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Abstract
Lossless audio coding is increasingly important for properly archiving and preserving audio
in its original form. To achieve a good compression ratio, lossless encoding techniques such
as linear prediction and Rice coding are often applied to the original audio in order to
minimize its entropy and preserve the original signal bit-precisely with a reduced size. This
thesis explores the possibilities of efficiently encoding multi-channel audio in a way that
exploits the similarity between multiple channels in order to achieve better compression
ratios. This thesis also explores the techniques employed by FLAC in more depth while
also providing solutions to a few problems that FLAC fails to address.

Abstrakt
Bezeztrátové kódování zvuku je stále důležitější pro správnou archivaci a uchování zvuku
v původní podobě. Pro dosažení dobrého kompresního poměru se na původní zvuk často
aplikují techniky bezztrátového kódování, jako je lineární predikce a Riceho kódování, aby
se minimalizovala jeho entropie a zachoval se původní signál s bitovou přesností se zmenše-
nou velikostí. Tato práce zkoumá možnosti efektivního kódování vícekanálového zvuku
způsobem, který využívá podobnosti mezi více kanály za účelem dosažení lepších kompres-
ních poměrů. Tato práce také hlouběji zkoumá techniky používané FLAC-em a zároveň
poskytuje řešení několika problémů, které FLAC neřeší.
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Chapter 1

Introduction

Audio compression has an important role in reducing the strain on data storage across mul-
tiple fields. Since keeping up with increasing file sizes can be often challenging, compression
has became the most important tool for keeping the rising storage demands in check.

Big data sets such as long conference recordings can often grow quickly and take up a
substantial amount of space if left unencoded. To prevent this, audio is often encoded using
audio codecs offering much better compression ratios than general purpose data compressors
such as Lempel–Ziv (LZ) or DEFLATE.

These audio codecs come in two distinct groups: lossy and lossless. Lossy compres-
sors employ techniques such as modified discrete cosine transform (MDCT) or perceptual
coding. These techniques adapt the frequency spectrum of the audio by removing parts
that are redundant for human perception. These codecs usually offer better compression
ratios in exchange for introducing compression errors. These compression errors can be
indistinguishable for humans and are therefore often ignored.

On the other hand lossless codecs offer a solution for storing audio without altering it in
the process. In contrast to lossy codecs, these employ techniques that help reduce file sizes
by lowering the intensity of audio signals while preserving their entropy. This is useful for
archiving, high quality audio and a lot of other purposes. Some of the techniques lossless
encoders employ are linear prediction and entropy coding.

Linear prediction takes advantage of the structure of speech by estimating the formants
and removing their effect from the speech signal. This process often results in the remaining
signal having a much lower intensity.

This low intensity signal can then be efficiently encoded using an entropy coder such
as a Rice coder. These coders can encode small (and thus frequent) values efficiently while
also being able to encode larger values. They can often be fine-tuned to a specific dynamic
range using a parameter determined from the would-be encoded signal.

A microphone array is a set of microphones which produce multiple channels of often
very similar audio signal. This fact can sometimes be exploited to our benefit.

1.1 Lossless Encoding of Signals from Microphone Array
The aim of this thesis is to design a lossless audio codec, capable of exploiting these similar-
ities and achieving a comparatively better compression ratio for recordings with multiple
channels.
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To reach this goal, we first needed to understand the FLAC encoding and decoding
process. Since the resulting codec is in Python, we had to re-implement these processes.
Next, we had to analyze the multi-channel audio that is produced by microphone array.
Previous theses from the Speech@FIT group proved to be a good source for this [12].

After we expanded our knowledge of these fields, we modified these processes and pro-
posed a new codec. This codec was designed to achieve better compression ratio for multi-
channel audio. The codec was implemented as a library and a companion executable. The
resulting codec is finally evaluated and compared to FLAC.

1.2 Scope of chapters
The thesis is structure into thematically distinct chapters. Chapter 2 deals with the current
state of the art. It also explains most of the techniques used for losslessly encoding audio.
In chapter 3, we list the data used for development and testing. This data was acquired
from publicly available corpuses. Chapter 4 is the core of this thesis. In this chapter we
explain most of the proposed techniques to improve compression. We also reveal the impact
of these techniques and explain the reasoning behind abandoning some of them. Chapter 5
deals with the implementation of our codec. This chapter contains the technical aspects of
the codec implementation. We also explain the internal structure of the codec as well as the
used libraries and dependencies. In chapter 6, we test the performance of our implemented
codec and compare it to FLAC.
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Chapter 2

State of the art

Compression involves the removal of redundant information from a certain data source in
order to lower the size of that data while. This process is used in a wide range of appli-
cations for the sole purpose of storing data more efficiently. General purpose compression
algorithms such as Lempel–Ziv (LZ) or DEFLATE can be useful for compressing data in
general, but fail short on audio compression. This is due to audio data often having a
large amount of information redundancy. Specialized audio compressors can exploit these
properties using audio compressing techniques such as linear prediction.

This chapter explores the current state regarding audio compression techniques and
different audio compression tools. It also offers a deep dive into the internal workings
of FLAC and its components. The last section offers a basic understanding of encoding
multi-channel audio recorded by microphone arrays.

2.1 Audio Compression formats
In this section we compare some of the most well known codecs and the techniques they
employ to compress a given input. Some of these techniques such as linear predictive coding
and entropy coding are later employed by our proposed codec in chapter 4.

These codecs can be divided into two main categories, lossy and lossless. While lossy
codecs can achieve much better compression ratio and often even reduce the size of output
files to a theoretical minimum, lossless codecs such as FLAC are still recommended for all
cases where the accuracy matters [9].

2.1.1 Lossy

Audio compressors usually take advantage of lossy compression methods, such as modified
dicrete cosine transforms (MDCT) or psychoacoustic models to achieve better compression
ratios. These codecs offer better compression ratio by sacrificing minor details in the given
input. This most often results in irreversibly altering the input audio signal and introducing
compression errors [9]. These compression errors in most cases not have a significant impact
on the human perception if done correctly. These compression errors might not be desirable
in certain cases when digitally processing audio. These include algorithms used for speech
recognition or audio processing using neural networks.
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MP3

MP3 or formally MPEG-1/MPEG-2 Audio Layer III is a lossy audio compression format [9].
It is mostly used due to its effective storage of audio data. The core idea of MP3 is employing
a modified discrete cosine transform (MDCT) and a psychoacoustic model to discard parts
of the data which are mostly redundant for human perception.

Opus

Opus is a low-latency speech oriented codec developed by the Xiph.org foundation and
standardized through RFC 6716 [10]. Opus was originally a successor to Speex, a codec
specifically designed to be effective at encoding speech. Opus combines two distinctive
algorithms, a linear prediction (LPC) based algorithm and a low-latency modified discrete
cosine transform (MDCT). Opus also uses code-excited linear prediction (CELP) techniques
in the frequency domain to increase its prediction efficiency. This allows Opus to code speech
and even other audio efficiently, while maintaining a relatively good quality and minimal
compression error [9].

Vorbis

Vorbis is a lossy compression format developed by the Xiph.org foundation as a replacement
for MP3 [5]. The source code of Vorbis is open-source 1.

Vorbis uses a modified discrete cosine transform (MDCT) similarly to MP3. The result-
ing frequency domain is then split into a noise floor and residual. These are then quantized
using codebook-based vector quantization. The quantized residuals are then entropy coded.

The performance of this codec is very similar to MP3, achieving an overall better per-
formance than lossless codecs. Although this seems to be the case, Opus still offers a better
performance for higher compression levels [9].

Vorbis served as our main inspiration alongside FLAC during our research.

2.1.2 Lossless

Lossless audio codecs preserve the integrity of the original audio data bit-precisely. This
is often done by using techniques such as linear prediction and entropy coding which are
lossless in nature. The most used lossless codec currently is FLAC2 that served as the main
inspiration for our codec. FLAC is explored in more detail in section 2.2.

WAV

Waveform Audio File Format (or WAVE) is a standard developed by Microsoft and IBM [9].
It is mostly used for storing audio data in a pulse-code modulated (PCM) format. All of
the samples in a WAV file are raw and unencoded.

WavPack

WavPack is an open-source lossless audio compression format developed by David Bryant [1].
WavPack uses linear prediction in combination with entropy coding, which is very similar
to how FLAC works. WavPack offers a predictor implemented purely in integer math and

1https://github.com/xiph/vorbis
2https://xiph.org/flac/
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a special data encoder instead of Rice coding. This encoder is less efficient but offers easy
adaptation to lossy encoding.

WavPacks also offers a hybrid mode, allowing the creation of two files, one of which is
a standalone WavPack audio file with lossy encoding. The two files together can then be
losslessly restored to the original audio track.

Shorten

Shorten is a fast, low complexity audio compressor originally developed by Tony Robin-
son [8]. It can operate in both lossy and lossless mode.

Shorten served as a predecessor to FLAC and works in much the same way, with the
differences being relatively minor. FLAC trivially extends and improves the fixed predictors,
LPC coefficient quantization, and Rice coding used in Shorten. [11] Shorten is no longer
developed and is superseded by FLAC.

2.2 FLAC
FLAC (Free Lossless Audio Codec) is a lossless audio codec developed by the Xiph.Org
foundation [11]. FLAC preserves the original audio bit-precisely while achieving a decent
compression ratio. It uses mostly integer operations to preserve losslessness and improve
the encoding speed.

The main techniques FLAC employs are Linear prediction (LPC) and Rice coding.

2.2.1 Encoding

The encoding process of FLAC follows a simple scheme as shown in figure 2.1. Most frames
are encoded as LPC frames, which follow a predict -> partition -> Rice encode process.
Constant and Verbatim frames are encoded directly.

Byte-stream
Input

LPC Frames

Constant Frames

Verbatim Frames

Blocking
Residual

LPC coefficients

Prediction

Residual partitions

Rice
partitioning

Bitstream
Rice

encoding
Byte-stream Format


encodingOutput

Figure 2.1: Block diagram of the FLAC encoder

2.2.2 Blocking

The first step of the encoding process is splitting the audio track into equal-length blocks.
These blocks, called frames, are processed sequentially.

After slicing a multi-channel audio track, each frame consists of a number of subframes
equal to the number of audio channels from the original audio file. These subframes are
processed differently depending on their type. Frames which are not encoded as LPC frames
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are classified as Constant (when each sample has the same constant value) or Verbatim
(whose residual would have a higher intensity and thus require more bits to store than the
actual source signal).

SubFrame types

FLAC offers four methods for modelling the input signal [11]:
1. Verbatim - SUBFRAME_VERBATIM - zero order predictor

The residual is the signal itself. The residual coding stage is skipped and the samples
are stored as they appear in the source file.

2. Constant - SUBFRAME_CONSTANT - constant value predictor (order 1)
The signal is pure DC. This constant value is stored unencoded. The residual coding
stage is skipped and only one value is stored in this subframe, during decoding it is
expanded to the original constant valued signal.

3. Fixed linear predictor - SUBFRAME_FIXED - constant value predictor (order 𝑃 )
The predictor values are determined at compile time, only the order is stored. The
residual is Rice encoded. This method is implemented in FLAC, though its use is
often limited and the encoder itself favors conventional LPC frames

4. FIR Linear prediction - SUBFRAME_LPC - dynamic value predictor (order 𝑃 )
The LPC coefficients are calculated using the Levinson-Durbin method. Order and
the quantized LPC coefficients are stored. The residual is Rice encoded. This is the
standard LPC subframe which we will discuss and mostly use in our codec, although
we later introduce a special version of this frame, more about this new subframe type
can be found in section 4.1.2.

2.2.3 Decoding

The decoding process is similar but reversed. Since subframes already have their type and
the LPC reconstruction is much simpler than prediction, this process is often much quicker
and memory efficient than encoding.

Byte-stream
Input LPC coefficients

Bitstream

Constant Frames

Verbatim Frames

Format
decoding

LPC Frames
Reconstruction

Residual Rice 

unpartitioning

Residual partitions

Rice
decoding

Byte-stream Block

couplingOutput

Figure 2.2: Block diagram of the FLAC decoder

2.2.4 Linear prediction

This section is heavily inspired by the Speech Signal Processing (ZRE) course at FIT [2].
Linear prediction is a speech analysis technique which represents the spectral envelope of
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a signal of speech using a linear predictive model [6]. The predicted signal is often very
similar to the original, as seen in figure 2.3, with spikes in the residual representing larger
entropy.
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Figure 2.3: Visualization of linear prediction

Basics of LPC

Linear prediction can be represented by a set of filter coefficients. These coefficients are
together called a predictor. They are used for constructing a FIR and an IIR filter. The
FIR filter is used for prediction and the IIR filter for reconstruction of the original signal.
Linear prediction only considers past samples for estimating the current sample.

The prediction part can by performed by using a convolutional filter:

𝑠𝑟[𝑛] = 𝑠[𝑛] +
𝑃∑︁

𝑚=1

𝑎𝑚 𝑠[𝑛−𝑚] for 𝑛 ≥ 𝑃 . (2.1)

The first P samples are left intact and stored as warm-up samples. These are used for
reconstruction when decoding.

This predicted signal is removed from the original signal, lowering its intensity. This
low-intensity residual, seen in figure 2.3, is later efficiently encoded using Rice coding as
explained in section 2.2.5.

For restoring the original signal, a reverse of this process can be performed:

𝑠[𝑛] = 𝑠𝑟[𝑛]−
𝑃∑︁

𝑚=1

𝑎𝑚 𝑠[𝑛−𝑚] for 𝑛 ≥ 𝑃 . (2.2)

Note the use of previous 𝑠[𝑛] samples in this equation. Since this filter uses the values of
previous output values, it is classified as an IIR filter. As for every IIR filter, it may become
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unstable and introduce reconstruction issues. To prevent this, we check the stability of each
constructed filter. This is explained later in this section.

Conventional filtering is performed using floating point coefficients. This is often done
after the coefficients have been quantized and then dequantized to prevent quantization
noise. This is not the case for FLAC and our proposed codec however, which both use a
method involving the use of quantized coefficients. This quantization method is explored
later in this section.

Autocorrelation

For calculating the LPC coefficients, FLAC uses the correlation method [2, page 54]. The
signal can be optionally passed through a windowing function to improve the precision of
the LPC coefficients. The window used by FLAC is the Tukey window. It has a narrow
frequency response with periodic spikes which make it ideal for this purpose [3]. This
window is later used by our own codec as seen in section 4.1.3.

The autocorrelation coefficients are calculated using:

𝑅𝑘 =
𝑁−𝑘−1∑︁
𝑛=0

𝑠[𝑛] 𝑠[𝑛+ 𝑘]. (2.3)

For computing the LPC coefficients, only the first 𝑃 +1 autocorrelation coefficients are
required.

Coefficient computation

As mentioned before, the FLAC reference encoder precomputes predictors up to a set
maximum order. This subsection will describe the calculation of one set of these coefficients
with order 𝑃 .

For computing the actual coefficients, the autocorrelation coefficients 𝑅𝑛 can be ar-
ranged in a symmetrical Toeplitz matrix and solved for 𝑎𝑛:⎡⎢⎢⎢⎣

𝑅0 𝑅1 · · · 𝑅𝑃−1

𝑅1 𝑅0 · · · 𝑅𝑃−2
...

... . . . ...
𝑅𝑃−1 𝑅𝑃−2 · · · 𝑅0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑎1
𝑎2
...
𝑎𝑃

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
𝑅1

𝑅2
...

𝑅𝑃

⎤⎥⎥⎥⎦ (2.4)

Ti find the coefficients 𝑎𝑛 more efficiently, the the fast Levinson-Durbin recursion can
be used [2]:

𝐸(0) = 𝑅(0) (2.5)

𝑘𝑖 = −
[︂
𝑅(𝑖) +

𝑖−1∑︁
𝑗=1

𝑎𝑖−1
𝑗 𝑅(𝑖− 𝑗)

]︂
/𝐸(𝑖−1) (2.6)

𝑎
(𝑖)
𝑖 = 𝑘𝑖 (2.7)

𝑎
(𝑖)
𝑗 = 𝑎

(𝑖−1)
𝑗 + 𝑘𝑖𝑎

(𝑖−1)
𝑖−𝑗 for 1 ≤ 𝑗 ≤ 𝑖− 1 (2.8)

𝐸(𝑖) = (1− 𝑘2𝑖 )𝐸
(𝑖−1) (2.9)

Most libraries already implement this method, such as SciPy3.
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_toeplitz.html
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Order

The order of the predictor needs to be estimated, so we don’t waste bits on redundant coef-
ficients. The order represents how many past samples are considered when determining the
value of the current sample. The order should be chosen based on the sampling frequency
of the original signal.

The FLAC reference encoder precomputes the LPC coefficients up to a maximal given
order. The encoder then estimates the best order to use (2.12) by calculating the expected
bits per sample (2.11) that will be required to store the residual. This is calculated using
the LPC error (2.10) from each set of LPC coefficients.

𝐸𝑝 = 𝑅0 +

𝑝∑︁
𝑖=1

𝑎𝑖𝑅𝑖 (2.10)

𝑏𝑒𝑥𝑝[𝑝] = 0.5 log2

(︂
0.5𝐸𝑝

𝑁

)︂
(2.11)

𝑃𝑏𝑒𝑠𝑡 = argmin (𝑏𝑒𝑥𝑝) (2.12)

This chosen order is then used to select one of the precomputed set of LPC coefficients
which will be used to encode the subframe. This ensures that the predicted signal would be
the best estimation the encoder can provide to the input signal. The order can be different
for each subframe.

Coefficient quantization

The resulting coefficients are represented as floating point numbers, which are good for
generating the predicted signal precisely but storing them requires 8 bytes (for 64-bit double
precision). This is not ideal if we want to store them efficiently.

For this reason, the coefficients 𝑎𝑛 are quantized. The lost precision does not signifi-
cantly affect the predicted signal while significantly reducing the required space needed to
store them. This quantization method is easily reversible and can later be used for cal-
culating the residual using integer math. Additionally the precision information (or shift)
needs to be stored as a constant 𝑘𝑠ℎ𝑖𝑓𝑡 for each frame:

𝑘𝑠ℎ𝑖𝑓𝑡 = 𝑘𝑝𝑟𝑒𝑐 − ⌈log2|𝑎𝑚𝑎𝑥|⌉ − 1 (2.13)

where ⌈𝑥⌉ denotes rounding up to the closest larger integer.
For computing the quantization shift (2.13), the desired precision in bits 𝑘𝑝𝑟𝑒𝑐 and the

LPC coefficient with the largest absolute value 𝑎𝑚𝑎𝑥 are necessary. The FLAC reference
encoder estimates the optimal precision 𝑘𝑝𝑟𝑒𝑐 to use based on the block size and dynamic
range of the original signal [11]. The quantized (QLP) coefficients can be calculated with:

𝑞𝑖 =
⌊︁
𝑎𝑖 · 2𝑘𝑠ℎ𝑖𝑓𝑡

⌉︁
(2.14)

where ⌊𝑥⌉ denotes rounding to the closest integer.
A dequantization coefficient 𝑘𝑞𝑢𝑎𝑛𝑡 is introduced, which reverses the effects of this quan-

tization:
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𝑘𝑞𝑢𝑎𝑛𝑡 =
1

2𝑘𝑠ℎ𝑖𝑓𝑡
(2.15)

𝑎𝑖 = 𝑞𝑖 × 𝑘𝑞𝑢𝑎𝑛𝑡. (2.16)

The dequantization of the 𝑞𝑛 coefficients is not necessary in the implementation though,
since both the encoder and decoder only use the quantized coefficients. The shift (2.13)
as well as the quantized LPC coefficients (2.14) are stored for each frame. The example
results of this quantization process can be found in table 2.1.

Table 2.1: Example coefficients for predictor with order 8
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8

LPC -2.077 1.354 -0.494 0.615 -0.763 0.837 -0.625 0.174
QLP -1064 694 -253 315 -391 429 -320 88

The quantized LPC coefficients (QLP) in table 2.1 are represented in an integer format
with precision 𝑘𝑝𝑟𝑒𝑐 = 12 and 𝑘𝑠ℎ𝑖𝑓𝑡 = 9.

Alternative quantization methods

Direct quantization of LPC coefficients is dangerous, since quantization can cause the filter
to be unstable. This can pose issues when decoding by making the residual irreversible.
Alternative ways to quantize the LPC coefficients would be to transform them to:

• PARCOR coefficients - These coefficients are byproducts of the Levinson-Durbin re-
cursion, shown in equation (2.6) as 𝑘𝑖. They are more tolerant towards quantization
noise and more suitable for quantization.

• Line spectral pairs/frequencies 4 - LSPs have a few positive properties which include
smaller sensitivity to quantization noise, ensured filter stability and the ability to be
interpolated.

All of these methods seem promising and in theory should improve the encoding effi-
ciency. FLAC and Straw though still use direct quantization with stability check, due to
the reasons mentioned in section 4.1.3.

Prediction and residual

The prediction process, as explained at the start of this section, consists of filtering the
frame using a modified FIR filter. This filtering is shown in figure 2.4.

4http://www.dspcsp.com/pdf/lsp.pdf
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Figure 2.4: Signal prediction

For filtering the quantization has to be taken into account by multiplying the predicted
signal by the dequantization constant 𝑘𝑞𝑢𝑎𝑛𝑡:

𝑠𝑟[𝑛] = 𝑠[𝑛] +

⌊︃
𝑘𝑞𝑢𝑎𝑛𝑡

𝑃∑︁
𝑚=1

𝑞𝑚 𝑠[𝑛−𝑚]

⌋︃
for 𝑛 ≥ 𝑃 (2.17)

where ⌊𝑥⌋ denotes rounding down to the closest smaller integer.
This method allows for quick integer math. One set of quantized coefficients 𝑞𝑛 is used

for prediction and also reconstruction.
The first 𝑃 warm-up samples are left intact and stored directly without compression.

These warm-up samples are later used for reconstructing the original signal.
The resulting residual signal, seen in figure 2.3, has a significantly smaller intensity than

the original signal. This fact can then later be exploited by an entropy coding scheme, such
as Golomb or Rice coding as described in section 2.2.5.

Reconstruction

Reconstruction is performed using a modified IIR filter as shown in figure 2.5. Due to
filtering using already quantized coefficients, the predicted signal must be multiplied by the
dequantization constant 𝑘𝑞𝑢𝑎𝑛𝑡. This 𝑘𝑞𝑢𝑎𝑛𝑡 constant is the same as the constant used for
prediction, described in equation 2.15.
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Figure 2.5: Signal reconstruction

The output signal 𝑠 is initialized with 𝑃 warmup samples, so the filtration only needs
to be performed for 𝑛 ≥ 𝑃 :.

𝑠[𝑛] = 𝑠𝑟[𝑛]−

⌊︃
𝑘𝑞𝑢𝑎𝑛𝑡

𝑃∑︁
𝑚=1

𝑞𝑚 𝑠[𝑛−𝑚]

⌋︃
for 𝑛 ≥ 𝑃 . (2.18)

2.2.5 Rice coding

The results of the linear prediction step are a set of LPC coefficients and the residual. We
can assume that the residual contains a signal with relatively low intensity. This means
that the values of this signal are closely centered around zero.

To efficiently encode these low intensity residuals, FLAC uses Rice coding [7]. Rice
coding is a method for run-length data compression. These coders are very efficient at
losslessly encoding low intensity signals.

Rice coding uses a constant parameter 𝑚 for each encoded frame. For Rice coders this
parameter can be stored more efficiently stored as a logarithm:

𝑘 = log2𝑚. (2.19)

Rice coding is only defined for positive integers, so the residual must be mapped by an
overlap and interleave scheme (2.20). This scheme maps positive values to positive even
integers and negative values to positive odd integers.

𝑦 =

{︂
2|𝑥| for 𝑥 ≥ 0

2|𝑥| − 1 for 𝑥 < 0
. (2.20)

The resulting interleaved residual is shown in figure 2.6.
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Figure 2.6: Interleaving of the residual

A simplified description of the Rice encoding algorithm is as follows:

1. 𝑠[𝑛] is interleaved.

2. The quotient 𝑞 = 𝑠/𝑚 is calculated. Since we are working with integers, q is rounded
down.

3. 𝑞 binary zeroes are written to the bitstream.

4. A binary one is written to the bitstream.

5. The 𝑘 last bits of 𝑠[𝑛] are written to the bitstream.

Our Rice coding scheme, as shown in section 4.1.5, uses a modified version of this
encoding algorithm with an adaptive coding parameter.

Partitioning

FLAC uses a partitioning scheme in which the residual is partitioned into several equal-
length regions of contiguous samples, and each region is coded with its own Rice parameter
𝑚 based on the mean of the region [11].

This effectively improves the encoding efficiency for signals with highly variable intensity
but may fall short in certain cases, which is even acknowledged by the FLAC developers
- ”The FLAC format has reserved space for other coding methods. Some possibilities for
volunteers would be to explore better context-modeling of the Rice parameter“ [11].

2.2.6 Problems of FLAC

For multi-channel audio, the FLAC format offers a basic mid-side interchannel decorrelation
method. This is available for stereo streams only. If more than two channels are present,
no additional processing is supported and the channels are encoded independently.

FLAC also limits the maximum number of channels to 8, which can pose a problem when
encoding audio from microphone arrays with more than 8 inputs, as further described in
section 2.3.1.

2.3 Microphone arrays
Microphone arrays consist of multiple microphones, arranged in a certain shape. Micro-
phone arrays produce this audio in a multi-channel fashion. These channels are often very
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similar in shape. To efficiently store these signals, FLAC currently offers no practical solu-
tion other than independently storing the signal from each channel.

2.3.1 Channel differences

Microphone arrays present a specific situation in which multiple (sometime more than 8)
channels are present. Each of these channels can be assumed to have significant correlation
with the others. The differences between these channels often consist of a combination of
three effects - shift, gain and DC bias.

Our goal is minimizing the differences between individual channels while keeping their
entropy mostly intact. This can be accomplished by a few reversible operations which
increase the similarity between channels. Employing the use of a neural network is also
possible, though this method will not be discussed in this thesis.

Shift

Shift or signal delay is a common characteristic of microphone arrays and is often caused
by the sound waves hitting the individual microphones at different times. In some cases it
can be the result of an amplifier design fault where each microphone has its own amplifier.
These, often insignificant, differences between the individual amplifiers can also cause a
certain delay.

Mitigating this can be as simple as just shifting each channel compared to the main or
leading channel. This can be accomplished by using cross-correlation (2.21) to find the lag
for each channel.

𝑅𝑘 =
𝑁−𝑘−1∑︁
𝑛=0

𝑠1[𝑛] 𝑠2[𝑛+ 𝑘] (2.21)

𝑠ℎ𝑖𝑓𝑡 = argmax𝑅𝑘 (2.22)

These lags can then be used for delaying the other channels. This can be accomplished
by removing samples from the start and end of each channel and storing them separately.
The effects of shift on a speech signal are shown in figure 2.7.
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Figure 2.7: Effects of shift on a signal

Gain

Gain represents the intensity of each channel. Differences in gain are mostly tied to hard-
ware differences between individual amplifiers in the microphone array. No amplifier is
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identical to another and these differences cannot be ignored. In a few cases, hardware
malfunction can cause a specific amplifier to drop or increase its gain more significantly:

𝐸 =
√︀
𝑉 𝑎𝑟(𝑓𝑟𝑎𝑚𝑒). (2.23)

The simplest approach to counter this difference is to linearly scale each channel by a
ratio determined by the energy of that channel compared to a main channel:

𝑔𝑛 =
𝐸𝑚𝑎𝑥

𝐸𝑛
. (2.24)

The effects of gain difference on a speech signal are shown in figure 2.8.
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Figure 2.8: Effects of gain difference on a signal

DC bias

As gain and shift, DC bias is also often the result of hardware inconsistency. Some amplifiers
can and often do add a DC bias, which causes the signal to not be centered around zero but
instead around this arbitrary value. This bias essentially acts as a constant value added to
each sample.

Subtracting the mean of a given frame from each sample is often the easiest method to
eliminate these differences:

𝑠 =
1

𝑁

𝑁−1∑︁
𝑛=0

𝑠[𝑛] (2.25)

𝑠[𝑛] = 𝑠[𝑛]− 𝑠. (2.26)

The effects of added DC bias on a speech signal are shown in figure 2.9.
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Figure 2.9: Effects of DC bias on a signal
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Corrections

In reality, the signals recorded by microphone arrays are influenced by all of the effects
mentioned above. Correcting the combination of these effects can be significantly more
challenging. The orders of operations as well as the nature of the different microphones can
cause differences that cannot be reversed by any combination of methods. Dealing with
all of these factors requires a longer computation time and a more complex algorithm than
just countering a specific feature/distortion.
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Figure 2.10: Effects of all distortions on a signal

In essence, by removing these differences the streams can often look very similar. This
can be exploited in most cases but it does not mean that the signals are identical. In certain
cases, the material of the microphone array as well as vibrations and other environmental
noises can differently affect each channel. This can be ignored if a good heuristic is used
for determining whether to perform this operation or just perform independent encoding.

These corrections can be done on a per-frame basis to be as effective as possible or just
globally applied to the whole signal. More about correcting these factors and the effect of
these corrections on the encoding can be found in section 4.1.1.
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Chapter 3

Data

This chapter describes the recordings and other data used for development and later testing
purposes. Most of the data has been provided by my supervisor and the Speech@FIT
group 1.

The files used were part of different speech corpuses, most notably the AMI 2 and
CHiME 3 corpus.

The common characteristic of all these audio tracks is their 16 kHz sampling frequency
and 16-bit sample resolution in the pcm_s16le format. These properties will not be listed
in the tables for readability.

3.1 AMI corpus
The parts of the AMI corpus that we used were recorded on 8-channel tabletop microphone
arrays.

Development

The audio tracks used for development are shown in table 3.1. The development recordings
originate from the Edinburgh EN2001a 1-hour meeting.

Table 3.1: Development files from the AMI corpus EN2001a
File Name Channels Duration File Size
1min.wav 8 1:00 14.64 MiB
10min.wav 8 10:00 146.48 MiB

These audio tracks contain mostly speech in 8 channels. For development purposes,
these tracks have been trimmed down to smaller duration.

The audio most used for development was the trimmed 1 minute track 1min.wav. This
audio track has been used for and can be seen in most of the tables used in chapter 4.

1https://speech.fit.vutbr.cz/
2https://groups.inf.ed.ac.uk/ami/corpus/
3http://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/data.html
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Testing

For most testing purposes, we used the same audio tracks from meeting EN2001a. These
testing recording were trimmed to longer a longer duration as shown in table 3.2.

Table 3.2: Testing files from the AMI corpus EN2001a
File Name Channels Duration File Size
AMIa_a1.wav 8 1:00:00 878.90 MiB
AMIa_a2.wav 8 1:00:00 878.90 MiB
AMIa_a1_ch0.wav 1 1:00:00 109.86 MiB
AMIa_a2_ch0.wav 1 1:00:00 109.86 MiB

We also used the Edinburgh EN2001b meeting from the same corpus. The parameters
of these recording can be found in table 3.3.

Table 3.3: Testing files from the AMI corpus EN2001b
File Name Channels Duration File Size
AMIb_a1.wav 8 00:57:31 842.74 MiB
AMIb_a2.wav 8 00:57:31 842.74 MiB
AMIb_a1_ch0.wav 1 00:57:31 105.34 MiB
AMIb_a2_ch0.wav 1 00:57:31 105.34 MiB

3.2 CHiME corpus
To diversify the testing data set we also used a corpus from The 5th CHiME Speech Sep-
aration and Recognition Challenge. This corpus consists of 4-channel audio tracks, which
we trimmed down to 30 minutes. The specs for these recordings can be found in table 3.4.

Table 3.4: Testing files from the CHiME5 corpus
File Name Channels Duration File Size
S21_U01.wav 4 00:30:00 219.72 MiB
S21_U02.wav 4 00:30:00 219.72 MiB
S21_U03.wav 4 00:30:00 219.72 MiB
S21_U04.wav 4 00:30:00 219.72 MiB
S21_U05.wav 4 00:30:00 219.72 MiB
S21_U06.wav 4 00:30:00 219.72 MiB
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Chapter 4

Proposed solution

Due to the issues presented by the FLAC codec and its lack of focus on multi-channel audio
we developed a coding process. We addressed most of these issues in a way that would be
beneficial to multi-channel audio encoding.

This chapter explains the proposed solution for a new codec based on FLAC with linear
prediction as its main component.

4.1 Encoding process
While designing the encoding process of our codec, we drew much inspiration from FLAC
in terms of structure and design. The main task was to re-implement much of what FLAC
offers in Python and then build on top of a functioning architecture.

The final block diagram of our proposed codec may be seen in figure 4.1.

Samples
Corrections

LPC Frames

Constant Frames

Raw Frames

Blocking

Residual

LPC

coefficients

Prediction

Residual
Decorrelation

Bitstream

Dynamic Rice

encoding

Byte-stream Format

encodingOutput

Input
Byte-stream

Figure 4.1: Block diagram of the Straw encoder

The main differences can be found in the way our codec handles and processes frames.
FLAC by default encodes each subframe independently of the other subframes. Our pro-
posed codec would first apply corrections to make the channels more similar. Then, it
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would process the subframes of one frame together in one group and use one set of LPC
coefficients for encoding each group. The resulting residuals would then be decorrelated to
remove common parts from each residual. Our codec would also have a slightly different
entropy coding method from FLAC.

All of these changes make our codec non-compatible with FLAC though. For this reason
we heavily modified the FLAC format to suit our needs by devising a new encoding format.
A detailed description of this new format can be found in appendix A.

4.1.1 Corrections

Corrections represent operations performed on the signals before framing. These operations
are essential to make the channels as similar as possible.

The corrections in this section are determined and applied to a single frame. This is
different in our implementation however, since these corrections are done globally (for the
whole file, not per-frame). Globalizing these corrections can, however cause a few non-ideal
frames. The reason behind this choice is later explained at the end of this section.
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Figure 4.2: Frame before corrections

This section describes corrections as applied to a single multi-channel frame from one
of our development recordings (1min.wav, samples shown are 18134:18214, more about the
used recordings in chapter 3). For clarity, only 80 samples are shown from the middle of
the specified frame. The original samples are shown in figure 4.2.

Gain correction

Gain correction is done simply by scaling each channel with a given ratio as explained in
section 2.3.1. Since we are dealing with limited precision (e.g. 16-bit samples for PCM16),
this operation inevitably alters the entropy of the signal due to rounding errors.

Downscaling would be non-reversible since it removes excess entropy without storing it
anywhere. Upscaling can be implemented to be reversible using strict rounding, a process
described in equation (4.2) and the reversal in section 4.2.4.

The process depends on finding the channel with the most energy, computing the scaling
factors:

𝑔𝑛 =
𝐸𝑚𝑎𝑥

𝐸𝑛
(4.1)

and scaling each weaker channel to the energy of the most energetic channel:
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𝑠𝑒𝑞[𝑛] = ⌊𝑠[𝑛]× 𝑔⌉ for 𝑔 ≥ 1.0. (4.2)

The individual gain differences 𝑘[𝑛] compared to the strongest channel are stored in
a quantized format (4.3) in the STREAMINFO metadata block using a similar quantization
method used for filtering, as seen in section 2.2.4:

𝑔𝑞 = ⌊𝑔 * 𝑘𝑞𝑢𝑎𝑛𝑡⌋. (4.3)

This introduces a different problem however – entropy increase. This is certainly not
ideal for our use case and overall this operation had an adverse effect on the resulting file
size as seen in table 4.1. An alternative idea was to perform this operation on the residuals,
which showed a bit better results, as seen in table 4.1.

Table 4.1: Effects of gain correction on the encoding
Corrections File Size Ratio
None 5.27 MiB 36.02 %
Gain (on frame) 5.62 MiB 38.39 %
Gain (on residual) 5.54 MiB 37.86 %

While increasing the accuracy of the prediction with shared coefficients, this operation
also increased the overall entropy of the signals. This resulted in significantly higher file
sizes. This result was not ideal, so we chose to disable it by default in our codec, though
it can be activated by the –correct-gain option or by adding gain to the corrections
parameter of the Encoder constructor.
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Figure 4.3: Frame with corrected gain

Shift correction

Shift correction is performed between the gain and bias corrections. This operation showed
the most promise during the development process. First, the input signal is run through a
Nuttall window function which increases the effectiveness of the shift estimation and thus
has a positive effect by decreasing the file size as seen in table 4.2.
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Table 4.2: Effects of windowing functions on the file size
Window File Size Ratio
None 5.30 MiB 36.16 %
Hamming 5.28 MiB 36.04 %
Nuttall 5.27 MiB 35.96 %

The windowed signal is then used for determining the leading channel by doing a double-
sided cross-correlation method. These are performed using cross-correlation with two sig-
nals: 𝑠[𝑛] and the leading channel 𝑝[𝑛]. The maximal lag is limited by a 𝑘𝑚𝑎𝑥𝑙𝑎𝑔 constant
fixed by the encoder to 𝑘𝑚𝑎𝑥𝑙𝑎𝑔 = 16 which corresponds to a maximal distance 𝑙 = 0.34
meters between the microphones:

𝑘𝑚𝑎𝑥𝑙𝑎𝑔 =
𝑓𝑠 × 𝑙

340.29
. (4.4)

This double-sided correlation process works as follows:

1. The first channel is set as the reference.

2. A standard correlation is performed (4.5) for 𝑘𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥𝑙𝑎𝑔/2− 1 coefficients.

3. The values for the negative lags are computed (4.6) for 𝑘𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥𝑙𝑎𝑔/2. These
negative lags represent a lead over the reference channel.

4. The channel with the most negative lag is chosen as the leading channel 𝑝[𝑛] (negative
lag compared to the first channel).

5. The leading channel is set as the reference.

6. The final shift values are determined using cross-correlation (4.5).

𝑅𝑘 =
𝑁−𝑘−1∑︁
𝑛=0

𝑝[𝑛] 𝑠[𝑛+ 𝑘] (4.5)

𝑅−𝑘 = −
𝑁−𝑘−1∑︁
𝑛=0

𝑠[𝑛] 𝑝[𝑛+ 𝑘] (4.6)

The leading channel as well as the individual shift values are stored in the STREAMINFO
metadata block. The results of this operation on the encoding is the most significant out
of all corrections as seen in table 4.3.

Table 4.3: Effects of shift correction on the encoding
Corrections File Size Ratio
None 5.27 MiB 36.02 %
Shift (on frame) 5.27 MiB 35.96 %
Shift (on residual) 5.27 MiB 35.97 %
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This is probably due to the nature of our recording which was recorded on an 8-channel
microphone array and as described in section 2.3, shift correction can have a significant
effect on these recordings.
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Figure 4.4: Frame with corrected shift

Bias correction

The mean of the signal is subtracted from each sample, a process described in section 2.3.1.
This has a negative effect however, since it can happen that this operation can throw the
values of the signal out of the valid range of its data type. Although overflows cannot
happen during runtime (since we use a larger data type) these larger samples would not fit
into the original bit-per-sample precision given by the source file. This is an issue mainly for
raw frames and warmup samples since these are stored unencoded. To prevent overflows,
these values have this correction later reversed before storing them in the Straw format.

The individual removed bias values are stored in the STREAMINFO metadata block.

Table 4.4: Effects of bias correction on the encoding
Corrections File Size Ratio
None 5.27 MiB 36.02 %
Bias (on frame) 5.27 MiB 36.01 %
Bias (on residual) 5.27 MiB 36.02 %

As seen in table 4.4, this correction only has a minor role in improving the encoding
efficiency. This can be due to our recording mostly already being centered on 0 and not
needing much correction. This was also confirmed during debugging where we have deter-
mined that for the used development recording, only one channel needed a bias correction.
This correction was also only performed with the value of exactly 1 and the other channels
were already properly centered on 0.
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Figure 4.5: Frame with corrected bias

All corrections

After applying all of the above mentioned corrections (including gain correction), the re-
sulting samples indeed seem to resemble each other to a significant degree, as shown in
figure 4.6.
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Figure 4.6: Frame with all corrections

Although this works reasonably well on a local scale, storing the additional information
needed to reverse these corrections for each frame would cost more memory than it would
effectively save, as seen in table 4.5:

Table 4.5: Effects of corrections on the encoding
Correction type Corrections File Size Ratio Time
None 0 B 5.27 MiB 36.02 % 1.285 s
Global 747 B 5.27 MiB 35.96 % 1.682 s
Local 185.29 KiB 5.28 MiB 36.06 % 2.403 s

storing all the parameters would require more memory that can be saved for each frame
in the best case. The used corrections also excluded gain correction since it is not used in
a production environment. The shown processing times are obtained in our development
environment (AMD Ryzen 3600 with 12 threads) and they also show a significant overhead
for local corrections. Although we have to admit that the selected development track already
had very similar channels, the corrections did not show a very significant improvement.
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For this reason we have chosen to apply these corrections globally. This allows us to
sacrifice a very small amount of bytes in the STREAMINFO metadata block for a decent
improvement in encoding efficiency. Although this does not seem to have a visible effect
(as seen in figure 4.7) it does decrease the output file size as shown in table 4.5.
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Figure 4.7: Frame with all global corrections

Frames vs Residuals

During development, we experimented with different combinations of corrections, both on
frames and on residuals. The implementation of these corrections and the internal data
structure of the implemented codec has allowed us to easily switch between global/local
and frame/residual corrections. These experiments led us to believe that the most memory
and time efficient method involved global corrections of the signal before framing. This is
also because of the reasons mentioned above such as the problem with additional per-frame
memory requirements.

As a last effort to integrate gain correction into the codec, we also tried applying gain
correction on the residuals right before decorrelation. This however also resulted in negative
effects on the resulting file size as seen in table 4.1.

Order of operations

The default order of operations in our codec is Shift correction followed by Bias correction.
This order is not currently overridable by the standalone reference encoder. When imported
and constructed as a class however, the order of operations and the operations themselves
can be freely customized. The operations and their order is defined by the Encoder construc-
tor parameter do_corrections: tuple which has a default value (”shift“, ”bias“).

4.1.2 Blocking

In order to properly process the input signals using linear prediction the signal needs to
be sliced into smaller, separate and independent frames. This is performed by slicing the
underlying Numpy array into smaller memory views which are then stored inside a pandas
DataFrame. More about the internal structure of the reference implementation can be
found in section 5.1.2.
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Subrame types

Similarly to FLAC, our codec classifies the audio subframes with a type. The basic
SUBFRAME_LPC and SUBFRAME_CONSTANT are analogous to FLAC, while SUBFRAME_VERBATIM
has been renamed to SUBFRAME_RAW.

Our codec also introduces a new type of subframe: SUBFRAME_LPC_COMMON. This sub-
frame does not have its own LPC coefficients and related fields, containing only warmup
samples and the residual. These subframes are often in groups, with the first one being
reclassified to SUBFRAME_LPC containing the shared LPC coefficients.

Dynamic blocking

One of our main ideas on how to improve encoding efficiency was to focus on better blocking
techniques. We observed that FLAC by default uses fixed size blocks even if the FLAC
format supports a dynamic blocking structure. The best block size for this approach seems
to be around 212 or 4096 samples which FLAC uses as a default fixed block size.

During development, we also observed that many frames are not uniform, as seen in
figure 4.8. The energy of these frames can vary significantly during the duration of the
frame. This can potentially have a negative effect on prediction since the predictor has to
account for the whole frame and sudden spikes can worsen the performance of the prediction.
We also observed that residuals from frames containing both silence (or low value white
noise) and speech tended to have larger entropy than pure speech or silence frames. This
resulted in a longer Rice encoded bitstream.
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Figure 4.8: Frame with static block size

For this reason, we have decided to make our codec use dynamic block sizes whenever
possible. This was doable as both formats (FLAC and Straw A) already support dynamic
block sizes. This also meant that no changes were needed for the rest of the encoding
process due to the modular structure of our code.

During our experimentation, we came to the conclusion that using a short-term energy
estimation [2, page 38] for determining slicing points might be a good way to split the
frames. These splits would split the frames into separate but bordering low and high
energy frames. We created an algorithm which estimates the ideal slicing points based on
the short time energy of the signal. These slicing points are later used for splitting the
signals into frames.

This algorithm works as follows:
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1. The short-term energy is calculated from the whole signal:

𝐸[𝑛] =
1

𝑁𝑟𝑒𝑠

𝑁𝑟𝑒𝑠−1∑︁
𝑚=0

𝑥2[𝑛𝑁𝑟𝑒𝑠 +𝑚] for 𝑛 <
𝑁

𝑁𝑟𝑒𝑠
. (4.7)

The resolution 𝑁𝑟𝑒𝑠 = 10 determines the precision by which the slicing points are
selected.

2. The threshold value is subtracted from the energies 𝐸𝑟[𝑛] = 𝐸[𝑛]− 𝐸𝑡ℎ𝑟.

3. The zero crossings of 𝐸𝑟 are marked as potential slicing points.

4. To ensure that the resulting frame size falls between the minimum and maximum
block sizes specified by the encoder, some of these potential slicing points are merged
and interpolated to prevent too small and too large frames, respectively.

Since the channels are presumed similar, determining the slicing points is done based
on the first (main) channel only. Since the corrections were performed before blocking, all
the other channels are presumed to be in sync with this channel. In figure 4.9 we can see
a frame with highlighted slicing points and slicing in our new blocking design.
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Figure 4.9: Sliced frame and its short-term energy

The energy threshold value 𝐸𝑡ℎ𝑟 = 20000 was the result of our experiments with different
threshold values and block size combinations to find a combination that would reduce the
output size the most. The results of this experiment can be seen in figure 4.10.
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Figure 4.10: Effects of energy thresholds on dynamic blocking

From figure 4.10, we can see that the best results are achieved for an energy threshold
of around 20000, although this can vary for different files. This value should fit most cases
where the audio is composed mostly of speech. These long recordings often contain areas
with mostly low audio level, and areas where speakers are active, which also corresponds
to our test recordings.

A better estimation for the 𝐸𝑡ℎ𝑟 value could be based on the dynamic range of the
signal, though this is not implemented in our codec.

As seen in table 4.6, this can improve the encoding if a good threshold value is chosen.
The results shown in table 4.6 were obtained with a framing threshold value of 20000.

Table 4.6: Effects of frame size on the encoding
Min Size Max Size Frames File Size Ratio
4096 4096 235 5.27 MiB 36.00 %
1024 4096 654 5.29 MiB 36.14 %
2048 4096 380 5.26 MiB 35.88 %
2048 8192 353 5.25 MiB 35.87 %
2048 16384 344 5.26 MiB 35.90 %

Overriding the default parameters

The encoder specifies default values for frame size limits, framing threshold and resolution as
shown in this section. These values can be overridden however, by supplying the standalone
encoder with the arguments –min-frame-size, –max-frame-size, –framing-threshold
and –framing-resolution.

The Encoder class also exposes these parameters to its public interface and they can be
modified during the lifecycle of the encoder. These parameters are only taken into accord
during blocking, which is done in Encoder.load_file().

Subframes

The slicing points only define the frame borders. The size of subframes withing a frame
remains equal. When slicing, the subframes are presumed to be in sync. This is due to the
blocking process being performed after the correction have been applied. These subframes
are then processed in groups and parallelized. More about the parallelization process can
be found in section 4.1.6.
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4.1.3 Linear prediction

Linear prediction is the main component of our codec, as it was for FLAC. This section
attempts to explain how the prediction process works in the reference implementation of
our codec. The prediction process is modelled as a separate block that takes a set of LPC
subframes belonging to one frame as input and produces the quantized LPC coefficients
(QLP) and residuals an outputs. The length of each subframe is equal, although the frame
size can vary. All LPC related operations are implemented in the subpackage straw.lpc.
A simplified block diagram of this process can be seen in figure 4.11.
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Figure 4.11: Block diagram of the prediction process

The exact process is as follows:

1. The subframes are converted to a normalized floating point format since rounding
errors during this process can be ignored.

2. A window function is applied to each subframe - this is optional in FLAC

3. For each subframe, 𝑃 + 1 autocorrelation coefficients are computed

4. The autocorrelation coefficients are averaged over all the subframes

5. The LPC coefficients are computed using scipy.linalg.solve_toeplitz. This func-
tion implements the efficient Levinson-Durbin recursion method, described in sec-
tion 2.2.4.

The windowing is done using a Tukey window, also known as a tapered cosine window.
This significantly improves the accuracy of the prediction as can be seen in table 4.7.

Table 4.7: Effects of windowing functions on the file size
Window File Size Ratio
None 5.36 MiB 36.59 %
Hamming 5.27 MiB 35.98 %
Tukey 5.27 MiB 35.96 %
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Order

The LPC order is selected based on the calculated LPC error of each set of LPC coefficients.
Straw A as well as FLAC [11] formats support an order of up to 32, while order 20 proved to
be the most effective when a fixed order and one set of coefficients was used (for subframe
type LPC_COMMON).

Quantization

The LPC coefficient quantization process is completely adapted from FLAC and rewritten
in Cython.

Coefficient quantization methods

During development, one of the ideas for possible improvements over FLAC was the use
of alternative quantization methods which would be less influenced by quantization errors.
This has, however proved to make such an insignificant difference, as seen in table 4.8, that
keeping these methods in the reference encoder was useless and we have abandoned this
idea in favor of direct quantization. This might be caused by our relatively high precision
of 12 bits for quantizing each coefficient. These methods might have an impact if a smaller
precision is used for storing the quantized coefficients. Reducing the quantized coefficient
precision and using one of these methods also would not have saved many bytes since the
coefficients themselves require only a small percentage of the overall file size, 82.73 KiB out
of 5.25 MiB (1.5 %).

Table 4.8: Effects of quantization types on the file size
Quantization type File Size Ratio
Direct 5.25 MiB 35.87 %
PARCOR 5.25 MiB 35.87 %
LSF 5.25 MiB 35.87 %

Due to these results, we abandon these alternative quantization methods and focus on
other aspects of our codec.

Filter stability

A stability check is performed after the LPC coefficients were calculated to prevent invalid
frames due to decoding issues caused by unstable IIR filtering. This is performed by finding
the complex roots of the polynomial represented by the LPC coefficients and verifying that
each pole falls inside the unit circle as shown in figure 4.12.
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Figure 4.12: Complex roots of a stable LPC filter

If the filter is deemed unstable, the subframes are reclassified as raw frames and encoded
accordingly.

4.1.4 Decorrelation

Decorrelations are operations for separation of common values from the channels performed
on the residuals left after the prediction step. Our codec currently offers two types of
decorrelation, although the use of the conditional subtraction method is discouraged due
to its inferior performance compared to mid-side decorrelation.

Iterated mid-side decorrelation

This type of decorrelation is based on transforming two channels, L representing the left and
R representing the right channel, into two distinct signals, one representing their sum (or
more efficiently average), and the other the differences between them. This decorrelation
method is also implemented in FLAC, though its use must be specifically requested by the
user.

Our implementation extends this technique for more than two channels by doing the
decorrelation in iterations when applicable, further decreasing the intensity of the residuals
by separating the entropy from the channels. This method ensures that the similarity
between the results of this step have minimal correlation between each other.

The mid-side transformation is described by:

𝑑𝑑𝑖𝑓 [𝑛] = 𝑠𝐿[𝑛]− 𝑠𝑅[𝑛] (4.8)
𝑑𝑚𝑖𝑑[𝑛] = ⌊(𝑠𝐿[𝑛] + 𝑠𝑅[𝑛])/2⌋. (4.9)

Since we only need the average of the two channels and we are dealing with integers,
the MID signal can be divided, or more efficiently shifted to the right by 1 bit. The reverse
of this process is shown in section 4.2.2.
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Figure 4.13: Iterated mid-side decorrelation

The effects of this technique on the encoding can be found in table 4.9.

Decorrelation by subtraction

Our initial idea for interchannel decorrelation was a simple subtraction since we assumed
the resulting residuals would resemble each other in a way that could be easily leveraged.

This did not happen however, as seen in table 4.9. The average difference between the
residuals in low-intensity areas was often larger than the residuals themselves. This resulted
in our full-frame subtraction to be inefficient to a degree that it even decreased the overall
encoding efficiency.

We observed, however, that the residuals are often very similar in places with higher
intensity and frames where this happened tended to have a better decorrelation efficiency.
The resulting implementation behaved in the following way:

𝑑𝑖[𝑛] =

{︂
𝑟𝑖[𝑛]− 𝑟0[𝑛] if 𝑖 > 0 and 𝑉 𝑎𝑟(𝑟𝑖 − 𝑟0) < 𝑉 𝑎𝑟(𝑟𝑖)

𝑟𝑖[𝑛] else (4.10)

Since the size of the Rice coded residual depends on the signals variance, we decided to
only store this decorrelated version if its variance is smaller than the variance of the original
signal. This variance check ensured that this step would not increase the signals intensity
and would have a beneficial effect on the eventual Rice coding stage. This required a single
bit in the subframe header which indicated whether the frame was decorrelated.

This seemed to have a good effect on the overall output size as seen in table 4.9. This
decorrelation method was however abandoned due to mid-side decorrelation having a much
better performance (mainly in its iterated form).
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Performance comparison

Table 4.9: Effects of decorrelation methods on compression
Decorelation method File Size Ratio
None 5.28 MiB 36.06 %
Sub 5.30 MiB 36.18 %
Sub (with variance check) 5.27 MiB 35.97 %
Mid-Side 5.25 MiB 35.86 %

As seen in table 4.9, the best performing decorrelation technique is mid-side. For this
reason, this decorrelation method is enabled by default in the reference implementation of
our codec. All residuals are considered to be in a decorrelated state when decoding.

4.1.5 Rice coding

Some frames may contain spikes of higher values which would be inefficient to code with a
small Rice parameter due to the nature of this coding method [7]. FLAC partially solved
this issue by using a variable width partitioning scheme (described in section 2.2.5) which
performs adequately for most inputs with uniform probability distributions.

Our approach to this problem was different though. Straw encodes the residual in one
part and uses a starting Rice parameter which is estimated based on the first samples of
the residual to encode the frame. This parameter can vary during the encoding process
depending on the values of the last 𝑘𝑟𝑒𝑠𝑝 encoded samples, 𝑘𝑟𝑒𝑠𝑝 being the responsiveness
constant (similarly to linear prediction it does not use the current sample). The behavior
of the Rice parameter 𝑚 can be seen in figure 4.14. It is evident that this parameter is
always a power of two.
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Figure 4.14: Behavior of Rice parameter during encoding

The algorithm of this adaptive process is an extension of the original algorithm described
in section 2.2.5, with modifications shown in bold:

1. Initialize a 𝑠𝑐𝑎𝑙𝑒 variable to 0.

2. 𝑠[𝑛] is interleaved.

3. The quotient 𝑞 = 𝑠/𝑚 is calculated. Since we are working with integers, q is rounded
down.
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4. 𝑞 binary zeroes are written to the bitstream.

5. A binary one is written to the bitstream.

6. The 𝑘 last bits of 𝑠[𝑛] are written to the bitstream.

7. Increment 𝑘 if 𝑠𝑐𝑎𝑙𝑒 > 𝑘𝑟𝑒𝑠𝑝, else if 𝑘 > 0 decrement 𝑘.

8. Recalculate 𝑚 = 2𝑘.

9. Increment 𝑠𝑐𝑎𝑙𝑒 if 𝑠[𝑛] > 𝑚, else if 𝑠 < 𝑚 decrement 𝑠𝑐𝑎𝑙𝑒, else 𝑠𝑐𝑎𝑙𝑒 = 0.

The values of responsiveness can be adjusted using the –rice-responsiveness ar-
gument or by presenting the Encoder constructor with a responsiveness value. Through
experiments, as seen in figure 4.15, we have found 𝑘𝑟𝑒𝑠𝑝 = 20 to be the best value for this
constant.
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Figure 4.15: Effects of responsiveness on the file size

The parameter described in figure 4.14 is the Rice 𝑚 parameter, however we only store
the 𝑘 parameter. The relationship between these parameters is simple:

𝑚 = 2𝑘. (4.11)

The decoder can be simply adapted to this method since the parameter only depends
on the last 𝑁 decoded samples. All of these methods depend on choosing an ideal Rice
parameter in the first place.

This adaptive coding method shows a significant improvement over a static Rice pa-
rameter. Most importantly, this method is more efficient for residuals which do not have a
uniform distribution or have areas with significant spikes.
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Figure 4.16: Static vs adaptive Rice coding

In figure 4.16, we introduced a spike of a given width to the mid-section of a random
signal. From this figure, we can see that the adaptive coding process has much better
stability and efficiency for residuals with non-consistent variance where the difference can
be as high as 10% in certain cases.

We can also see that when the audio frame has a uniform energy distribution, the
adaptive coding scheme may fall behind its static counterpart. This may however be ignored
since most frames are not ideal and therefore this adaptive coding scheme is better in most
cases.

Performance

From table 4.10, we can see a significant increase in encoding efficiency over encoding with a
static Rice coding scheme. The audio file on which we developed this codec had significant
energy differences in a few frames, these frames might have been encoded more efficiently
with our coding scheme thus reducing the overall file size.

Table 4.10: Effects of adaptive Rice coding the file size
Rice coding type File Size Ratio
Static 5.53 MiB 37.76 %
Adaptive 5.25 MiB 35.86 %

4.1.6 Parallelization

The encoding process is parallelized on the frame level using a thread pool. After blocking
the signal into individual subframes, all subframes from the same frame are grouped together
and processed in parallel. This allows for an ideal environment for parallelization where
each thread is computing a group of subframes.

Since the frames are independent of each other, this does not cause shared resource
access issues such as race conditions. This also means that each thread has a similar
memory range in which it operates since the samples are stored as a C-contiguous array
where for each sample, there are contiguous subsamples.
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4.2 Decoding process
The decoding process of our proposed codec also draws much similarity to FLAC in regards
to its architecture. The decoding is, similarly to FLAC, comparatively faster than encoding
as shown in section 6.2. The block diagram of the decoding process can be seen in figure 4.17.
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Figure 4.17: Block diagram of the Straw decoder

As we can see from figure 4.17, much of the decoding process is similar to the decoding
process of FLAC (shown in section 2.2.3) but extended with correction and decorrelation
reversal as well as a different Rice coding scheme. All of the mentioned changes compared
to FLAC are described in section 4.1 in more detail.

Encoder-Decoder compatibility

The encoder and decoder are designed to work independently from each other. This is
desirable, since the .straw input file contains all information the decoder needs to restore
the original audio file. This information also includes values which can be checked to verify
the data integrity, as further described in section 4.2.5.

This also removes the need for the user to specify the encoding parameters to the
decoder, since the parameters that the encoder used are stored in the input file.

Parallelization

The decoding process is from its nature more time and memory efficient than the encoding
process. Due to this fact, parallelization of the decoding process is not strictly necessary
since the decoder can process even large input files quite efficiently. More about the results
can be found in section 6.2.
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4.2.1 Rice decoding

The Rice-encoded residual is stored in the RESIDUAL section of each subframe (see ap-
penix A). Each residual block has stored its own starting 4-bit 𝑘 Rice parameter. This
parameter will most likely vary during the decoding process. Note however, that this
parameter can exceed this 4-bit value during encoding and decoding. The value of the
responsiveness constant 𝑘𝑟𝑒𝑠𝑝 can be acquired from the STREAMINFO metadata block.

During decoding, exactly the same algorithm for updating the Rice parameters 𝑘 and
𝑚 is applied as described in section 4.1.5.

4.2.2 Reverse Decorrelation

After the residual has been Rice decoded, the applied decorrelation needs to be reverted.
This results in the original residuals, which can be then used for reconstructing the original
signal along with the LPC coefficients.

The reverse of mid-side decorrelation is described by:

𝑠𝐿[𝑛] = 𝑑𝑚𝑖𝑑[𝑛] + ⌊𝑑𝑑𝑖𝑓 [𝑛]/2⌋+ (𝑑𝑑𝑖𝑓 [𝑛] mod 2) (4.12)
𝑠𝑅[𝑛] = 𝑑𝑚𝑖𝑑[𝑛]− ⌊𝑑𝑑𝑖𝑓 [𝑛]/2⌋. (4.13)

This step is also done in an iterated manner, see section 4.1.4, with the order of iterations
being exactly the reverse as used for decorrelation.

4.2.3 Reconstruction

The reconstruction is done using a modified IIR filtering, exactly as described in sec-
tion 2.2.4. This step is mostly identical to reconstruction performed by the FLAC decoder.
This filtering method is implemented as a compiled function in Cython.

In contrast to prediction (see section 4.1.3) the decoding is done in-place, since we know
that reconstructing the frame using the given residual and LPC coefficients is required.
This was not the case for the encoder which, after prediction, had to check if the variance
of the residual was smaller and also ensure that the generated bitstream was smaller than a
frame encoded as SUBFRAME_RAW. This prevented the encoder from doing prediction in-place
and required almost twice as much memory as the decoding process for the same input.

The output of this step can be considered mostly similar to the source signal, although
the corrections performed by the encoder still need to be accounted for.

4.2.4 Reverse Corrections

Reversing the corrections is the last step before the signals can be considered intact.
Whether a correction reversal will be performed depends on flags and correction values
stored in the STREAMINFO block. The corrections are then reversed in the reverse order that
they have been performed.

Gain correction

The gain correction value is stored in quantized format, so it needs to be converted to a
floating point format before proceeding (4.14). The 𝑘𝑞𝑢𝑎𝑛𝑡 constant is the same quantization
constant as described in section 4.1.1.
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𝑔 =
𝑔𝑞

𝑘𝑞𝑢𝑎𝑛𝑡
. (4.14)

The gain correction is reversed by dividing each channel by the gain correction value of
the given channel 4.15.

𝑠[𝑛] = ⌊𝑠𝑒𝑞[𝑛]/𝑔⌉ for 𝑔 ≥ 1.0. (4.15)

When a gain correction value is equal to 1.0, the gain correction of that channel is
skipped for performance reasons.

Shift correction

Shift correction can be reversed by simply inserting the removed samples to the original
signals. In the implementation, this is done efficiently by first allocating memory for the
samples and then shifting the memory views of each frame by the given lag. This results
in reserved space at the start and end of each signal equal to the missing samples, which
are then loaded from the given metadata block.

Bias correction

Bias correction is the easiest to revert, by simply adding the bias removed by the original
corrections. This is done for each sample.

4.2.5 Integrity checks

To verify the integrity of the decoded data, our proposed codec offers the same methods
that FLAC employed in order to verify the integrity of each frame and the decoded samples.

CRC checks

Each frame header has a CRC-8 field for verifying the integrity of the header. The frame
footer contains a CRC-16 field for verifying the integrity of each frame, including the frame
header and subframes. This also includes the byte-alignment appended after the subframes

Losslessness check

To verify the losslessness and the overall integrity of the decoded data, an md5 sum is
performed on the decoded samples and compared to the value stored in the STREAMINFO
metadata block.
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Chapter 5

Implementation

An application suite containing a library and a self-contained launcher script were created
to demonstrate the functionality of our proposed codec. This codec can be compared to
the reference codec that FLAC offers as a baseline implementation.

We have chosen to implement this library in Python for its versatility and ease of
integration. Since most applications dealing with speech recognition and synthesis are
nowadays also written in Python, we have seen the potential to implement this codec in
a Python package that could easily be integrated into other projects dealing with audio
processing.

This library consists of the main package named straw (the code name of the project
and the format) and numerous subpackages which usually deal with one specific issue and
perform a specific task.

The project and its source code are available as open-source on GitHub 1.

5.1 The library
As most Python project, ours is structured as a package with multiple subpackages. Sub-
packages are self-contained directories containing Python modules (.py files) which can
be called from any other subpackage or module. Each subpackage has its own interface
consisting of top-level classes or functions from the given subpackage. This interface can
be found in the __init__.py file in each subpackage directory.

Base classes

Most of the subpackages have a file base.py containing base classes. These classes are
not used directly, but rather inherited by specific classes in the subpackage. These specific
classes often have common properties while most of their implementation is completely
different.

Extensions

Subpackages may also contain Cython extensions. These extensions use the format
ext_{subpackage_name}.pyx. Extensions implement algorithms which would otherwise
be slow, inefficient or too complicated in pure Python. Memory views are used extensively
by these extensions to efficiently access data in NumPy arrays.

1https://github.com/KLZ-0/straw/
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5.1.1 Subpackages

The following subpackages make up the main part of the library.

straw.codec

The codec subpackage contains the main encoder and decoder classes. This subpackage
offers the most readable top-down implementation of both the encoding and decoding pro-
cesses. It often calls different operations from the other subpackages and can therefore be
considered a top-level subpackage.

straw.compute

Contains the class ParallelCompute. This class implements NumPy and Pandas par-
allelization. These parallelizations can be performed on different levels, such as numpy,
DataFrame or Series (one row of a DataFrame).

straw.correctors

As the name suggests, this subpackage contains all classes which deal with corrections.
Each of these corrections is located in a separate file. All corrections have a common base
class and a uniform interface. This subpackage also contains the methods for residual
decorrelation.

straw.io

The formatters and format definitions reside in this subpackage. This subpackage is used
for loading and writing the straw format. There is also a basic FLAC reader/writer im-
plementation since our codec used to be mostly compatible with FLAC (excluding the
metadata blocks and a few more caveats).

This subpackage also contains the SlicedBitarray class. This class offers efficient bit-
level access to the buffer of the input file when decoding. More about the bitarray module
can be found in section 5.3. The encoding format-specific constants can also be found in
this subpackage, these are used for uniform bitstream loading and writing.

This subpackage also contains an extension which implements efficient reading and
writing of raw subframes. This is due to numpy not handling well bit widths other than
8/16/32/64.

straw.lpc

This subpackage contains operations specific to linear prediction. The interface of this sub-
package exports functions which are defined in wrappers.py. These functions all expect
input the standard DataFrame format. These functions call numpy level functions from
steps.py which implement operations such as LPC computation, quantization, prediction
and reconstruction as well as a custom implementation for autocorrelation. This sub-
package contains an extension which implements efficient quantization and reconstruction
algorithms.

straw.rice

The main interface to the Rice coder, the Ricer class is located in this subpackage.
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We could not find any external library which would offer an efficient implementation
of Rice coding. The Rice encoder had to be re-implemented in an efficient manner, which
is almost impossible in pure Python. For this reason, we have chosen to use Cython for
implementing the coding method as efficiently as possible.

The first implementation used calls to bitarray functions from Cython itself. This was
was later replaced by the buffer protocol and direct byte-level access due to the delays
caused by call delays from the Python interpreter. This buffer is later exported and a
bitarray is constructed from it. This resulting bitarray is then written into the RESIDUAL
section of the Straw format.

straw.utils

This subpackage contains utilities that could not be linked to any specific subpackage.

straw.static

This is not actually a subpackages but rather a module. This submodule contains static
definitions for the internal structure of the codec.

straw.straw

Similarly to straw.static, this is not a subpackage but rather a compatibility mod-
ule. This module contains functions read() and write() which work analogously to
soundfile.read() and soundfile.write(). This module also contains a helper func-
tion run() which, when called from main.py runs the encoder or decoder as a standalone
application.

figures

The figures subpackage is used for drawing figures and tables used in this thesis. It is
not part of the straw package, but rather a separate package that imports functions and
methods from the straw package.

This subpackage is not a part of the encoding/decoding process and is normally not
loaded during execution. It can be activated by supplying main.py with the –figures
argument and giving it an input file. The figures used in this thesis were generated by
supplying the script with the 1min.wav (see section 3 for more information about this
recording).

5.1.2 Internal data structure

The codec internally works with pandas DataFrames and DataFrame slices. These DataFrames
do not copy the data but only contain numpy memory views 2. These memory views point
to certain parts of the underlying numpy array where the actual samples are stored. This
abstraction allows for easy parallelization while maintaining relatively low memory require-
ments.

Each subpackage exports classes which work on this level and accept this DataFrame
format.

2https://docs.python.org/3/c-api/memoryview.html
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Data types

Straw officially only supports the 16 bit pulse-code modulation (PCM) format. The 24 and
32 bit PCM formats are also available, but they are untested and should be avoided due to
performance and/or memory issues.

5.1.3 The format

The FLAC format is well defined and has became the standard over the years. This format
is not well suited to our needs however, since it has certain fields which are redundant for
us. For this reason we decided to define our own format based on the original FLAC format.
The full format bitstream specification can be found in appendix A.

The format is overall similar to that of FLAC. The .straw file is written after each
frame has been processed. Frames consist of a group of subframes equal to the number of
channels. These subframes represent the sound data, each of which has its type specifying
how will it be encoded, see section 2.2.1.

Our format adds a special type of LPC subframe, named LPC_COMMON. This subframe
does not have its own LPC coefficients. The first subframe from a group of these frames
is changed to a standard LPC frame. This one frame then contains one set of LPC frames
which are used to for the prediction process of every subframe of that group.

This extension allows us to use one set of LPC coefficients for a whole frame. This
can lower the output file size for multi-channel files, while not impacting the quality of the
prediction significantly.

The format also supports arbitrary number of channels. This is a significant extension
compared to FLAC, which has an upper limit of 8 channels. It allows for effective encoding
of signals from multiple channels without requiring multiple output files. The fields for the
channel and frame numbers are dynamic in size. This is due to using a special form of
UTF-8 encoding, which is extended to handle larger input. This method is also used by
FLAC for frame numbers [11].

The reference implementation does not implement every aspect of the format though,
namely the METADATA_BLOCK section. FLAC supports different metadata blocks for a num-
ber of applications. The Straw format specification supports these metadata blocks identi-
cally to FLAC, but their implementation was not critical for our application at the moment.
For this reason they have been mostly left out of the reference codec.

Sampling frequency can be any integer up to 220 Hz, or up to approximately 1 MHz.

5.1.4 Interface

The library offers global convenience functions read() and write(). These are analogous
in function and semantics to soundfile.read() and soundfile.write(). For more fine-
tuned control, the Encoder and Decoder classes can be utilized.

The input file existing_file.wav is a multi-channel WAV file.

import soundfile as sf
import straw

# Encoding
# Reading a wav file and writing a straw file
data, samplerate = sf.read("existing_file.wav")
straw.write("new_file.straw", data, samplerate)
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# Decoding
# Reading a straw file and writing a wav file
data, samplerate = straw.read("existing_file.straw")
sf.write("new_file.wav", data, samplerate)

The use of the Encoder and Decoder classes should be preferred for Python projects
that wish to integrate Straw as an IO library. This is advisable since the Python interpreter
does not need to be reloaded.

5.2 Standalone executable
As well as a library, the reference implementation contains a wrapper script around the
Encoder and Decoder classes that can be used as a standalone executable.

The currect installation and usage methods are also detailed in the supplied README.md
markdown file.

5.2.1 Installation

The current version can be acquired from the Git repository, mentioned at the start of chap-
ter 5 or from The Python Package Index (PyPI) 3. This installation step is recommended
but not necessary. This is further explained in section 5.2.2.

PyPI

# system-wide
pip install straw-codec
# local
pip install --user straw-codec

Directly from source

# must be run in the directory where setup.py is located
pip install .

5.2.2 Usage

If the installation was done locally, the executable is installed to /.local/bin. To use the
executable from these installations, this directory must be added to $PATH.

export PATH=$PATH:~/.local/bin

After installation, the script should be executable from a shell:

# Show help and available options
straw -h
# Encode
straw -i /path/to/input.wav -o /path/to/output.straw

3https://pypi.org/project/straw-codec/
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# Decode
straw -d -i /path/to/input.straw -o /path/to/output.wav

The launcher script offers much of the same functionality as the Encoder and Decoder
classes themselves.

The current implementation of the standalone executable does not contain an option
to load a multi-channel recording from multiple single-channel files, although it could be
extended with that functionality relatively easily.

5.3 External libraries and dependencies
Pandas and NumPy

The encoder and decoder both utilize Pandas and NumPy to a very high extent. Operations
are implemented on different levels depending on the context, for example wrappers which
apply certain operation to a whole DataFrame slice while lower level functions do numpy-
level operations.

Cython

We used Cython for implementing operations which are too heavy or inefficient in pure
Python or those which do not have an efficient pure Python implementation such as Rice
coding.

Bitarray

For writing bitstreams, Python does not offer a clear solution, so we used a library called
bitarray, this library offers an object type which efficiently represents an array of booleans 4.

The io and ricer subpackages heavily use this library for bit operations. The drawback
of this library is that while it offers much faster operations than pure Python, frequent
calls from the Python interpreter itself still consume a lot of CPU time for operations like
Rice coding or writing raw frames. For heavier operations, we utilized raw Cython code
sometimes in combination with shared buffers from bitarrays thus mitigating this issue and
achieving much better performance.

The bitarray library also offers access to the buffer protocol which allows us to overlay
a standard file buffer over a bitarray and gain efficient bit-level access without storing the
whole file in memory.

SciPy

SciPy is used for a few signal processing computations such as scipy.linalg.solve_toeplitz
and windowing scipy.signal.get_window.

Other

There are a few libraries for very specific purposes, that are used in only a few places:

• Crcmod has been used for performing cyclic redundancy checks (CRC) on frames
and their headers.

4https://pypi.org/project/bitarray/
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• Tqdm as a progress bar for the standalone encoder/decoder script.

• Soundfile for storing and loading wav files, as well as for compatibility. reasons.

Optional

Matplotlib and Seaborn are used for plotting the figures used in this thesis, imports of
these libraries are specific to the figures subpackage and are not mandatory unless figure
generation is required.
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Chapter 6

Testing

The final chapter of this thesis deals with tests performed on the implementation of our
codec. As part of this testing process we also compare the performance of our codec with
the FLAC reference encoder.

6.1 Testing conditions
For uniform results we have chosen the Merlin server 1 as our primary testing environment.
Although we used Merlin, the test results shown in this chapter should be reproducible on
any other machine.

Tools used

The version of FLAC in our development environment was 1.3.4. The version of FLAC on
Merlin was 1.3.0. Unless specified otherwise, the FLAC codec was invoked using its default
compression level. The FLAC analyzing option (flac -a) proved to be very helpful during
development and testing.

For combining WAV files, we used sox 2 in version v14.4.1. This tool proved to be very
useful for combining multiple WAV files into one single multi-channel file.

Performance

In most tests, FLAC performed significantly better in terms of encoding time. Straw often
took more than 10x longer to encode the same file, as seen in table 6.1.

Table 6.1: Encoding times for the development recordings from the AMI corpus (EN2001a)
File Name Duration FLAC Straw Difference
1min.wav 1:00 0.33s 2.22s 6.72 ×
10min.wav 10:00 3.88s 20.70s 5.33 ×
AMIa_a1.wav 1:00:00 21.20s 233.31s 11.00 ×

Although the encoding time is an important part of every codec, our priority was on
developing the encoding process. A few time-costly operations are still performed in pure

1https://merlin.fit.vutbr.cz/
2http://sox.sourceforge.net/
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Python. Rewriting these critical parts of the codec could have resulted in better encoding
times.

Memory usage may also become an issue. The encoder may use multiple times more
memory than the file which is being encoded. We observed memory spikes of around
10x the size of the original file. This has to be taken into account when performing any
kind of encoding with the reference codec. Parallelization does also have an impact on
this issue, since it results in multiple temporary arrays being allocated at the same time.
If experiencing memory issues, parallelization can be turned off with the –no-parallel
encoder option.

6.2 Achieved results
In this section we explore the differences in the compression efficiency of Straw and FLAC.
We expect Straw to perform better on multi-channel audio as well as having similar per-
formance on single-channel audio.

Development recordings

For most of the development process, we used the recordings 1min.wav and 10min.wav.
We were able to achieve a considerably better compression ratio than FLAC for these files,
as seen in table 6.2.

Table 6.2: Test results for the development recordings from the AMI corpus (EN2001a)
File Name CH FLAC Straw Difference
1min.wav 8 37.26 % 35.86 % -3.90 %
10min.wav 8 34.18 % 33.12 % -3.20 %

AMI corpus

The first data set we tested was the extension of the development tracks from the AMI
corpus, namely EN2001a. The results for this data set can be seen in table 6.3. We
experimented with both single-channel as well as with multi-channel tracks for comparison.

Table 6.3: Test results for the files from the AMI corpus (EN2001a)
File Name CH FLAC Straw Difference
AMIa_a1.wav 8 34.02 % 33.17 % -2.56 %
AMIa_a2.wav 8 33.96 % 33.30 % -2.04 %
AMIa_a1_ch0.wav 1 32.69 % 32.32 % -1.14 %
AMIa_a2_ch0.wav 1 31.07 % 30.64 % -1.27 %

The results from table 6.3 show that Straw outperformed FLAC by an average of 2.30 %
for multi-channel, and 1.21 % for single-channel compression.

The next data set we have examined was the meeting recording EN2001b.
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Table 6.4: Test results for the files from the AMI corpus (EN2001b)
File Name CH FLAC Straw Difference
AMIb_a1.wav 8 36.02 % 35.68 % -0.95 %
AMIb_a2.wav 8 34.46 % 34.31 % -0.44 %
AMIb_a1_ch0.wav 1 34.68 % 34.78 % +0.29 %
AMIb_a2_ch0.wav 1 34.69 % 34.93 % +0.69 %

The results in table 6.4 indicate the advantage of Straw for encoding multi-channel
audio. From these results we see that Straw still beats FLAC at multi-channel encoding by
an average of 0.70 %. This cannot be said for single-channel tracks however, where Straw
performed poorly compared to FLAC, being outperformed by 0.49 % on average.

CHiME corpus

As described in section 3.2, the CHiME5 corpus consists of multiple 4-channel recordings.

Table 6.5: Test results for the files from the CHiME5 corpus
File Name CH FLAC Straw Difference
S21_U01.wav 4 56.68 % 56.41 % -0.48 %
S21_U02.wav 4 65.89 % 65.88 % -0.02 %
S21_U03.wav 4 47.25 % 46.82 % -0.92 %
S21_U04.wav 4 50.69 % 49.96 % -1.46 %
S21_U05.wav 4 48.37 % 48.53 % +0.33 %
S21_U06.wav 4 47.88 % 47.51 % -0.78 %

Table 6.5 shows that even though the recordings from the CHiME data set only have 4
channels, Straw still manages to outperform FLAC by an average of 0.55 %.

6.3 Testing summary
From our tests, we can see that Straw performs very similarly to FLAC, with an average
improvement of around 1 % over FLAC. This improvement can be attributed mostly to
space saving caused by the use of common LPC coefficients as well as to our adaptive Rice
coding scheme. This can also be seen in table 6.3, where we see an improvement even for
single-channel audio.

Not every test showed a significant improvement however, and the results we got were
not completely up to our expectations. Straw performed best on the development record-
ings, as seen in 6.2, which shows that the parameters of the encoder have been optimized
solely for these recordings. We believe that using estimation methods for determining some
of the parameters could improve the overall encoding efficiency on other data sets.
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Chapter 7

Conclusion

The goal of this thesis was to propose and implement a codec which would use the redun-
dancies present in multi-channel audio.

To reach this goal, we proposed multiple solutions to increase the similarity between
channels. These corrections were later implemented along with a mid-side decorrelation
method. Apart from these corrections, we extended the FLAC codec by using a dynamic
blocking method. The slicing points for these new blocks were determined by the energy
boundaries of the the source recording. The linear prediction process used in FLAC was
extended by using a common set of LPC coefficients for multiple channels. The last change
to the FLAC specification was the introduction of an adaptive Rice coding method.

Our experiments in chapter 6 show that the resulting compression efficiency is mostly
similar to FLAC, with better compression for multi-channel audio. Although these results
are positive, they did not meet our expectations. We thought that after the prediction
stage, the residuals would be similar and could be decorrelated easily. This did not hap-
pen however, and decorrelating these signals did not result in a significant compression
improvement.

We found that obtaining a compression ratio better than FLAC is a fairly hard task.
While our experiments and tests proved to not show much improvement over FLAC, we
gained a significant amount of experience regarding the audio compression field. We expect
to continue the work on this codec even after this thesis is submitted, and expect to beat
FLAC with a better margin in the future.

7.1 Future
Every project has its ideas for the future, this is also the case for this project. After
contemplating on what we should have implemented during the development of our project
we came up with a few further ideas. These improvements could possibly improve the
compression efficiency of our codec.

Conditional separation of LPC groups

Separation of LPC groups is one possible improvement that we think would benefit the en-
coding process. It would involve computing the residuals using both common and separate
LPC coefficients. This would allow for picking between encoding the separate residual and
its LPC coefficients or the common residual. The latter method would work like our current
implementation and leave the common LPC coefficients in the first LPC_COMMON subframe.

51



This method would need further research, but could improve the encoding efficiency in
exchange for encoding time.

Additional DCT layer

A better replacement for the decorrelation and Rice coding stages could have been a re-
versible discrete cosine transform (RDCT) [4]. This transform is similar to the original
DCT with modifications that allow its lossless reversal. This would make our codec work
similarly to Opus, as described in section 2.1, while still being lossless. This could possi-
bly improve the residual coding stage and achieve better results than the current entropy
coding process.

Parameter Optimization

Our encoder exposes a lot of parameters which can be fine-tuned. These parameters include
Rice responsiveness, frame size limits, framing resolution, framing threshold and many
more. Optimizing and fine-tuning these parameters may, in our experience increase the
overall compression ratio significantly. We came to this conclusion since our development
recording was compressed around 3 % better than other recordings, as shown in chapter 6.

An alternative approach would be to estimate these parameters based on the input
recordings.
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Appendix A

The Straw format description

The following pages show the description of the Straw format. This description can also be
found in the format.md 1 file.

1https://github.com/KLZ-0/straw/blob/master/doc/format.md
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The .straw file format
Heavily based on the FLAC format

~ before a value means the feature is not yet implemented in the encoder/decoder

Detailed format description
STREAM

<32> "sTrW", the Straw stream marker in ASCII, meaning byte 0 of the stream is
0x73, followed by 0x54 0x72 0x57
METADATA_BLOCK This is the mandatory STREAMINFO metadata block that has
the basic properties of the

stream
FRAME+ One or more audio frames

METADATA_BLOCK
METADATA_BLOCK_HEADER A block header that specifies the type and size of
the metadata

block data.
METADATA_BLOCK_DATA

METADATA_BLOCK_HEADER
<1> Last-metadata-block flag: '1' if this block is the last metadata block before
the audio blocks, '0' otherwise.

<7> BLOCK_TYPE

0 : STREAMINFO


~1 : PADDING


~2 : APPLICATION


~3 : SEEKTABLE


~4 : VORBIS_COMMENT


~5 : CUESHEET


~6 : PICTURE


~7-126 : reserved


~127 : invalid, to avoid confusion with a frame sync code




<0/24> if(BLOCK_TYPE != STREAMINFO) Length (in bytes) of metadata to follow
(does not include the size of the METADATA_BLOCK_HEADER)

METADATA_BLOCK_DATA
One of:

METADATA_BLOCK_STREAMINFO
~METADATA_BLOCK_PADDING
~METADATA_BLOCK_APPLICATION
~METADATA_BLOCK_SEEKTABLE
~METADATA_BLOCK_VORBIS_COMMENT
~METADATA_BLOCK_CUESHEET
~METADATA_BLOCK_PICTURE

METADATA_BLOCK_STREAMINFO
<20> Sample rate in Hz. Also, a value of 0 is invalid.

<8-?> "UTF-8" coded (number of channels)-1.

<5> (bits per sample)-1. 4 to 32 bits per sample.

<27> Total number of frames

<36> Total samples in stream. 'Samples' means inter-channel sample, i.e. one
second of 44.1Khz audio will have 44100 samples regardless of the number of
channels. A value of zero here means the number of total samples is unknown.

<128> MD5 signature of the unencoded audio data. This allows the decoder to
determine if an error exists in the audio data even when the error does not result
in an invalid bitstream.

<8> Rice coding responsiveness

<1> Has shift correction

<8-?> if (Has shift correction) "UTF-8" coded leading channel

<n*4> if (Has shift correction) Shift needed for each channel compared to the
leading channel, n = number of channels

<c*n*b> if (Has shift correction) Removed samples start + end flattened, c =
number of channels, n = number of removed samples (max lag), b = bits per
sample

NOTE: the values are signed two's-complement



<1> Has bias correction

<n*8> if (Has bias correction) DC bias removed from each channel, n = number of
channels

NOTE: the values are signed two's-complement

<1> Has gain correction

<n*12> if (Has gain correction == 1) Gain correction coefficients (factor) - 1.0, n =
number of channels

These are unsigned quantized floating point numbers with the range (1 to
inf) by for storage purposes 1.0 is subtracted since the coefficients are
always larger than 1
The strongest channel will always have a factor of 1.0 (or 0 quantized)

<4> if (Has gain correction == 1) Gain shift in bits

<?> Zero-padding to byte alignment.

NOTES

The "UTF-8" coding is the same variable length code used to store compressed UCS-
2, extended to handle larger input.

FRAME
FRAME_HEADER
SUBFRAME+ One SUBFRAME per channel.
<?> Zero-padding to byte alignment.
FRAME_FOOTER

FRAME_HEADER
<14> Sync code '10101010101010'

<1> Reserved

<1> Block size length:

0 : mandatory value


1 : reserved


0 : get 8 bit exponent for (2^n) samples


1 : get 16 bit (blocksize-1)




<0/8> elif(Block size length bit == 0) blocksize = (2^n) samples

<0/16> if(Block size length bit == 1) 16 bit (blocksize-1)

<8-?>: "UTF-8" coded frame number

<32> Size of the frame in bytes (size including the header sync code and the
frame footer)

<8> CRC-8 (polynomial = x^8 + x^2 + x^1 + x^0, initialized with 0) of everything
before the crc, including the sync code

FRAME_FOOTER
<16> CRC-16 (polynomial = x^16 + x^15 + x^2 + x^0, initialized with 0) of
everything before the crc, back to and including the frame header sync code

SUBFRAME
NOTE: Subframes are not byte-aligned

SUBFRAME_HEADER
SUBFRAME_DATA

SUBFRAME_HEADER
<2> Subframe type:

SUBFRAME_DATA
One of:

SUBFRAME_CONSTANT
SUBFRAME_RAW
SUBFRAME_LPC
SUBFRAME_LPC_COMMON

The SUBFRAME_HEADER specifies which one.

SUBFRAME_CONSTANT

00 : SUBFRAME_CONSTANT


01 : SUBFRAME_RAW


10 : reserved


11 : SUBFRAME_LPC




<n> Unencoded constant value of the subframe, n = bits-per-sample.

SUBFRAME_RAW
<n*i> Unencoded samples of the subframe, n = bits-per-sample, i = frame's
blocksize.

SUBFRAME_LPC
<5> (LPC order) - 1
<4> (Quantized linear predictor coefficients' precision in bits)-1.
<4> Quantized linear predictor coefficient shift needed in bits
<bpc*order> Unencoded predictor coefficients (qlp coeff precision * lpc order) (

NOTE: the coefficients are signed two's-complement).
SUBFRAME_LPC_COMMON

SUBFRAME_LPC_COMMON
<bps*order> Unencoded warm-up samples (bits-per-sample * lpc order).
RESIDUAL Encoded residual

RESIDUAL
<4> Starting rice parameter
<-> Encoded residual n = frame's blocksize - predictor order
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