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Abstract
While older graphics APIs (Application Programming Interface) like OpenGL or DirectX
of version 11 and lower are still commonly used nowadays, newer APIs especially DirectX
12 and Vulkan bring many enhancements like better performance, native Ray-tracing on
supported hardware, and more efficient CPU and GPU usage. Performance and efficiency
enhancements are the results of the nature of DirectX 12 and Vulkan APIs. Both are quite
low-level APIs. That means that GPUs can be controlled on a much lower level which
results in much more code that needs to be written to get similar results as when an older
API is used. This thesis presents a new framework, vkEasy, that encapsulates Vulkan API
in a way that most of its features stay usable, but makes it much easier to use Vulkan API
for rendering or compute operations. Source code contains examples that were implemented
using vkEasy to show simplicity of vkEasy and to compare it to raw Vulkan code. Average
94 % reduction in needed lines of code was observed.

Abstrakt
Zatiaľ čo staršie grafické API (Application Programming Interface) ako OpenGL alebo
DirectX verzie 11 a nižšej sa v súčasnosti stále bežne používajú, novšie rozhrania API,
najmä DirectX 12 a Vulkan, prinášajú mnohé vylepšenia, ako je lepší výkon, natívny Ray-
tracing na podporovanom hardvéri a efektívnejšie využitie CPU a GPU. Vylepšenia výkonu
a efektívnosti sú výsledkom povahy rozhraní DirectX 12 a Vulkan API. Obidve sú pomerne
nízkoúrovňové API. To znamená, že GPU je možné ovládať na oveľa nižšej úrovni, čo má za
následok oveľa viac kódu potrebného, aby boli dosiahlnuté podobné výsledky ako pri použití
staršieho rozhrania API. Táto práca predstavuje nový framework, vkEasy, ktorý zapuz-
druje Vulkan API takým spôsobom, že väčšina jeho funkcií zostáva použiteľná, ale výrazne
uľahčuje používanie Vulkan API na vkresľovacie alebo výpočtové operácie. Zdrojový kód
obsahuje príklady, ktoré boli implementované pomocou vkEasy, aby ukázali jednoduchosť
vkEasy a porovnali ho s kódom napísaným v čistom Vulkane. Bolo pozorované priemerne
94% zníženie potrebných riadkov kódu.
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Rozšírený abstrakt
Hlavným cieľom tejto práce bolo vytvoriť framework s názvom vkEasy, ktorý zjednodušuje
prácu s GPU za využitia Vulkan API. Framework je určený pre ľudí, ktorí majú záujem o
rendering alebo využitie výpočtového výkonu GPU. Vulkan je moderné výpočtové a grafické
API, ktoré umožňuje využívať výpočtový výkon GPU veľmi efektívne, avšak za cenu zloži-
tosti kódu. Úplné pochopenie Vulkan API nie je ľahká úloha a vkEasy sa snaží uľahčiť
prístup k funkciám Vulkan aj bez zložitých znalostí jazyka Vulkan.

Vulkan je veľmi komplexné API, pretože je potrebné napísať veľmi veľa kódu pre vytvore-
nie hocijakého Vulkan objektu. Týchto objektov Vulkan obsahuje veľmi veľa a pre napísanie
funkčného kódu je potrebná znalosť týchto objektov. Napríklad jednoduché vykreslenie
trojuholníka vyžaduje vytvorenie minimálne 18 Vulkan objektov. Nehovoriac o tom, že
pre vytvorenie množstva z týchto objektov je potrebné vytvoriť a inicializovať veľmi veľa
zložitých štruktúr. Stručne povedané, na vykreslenie jednoduchého trojuholníka pomocou
čistého Vulkanu je potrebných približne 800 až 900 riadkov kódu v jazyku C. Veľkú časť z
tohto kódu možno určiť z kontextu použitia a odložením vytvorenia objektu, kým nebude
známy celý kontext. vkEasy tohto princípu využíva. Užívateľ musí najskôr zadefinovať
všetko čo je potrebné pre jeho aplikáciu no v tom momente ešte žiadny Vulkan objekt ne-
existuje. Až keď užívateľ zavolá funkciu kompilácie programu sa na pozadí vytvoria všetky
potrebné Vulkan objekty bez toho aby užívateľ musel písať obrovské množstvo kódu pre ich
manuálne vytvorenie.

Ďalšia náročná tematika vo Vulkan API je synchronizácia prístupu k zdrojom (obrazové
a dátové buffere). Keďže GPU dokážu vykonávať prácu paralelne vo viacerých vláknach,
je potrebné synchronizáciu ju vykonať manuálne. vkEasy rieši tento problém automaticky
a užívateľ synchronizáciu nemusí riešiť. vkEasy využíva snímkový graf, ktorý slúži ako ab-
strakcia vykresľovaného snímku alebo bežných výpočtových operácií na sériu úloh. Každej
úlohe je potrebné priradiť zdroje, ktoré budú využité a z takéhoto grafu je potom možné
určiť akým spôsobom bude riešená synchronizácia.

V neposlednom rade je správa pamäte vo Vulkan API tiež zložitou témou. Pre vytvore-
nie obrazového alebo dátového bufferu je potrebné najskôr alokovať pamäť vytvorením
objektu vkDeviceMemory, ďalej vytvorenie objektu vkImage alebo vkBuffer a nakoniec ich
napojenie. A na toto všetko je tak isto potrebné napísať veľa kódu. Časť tejto prob-
lematiky je vo frameworku vkEasy vyriešené pomocou knižnice Vulkan Memory Allocator.
Pri vytváraní objektov je tiež potrebné poznať akým spôsobom budú objekty vkImage a
vkBuffer využívané a toto sa dá zistiť z už vyššie spomenutého snímkového grafu.

Ďalšou výhodou frameworku vkEasy je podpora pre písanie shaderov v jazykoch HLSL
a GLSL. Čistý Vulkan podporuje len binárny jazyk SPIR-V, ktorý nie je primárne určený
ako jazyk pre užívateľov. vkEasy tiež dokáže vykresľovať do viacerých okien a používať
viac grafických kariet paralelne.

Aktuálna implementácia vkEasy znižuje množstvo potrebného kódu a nutnosť porozu-
mieť Vulkanu na hlbšej úrovni riešením týchto problémov. Sú dosiahnuté veľmi veľké reduk-
cie potrebného kódu, až okolo 94 %. Framework vkEasy je napísaný v jazyku C++ a ako
zostavovací systém je použitý CMake. vkEasy je podporovaný a otestovaný na operačných
systémoch Windows a Linux.
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Chapter 1

Introduction

The main goal of this project is to create a framework named vkEasy simplifying work
with GPUs (Graphics Processing Unit) for people who might be interested in rendering or
using the computational power of GPUs. Vulkan is a modern compute and graphics API
which allows using of most of the computational power GPUs offer very efficiently, but at
the cost of code complexity for users. Full Vulkan understanding is not an easy task and
vkEasy tries to make access to Vulkan features much easier even without complex Vulkan
knowledge.

Why is Vulkan so complex? First of all, there is a lot of boilerplate code that needs to
be written for creating any Vulkan objects. For example, simple triangle rendering requires
a minimum of 18 Vulkan objects to be created. Not to mention that for the creation of a lot
of those objects, a lot of complex structures need to be created and initialized. Summed up,
to render a simple triangle using raw Vulkan, around 800 to 900 lines of code are needed.
A lot of this code can be determined from the context of usage and by postponing object
creation until the whole context is known.

Secondly, synchronization of access to resources (textures and buffers) is also not an
easy task in Vulkan and needs to be done manually. This can be solved by using a frame
graph. How the frame graph work is briefly described in Section 3.3.

Last but not least, memory management is also a difficult topic in Vulkan, luckily
library VMA (more on that in Section 5.3) that does this automatically already exists, and
is utilized in vkEasy.

The actual implementation of vkEasy reduces a lot of boilerplate code and the necessity
to understand Vulkan on a deeper level by solving those problems. It will hopefully make
users want to use Vulkan more and make it easy for them. There is work needed to be
done, but actual results are promising as can be seen in Section 6.

The second chapter contains information about the actual state of the implemented
framework, the most important features of vkEasy, and related work in this field. The
third chapter describes what is Vulkan, what are problems with Vulkan are, and the de-
scription of what is frame graph. The fourth chapter contains the description of classes
available in vkEasy and their usage. Information about used libraries, technologies, and
some implementation details of vkEasy can be found in the fifth chapter. The sixth chapter
shows some examples of usage of vkEasy and measurements of reduction of code using
vkEasy compared to using raw Vulkan. The evaluation of the work can be found in the
seventh chapter.
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Chapter 2

Actual state of vkEasy and related
work

As Vulkan is a low-level and high-performance API it requires a lot of boilerplate code.
Therefore, to write even a really simple program that uses Vulkan needs too much code
which is not too user-friendly. vkEasy solves this and makes usage of Vulkan much easier
and reduces needed code by around 94 %. Multiple examples are implemented, buildable
and available in framework source code. Results of comparisons of raw Vulkan code and
code with the same functionality written in vkEasy are available in Section 6. vkEasy is
open-source and available on GitHub [14]. It was also presented at the student conference
Excel@FIT at the Faculty of Information Technology. This chapter contains available
features of vkEasy and a comparison with other related frameworks.

2.1 Features of vkEasy
Framework vkEasy makes working with Vulkan API easier by removing the need for a lot of
boilerplate code needed by Vulkan API. It also implements features that are not available
in Vulkan by default and uses third-party libraries that helped to make the implementation
of some of these features easier. Here are some of the main features offered by vkEasy:

Compute and Graphics pipelines support

vkEasy by default supports Compute and Graphics pipelines. It is also planned to extend
support for the last remaining RayTracing pipeline. The actual framework design should
make it quite easy to extend by the RayTracing pipeline.

Task graph-based work execution

Writing programs in vkEasy involves first creating a graph node, which can be imagined as
one graphics or compute pipeline. It can also encapsulate more nodes into one more complex
task. Then resources that will be used are assigned to the node. The last step is recording
the order of node execution and compiling the graph. This graph can be then executed. To
make this possible frame graph is utilized which is described more in Section 3.3.

3



Multiple GPUs usage in parallel

vkEasy supports creating more instances of one GPU or more GPUs and executing work on
more devices. It is possible to use multiple devices at once in Vulkan but as of now, multi-
device synchronization is not supported by Vulkan itself. But manual synchronization on
the CPU is possible.

GLSL and HLSL support

Vulkan supports only SPIR-V shading language which is not user-friendly at all. vkEasy
uses library Shaderc which supports the compilation of GLSL and HLSL into SPIR-V
therefore both are supported in vkEasy by default. This is described in more detail in
Section 5.2.

Automatic memory management

To create resources in Vulkan, a lot of boilerplate code is needed. vkEasy uses Vulkan
Memory Allocator that reduces this boilerplate code. More about memory management
can be found in Section 3.2.3 and about Vulkan Memory Allocator in Section 5.3.

Automatic memory access synchronization

Vulkan needs explicitly specified memory access barriers. vkEasy does this automatically
by utilizing a frame graph (more in Section 3.3) to collect information about resource usage
and then correctly placing memory barriers.

Automatic data transfer to and from GPU

In Vulkan to access GPU memory, it is mostly not simply mapping memory and copying
data. Depending on memory type it is necessary to create a staging buffer and enqueue
copy command from or to this staging buffer. vkEasy does this automatically and the user
just needs to set the data that should be copied.

Easy rendering into multiple windows and dynamic windows resizing

vkEasy supports creating multiple windows and rendering into them easily. It also sup-
ports dynamic windows resizing by recreating the swap chain automatically without user
involvement. The usefulness of this feature can be experienced for example in Microsoft
Flight Simulator 2020. It has a feature that allows opening some of the in-game HUDs
(Head-Up Display) in other windows, so it does not obstruct the in-game view. This can be
helpful for multi-monitor systems and at least for me, being able to move in-game HUDs
to a secondary monitor made the gaming experience much better. How this looks can be
seen in Figure 2.1.

Support for Linux and Windows Operating Systems

Vulkan supports a lot of platforms by default. vkEasy contains examples that also serve
as a testing platform for building and running on both Windows and Linux Operating
Systems. Designed Window System Integration (WSI) also supports creating windows
both on Windows (Desktop Window Manager) and Linux (both X and Wayland display
servers) OSes.

4



Figure 2.1: This figure shows a screenshot from Microsoft Flight Simulator 2020 (flying
over the Faculty of Information Technology) and shows its feature to open in-game HUD
in the other than the game window. It is possible to open multiple windows but only one
is shown because more windows on one monitor would be too much.

Easy integration of framework into projects

Examples available with source code serves also as base building blocks for potential devel-
opers so they can get to know the framework faster. The framework is developed in C++
language and built using CMake build tools so it can be easily compiled. Build was tested
with Microsoft Visual C++ Compiler (MSVC) and GNU C++ Compiler (g++). It is also
developed under an MIT license so everyone can use it for any purpose. GIT version control
system is used for easier development. The framework is published on GitHub [14].

2.2 Related Work
Vulkan is still quite a young graphics API. The first version of the Vulkan specification
was released on February 16th, 2016 [4]. There are already many big game companies
using Vulkan for rendering their games and proving that Vulkan makes games run faster
on the same hardware compared to DirectX 11 or OpenGL, but those are mostly closed-
source. There are also a few open-source higher-level rendering frameworks built on Vulkan
making work with it easier. But I found only two of them implement a frame graph (more in
Section 3.3). And as this vkEasy also implements frame graph, only those two I considered
as related to this project.

The first of these two frameworks is Granite [13] and the second one is Pumex [17].
I started studying code and examples and found that both have quite different approaches
to simplifying Vulkan and there were reasons I did not like either of them. With Granite,
I dislike the fact that while it uses a render graph implementation in the background it is not
accessible by the user. It looks like the developers tried to implement a public API similar
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to OpenGL. So it can be useful for users who are used to OpenGL. Pumex enables the
users to use frame graph openly but it is sometimes really confusing how to use it because
all of its classes can be instantiated without a parent object and users who do not know
connections between objects can be confused same as I was when I started implementing
vkEasy with zero knowledge about Vulkan. This is one of the things this vkEasy tries to
solve. There is a hierarchy of classes starting with the Context object and each class has its
parent class and can be instantiated only by its parent which makes it easier for the user
to understand what can be done with each object.

2.2.1 Contributions of vkEasy compared to Pumex and Granite

These are some of the contributions vkEasy brings compared to related frameworks:

• Even simpler use of Vulkan API.

• Vulkan API still accessible.

• Frame graph with direct access.

• Object instantiation from the parent.

6



Chapter 3

Programming and working with
GPUs

This chapter contains the description of Vulkan API. The chapter will also contain descrip-
tions and details of some of the most important objects in Vulkan, how they are connected
to each other and what they are used for in programming. There will be also a brief intro-
duction to programming GPUs using Shading Languages and SPIR-V. Different methods
of sending work to GPU will be described. Resource management and synchronization of
tasks are also a very important part of this chapter and will be described in detail in this
chapter. Lastly, a brief description and comparison of already existing Vulkan frameworks
will be included.

3.1 Vulkan
Vulkan is a graphics and compute open standard API that provides high-efficiency, cross-
platform access to modern GPUs. Created and evolved by the Khronos Group standards
consortium, Vulkan satisfies the needs of software developers in fields as varied as game,
mobile, and workstation application development. Vulkan’s explicit API design enables
efficient implementations on platforms that span a wide range of mobile, console, embedded
and desktop hardware using the Windows, Linux, and Android operating systems. The API
provides a multi-threading-centric design to leverage modern multi-core CPUs and provide
access to GPUs via multiple parallel command queues. Some of the latest Vulkan features
include ray tracing, bindless resources, and shader programming using GLSL or HLSL.
Vulkan is not tied to a specific platform and enables developers to write GPU code that
is portable to diverse devices and operating systems. Definition of Vulkan is taken from
NVIDIA Developer [12].

While there is quite a big selection of graphics APIs Vulkan was chosen for this project
because of its cross-platform availability because cross-platform support is planned for Win-
dows and Linux at least. Also, there is the possibility to achieve some performance gains
compared to other cross-platform APIs like OpenGL.

3.1.1 Vulkan Objects

An important part of learning the Vulkan API just like any other API is to understand
what types of objects are defined in it. Every Vulkan object is a value of a certain type
prefixed by Vk. These prefixes, like the vk prefix for function names, are eliminated from
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Figure 3.1: This figure shows a diagram containing all the Vulkan objects and some of
their relationships. Those relationships shows mainly the order in which objects should be
created one from another. Image is taken from AMD GPUOpen [18].
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the schematic for clarity. Sampler in the diagram, for example, denotes the existence of
a Vulkan object type called VkSampler. These types should not be considered as ordinal
integers or pointers. Their values should not be interpreted in any way. They should be
viewed as opaque handles that can be handed from one function to the next, and should,
of course, be destroyed when no longer required. Green-background objects (Figure 3.1) do
not have their own types and instead, they are represented by a uint32_t numeric index
within their parent object, such as Queries within QueryPool.

The order of creation is represented in Figure 3.1 by solid lines with arrows. To create a
DescriptorSet, for example, an existing DescriptorPool must be specified. Composition
is represented by solid lines with a diamond. That means that this object does not need to
be created because it already exists inside its parent object and can be retrieved from it.
PhysicalDevice objects can be enumerated from an Instance object, for example. Other
relationships, such as submitting various commands to a CommandBuffer, are represented
by dashed lines.

There are three sections in the diagram in Figure 3.1. Each section has a central object,
which is highlighted in red. All other objects in a section are created from that main object,
either directly or indirectly. The function vkCreateSampler, for example, takes VkDevice
as its first parameter when creating a Sampler. For clarity, relationships to the main
objects are not drawn on this diagram. This entire section is inspired by AMD GPUOpen’s
Understanding Vulkan Objects [18] and Vulkan Specification [11].

Instance

The first object that must be created is Instance. It keeps track of all application-specific
Vulkan states. It should only be used once in a program and also represents the connection
between an application and the Vulkan runtime. When creating a Instance, all required
instance layers (such as the Validation Layer) and instance extensions must be specified.

Physical Device

PhysicalDevice represents a specific Vulkan-compatible device, such as a graphics card
available to host that implements complete Vulkan specification. From Instance, all com-
patible devices can be enumerated and their vendorID, deviceID, and supported features,
as well as other properties and limits, can be queried. All available types of queue fam-
ilies can be enumerated by PhysicalDevice. Those queue families can support one or
more queue types. Types contain graphics queue, compute queue, transfer queue or sparse
binding queue.

A Memory Heap represents a particular RAM pool. It can abstract a portion of video
RAM on a dedicated graphics card, a motherboard’s system RAM for the integrated graph-
ics card, or any other host or device-specific memory that the driver wants to expose. When
allocating memory, the Memory Type must be specified. Memory blobs that are visible
to the host have different Memory Type than those that are coherent (between CPU and
GPU), and that are cached. Depending on the device driver, different combinations of
these types can be used. Memory Heaps and Memory Types can be enumerated from
PhysicalDevice.

9



Device

Device is an object that represents a logical or opened device. It is an instance of
PhysicalDevice’s implementation with its own states and resources independent of other
logical devices. This is one of the main objects that after its initialisation it is ready to
create all other objects. The features that will be enabled must be specified during device
creation. Some of them are essential, such as anisotropic texture filtering. All queues that
will be used, their number, and their queue families must be specified.

Queue

Queue is an object that represents a command queue that will be executed on the device.
Using the function vkQueueSubmit, all of the work to be done by the GPU is requested
by filling CommandBuffers and submitting them to Queue. Different CommandBuffers can
be sent to each of the queues, such as the main graphics queue and the compute queue.
Asynchronous compute can be enabled in this way, which can result in a significant speedup
if done correctly. Queue families also determine which commands are supported by Queue.
Transfer queue supports only transfer commands, compute queue only compute commands,
etc., but queue can support multiple queue families.

Command Pool

The CommandPool object is a simple object that can be used for allocating CommandBuffers.
It belongs to a particular queue family and CommandBuffers which were allocated from
specific CommandPool must be filled only with commands supported by a particular queue
family.

Command Buffer

CommandBuffer is an object that is used to record commands which can be then submitted
to the Devices’s Queue for execution. CommandBuffers can be allocated from a specific
CommandPool. A command buffer can be used to call a variety of functions, all of which
begin with vkCmd. They’re used to specify the order, type, and parameters of tasks that
should be performed after the CommandBuffer is sent to a Queue and then subsequently
consumed by the Device.

Buffer, Image and Device Memory

Vulkan supports two primary types of resources. First is Buffer which is the simpler one.
It is a linear array for any unformatted binary data that just has its length, expressed in
bytes.

The second one is Image, which is a collection of pixels. It is a multidimensional array of
data with a lot of parameters. It can store up to three dimensions and during the creation,
various pixel formats (such as R8G8B8A8_UNORM or R32_SFLOAT). It can also have multiple
array layers or MIP levels (or both), resulting in many discrete images. Because it does
not always consist of a linear set of pixels that can be accessed directly, Image is a separate
object type. The graphics driver can manage a different implementation-specific internal
format (tiling and layout) for Images.

Creating a Buffer with a specific length or a Image with specific dimensions does not
allocate memory for it automatically. It’s a three-step process that the developer must
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complete manually. The Vulkan Memory Allocator library, which handles the allocation,
can be used. To create Buffe or Image, firstly a DeviceMemory must be allocated. Then
Buffer or Image can be created and lastly they must be bound together using function
vkBindBufferMemory or vkBindImageMemory.

As a result, a DeviceMemory object must be created as well. It specifies a block of
memory with a given length in bytes allocated from a specific memory type which can be
enumerated from PhysicalDevice. DeviceMemory should not be allocated separately for
each Buffer or Image. Instead, larger memory chunks should be allocated and using parts
of chunks as backing memory for Buffers and Images. Allocation is a time-consuming
process, and the maximum number of allocations is also limited. All of this information
can be requested from PhysicalDevice.

Buffer View and Image View

Buffers and Images are not always used directly in rendering. Another layer, called views,
sits on top of them. Using the set of parameters during the creation of the view it is possible
to use them to look at underlying data in a certain way. For example, BufferView enables
shaders to interpret buffer data as formatted data. It can also be used to limit access to
buffer to only a subset of buffer data. Similarly, ImageView can be used to limit the view to
a defined range of MIP levels or array layers, and interpret data as other format or swizzle
components.

Sampler

Sampler represents the state of an image sampler. It is a set of parameters, like filtering
mode, MIP map mode, addressing mode, etc. It is not directly bound to any Image.

Surface

SurfaceKHR is an object which represents the presentable surface of the window or screen.
It can be also thought of as the Vulkan equivalent of a window. Creating a window needs
a different approach for each operating system and also different display servers in the
same operating system (like Wayland and X11 on Linux). The same applies to the creation
of SurfaceKHR. For the creation of SurfaceKHR, the Instance object is required, as well
as some operating system specific arguments. These are, for example, instance handle
(HINSTANCE) and window handle (HWND) on Windows.

Swapchain

SwapchainKHR represents a collection of images that can be displayed on the SurfaceKHR
using double or triple buffering. SurfaceKHR is needed to create aSwapchainKHR. A Device
is required for this object. is an exception to the requirement of allocating and binding
DeviceMemory for every Image. The SwapchainKHR can be queried for Images contained
in it. The system has already allocated backing memory for these images.

Descriptor Set Layout

DescriptorSetLayout acts as a DescriptorSet template and a layout must be specified
and created to be able to create a DescriptorSet. Descriptors are used by shaders to
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access resources (Buffers, Images and Samplers). In Vulkan, descriptors do not exist on
their own, instead, they are always found in DescriptorSets.

Descriptor Pool

DescriptorPool same as CommandPool is a simple object used to allocate descriptor sets.
When creating a descriptor pool, the maximum number of descriptor sets and descriptors
of various types that will be allocated from it must be specified.

Descriptor Set

The DescriptorSet represents memory that stores actual descriptors, and it can be con-
figured to point to a specific Buffer, BufferView, Image, or Sampler. A DescriptorSet
can be allocated from DescriptorPool. To be able to do it, both DescriptorPool and
DescriptorSetLayout are needed. The function vkUpdateDescriptorSets can be used to
accomplish this.

Pipeline Layout

PipelineLayout is a rendering pipeline configuration that specifies which types of descrip-
tor sets will be bound to the CommandBuffer. In a CommandBuffer, several DescriptorSets
can be bound as active sets to be used by rendering commands. To accomplish this,
the function vkCmdBindDescriptorSets can be used. This function also requires another
object, PipelineLayout, because multiple DescriptorSets may be bound, and Vulkan
needs to know how many and what types of them to expect ahead of time. To create
PipelineLayout, an array of DescriptorSetLayouts can be used.

Render Pass

A RenderPass object contains a collection of attachments, subpasses, and dependencies
between subpasses, as well as information about how the attachments are used throughout
the subpasses. Draw commands must be recorded within a RenderPass instance. Each
render pass instance specifies a set of image attachments that are used during rendering.
The immediate mode approach can be used in other graphics APIs to render whatever
comes next. In Vulkan, this is not possible. Instead, a frame’s rendering must be planned
ahead of time and divided into passes and subpasses. Subpasses are not separate objects,
but they are an essential part of Vulkan’s rendering system. When defining a RenderPass in
Vulkan, the number and formats of attachments that will be used in that pass are extremely
important.

Attachment is Vulkan’s name for what is commonly referred to as a render target, an
Image that is used as a rendering output. There is no need to point to a specific Image
here. It is only necessary to describe their formats. A simple rendering pass, for example,
might include a colour attachment with the format R8G8B8A8_UNORM and a depth-stencil
attachment with the format D16_UNORM. It should also be specified whether the content of
an attachment should be saved, discarded, or cleared at the start of the pass.

Framebuffer

Framebuffer (which is not the same as SwapchainKHR) represents a collection of actual
memory attachments (Images) that are used in RenderPass. By specifying the RenderPass
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and a set of ImageViews, a Framebuffer object can be created. Their number and formats
must match the RenderPass specification. The function vkCmdBeginRenderPass must be
called whenever rendering of a RenderPass begins, and the Framebuffer must also be
passed to it.

Pipeline

Pipeline represents the configuration of the whole pipeline and it contains many parame-
ters. It is one of the largest objects in Vulkan is Pipeline, which includes the majority of the
previously mentioned objects. One of the parameters is PipelineLayout. It specifies the
layout of descriptors and push constant layout. Depending on how the pipeline is created
can use one of the GPU pipelines. These include compute pipeline, graphics pipeline and
ray tracing pipeline. Because it only supports compute-only programs, compute pipeline is
the simplest of the three (sometimes called compute shader).

The Graphics pipeline is far more complicated because it includes all of the shader stages
such as vertex, fragment, geometry, compute, and tessellation. Its other parameters which
can be modified are vertex attributes, primitive topology, backface culling, blending mode,
etc. All those parameters that were previously separate settings in much older graphics APIs
(DirectX 9, OpenGL), were later grouped into a smaller number of state objects as the APIs
progressed (DirectX 10 and 11), and must now be baked into a single big, immutable object
with today’s modern APIs like Vulkan. A new Pipeline must be created for each different
set of parameters required during the process. The function vkCmdBindPipeline can then
be used to set it as the current active Pipeline in a CommandBuffer.

The last one is the ray tracing pipeline which is the newest one and is not supported on
older hardware.

Shader Module

ShaderModule represents a piece of shader code, possibly partially compiled, but not yet
capable of being executed by the GPU. Shader compilation in Vulkan is a multi-stage
process. Vulkan does not support any high-level shading languages such as GLSL or HLSL.
Instead, Vulkan accepts SPIR-V (section 3.1.2), an intermediate format that any higher-
level language can be translated into. To create a ShaderModule, the buffer filled with
SPIR-V data is needed.

Pipeline Cache

PipelineCache is a helper object that can be used to speed up pipeline creation. It’s
a simple object that can be passed in during Pipeline creation, but it significantly improves
performance by reducing memory usage and pipeline compilation time. The driver can use it
internally to store some intermediate data, potentially speeding up the creation of similar
Pipelines. A PipelineCache object’s state can be saved and loaded to a binary data
buffer, which can then be saved on disk and used the next time the application is run. It
is suggested to use them.

Fence

Fence is a synchronization object which can be used by the host to wait until a task has been
successfully completed. On the host, it can be polled, waited for, and manually unsigned.
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It doesn’t have its own command function, but it is passed when calling vkQueueSubmit.
The appropriate fence is signalled once the submitted queue is complete.

Semaphore

Semaphore is a synchronization object that can be used to manage access to resources across
multiple queues. Semaphore can be created without any configuration parameters. It can
be signalled or waited on as part of command buffer submission, as well as with a call to
vkQueueSubmit, and it can be signalled on one queue (for example compute) and waited
on another (for example graphics).

Event

Event is the last of Vulkan synchronization objects. Using the functions vkCmdSetEvent,
vkCmdResetEvent, and vkCmdWaitEvents, it can be waited on or signaled on the GPU as
a separate command submitted to CommandBuffer. It can also be set, reset, and waited on
(through polling calls to vkGetEventStatus) from one or more CPU threads. Event can
be created without parameters.

3.1.2 Shading Languages

Shading languages are the interface used to program key parts of the modern graphics
pipeline which have previously been fixed-function state machines without programmabil-
ity. With shading languages, the vertex transformation and lighting fixed function pipeline
is replaced by vertex program instructions supplied by the application, and key parts of the
rasterization pipeline, mainly texture environment and fog are replaced by fragment pro-
gram instructions supplied by the application. The key to understanding shaders is that
vertex shaders are fed by graphics primitives like triangles and lines with vertex attributes
like colour, texture coordinates, position, and other generic attributes, for each vertex the
program is executed, and the output is screen space primitives with similar types of per-
vertex data to the input. The output of a vertex shader is then transformed to the viewport
and clipped by the fixed function pipeline. The primitive is rasterized using prudicing per
fragment interpolated values for the results of the vertex shader. The fragment shader
program is then executed for each pixel produced by the aforementioned interpolation pro-
cess using the interpolated output of the vertex shader as the input to the fragment shader.
The fragment shader outputs colour attributes and possibly other outputs like zbuffer depth
(outputs supported depend on specific shader language feature support). The output from
the fragment shader is depth tested and stencil tested using fixed-function hardware and if
passed the colour is blended with the destination pixel using the fixed-function hardware.
This section was inspired by Khronos Wikipedia about shading languages [6].

SPIR and SPIR-V

SPIR (Standard Portable Intermediate Representation) was initially developed for use by
OpenCL and SPIR versions 1.2 and 2.0 were based on LLVM. SPIR has now evolved into
a cross-API intermediate language that is fully defined by Khronos with native support for
shader and kernel features used by APIs such as Vulkan – called SPIR-V.

SPIR-V is catalyzing a revolution in the ecosystem for shader and kernel language com-
pilers used for expressing parallel computation and GPU-based graphics. SPIR-V enables
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high-level language front-ends to emit programs in a standardized intermediate form to be
ingested by Vulkan, OpenGL, or OpenCL drivers. SPIR-V eliminates the need for high-
level language front-end compilers in device drivers, significantly reducing driver complexity,
enabling a broad range of language and framework front-ends to run on diverse hardware
architectures, and encouraging a vibrant ecosystem of open-source analysis, porting, debug,
and optimization tools.

For developers, using SPIR-V means that kernel source code no longer has to be directly
exposed, kernel load times can be accelerated, and developers can choose the use of a com-
mon language front-end compiler, improving kernel reliability and portability across multi-
ple hardware implementations. This section was inspired by Khronos’s SPIR Overview [3].

3.2 Main problems of raw Vulkan API
Here are listed main problems in the raw Vulkan framework which do not make it easy to
work with and possible solutions:

3.2.1 A lot of boilerplate code

Some features of Vulkan or GPU are disabled by default. During the initialization process,
any of those features must be explicitly enabled. This can be annoying for users because
during the implementation, they will probably many times come back to the initialization
where some settings are missing or incorrect. However, the correct initialization can be
determined from the context of the program and the functionality required by the user. For
this to be possible, it is necessary to delay the initialization of the objects until sufficient
information is available. Examples of such behaviour are layers, extensions, device features,
and more.

When creating Vulkan Instance, layers and extensions that will be used are needed. The
same applies to Vulkan Device which needs to know what extensions, features, and queues
will be used. Also, an already initialized Vulkan Instance is needed to create a device.
Vulkan Images and Buffers need allocated Device Memory which needs initialized Vulkan
Device. The same applies to a lot of other Vulkan Objects (see Figure 3.1). And even to
create any object a lot of information is required. But most of the time this information
can be determined automatically by knowing the specifications of the program which will
be executed on the device.

vkEasy offers a solution to this by collecting information about the context of usage
by specifying the whole program, all resources, and work to be done without creating any
Vulkan objects. Deferred initialization of all needed Vulkan objects is done when the whole
context is known. Each program will have specified workflow and dependencies sooner
than all Vulkan objects will be created therefore framework will know how to create a lot
of objects with no user involvement.

3.2.2 Synchronization of access to buffers and images

There are more types of synchronization in Vulkan. Firstly, there is memory access syn-
chronization. Barriers are used for this type of synchronization. The next type is synchro-
nization between multiple queues. Semaphores are used for this type of synchronization.
Those are quite hard to get right and are quite user-error-prone. Frame graph execution of
work approach will be used which can quite easily track all resource usage dependencies and
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according to those tracked data use barriers and semaphores automatically and correctly.
More about frame graph can be found in Section 3.3.

3.2.3 Memory management

Compared to older graphics APIs like OpenGL memory allocation and resource (buffer and
image) creation in Vulkan is much more complicated. Just like everything else in Vulkan,
because it is a low-level and high-performance API, it needs a lot of boilerplate code.
Also VkDeviceMemory is allocated individually from creating VkBuffers and VkImages.
VkBuffers and VkImages must be bound to VkDeviceMemory what adds an extra level of
indirection. Various hardware vendors provide different types of memory. Because of that
driver must be queried for supported memory heaps and memory types. Also recommended
practice is to allocate bigger chunks of memory and assign parts of chunks to particular
resources. This can introduce fragmentation.

3.3 Frame graph

Depth Pass

Depth Buffer

Raw AO

Filtered AO

SSAO SSAO Filter Shadows Lighting

Figure 3.2: This graph consists of five render tasks (brown rectangles) and three resources
(yellow rectangles). Red arrows represent writing to the resource and green arrows repre-
sents reading the resource. On this graph, it can be seen that placing memory barriers is
pretty straightforward. For example Depth pass render task writes to Depth Buffer re-
source and SSAO render task reads from same resource and should be executed after Depth
pass render task. That means that a memory barrier must be placed between the execu-
tion of those two. Same can be seen with SSAO and SSAO Filter render tasks and Raw AO
resource. Shadows render task has no inputs and outputs therefore if it is not marked as
having side effects it will be culled from executing. Image is taken from Yuriy O’Donnell’s
presentation at GDC Expo 2017 [15].

Information in this section is from Yuriy O’Donnell’s presentation at GDC Expo 2017
[15]. A frame graph, also known as a Render graph is a rendering abstraction that describes
a frame as a directed acyclic graph of render tasks and resources. A render task is any
compute or graphics task to be performed as part of the rendering pipeline. The resource
is a buffer or image created, read, or written by the render task. An example of a simple
Frame graph can be seen in Figure 3.2.

Frame graph helps to build high-level knowledge of the entire frame. This knowledge
then can be used to simplify resource management and rendering pipeline configuration.
It also makes asynchronous compute tasks easier to implement. Placing resource barriers,
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which can be quite hard to do right in the case of complex rendering pipelines, is also a
lot easier. Frame graph also helps to create self-contained and efficient rendering modules
for example node which implements a deferred shading pipeline that can be reused quite
easily. Also, graphs can be visualized and the same applies to frame graphs. Visualization
of the graph can help with debugging complex rendering pipelines.

Using frame graph consists of three phases namely the Setup phase, Compile phase and
Execute phase.

Setup phase

In Setup phase, render tasks and resources are defined. These resources are then assigned
as inputs and outputs to and from render tasks and the order of render tasks is specified.
In this phase, no GPU commands are used and resources are virtual, which means, they do
not have memory assigned on GPU yet and information about rendering operations for the
frame is gathered. For example, when creating image resource, dimensions, format, initial
data, etc.. is specified here.

Compile phase

Next phase is Compile phase. In this phase, the graph is being traversed and unreferenced
render tasks and resources are culled. It is possible to mark render tasks as having some
side effects, so they are not culled. During graph traversal, resource lifetimes are calculated
and resource bind flags are derived based on usage.

Execute phase

Last phase is Execute phase. Here, all render tasks are iterated in the correct order and
GPU commands of each render task are executed. Also, resources, which were not culled,
are created whenever they are needed and destroyed when they are not needed anymore.
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Chapter 4

Framework design

This chapter contains information about the design of vkEasy, a description of its classes,
and how are these classes interconnected. It also contains some code snippets showing some
of the use cases and how vkEasy can be used.

4.1 vkEasy’s Classes

Context

1 0..nDevice

1

0..n

creates

1 0..n

1

0..1

Graphcreates

0..n

0..n

Node

Resource

creates

creates

uses

Figure 4.1: This diagram contains simplified class relationships of the vkEasy framework.
Class Context is singleton class. Class Device encapsulates logical device. One hardware
device can be used in multiple logical device instances. Class Graph encapsulates frame
graph. Node class is an abstract class that represents one render task. Class Resource is
also an abstract class and can represent different types of Buffers and Images.

All vkEasy classes are encapsulated in the C++ namespace vk::easy. Base classes of
vkEasy are classes Context, Device, Graph, Node and Resource. To run the render or
compute task on GPU it is needed to create Node which executes this task. If it is needed
input and output resources for this node can be specified. But to execute the node it must
be enqueued into a Graph in which it will be executed. The Node can be created from the
Graph object and must be executed on the same Graph. The Graph must be created from
the Device and it will also be executed on the same Device. And lastly, the Device must be
created from Context. These relationships can be seen in the diagram in Figure 4.1 shows
a simplified class relationship diagram. Ownership of objects is designed so destructors of
all objects are called in correct order same as Vulkan needs. This section contains more
details about these and other vkEasy classes. Each subsection of this section corresponds
exactly by name to one of the vkEasy classes.

4.1.1 Class Context

vkEasy’s main class is singleton class Context. This class serves for creating logical devices
(vkEasy’s class Device) and takes care of creating a Vulkan instance. When creating a
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Device, the used GPU is selected automatically based on the support of features or can
be explicitly selected by the user. It is also possible to manually add Instance extensions
and layers if some of them are needed. It is possible to call method setDebugOutput()
to enable or disable debug output. If debug output is enabled, the Context class will
automatically add debugging layer and extension, which will write Vulkan debug messages
into the console containing useful data if something is not working properly.

4.1.2 Class Device

The Device class represents the logical instance of a hardware device (GPU). It creates
Vulkan Device, Queue and CommandPool objects when the whole context of the application
is known. It also automatically selects the most powerful hardware device if the device is
not explicitly selected by the developer. To instantiate class Graph from Device, method
createGraph() can be called. During the execution of the program, underlaying Vulkan
Device object is available with a call of method getLogicalDevice(). If some task is
executing on GPU it is possible to call the blocking method wait(), which will block until
work is done. This class also takes care of initialising the Vulkan Memory Allocator library.
More about Vulkan Memory Allocator can be found in Section 5.3.

4.1.3 Class Graph

Class Graph implements frame graph principles described in Section 3.3. Graph can only
be instantiated from class Device. It is possible to create Nodes (more in Section 4.1.5)
and Resources (more in Section 4.1.7). There is templated method to instantiate any
class which inherits Node or Resource classes. There are helper methods (for exam-
ple createGraphicsNode()) to create all existing Nodes and Resources. With method
setNumberOfFramesInFlight()) it is possible to set how many frames can be prerecorded
in advance while one of them is being rendered. Each graph can use one window and
to get this window method getGLFWWindow() can be called to create and get this win-
dow. More about windows can be found in Section 4.1.8. Framebuffer (more details
in Section 4.1.9) can be also created from Graph using method createFramebuffer().
Method compile() serves for compiling frame graph and should be called after whole con-
text (Nodes, Resources, Framebuffers and other vkEasy objects) is created and initialized.
Then after compilation, method execute() can be called and will execute this Graph. Dur-
ing execution Nodes can ask for Vulkan CommandBuffers so they can record commands
into them. After execution of all nodes in Graph all recorded CommandBuffers are sent to
Device and executed in Vulkan Queue object owned by Device.

4.1.4 Class MemoryAllocator

This class serves as a lightweight wrapper for the Vulkan Memory Allocator library (more
about Vulkan Memory Allocator in Section 5.3). Vulkan Memory Allocator is a C library
so its functions for creating and destroying objects must be called manually. This class
uses the RAII principle, so when MemoryAllocator class is instantiated create function of
Vulkan Memory Allocator is called and when it goes out of scope or is explicitly destroyed.
This makes sure that cleaning up is done every time it is needed. It contains functions
for creating both Images and Buffers easily which use Vulkan Memory Allocator in the
background. This class is instantiated once for each Device and each Resource can query
for Image or Buffer through Device.

19



4.1.5 Class Node

Node

PipelineNode MemoryCopyNode

ComputeNode GraphicsNode

Figure 4.2: This diagram contains all classes existing in vkEasy and inheriting from abstract
class Node. Nodes are executable classes and it is to execute them after enqueueing to
Graph.

Abstract class Node serves as an interface for defining the render task. As of now, two
classes implement class Node. Classes inheriting from class Node can be instantiated only
from class Graph. As frame graph can cull nodes from execution it is possible to set the
node as culling immune here. This can be helpful for example if the Node has some side
effects and is being culled by the Graph. It is also possible to add required Vulkan Device
extensions which will be then collected from all nodes to enable the required features.
Figure 4.2 shows an inheritance diagram of all existing classes with Node as the base class.

Class MemoryCopyNode

MemoryCopyNode really simple class and serves for copying data from one resource to an-
other. It is possible to use it to copy data from the buffer to buffer, image to image or
buffer to image and vice versa. An example of usage can be copying data to the device’s
local memory. This type of memory cannot be directly accessed by mapping it on the CPU
but first staging buffer must be created. Staging buffer has host visible memory type which
can be mapped and read or written by CPU. Then this node can be used to copy data to
or from GPU.

Class PipelineNode

Abstract class PipelineNode implements class Node and serves as base for all nodes that
uses Vulkan Pipeline object. For now, only Compute and Graphics Pipelines are imple-
mented in classes ComputeNode and PipelineNode. Implementing RayTracing Pipeline
should be as easy as implementing a node for example RayTracingNode, initialising Ray-
Tracing Pipeline creation info and RayTracing should work. A lot of code which is the
same for all Pipelines is already implemented in PipelineNode. It automatically takes
care of all Resources used in Node by building Vulkan PipelineLayout and DescriptorSets
objects and all objects needed to create them. What is only missing for classes inheriting
PipelineNode is to create a Vulkan Pipeline object by implementing a pure virtual method
buildPipeline() and Pipeline type-specific features.

Class ComputeNode

Compute pipeline is the simplest type of pipeline. It has only one ShaderStage (more on
class ShaderStage in Section 4.1.6) and its only property is setting dispatch size. Whole
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implementation of compute pipeline after inheriting PipelineNode is only around 40 lines
of code. To get ShaderStage there is method getComputeShaderStage().

Class GraphicsNode

A graphics pipeline is a much more complex pipeline than compute pipeline. It has much
more properties which can be set. In vkEasy, a lot of them are still hidden but making them
visible is only a matter of creating getters and setters and then calling protected method
needsRebuild() which will make sure that before the next usage of the pipeline it will be
rebuilt with this new property set accordingly. GraphicsNode contains getters for its shader
stages (for now only Vertex and Fragment shader stages). Method setFramebuffer()
serves for setting Framebuffer (more in Section 4.1.9) which will be rendered into. To
define vertex attribute of some Vertex Buffer defineAttribute() can be called. Index
buffer can be used by setting it with method setIndexBuffer().

4.1.6 Class ShaderStage

owns1 1..nPipelineNode ShaderStage

Figure 4.3: This diagram shows relationship between class ShaderStage and classes inher-
iting from PipelineNode. One ShaderStage must belong only to one PipelineNode but
PipelineNode can contain multiple ShaderStages. That’s because for example Graphics
pipeline consists of Vertex ShaderStage, Fragment ShaderStage, Geometry ShaderStage,
etc.

Class ShaderStage implements one programmable pipeline stage like vertex or fragment
stage in the graphics pipeline. The object of this class can be acquired from nodes inheriting
PipelineNode. In the background creates the Vulkan ShaderModule object and fills all info
needed to create the Vulkan PipelineShaderStage object. It supports loading SPIR-V, GLSL
or HLSL shading languages. To support GLSL and HLSL code it uses Shaderc (more in
Section 5.2) library to compile it into SPIR-V. More about shading languages can be found
in Section 3.1.2. It owns one or more objects of class ShaderStage, which uses Shaderc
library for automatic compilation to SPIR-V. SPIR-V code can be set to ShaderStage
with method setShaderData(). If method setShaderFile() is used it determines usage
of Shaderc compiler based on extension of file. If the file extension is spv it loads the file
as SPIR-V code and if not it uses Shaderc library to compile the file. Figure 4.3 shows
ShaderStage’s relationship with PipelineNode.

4.1.7 Class Resource

Abstract class Resource is for implementation of different types of Buffers and Images
like Uniform Buffers, Storage Buffers, Attachment Images, etc. Here Vulkan Image or
Buffer object is stored after acquiring it from MemoryAllocator as written in Section 4.1.4.
It automatically takes of copying data to GPU what is needed if Resource lives in a
device’s local memory and is not directly accessible from the CPU. It automatically creates
StagingBuffer and MemoryCopyNode and uses them when needed. Persistence can be also
set for each resource. It means that it will not be created and destroyed in each frame but it
will persist until it is not destroyed manually. This can be useful for big read-only data like
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Resource

Image Buffer

ColorAttachment DepthStencilBuffer

TextureImage SwapChainImage

StagingBuffer StorageBuffer

UniformBufferVertexBuffer IndexBuffer

MemoryAllocator::Resource1 1..nuses

Figure 4.4: This diagram contains all classes existing in vkEasy and inheriting from abstract
class Resource. Resources can be assigned to Nodes and then after enqueueing nodes to
Graph it is possible to calculate resource lifetimes and places where pipeline barriers must
be placed. Also as mentioned in Section 4.1.4, Resources can ask for Vulkan Image or
Buffer which is wrapped in class MemoryAllocator::Resource.

textures or vertex buffers. If rendering into Window is used Vulkan SwapChain object will
also exist. According to the count of images in SwapChain non-persistent, the same number
of underlying Vulkan Image or Buffer objects must be created and it is done automatically
in the background. And each frame’s correct resource index is used depending on the actual
frame index. It also takes care of recording usage by nodes and then it is possible to place
buffer and image barriers in the correct places. Classes inheriting abstract class Resource
can be instantiated only from class Graph. Figure 4.4 shows an inheritance diagram of all
existing classes with Resource as the base class.

Class Buffer

Class Buffer serves as the base class for all resources which use Vulkan object Buffer.
During the execution of Graph, it is possible to get the underlying Vulkan Buffer object by
calling method getVkBuffer(). Most of the classes which inherit from Buffer only set the
correct buffer usage flags needed by Vulkan to create the buffer. But their functionality
can greatly differ. More about the available Buffer types in vkEasy is below.

Class StagingBuffer

StagingBuffer is a buffer which is always host visible and therefore mappable and writable
by CPU. This buffer can be used as a destination or source buffer for MemoryCopyNode and
used as a transfer medium between GPU and CPU.

Class UniformBuffer

UniformBuffer serves for creating buffer used as constant data readable by GPU in shaders.
It is always available to read from GPU but sometimes it is possible to make it also host
visible so the CPU can write or read it directly. It is mostly used for small data.

Class StorageBuffer

StorageBuffer is the type of buffer serving as storage for big data like holding data of an
entire scene, geometry, etc. Usually, it is a little slower as UniformBuffer but can hold
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much more data. It is always available to be used from GPU but sometimes can also be
host visible.

Class VertexBuffer

VertexBuffer is a buffer which can be used for drawing in GraphicsNode’s Graphics
Pipeline as the source for Vertex attributes. It is possible to set Vertex data with the
method setVertices().

Class IndexBuffer

IndexBuffer can be used for indexed drawing in GraphicsNode’s Graphics Pipeline. It is
possible to set indices with the method setIndices().

Class Image

Class Image serves as the base class for all resources which use Vulkan object Image. During
the execution of Graph, it is possible to get the underlying Vulkan Image object by calling
method getVkImage(). Most of the classes which inherit from Image only set the correct
image usage flags needed by Vulkan to create the image. But their functionality can differ.
All images have getters and setters for different properties like format, dimensions, number
of MIP levels, etc. More about actually available Image types are written below.

Class DepthStencilBuffer

Even though class DepthStencilBuffer contains Buffer in its name its underlying Vulkan
object Image and therefore it is inheriting vkEasy’s Image class. The naming is the same
in raw Vulkan so it was kept. DepthStencilBuffer serves for Z-buffering or Stencil testing
or both. It can be used in GraphicsNode’s Graphics Pipeline. For now, only Z-buffering
works but support for Stencil testing is also planned. It is possible to set a clear value using
method setClearValue();

Class ColorAttachment

ColorAttachment class serves as the base for all Image classes which can be used as color
attachments in the graphics pipeline which means that the graphics pipeline can use them as
render targets. By default ColorAttachment object can be instantiated from Framebuffer
object (more about Framebuffer object in Section 4.1.9). It is possible to set a clear color
using method setClearColor();

Class SwapChainImage

SwapChainImage inherits class ColorAttachment and serves as render target for graphics
pipeline which can be drawn into window. It is a special case of Resource. As mentioned
in Section 4.1.7 each Resource can be chosen to be persistent or not. SwapChainImage is
persistent by default but still can contain multiple underlying Vulkan Image objects. The
number of images can be specified during the creation of the Vulkan SwapChain object and
is chosen by vkEasy automatically. Other resources used in the same graph will have the
same number of underlying Vulkan Image of Buffer objects depending on the number of
Vulkan Images created with the Vulkan SwapChain object. Only one SwapChainImage can
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exist for one Graph and can be acquired from classes inheriting class WSI (more about WSI
in Section 4.1.8). These relationships can be seen in Figure 4.5.

Class TextureImage

TextureImage inherits class ColorAttachment and serves as image which can be sampled
from in shaders in graphics pipeline.

4.1.8 Class WSI

owns 11WSI

GLFWWindow

SwapChainImageowns1 1Graph

Figure 4.5: This diagram shows relationships of other classes to class WSI. Each Graph can
own only one WSI and WSI owns one SwapChainImage. Also each WSI is unique to its creating
Graph and SwapChainImage is unique to its creating WSI. WSI is for now implemented only
by one class GLFWWindow.

Abstract class WSI serves as an abstraction over windows. It can be implemented us-
ing different libraries like Simple DirectMedia Layer (SDL), Graphics Library Framework
(GLFW), etc. More about that in Section 5.4. GLFW is already implemented and available
for testing. WSI should exist only once per Graph. Internally it creates SwapChainImage
which can be used as render target in graphics pipeline in GraphicsNode. Implementing
classes must provide the Vulkan SurfaceKHR object. Relations to other classes can be seen
in Figure 4.5.

Class GLFWWindow

GLFWWindow is simple class implementing WSI using GLFW library (more in Section 5.4) to
create windows and Vulkan SurfaceKHR object.

4.1.9 Class Framebuffer

uses0..n 1GraphicsNode uses0..n 0..nFramebuffer ColorAttachment

creates
1

0..n

Graph

Figure 4.6: This diagram shows relationships of other classes to class Framebuffer.
Framebuffer can be created from Graph and as many ColorAttachments can be assigned
to it as needed. Framebuffer then can be used by GraphicsNode.

Framebuffer class has more use cases. Firstly it groups all render targets which are
somehow related to each other, they must share same resolution, and can serve as render
targets, depth or stencil buffers. One render pass contains one or more subpasses where
subpass consists of one graphics pipeline (more in Section 3.1.1). All GraphicsNodes which
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share same Framebuffer objects are grouped to one render pass where each GraphicsNode
is taken as one subpass. Also it is possible to set classes implementing WSI to it as Window.
This makes sure that all render targets are set to correct resolution depending on resolution
of window which is rendered into. In Figure 4.6 relationships to other classes can be seen.

4.2 Interface design and usage
Now when classes and their purpose are known, this section shows an example of usage of
vkEasy. vkEasy was developed from top to bottom. That means that firstly its expected
interface and classes were designed and then the backend was implemented. This section
shows some important parts of the vkEasy’s interface needed for drawing rotating textured
triangle using vkEasy. Parts of code are from example 5 which is described in Section 6.1.5
and is available in source code [14]. Figure 6.4 shows what the output of the code described
looks like. Library OpenGL Mathematics (GLM) is used to represent vectors and matrices
(types in namespace glm::) in this example.

Including vkEasy

Listing 4.1: Pretty straightforward code just showing how to include vkEasy into project.

#include <vkEasy/vkEasy.h>

Creating all of needed vkEasy objects

Listing 4.2: Code below shows how easy it is to create any of vkEasy objects. First Device
object must be created, then Graph object can be created from it. All other objects are
then created from Graph.

auto& device = vk::easy::Context::get().createDevice();
auto& graph = device.createGraph();
auto& framebuffer = graph.createFramebuffer();
auto& vertexBuffer = graph.createVertexBuffer();
auto& indexBuffer = graph.createIndexBuffer();
auto& uniformBuffer = graph.createUniformBuffer();
auto& graphics = graph.createGraphicsNode();
auto& textureImage = graph.createTextureImage();
auto& window = graph.getGLFWWindow(800, 600, "Graphics Test");
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Preparing VertexBuffer

Listing 4.3: Code bellow shows creates four vertices with position, color and uv attributes
in vector vertices. Then previously created vertexBuffer is filled with vertices.

struct Vertex {
glm::vec2 pos;
glm::vec3 color;
glm::vec2 uv;

};
const std::vector<Vertex> vertices =

{ { { -0.5f, -0.5f }, { 1.0f, 0.0f, 0.0f }, { 1.0f, 0.0f } },
{ { 0.5f, -0.5f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f } },
{ { 0.5f, 0.5f }, { 0.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } },
{ { -0.5f, 0.5f }, { 1.0f, 1.0f, 1.0f }, { 1.0f, 1.0f } } };

vertexBuffer.setVertices(vertices);

Preparing IndexBuffer

Listing 4.4: Code below shows filling of vector indices, and filling previously created
indexBuffer object with vector indices.

const std::vector<uint16_t> indices = { 0, 1, 2, 2, 3, 0 };
indexBuffer.setIndices(indices);

Preparing TextureImage

Listing 4.5: Code below shows filling of previously created textureImage with pixel data
loaded by some third-party image loader. texWidth, texWidth are dimensions of texture
loaded from file and pixels is pointer to data with size of imageSize. Loading data part
was skipped because any image loader can be used.

auto& textureImage = graph.createTextureImage();
textureImage.setDimensions(vk::Extent3D(texWidth, texHeight, 1));
textureImage.setDimensionality(vk::ImageType::e2D);
textureImage.setData(pixels, imageSize);
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Preparing Framebuffer and GLFWWindow

Listing 4.6: Code below shows how previously created window can be set to framebuffer
object. This will ensure that all framebuffer’s attachments will be resized according to
window size. Then framebuffer is assigned to GraphicsNode graphics. ColorAttachment
obtainable from window is then set to graphics and will be accessible from shaders at
layout 0.

framebuffer.setWindow(window);
graphics.setFramebuffer(framebuffer);
graphics.setColorAttachment(window.getAttachment(), 0);

Preparing vertex and fragment shaders

Listing 4.7: Here is shown how easy it its to set shaders to graphics node. Corresponding
ShaderStage is obtained and then shader file can be set. Shaders are written in GLSL and
internally compiled into SPIR-V using Shaderc

graphics.getVertexShaderStage().setShaderFile("shader.vert");
graphics.getFragmentShaderStage().setShaderFile("shader.frag");

Using indexBuffer, vertexBuffer and defining its attributes

Listing 4.8: This code shows how attribute can be defined using vertexBuffer and
graphics node. Method defineAttribute of GraphicsNode takes as first parameter lo-
cation as accessible from shaders. Second parameter is offset in buffer, third parameter is
stride in buffer and last parameter is buffer itself. There is also untemplated version where
format can be set manually. Last line shows setting indexBuffer to graphics node.

graphics.defineAttribute<glm::vec2>(0, offsetof(Vertex, pos),
sizeof(Vertex), &vertexBuffer);

graphics.defineAttribute<glm::vec3>(1, offsetof(Vertex, color),
sizeof(Vertex), &vertexBuffer);

graphics.defineAttribute<glm::vec2>(2, offsetof(Vertex, uv),
sizeof(Vertex), &vertexBuffer);

graphics.setIndexBuffer(&indexBuffer);

Using uniformBuffer and textureImage

Listing 4.9: Code below shows creating descriptors. Code is same for any node inheriting
from class PipelineNode. First parameter is resource, second and third are binding and
set under which resource is available in shader.

graphics.createDescriptor({ &uniformBuffer }, 0, 0);
graphics.createDescriptor({ &textureImage }, 1, 0);
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Enqueueing GraphicsNode to Graph

Listing 4.10: Code below shows enqueueing graphics node to graph and than compiling
graph before it can be executed. Here any number of nodes can be enqueued.

graph.enqueueNode(graphics);
graph.compile();

Graph execution

Listing 4.11: And the last part is execution itself. The first lines show creating structure,
which holds rendering data which will fill uniformBuffer every frame. Model, view and
projection matrices respectively. This structure is filled with calculated data for every frame
and will rotate the rectangle in the scene. Calculations of these matrices are skipped in
this code example. While cycle will end if the close button of the window is clicked.

struct UniformBufferObject {
glm::mat4 model;
glm::mat4 view;
glm::mat4 proj;

};
std::vector<UniformBufferObject> ubo;
ubo.resize(1);
while (!window.shouldClose()) {

// calculating model, view and projection matrices
// and filling ubo vector with data
uniformBuffer.setData(ubo);
graph.execute();

}

Result

After compiling and running the program, a window should open and a rotating and tex-
tured rectangle should be seen. Same as can be seen in Figure 6.4.
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Chapter 5

Implementation
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Figure 5.1: This figure shows the graph of used technologies and libraries and their rela-
tionship to vkEasy. Yellow rectangles are representing libraries, blue rectangles represent
used and programmable languages, orange rectangles represent used tools, and lastly, green
rectangles represent classes of vkEasy.

vkEasy is written in C++ language and it is required for the compiler to be able to build
code written in C++17. CMake is used as the build system and at least version 3.16 is
required. vkEasy is buildable on Windows and Linux operating systems and was tested with
Microsoft Visual C++ (MSVC) compiler and GNU C++ (g++) compilers. This chapter
contains information about libraries used by vkEasy. Graph with relationships of tools,
languages, and libraries to vkEasy can be seen in Figure 5.1.

5.1 Vulkan C++ wrapper
Vulkan is a graphics API implemented in the C language. While it is possible to use raw
Vulkan C API vkEasy uses C++ language there are Vulkan C++ wrappers that do work
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with Vulkan just a little easier. There are two well-known C++ wrappers, namely Vulkan-
Hpp and Vulkan-RAII (available at Khronos Vulkan-Hpp GitHub repository [7][10]).

Vulkan-Hpp

Vulkan-Hpp provides header-only C++ bindings for Vulkan C API. Its goal is to improve
the developer’s Vulkan experience without introducing CPU runtime costs. It adds new
features like type safety for enums and bitfields, STL container support, exceptions, and
simple enumerations. More information, examples and source code can be found at Khronos
Vulkan-Hpp GitHub repository [7].

Vulkan-RAII

Vulkan-RAII adds additional C++ layer on the top Vulkan-Hpp. It uses all the enums and
structure wrappers from Vulkan-Hpp. It also provides new wrapper classes for the Vulkan
handle types but in a more refined way than Vulkan-Hpp. As its name already suggests
it follows the RAII principle (RAII: Resource Acquisition Is Initialization). Instead of
creating Vulkan handles with vkAllocate or vkCreate and destroying them with vkFree
or vkDestroy, constructor and destructor of corresponding Vulkan handle wrapper is used
called. More information, examples and source code can be found also at Khronos Vulkan-
Hpp GitHub repository [7]. Programming guide for Vulkan-RAII can be found GitHub
repository [10].

Why Vulkan-RAII

Vulkan-RAII is used in vkEasy because of the ease of use of the RAII principle. It also
contains simple to use dynamic loader of Vulkan, which means that there is no need to use
a dynamic loader library like Volk.

5.2 GLSL/HLSL to SPIR-V compiler
By default, Vulkan accepts only programs written using SPIR-V unlike OpenGL, which also
accepts GLSL (OpenGL shading language). There are two probably best-known shading
language compilers named Glslang and Shaderc, respectively.

Glslang

Glslang is the official reference compiler by Khronos Group for the ESSL (OpenGL ES
shading language), GLSL (OpenGL shading language) and HLSL. It firstly translates those
languages to Glslang’s internal abstract syntax tree (ASL). Then ASL is translated to
Khronos-specified SPIR-V intermediate language. It is open and free for anyone to use,
either from a command line or programmatically. The OpenGL and OpenGL ES are main-
taining consistency between the reference compiler and the corresponding GLSL and ESSL
specifications. More information and source code can be found at Khronos’s glslang GitHub
repository [2].

Shaderc

Shaderc is composed of library libshaderc and command line tool glslc. glslc is a command
line compiler used for compiling shader strings from GLSL and HLSL to SPIR-V. In the

30



background, it uses above mentioned Glslang and also SPIRV-Tool. Library libshaderc is
an API for accessing glslc functionality. Compared to glslang it comes with a simpler API
and increased functionality like support for #include directives. More information and
source code can be found at Google’s Shaderc GitHub repository [5].

Why Shaderc

SPIR-V is not a user-friendly language so library Shaderc [5] is used to make vkEasy
compatible with GLSL and HLSL (High-level shader language). Shaderc supports both
GLSL and HLSL and it also comes with support for #include directives which are very
useful. GLSL in OpenGL does not support #include directives and if code needs to be
reused it must be copied into every shader.

5.3 Memory Management
As mentioned in Section 3.2.3, memory management and resource allocation is quite a
difficult topic. There is already a really good library, Vulkan Memory Allocator, created
by AMD GPUOpen, which is utilized in vkEasy.

Vulkan Memory Allocator

The Vulkan Memory Allocator (VMA) [8] library is a simple and easy to integrate API,
which helps with allocating memory and creation of Vulkan Buffer and Image objects. To
make memory allocations and resource creation easier it offers some higher-level functions:

• functions that help to choose the correct and optimal memory type based on the
intended usage of the memory.

– required or preferred traits of the memory are expressed using higher-level de-
scription compared to Vulkan flags.

• functions that allocate memory blocks, reserve and return parts of them
(VkDeviceMemory + offset + size) to the user.

– library keeps track of allocated memory blocks, used and unused ranges inside
them finds best matching unused ranges for new allocations, and respects all the
rules of alignment and buffer/image granularity.

• functions that can create an image/buffer, allocate memory and bind it to the corre-
sponding image/buffer – all in one call.

• functions that can defragment already allocated memory.

The library really helped to make memory management in vkEasy much easier and it also
has high-quality documentation which helped to get to know it really quickly. This section
was inspired by and more information about VMA can be found at AMD GPUOpen [8]
and Vulkan Memory Allocator GitHub repository [9].

31



5.4 Rendering into window
For Vulkan to be able to render into a window it needs a Surface object. Creating the
surface object needs system-dependent parameters (as written in Section 3.1.1). To make
this easier libraries like Simple DirectMedia Layer (SDL) or Graphics Library Framework
(GLFW).

Graphics Library Framework

Graphics Library Framework is an Open Source, multi-platform library for OpenGL,
OpenGL ES, and Vulkan application development. It provides a simple, platform-
independent API for creating windows, contexts and surfaces, reading input, handling
events, etc. GLFW natively supports Windows, macOS, Linux and other Unix-like sys-
tems. On Linux, both X11 and Wayland are supported. More information about GLFW
can be found at GLFW GitHub [1].

Why GLFW

SDL library is a quite complex and big library with a lot of functionality most of which is
not needed for testing of vkEasy. GLFW is a lightweight framework and that is the reason
why it is used. And as stated in Section 4.1.8 it is possible to use other frameworks like
GLFW by inheriting and implementing the abstract class WSI.
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Chapter 6

Experiments

This chapter shows how much code can be reduced by using the framework vkEasy. First, it
shows implemented and working examples available in source code [14] and then compares
lines of code needed to write these examples in raw Vulkan with lines of code needed to
write the same example in vkEasy.

6.1 Examples
This section contains examples implemented using vkEasy and their description. They are
all available in source code [14]. Compute example 1 was inspired by an example by Sascha
Willems [19] and graphics examples by some examples from Vulkan Tutorial [16]. They are
written in raw Vulkan and were used to compare usability and lines of code reduction of
vkEasy. They also serve as tests if the framework works correctly.

6.1.1 Example 1 – Compute pipeline – Fibonacci sequence

This example serves as a test for the compute pipeline. A simple Fibonacci sequence shader
is used to calculate the first 32 numbers of the sequence on GPU and write the contents
of the output buffer to the console. Shader source code is taken from minimal headless
compute example by Sascha Willems1. In vkEasy source code name of this example is
vkEasyCompute.

6.1.2 Example 2 – Graphics pipeline – Triangle

This example serves as a basic test of the graphics pipeline. It draws a coloured triangle
into the window as shown in Figure 6.1. Triangle is hardcoded in the shader so no vertex
buffer is used. Shader source code and inspiration were taken from Vulkan Tutorial2. Name
of this example in vkEasy source code is vkEasyGraphics.

6.1.3 Example 3 – Graphics pipeline – Vertex and index buffers

This example draws a coloured rectangle (two triangles) into the window as shown in
Figure 6.2. The rectangle is now stored in the vertex buffer and the index buffer is also

1https://github.com/SaschaWillems/Vulkan/blob/master/examples/computeheadless/
computeheadless.cpp

2https://github.com/Overv/VulkanTutorial/blob/master/code/15_hello_triangle.cpp
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Figure 6.1: Basic test of graphics pipeline drawing shader hardcoded triangle to window.

used. Vertex buffer consists of two attributes one of which is position and the second is
colour. Shader source code and inspiration were taken from Vulkan Tutorial3. Name of
this example in vkEasy source code is vkEasyGraphicsVertexIndexBuffers.

6.1.4 Example 4 – Graphics pipeline – Uniform buffer

This example draws the same rectangle as in example 3 but now also uses a uniform buffer
containing model, view, and projection matrices updated every frame causing rotation of
triangle in 3D space. What this example looks like is shown in Figure 6.3. Shader source
code and inspiration were taken from Vulkan Tutorial4. Name of this example in vkEasy
source code is vkEasyGraphicsUniformBuffers.

6.1.5 Example 5 – Graphics pipeline – Texture

This example draws the same rotating rectangle as in example 4 but this rectangle is now
textured instead of interpolated colour as shown in Figure 6.4. Vertex buffer now contains
a new attribute that is texture coordinate. Shader source code, texture, and inspiration
were taken from Vulkan Tutorial5. The name of this example in the vkEasy source code is
vkEasyGraphicsTexture.

6.1.6 Example 6 – Graphics pipeline – Depth buffer

This example draws two rectangles with offset on the z-axis. Each rectangle is the same as in
example 5 and this example shows how to use a depth buffer. What this example looks like

3https://github.com/Overv/VulkanTutorial/blob/master/code/21_index_buffer.cpp
4https://github.com/Overv/VulkanTutorial/blob/master/code/23_descriptor_sets.cpp
5https://github.com/Overv/VulkanTutorial/blob/master/code/25_sampler.cpp
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Figure 6.2: Example that draws colored rectangle into window using vertex and index
buffer.

is shown in Figure 6.5. Shader source code, texture, and inspiration were taken from Vulkan
Tutorial6. Name of this example in vkEasy source code is vkEasyGraphicsDepthBuffer.

6.1.7 Example 7 – Graphics pipeline – 3D Model

This example draws a rotating 3D model as shown in Figure 6.6. Shader source code, 3D
model, texture, and inspiration were taken from Vulkan Tutorial7. Name of this example
in vkEasy source code is vkEasyGraphicsModel.

6.2 Code Reductions
This section summarizes code reductions of examples presented in the previous section.
Application CLOC was used to count an exact number of lines except for empty lines and
comments. For results to be more precise all include directives were removed because they
are different for every code. All sources were formatted using the same C++ language
formatter so it corresponds to each other also with the format. Also in Sascha’s example,
there were code parts containing code intended to be used with Android OS which was also
removed from counting. Results were as follows:
As seen in Table 6.1, using vkEasy reduces the code needed for using Vulkan by a lot.
For examples implemented in this project, the average reduction of lines of code is 94 %.
Also from the table, it can be seen that the lowest reduction of 90 % was achieved in the
first example and the highest reduction of 97 % in the second example. The first example
has the lowest reduction because the raw Vulkan part for creating all necessary objects for
the compute pipeline does not create as many Vulkan objects as all other examples. The

6https://github.com/Overv/VulkanTutorial/blob/master/code/27_depth_buffering.cpp
7https://github.com/Overv/VulkanTutorial/blob/master/code/28_model_loading.cpp
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Figure 6.3: Example that draws same rectangle as in example 3 but it is rotating using
model, view and projection matrices from uniform buffer.

Table 6.1: Table of lines of code reductions

Example Raw Vulkan lines vkEasy lines Reduction
1 335 33 90 %
2 757 21 97 %
3 958 38 96 %
4 1074 64 94 %
5 1245 80 94 %
6 1359 86 94 %
7 1396 114 92 %

graphics pipeline is much more complex and much more boilerplate code is needed. And
that’s why the second example achieved the highest reduction. Triangle is hardcoded into
shaders so code like loading filling vertex buffers, loading texture and data from disk or
loading 3D model from disk is not needed. Therefore reduction is really high in this case.
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Figure 6.4: This example tests texturing rotating rectangle with loaded texture from file.

Figure 6.5: Example that shows usage of depth buffer. It draws two textured rectangles
with offset in z axis.
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Figure 6.6: This example tests drawing of more complex textured 3D model.
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Chapter 7

Conclusion

While Vulkan is a very complex and low-level API, there are ways to make work with it
much easier. vkEasy implements deferred Vulkan object creation to hide a lot of boilerplate
code. It also implements a frame graph, which makes it easier for the user to think about
a frame as a series of graphics or compute tasks, which need to be done to get the final
frame or desired compute results. Next, it uses the Vulkan Memory Allocator framework so
the user doesn’t need to think about complex memory allocation. It also uses the Shaderc
library to compile much more user-friendly shading languages such as GLSL or HLSL to
SPIR-V which is the language that Vulkan can understand. vkEasy makes it easy to use
multiple GPUs for compute and render tasks. It also automatically manages memory and
synchronizes access to it. vkEasy also makes it easy to send and read data from GPU. The
framework was tested and supports Linux and Windows operating systems and makes it
easy to create windows that can be rendered into.
The proposed architecture helps to increase the ease of use of Vulkan and reduces lines of
code needed to use GPUs. Specifically as mentioned in Section 6, it reduced needed lines
of code in examples on average by 94 %.
Compared to related framework Granite it does not go by way of trying to be similar API
like OpenGL but opens possibilities of frame graph for the user. Compared to framework
Pumex it has a strict class hierarchy that cannot be disobeyed and makes it easier for the
user to understand which class is good for what.
There is still a lot of space for improvements. User testing and feedback on ease of use by
users of vkEasy would be really helpful to make it even more user-friendly. Rethinking some
parts of the class hierarchy could reduce the complexity of use even more. Bringing support
for the ray-tracing pipeline would be also a nice addition. More complex features like MIP
mapping, multi-sampling, and other things that are mostly related to Image Vulkan objects
and are planned but not supported yet. Also, a lot of features are not yet visible in the
graphics pipeline but it is only a matter of creating getters and setters for them. The
goal of creating vkEasy was not to develop a good performance framework but to make
work with Vulkan easier so there are a lot of things to increase the performance of vkEasy.
While automatic memory access synchronization works on the inter-pipeline level, it can
be done on the inter-pipeline stage level to increase performance. This can be achieved
with shader reflection. For now, there is support only for one universal queue. Support
for asynchronous compute queue, separate transfer queue and sparse binding queues would
be a nice addition and could increase performance. Also, multi-threaded command buffer
recording is planned and should increase performance.
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