the performance of the automata-based
procedure struggles, which are open research opportunities.

Abstrakt
Presburgerova aritmetika (PrA) je rozhodnutelná teorie přirozených čísel prvního řádu,
která nachází uplatnění v mnoha oblastech formální verifikace vlastností softwaru. Řešiče
SMT — nástroje implementující různé algoritmické přístupy k rozhodování, zda má formule
řešení — hrají ve formální verifikaci klíčovou roli. V této práci dokumentujeme vytvoření
nového automatického SMT řešiče pro PrA založeného na konečných automatech — přís-
tupu, který v současnosti žádný SMT řešič nepoužívá. Uvádíme přehled výzev a jejich
řešení vyplývajících ze složitosti takového nástroje, včetně výsledků z provedených exper-
imentů, které již identifikují problémy, kde tento alternativní přístup překonává nejmod-
ernější řešiče. Uvádíme také identifikované problémy, u nichž výkonnost postupu založeného
na automatech naráží na problémy, které představují otevřené možnosti výzkumu.
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Rozšířený abstrakt
Rostoucí využívání počítačů téměř ve všech oblastech lidského zájmu vyvolává potřebu
bezpečného a spolehlivého softwaru, což přivádí pozornost k úloze formálního ověřování
vlastností softwaru. Jedním ze základních nástrojů používaných při formální verifikaci je
řešič SMT (Satisfiability Modulo Theories) — nástroj schopný automaticky odvodit, zda
daná formule prvního řádu popisující formálně systém má model, což znamená, že sys-
tém má požadovanou vlastnost. Jednou z dominantních teorií používaných ve vstupních
for- mulích je Presburgerova aritmetika (PrA), která je schopna popsat systém pomocí
lineárních celočíselných omezení, jako jsou rovnice a nerovnice. Protože PrA neobsahuje
notaci ani axiomy pro násobení, je její vyjadřovací schopnost omezená. Omezená vyjadřo-
vací síla však umožňuje, aby teorie zůstala rozhodnutelná, což znamená, že je možné určit
existenci řešení algoritmicky v konečném počtu kroků. V průběhu času byla vyvinuta
řada algoritmů — rozhodovacích procedur — přistupujících k problému určení existence
řešení z různých pohledů. Jeden z mladších přístupů je založen na formálním modelu
konečných automatů, v němž je pro každé atomické omezení, např. nerovnici nebo rovnici,
konstruován konečný automat. Tyto automaty se pak kombinují podle struktury vstupní
formule, čímž vzniká automat kódující celý prostor řešení formule. Vstupní formule má
tedy model, jestliže automat kódující celý prostor řešení má neprázdný jazyk. Pokud je
nám známo, nebyla dosud v žádném řešiči SMT implementována rozhodovací procedura za-
ložená na konečných automatech. Proto nebyly pokroky v oblasti automatů vyhodnoceny v
kontextu rozhodování PrA, ani není možné porovnat postup založený na automatech s ne-
jmodernějšími řešiči SMT a určit oblasti, kde by automaty mohly představovat výkonnější
přístup.

V této práci dokumentujeme implementaci Amaya - nového experimentálního automa-
tového SMT řešiče pro PrA, čímž pokládáme nezbytné základy pro budoucí výzkum au-
tomatového přístupu k rozhodování PrA. Protože primárním účelem Amaya je experimen-
tování s procedurou založenou na automatech, odrážejí tento účel i funkce, které Amaya
poskytuje. Tyto funkce sahají od úplné introspekce do rozhodovací procedury prostřed-
nictvím graficky zobrazitelného výstupu všech mezivýsledných automatů vytvořených bě-
hem běhu procedury až po poskytování pokročilého vestavěného mechanismu pro bench-
marking. Amaya také podporuje standardizovaný vstupní jazyk, což minimalizuje úsilí
potřebné při porovnávání základní rozhodovací procedury s přístupy implementovanými
jinými řešiči. Identifikovali jsme také problémy se škálovatelností klasických automatových
konstrukcí způsobené exponenciálním růstem jejich časové složitosti vzhledem k počtu
proměnných ve vstupní formuli a vyřešili je návrhem reprezentace přechodové relace au-
tomatů založené na víceterminálních binárních rozhodovacích diagramech (MTBDD). Aby-
chom plně využili výhod MTBDD, museli jsme přeformulovat všechny klasické automa-
tové algoritmy tak, aby využívaly kompaktní reprezentaci, kterou MTBDD poskytují.
Amaya tedy poskytuje dva prováděcí backendy: nativní backend zaměřený na experimen-
tování, který reprezentuje přechody explicitně, a backend založený na MTBDD zaměřený
na výkon. Amayu jsme také porovnali s nejmodernějšími řešiči Z3 a CVC5 při rozhodování
benchmarků, které mají původ ve verifikaci programů. Provedené experimenty navíc již
identifikovaly oblasti, jako je rozhodování Frobeniova problému, kde automaty představují
výrazně výkonnější přístup než přístupy implementované Z3 a CVC5. Naše experimenty
také ukázaly oblasti, kde je postup založený na automatech neproveditelně drahý, což posky-
tuje otevřené možnosti výzkumu.
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Chapter 1

Introduction

As humanity advances, it increasingly relies on computers to perform some of the tasks
previously requiring human intellect. Likewise, challenging engineering undertakings set
forth by modern society in various areas of human interest, such as space exploration,
are deemed unfeasible without the employment of computers. The growing penetration
of information technologies into everyday life creates the necessity for safe and reliable
software controlling those devices, bringing attention to the role of formal verification of
software properties.

One of the core tools used in software and hardware verification is a Satisfiability Modulo
Theories (SMT) solver — a tool capable of automatically deducing the existence of a model
of a given first-order formula. An SMT solver is a versatile tool, and its applications can
be found in various other areas of modern computer science, such as compiler optimization
techniques or automated theorem proving, further highlighting the importance of this tool.

One of the prominent theories used in the input formulae of SMT solvers is Presburger
Arithmetic (PrA). This first-order theory of integers provides a formal basis for describing
a system in terms of linear arithmetic constraints. The signature of PrA is similar to that of
the well-known Peano Arithmetic [23], but it does not contain a symbol nor the correspond-
ing axioms for multiplication. Although this limitation significantly reduces its expressive
power, it also allows the theory to remain decidable, meaning that it is possible to deduce
whether a PrA formula has a model algorithmically in a finite number of steps. Over time
there have been numerous such algorithms — decision procedures — developed, approach-
ing the problem of determining the existence of a model from different perspectives. A lot
of current research, e.g., [17], [8], focuses on developing various heuristics that improve
the performance of these procedures, extending what we can decide automatically.

The most used decision procedure for PrA is quantifier elimination. As the name
suggests, the procedure systematically transforms an input formula with quantifiers into
an equivalent quantifier-free formula. The procedure has a long history reaching all the way
to the work of Mojżesz Presburger, who developed this algorithm to show the decidability
of PrA [24]. Given the age of this procedure, combined with its popularity, there have
been numerous efforts analyzing its characteristics and developing optimizations for specific
types of PrA formulae.

A younger approach to determining the existence of a model is based on the formal
model of finite automata (FAs). Instead of gradually transforming the input formula into
a quantifier-free equivalent, the procedure compactly represents the entire solution space
of linear constraints, e.g. inequations present in the input formula using automata. The
procedure then combines the automata corresponding to linear constraints according to
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the structure of the input formula, using automata constructions equivalent to the logical
conjunctions in the input formula. The idea behind an automata-based decision procedure
originates in the works of Büchi [7], but it was not until 1996 when Boudet and Comon
applied it in the context of PrA [5]. The procedure’s underlying formal model is frequently
applied throughout the modern computer science, e.g., in text processing, or to detect
attacks in network traffic, etc., and, therefore, the automata theory is a vivid research area
with advancements such as new automata models [26] or improved algorithms for checking
universality of the language [1]. To the best of our knowledge, no decision procedure for
PrA based on this approach has been implemented in any SMT solver yet.

Furthermore, there are known problems, such as the Frobenius coin problem at which
automata-based procedure vastly outperforms the approaches used by the state-of-the-art
SMT solvers. The coin problem is a famous mathematical problem that can be formulated
in the following manner: given an unlimited number of coins of certain denominations,
what is the highest possible sum one cannot achieve by any combination of the given coins?
The coin problem is not only related to currency, but its applications are found in other areas
such as the analysis of P/T systems [9]. In order to answer the question of whether there
are other problems in which the automata-based approach provides advantages compared
to the other decision procedures cannot by answered without an SMT solver implementing
the automata-decision procedure.

In our work, we have succeeded in building an automata-based SMT solver for PrA, lay-
ing a foundation for the future research of the decision procedure. The solver was designed
to support a standardized input language, enabling easy comparison of the automata-based
procedure to the alternative approaches implemented by the state-of-the-art SMT solvers.
While developing the automata-based solver, we have identified and solved numerous en-
gineering challenges ranging from developing the necessary algorithm to repair automata
after modifying them as a consequence of an existential quantifier in the input formula to
developing a high-performance representation of the automaton transition relation based
on Multi-Terminal Binary Decision Diagrams. As the purpose of the created tool is to
provide a basis for future research, the solver is capable of outputting the automata created
throughout the decision procedure to various formats such as the DOT language, allow-
ing a graphical introspection of the decision procedure. We have conducted experiments
comparing our solver to the state-of-the-art solvers Z3 and CVC5 in some of the available
benchmarks. Furthermore, we confirmed the superior performance of the automata-based
decision procedure in deciding the Frobenius coin problem. The conducted experiments al-
ready identified performance problems of the implemented approach caused by the sizes of
the automata for linear constraints, presenting an attractive research topic of representing
parts of the state space symbolically.
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Chapter 2

Preliminaries

In this chapter, we introduce all necessary definitions used throughout the remainder of
this work. We start with a description of the Presburger arithmetic, its properties, and its
relation to regular languages. We continue with the definition of finite automata, the class
of languages they encode, and the properties of those languages, including corresponding
algorithms providing the foundations for the implementation of the automata-based deci-
sion procedure. Lastly, we introduce Binary decision diagrams (BDDs)—an efficient repre-
sentation of Boolean functions—and their extension named Multi-terminal binary decision
diagrams (MTBDDs), allowing compact representation of functions from multi-dimensional
Boolean space to any finite set. Such representations will become vital for the performance
of the automata-based decision procedure, as they provide an effective way to address the
scalability issues of classical automata constructions wrt. the number of variables in the in-
put formula.

Throughout this text, we use the following notation:

• lower-case letters 𝑎, 𝑏, 𝑐... denote constants,

• lower-case letters 𝑥, 𝑦, 𝑧... denote first-order variables,

• Greek letters 𝜙,𝜓, ... denote (first-order) formulae.

2.1 Presburger arithmetic
Presburger arithmetic is a first-order theory of the natural numbers first studied in detail
by Mojżesz Presburger in 1929. It was at a time when the movement initiated by David
Hilbert (the so-called Hilbert’s program) was in search of a formal system providing solid
foundations for the entirety of mathematics. This system would rely on mathematical logic
as a language preventing all ambiguities and providing means to formalize and manipulate
mathematical statements. Hilbert also set forth the properties such a system must exhibit,
among which was decidability—the ability to tell whether a given statement is true or false
in a finite number of steps. Presburger arithmetic (PrA), being much weaker than Peano
arithmetic [23] was proven by Presbuger to have all of the required properties, and therefore,
it has been seen as a step to achieving the goals of Hilbert’s program. In 1931 Gödel pub-
lished his results [16] that proved the vision of a formal system having all of the properties
proposed by Hilbert impossible to achieve. However, PrA remained interesting, especially
due to its tractability by automated reasoning.

PrA is a first-order theory with equality and the following language:
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1. A constant symbol 0,

2. a unary function symbol 𝑆, called successor,

3. a binary function symbol +, called addition.

PrA contains the following axioms:

1. ∀𝑥¬(𝑆(𝑥) = 0)

2. ∀𝑥, 𝑦(𝑆(𝑥) = 𝑆(𝑦)→ 𝑥 = 𝑦)

3. ∀𝑥(𝑥+ 0 = 𝑥)

4. ∀𝑥, 𝑦(𝑥+ 𝑆(𝑦) = 𝑆(𝑥+ 𝑦))

5. (First-order) axiom schema of induction: For a formula 𝜙 with a single free variable
𝑥: (𝜙(0) ∧ ∀𝑥(𝜙(𝑥)→ 𝜙(𝑆(𝑥))))→ ∀𝑥(𝜙(𝑥))

The standard model of PrA are natural numbers (including 0) ordered as usual (𝑆(0) =
1, 𝑆(1) = 2).

We also introduce the following abbreviation that allows us to write a numeral in the
standard way:

𝑛
𝑑𝑒𝑓
= 𝑆(𝑆(. . . 𝑆(0)))⏟  ⏞  

𝑛

In contrast to Peano axioms, the theory does not include the symbol and axioms for mul-
tiplication; however, multiplication by a constant can be defined, as it is a shorthand for
summation:

𝑐 · 𝑥 𝑑𝑒𝑓
= 𝑥+ 𝑥 · · ·+ 𝑥⏟  ⏞  

𝑐

The total ordering ≤ can be defined as follows:

𝑎 ≤ 𝑏 𝑑𝑒𝑓= ∃𝑐(𝑎+ 𝑐 = 𝑏)

Both the integer division by a constant (denoted as 𝑥 𝑑𝑖𝑣 𝑐) and the modulo operation
limited to a constant divisor (denoted as 𝑥 𝑚𝑜𝑑 𝑐), can be defined in PrA as follows:

𝑥 𝑑𝑖𝑣 𝑐 = 𝑦
𝑑𝑒𝑓.⇐⇒ ∃𝑧(𝑥− 𝑐 · 𝑦 = 𝑧 ∧ 0 ≤ 𝑧 ∧ 𝑧 < 𝑐)

𝑥 𝑚𝑜𝑑 𝑐 = 𝑦
𝑑𝑒𝑓.⇐⇒ ∃𝑧(𝑥− 𝑐 · 𝑧 = 𝑦 ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑐)

Let �⃗� be a vector of 𝑛 ≥ 0 variables, �⃗� ∈ Z𝑛 be a vector of variable coefficients, 𝑐 ∈ Z,
𝑚 ∈ N be constants. A formula 𝜙 : �⃗� · �⃗� ∼ 𝑐 is called atomic, where ∼ is ≤, <, = or ≡𝑚.

PrA has been shown to be complete and decidable by Mojżesz Presburger as a part
of his master thesis [24].
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2.2 Automata theory
This chapter introduces the definition of classical finite automata (FAs) and the class of
languages this model of computation recognizes. As FAs pose a basis for the automata-
based decision procedure, they will be often referred to throughout the rest of this text.
We also introduce key operations and properties of languages recognized by FAs, including
the algorithms performing language operations on automata.

Throughout this text, the following notation is employed. Let Σ be a finite non-empty
set of symbols. Σ* denotes the set of all words over Σ, Σ+ is the set of all words over
Σ except the empty string 𝜀. Furthermore, 𝒫(Σ) denotes the set of all subsets of Σ (the
powerset of Σ).

Definition 2.2.1. A nondeterministic finite automaton (NFA, FA) 𝒜 is a 5-tuple (𝑄,Σ,
𝛿, 𝑄0, 𝐹 ), where 𝑄 is a finite non-empty set of states, Σ is a finite non-empty set of symbols
called an alphabet, 𝛿 ⊆ 𝑄 × Σ × 𝑄 is the set of transitions, 𝑄0 ⊆ 𝑄 is the set of initial
states, and 𝐹 ⊆ 𝑄 is the set of final states.

Let 𝒜 = (𝑄,Σ, 𝛿,𝑄0, 𝐹 ) be an automaton. A transition (𝑞, 𝜎, 𝑞′) ∈ 𝛿 from the state
𝑞 ∈ 𝑄 to the state 𝑞′ ∈ 𝑄 labeled with the symbol 𝜎 ∈ Σ is denoted by 𝑞

𝜎−→ 𝑞′ ∈ 𝛿.
Let 𝑤 ∈ Σ* be a word, |𝑤| denotes the length of this word and let 𝑤𝑖 denote the 𝑖-th
symbol of the word 𝑤 for every 1 ≤ 𝑖 ≤ |𝑤|. A run 𝜌 of an automaton 𝒜 over a word
𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛 ∈ Σ* from the state 𝑝 ∈ 𝑄 to the state 𝑟 ∈ 𝑄, denoted as 𝑝 𝑤

=⇒ 𝑟,
is a sequence of states 𝜌 = 𝑞0, 𝑞1, · · · , 𝑞𝑛 that satisfies 𝑞𝑖−1

𝑤𝑖−→ 𝑞𝑖 ∈ 𝛿 for 1 ≤ 𝑖 ≤ 𝑛,
𝑞0 = 𝑝, 𝑞|𝑤| = 𝑟. Furthermore, let 𝑝 =⇒ 𝑟 denote the existence of such a run. The run 𝜌
is accepting iff 𝑟 ∈ 𝐹 . A state is called unreachable iff there exists no run from an initial
state to the given state. Let 𝑞 ∈ 𝑄 be a state and 𝑆 ⊆ 𝑄 be a set of states. We define
the following.

𝑝𝑟𝑒𝛿(𝑞) = {𝑞′ | 𝑞′
𝜎−→ 𝑞 ∈ 𝛿}

𝑝𝑟𝑒𝛿(𝑆) =
⋃︁

𝑞∈𝑆
𝑝𝑟𝑒(𝑞)

𝑝𝑜𝑠𝑡𝛿(𝑞) = {𝑞′ | 𝑞
𝜎−→ 𝑞′ ∈ 𝛿}

𝑝𝑜𝑠𝑡𝛿(𝑆) =
⋃︁

𝑞∈𝑆
𝑝𝑜𝑠𝑡(𝑞)

The language of the state 𝑞, denoted by ℒ(𝑞), is defined by ℒ(𝑞) = {𝑤 | 𝑞 𝑤
=⇒ 𝑞𝑓 , 𝑞𝑓 ∈

𝐹}. A state that has an empty language is called nonfinishing. The language of the au-
tomaton 𝒜, denoted as ℒ(𝒜), is defined by ℒ(𝒜) =

⋃︀
𝑞0∈𝑄0

ℒ(𝑞0). A language is called
regular iff it is recognized by some finite automaton.

A deterministic finite automaton (DFA) is an FA that has only one initial state (|𝑄0| =
1) and its structure satisfies ∀𝑞 ∈ 𝑄(∀𝜎 ∈ Σ(∃!𝑞′ ∈ 𝑄(𝑞

𝜎−→ 𝑞′ ∈ 𝛿))). A DFA is called
complete iff for every 𝑤 ∈ Σ* there exists a run of the automaton from some initial state
𝑞0 ∈ 𝑄0 over 𝑤.

Theorem 2.2.1. The class of regular languages is closed under the intersection operation.

Proof. Let 𝒜1 = (𝑄1,Σ1, 𝛿1, 𝑄01, 𝐹1) and 𝒜2 = (𝑄2,Σ2, 𝛿2, 𝑄02, 𝐹2) be two NFAs with
𝑄1∩𝑄2 = ∅. Then the following construction produces an automaton 𝒜∩ = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
such that ℒ(𝒜∩) = ℒ(𝒜1) ∩ ℒ(𝒜2):
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• 𝑄 = 𝑄1 ×𝑄2,

• Σ = Σ1 ∩ Σ2,

• 𝛿 = {(𝑞1, 12)
𝜎−→ (𝑞′1, 𝑞

′
2) | 𝑞1

𝜎−→, 𝑞′1 ∈ 𝛿1 ∧ 𝑞2
𝜎−→, 𝑞′2 ∈ 𝛿2},

• 𝑄0 = 𝑄01 ×𝑄02, and

• 𝐹 = 𝐹1 × 𝐹2.

Let 𝑤 = 𝑤1 · · ·𝑤𝑛 be a word and 𝑤 ∈ ℒ(𝒜1) ∩ ℒ(𝒜2). Such word must be accepted by
both 𝒜1 and 𝒜2. Let 𝜌1 = 𝑞0 . . . 𝑞𝑛 and 𝜌2 = 𝑠0 . . . 𝑠𝑛 be the runs of 𝒜1, 𝒜2 over 𝑤, respec-
tively. As the states 𝑞0 ∈ 𝑄01 and 𝑠0 ∈ 𝑄02 are initial in corresponding automata, then by
the construction of 𝒜∩ there is an initial state (𝑞0, 𝑞1) ∈ 𝑄0. Following the construction,
let 𝑞𝑖 and 𝑠𝑖 be states of 𝜌0, 𝜌1, respectively for some 0 ≤ 𝑖 < 𝑛. Then by construction
there is a transition (𝑞𝑖, 𝑠𝑖)

𝑤𝑖−→ (𝑞𝑖+1, 𝑠𝑖+1) ∈ 𝛿 for every pair (𝑞𝑖, 𝑠𝑖), and therefore, a run
𝜌 of 𝒜∩ over 𝑤 exists. In order for 𝑤 to be accepted by both 𝒜1 and 𝒜2, both 𝑞𝑛 and 𝑠𝑛
must be final. From the construction then follows that the (𝑞𝑛, 𝑠𝑛) ∈ 𝐹 , and therefore, 𝜌 is
an accepting run. We conclude that (ℒ(𝒜1) ∩ ℒ(𝒜2)) ⊆ ℒ(𝒜∩).

Let 𝑣 = 𝑣1 . . . 𝑣𝑛 be a word, 𝑣 ∈ ℒ(𝒜∩) and let 𝜌𝑣 = (𝑞0, 𝑠0) . . . (𝑞0, 𝑠0) be the correspond-
ing run of ℒ(𝒜∩) over 𝑣. By construction there is a transition 𝑞𝑖

𝑣𝑖+1−→ 𝑞𝑖+1 of automaton 𝒜1

for 0 ≤ 𝑖 < 𝑛. As (𝑞𝑛, 𝑠𝑛) is an accepting state, the states 𝑞𝑛, 𝑠𝑛 must be also accepting
in 𝒜1 and 𝒜1, respectively. From the construction follows that 𝑞0 must be an initial state
of 𝒜1. Therefore there exitsts an accepting run 𝜌1 : 𝑞0

𝑣
=⇒ 𝑞𝑛 of 𝒜1. Similarly, there must

exist an accepting run 𝜌2 : 𝑠0
𝑣

=⇒ 𝑠𝑛 of 𝒜2. Therefore, ∀𝑣 ∈ ℒ(𝒜∩)(𝑣 ∈ ℒ(𝒜1) ∧ ℒ(𝒜2)),
from which we conclude ℒ(𝒜∩) ⊆ ℒ(𝒜1) ∩ ℒ(𝒜2).

As (ℒ(𝒜1)∩ℒ(𝒜2)) ⊆ ℒ(𝒜∩) and ℒ(𝒜∩) ⊆ (ℒ(𝒜1)∩ℒ(𝒜2)), the language of automaton
𝒜∩ is precisely (ℒ(𝒜1) ∩ ℒ(𝒜2)) = ℒ(𝒜∩), and therefore, the class of regular languages is
closed under the intersection operation.

Intuitively, the depicted construction creates an automaton with states being tuples
capturing every possible combination of states from 𝒜1 and 𝒜2. Transitions are added
between these states only if both 𝒜1 and 𝒜2 could make a transition via some symbol 𝜎
to respective states. However, such construction produces an automaton with unneces-
sary states — either unreachable or nonfinishing. For practical use, it is better to apply
the procedure NFAIntersection 1, which avoids the creation of unreachable states by work-
ing incrementally, adding states only when their reachability is certain.

Algorithm 1 Construction of an automaton recognizing the intersection of two regular
languages
Input: NFAs 𝒜1 = (𝑄1,Σ1, 𝛿1, 𝑄01, 𝐹1),𝒜2 = (𝑄2,Σ2, 𝛿2, 𝑄02, 𝐹2)
Output: NFA 𝒜∩ = (𝑄,Σ, 𝛿, 𝑄, 𝐹 ) such that ℒ(𝒜∩) = ℒ(𝒜1) ∩ ℒ(𝒜2)

1: function NFAIntersection(𝒜1,𝒜2)
2: 𝑄, 𝛿, 𝐹 ← ∅
3: Σ← Σ1 ∩ Σ2

4: 𝑄0 ← 𝑄01 ×𝑄02

5: 𝑊 ← 𝑄01 ×𝑄02

6: while 𝑊 ̸= ∅ do
7: (𝑞1, 𝑞2)← pick and remove state from 𝑊
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8: add (𝑞1, 𝑞2) to 𝑄
9: if 𝑞1 ∈ 𝐹1 ∧ 𝑞2 ∈ 𝐹2 then

10: add (𝑞1, 𝑞2) to 𝐹
11: end if
12: for each 𝜎 ∈ Σ do
13: for each 𝑞′1 ∈ {𝑞′1 | 𝑞1

𝜎−→ 𝑞′1 ∈ 𝛿1} and each 𝑞′2 ∈ {𝑞′2 | 𝑞2
𝜎−→ 𝑞′2 ∈ 𝛿2} do

14: add (𝑞1, 𝑞2)
𝜎−→ (𝑞′1, 𝑞

′
2) to 𝛿

15: if (𝑞′1, 𝑞
′
2) ̸∈ 𝑄 then

16: add (𝑞′1, 𝑞
′
2) to 𝑊

17: end if
18: end for
19: end for
20: end while
21: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
22: end function

Theorem 2.2.2. The class of regular languages is closed under the union operation.

Proof. Let 𝒜1 = (𝑄1,Σ1, 𝛿1, 𝑄01, 𝐹1), 𝒜2 = (𝑄2,Σ2, 𝛿2, 𝑄02, 𝐹2) be two NFAs with 𝑄1 ∩
𝑄2 = ∅. Then the following NFA 𝒜∪ = (𝑄1∪𝑄2,Σ1∪Σ2, 𝛿1∪𝛿2, 𝑄1∪𝑄2, 𝐹1∪𝐹2) recognizes
the language ℒ(𝒜∪) = ℒ(𝒜1) ∪ ℒ(𝒜2).

Let 𝑤 = 𝑤1 . . . 𝑤𝑛 be a word such that 𝑤 ∈ ℒ(𝒜1), and let 𝜌 = 𝑞0 . . . 𝑞𝑛 be a run of 𝒜1

over 𝑤. From the construction of 𝒜∪ we can see that all states of 𝜌 are present in 𝒜∪, and
the same holds for the transitions between the states. The state 𝑞0 ∈ 𝑄01 is also an initial
state in 𝒜∪, and 𝑞𝑛 ∈ 𝐹1 will be also one of the final states of 𝒜∪. Therefore, there must
be an accepting run 𝜌 of 𝒜∪ over 𝑤. Following a similar logic, the same conclusions can be
reached for some 𝑣 ∈ ℒ(𝒜2). We conclude that ∀𝑤 ∈ ℒ(𝒜1)(𝑤 ∈ ℒ(𝒜∪))∧∀𝑤 ∈ ℒ(𝒜2)(𝑤 ∈
ℒ(𝒜∪)), and therefore, ℒ(𝒜∪) ⊆ (ℒ(𝒜1) ∪ ℒ(𝒜2)).

Let 𝑢 = 𝑢1 . . . 𝑢𝑛 be a word such that 𝑢 ∈ ℒ(𝒜∪), and let 𝜌𝑢 = 𝑟0 . . . 𝑟𝑛 be a run of 𝒜∪
over 𝑢. The state 𝑟0 must be initial in either 𝒜1, or 𝒜2. As we put forth a requirement that
𝑄1 ∩ 𝑄2 = ∅, all of the states of 𝜌𝑢 must belong to either 𝒜1 or 𝒜2. Let this automaton
be denoted as 𝒜. From the construction we can see that the same transitions between
the states of 𝜌𝑢 must be also present in 𝒜. Same holds for the state 𝑟𝑛—as it is accepting
in 𝒜∪, it must be also accepting in 𝒜. Therefore, there must be an accepting run of 𝒜
over 𝑢, from which we conclude that ∀𝑤 ∈ ℒ(𝒜∪)(𝑤 ∈ 𝒜1 ∨𝑤 ∈ 𝒜2) which is equivalent to
ℒ(𝒜∪) ⊆ (ℒ(𝒜1) ∪ ℒ(𝒜2)).

Theorem 2.2.3. For every NFA 𝒜, there exits an equivalent DFA 𝒜𝒟 such that ℒ(𝒜) =
ℒ(𝒜𝒟).

Proof. Let 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) be an NFA. We construct a deterministic automaton 𝒜𝒟 =
(𝒬,Σ,Δ,𝒬0,ℱ), that satisfies ℒ(𝒜) = ℒ(𝒜𝒟) as follows:

• 𝒬 = 2𝑄,

• Δ = {𝑆 𝜎−→ 𝑆′ | 𝑆 ∈ 𝒫(𝑄) ∧ 𝜎 ∈ Σ ∧ 𝑆′ = {𝑠′ | 𝑠 𝜎−→ 𝑠′, 𝑠 ∈ 𝑆}),

• 𝒬0 = {𝑄0}, and

• ℱ = {𝑆 ∈ 𝒫(𝑄) | 𝑆 ∩ 𝐹 ̸= ∅}.
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Let 𝑤 = 𝑤1 . . . 𝑤𝑛 be a word such that 𝑤 ∈ ℒ(𝒜), and let 𝜌𝑤 = 𝑞0 . . . 𝑞𝑓 be the corre-
sponding accepting run of 𝒜 over 𝑤. Let 𝑞𝑖, 𝑞𝑖+1 be any two consequent states of 𝜌𝑤, where
0 ≤ 𝑖 < 𝑛, and let 𝑤𝑖+1 be the symbol of 𝑤 such that 𝑞𝑖

𝑤𝑖+1−→ 𝑞𝑖+1. Clearly, for any 𝑆𝑖 ∈ 𝒬,
such that 𝑞𝑖 ∈ 𝑆, there must exist 𝑆𝑖+1 ∈ 𝒬, such that 𝑆𝑖

𝑤𝑖+1−→ 𝑆𝑖+1 and 𝑞𝑖+1 ∈ 𝑆𝑖+1. From
the construction we know that 𝒜𝒟 has only one initial state 𝑆0, such that 𝑞0 ∈ 𝑆0. There-
fore, there exists a run 𝜌𝑤 = 𝑆0 . . . 𝑆𝑛 of 𝒜𝒟 over 𝑤, such that 𝑞𝑖 ∈ 𝑆𝑖 for any 0 ≤ 𝑖 < 𝑛. As
𝜌𝑤 is accepting, then 𝑞𝑛 ∈ 𝐹 , and therefore, 𝑆𝑛 ∈ ℱ , and thus, 𝜌𝑤 is also accepting state.
From this we conclude that ℒ(𝒜) ⊆ ℒ(𝒜𝒟).

Let 𝑢 = 𝑢1 . . . 𝑢𝑛 be a word such that 𝑤 ∈ ℒ(𝒜). Let 𝜌𝑢 = 𝑆0 . . . 𝑆𝑛 be the run of𝒜𝒟 over
𝑢. As 𝜌𝑢 is accepting, there must be a state 𝑞𝑛 ∈ 𝑆𝑛, such that 𝑞𝑛 ∈ 𝐹 . From the definition
of a run, there exists a transition 𝑆𝑛−1

𝑢𝑛−→ 𝑆𝑛 ∈ Δ. Following the construction of 𝒜𝒟, there
is a state 𝑞𝑛−1 ∈ 𝑆𝑛−1 such that 𝑞𝑛−1

𝑢𝑛−→ 𝑞𝑛 ∈ 𝛿. Extending this logic for every pair of
consequent states in 𝜌𝑢, starting from the last pair to the first pair, we arrive at a sequence
of states 𝑞0 . . . 𝑞𝑛. As 𝑞0 ∈ 𝑆0 the state 𝑞0 must also be an initial state of 𝒜. Given the way
we constructed the sequence of states 𝑞0 . . . 𝑞𝑛, and the fact that 𝑞0 ∈ 𝑄0 and 𝑞𝑛 ∈ 𝐹 we can
conclude that for any word 𝑢 ∈ ℒ(𝒜𝒟) there exists an accepting run of 𝒜, and therefore,
ℒ(𝒜𝒟) ⊆ ℒ(𝒜).

As ℒ(𝒜𝒟) ⊆ ℒ(𝒜) and ℒ(𝒜) ⊆ ℒ(𝒜𝒟), the language of the automaton 𝒜𝒟 is precisely
ℒ(𝒜) = ℒ(𝒜𝒟), and therefore, 𝒜 and 𝒜𝒟 are equivalent.

Although DFAs and NFAs have an equal expressive power, NFAs can be exponentially
smaller than their deterministic counterpart [13]. However, it is difficult to create an au-
tomaton accepting the complement of a language accepted by an NFA, compared to creating
such an automaton from a DFA. Furthermore, NFAs do not have a canonical form.

Similarly as with language intersection, the construction used in the proof 2.2 creates
automata that often have prohibitively too many states to be used in practice. Many of
the created states are unreachable or nonfinishing. Algorithm 2, commonly referred to
as the standard subset construction, produces a DFA without unreachable states. This is
due to its incremental design—new DFA states are added only after they can be reached
from some of the states already present in the DFA being constructed.

Algorithm 2 Determinization procedure
Input: NFA 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
Output: DFA 𝒜𝒟 = (𝒬,Σ,Δ,𝒬0,ℱ), 𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡ℒ(𝒜) = ℒ(𝒜𝒟)

1: 𝑊,𝒬0 ← {𝑄0}
2: 𝒬,ℱ ,Δ← ∅
3: while 𝑊 ̸= ∅ do
4: 𝑆 ← pick and remove state from 𝑊
5: add 𝑆 to 𝒬
6: if 𝑆 ∩ 𝐹 ̸= ∅ then
7: add 𝑆 to ℱ
8: end if
9: for each 𝜎 ∈ Σ do

10: 𝑆′ ← 𝛿(𝑆, 𝜎)
11: if 𝑆′ ̸∈ 𝒬 then
12: add 𝑆′ to 𝑊
13: end if
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14: add (𝑆, 𝜎, 𝑆′) to Δ
15: end for
16: end while
17: return (𝒬,Σ,Δ,𝒬0,ℱ)

Theorem 2.2.4. The class of regular languages is closed under complement.

Proof. Let 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) be a complete DFA. Then the DFA 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝑄∖𝐹 )
recognizes the language ℒ(𝒜) = Σ* ∖ ℒ(𝒜).

The construction of 𝒜 recognizing the language complement originates in the observa-
tion that, in a given complete DFA, there is exactly one run 𝑞0

𝑤
=⇒ 𝑟 for any 𝑤 ∈ Σ*, where

𝑞0 is the initial state. The word 𝑤 belongs to the language ℒ(𝒜) iff 𝑟 ∈ 𝐹 . Therefore, by
swapping accepting and non-accepting states, the word that was previously accepted is not
and vice versa, concluding that ℒ(𝒜) = ℒ(𝒜).

2.3 Binary Decision Diagrams and Multi-terminal Binary
Decision Diagrams

Binary decision diagrams (BDDs) are a well-known representation of Boolean functions.
BDDs were originally introduced by C. Y. Lee in 1958 [21]. However, it was after the pub-
lishement of Bryant’s work in 1986 [6] that BDDs started to gain popularity. By imposing
new restrictions on the BDD structure, Bryant introduced a way how BDDs can compactly
represent Boolean functions, as well as algorithms allowing the manipulation of such rep-
resentations without the need of unpacking them first. Since then, they have found their
application in numerous areas of modern computer science, especially in formal verification
and computer-aided design (circuit synthesis). In this chapter, we define BDDs and their
properties. After defining BDDs, we introduce an extension of BDDs called Multi-terminal
binary decision diagrams (MTBDDs), allowing for a compact representation of functions
from a multi-dimensional Boolean space to an arbitrary non-empty set.

Let B = {0, 1}, let 𝑓(𝑣1, . . . , 𝑣𝑛) : B𝑛 → B be a Boolean function, let 𝑉 = {𝑣1, . . . , 𝑣𝑛}
be the set of the input variables of 𝑓 , and let ≺ be a total ordering over 𝑉 .

Definition 2.3.1. BDD is a rooted directed acyclic graph formally represented as a 7-tuple
ℬ = (𝑁,𝑇, 𝑣𝑎𝑟, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑟𝑜𝑜𝑡, 𝑣𝑎𝑙), where:

• 𝑁 is a set of nonterminals i.e. internal decision nodes,

• 𝑇 is a set of terminals (leaves),

• 𝑣𝑎𝑟 : 𝑁 → 𝑉 is a function labeling the nonterminals with the input variables of 𝑓 ,

• 𝑙𝑜𝑤 : 𝑁 → 𝑁 ∪ 𝑇 is the low successor of nonterminals 𝑛 ∈ 𝑁 for the value of the
variable 𝑣𝑎𝑟(𝑛) being 0,

• ℎ𝑖𝑔ℎ : 𝑁 → 𝑁 ∪ 𝑇 is the high successor of nonterminals 𝑛 ∈ 𝑁 for the value of the
variable 𝑣𝑎𝑟(𝑛) being 1,

• 𝑟𝑜𝑜𝑡 ∈ 𝑁 ∪ 𝑇 is the root node,

• 𝑣𝑎𝑙 : 𝑇 → B maps the terminal nodes to Boolean values.
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The Boolean function 𝑓𝑟 represented by a BDD ℬ = (𝑁,𝑇, 𝑣𝑎𝑟, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑟, 𝑣𝑎𝑙) is
defined recursively as follows. If 𝑟 ∈ 𝑇 then 𝑓𝑟 = 𝑣𝑎𝑙(𝑟); otherwise 𝑓𝑟 = (𝑣 ∧ 𝑓ℎ𝑖𝑔ℎ(𝑟)) ∨
(¬𝑣 ∧ 𝑓𝑙𝑜𝑤(𝑟)), where 𝑣 = 𝑣𝑎𝑟(𝑟).

Let ℬ1 = (𝑁1, 𝑇1, 𝑣𝑎𝑟1, 𝑙𝑜𝑤1, ℎ𝑖𝑔ℎ1, 𝑟2, 𝑣𝑎𝑙1) and ℬ2 = (𝑁2, 𝑇2, 𝑣𝑎𝑟2, 𝑙𝑜𝑤2, ℎ𝑖𝑔ℎ2, 𝑟2,
𝑣𝑎𝑙2) be two BDDs. We say that ℬ1 and ℬ2 are isomorphic iff there exists a bijection
𝜂 : 𝑁1 ∪ 𝑇1 → 𝑁2 ∪ 𝑇2 that satisfies the following:

• if 𝑣 ∈ 𝑇1, then 𝜂(𝑣) ∈ 𝑇2 and val1(𝑣) = val2(𝜂(𝑣)),

• if 𝑣 ∈ 𝑁1, then 𝜂(𝑣) ∈ 𝑁2 with var(𝑣) = var(𝜂(𝑣)), 𝜂(high1(𝑣)) = high2(𝜂(𝑣)) and
𝜂(low1(𝑣)) = low2(𝜂(𝑣)).

We use the following notations when graphically displaying BDDs. Nonterminals are
denoted by a circle with the variable labeling the node inside, while terminals are denoted
by a rectangle containing the corresponding Boolean value. Solid edges between nodes
denote the ℎ𝑖𝑔ℎ successors, while dashed edges denote 𝑙𝑜𝑤 successors.

Let succ(𝑛) = {low(𝑛), high(𝑛)}, where 𝑛 ∈ 𝑁 is a nonterminal be a relation mapping
nonterminals to their successors and let ℬ = (𝑁,𝑇, var , low , high, root , val) be a BDD. ℬ is
called ordered wrt. ≺ iff ∀𝑛 ∈ 𝑁(∀𝑠 ∈ succ(𝑛) : 𝑠 ∈ 𝑁 =⇒ var(𝑛) ≺ var(𝑠)), that is
the variables labeling a nonterminal and its successors are ordered wrt. ≺. An example of
an Ordered BDD can be seen in Figure 2.1.

𝑣1

𝑣2

𝑣3

0 0

𝑣3

0 0

𝑣2

𝑣3

1 1

𝑣3

0 1

Figure 2.1: Example of an ordered BDD wrt. variable ordering 𝑣1 ≺ 𝑣2 ≺ 𝑣3 encoding
the Boolean function 𝑓(𝑣1, 𝑣2,𝑣 3) = (𝑣1 ∧ 𝑣2 ∧ 𝑣3) ∧ (𝑣1 ∧ ¬𝑣2).

We say that the node 𝑠 ∈ 𝑁 ∪ 𝑇 is reachable from the node 𝑝 ∈ 𝑁 ∪ 𝑇 iff there is exists
a sequence of nodes 𝑛1, . . . , 𝑛𝑛, such that 𝑛1 = 𝑝, 𝑛𝑛 = 𝑠, and for any 𝑛𝑖, 𝑛𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛
satisfies 𝑛𝑖+1 = 𝑙𝑜𝑤(𝑛𝑖) ∨ 𝑛𝑖+1 = ℎ𝑖𝑔ℎ(𝑛𝑖). We use the predicate Reachable(s, p) to denote
the reachability of 𝑠 from 𝑝.

Let 𝑓(𝑣1, . . . , 𝑣𝑛) be a Boolean function. A restriction of 𝑓 with the value of the in-
put variable 𝑣𝑖 ∈ {𝑣1, . . . , 𝑣𝑛} fixed to some value 𝑏 ∈ B is a boolean function 𝑓|𝑣𝑖←𝑏 =
𝑓(𝑣1, . . . , 𝑣𝑖−1, 𝑏, 𝑣𝑖+1, . . . , 𝑣𝑛). Let ℬ = (𝑁,𝑇, 𝑣𝑎𝑟, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑟, 𝑣𝑎𝑙) be a BDD representing
𝑓 , and let 𝒮 = 𝑙𝑜𝑤 if 𝑏 = 0, otherwise 𝒮 = ℎ𝑖𝑔ℎ. The function 𝑓|𝑣𝑖←𝑏 is represented by the
BDD ℬ|𝑣𝑖←𝑏 = (𝑁 ′, 𝑇 ′, 𝑣𝑎𝑟′, 𝑙𝑜𝑤′, ℎ𝑖𝑔ℎ′, 𝑟′, 𝑣𝑎𝑙′), where:

• 𝑁 ′ = 𝑁 ∖ {𝑛 | 𝑛 ∈ 𝑁 ∧ 𝑣𝑎𝑟(𝑛) = 𝑣𝑖},

12



• 𝑇 ′ = {𝑡 | Reachable(t ,𝒮(n)) ∧ 𝑣𝑎𝑟(𝑛) = 𝑣𝑖},

• 𝑙𝑜𝑤′ = (𝑙𝑜𝑤∖{𝑛→ 𝑛′ | 𝑛→ 𝑛′ ∈ 𝑙𝑜𝑤∧𝑣𝑎𝑟(𝑛) = 𝑣𝑖})∪{𝑛→ 𝑛′′ | 𝑛→ 𝑛′ ∈ 𝑙𝑜𝑤∧𝑛′ →
𝑛′′ ∈ 𝒮 ∧ 𝑣𝑎𝑟(𝑛′) = 𝑣𝑖},

• ℎ𝑖𝑔ℎ′ = (ℎ𝑖𝑔ℎ ∖ {𝑛 → 𝑛′ | 𝑛 → 𝑛′ ∈ ℎ𝑖𝑔ℎ ∧ 𝑣𝑎𝑟(𝑛) = 𝑣𝑖}) ∪ {𝑛 → 𝑛′′ | 𝑛 → 𝑛′ ∈
𝑙𝑜𝑤 ∧ 𝑛′ → 𝑛′′ ∈ 𝒮 ∧ 𝑣𝑎𝑟(𝑛′) = 𝑣𝑖},

• 𝑟′ = 𝑟 if 𝑣𝑎𝑟(𝑟) ̸= 𝑣𝑖, otherwise 𝑟′ ∈ 𝒮(𝑟),

• 𝑣𝑎𝑙′ = {𝑡→ 𝑏 | 𝑡→ 𝑏 ∈ 𝑣𝑎𝑙 ∧ 𝑡 ∈ 𝑇 ′}.

Let ℬ be a BDD. We define subgraph BDD rooted by 𝑣 ∈ 𝑁 ∪ 𝑇 to be a BDD ℬ1 =
(𝑁 ′, 𝑇 ′, 𝑣𝑎𝑟′, 𝑙𝑜𝑤′, ℎ𝑖𝑔ℎ′, 𝑣, 𝑣𝑎𝑙′) where 𝑁 ′ ⊆ 𝑁 is the set of nonterminals reachable from 𝑣,
𝑇 ′ ⊆ 𝑇 is the set of terminals reachable from 𝑣, 𝑣𝑎𝑟′ = 𝑣𝑎𝑟|𝑁 ′ , ℎ𝑖𝑔ℎ′ = ℎ𝑖𝑔ℎ|𝑁 ′ , 𝑙𝑜𝑤′ =
𝑙𝑜𝑤|𝑁 ′ , 𝑣𝑎𝑙′ = 𝑙𝑜𝑤|𝑇 ′ .

Definition 2.3.2. A BDD is called reduced if there is no nonterminal node 𝑛 ∈ 𝑁 , such
that 𝑙𝑜𝑤(𝑛) = ℎ𝑖𝑔ℎ(𝑛), and it does not contain any nodes 𝑣1, 𝑣2 ∈ 𝑁 ∪𝑇, 𝑣1 ̸= 𝑣2, such that
the subgraph BDDs rooted by those nodes are isomorphic.

A BDD that is ordered and reduced is called Reduced Ordered BDD (ROBDD). The com-
bination of these restrictions on the BDD structure allows ROBDDs to compactly repre-
sent Boolean functions while having a canonical form. Given the existence of algorithms
efficiently manipulating ROBDDs, they are the most frequently used BDD variant, to
the point that they are being referenced simply as BDDs. Figure 2.2 provides an example
of an ROBDD.

Boolean functions represented by BDDs can be combined using the Apply procedure
(Algorithm 3). The procedure computes a BDD ℬ𝑓◇𝑔 representing a function 𝑓 ◇ 𝑔 from
BDDs ℬ𝑓 and ℬ𝑔 representing corresponding functions 𝑓 and 𝑔, where ◇ : B × B → B is
some Boolean operator. Algorithm 3 uses a table to cache the computed results of applying
◇ to subgraph BDDs to increase it efficiency.

Algorithm 3 Construction of BDD ℬ𝑓◇𝑔
Input: ROBDD ℬ𝑓 = (𝑁𝑓 , 𝑇𝑓 , 𝑣𝑎𝑟𝑓 , 𝑙𝑜𝑤𝑓 , ℎ𝑖𝑔ℎ𝑓 , 𝑟𝑓 , 𝑣𝑎𝑙𝑓 ) wrt. ≺ representing 𝑓 : B𝑛 → B,

ROBDD ℬ𝑔 = (𝑁𝑔, 𝑇𝑔, 𝑣𝑎𝑟𝑔, 𝑙𝑜𝑤𝑔, ℎ𝑖𝑔ℎ𝑔, 𝑟𝑔, 𝑣𝑎𝑙𝑔) wrt. ≺ representing 𝑔 : B𝑛 → B,
Boolean operator ◇ : B× B→ B

Output: ROBDD ℬ𝑓◇𝑔 = (𝑁𝑓 , 𝑇𝑓 , 𝑣𝑎𝑟𝑓 , 𝑙𝑜𝑤𝑓 , ℎ𝑖𝑔ℎ𝑓 , 𝑟𝑓 , 𝑣𝑎𝑙𝑓 ) representing 𝑓 ◇ 𝑔
1: function Apply(ℬ𝑓 ,ℬ𝑔, ◇)
2: if 𝑟𝑓 ∈ 𝑇𝑓 and 𝑟𝑔 ∈ 𝑇𝑔 then
3: let 𝑡 be a new terminal node
4: 𝑣𝑎𝑙𝑡 ← 𝑣𝑎𝑙𝑓 (𝑟𝑓 ) ◇ 𝑣𝑎𝑙𝑔(𝑟𝑔)
5: ℬ′ ← (∅, {𝑡}, ∅, ∅, ∅, 𝑡, {𝑡→ 𝑣𝑎𝑙𝑡})
6: return ℬ′
7: end if
8: if (◇, 𝑟𝑜𝑜𝑡𝑓 , 𝑟𝑜𝑜𝑡𝑔) are in table then
9: return table[(◇, 𝑟𝑜𝑜𝑡𝑓 , 𝑟𝑜𝑜𝑡𝑔)]

10: end if
11: 𝑣 ← 𝑣𝑎𝑟(𝑟𝑔) if 𝑣𝑎𝑟(𝑟𝑔) ≺ 𝑣𝑎𝑟(𝑟𝑓 ) else 𝑣𝑎𝑟(𝑟𝑓 )
12: ℬ𝑙 = (𝑁𝑙, 𝑇𝑙, 𝑣𝑎𝑟𝑙, 𝑙𝑜𝑤𝑙, ℎ𝑖𝑔ℎ𝑙, 𝑟𝑙, 𝑣𝑎𝑙𝑙)← 𝐴𝑝𝑝𝑙𝑦(ℬ𝑓|𝑣←0,ℬ

𝑔
|𝑣←0, ◇)
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13: ℬℎ = (𝑁ℎ, 𝑇ℎ, 𝑣𝑎𝑟ℎ, 𝑙𝑜𝑤ℎ, ℎ𝑖𝑔ℎℎ, 𝑟ℎ, 𝑣𝑎𝑙ℎ)← 𝐴𝑝𝑝𝑙𝑦(ℬ𝑓|𝑣←1,ℬ
𝑔
|𝑣←1, ◇)

14: if Isomorphic(ℬl ,ℬh) then
15: return ℬℎ
16: end if
17: let 𝑛 be a new nonterminal node
18: 𝑙𝑜𝑤′ ← 𝑙𝑜𝑤𝑙 ∪ 𝑙𝑜𝑤ℎ ∪ {𝑛→ 𝑟𝑙}
19: ℎ𝑖𝑔ℎ′ ← ℎ𝑖𝑔ℎ𝑙 ∪ ℎ𝑖𝑔ℎℎ ∪ {𝑛→ 𝑟ℎ}
20: 𝑣𝑎𝑟′ ← 𝑣𝑎𝑟𝑙 ∪ 𝑣𝑎𝑟ℎ ∪ {𝑛→ 𝑣},
21: ℬ′ ← (𝑁𝑙 ∪𝑁ℎ ∪ {𝑛}, 𝑇𝑙 ∪ 𝑇ℎ, 𝑣𝑎𝑟′, 𝑙𝑜𝑤′, ℎ𝑖𝑔ℎ′, 𝑛, 𝑣𝑎𝑙𝑙 ∪ 𝑣𝑎𝑙ℎ)
22: add (◇, 𝑟𝑜𝑜𝑡𝑓 , 𝑟𝑜𝑜𝑡𝑔)→ ℬ′ to table
23: return ℬ′
24: end function

𝑣1

𝑣2

𝑣3

0 1

Figure 2.2: Example of a reduced ordered BDD wrt. the variable ordering 𝑣1 ≺ 𝑣2 ≺ 𝑣3
encoding the Boolean function 𝑓(𝑣1, 𝑣2, 𝑣3) = (𝑣1 ∧ 𝑣2 ∧ 𝑣3) ∨ (𝑣1 ∧ ¬𝑣2).

Multi-terminal binary decision diagrams (MTBDDs) are an extension of the classical
BDDs, based on the observation that there are no obstacles preventing the terminal nodes
to have their values limited only to two values. By relaxing this restriction and allow-
ing the terminal values to be any value from a non-empty set 𝑆, they present a com-
pact representation of any function 𝑓 : B𝑛 → 𝑆. Therefore, a MTBDD ℳ is a 5-tuple
(𝑁,𝑇, 𝑣𝑎𝑟, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑟𝑜𝑜𝑡, 𝑣𝑎𝑙) with the same semantics as BDDs have, with the only dif-
ference being 𝑣𝑎𝑙 : 𝑇 → 𝑆. Ordered MTBDDs are defined in the same fashion as BDDs,
same as their reduced variant, as the definition of isomorphic BDDs can be easily ex-
tended to MTBDDs. An example of an MTBDD can be seen in Figure 2.3. Similarly,
Algorithm 3 can be extended to MTBDDs in a straightforward fashion. Let 𝑓 : B𝑛 → 𝑆𝑓
and 𝑔 : B𝑛 → 𝑆𝑔 be two functions represented by the corresponding MTBDDsℳ𝑓 andℳ𝑔,
and let ◇ : 𝑆𝑓 × 𝑆𝑔 → 𝑆 for some nonempty set 𝑆. We write ℳ𝑓 ◇ℳ𝑔 to denote the ap-
plication of the function ◇ to the MTBDDs ℳ𝑓 and ℳ𝑔 using Algorithm 3 extended
to MTBDDs.
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𝑣1

𝑣2 𝑣2

𝑣3

𝐴𝐶𝐵 ⊥

Figure 2.3: An MTBDD of the partial function 𝑓(𝑣1, 𝑣2, 𝑣3) = {((1, 1, 0), 𝐴), ((0, 1, ?), 𝐵),
((0, 0, ?), 𝐶)} where the ? symbol stands for a don’t-care bit (the value of the function does
not depend on it). Terminal node with value ⊥ denotes that the function is undefined for
the input leading to this node.
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Chapter 3

Automata-based decision
procedure for Presburger
arithmetic

The idea of a decision procedure that utilizes finite automata to encode and manipulate
the solution space of a given formula and its fragments was first given by Büchi in 1960 [7].
In this work Büchi first introduced the notion of formulae being represented via finite
automata and employed this observation to develop an algorithm deducing the formula
satisfiability using this formalism. However, the automata-based approach to determining
whether a formula has a model was not applied to PrA until 1996 when Boudet & Comon [5]
published their work on constructing compact automata encoding the solution space of
atomic constraints.

The idea of representing PrA formulae as automata is based on the fact that, given
some base 𝑏 ≥ 2, it is possible to encode any natural number 𝑛 ∈ N as a word 𝑤 = 𝑑𝑘 · · · 𝑑0,
where ∀𝑖(0 ≤ 𝑑𝑖 < 𝑏 − 1), so that 𝑛 =

∑︀𝑘
𝑖=0 𝑏

𝑖𝑑𝑖 holds. The integer 𝑏 is called the base,
while 𝑑𝑖 are the digits of the number. This encoding can be further extended to include
all integers by requiring that all encodings of an integer have a minimum of 𝑝 ≥ 2 digits.
Let 𝑧 be an integer such that −𝑏𝑝−1 ≤ 𝑧 < 𝑏𝑝−1, where 𝑝 is the number minimal number
of digits used in a given encoding. If 𝑧 < 0 then 𝑧 will be encoded as the last 𝑝 digits of
𝑏𝑚+𝑧, ∀𝑚 > 𝑝−1. According to such a scheme, the leftmost digit of the encoding of 𝑧 can
be thought of as the one determining the sign of the encoded number — if 𝑧 is negative,
then the leftmost digit is 𝑏 − 1, otherwise the leftmost digit is 0. It is worth pointing out
that one number has infinitely many encodings in the scheme described above which can
be obtained by repeating the sign digit.

Let 𝜙 be a PrA formula with 𝑛 free variables, and let 𝑆𝑜𝑙(𝜙) denote the solution space
of 𝜙. Then 𝜙 is represented via an automaton 𝒜𝜙 iff the language of the automaton ℒ(𝒜𝜙)
precisely contains only 𝑆𝑜𝑙(𝜙) encoded using some encoding.

3.1 LSBF encoding

In order to encode models of Presburger formulae we use the binary Least Significant Bit
First (LSBF) encoding. Therefore, the alphabet used by automata throughout the decision
procedure is Σ = B𝑛 where 𝑛 is the number of free variables in the given formula. To
provide an illustration, consider the following tuple of integers:
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(︂
𝑥
𝑦

)︂
=

(︂
−3
10

)︂
Using the standard two’s complement (the most significant bit is at the first position),

the tuple is encoded as follows:

−310 = 1012

1010 = 010102

The first bit from the left is always the sign bit, however, different numbers might have
a different length of their representation. As each of these encoded numbers will be written
on a separate track on automaton’s input tape, it is required that they all share the same
length. This can be achieved by adding padding i.e. repeating the sign bit, which does not
change the represented value. In our example, the result would be the following:

−310 = 111012

1010 = 010102

Finally, the binary representations can be broken into bit tuples containing the 𝑖-th bit
of each of the encoded number. Since the encoding is least significant bit first, the order of
tuples is reversed. (︂

𝑥
𝑦

)︂
=

(︂
−3
10

)︂
=

(︂[︂
1
0

]︂
,

[︂
0
1

]︂
,

[︂
1
0

]︂
,

[︂
1
1

]︂
,

[︂
1
0

]︂)︂
𝐿𝑆𝐵𝐹

As a number represented in two’s complement might have infinitely many encodings
obtained by repeating the sign bit and the constructed automaton must accept every such an
encoding, should this be an encoded solution to the formula represented by the constructed
automaton. We will refer to this requirement as the saturation property.

The choice of the LSBF encoding was made as it is commonly used in context of this de-
cision procedure. However, there is some literature dealing with the binary Most Significant
Bit First (MSBF) encoding, e.g., [20].

3.2 Constructing automata from atomic constrains
In the following section we introduce the algorithms used to construct automata encod-
ing the solution space of atomic constraints. The presented algorithms can be seen as
a bridge between the realm of first-order logic to the realm of finite automata. As we
rely on the LSBF encoding, the presented constructions construct automata with alphabet
Σ = B𝑛 where 𝑛 is the number of variables in a given formula. We provide constructions for
atomic formulae with solutions in N, and also for formulae that have their solution space
in Z.

3.2.1 Inequations

Let 𝜙≤ : �⃗� · �⃗� ≤ 𝑐 be an inequality, where �⃗� is a vector of variables of size 𝑛, �⃗� ∈ N𝑛 denotes
the vector of variable coefficients, and 𝑐 ∈ Z is a constant.
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The procedure IneqToDFA in Algorithm 4 (adoped from [14]) constructs an automaton
𝐴𝜙≤ encoding 𝑆𝑜𝑙(𝜙≤) using the LSBF encoding. An example of the constructed automaton
for 𝜙 : 𝑥 ≤ 4 over N can be seen in Figure 3.1.

Algorithm 4 Construction of an DFA encoding solutions of an inequality 𝜙≤ over N
Input: An inequality 𝜙≤ : �⃗� · �⃗� ≤ 𝑏 over N
Output: DFA 𝐴𝜙≤ = (𝑄,B|�⃗�|, 𝛿, 𝑄0, 𝐹 ) that encodes 𝜙≤

1: function IneqToDFA(𝜙≤)
2: 𝑄, 𝛿, 𝐹 ← ∅
3: 𝑄0 ← {𝑞𝑏}
4: 𝑊 ← {𝑞𝑏}
5: while 𝑊 ̸= ∅ do
6: 𝑠𝑘 ← pick and remove state from 𝑊
7: add 𝑠𝑘 to 𝑄
8: for every 𝜎 ∈ Σ do
9: 𝑣 ← ⌊12(𝑘 − �⃗� · 𝜎)⌋

10: if 𝑞𝑣 ̸∈ 𝑄 then
11: add 𝑞𝑣 to 𝑊
12: end if
13: add (𝑞𝑘, 𝜎, 𝑞𝑣) to 𝛿
14: if 𝑣 ≥ 0 then
15: add 𝑞𝑣 to 𝐹
16: end if
17: end for
18: end while
19: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
20: end function

4

2

1

0 −1

0

1

0

1

0, 1

0

1

0, 1

Figure 3.1: Automaton 𝐴𝜙 for the inequality 𝜙 : 𝑥 ≤ 4 over N

Sacrificing the determinism, it is also possible to construct an automaton that encodes
the solutions of the same inequation 𝜙 over integers, utilizing the two’s complement encod-
ing [14]. The nondeterminism is introduced due to the used encoding — the sign of the
number can be determined only after reading the last symbol on the input tape. This is
reflected in the modified procedure IneqToNFA in Algorithm 5 at lines 14 and 15, where
a scenario in which the current symbol 𝜎 is the last one is considered. Therefore, the
symbol is interpreted according to the used two’s complement encoding as a vector of sign
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bits and it is checked whether such input would satisfy the inequality 𝜙. An example of
an automaton encoding the solution space of 𝜙 : 𝑥 ≤ 4 over Z is depicted in Figure 3.2.
Algorithm 5 Construction of an NFA encoding solutions of an inequality 𝜙≤ over Z
Input: An inequality 𝜙≤�⃗� · �⃗� ≤ 𝑏 over Z
Output: NFA 𝐴𝜙≤ = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) that encodes 𝜙≤

1: function IneqToNFA(𝜙≤)
2: 𝑄, 𝛿, 𝐹 ← ∅
3: 𝑄0 ← {𝑞𝑏}
4: 𝑊 ← {𝑞𝑏}
5: while 𝑊 ̸= ∅ do
6: 𝑠𝑘 ← pick and remove state from 𝑊
7: add 𝑠𝑘 to 𝑄
8: for every 𝜎 ∈ Σ do
9: 𝑣 ← ⌊12(𝑘 − �⃗� · 𝜎)⌋

10: if 𝑞𝑣 ̸∈ 𝑄 then
11: add 𝑞𝑣 to 𝑊
12: end if
13: add the transition (𝑞𝑘, 𝜎, 𝑞𝑣) to 𝛿
14: 𝑣′ ← 1

2(𝑘 + �⃗� · 𝜎)
15: if 𝑣′ ≥ 0 then
16: if 𝐹 = ∅ then
17: add 𝑞𝑓 to 𝑄 and 𝐹
18: end if
19: add the transition (𝑞𝑘, 𝜎, 𝑞𝑓 ) to 𝛿
20: end if
21: end for
22: end while
23: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
24: end function

3.2.2 Equations

Let 𝜙= : �⃗� · �⃗� = 𝑐 be an equality, where �⃗� is a vector of variables of size 𝑛, �⃗� ∈ N𝑛 denotes
the vector of variable coefficients, and 𝑐 ∈ Z is a constant.

Similarly as with inequations, a direct construction for an automaton 𝐴𝜙= encoding
the solutions to 𝜙= exists [14]. The EqToDFA procedure resembles the construction for
automata encoding solution space of inequations, however, it does not rely on the floor
operation when calculating the label of the transition destination state. Should the dif-
ference of the number labeling the currently processed state and the symbol on the input
tape (weighted by the corresponding coefficients) be odd, the number encoded on the input
tape and the absolute part of the equation must differ in some bit, and therefore, they are
cannot be equal.

3.2.3 Congruences

Let 𝜙≡ : �⃗� · �⃗� ≡𝑚 𝑐 be a PrA formula, where �⃗� is a vector of variables, �⃗� is a vector of
variable coefficients, 𝑚 ∈ N a constant called divisor, and 𝑐 ∈ N a constant. The solution
space of 𝜙≡ can be encoded using Algorithm 6 (adopted from [12]).
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Figure 3.2: Automaton 𝐴𝜙 for the inequality 𝜙 : 𝑥 ≤ 4 over Z

Algorithm 6 Construction of an NFA encoding solutions of a congruence 𝜙≡ over Z
Input: A congruence 𝜙≡ : �⃗� · �⃗� ≡𝑚 𝑐
Output: NFA 𝐴𝜙≡ = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) that encodes 𝜙≡

1: function CongruenceToNFA(𝜙)
2: 𝑄, 𝛿 ← ∅
3: 𝐹 ← {𝑞𝑓}
4: 𝑄0 ← {𝑞�⃗�·�⃗�≡𝑚𝑐}
5: 𝑊 ← {𝑞�⃗�·�⃗�≡𝑚𝑐}
6: while 𝑊 ̸= ∅ do
7: 𝑞�⃗�·�⃗�≡𝑛𝑑 ← pick and remove state from 𝑊
8: add 𝑞�⃗�·�⃗�≡𝑛𝑑 to 𝑄
9: for every 𝜎 ∈ Σ do

10: if 2 | 𝑛 then and 2|(𝑑− �⃗� · �⃗�)
11: 𝑛′ ← 𝑛/2
12: 𝑑′ ← (𝑑− �⃗� · �⃗�)/2
13: add (𝑞�⃗�·�⃗�≡𝑛𝑑, 𝜎, 𝑞�⃗�·�⃗�≡𝑛′𝑑′) to 𝛿
14: else if 2 ̸ | 𝑛 then
15: if 2|(𝑑− �⃗� · �⃗�) then
16: 𝑑′ ← (𝑑− �⃗� · �⃗�)/2
17: else
18: 𝑑′ ← (𝑑+ 𝑛− �⃗� · �⃗�)/2
19: end if
20: add (𝑞�⃗�·�⃗�≡𝑛𝑑, 𝜎, 𝑞�⃗�·�⃗�≡𝑛𝑑′) to 𝛿
21: if 𝑞�⃗�·�⃗�≡𝑛𝑑′ ̸∈𝑊 then
22: add 𝑞�⃗�·�⃗�≡𝑛𝑑′ to 𝑊
23: end if
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24: if 𝑑+ �⃗� · �⃗� ≡𝑛 0 then
25: add (𝑞�⃗�·�⃗�≡𝑛𝑑, 𝜎, 𝑞𝑓 ) to 𝛿
26: end if
27: end if
28: end for
29: end while
30: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
31: end function

3.3 Automata-based decision procedure for Presbuger arith-
metic

The automata-based decision procedure works in a bottom-up fashion, starting with the ato-
mic PrA subformulae found in the input formula 𝜙 and working its way up. Using the
algorithms IneqToNFA, EqToNFA, and CongruenceToNFA, it constructs the automata for
the atomic PrA subformulae found in 𝜙. These automata are then modified and combined
according to the structure of 𝜙, mapping logical conjunctions to their equivalent operations
on the automata and languages they represent:

• Negation ¬𝜓(𝑥1, 𝑥2, ..., 𝑥𝑛)  𝐴𝐶𝜓 , where 𝐴𝐶𝜓 encodes 𝐿(𝐴𝜓) (Automaton comple-
ment),

• Conjunction 𝜙(𝑥1, 𝑥2, ..., 𝑥𝑛) ∧ 𝜓(𝑥1, 𝑥2, ..., 𝑥𝑛) 𝐿(𝐴𝜙) ∩ 𝐿(𝐴𝜓), and

• Disjunction 𝜙(𝑥1, 𝑥2, ..., 𝑥𝑛) ∨ 𝜓(𝑥1, 𝑥2, ..., 𝑥𝑛) 𝐿(𝐴𝜙) ∪ 𝐿(𝐴𝜓).

The existential quantification ∃𝑥(𝜓) is performed via projecting away the track cor-
responding to the variable 𝑥 from the input tape. There is no equivalent operation for
the universal quantification, and therefore, the quantifier is replaced by an existential one
according to the law: ∀𝑥(𝜓) ≡ ¬∃𝑥(¬𝜓).
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Figure 3.3: An illustration of a missing model encoding on a fragment of automaton for
𝜙 : ∃𝑥(𝑥 − 𝑦 ≥ 12). The rest of the automaton is denoted as ̃︁𝐴𝜙. The transition and
the final state added by the PadClosure algorithm are displayed in teal.

After a variable track is projected away, the language of the resulting automaton might
not necessarily contain all encodings of the solutions. Removing a variable track naturally
truncates the alphabet, and therefore, some transitions along symbols that were not pre-
viously a part of the padding of an encoded solution might become a part of the padding.
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This situation is illustrated in Figure 3.3, which depicts a problematic fragment of au-
tomaton for the formula 𝜙 : ∃𝑥(𝑥 − 𝑦 ≥ 12). This inconsistency can be solved by using
the PadClosure procedure in Algorithm 7 that augments the automaton structure so that
it satisfies the saturation property.

Algorithm 7 Augment 𝒜 so that it accepts all encodings of models.
Input: NFAs 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
Output: NFA 𝒜′ = (𝑄′,Σ, 𝛿′, 𝑄0, 𝐹

′) accepting all encodings of models
1: function PadClosure(𝒜)
2: 𝛿′ ← 𝛿, 𝑊 ← ∅
3: 𝑞𝑓 ← a new state to be added to 𝒜 such that 𝑞𝑓 ̸∈ 𝑄
4: for 𝜁 ∈ Σ do
5: 𝑆 ← ∅, 𝑊 ← Pre𝛿(𝐹 )
6: while 𝑊 ̸= ∅ do
7: 𝑞 ← pick and remove from 𝑊
8: add 𝑠 to 𝑆
9: for 𝑞′ ∈ Pre𝛿(𝑞) do

10: add 𝑞′ to 𝑊 if 𝑞′ ̸∈ 𝑆
11: end for
12: end while
13: for 𝑞 ∈ 𝑆 do
14: add (𝑞, 𝜁, 𝑞𝑓 ) to 𝛿′ if Post𝛿(𝑞, 𝜁) ∩ 𝐹 = ∅
15: end for
16: end for
17: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) if 𝛿 = 𝛿′ else (𝑄 ∪ {𝑞𝑓},Σ, 𝛿′, 𝑄0, 𝐹 ∪ {𝑞𝑓})
18: end function

Algorithm 7 works as follows. For every possible padding symbol 𝜁 ∈ Σ the set 𝑆 of
states accepting a word 𝜁+ consisting only of the padding symbol. Therefore, the set 𝑆
contains all states for which the saturation property might be broken. The property is
trivially broken for a state 𝑠 ∈ 𝑆 if the word 𝑤 = 𝜁 is not accepted from 𝑠, since it follows
from the way 𝑆 is constructed that there must be a word 𝑤′ = 𝜁 . . . 𝜁, 𝑤′ ∈ ℒ(𝑠) consisting
only the padding symbol. For any word 𝑤′ with |𝑤′| ≥ 2, there exists a run of the input
automaton 𝑠

𝑢
=⇒ 𝑠′ over a word 𝑢, such that 𝑠′ ∈ 𝑆 and 𝑤′ = 𝑢𝜁. Therefore, it is sufficient

to only check whether the property is trivially broken in any state 𝑠 ∈ 𝑆, as all cases of
saturation property being broken by 𝑤′ will be considered by checking whether the property
is trivially broken in every 𝑠′ ∈ 𝑆.

After the entire input formula 𝜓 is processed in the fashion described above, we are
left with an automaton 𝒜𝜓 encoding the solution space of 𝜓. Therefore, the existence of
a model can be determined by checking whether the ℒ(𝒜𝜓) is empty, which would signify
that 𝜓 has no solution. The emptiness checking of ℒ(𝒜𝜓) can be performed by standard
graph searching algorithms such as Depth Fist Search (DFS). An illustration of the entire
decision procedure can be found in Figure 3.4.
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Figure 3.4: Illustration of the decision procedure for the input formula 𝛼 : ∃𝑥(¬(3𝑥 + 𝑦 ≤
3 ∧ 2𝑥− 4𝑦 ≤ 0) depicting how the input formula structure is mapped onto operations on
regular languages, and the order of the performed transformations. Atomic PrA formulae
are denoted by 𝜙 and 𝜓.
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Chapter 4

Description of the implemented
automata-based SMT solver

This chapter describes Amaya - an experimental SMT solver based on finite automata
implemented as a part of this work. The chapter starts by providing an overview of Amaya’s
architecture, and the steps our solver performs in order to decide whether the input formula
has a model. The chapter then continues with a detailed description of the developed
symbolic representation of transitions using MTBDDs, as well as the developed MTBDD-
aware versions of the classical automata constructions. The chapter concludes with a short
description of Amaya’s additional features, supporting experimentation with the automata-
based decision procedure.

4.1 Architecture of the implemented solver

Amaya is implemented in the Python 3 programming language. The choice of the im-
plementation language was driven by the goal of this work — to create an experimental,
automata-based SMT solver for PrA, laying the necessary foundation for the future research
of the automata-based decision procedure and its practical applications. Python presented
itself as a great choice, due to its dynamic nature and its vast library ecosystem, providing
more flexibility for experimentation compared to compiled statically typed languages. Nat-
urally, this choice greatly influences runtime performance, but besting the state-of-the-art
SMT solvers in terms of speed is not the topmost priority of the created tool.

Our solver was designed to support SMT-LIB [4] — a standardized input language
supported by the state-of-the-art solvers, and thus allowing easy performance comparisons
of our solver to the solvers implementing other decision procedures. SMT-LIB syntacti-
cally belongs to the family of Lisp-like languages, implying that the lexical analysis and
the syntactical analysis are easy. The internal representation produced by the syntactical
analysis — the abstract syntax tree (AST) — is based on Python’s built-in lists. This
representation is used as it closely matches the structure of the input text, and it is easy to
implement, allowing us to focus on the actual decision procedure. Furthermore, the inter-
nal representation based on lists has proven to be very flexible, especially when performing
preprocessing.

We carefully picked the features of SMT-LIB to support in our implementation based
on their occurrence in available benchmarks. Except the features absolutely necessary to
encode input formulae, we also support let expressions allowing binding a value to a vari-
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Figure 4.1: Diagram illustrating the operations Amaya has to perform in order to deduce
the SAT value from the given input SMT2 text.

able in a certain scope and ite (if-then-else) expressions. Both of these constructs are in
essence a syntax sugar providing compact notation for input formulae. In order to sup-
port this syntax sugar, together with some trivial optimizations on the input formulae, the
solver performs multiple preprocessing passes. The number of preprocessing AST traver-
sals is lower than the number of overall syntactical modification performed, as some AST
modifications do not conflict (modify the same AST nodes) nor depend on other prepro-
cessing changes. Such non-conflicting AST modifications can be combined into a single
pass, avoiding needless AST traversals. The preprocessing algorithm is implemented in an
abstract fashion, allowing extending a preprocessing pass just by defining which function
should be called if a given node is encountered when traversing the AST. The preprocessing
is performed in three passes:

1. The first pass performs the macro expansion of the let expressions by replacing all
the occurrences of the variables bound in a let expression by the their value in
the scope of the expression. After all bound variables have been folded in, the let
expression is removed from the AST. However, if a bound value can be represented
as an automaton (e.g. its value is an entire formula), variable occurrences are not
replaced by its value, but the variable value is looked up during the evaluation when
the variable is referenced. The automaton created for such a formula is cached and
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subsequent variable occurrences use the cached value without building the automaton
again.

2. During the second pass, universal quantifiers are replaced by existential quantifiers
using the law ∀𝑥(𝜂) ⇔ ¬∃𝑥(¬𝜂). Similarly, as there is no equivalent automaton
operation for implication, implications must also be replaced using the law: 𝜙→ 𝜓 ⇔
(¬𝜙) ∨ 𝜓. Finally, ite expressions are also removed into expression they abbreviate:
(ite b x y)⇔(or (and b x) (and (not b) y)).

3. The last pass removes double negations according to the law: ¬(¬𝜓)⇔ 𝜓.

The core of the implemented SMT solver is an automata library providing data struc-
tures for storing automata and implementing automata procedures. The provided proce-
dures range from algorithms crucial for the decision procedure (e.g. intersection construc-
tion) to algorithms serving for experimentation such as various minimization procedures.
The automata library represents automata by a separate class, originally designed in a fash-
ion matching the formal definition of an automaton. However some restrictions had to be
put forth in order to efficiently utilize MTBDDs to speed up automata operations (MTBDDs
are discussed bellow). Automata transition relations are abstracted into a separate class,
due to the need to experiment with different ways of representing transitions. The need to
be able to seamlessly change between the different ways of storing the transition function
is due to its big impact on the overall decision procedure runtime.

As quantifiers facilitate the possibility of a variable name being ambiguous, the solver
has to track variable scopes throughout the decision procedure. As a consequence, variables
are no longer identified by their name, but rather a unique identifier assigned to them based
on the context they are in. Similar context analysis is required by the variables introduced
in the let expression. Naturally, the scopes introduced by let expressions and quantifiers
are semantically different, and therefore, the solver must keep two separate stacks of scopes.

Alphabet symbols are not stored explicitly, due to the exponential growth of the al-
phabet size wrt. the number of variables in the input formula resulting in high memory
consumption. Instead, the class encapsulating alphabet stores the variable identifiers and
their names, and generates the alphabet symbols on demand. Initially, every automaton
had a separate, potentially different alphabet based on the variables of the formula the au-
tomaton was encoding. However, adding support for MTBDDs required to have one unified
alphabet due to the used MTBDD library requiring pre-declaring all variables. The negative
impact on the performance of the classical automata algorithms iterating over the entire
alphabet is mitigated by explicitly tracking what variables are used in the formula encoded
by the automaton, allowing algorithms to iterate only over symbols differing in significant
tracks. Amaya supports a simple symbolic representation of alphabet symbols by providing
a notation for a don’t-care bit. If a transition 𝑞

𝑠−→ 𝑞′ has the value of the 𝑖-th bit of 𝑠
set as don’t-care, the transition represents two transitions — one with the 𝑖-th bit set to
zero, and the other one with the 𝑖-th bit set to one. This symbolic representation reduces
required memory used by the automaton’s transition relation. The automata library does
not actively perform detection and compression of don’t-care bits. However, transition sym-
bols are compressed when exporting automata, as the exported automata are often visually
inspected by a human, and the compressed symbols greatly help readability.

After preprocessing is performed, all AST subtrees representing atomic relations are
converted into leaves containing the atomic relations in a normalized from which automata
can be created directly using the constructions described in Section 3.2. In this form every
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variable occurs only once on the left-hand side of the predicate symbol and on the right-hand
side is a constant, therefore, arithmetical expressions inside the relation must be evaluated
and the relation rearranged. As Amaya supports also modulo terms, the performed nor-
malization must also compute the coefficients of these constraints similarly to the variable
coefficients. The conversion of AST subtrees representing atomic relations is performed as
a standalone step in order to separate the decision procedure from the normalization code
manipulating arithmetic expressions.

As every SMT-LIB theory declaration contains implicitly the Core theory providing
the definition of the Bool sort (type) and the usual set of Boolean connectives, the input
formulae can contain the equality symbol used to denote PrA atomic constraints, or to
denote equivalence of two formulae. Our solver has to distinguish between these scenarios,
as a new automaton must be constructed for atomic constraints, whereas the equivalence of
two formulae operates on two automata representing the corresponding formulae. The am-
biguity of equality cannot be addressed in preprocessing, as it is not possible to determine
whether the expression (= x y) is a PrA atomic constraint without having contextual
information about the sorts of 𝑥 and 𝑦.

�⃗� · 𝑥+ (𝑦 𝑚𝑜𝑑 𝑀) ≤ 𝑐⇔
∃𝑚(⃗𝑎 · 𝑥+𝑚 ≤ 𝑐 ∧ 0 ≤ 𝑚 ≤𝑀 − 1 ∧𝑚 ≡𝑀 𝑦) (4.1)
∃𝑘(⃗𝑎 · 𝑥+ (𝑦 − 𝑘𝑀) ≤ 𝑐 ∧ 0 ≤ (𝑦 − 𝑘𝑀) ≤𝑀 − 1) (4.2)

Supporting modulo terms presents a problem when constructing automata for atomic
constraints. The solver must detect that a normalized constraint contains modulo terms,
and rewrite the constraint using existential quantifiers as shown in Formula 4.1 in order to
express the modulo terms since there is no construction for atomic constrains containing
modulo terms. The solver could rewrite the modulo constraints in an alternative fash-
ion as shown in Formula 4.2, however, our implementation prefers the earlier formula, as
the Algorithm 6 constructs automata of a more interesting structure (discussed in Section
6.1). Furthermore, there is no dedicated function in the SMT-LIB LIA (linear integer arith-
metic) theory for expressing congruences, therefore, congruences are written as an equality
of a modulo term and a constant. For example, the congruence 𝑥 ≡3 1 would be writ-
ten as (mod x 3) = 1. Such syntactical structures must be correctly recognized, and not
rewritten using an existential quantifier.

After all relation subtrees are converted to directly evaluable leaves, the solver traverses
the AST constructing and combining intermediate automata as described in Section 3.3,
utilizing the algorithms provided by the core library. Figure 4.1 provides an illustration
of all the steps our solver has to perform when determining the existence of a model of
an input formula.

4.2 Symbolic representation of automaton transition rela-
tions

The LSBF alphabet grows exponentially with the number of variables present in the input
formula. Consequently, the time complexity of the classical automaton algorithms iterating
over all alphabet symbols grows exponentially as well. Although the classical constructions
are usable when deciding formulae with a low number of variables, the decision procedure
based on these algorithms becomes quickly unfeasible when executed on richer formulae
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having several variables. The exponential growth of the subset construction is portrayed in
Figure 4.2. Moreover, storing transitions explicitly represents a considerable portion of the
memory used by the solver, as any transition over a symbol 𝑠 ∈ Σ will be stored with its
own copy of the symbol. We have experimented with multiple ways to address these issues
by representing the transitions symbolically.
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Figure 4.2: The exponential runtime growth of the classical constructions (native backend)
wrt. the number of variables compared to the runtime of our optimized MTBBD-based
procedures (MTBDD backend).

When searching for a performant symbolic representation, Binary Decision Diagrams
(BDDs) presented themselves as a natural first choice due to their popularity and the avail-
ability of multiple mature Python libraries providing an optimized BDD implementation.
Our BDD-based representation of the transition relation used one BDD to encode the transi-
tion symbols between every pair of two states. Although initially showing promising increase
in the performance of the intersection procedure, determinization suffered significantly due
to the complexity of evaluating minterms. The minterminization problem is depicted in Fig-
ure 4.3. The standard subset construction would begin by processing the macrostate {𝑞0}.
This macrostate can have up to seven reachable successor macrostates (|𝒫(Post({𝑞0}))|),
and, for every of these possibly reachable macrostates, the solver has to compute a dif-
ferent BDD representing the transition symbols. If the calculated BDD represents ⊥, the
macrostate is discarded, as it is unreachable. Solving this problem for a macrostate with
more than three reachable states in the input NFA quickly becomes more costly than iter-
ating over the entire alphabet.

After failing to overcome performance problems connected to determinization of NFAs
having transition symbols represented by BDDs, we shifted our attention to MTBDDs.
Since MTBDDs can have leaves with arbitrary values, we were able to design a represen-
tation of the transition relation where every automaton state 𝑞 has associated an MTBDD
that represents all transitions from 𝑞. An illustration of the developed MTBDD representa-
tion is given in Figure 4.4. The idea of using MTBDDs to represent transition relations is
not novel, and MTBDD-based representations been utilized by e.g. the VATA library [22]
and the MONA solver [19]. In contrast to our earlier attempts representing symbolically
only the transition symbols, the MTBDD-based approach represents symbolically entire
sets of transitions.

MTBDDs are less popular compared to BDDs, lacking of any Python library imple-
menting this formalism. In order for our solver to utilize this formalism, we had to create
our own Python wrapper around Sylvan [11] — a mature BDD library implementing var-
ious BDD variants including MTBDDs. Sylvan was created as a research project aiming
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ℬ123−→ {𝑞1, 𝑞2, 𝑞3}

ℬ123 := ℬ1 ∧ ℬ2 ∧ ℬ3

Figure 4.3: A Venn diagram illustrating a single iteration of the subset construction (cf. Al-
gorithm 2) processing the macrostate {𝑞0} of an NFA with transition symbols represented
by Binary Decision Diagrams

at increasing the performance of BDD operations by exploiting parallelism. However, for
the purposes of designing and experimenting with a MTBDD-based representation of au-
tomata transition relation, the parallelization provided by Sylvan is not needed, and it is
turned off, avoiding the need to implemented synchronization mechanisms throughout the
solver. Although Sylvan supports user-defined MTBDD leaves and operators, implement-
ing a rich wrapper allowing to define custom leaves from Python posed a challenge caused,
e.g., by the Sylvan API design requiring to pass function pointers to housekeeping functions
when defining custom leaf types. Instead, we created a library implementing the custom
leaves in C++ and provided a thin Python wrapper for interacting with the custom library.

Interfacing with a statically typed language also required restricting the way automata
are represented. Algorithms used throughout the decision procedure often produce au-
tomata with states having special semantics. For example, Procedure 5 produces an au-
tomaton with states labeled by integers relating the states to the original atomic constraint,
and a single final state labeled differently, since its semantics is not related to the original
atomic constraint the same way the states labeled by integers are. As Python is dynami-
cally typed, the core automata library did not enforce any restrictions on the state labels,
and therefore, the processed automata kept the semantics of their states. Although such
a relaxed automaton representation is useful for inspecting and reasoning about the in-
ner workings of the decision procedure, it becomes an inconvenience when interfacing with
a statically typed language. Therefore, automata states are restricted to be only integers
and their semantics can be optionally tracked as a part of the automaton metadata if
enabled by the user.

4.2.1 Efficient automata algorithms using MTBDD-based transition re-
lation representation

In order to fully utilize the symbolic representation of transitions that MTBDDs provide,
most of the classical automaton algorithms needed to be redesigned in a fashion avoiding ex-
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Figure 4.4: An illustration of the MTBDD encoding all outgoing transitions of the state
𝑞0 of the depicted NFA 𝒜, where * represents a don’t care bit, dashed edges represent 0,
and solid edges represent 1.

plicit iteration over the alphabet symbols, as such an iteration translates to uncompressing
the MTBDD representation, and therefore, diminishing the potential performance gains of
using this formalism.

The classical construction in Algorithm 2.2 of an automaton acepting union of two lan-
guages represented by corresponding automata does not require any modification. However,
the automata library must make sure the set of states of both input automata are disjoint.
This requirement is satisfied by renaming states of the input automata by assigning them
unique integers, and therefore, the MTBDD library has to provide an unary state-renaming
operator parametrized by a bijection mapping the old state names to the new names.

In contrast to the union construction, the classical intersection construction described in
Algorithm 1 iterates over the automaton alphabet. In order to avoid such an iteration, a new
MTBDD operator had to be designed. This operator achieves the same as the iteration,
however, in a way that utilizes the MTBDD structure.

Let 𝒜𝐴 = (𝑄𝐴,Σ, 𝛿𝐴, 𝑄0𝐴, 𝐹𝐴) and 𝒜𝐵 = (𝑄𝐵,Σ, 𝛿𝐵, 𝑄0𝐵, 𝐹𝐵) be the input automata
of the intersection procedure, let 𝒜∩ = (𝑄∩,Σ, 𝛿∩, 𝑄0∩, 𝐹∩) be the corresponding output
automaton, and let ◇∩ : 𝒫(𝑄𝐴) × 𝒫(𝑄𝐵) → 𝒫(𝑄𝐴 × 𝑄𝐵) be defined as ◇∩ : (𝑄′𝐴, 𝑄

′
𝐵) ↦→

𝑄′𝐴×𝑄′𝐵. The definition of the function ◇∩ is based on the observation of the core principle
of the intersection procedure. Let (𝑞, 𝑠) ∈ 𝑄∩ be a state of 𝒜∩ where 𝑞 ∈ 𝑄𝐴 and 𝑠 ∈ 𝑄𝐵.
Then the automaton 𝒜∩ has transitions 𝑃𝑜𝑠𝑡𝒜∩((𝑞, 𝑠), 𝜁) = 𝑃𝑜𝑠𝑡𝒜𝐴(𝑞, 𝜁)×𝑃𝑜𝑠𝑡𝒜𝐵 (𝑠, 𝜁) for
any 𝜁 ∈ Σ. In other words, the construction adds transitions from (𝑞, 𝑠) along some symbol
𝜁 based on the existence of transitions along the same transition symbol from the states 𝑞
and 𝑠 in the corresponding automata. The algorithm BDDApply (Algorithm 3) behaves in
a similar fashion, applying the given function ◇ on leaves reachable in the input MTBDDs by
paths corresponding to the same Boolean vector. This similarity between the intersection
procedure and the BDDApply algorithm results in the given definition of ◇∩, that, when
applied to the MTBDDs corresponding to the pair of states (𝑞, 𝑠) currently processed in
the intersection procedure, results in an MTBDD representing the transitions from (𝑞, 𝑠)
in automaton 𝒜∩. An illustration ◇∩ as used in the MTBDD-based intersection procedure
can be seen in Figure 4.5.

However, the definition of ◇∩ poses some implementation problems. MTBDDs used
in the automata have leaves containing sets of states. The application of ◇∩ results in
an MTBDD with tuples of states stored in leaves, and therefore, it would require defin-
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Figure 4.5: An illustration capturing a single step of the MTBDD-based intersection pro-
cedure processing the product state (𝑞0, 𝑠0). The individual states constituting are dis-
played with relevant part of their automata, with the corresponding MTBDDs attached to
the state. The MTBDD resulting from applying the intersection operator is also displayed,
including the part of the automaton it represents.

ing a new leaf type in Sylvan, supplying Sylvan with custom housekeeping functions for
the new leaf type, and exposing an interface allowing manipulation of MTBDDs with such
leaves. Instead, our C++ library assigns the state tuples a unique integer when they are
produced, avoiding the need to add a new leaf type definition while maintaining consistency
of the type of leaves used by the automata at the same time. Any state of 𝒜∩ might be
reachable from multiple states, meaning that the same state tuple will be present in different
Cartesian products, the assigned integers must be consistent throughout the MTBDD-based
intersection procedure. Therefore, the implementation of ◇∩ stores the information about
assigned integers in a global context of the currently performed intersection, and propagates
it to back to Python, keeping the information consistent between the Python side driving
the intersection construction and the C++ side manipulating the MTBDDs.

Similarly to the intersection procedure, the subset construction also iterates over the au-
tomaton alphabet, and therefore, needs to be redesigned in order to utilize MTBDDs.
Let 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) be the input automaton to be determinized, and let 𝒜𝒟 =
(𝒬,Σ,Δ,𝒬0,ℱ) be the corresponding equivalent DFA. The subset construction produces
an automaton with states being sets of states of 𝒜 and having transitions 𝑀 𝜁−→ 𝑀 ′ ∈ Δ

where 𝑀 ′ = ∪𝑞∈𝑀{𝑞′ | 𝑞
𝜁−→ 𝑞′ ∈ 𝛿}. Similar to the intersection procedure, the transitions

of 𝒜𝒟 are constructed based on the transitions from individual states in the macrostate
𝑀 sharing the same transition symbol in the input automaton. This observation leads
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Figure 4.6: Illustration of a single step in the MTBDD-based subset construction processing
the macrostate {𝑞0, 𝑞1, 𝑞2}.

to defining a new function ◇∪ : 𝒫(𝑄) × 𝒫(𝑄) → 𝒫(𝑄) as ◇∪ : (𝑄1, 𝑄2) ↦→ 𝑄1 ∪ 𝑄2. Given
a macrostate 𝑀 = {𝑞0, 𝑞1} and MTBDDsℳ0 andℳ1 representing transitions from the cor-
responding states in the input NFA, the application ℳ0 ◇∪ℳ1 is analogous to the subset
construction computing the transitions from 𝑀 . As set union is associative, the MTBDD
ℳ𝑀 representing transitions from a macrostate 𝑀 can be computed by a consequent ap-
plication of ◇∪: ℳ𝑀 = (ℳ0 ◇∪ℳ1) ◇∪ . . .ℳ|𝑀 |. Figure 4.6 provides an illustration of
a single iteration of the MTBDD-based subset construction.

The resulting MTBDD ℳ𝑀 contains only sets of states in its leaves, and, therefore,
it does not require defining a new leaf type. However, as the sets of states contained in
MTBDD leaves are consider states of the output DFA, the MTBDD-based determiniza-
tion must be finalized by replacing all sets in the MTBDD leaves by a singleton contain-
ing an unique integer representing the state in the constructed DFA in order to maintain
the consistency of the MTBDD-based transition relation representation.

In contrast to the subset construction and the intersection construction, the PadClosure
procedure (Algorithm 7) does not operate on the input automaton in a typical iterative
way, in which a list of states to be processed is maintained, and only one state is processed
at a time. Instead, the PadClosure algorithm computes a set 𝑆𝜁 containing all states 𝑞
such that ℒ(𝑞)∩ 𝜁+ ̸= ∅ for every 𝜁 ∈ Σ. In other words, the set 𝑆𝜁 contains all states that
accept a word consisting only of the padding symbol, and, therefore, the set contains all
states possibly breaking the saturation property wrt. the symbol 𝜁. Computing 𝑆𝜁 from
automaton with transitions represented by MTBDDs while utilizing the MTBDD structure
to avoid enumeration of transition symbols is a harder problem than designing the previous
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MTBDD variants of the classical constructions due to the difference in their structures.
Theoretically, a MTBDD-based PadClosure could use MTBDDs to efficiently partition
the transition function of the input automaton according to the transition symbols. Entire
automaton would then be represented by one MTBDD containing every equivalence class
of such partitioning in one of its leaves. Iterating over the leaves of such an MTBDD
and computing the set 𝑆 from the equivalence classes is then a trivial task. However, this
scheme would require adding another custom leaf type, further broadening the scope of
the interface required between Python and our C++ library implementing functions for
manipulating MTBDDs.

Instead, we created Algorithm 8, an iterative version of the PadClosure algorithm sim-
ilar to the classical constructions. Let 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) be the input automaton for
the MTBDDPadClosure procedure. The algorithm processes tuple of states (𝑞, 𝑠) such that
𝑠 ∈ 𝑃𝑜𝑠𝑡(𝑞) and their corresponding MTBDDs. Starting with states with transitions to
an accepting state and their predecessors, it attempts to propagate a transition to the fi-
nal state if missing. The propagation is performed by the function ◇*𝑞𝑓 : 𝒫(𝑄) × 𝒫(𝑄) →
𝒫(𝑄∪{𝑞𝑓}), which, when supplied to BDDApply , adds a transition to a new final state 𝑞𝑓 .
The function ◇*𝑞𝑓 is defined as follows:

◇*𝑞𝑓 (𝑄1, 𝑄2) =

{︃
𝑄1 ∪ {𝑞𝑓} 𝑄2 ∩ 𝐹 ̸= ∅ ∧𝑄1 ∩ 𝐹 ̸= ∅
𝑄1 otherwise

If a transition to the new final state 𝑞𝑓 was added, all predecessors of 𝑠 are added
to the work list, as the newly added transitions to a final state needs to be propagated
further. In order to avoid reversing the MTBDDs, it is sufficient to compute Pre as an ad-
jacency matrix at the beginning of the algorithm, by simply iterating through the leaves of
the MTBDDs constituting 𝛿. The algorithm is guaranteed to terminate, since by definition
of ◇*𝑞𝑓 every state can be processed at most |Σ| times, and the number of automaton states
is finite. Figure 4.7 illustrates the usage of ◇*𝑞𝑓 during the MTBDDPadClosure.

Algorithm 8 Augment 𝒜 with transition relation represented by MTBDDs so that it
accepts all encodings of models.
Input: NFAs 𝒜 = (𝑄,Σ, 𝛿, 𝑄0, 𝐹 )
Output: NFA 𝒜′ = (𝑄′,Σ, 𝛿′, 𝑄0, 𝐹

′) accepting all encodings of models
1: function MTBDDPadClosure(𝒜)
2: 𝛿′ ← 𝛿
3: 𝑊 ← ∅
4: 𝑞𝑓 ← a new state to be added to 𝒜 such that 𝑞𝑓 ̸∈ 𝑄
5: for 𝑞 ∈ ∪𝑓∈𝐹𝑃𝑟𝑒(𝑓) do
6: for 𝑠 ∈ 𝑃𝑟𝑒(𝑞) do
7: 𝑊 ←𝑊 ∪ {(𝑞, 𝑠)}
8: end for
9: end for

10: while 𝑊 ̸= ∅ do
11: pick and remove (𝑞, 𝑠) from 𝑊
12: ℳ𝑞 ← MTBDD corresponding to 𝑞 in 𝛿′

13: ℳ𝑠 ← MTBDD corresponding to 𝑠 in 𝛿′

14: ℳ𝑟𝑒𝑠𝑢𝑙𝑡 ←ℳ𝑞 ◇*𝑞𝑓 ℳ𝑠

15: if ℳ𝑟𝑒𝑠𝑢𝑙𝑡 ̸=ℳ𝑞 then
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16: for 𝑠′ ∈ 𝑃𝑟𝑒(𝑠) do
17: replace ℳ𝑞 in 𝛿′ by ℳ𝑟𝑒𝑠𝑢𝑙𝑡

18: add (𝑠, 𝑠′) to 𝑊 if (𝑠, 𝑠′) ̸∈𝑊
19: end for
20: end if
21: end while
22: return (𝑄,Σ, 𝛿, 𝑄0, 𝐹 ) if 𝛿 = 𝛿′ else (𝑄 ∪ {𝑞𝑓},Σ, 𝛿′, 𝑄0, 𝐹 ∪ {𝑞𝑓})
23: end function
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Figure 4.7: Demonstration of MTBDD-based padding closure

4.3 Additional features of our solver

Because the primary purpose of Amaya is experimantation with the automata-based deci-
sion procedure for PrA this purpose is also reflected in the additional features the solver
provides.

To accurately compare the implemented decision procedure to the other approaches
utilized by the state-of-the-art solvers, our solver implements a built-in benchmarking
mechanism. Having a built-in benchmarking allows measuring the runtime of the decision
procedure without including, e.g., the time consumed by the Python interpreter parsing
the solver’s codebase. Both Z3 and CVC4 provide a similar way to print statistics, includ-
ing the used CPU time. The implemented benchmarking functionality allows specifying
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Figure 4.8: An example of an automaton constructed during the execution of the decision
procedure as exported by Amaya in the DOT format. The automaton contains only one
strongly connected component (SCC) with more than one state. The SCC is automatically
detected by Amaya and its states are drawn in green.

the entire set of input files to benchmark the solver with, either by explicitly enumerat-
ing the desired input files or by supplying a folder containing the input formulae, letting
the solver collect the files. Naturally, it is possible to specify the number of benchmark
executions to minimize statistical noise. The solver then outputs the individual runtimes,
as well as their average and the standard deviation in the JSON or the CSV format. The
solver’s benchmarking infrastructure also monitors whether the solver’s answer matches
the SAT value provided as a part of the input file, generating a report containing tests for
which the computed results were incorrect, if any.

Amaya also provides a full introspection inside the decision procedure by exporting in-
termediate automata constructed during the decision procedure’s run. The automata can
be exported in the DOT format, providing an easy way to visualize and analyze the au-
tomata, or in the VTF format, making Amaya a source of automata to other research efforts
in the field of automata theory. As the automata exported in the DOT format are usually
inspected by a human, Amaya compresses the transition symbols using BDDs to provide a
visual representation that is easier to read. An example of an exported automaton can be
seen in Figure 4.8. Our solver can also optionally detect strongly connected components
of the exported automaton and use this information to colorize the exported DOT repre-
sentation, highlighting structures potentially interesting for further research. The export
functionality is implemented in a way that is easy to extend, abstracting away the dif-
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ferences between the different automata representations used by the provided execution
backends.

Parts of the codebase of our solver are covered by unit tests, providing a quick feedback
on whether the algorithmic changes performed as a part of experimentation did not break
the solver. These tests are written in a fashion asserting the automaton structure without
making assumptions on the used state labeling, as the state labels may be different between
various execution backends.
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Chapter 5

Experimental evaluation

This chapter provides an overview of the results of experiments concluded with Amaya.
The chapter starts by giving a comparison of our solver to the state-of-the-art solvers
Z3 and CVC5 on real-world benchmarks with origins in program verification, as well as
an evaluation of the performance benefits of the MTBDD-backend when deciding these
benchmarks. The chapter then concludes by comparing our solver to the state of the art
in deciding the Frobenius coin problem. As the presented results show, the automata-
based decision procedure vastly outperforms the state of the art on the Frobenius coin
problem benchmark. The experiments were concluded using the Z3 solver ver. 4.8.16
and the CVC5 solver ver. 1.0.0, and all runtimes were measured with the precision of 1ms.
All formulae included in our experiments contained information about their satisfiability
in their metadata. The provided SAT values were used to check the computed SAT value.

The experiments were carried out on a system with the following configuration:

Machine Lenovo ThinkPad X1 Carbon Gen 5
OS Debian GNU/Linux 11
Kernel version #1 SMP Debian 5.10.106-1 (2022-03-17)
CPU Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Cache 128KiB L1, 512KiB L2, 4 MiB L3
RAM 16GB @ 1866MHz
SSD 512GiB M.2 SSD 32Gb/s

5.1 Comparison to the state of the art on deciding quantified
linear integer arithmetic benchmarks

We have compared our solver to the state-of-the-art SMT solvers Z3 and CVC5 on de-
ciding the TPTP and the UltimateAutomizer benchmarks from SMT-COMP available at
the StarExec server1.

The TPTP (Thousands of Problems for Theorem Prover) Problem Library [25] is a pro-
ject aiming at providing a common library of problems to test and evaluate automated
theorem proving systems. The problems contained in TPTP belong to numerous theories,
including 46 linear integer arithmetics (LIA) formulae. Figure 5.1a depicts the runtimes of
Amaya compared to the state-of-the-art solvers. As the results show, the state-of-the-art
solvers decide the TPTP formulae with runtimes close to the measured time units. The low

1Available at: https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=446562
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Figure 5.1: Comparison of our solver to the state of the art, as well as the comparison of
the execution backends provided by our solver in deciding the TPTP LIA problems

runtimes are due to TPTP not containing complex formulae with many variables or atomic
constraints with large coefficients. However, TPTP formulae contain all the Boolean con-
nectives and quantifiers, including formulae with quantifier alternation. The low complexity
combined with the spectrum of Boolean connectives makes TPTP a convenient benchmark
to verify that the solver is providing correct answers. Therefore, the TPTP formulae serve
as a set of integration tests for Amaya. Figure 5.1b compares the two execution back-
ends our solver provides. The results show that the MTBDD-based backend is slower than
the native backend, which stores transition symbols explicitly. This speed difference is due
to the overhead of the ctypes library interface between C++ and Python. The observed
overhead is caused by the need to serialize and deserialize data with every call to Amaya’s
C++ library, frequently allocating temporary memory.

We have also compared Amaya to the state of the art in solving the UltimateAutomizer
benchmark, containing formulae generated by UltimateAutomizer [18] — an automatic
verification tool for C programs. As the problems found in the UltimateAutomizer bench-
mark originate from real-world software verification, their complexity is much higher than
the complexity of the problems found in TPTP. The results of the performance comparisons
in deciding the UltimateAutomizer benchmark are presented in Figure 5.2. Naturally, our
experimentation-oriented implementation written in an interpreted language is slower than
the state-of-the-art solvers (cf. Figure 5.2a). However, the increased complexity of the input
formulae is reflected in the depicted comparison of the two execution backends our solver
implements. The costs of interfacing with our C++ library are outweighed by the bene-
fits MTBDDs provide when deciding formulae with an increased number of variables (cf.
Figure 5.2b).
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Figure 5.2: Comparison of Amaya to the state of the art, as well as a comparison of the ex-
ecution backends provided by Amaya in deciding the UltimateAutomizer LIA problems

5.2 The Frobenius coin problem
The Frobenius coin problem is a famous problem named after the German mathematician
Ferdinand Georg Frobenius, who would occasionally put forth the problem of determining
the highest possible sum not representable by coins of certain coprime denominations during
his lectures. Although there exists an explicit formula [3] giving an exact solution when
there are only coins with two denominations, explicit quantifier-free formulae for more
than two coins are not known. The coin problem is not limited only to currency; its
applications can be found, e.g., in Petri net analysis [9]. The monograph [2] provides
an entire chapter dedicated to the applications of this problem. The coin problem can be
written as the following formula, where 𝑓 is the Frobenius number, �⃗� is a vector of pairwise
coprime coin denominations:

Frob(𝑓, �⃗�) , ∀�⃗� ∈ N|𝑤| : (𝑓 ̸= �⃗� · �⃗�) ∧ (∀𝑓 ′ ∈ N : ((∀𝑛′ ∈ N|𝑤|(𝑓 ′ ̸= 𝑛′ · �⃗�))→ 𝑓 ′ ≤ 𝑓))
(5.1)

To compare the performance of our solver to the state of the art on deciding the Frobe-
nius coin problem, we have generated instances of Frob(𝑓, �⃗�) with two coins with denomi-
nations being consequent primes. Figure 5.3 shows that the automata-based decision pro-
cedure vastly outperforms the state-of-the-art solvers.

As shown in Figure 5.4, the state-of-the-art solvers struggle even when given the follow-
ing simple formula ∀𝑧 ∈ Z(∃𝑥, 𝑦 ∈ Z(𝑓 = 𝑥𝑤1 + 𝑦𝑤2)). The formula is structurally similar
to a part of the formula encoding the solution of the Frobenius coin problem, and is satisfied
iff a plane in a 3D space given by a normal vector (𝑤1, 𝑤2) projected onto the 𝑧-axis covers
all integer points of the axis.

The conducted experiments also provide insights into the bottlenecks of the automata-
based decision procedure. The automata-based approach struggles when the size of the au-
tomata encoding equations and inequations have too many states due to large variable
coefficients present in the corresponding atomic constraints, as the size of the automata
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Figure 5.3: The runtime comparison of our solver to the state of the art on deciding
the Frobenius coin problem
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Figure 5.4: The runtime comparison of our solver to the state of the art on deciding whether
a plane in a 3D space projected onto the 𝑧-axis covers all integer points of the axis
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encoding such constrains is given by their variable coefficients [12]. Similarly, the size
of automata encoding congruences is directly proportional to the divisor if the divisor is
odd [12]. The automata-based decision procedure is unfeasibly costly when deciding even
the simplest formulae containing such problematic constrains. The performance problems
caused by big constants in atomic constraints could be probably alleviated by constructing
intermediate automata lazily, avoiding eager construction of big automata.
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Chapter 6

Conclusion

We have successfully created Amaya — an SMT solver for Presbuger arithmetic capable of
deciding real-world problems based on the formal model of finite automata — an approach
that no other current SMT solver employs. Having a functional implementation enables us
to evaluate the performance characteristics of the automata-based procedure compared to
the other approaches used by the state-of-the-art solvers. Being able to compare the differ-
ent decision procedures allows us to identify problems in which automata present a faster
alternative, pushing the limits of what we can decide automatically. To minimize the fric-
tion encountered when comparing different solvers, our solver supports a subset of SMT-LIB
— a standardized input language — used to encode formulae of Presburger arithmetic.

The design of the presented implementation is oriented at providing an environment
geared towards easy experimentation with the underlying decision procedure, and not aim-
ing at besting the state-of-the-art solvers in terms of implementation efficiency. Therefore,
our solver is written in the Python 3 programming language and is equipped with a range
of features supporting experimentation. These features include an option to output all
intermediate automata created during the decision procedure in various formats, including
a human-friendly visualizable DOT language, or a built-in functionality allowing bench-
marking the decision procedure on specified input problems in an easy manner.

After obtaining a minimal implementation, we identified scalability problems with some
of the classical automata constructions e.g. determinization wrt. the number of variables in
the input formulae. These problems are caused by the design of the classical constructions
relying on iteration over the entire automaton alphabet, combined with the exponential
growth of the alphabet when increasing the number of variables in the input formula.
Therefore, we have crafted an automata representation storing the transition relation sym-
bolically in the form of MTBDDs, in which every automaton state has assigned an MTBDD
encoding the transitions from the corresponding state. All classical automata constructions
had to be reformulated in a manner utilizing the compact representation of transitions
that MTBDDs provide. As the ecosystem of the Python programming language did not
provide an MTBDD implementation, we reached for Sylvan — a C library providing an op-
timized MTBDD implementation. In order for Amaya to use Sylvan, we had to implement
the necessary MTBDD manipulation functions in C++, and to create a Python wrapper
allowing us to interface with our C++ codebase. Therefore, Amaya provides two execution
backends the user can choose from: an experimentation-oriented backend storing transi-
tions explicitly, and an performance-focused backend storing transitions symbolically using
MTBDDs.
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By building a modern automata-based SMT solver for Presburger arithmetic, we have
laid the necessary foundation required for future research in the practical applications of
automata in the context of deciding Presbuger arithmetic. Our early experiments comparing
the performance of Amaya to the state of the art showed that our experimentation-oriented
implementation written in an interpreted language is slower than the state-of-the-art solvers.
However, we have already managed to come across problems — e.g., deciding the Frobenius
coin problem — in which automata present a much faster alternative, thus, highlighting
the importance of the existence of a solver implementing an alternative approach.

6.1 Future work

Reaching a mature implementation capable of deciding non-trivial benchmarks does not sig-
nify that our work is concluded. On the contrary, a mature implementation presents a nec-
essary basis for applying and evaluating the advancements in the field of automata theory
to the implemented decision procedure. Namely, a lot of formulae from the UltimateAu-
tomizer benchmark contain only one quantifier alternation, and, therefore, the generally
expensive determinization after a track is projected away due to an existential quantifier
could be avoided by using antichains to check for language non-universality [10]. To use
antichains, our solver would have to be extended to support at least partially converting
the formula into the prenex normal form. Another possibility is to use an augmented subset
construction using the simulation preorder to prune some of the redundant states produced
throughout the construction [15].

Our experimentation identified benchmarks containing problems with atomic constraints
containing modulo terms with odd constants in the order of several hundred thousand.
As there is no direct automaton construction for atomic constraints containing modulo
terms, the modulo terms are rewritten using an existential quantifier as follows: �⃗� · �⃗� +
(𝑦 𝑚𝑜𝑑 𝑀) ≤ 𝑐 ⇔ ∃𝑚(⃗𝑎 · �⃗�+𝑚 ≤ 𝑐 ∧ 0 ≤ 𝑚 ≤𝑀 − 1⏟  ⏞  

𝒜∧

∧𝑚 ≡𝑀 𝑦⏟  ⏞  
𝒜≡

), with the problematic

constant occurring only in the congruence part of the existential formula. The already-
minimal automata encoding these congruence constraints have their number of states given
approximately by the big constant, and therefore, their size causes the automata-based
decision procedure to become prohibitively expensive. Furthermore, even the construction
of such an automaton (cf. Algorithm 6) will take a considerable portion of the solver’s
runtime as the dynamic nature of Python causes the numerical calculations frequently per-
formed during the construction of such an automaton to present a performance bottleneck.
Whereas the latter can be addressed by implementing the construction in the C program-
ming language and providing a Python wrapper, the automaton size remains a problem.
Therefore, we would like to represent the automaton 𝒜≡ for the congruence symbolically,
where we would construct explicitly only the automaton 𝒜∧ augmented with a counter
symbolically representing a state of the automaton 𝒜≡.

Lastly, a possible direction to take is to apply the acquired knowledge about the archi-
tecture of an automata-based SMT solver and (at least partially) reimplement Amaya in
a statically typed language such as C++. Such a new iteration of our solver would allow us
to reduce the dimension of discussing the measured runtime differences between Amaya and
the state-of-the-art solvers by removing the factor of the performance penalties inherited
from a dynamic implementation language. A lower-level language would also allow us to
optimize the solver to utilize more of the potential provided by modern computers.
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Appendix A

Contents of the included storage
media

/
amaya-python/......................Amaya’s implementation

amaya/...........................Python module implementing Amaya’s func-
tionality

tests/...........................Unit tests
amaya-mtbdd.so...............Precompiled library implementing MTBDD

operations
README.md........................Installation instructions and usage examples
requirements.txt................Amaya’s Python dependencies
run-amaya.py....................Main script for executing Amaya
LICENSE.txt ..................... Amaya’s license

amaya-cpp/ ......................... C++ library implementing MTBDD opera-
tions

README.md........................Installation and compilation instructions
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