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Abstract
The support of the classifier interface rte_flow significantly differs across various network
cards. This bachelor‘s thesis deals with the process of evaluation of this support. The
main goal is to provide tools that can perform evaluation systematically and automatically.
Two approaches are used for this purpose. The first one is based on the progressive load-
ing of rte_flow rules into the network card and the collection of supported capabilities
from the successful attempts. The results are used for the final summary generation. The
second approach verifies that particular rules indeed have expected effects on the packets
processed by card. Each of these approaches was then transformed into an executable tool.
Both were applied and validated on several network cards by the Intel and NVIDIA manu-
facturers. Simultaneously, their produced outputs were utilized for the mutual comparison
of rte_flow interface support between these network cards.

Abstrakt
Podpora klasifikačního rozhraní rte_flow se značně liší napříč různými síťovými kartami.
Tato bakalářská práce se zabývá procesem testování této podpory. Hlavním cílem je vyvi-
nout nástroje, které umožní provádět testování systematicky a automatizovaně. K tomuto
účelu jsou využity dva přístupy. Ten první je založen na postupném nahrávání rte_flow
pravidel do síťové karty a následném sbírání podporovaných vlastností z úspěšných pokusů.
Ty jsou na konci využity k vytvoření závěrečného shrnutí. Druhý přístup naopak ověřuje,
že jednotlivá pravidla opravdu mají očekávané efekty na pakety zpracovávané kartou. Každý
z těchto přístupů byl následně transformován do podoby spustitelného nástroje. Oba byly
aplikovány a otestovány na několika síťových kartách od společností Intel a NVIDIA.
Zároveň byly výstupy obou z nich použity na vzájemné porovnání podpory rte_flow
rozhraní na těchto síťových kartách.
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Rozšířený abstrakt
V současné době se elektronická zařízení, jako například mobilní telefony, počítače nebo
chytré hodinky, stala naprosto běžnou součástí životů nás všech. K rozšíření těchto tech-
nologických výdobytků značně přispěl rozvoj počítačových sítí v posledních desetiletích.
Klíčovou událostí byla především masivní expanze Internetu. Díky tomu se k síti připojuje
stále více všemožných zařízení. Tento rozvoj s sebou ale přináší i několik komplikací. Tou
hlavní je stále se zvyšující objem přenášených dat a s tím související nároky na rychlost
zpracovávání síťového provozu.

Částečné řešení těchto problémů nabízí knihovna DPDK. Ta dovoluje výrazně urychlit
zpracovávání paketů, a tím pádem i tvorbu vysokorychlostních aplikací. Hlavní myšlenkou
tohoto urychlení je přesun zpracovávání z jádra operačního systému na procesy běžící v uži-
vatelském prostoru. DPDK nicméně poskytuje i další prostředky, pomocí kterých je možné
zpracovávání síťového provozu dále zrychlit a zefektivnit. Jednou z možností je využití
klasifikačního rozhraní rte_flow. Toto rozhraní umožňuje pomocí nahrávání speciálních
pravidel přenést zpracovávání přímo na hardwarové komponenty síťových karet. Bohužel se
však ukazuje, že míra podpory rte_flow se značně liší napříč různými síťovými kartami.
Při vývoji reálných aplikací tak často vyvstává otázka, zda-li daná karta umožňuje skrze
rte_flow optimalizovat určitou funkční logiku. Dostupná dokumentace je v těchto chvílích
často nedostatečná. Z tohoto důvodu se jedinou možností stává explicitně ověřit podporu
potřebných pravidel pomocí ručního testování. Toto je ale zdlouhavý a monotónní pro-
ces. Tato bakalářská práce se snaží tuto proceduru vylepšit. Hlavním cílem je poskytnout
nástroje, které umožní provádět testování podpory rte_flow rozhraní systematicky a au-
tomatizovaně. Výsledným produktem těchto nástrojů je poté jednotné shrnutí popisující
míru podpory rte_flow na dané kartě.

Začátek této práce je věnován knihovně DPDK. Úvodní sekce se zaměřuje na představení
její architektury a nejdůležitějších částí. Dále je diskutována problematika ovladačů, které
zprostředkovávají komunikaci mezi DPDK aplikací a síťovou kartou. Následující sekce
podrobně rozebírá klasifikační rozhraní rte_flow. Důraz je kladen zejména na popis části,
ze kterých se skládají rte_flow pravidla. Poslední sekce poté popisuje aplikaci testpmd,
která je přímou součástí DPDK. Tato aplikace umožňuje manipulaci s funkcemi z DPDK
knihovny skrze jednoduché textového rozhraní.

V úvodu následující kapitoly je vysvětleno, proč byl jako hlavní implementační jazyk
nástrojů zvolen Python. Poté jsou v krátkosti představeny knihovny a nástroje tohoto
jazyka, které jsou použity v rámci implementace. Prvním z nich je framework pytest, který
umožňuje pohodlnou tvorbu automatizovaných testů. Další je knihovna Scapy. Ta posky-
tuje prostředky pro manipulaci s pakety, včetně jejich zasílání na vybraná síťová rozhraní.
Kromě toho tato knihovna také umožňuje zpracování síťového provozu zachyceného do
PCAP souborů.

V další kapitole jsou diskutovány přístupy k testování podpory rte_flow rozhraní. Ten
první se zaměřuje na zautomatizování a vylepšení ručního testování. Podpora je zjišťována
pomocí postupného nahrávání pravidel do karty a analyzováním úspěšných pravidel. Druhý
přístup si naopak klade za cíl otestovat, že pravidla nahraná do karty opravdu mají očeká-
vané efekty. V následující sekci je představen návrh DPDK aplikace, která je nezbytná pro
realizaci zmíněných testovacích přístupů. Hlavním úkolem této aplikace je zajistit konfigu-
raci kartu prostřednictvím rte_flow rozhraní. Dalších dvě sekce se věnují návrhu nástrojů,
pomocí kterých je možné realizovat oba uvedené testovací přístupy.

Následující kapitola popisuje implementační detaily. Úvodní sekce je věnována dříve
zmíněné DPDK aplikaci. Ta byla nazvána rte_flow_checker a podporuje tři různé režimy.



V jednom z nich je schopná i zpracovávat síťový provoz. Díky tomu je zajištěno její
použití v obou navržených nástrojích. Následující sekce se zaměřuje na implementaci
prvního nástroje. Ten byl realizován pomocí skriptu v jazyce Python. Tento skript ne-
jprve vygeneruje konfigurační soubor, který pokrývá různé kombinace vnitřních parametrů
rte_flow pravidel. Soubor je následně poskytnut aplikaci rte_flow_checker, která ověří
podporu každého z pravidel. Pomocí vyprodukovaných výsledků a analýzy původního kon-
figuračního souboru je následně seskládáno závěrečné shrnutí. Poslední sekce představuje
implementaci druhého nástroje. Ten umožňuje prostřednictvím frameworku pytest testo-
vat funkcionalitu jednotlivých pravidel. Testovací proces se skládá z několika kroků. Ze
všeho nejdřív je aplikace rte_flow_checker použita na nahrání pravidel do karty. Následně
je na kartu poslán vhodný testovací provoz. Očekávané výsledky jsou získány pomocí vir-
tuální interpretace efektů nahraných pravidel na zaslané pakety. Ty jsou nakonec porovnány
se skutečnými výsledky.

Závěr práce se věnuje testování implementovaných nástrojů. Oba byly aplikovány na
několik síťových karet od společností Intel a NVIDIA. Díky tomu bylo možné je otestovat
v různých prostředích a ověřit jejich funkčnost. K testování byla použita především ap-
likace testpmd. Výstupy z obou nástrojů byly porovnávány s výstupy analogických akcí
prováděných pomocí testpmd. Kromě toho byly výsledky konfrontovány i se zkušenostmi
získanými pomocí ručního testování rte_flow. Díky tomu bylo potvrzeno, že implemento-
vané nástroje jsou schopny správně prozkoumat a ověřit míru podpory rte_flow rozhraní.
Vyprodukované výsledky proto byly posléze použity i k vzájemnému porovnání podpory
rte_flow rozhraní na testovaných kartách. Ukázalo se, že největší míru podpory poskytují
karty s MLX5 ovladačem. Závěrečná sekce celé práce následně shrnuje dosažené výsledky
a diskuje možnosti dalších rozšíření.
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Chapter 1

Introduction

Nowadays, most people cannot imagine their life without the Internet. It spread over almost
all areas of our society. As a result, it is natural that the number of devices connected to
the Internet grows every year. That causes a gradual increase in the amount of transferred
data. However, it also puts higher demands on hardware and software components of the
network infrastructure. That leads to a steady effort for packet processing optimization.

Besides other options, the DPDK library can be used for high-speed network applica-
tions. It provides many possibilities for acceleration. One of them is to offload the part
of the processing directly to hardware components in NIC. That can be achieved with
the rte_flow interface. It allows the user to configure the NIC’s offloads with special flow
rules. However, the inner pieces of these rules can be combined in many ways. It leads to an
innumerable number of possible flow rules. That brings some practical problems when de-
veloping real-world applications. The official documentation generally includes only a brief
list of supported rte_flow features for each NIC. That is insufficient in many cases. In
practice, the essential question often is whether NIC supports particular offloading logic
(represented by a set of rules). DPDK does not provide many means which could answer
this question. Because of that, the developer is left with brute-force manual testing. The
typical workflow usually involves the repetitive loading of particular rules into NIC. From
the result of every attempt, desired information can be determined. That might become
monotonous and boring when dealing with several types of NICs.

This thesis tries to improve the described workflow. The goal is to provide tools that
automate and extend the naive brute-force approach. These tools could simplify the work
with rte_flow for many developers. E.g., by easily and quickly inspecting the rte_flow
capabilities of any new NIC or verifying that a particular NIC supports the required set of
specific rules.

The following chapter discusses the key features and tools from the DPDK library. It
briefly introduces all relevant parts. The main focus is given to the rte_flow interface.
The third chapter introduces the major Python libraries that have been used during de-
velopment. The architectures of all proposed tools are presented in the fourth chapter.
The fifth chapter is dedicated to the implementation details. It focuses on each tool as
complex and all of its components. The sixth chapter presents the results produced by the
actual application of implemented tools. They have been tested on various NICs, mainly
from major vendors (Intel, NVIDIA, etc.). This chapter compares automatically generated
results with the results gained from the manual testing. The final part is the conclusion,
where the whole process described in this thesis is summarized. The possibilities for future
work are discussed as well.
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Chapter 2

DPDK

Data Plane Development Kit (DPDK) [14] is an open-source framework that enables faster
and easier development of high-speed packet processing applications. It was created in 2010
by Intel and provided under the Open Source BSD Licence. 6WIND established an open-
source community in 2013 to ensure and facilitate an expansion of this project. Another key
breakthrough came in 2017 when DPDK was taken over by Linux Foundation. Development
of the DPDK project, managed by the Linux Foundation, continues to the present day. At
the beginning of 2022, versions up to 21.11 were available. This thesis uses the DPDK
framework of version 20.11. A sign of DPDK’s growing popularity is its integration into
several significant open-source projects in recent years. DPDK is now core technology of
projects such as TRex (traffic generator) [18], Open vSwitch (virtual multilayer switch) [13],
or FD.io (software data plane based on vector packet processing) [16].

DPDK is implemented to be as platform-independent as possible. That is achieved
through the creation of the Environment Abstraction Layer (EAL). EAL hides environment-
specific details and provides a standard and unified programming interface. As a result,
DPDK supports different processor architectures, such as Intel x64, ARM, or PowerPC.
Apart from that, the framework can be used under various operating systems. Even though
Linux and FreeBSD are currently the major target platforms, support for Windows has been
added as well (although it still has some limitations1). Another significant advantage is that
DPDK can be used in conjunction with NICs from different manufacturers. Major vendors,
such as Intel or Mellanox, integrate native support of DPDK into the device driver of their
cards. NICs of various vendors might require the installation of a custom device driver to
work correctly with DPDK because the framework needs access to advanced parts of NIC.

The main goal of DPDK is an acceleration of packet processing. This acceleration
is achieved by shifting data processing from kernel to processes running in user space.
This kernel bypass allows an increase in packet throughput and computing efficiency (Sec-
tion 2.1). However, this omission also brings some complications. One of them is the need
to establish direct communication between the NIC and the DPDK application. For that
reason, DPDK introduced Poll Mode Drivers (PMD), which are capable of arranging that.
Generic PMD does not exist due to specific requirements and constraints of individual NICs.
Therefore DPDK provides a variety of PMDs for particular types of NICs (Section 2.2). Be-
sides that, it also offers many libraries. The rte_flow, which is one of them, is introduced
in Section 2.3. Moreover, DPDK also includes several useful tools. Section 2.4 describes
most widely used tool – testpmd application.

1https://doc.dpdk.org/guides-20.11/windows_gsg/intro.html
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2.1 Framework overview
This section describes the architecture and main components of the DPDK framework.
The motivation for its development has been an acceleration of network traffic processing.
Traffic processing is relatively slow when performed classically (i.e., by the kernel). When
a new packet arrives at the NIC, it has to go through a series of operations in kernel
space (e.g., data copying, TCP/IP stack processing or socket operations) before it is made
available to the application. A packet also needs to undergo a similar procedure when the
application wants to send data. That is not a problem in most cases, as the user can see
it as an advantage that the kernel processes data for him. However, in case of high-speed
networks (10 Gbit/s and more), it becomes highly insufficient. DPDK tries to solve this
problem by bypassing the kernel during packet processing. That means packets can be
processed directly by DPDK libraries in user space applications. It significantly improves
packet throughput and speed [7]. A comparison between packet processing directly with
the kernel and with DPDK can be seen in Figure 2.1.

NIC

   data  configuration

Application

Device driver


DPDK library

Kernel space

User space

NIC

Application

Kernel space

User space

Sockets


TCP/IP stack

Device driver

   data 

Figure 2.1: Comparison between packet processing without (left) and with DPDK (right).

When using DPDK, kernel space is used only for running the device driver with in-built
support for DPDK. The device driver handles only the NIC’s configuration, whereas the
rest is done by DPDK in user space. DPDK provides Poll Mode Drivers (PMD) to ensure
the transfer of packets from NIC directly to the application. Section 2.2 discusses PMDs
in detail.

Environment Abstraction Layer
DPDK uses Environment Abstraction Layer (EAL) to hide specifics of a particular en-
vironment and make DPDK applications easily portable. EAL is mainly responsible for
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initializing and gaining access to low-level resources (e.g., memory space). Apart from
that, it also guarantees several important services, such as:

• Loading and launching of DPDK components,

• system memory reservation,

• interrupt handling,

• assignment of execution units to cores,

• utility functions (e.g., spinlocks or atomic counters).

EAL configuration can be modified by special command line parameters (EAL param-
eters). It is necessary to separate these parameters with -- from parameters intended for
the application itself. Every DPDK application should include EAL initialization at the
beginning of its main() function. Function rte_eal_init() is responsible for this task. It
allocates and initializes necessary resources (e.g., memory) at first. Then, it starts a special
thread called logical core (lcore) for each configured core. Lcore is an instance of a POSIX
thread (pthread) with some DPDK-specific metadata. Each core is usually assigned with
exactly one lcore to prevent task switching. All initializations (e.g., EAL or shared compo-
nents) should be performed in the MAIN lcore only. WORKER lcores are at WAIT state
at that point. Once initialization is complete, the MAIN lcore starts a particular execution
unit on each WORKER lcore. Then it waits until all lcores finish. At the end of the appli-
cation run, function rte_eal_cleanup() should be used to release all allocated resources
[15]. An example of described life-cycle, including initialization and cleanup, can be seen
in Figure 2.2.

MAIN lcore WORKER lcore 1 WORKER lcore 2


wait all threads


pthread_create(2)

rte_eal_remote_launch(
per_lcore_app)

other initializations

rte_eal_init()

thread initialization

thread initialization
wait

wait

rte_eal_mp_wait_lcore()

rte_eal_cleanup()

per_lcore_app() per_lcore_app()

wait

wait

pthread_create(1)

rte_eal_memory_init()

...

Figure 2.2: Life-cycle of DPDK application with one MAIN lcore and two WORKER lcores.

5



Memory in DPDK
As mentioned before, one of the important services provided by EAL is system memory
reservation and management. It is necessary to perform the allocation of a large continuous
physical memory block before running the DPDK application. Function mmap() is used for
this task on Linux systems. EAL provides API to reserve zones in this block. Libraries for
manipulation with this memory will be introduced later. It should be mentioned that on
Linux systems, this memory block has to be allocated in hugetlbfs. Hugetlbfs is a special
kernel filesystem that allows the usage of huge pages [12]. The reason why huge pages are
used instead of normal pages is to increase processing speed even more. The concept of
huge pages will be described in the following subsections.

MMU

Page 0
Page 1
Page 2

Page N - 1

Page N - 3
Page N - 2

...

Virtual memory
Frame 0
Frame 1
Frame 2
Frame 3

Frame M - 1

Frame - 3
Frame M - 2

...

Physical memory

TLB Page table

TLB hit

TLB miss

TLB write

Figure 2.3: Translation of virtual addresses to the physical using the Memory Management
Unit (MMU).

Memory virtualization

To fully appreciate the importance of huge pages, it is necessary to understand memory
virtualization. An illustration of memory virtualization can be seen in Figure 2.3. Operating
systems typically use this technique for RAM management. Besides physical address space,
there is also virtual address space. Virtual address space is divided into blocks called
pages. Page is the smallest fixed-length (usual size is 4 KiB) memory unit of virtual
memory. In contrast to that, physical address space is divided into page frames. As
a result, the process is given an impression that it is working with large and contiguous
memory sections. But in reality, memory sections can be dispersed across different parts
of the physical address space. Whenever a process needs to access data from memory, it is
necessary to perform a translation of a virtual address to a physical address. The operating
system is responsible for this action. The translation is usually performed by a hardware
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component called Memory Management Unit (MMU). At first, MMU tries to look up the
answer in the translation lookaside buffer (TLB). TLB is an associative cache of recently
used translations. If the requested record is found (TLB hit), MMU returns particular
physical memory. But if there is no match (TLB miss), MMU has to look the answer up
in a page table. Found mapping is written back to TLB, and the translation is restarted.
This time translation will succeed [4].

Benefits of huge pages

When using the usual size of pages (i.e., 4 KiB), the operating system is forced to work with
a relatively large number of pages. That makes TLB less effective since TLB misses may
occur very often. If the process works with a large amount of memory, it can significantly
slow down the CPU. However, this problem can be eliminated by using larger pages. These
larger pages are supported in most operating systems. They are called huge pages on Linux,
super pages on BDS, and large pages on Windows. Their size usually varies from 2 MiB to
1 GiB [8].

Libraries for memory manipulation

DPDK offers a few different libraries which can be used to manipulate memory. One of them
is the rte_mallloc library. This library provides API very similar to memory management
found in standard C stdlib. Library rte_malloc re-implements all the functions from stdlib
to allow allocation from huge pages memory region. Names of all these re-implemented
functions are prefixed with rte_. However, this library is hardly used in DPDK applications.
The reason is that allocations in most DPDK data processing applications can be managed
much more efficiently by Mempool library. But in some use cases, it is necessary to use this
library because it offers much more flexibility than the alternatives.

Significant libraries
DPDK framework offers a lot of libraries. Three important libraries will now be briefly
introduced. Library called rte_flow is discussed in detail in Section 2.3.

Ring library

The Ring library provides a data structure called ring and operation for its management.
The ring structure is a simple fixed-sized circular buffer. It is of type FIFO (First In
First Out). It supports bulk enqueue/dequeue operations. That means it is possible to
enqueue/dequeue multiple objects in one operation.

Mempool library

The core of the Mempool library is a data structure called a memory pool (mempool).
Mempool is an allocator of fixed-sized objects. It uses a special handler for the management
of its free objects. By default, this handler internally stores free objects in a ring structure.
Allocation of the object from mempool can be divided into two steps. The handler first
verifies that the ring isn’t empty. Then it removes the first object from the ring and
returns it. In case of the empty ring, the handler throws an error. Freeing the object
is even simpler. The handler puts the freed object back at the end of the ring. The
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demonstration of this process can be seen in Figure 2.4. Usage of a shared mempool in
a multi-core application is a little problematic. Each time one of the cores wants to access
mempool, it is necessary to use locks. That may cause performance losses. Fortunately,
mempool offers a straightforward solution. During mempool creation, it is possible to request
the initialization of per-core caches of free objects. Core does not have to use locks for
manipulation with its cache. When it wants to interact with mempool, it first tries to use
its cache to get a new object or free an old one. It needs to manipulate directly with
the shared mempool only when its cache is full or empty. Mempool’s performance can be
increased even more with appropriate memory alignment. For this reason, padding between
objects is usually added.

Mempool
obj obj obj

obj

obj
free object

mempool.append(obj)

alloc object
if not mempool.empty():
	 mempool.get_first()

else:
	 fail()


obj

obj

obj

fixed-size object
(e.g. rte_mbuf)

obj obj

Figure 2.4: Manipulation with objects from memory pool (mempool).

Mbuf library

The Mbuf library has a close relationship with Mempool library. It provides special fixed-
sized message buffers (mbufs). Mbufs are usually used to carry packet data and its metadata
(e.g., length or type). For performance reasons, mbufs are stored in mempools. That means
the API provided by the Mempool library is internally used for allocating mbufs. It is
always necessary to specify the mempool from which new mbuf should be taken. Every
mbuf includes a reference to the mempool from which it originated. Freeing a mbuf is
equivalent to its return into the original mempool.

2.2 Poll Mode Drivers
NIC (similar to other I/O devices) requires a specialized device driver to manage commu-
nication with user applications. In modern operating systems, these drivers run in kernel
space. They are based on asynchronous interrupt handling. Depending on the configuration
of the driver, the received packet is stored either in NIC’s internal buffer or ring buffer in
kernel space. Besides that, NIC generates an interrupt request (IRQ) to inform the CPU
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about a new packet. The CPU then delegates control to the particular interrupt service
routine (ISR). ISR handles the packet processing – removes it from the buffer, processes it
through the network stack, and passes it to the listening socket [2], [10]. However, interrupt
handling slows down significantly the operating system. CPU has to stop the execution of
a current task, call ISR, wait until ISR finish, and only then come back to the original job.
This mechanism might become insufficient for a large number of incoming packets. The
CPU might get overloaded by many IRQs and fail to handle all of them. This situation
would result in a significant decrease in throughput.

NIC

application

CPU

User space

Kernel space

IRQ
Device driver

ISR

Socket

Buffer

NIC

application

User space

Kernel space

PMD

Figure 2.5: Comparison between interrupt handling (left) and polling (right).

Because of that, DPDK uses an alternative approach. Communication between appli-
cation and NIC is managed by Poll Mode Drivers (PMDs). PMDs run in user space and
directly access NIC’s queues. But instead of interrupt handling, it uses polling. Polling in
this context is a process when PMD actively samples the status of NIC. Status is changed
when a packet arrives. In that case, received packets are immediately processed and deliv-
ered to the DPDK application [7]. This processing is much faster than interrupt handling.
Packet reception with interrupts compared to polling mechanism is shown in Figure 2.5.
However, the described technique also brings several negatives. Polling is a trade of faster
processing and higher throughput for higher demand on resources (energy consumption and
processor load). The polling process is also very time-consuming. For this reason, most of
the DPDK applications dedicate several lcores purely for polling. All received packets are
passed to other lcores via ring structure (discussed in Section 2.1) and further processed.

Besides polling, PMD also provides several other services. PMD offers API for DPDK
applications to configure NIC and its receive (RX) and transmit (TX) queues. For this
purpose, it internally uses routines from kernel space to achieve low-level communication
with NIC. As mentioned before, the rest is done purely in user space.
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Some types of NIC (e.g., most Intel NICs) require the usage of a special low-level kernel
driver for their PMD to work properly. DPDK provides three different types of low-level
kernel drivers that can be used for this purpose – vfio-pci, uio_pci_generic and igb_uio.
Usage of these kernel drivers is required for NICs whose PMDs internally use UIO and VFIO
drivers in their implementations [6]. In other words, for some NICs, it is necessary to load
a special kernel driver and explicitly bound NIC’s ports to it. This action (called binding)
informs the operating system that a particular NIC won’t be managed by the kernel but by
DPDK. The binding consists of two steps. At first, it is necessary to unbind NIC from the
kernel driver and then load the new one. It is possible to perform this operation manually
by directly writing into particular files in the /sys folder. Code 2.1 shows example of
unbinding from kernel driver IXGBE and binding to driver vfio-pci for device with PCI
identifier 0000:82:00.0.

modprobe vfio-pci
echo -n "0000:82:00.0" > /sys/bus/pci/drivers/ixgbe/unbind
echo -n "0000:82:00.0" > /sys/bus/pci/drivers/vfio-pci/bind

Code 2.1: Manual binding of NIC to the vfio-pci driver.

To simplify this process, DPDK provides a special utility called dpdk-devbind. This
utility is written in Python. An example of binding with dpdk-devbind is shown in
Code 2.2.

modprobe vfio-pci
dpdk-devbind -b vfio-pci 0000:82:00.0

Code 2.2: Binding to the vfio-pci driver with dpdk-devbind utility.

However, several PMDs do not require these operations. It is because they internally
use special bifurcated drivers. For this reason, they can co-exist with the device kernel
driver. In this case, NIC is controlled by the kernel, whereas PMD manages only the data
path. NICs by Mellanox are an example of adapters that use this model [3].

2.3 Generic flow API – rte_flow

One of the most powerful parts of DPDK is the generic flow API. This API is usually called
rte_flow – named after the prefix used for all its symbols. Library rte_flow provides
methods to offload packet processing and classification to hardware, thus gaining even
greater acceleration. For example, it can be used to match specific traffic and perform
various actions on it or configure and query hardware components, such as counters [7].

Flow rules are the core part of the rte_flow. These rules provide high-level means
to describe intended functionality. They can be parsed and programmed directly into
the hardware. The interface is uniform for all types of NICs. Conversion of flow rules
into hardware is performed by PMD. Details of this conversion are highly dependent on
NIC’s hardware resources. That means PMD is responsible for handling all implementation
details, such as conversion strategy, dealing with overlapping rules, etc. Due to different
hardware limitations, it is not required to map all aspects of flow rules directly into the
hardware. Instead of that, it is possible to implement certain functionality in software by
PMD or leave it unsupported.
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Flow rules
Flow rules consist of three main parts – attributes, matching pattern, and a list of actions.
Visualization of a simple flow rule can be seen in Figure 2.6.

rte_flow rule

Matching pattern
ETHERNET

IPV4
UDP
END

List of actions
DROP

COUNT
END

Attributes

Group: 1

Transfer: 0Priority: 0

Traffic:
ingress

Figure 2.6: Flow rule with its three parts – attributes, matching pattern and list of actions.

There is a large number of combinations to build rules. To simplify work with them,
rte_flow API provides a method for rules validation – rte_flow_validate(). This
method checks if it is possible to program the rule into NIC with its current configura-
tion. Similar to rule conversion, this check is in full control of PMD. The rule can be
mapped to NIC with the call of function rte_flow_create(). Once the rule is created,
it is internally represented by an opaque handle managed by PMD. This handle can be
used for rules manipulation (e.g., updating of the rule or retrieving counter states) or for
their destruction. All created rules should be destroyed by the application at the end of its
run. Two function can be used for this purpose – rte_flow_destroy() (destroys only one
particular rule) or rte_flow_flush() (destroys all rules).

Attributes
Every flow rule can be assigned with additional properties. These properties describe
the rule’s priority, group membership, etc. They are defined at the creation time and
represented by structure rte_flow_attr.

Group

The first attribute is group number. It enables the division of the flow rules into a logical
group hierarchy. That further extends possibilities in packet processing and filtering. Pro-
cessing can be split into different levels, where each level is responsible for one task. The
default group number is 0. All packets are processed by rules from this group at first. The
rest of the groups can be reached only with a particular type of action – JUMP. An example
of a simple group hierarchy can be seen in Figure 2.7. The hierarchy can be implemented
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directly on the hardware level or virtually in PMD. However, not all NICs support more
than one group.

Group 0
Patterns Actions

(...)

(JUMP 1)

...

(...) (JUMP 2)

(...)

(DROP+ COUNT)

(...) (JUMP 2)

Group 1
Patterns Actions

...

(...) (MARK + JUMP 3)

Group 2
Patterns Actions

...

(...) (COUNT + JUMP 3)

(...) (DROP)

Group 3
Patterns Actions

(...)

...

(...) (RSS)

(QUEUE 2)

Figure 2.7: Hierarchy of the flow rules constructed by the JUMP action and group attribute.

Priority

Another attribute is the priority which relatively orders created rules. It expresses the
priority level of a particular flow rule in a specific group. That means it only makes sense
to compare priority levels inside a single group. The highest priority level is 0. If some
packet matches multiple rules from one group, it is processed only by the flow rule with
the highest priority. A situation with multiple matching rules with the same priority levels
causes undefined behavior. Similar to groups, more priority levels are also not guaranteed
on all types of NICs.

Traffic direction

The traffic direction attribute specifies to which type of traffic the rule should be applied.
It is possible to match only inbound traffic, outbound traffic, or both. Most of the pattern
items and actions can be used for traffic in both directions. At least one of them has to
be specified in every rule. Specification of both directions at once is not recommended and
should be used only in exceptional cases.

Transfer

The last attribute is called transfer. By default, the DPDK application can manipulate only
traffic intended directly for it (i.e., going to its configured DPDK ports). However, enabling
transfer attribute allows DPDK application to gain access to other traffic — e.g., addressed
to other physical ports or applications. There are several pattern items designated for
matching this kind of traffic. Flow rules also can reroute this traffic with particular types
of actions. In conclusion, enabling the transfer attribute makes sense only for some pattern
items and actions.

12



Matching pattern
The matching pattern controls to which packets the rule will be applied. In other words,
it specifies properties to look for in network traffic. It is defined as a list of pattern items,
where each item is represented by structure rte_flow_item. There are many types of
pattern items. They can be divided into two basic categories:

1. The first category includes items that match the headers of network protocols. There
is a pattern item for most of the common protocols, such as Ethernet, IPv4, TCP,
ICMP, etc. These items have to respect the relation of a particular protocol to the
network layer. For this reason, they cannot be combined arbitrarily in a matching
pattern. They have to be stacked in the correct order, starting from the protocol of
lower layers. Since network protocols usually consist of many different fields, these
items have associated structures to match particular values in those fields. This
category also includes one special item called ANY. It will be described more closely
later.

2. The second category includes special meta items, such as END, VOID, INVERT,
MARK, etc. Some of them affect pattern processing, whereas others are necessary for
pattern definition itself. Most of them can be put anywhere in the matching pattern
list. Some of the items also have associated structures for further specification.

Spec
Src:
Dst:
Type:
Vlan:

12:34:01:02:03:04
aa:bb:cc:dd:ee:ff

0x0800
1

Ethernet item

Src:
Dst:
Type:

??:??:01:02:03:04 - ??:??:09:aa:bb:cc
aa:bb:cc:dd:ee:ff

0x08?? - 0x22??
?Vlan:

+ +
Last

ca:bd:09:aa:bb:cc
aa:bb:cc:dd:ee:ff

0x22ba
1

Src:
Dst:
Type:
Vlan:

Mask
Src:

00:00:ff:ff:ff:ff
ff:ff:ff:ff:ff:ff

0xff00
0Vlan:

Dst:
Type:

Figure 2.8: Specification of the matching properties for Ethernet pattern item.

Pattern items with associated structures can be further specified using three param-
eters – spec, mask, and last. An example of pattern item specification can be seen in
Figure 2.8. In spec parameter it is possible to specify values to match, such as particular
MAC addresses for Ethernet items. Parameter mask can be used to set bit-masks for par-
ticular fields. This way, it is possible to match values only in some fields or even part of the
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fields. With last parameter, it is possible to set ranges for matching – values in spec is
lower bound, whereas last is upper bound. Setting all 0 into the last parameter result in
matching exact values specified in spec. Also, specification of last and mask parameters
make sense only if spec parameter is set.

Some important pattern items that require closer explanation will be now briefly dis-
cussed:

END
Used as an end marker in the matching pattern list.

VOID
Is meant to be a simple placeholder and is skipped during parsing.

ANY
Can be used to match any protocol of a particular layer.

INVERT
Causes invert matching of pattern.

MARK
Matches integer value previously set in the packet by MARK action.

PORT_ID
Matches traffic going from or to given DPDK port (should be used in combination
with transfer attribute).

Actions
The list of actions determines what will happen with the matching traffic. The list may con-
sist of more single actions and needs to be terminated with a special end marker – the action
of type END. Every action in the list is represented by the structure rte_flow_action.
Actions fall into three categories:

1. The first category contains actions DROP, QUEUE, RSS, etc. These actions alter the
fate of matching traffic. That includes dropping, redirecting, etc. Flow rule should
contain at least one of the fate actions. Otherwise, the behavior is undefined.

2. The second category contains actions that modify packet content or assign new prop-
erties to it. E.g., by setting values in packet headers or adding marks. These effects
can be achieved by actions SET_IPV4_SRC, SET_TP_DST, MARK, FLAG, etc.

3. The last category contains actions PASSTHRU, JUMP, COUNT, etc. They affect
the rule itself. That includes switching to other rule groups or making the rule non-
terminating.

Similar to pattern items, some actions have an associated configuration structure. This
structure allows further specification of action’s behavior. That is the case mainly for more
complicated actions such as RSS.

Several important actions will be now briefly introduced:

VOID
Can be used as a convenient placeholder.
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QUEUE
Redirects packet to RX with index specified in configuration structure.

PASSTHRU
Makes the rule non-terminating. That means matching traffic can be processed by
subsequent rules afterward.

JUMP
Redirects packets to a particular rule group. If there is no matching rule in that
group, behavior is undefined. Only jumping from groups with a higher hierarchy to
lower is usually supported. That is due to hardware restrictions and to avoid the
creation of infinite loops.

MARK
Assigns integer to packet and sets special mbuf flags.

FLAG
It is very similar to MARK action. The only difference is that the FLAG action only
sets the mbuf flags.

COUNT
Assigns counter to matched flow. This counter is incremented every time rule is
triggered. The value of the counter can be retrieved by function rte_flow_query.

AGE
Adds timer to flow rule. If the timer passes without triggering the rule by matching
traffic, a special event is reported.

RSS
RSS (receive side scaling) action is similar to QUEUE action. The difference is that
the RSS action spreads packets among several RX queues. Because of that, the RSS
action distributes the load between available resources. At first, it calculates the hash
value from specified fields in the packet (hash type). Then, several least significant
bits of the produced value serves as an index to the indirection table. Values in the
indirection table provide mapping to particular queues [19]. A simple scheme of this
process can be seen in Figure 2.9.

SET_IPV4_SRC
Sets a new IPV4 source address in the outermost IPV4 header found in the packet.

SET_TP_DST
Sets a new destination port number in the outermost TCP or UDP header found in
the packet.

2.4 Testpmd application
Testpmd is an application shipped as a part of DPDK. Its primary purpose is to provide
means to try out various DPDK features. That includes configuration of the NIC as well
as testing packet processing with a particular configuration in practice. Apart from that,
testpmd also serves as an example of how to build an advanced DPDK application. Since
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Figure 2.9: Scheme of receive side scaling.

testpmd supports interactive mode with easy-to-understand commands, it is also often
used for demonstration purposes. E.g., most features in the documentation are explained
in simple examples using testpmd commands. They are also commonly used in bug reports.
Here they are used to describe the reproduction of problematic behavior.

There are several ways the user can interact with testpmd. First of all, it is possible
to use one of many command-line options. Since testpmd is a regular DPDK application,
it is possible to use EAL parameters (introduced in Section 2.1). Testpmd provides lots
of command-line options itself. They can be used to request specific configurations (e.g.,
number of queues).

Testpmd can operate in two basic modes – non-interactive and interactive. Non-
interactive mode is the default, whereas interactive mode needs to be requested by the
command-line option (-i, --interactive).

In non-interactive mode, testpmd parses command-line options, performs necessary NIC
configuration, and immediately starts packet forwarding. The user can terminate forward-
ing at any point. In the end, testpmd at prints statistics – the number of received and
transmitted packets, etc.

In interactive mode, testpmd starts with the prompt. It allows the user to insert special
text commands. Most of them are analogies of functions from DPDK API. Others provide
convenient control of testpmd application (e.g., start packet forwarding). Even though
testpmd supports various commands, for the scope of this thesis, only commands related
to rte_flow are relevant. Basic rte_flow commands are introduced in Code 2.3. It is
possible to write a sequence of commands in a text file. File with commands can later
be loaded at the launch or run time. As a result, it is possible to avoid writing the same
commands between multiple testpmd runs [5].
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### validation of flow rule (analogy of rte_flow_validate())
flow validate 0 ingress \

pattern eth / ipv4 src is 10.3.1.1 / end \
action drop / end

### (analogy of rte_flow_create())
flow create 1 ingress \

pattern eth / ipv4 src spec 10.3.0.0 src mask 255.255.0.0 / end \
action queue index 3 / end

### (analogy of rte_flow_destroy())
flow destroy 0 0

### (analogy of rte_flow_flush())
flow flush 1

Code 2.3: Demonstration of testpmd commands related to the rte_flow.
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Chapter 3

Python libraries enabling
automated testing

The main objective of this thesis is to test the support and capabilities of rte_flow rules on
NICs. Ideally, the testing process should be automated. For automation, Python has been
chosen as the main implementation language. There are many reasons for this choice. First
of all, Python has a very friendly syntax that is easy to read and understand. Secondly, it
offers a large ecosystem of powerful libraries, frameworks, and other tools. That significantly
simplifies and accelerates development. All these factors make Python one of the most
popular languages for automation. This chapter briefly introduces the most important
Python libraries for this thesis. The first part is dedicated to pytest (Section 3.1). The
rest of the chapter is focused on Scapy (Section 3.2).

3.1 Pytest
Pytest [9] is a very popular third-party testing framework. Many Python packages use
pytest as a base for their automated test management. Even some of the most popular
packages rely on pytest – Flask1, Requests2, or Pandas3. Its huge advantage is flexibility.
In comparison to other testing frameworks, it is not limited to a single development stage.
Pytest can be used during the whole development process. It can manage unit tests,
integration tests, or even more complex functional tests. Furthermore, pytest has a large
community and a rich list of plugins to make it suitable for almost any use case.

Overview

Pytest offers a simple interface for test execution. The base of this interface is a powerful
test runner. It can automatically discover tests and control their execution. The following
process is applied to locate tests:

1. Recursively scan the specified directory or the current directory if no particular is
specified.

2. Look for Python modules prefixed with test_ or suffixed with _test in all found
directories.

1Micro web framework – https://flask.palletsprojects.com/en/2.1.x/.
2Simple and elegant HTTP library – https://docs.python-requests.org/en/latest/.
3Data analysis and manipulation tool – https://pandas.pydata.org/.
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3. Collect functions with test_ prefix and test prefixed methods inside Test prefixed
classes in all found modules.

The first two steps may be skipped by providing a specific directory or module name to the
test runner.

In pytest, every test case usually follows the standard four-phase pattern known mainly
from unit testing. It breaks test case execution into the following phases – SETUP, EXERCISE,
VERIFY, and TEARDOWN [11]. The demonstration of the four-phase pattern is in Figure 3.1.

System under test
(SUT)

Test context

SETUP

EXERCISE

VERIFY

TEARDOWN

assert SUT.state == expected

Prepare

Cleanup

Check

SUT.init()
context.prepare()


SUT.reset()
context.clear()


SUT.behave()
Interact

Figure 3.1: Four-phase testing pattern.

The SETUP phase typically includes the necessary preparation of the system under test
(SUT) and all the other preconditions. These preconditions are called test context (or test
fixture). It could mean objects initialization, adding entries into the database, generating
configuration files, etc. In pytest, this preparation is normally achieved by special functions
called fixtures (will be discussed in next subsection).

During EXERCISE phase, the main logic of the whole test is performed. It represents
the behavior that is being tested. The behavior changes the state of the SUT and produces
output that can be later inspected. This phase is usually equivalent to a function or method
call.

The VERIFY phase analyses the results produced by the previous phase. It typically in-
volves checking that SUT ended up in the expected state and testing behavior has expected
effects. In other words, this phase determines whether the test passes or fails. It often takes
the form of several assert statements.

The last phase is TEARDOWN. It is responsible for the clean-up of the SUT and test
context. Besides that, it also releases all used resources. That allows the test to run in an
isolated environment and not to be affected by previous tests. Similar to the SETUP phase,
this step is often handled by fixtures in pytest.
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Fixtures

The fixture sets up the SUT and test environment by providing reliable and consistent con-
text. That allows tests to run repeatedly with the same results. In terms of the mentioned
four-phase pattern, they are mainly applied during the SETUP and TEARDOWN phases.

In pytest terminology, fixtures are functions with a particular decorator. Test function
can request execution of a fixture by adding the fixture name in its parameter list. That
means that fixtures specified among parameters are executed prior test function run. The
parameter represents the object or service initialized by the particular fixture. Because of
this mechanism, the test function can access properties managed by fixtures. An example
of fixture usage can be seen in Code 3.1. Fixtures themselves can also request execution of
other fixtures in their parameter list.
# setup + teardown
@pytest.fixture
def prepared_calculator():

calculator = Calculator()
calculator.reset()
return calculator

def test_calculator(prepared_calculator):
# execute
prepared_calculator.calculate(’((50 + 41) * 6) / 13’)

#verify
assert prepared_calculator.get_result() == 42

Code 3.1: Definition and usage of fixture in pytest.

Fixtures usually also include teardown logic. It is performed at the end of the fixture‘s
life cycle. There are two possibilities for the definition of teardown logic. The first option
is to define it as a special finalizer callback. The other option is to use the yield command.
Both possibilities are demonstrated in Code 3.2.
@pytest.fixture
def seed_database_finalizer(database, request):

entry = database.create_entry()

def clear_database():
database.remove_entry(entry)

request.addfinalizer(clear_database)
return entry

@pytest.fixture
def seed_database_yield(database):

entry = database.create_entry()
yield entry
database.remove_entry(entry)

Code 3.2: Two possibilities for teardown logic definition.
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Fixture can be defined on different scope levels – function, module, package, etc. Scope
determines when the fixture is destroyed. It can be at the end of the test function run,
when all test functions from the module have been executed, etc. That enables sharing of
specific test data among more test functions or even test modules.

Parametrization

Because of the DRY principle, parametrization is a very practical feature. It allows one
to generate multiple test cases from only one test function. Pytest natively provides API
to achieve that. Even though test cases are generated from the same source, they execute
independently.

Parametrization can be used on several levels – test functions parametrization or fixture
parametrization.

Test function can be parametrized by using a particular decorator. Through this deco-
rator, sets of argument values are passed to the test function. This action will result in the
generation of a test case for each set of arguments. An example can be seen in Code 3.3.
@pytest.mark.parametrize(’base’, ’expected’, [(-8, -7), (0, 1), (89, 90)])
def test_increment(base, expected):

increment(base) == expected

Code 3.3: Test function parametrization.

It is possible to parametrize fixtures as well. That causes fixtures to execute multiple
times. Each time with a different set of arguments. As a result, all test function, which
depends on the parametrized fixture, will be executed for every fixture invocation. This
behavior can be very useful sometimes. For example, when SUT allows configurations in
multiple ways. A brief example is shown in Code 3.4.
@pytest.fixture(params=[’Jack’, ’Mike’, ’Alec’])
def create_student(request, school):

return Student(school=school, name=request.param)

Code 3.4: Fixture parametrization.

3.2 Scapy
Scapy [1] is a popular Python open-source project. It offers a very flexible means for the
manipulation of network packets. It is possible to use Scapy in two different ways.

Firstly, Scapy provides an interactive console application. This application allows users
to operate with network traffic in numerous forms – sending, sniffing, capturing, analyzing,
etc. That makes Scapy a very flexible tool that can be applied in various situations. For
this reason, it is frequently used as a replacement for other popular networking tools, such
as hping4, arping5, or even tcpdump6.

On the other hand, Scapy can also be used as a normal Python library. The user
gains access to all API functions. This way, it is possible to extend Scapy without directly
modifying its source code. As a result, one can build own tools, such as scalable packet
generators, packets analyzers, etc.

4TCP/IP packet assembler/analyzer – http://www.hping.org/.
5Send ARP REQUEST to a neighbour host – https://www.root.cz/man/8/arping/
6Powerful command-line packet analyzer – https://www.tcpdump.org/
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Packets manipulation

Scapy provides classes that represent standard network protocols. Packets with desired
values are built by stacking those classes. Scapy automatically fills necessary fields of
lower layers according to upper layers during this process (e.g., type in ethernet header).
Constructed packets can be later sent to a particular interface with the sendp() function.
A simple example is shown in Code 3.5. Unlike other similar tools, Scapy allows the user
to build any invalid packet. That may be very useful in some cases (e.g., testing purposes).

packet = Ether() / IP(’dst=195.168.0.1’) / TCP(sport=80)
sendp(packet, iface=’lo’)

Code 3.5: Packet manipulation with Scapy.

Reading PCAP files

Scapy also offers an API for reading PCAP files. The user may choose from two approaches.
The first one is the rdpcap() function. This function reads the whole PCAP file and loads
it into memory. That might bring a few performance issues for large PCAP files. The
alternative option is PcapReader class. This class reads the file sequentially and never
completely loads the file into memory. It allows the user to iterate over captured packets
and progressively process them. Because of this memory efficiency, PcapReader should be
generally preferred when working with large datasets [17]. A brief demonstration of both
approaches is in Code 3.6.

def parse_pcap_rdpcap(pcap_file):
pcap_flow = rdpcap(pcap_file)
sessions = pcap_flow.sessions()
for session in sessions:

for packet in sessions[session]:
process_packet(packet)

def parse_pcap_Pcapreader(pcap_file):
for packet in PcapReader(pcap_file):

process_packet(packet)

Code 3.6: PCAP files processing with Scapy.
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Chapter 4

Architecture of the proposed tools

Section 2.3 described the rte_flow library as a powerful instrument that is very easy to
use. However, that is true only in theory. Its practical usage is a little bit problematic.
There are many differences in support of rte_flow among various NICs. That complicates
matters during the development of real-world applications. The official documentation
usually provides only a brief overview of supported actions and pattern items for each PMD.
But it does not answer other essential questions, such as which actions can be combined,
is it possible to match a specific field of a particular pattern item with range and similar.
Developers have to retrieve these pieces of information by themselves. Since no official tool
for this purpose is provided, they are left with simple manual testing. The typical scenario
usually is as follows. First, it tries to create various flow rules with tools such as testpmd
(mentioned in Section 2.4). After that, the needed information can be determined from the
obtained result of each creation.

The described manual method is not ideal. The main problem is that it is not systematic
or scalable. For that reason, it would be much better to replace it with an automated
alternative. The problem can be approached from two different perspectives – collecting
NIS’s capabilities and testing the actual functionality of the rules. Produced information by
one approach completes information by the other and vice versa. Because of that, this thesis
covers both of them. The main goal is to implement tools that automate both approaches
and offer a pleasant user interface and access to synoptical information.

The first one tries to mimic and automate naive manual testing. That can be achieved
through the creation of a simple pipeline. It is further discussed in Section 4.2.

On the other hand, the second approach tries to verify the functionality of flow rules.
The possible problem of the first approach is that the support of the rule properties is
determined only from the result of the API functions calls. But it does not inspect the
rule’s behavior. The second approach tries to improve that. Details are in Section 4.3.

Both approaches require a tool that can program the NIC through rte_flow API. It
should accept the configuration file with desired flow rules. Section 4.1 focuses on the
architecture of this tool.

4.1 Configuration tool
A simple configuration tool is an initial step on the road to automated rte_flow capabilities
testing. Its primary responsibility is to program NIC through the rte_flow library. In
other words, it serves the role of the access point to the main testing objective for other
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components of the whole process. That is why the tool has to be a simple DPDK application.
Apart from that, it should satisfy the following basic requirements:

1. Capability to use rte_flow API functions (mainly for rule validation and creation).

2. Support basic packet processing.

3. Generate information if a particular flow rule has been successfully validated/created.

4. Provide an interface for passing desired set of flow rules.

5. Generate necessary additional information for rule functionality verification(e.g., re-
trieve counter values or examine marks in packets).

The first candidate for this task is naturally testpmd application. However, there are
several reasons why it is not a good choice in this situation. Let‘s go through the whole
requirement list. The first three requirements are easily satisfied. Testpmd allows the
user to call methods from the rte_flow API and use the forwarding mode. However,
the subsequent requirement is already a little problematic. Testpmd does not provide
commands for all types of rule properties. For example, even though the IGMP pattern item
is a valid part rte_flow library, testpmd does not offer the equivalent command. Testpmd
also does not give full control over the rule specification. For example, if the pattern item
does not have an explicitly specified mask, testpmd uses its default values. That might
sometimes result in unexpected results. It is also not trivial to generate all of the essential
additional information. Testpmd is mainly designed for interactive usage by users. Because
of that, commands are parsed in real-time. That causes delays in command processing
which might result in unpleasant race condition artifacts in the produced output. That
complicates the automated control and extraction of information. That makes testpmd
unfortunately not very suitable for automation.

STDERR

Basic log

STDOUT

Additional info

rte_flow_checker
Parse

conf.yaml


Process Produce
VALIDATE

CREATE

DAEMON

or

or

NIC

Configure

Figure 4.1: Architecture of the rte_flow_checker.

Testpmd and other existing tools turn out not to be the ideal candidates. For this
reason, it is better to implement a new custom tool and optimize it to the intended use
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case. From now, this tool will be referred to as rte_flow_checker. Its architecture can
be seen in Figure 4.1. It parses the given configuration file with flow rules at first. The
latter processing depends on the chosen run mode. Generally speaking, it interacts with
a particular NIC and produces an appropriate report with obtained results.

Configuration file

The YAML is a markup language that is often used for configuration files. That is primar-
ily because of its versatility. Furthermore, it is human-readable, and most programming
languages provide libraries for YAML manipulation. For these reasons, it has also been
chosen for rte_flow_checker. The proposed format of the configuration file tries to reflect
the rte_flow API. Because of that, rules can be translated into the C code almost without
changes. Code 4.1 demonstrates a brief example of the configuration file. It consists of
the flow rules list. Each rule is represented by an associative array with three possible
key-value pairs – flow rule parts (Section 2.3). Specification of attributes is optional and
is realized by the associative array. The pattern and actions are represented by lists and
are a compulsory part of every rule. Specifications of a particular pattern item and action
mimic structures from the rte_flow API.

- actions:
- drop: {}
- end: {}
attributes:

direction: ingress
group: ’0’
priority: ’0’
transfer: ’0’

pattern:
- eth: {}
- ipv4:

mask:
src_addr: 255.255.255.255

spec:
src_addr: 195.168.1.0

- end: {}

Code 4.1: Example of configuration file for rte_flow_checker.

Run modes

Both testing approaches require slightly different behavior from the configuration tool. For
this reason, rte_flow_checher needs to be a flexible tool. As already demonstrated in
Figure 4.1, the rte_flow checker should support three run modes – VALIDATE, CREATE,
and DAEMON. In the first run mode, all rules from the configuration file are validated with
the rte_flow_validate() function. After each validation, rte_flow_checker generates
a brief report describing the result. The second run mode is very similar. The difference
is that rules are created with the function rte_flow_create(). The most complicated
is the last run mode. At first, all rules from the configuration file are parsed and cre-
ated. After that, rte_flow_checker starts simple packet processing in an infinite loop.
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Processing continues until a SIGINT or SIGTERM signal is received. In this run mode,
rte_flow_checker also generates a report with additional information. That includes the
state of counters right before the termination, marks in received packets, etc.

4.2 Collection of rte_flow rule capabilities
The first approach to evaluation of rte_flow rules capabilities is the automation of naive
manual testing. For this purpose, a simple pipeline can be constructed. Figure 4.2 shows its
scheme. In the beginning, it is necessary to generate a set of appropriate flow rules. After
that, the configuration file is passed to the rte_flow_checker. The rte_flow_checker
then tries to validate or create each rule (depends on chosen run mode). The produced
output and the original configuration file are then used for analysis. The pieces of informa-
tion are gradually collected from successfully created/validated rules. As a result, a final
summary is successively built in the end.

rte_flow_checker

conf.yaml

Generate rules Generate report

Final summary

1)Generate configuration file

2)Try to validate/create rules

3)Analyze and generate report

Basic log

NICInteract

Figure 4.2: Pipeline for rte_flow capabilities collection.

Flow rule generation

The first step in the pipeline is a generation of the configuration file with flow rules. It
should ideally cover properties from all three flow rule parts (Section 2.3). For that reason,
generation should be split into three sections. Each section focuses on only one of the flow
rule parts – attributes, pattern items, or actions. Generated rules in each section try to
modify only the target part of flow rules. The remaining two parts should stay the same
for all rules if possible. The main aim behind that is to isolate the main testing objective
in each rule.

The attributes section is pretty straightforward. The priority and group can be tested
by rules with various priority levels and group numbers. In case of direction and transfer,
it is sufficient to cover all of their possible values. However, particular values of these
attributes can be combined only with specific actions and pattern items. Generated rules
have to respect those limitations.
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The pattern items section is much more complicated. Most items have the associated
structure with many fields. Furthermore, the matching pattern for each item is determined
from a combination of three parameters – spec, last, and mask. For that reason, rules
covering three following scenarios should be generated for each field:

1. Exact matching with a full bitmask.

2. Support of a partial bitmask.

3. Support of matching ranges defined with the last field.

In contrast to pattern items, most actions do not offer many configuration possibilities.
The exception is only the some more sophisticated actions, such as RSS. Because of that,
the most valuable piece of information is how actions can be combined.

Report generation

The main idea of report generation is extracting the information from successfully creat-
ed/validated rules. Since each flow rule part requires a specific approach for extracting, the
process should be again separated into three areas. In each section, the main component
is internal context. This context holds the information that can be later used in summary
generation. All contexts are progressively updated with relevant data from tested rules.
For attributes, relevant data are the following things:

1. Supported group number.

2. Supported priority levels.

3. Supported directions (ingress, egress, and both at once).

4. Transfer attribute support.

For every pattern item:

1. Whether it is supported at all.

2. If it can be used alone in a pattern, or it is necessary to always specify the items from
lower layers.

3. If it can be used empty – no spec, mask, or last specification provided.

4. Detailed information about support of each field (usage with full bitmask, partial
bitmask, or matching range).

And finally, for each action:

1. Whether it is supported at all.

2. List of actions with which it can be combined.

3. Details about supported configuration (relevant only for actions such as RSS).
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4.3 Testing of rte_flow rules functionality
The verification of the flow rule functionality is the alternative approach to testing. As
apparent from Figure 4.3, the pytest framework (Section 3.1) serves the role of the primary
director. As a result, fixtures are used for all necessary preparations during the SETUP phase.
At first, a configuration file with flow rules is generated for each test case. Then, the
rte_flow_checker is started in the DAEMON run mode with this configuration. However,
the subsequent verification raises the need for capturing of process packet. Fortunately,
the DPDK framework provides a tool designed precisely for this use case – utility called
dpdk-pdump1. It has to be used with the other DPDK applications as a secondary process.
Once started, it can be configured to capture packets from the primary DPDK application
into PCAP files. After this preparation, the traffic generator component sends appropriate
traffic to the NIC controlled by rte_flow_checker. Besides captured traffic and output
from rte_flow_checker, the VERIFICATION phase also requires expected results. They
are obtained from virtual flow rule interpretation in software. The final task is the check
that all expected packets have been captured. The additional information is used to verify
that captured packets include correct marks and NIC‘s internal components have expected
values (e.g., counters).

pytest

1)Setup


NIC

dpdk-pdump

Traffic generatorRule interpreter

PCAP

rte_flow_checker

Result analyzerExpected results Additional info

2)Exercise

3)Verify

4)Teardown

conf.yaml

Clean-up all components

Figure 4.3: Testing architecture for verification of the flow rules functionality.

Traffic generator

The cardinal responsibility of the traffic generator is to construct and send the testing
packets. It scans the configuration file and analyzes the pattern of each rule. Based on the
analysis, a set of matching traffic can be generated. The non-matching packets are also
generated since they are the necessary complement to the testing process.

1Tool that is capable of enabling packet capture on DPDK ports – https://doc.dpdk.org/guides-20.11/
tools/pdump.html
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Virtual flow rule interpretation

The expected results are the essential precondition of the evaluation for each test case.
That includes the anticipated traffic for each queue and the additional information (e.g.,
state of counters). Because of that, all tested rules have to be interpreted in software to
preserve maximum flexibility. For this purpose, the matching pattern and the list of actions
from each flow rule are extracted. Derived information should be stored in an appropriate
lookup table. After that, generated testing traffic can be processed. If a packet matches any
of the rules, the effect of specific actions is simulated. That entails in gradual construction
of the expected results.
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Chapter 5

Implementation

This chapter focuses on the implementation details of the proposed testing approaches. The
first one (Section 4.2) gradually collects supported capabilities of rte_flow rules on par-
ticular NIC. On the other hand, the second approach (Section 4.3) tries to verify that rules
have expected effects. The most significant component for both is the rte_flow_checker.
It is an application implemented in C which supports several run modes. Details can be
found in Section 5.1. Python is the leading implementation language for all remaining
parts. Section 5.2 is dedicated to the script, which loads flow rules into NIC and creates
report based on information from successful attempts. It is a realization of the automated
pipeline introduced in Section 4.2. The implementation of the second approach is based
on the pytest framework (Section 3.1). It tests flow rule functionality by evaluating the
effects of traffic sent to NIC. More information can be found in Section 5.3.

5.1 Application rte_flow_checker

The rte_flow_checker is a DPDK application which enables evaluation of rte_flow rule
support on particular NIC. Various use cases requests different approaches to the evaluation.
For that reason, the rte_flow_checker supports three run modes:

VALIDATE run mode
It inspects the support of each flow rule from the configuration file with
rte_flow_validate(). Every function call results in generation of appropriate log
information. Since rules are not loaded into NIC, their mutual relationships cannot
be tested.

CREATE run mode
In contrast to VALIDATE run mode, it actually loads rules into NIC. Initially, specified
burst of rules is extracted from the configuration file and successively processed with
rte_flow_create(). After that, the application flushes out all create rules and repeat
the process for another burst of rules.

DAEMON run mode
At first, it tries to create given flow rules. If all creations succeeds, the application
enters a packet processing mode. Otherwise it exits with appropriate error code.
During the processing, it also collects the information necessary for the verification
of flow rule effects.
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As demonstrated in Figure 5.1, the rte_flow_checker consists of several collaborating
components. The base component is the parser. It handles the processing of the input con-
figuration file and the conversion of extracted values to the equivalent rte_flow structures.
Every rule consists of three different parts as described in Section 2.3. Because of that, each
of these parts has its handler. Converted rules are then utilized according to the configura-
tion given to parser. For VALIDATE and CREATE run modes, those are the only performed
operations. But when DAEMON run mode is used, the execution continues with a traffic
processing. During this process, information about flags in received packets is collected by
the packet_flags component. After the processing finishes, the query_rule_properties
component comes to action. It performs all necessary queries of properties influenced by
particular rules.

VALIDATE, CREATE and DAEMON
modes

attributes_handler

pattern_handler actions_handler

run_daemon

DAEMON mode

query_rule_properties

packet_flags

notifier

parser

callbacks

configurationconf.yaml

Figure 5.1: Components of the rte_flow_checker.

Parser

The parser component accepts the configuration structure and two callback functions – the
first one for the processing of extracted rules and the second for potential clean-up. Both
callbacks are also responsible for appropriate report generation. Because of this flexibility,
each run mode can configure the parser according to its specific needs. The cardinal
obligation of the parser is to verify the structure of the given configuration file and translate
its content to the actual rte_flow rules. For the comfortable manipulation of the YAML
file, the event-based API1 from libyaml library is used. The sequence of processed events
is controlled by a state automaton which is the realization of the configuration file format
from Section 4.1. Figure A.1 shows the scheme of this automaton. The extracted SCALAR
values are then passed to the appropriate handler, which reflects those values into proper
rte_flow structures. When the end of the flow rule is reached, the parser applies the first
of the given callbacks. The configuration file can also include several overlapping bursts of
rules. That is implemented by the multiple documents inside a single data stream of the

1https://libyaml.docsforge.com/master/documentation/#events
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YAML file. Each burst of rules can be stored inside a separate document. When the parser
processes the entire rule group, it uses the clean-up callback to ensure that groups do not
affect each other. However, it can be configured to skip clean-up after the last document
of the YAML file. This behavior is utilized by the DAEMON run mode. The parser can also
measure the total and average processing time for rules from each burst.

Handlers for rte_flow structures manipulation

The parser component works in close conjunction with three convenient handlers. For
simplicity, there is a dedicated handler for every rule part. Their primary responsibility
is to provide the abstraction for rte_flow structures management. Handlers accept the
values extracted from the configuration file. These values are validated and converted to
the proper data type. After this preparation, the converted value is set to the appropriate
field in particular rte_flow structure.

Packet processing

In DAEMON run mode, there is a need for basic packet processing. It is managed primarily by
the run_daemon component. Apart from that, this component also handles the necessary
preparation before the start of processing. At first, it initializes the packet capture frame-
work by calling the function rte_pdump_init(). That is necessary to enable the usage
of dpdk-pdump in conjunction with rte_flow_checker. The run_daemon component is
also capable of notifying the start and end of the processing. SIGUSER1 or SIGUSER2
can be used for this action. The parameter --pid allows specification of the PID of the
receiving process. The binding of a signal to the specific notification can be done with
--initialized and --finished parameters.

Once the preparation stage is done, packet processing can be started. Each RX and TX
queues pair is handled by a separate lcore. The number of queues can be specified by a pa-
rameter --queue-cnt. The upper allowed value is the number of available lcores. The count
of lcores can be configured by the EAL parameter --lcores. The MAIN lcore starts the
packet processing loop on each WORKER lcore with function rte_eal_remote_launch().
After that, it waits until it is interrupted by SIGINT or SIGTERM signals. Received pack-
ets are retrieved as mbufs with the function rte_eth_rx_burst(). After that, component
packet_flags processes them. It inspects the ol_flags field of each mbuf and tries to
locate RTE_MBUF_F_RX_FDIR or RTE_MBUF_F_RX_FDIR_ID flags. They can be set by actions
FLAG or MARK. Found flags are then stored into the structure shared among all lcores. All
processed mbufs are freed by rte_pktmbuf_free() afterwards to make space for incoming
packets.

After packet processing terminates, the control is passed to the query_rule_properties
component. It relies on the close collaboration with the parser component. During rule
processing, the parser stores the handles of rules with actions that can be queried. That
is the case for actions COUNT and AGE. In the end, the query_rule_properties calls
function rte_flow_query() for each of these rules and generates appropriate log informa-
tion.
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5.2 Automated inspection of rte_flow support
The first application of rte_flow_checker (Section 5.1) comes in the pipeline for collecting
capabilities of rte_flow rules. This pipeline (Section 4.2) is realized by the
generate_report script. It inspects the support of rte_flow on a particular NIC and
generates an appropriate report. As can be seen in its detailed scheme in Figure 5.2, it
heavily makes use of the products from external tools. That requires the means for spawn-
ing and controlling new child processes. Interface from the internal Python test suite of the
Liberouter project is used for this purpose. Besides other things, it provides convenience
wrappers for the subprocess2 module.

rte_flow_checker

runrun

Report_creator

Attribute_report

Pattern_report

Actions_report

outputconf.yaml

generate_rules

generate_report

Flow_rule

Attributes_generator

Actions_generator

Pattern_generator

Figure 5.2: Scheme of the generate_report script.

The initial step of the whole procedure in Figure 5.2 is the application of the
generate_rules script. It manages the generation of the configuration file with flow rules.
Since this functionality might also be practical for other use cases, it has been extracted
into the individual script to sustain adaptability. Moreover, it also contributes to the sepa-
ration of independent functional units. Once the configuration file is successfully produced,
rte_flow_checker comes to action. It employs generated file and applies it to the specific
NIC. For the scope of the pipeline, VALIDATE and CREATE run modes are sufficient. The
produced report is gathered for the needs of subsequent analysis. The final step is the
utilization of obtained outputs and the creation of the overall summary. Both of these
operations are performed directly by the generate_report script.

The generate_report script also accepts custom configuration files to simulate manual
testing. That results in omitting the rules generation step. Instead of that, provided file is
passed to the rte_flow_checker. The user might request this behavior with the --conf
parameter. That might be effective when the user is not interested in the total summary of
rte_flow capabilities on a particular NIC. But instead of that, he only requires verification
of specific features.

2https://docs.python.org/3/library/subprocess.html
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The user can get access to all rules used for inspection. To sustain direct compatibility
with the DPDK framework, they are presented as testpmd commands. The --success
parameter serves for the specification of the file with successfully validated/created rules.
The rest of the rules might be collected into the file specified by the --failed parameter.

Besides the automated pipeline, the generate_report script also offers more func-
tionality. It can further investigate the support of the rte_flow on a particular NIC. That
involves inspection of the maximum rules capacity or their insertion time. Both information
is measured in separate invocations of the rte_flow_checker independent on the pipeline.
These measurements are performed only if the user provides appropriate configuration files
through dedicated parameters (--extra and --time-perf).

Configuration files production

The configuration files can be automatically produced by the generate_rules script. As
demonstrated in Figure 5.2, the Flow_rule class is its key element. It provides means
for manipulating flow rules. Because of that, the representation of rules can be easily
constructed and later expressed in a particular output format. The first supported format
is naturally the YAML file for rte_flow_checker. For comfortable YAML handling, the
pyyaml3 framework is used. Apart from that, it is also possible to convert rules to the
equivalent testpmd commands.

Because of colliding requirements, each rule part has its dedicated generator. That
allows maximizing the coverage of tested features for actions, pattern items, and attributes.

The Actions_generator makes use of several helper generators. Each one focuses on
one group of actions with similar features. That makes possible to use parametrization to
cover all possible configurations. Apart from that, the possible action combinations are
tested as well. At first, each one is tested alone. All non-fate actions are subsequently
combined with every fate action.

The Pattern_generator applies a similar approach. It utilizes two helper generators
specialized in diverse pattern item groups – with and without associated structure. The
first one is responsible for generating rules that cover requirements from Section 4.2 for
each item’s field. The possible combinations with other pattern items are also tested for
every item. The following process is applied for this purpose:

1. Generate a pattern where the tested item is situated in the last position, and the rest
is filled by items from lower network layers.

2. Replace the first non-void item with the VOID item.

3. If the tested item is still present, generate a new pattern and repeat step two.

The generate_rules script can also produce rules with gradually increased IP ad-
dresses. They are utilized mainly for testing the maximum capacity on a particular NIC or
insertion times.

Final analysis

The final analysis is managed by the instance of Report_creator class. Initially, it utilizes
the output produced by rte_flow_checker to obtain the results of all validations/cre-

3https://pyyaml.org/

34

https://pyyaml.org/


ations. Then, it iterates over the configuration file with flow rules to inspect the support
of particular rte_flow capabilities.

The information extraction is again realized by three modules – one for each rule part
(Section 2.3). But they all share common main logic. The extracted information is stored in
a lookup table represented by the dictionary. Each item holds a piece of information about
a single rte_flow property. Because of that, it is identified by the name of an attribute,
pattern item, or action. A tuple is used to represent the value of the items. The detailed
structure differs for each module to satisfy requirements from Section 4.2. But in general,
a tuple consists of a couple of flags and arrays of strings. In case of pattern items, it is
necessary to keep information about each field in nested tuples. Two separate tables are
used for actions – the first for ingress direction and the second for egress. That is required
because their support is usually strongly influenced by the traffic direction in flow rules.

Every processed flow rule is inspected by all three modules. If a particular module en-
counters an uncovered property, it adds a new entry to its lookup table. This operation can
be triggered by rules regardless of the result of their validation/creation. However, the en-
tries already inside the lookup table are updated only by the successfully validated/created
rules.

The Create_report class is also able to find out more sophisticated information. That
includes a maximum number of successfully created rules at the same moment. Once the
configuration file is completely processed, it is possible to use lookup tables to construct
the final summary. The summary takes the form of a reStructuredText4 file. This format
is human-readable and can be easily converted to a very synoptical HTML documentation
with the help of the Sphinx5. Figure 5.3 shows an example of documentation with reports
for several NICs. The column on the left includes the table of content, whereas the remaining
part shows the beginning of the generated report for a particular NIC.

Figure 5.3: Example of HTML documentation that shows rte_flow capabilities support.

4https://docutils.sourceforge.io/rst.html
5https://sphinx-tutorial.readthedocs.io/
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5.3 Rules verification with pytest

The actual functionality of the rte_flow rules is verified using a test suite based on the
pytest framework (Section 3.1). It is a realization of testing architecture proposed in
Section 4.3. Each test case starts with the necessary environment preparation. This step
involves the creation of a file with flow rules and the initialization of rte_flow_checker
(Section 5.1). If this step is not completed successfully (e.g., some rules from configura-
tion files cannot be created), the test case is skipped. Otherwise, the testing traffic is
sent to configured NIC by the instance of Traffic_generator class. Packets received by
rte_flow_checker are captured by dpdk-pdump into PCAP files. Simultaneously, class
Rule_interpreter produces the expected outcome that can be compared with the actual
result. The final check includes inspection of captured packets and validation of other
side-effects caused by rules.

Environment preparation

The initial phase takes full advantage of the pytest framework. As a result, all preparation
steps are managed by the set of fixtures. They also include logic for a final tear-down – e.g.,
stopping rte_flow_checker. Figure 5.4 shows the sequence of performed operations. The
first fixture generates flow rules. They are stored in two formats – YAML configuration
and testpmd commands. The file with testpmd commands is not further used by the test
case. It can serve for recreation of the particular test with the testpmd. The YAML file is
then utilized to start rte_flow_checker in DAEMON run mode. Besides that, it is configured
to emit a particular signal after the rules creation. When it is successfully received, the
rte_flow_checker is considered initialized and ready to process packets. After that, the
dpdk-pdump can be started to capture traffic from the rte_flow_checker application.
Packets from each RX queue are stored in a separate PCAP file.

dpdk-pdumprte_flow_checkerconf.yaml

PCAP

PCAP

PCAP

produce

rules_file

start

checker

initialize

checker_initialized

fixtures

RX 0

RX N

RX 1

...

wait for signal

Figure 5.4: Preparation process performed before every test case.

The fixture, which generates the configuration file, is usually re-implemented for each
test group to reflect specific requirements. Every group utilizes fixture parametrization to
produce rules according to the needs of a particular test case. On the other hand, fixtures
handling initialization of rte_flow_checker are the same for all test groups.
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Generation of testing traffic

The implementation of traffic generation is primarily designed for NICs with at least two
ports. The main idea is to leave control over one port to rte_flow_checker, whereas the
other port serves as the interface for sending the testing traffic. The internal test suite of
the Liberouter project provides an elemental set of fixtures for setting up this topology.

The Traffic_generator parses the configuration file and inspects the pattern of every
rule. The result is the extraction of matching properties from each pattern item. They are
later used to create matching as well as unmatching packets. Parts not specified by the
pattern are filled with appropriate random values. The generator also tries to diversify the
produced traffic by alternating used protocols in generated packets.

Because of simplicity, generated packets are not manipulated directly but through a cou-
ple of tree structures (Figure 5.5). Each path from the root to the leaf represents a single
packet. A tree node symbolizes one protocol header. They are identified by values of the
most significant fields of specific protocol – e.g., IP addresses or port numbers. Structure
of the tree guarantees that nodes at the same depth are all from the same network layer.
Besides that, Traffic_generator also keeps track of the nodes that belong to the currently
processed rule. As a result, new nodes are added only to the right places in all appropriate
trees. Node, which represents the L2 protocol, is used as the root of each tree. That means
a request for the addition of the L2 node always causes the creation of the new tree. For
the other type of nodes, the outcome is the addition of the new child to all relevant nodes
from the lower layer. In the end, the pre-order traversal is applied to all constructed trees.
As a result, each packet can be built with the Scapy library (Section 3.2) and sent to the
tested NIC. The Traffic_generator might be forced to wait a couple of seconds before or
after sending. That is necessary for a proper test of some rules, such as those that include
AGE action.

AA:BB:CC:DD:EE:FF
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TCP

 Ethernet: src_addr = AA:BB:CC:DD:EE:FF, dst_addr = CC:B6:A5:C8:02:21


 IPV4: src_addr = 160.179.87.133, dst_addr = 192.11.94.227


 UDP: src_port = 44586, dst_port = 123


Figure 5.5: Tree structure used for packets representation.
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Rule interpreter

The Rule_interpreter works in close collaboration with Traffic_generator. It utilizes
an almost identical set of trees. The key difference is it actively uses only subtrees that
represent matching packets. Because of that, it is possible to express the pattern of all
rules. Every packet representation additionally has an appropriate list of actions in its
leaf node. That allows the interpretation of all flow rules together with traffic sending.
The Rule_interpreter utilizes matching patterns representation to determine whether
the particular packet matches some rule. If a matching rule is found, it is possible to mimic
the effects of its actions. As a result, trees representing expected packets are produced for
each RX queue. Besides that, other products of flow rules are simulated as well. That
includes the setting of flags and the state of counters. All information obtained from the
simulation is later used in the final analysis.

Results verification

The essential part of the final verification is the captured traffic examination. This process
is performed separately for each RX queue. It involves reading the particular PCAP file
and processing captured packets with functions from the Scapy library. The extracted
values are then used for traversing the expected packet representations obtained from
Rule_interpreter. As a result, it is possible to determine whether all expected pack-
ets were captured

However, the verification of the captured traffic is not enough for rules with some actions.
The additional information by rte_flow_checker and by Rule_interpreter are employed
for extra checks. In case of MARK or FLAG actions, it involves checks that correct flags
were set in particular packets. The final values of all configured counters are verified for
the COUNT action. The AGE action is verified by checking the aged-out status of the
associated rule. The expected value is determined by comparing the timeout interval used
in the flow rule and the waiting time before and after sending testing traffic.
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Chapter 6

Application of implemented tools

This chapter is dedicated to the evaluation of implemented tools. On the one hand, it
includes the script for automated collection of rte_flow capabilities (Section 5.2). And on
the other, a test suite that verifies the correct functionality of the rules (Section 5.3). At
the same time, evaluation was used to analyze and compare the support of rte_flow across
different NICs.

Both tools were applied to the multiple DPDK-supported NICs to test their behavior
in different environments, thus proving their universality. Support of rte_flow needs to
be guaranteed by the poll mode driver (PMD) of a particular NIC. For that reason, all
chosen tested NICs are from major vendors, such as Intel or Mellanox (from 2019 part of
NVIDIA1). Each of them ensures usage of the rte_flow according to the documentation.
The list of used NICs and their brief specification is shown in Table 6.1. Since the support
of capabilities mainly depends on the PMD, cards with as many different PMDs as possible
were chosen. The first two cards are produced by Mellanox, whereas the remaining by Intel.
Even though Mellanox cards both use the MLX5 PMD, they belong to the diverse families of
adapters and differ on the hardware level. In contrast, all Intel cards use different PMDs.
Moreover, all of them also vary in available hardware resources.

Network card Poll Mode Driver Kernel driver version
ConnectX-5 MT27800 Family MLX5 OFED 5.4
ConnectX-6 MT2892 Family MLX5 OFED 5.4
Ethernet Controller E810-C ICE 1.3.2
Ethernet Controller X710 I40E 2.8.20
Ethernet Connection X552 IXGBE 5.1.10

Table 6.1: List of network cards used for testing.

Details from the environment setup as well as the testing procedure are discussed in
Section 6.1. Results for all tested NICs are presented in Section 6.2 which is split into four
subsections. Each of them sums up results only for NICs with the same PMD. The final
summary and comparison of results between all PMDs can be found in Section 6.3.

1NVIDIA’s acquisition of Mellanox – https://nvidianews.nvidia.com/news/nvidia-completes-
acquisition-of-mellanox-creating-major-force-driving-next-gen-data-centers
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6.1 Environment setup and testing procedure
As already mentioned, testing was split into four sections, where each one focused only
on NICs with particular PMD. Nevertheless, all testing sections followed an almost iden-
tical process. Since NICs are situated on different servers, the first step always was the
environment preparation. And only after that, the implemented tools could be applied.
Testpmd (Section 2.4) was used as a referential application to verify the correctness of pro-
duced results. That was possible because both tools can convert the processed flow rules
into testpmd commands. However, the functionality cannot be confirmed only by testpmd.
Testpmd can only check the assessment of support for a particular flow rule. For that
reason, I also utilized the experience with the rte_flow support gained from the manual
testing with testpmd. As a result, automatically extracted results were compared with this
experience.

Environment setup for all tests

At the beginning of each testing section, the NIC and the environment had to be prepared.
Some of the preparation steps were required by all NICs, whereas others were performed
only in specific cases.

All common steps were extracted into the prepare.sh script. It manages the allocation
of huge pages with the dpdk-hugepages2 utility and compilation of the rte_flow_checker
application (Section 5.1). Apart from that, all of the Python requirements are installed
as well. Since the rte_flow_checker requires root privileges (e.g., due to huge pages
manipulation), both tools also have to be run by the root user. For that reason, Python
packages are installed globally.

The Intel NICs need to be bound to a special low-level kernel driver (Section 2.2). The
vfio-pci driver was used for this purpose.

Testing procedure

Once necessary preparation for a particular section was completed, the implemented tools
could be utilized. Simultaneously, the support of rte_flow on NIC was inspected. At first,
the generate_report script (Section 5.2) was applied. To properly evaluate its function-
ality, the verify_testpmd_commands script was prepared. It accepts a file with testpmd
commands that represent flow rules. The file is then passed to the testpmd application for
processing. Meanwhile, the script calculates the number of successful and failed attempts.

The evaluation of the generate_report script consisted of several phases:

1. Use the generate_report script to collect rte_flow capabilities on a particular NIC.
Capture all flow rules assessed as supported in one file and unsupported in another.
Utilize the verify_testpmd_commands to verify that testpmd evaluates all flow rules
the same way.

2. Test the maximum capacity of different types of rules with generate_report. After
that, replicate the measurements with testpmd using the verify_testpmd_commands
script.

2https://doc.dpdk.org/guides-20.11/tools/hugepages.html
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3. Calculate the insertion times for several different bursts of rules. The burst sizes are
chosen according to the information found during the previous phase. As a result,
small bursts are used as well as bursts near the maximum capacity.

4. Optionally perform further examination according to discovered rte_flow support
level (e.g., the capacity of rules in not default group).

All configuration files used in the second, third, and optionally fourth phases were produced
by the generate_rules script (Section 5.2). For the time insertion tests, only rules with
DROP action were utilized. On the other hand, different actions were used during the
capacity testing. As a result, it was possible to determine if capacity is influenced by this
factor. All flow rules had the default priority level and also the group number. Sets with
the following actions were used:

• DROP,

• MARK + QUEUE,

• COUNT + QUEUE.

After that, a test suite (Section 5.3), which investigates the functionality of flow rules,
was employed. The implemented test cases cover mainly correct matching of various pattern
items and the functionality of basic actions (e.g., QUEUE, MARK, FLAG, COUNT, AGE,
JUMP or SET_IPV4_SRC). The application of the test suite was the following:

1. Apply all tests from a particular group.

2. For the failed test cases, collect the used YAML configuration file as well as its analogy
with testpmd commands. Use the latter file to configure the testpmd. Pass the former
file to the script, which mimics the functionality of the traffic generator. As a result,
it is possible to replicate the conditions of the failed test. The problematic behavior
is then manually inspected.

6.2 Results for selected cards
This section discusses the results of the evaluation process. Besides that, it also provides
a brief overview of the rte_flow support on each of the NICs. Since the testing process
was split into four groups according to the used PMD on NICs, obtained results are also
presented in separate subsections. The testing procedure described in Section 6.1 was
applied to every group. At first, the generate_report script (Section 5.2) was evaluated.
Its functionality was successfully proven by the testpmd application in all cases. The
following subsections focus mainly on the presentation of supported rte_flow capabilities.
The capabilities description can be found in Section 2.3. After that, the test suite for
verification of the rules functionality (Section 5.3) was also utilized. The results slightly
differ for each group of NICs.

MLX5

Two of the chosen tested NICs utilize the MLX5 PMD. Testing on both of them produced the
same results for capabilities collection and tests of maximum capacity. They only slightly
differ in insertion times of rules.
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At first, rte_flow capabilities were automatically collected by the generate_report
script. The results showed the support for four priority levels. The actual number of
supported groups was not fully revealed. The generate_report script only proved NICs
support all groups used for capabilities collection (1001). For that reason, group attribute
was later further separately investigated. For the direction attribute, the results were
much clearer. Cards support usage of both directions – ingress and egress. But single
flow rule can include only the specification of one of them, usage of both is not allowed.
The generate_report evaluated the transfer attribute is unsupported. The manual tests
proved that MlX5 PMD allows usage of transfer flag only with virtual functions created
using SR-IOV3 technology, but not directly by a physical device.

The generate_report script discovered the support of the following actions:

• DROP – ingress rules,

• QUEUE – ingress rules,

• RSS – ingress rules,

• JUMP – ingress or egress rules,

• FLAG – ingress or egress rules,

• MARK – ingress or egress rules,

• COUNT – ingress or egress rules,

• AGE – ingress or egress rules,

• modify packet field (e.g., SET_IPV4_SRC) – ingress or egress rules.

Code B.1 includes part of flow rules, which generate_report script used during processing.
Some of the collected capabilities will now be briefly described. In the ingress direction,
flow rules need to include exactly one of the fate actions (Section 2.3). That means it is not
possible to build a rule only with actions MARK, FLAG, COUNT, AGE, or modify packet
field. However, this requirement is not requested in egress rules. The only supported fate
action in egress is JUMP action.

Most of the items, which represent network protocol headers, are supported. The meta
items, such as ANY or INVERT, cannot be used in rules. The specification of the L2 item
can be omitted in the matching pattern. NIC then looks for it anywhere in packets. The
pattern can consist of only items with no further specification of the matching properties.
The other option is to specify matching properties with full or partial masks. Usage of
matching ranges is available only for source and destination addresses of the IPV4 item.
However, later application of the test suite showed that these rules are matched only by
packets from the lower bound, not the full range. This behavior was later replicated also
with testpmd. The rest of the tests confirmed the correct behavior of the other features.

The generate_report script was also utilized to inspect the maximum allowed amount
of flow rules. For all rule types (Section 6.1), the discovered capacity is 65536 on these
cards. After that, the generate_report script was used for the insertion times measure-
ments. They were performed during a single invocation of the rte_flow_checker (Sec-
tion 5.1) using the configuration file with several rule bursts. The number of rules in used

3Single Root IO Virtualization (SR-IOV) – https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=52011161
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bursts was progressively increasing. As a result, two different values were captured for each
burst – the average insertion time of a single rule and the total time. The results are pre-
sented in Figure 6.1. The left graph shows the average times. The horizontal axis displays
the size of bursts expressed as the portion of the maximum rules capacity, which was dis-
covered in the previous step. The vertical axis represents the average times in milliseconds.
The right graph displays the total insertion times. The X-axis represents the sizes of bursts
expressed with the number of rules, whereas the Y-axis displays the total insertion times
in milliseconds. The first graph shows that the average time fluctuates around a constant
value. But when the burst sizes reach 85% of the maximum capacity, the insertion time
begins to grow exponentially for both NICs. This behavior is also reflected in the second
graph. The original linear growth changes into the exponential near the maximum capacity.
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Figure 6.1: Average and total insertion times for rule bursts on NICs with MLX5 PMD.

Since prior evaluation proved the support of multiple groups, the capacity measurements
were also performed for the non-default group. Additional tests showed that it is possible
to create significantly more rules in these groups. The only limitation is the available
resources, mainly allocated memory. The results from the measurements are in Table 6.2.

Allocated memory DROP MARK + QUEUE COUNT + QUEUE
250 MB 2487612 2487612 1623356
500 MB 5047612 5047612 3360060
750 MB 7607612 7607612 5109052
1000 MB 10167612 10167612 6651904

Table 6.2: Dependency of rules capacity in non-default groups on the allocated space.

The number of rules without COUNT action constantly increases with more allocated
memory. Even though the amount of rules with COUNT action also grows, it is always
lower than for the other types. That signals that MLX5 PMD implements most of the flow
rule logic in software. That also includes counters. This also answers the question about
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the number of groups. Any 32-bit number can be used as a group number. There is the
only limitation on a maximum number of rules.

ICE

The application of the generate_report script produces the following result for NIC with
ICE PMD. The card support usage of only one group and one priority level. All rules
have to be created in the ingress direction. The transfer attribute is not supported. The
additional manual testing showed that the card allows the creation of rules with different
priority values. However, this behavior can be used only in pipeline mode, which needs
to be explicitly requested by the extra argument for -a EAL parameter4. However, the
interpretation of the priority is very specific. Rules with priority 0 are applied first and
typically filter out the unwanted packets. The rest is later used for classification and further
processing. That resembles the rule groups rather than the priority levels.

Support of following actions was proven by the generate_report script:

• DROP,

• QUEUE,

• RSS,

• PASSTHRU,

• MARK,

• COUNT.

Some of the rules, which were processed by the generate_report script, are demon-
strated in Code C.1. The significant features will now be briefly summarized. Each action
can be used alone in the flow rule. However, there are a few limitations to their mutual
combination. It is allowed to combine one fate action (DROP, PASSTHRU, QUEUE) with
MARK or COUNT actions. Meta pattern items (e.g., INVERT) are not supported. Pat-
terns, which contain only items with no inner specification, can be combined exclusively
with RSS action. Otherwise, it is necessary to always specify matching properties for at
least one of them. That can be done with full or partial masks. Pattern also needs to
always start with the L2 item. Because of that, patterns cannot omit items from lower
network layers. Correct behavior of the rules was later confirmed by the test suite.

After that, the maximum capacity of rules was inspected. Results show that the capacity
differs for different types of rules:

• DROP – 15360,

• QUEUE + MARK – 15360,

• QUEUE + COUNT – 256.

The limitation for COUNT action is caused by the available hardware counters. The
insertion times were measured afterward using the same approach as the previous subsec-
tion. For this card, the measurements discovered an anomaly. The very first insertion takes

4https://doc.dpdk.org/guides/nics/ice.html#runtime-config-options
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significantly longer in comparison to the rest. The additional tests confirmed that this effect
always happens only for the initial insertion since the launching of the DPDK application.
When one rule is successfully loaded into the card, the insertion times considerably drop. It
signals that the card performs an initialization routine before the initial flow rule insertion.
For that reason, the insertion time of the initial rule was excluded from the measurements.
Graphs in Figure 6.2 shows the results . From the left graph, it is apparent that the inser-
tion time is almost constant. It fluctuates in a very narrow range of values near 0,01 ms.
This behavior is also translated in the second graph. The total insertion times linearly
increase.
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Figure 6.2: Average and total insertion times for rule bursts on NICs with ICE PMD.

I40E

The generate_report script was then applied to the NIC with I40E PMD. For attributes,
the results were very straightforward. The script discovered support of only one group and
one priority level. Furthermore, it proved that it is possible to create only ingress rules,
and the transfer attribute is not supported. These facts are also in agreement with the
experience from manual testing.

Support of the following actions was confirmed:

• DROP,

• QUEUE,

• RSS,

• PASSTHRU,

• FLAG,

• MARK.
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Part of the rules used for capabilities collection by the generate_report script can
be seen in Code D.1. This paragraph sums up the most relevant features. All of the
supported actions, except for FLAG, can be used alone in flow rules. They can also be
used in combinations. It is required to combine one fate action with exactly one non-fate
(MARK or FLAG). However, the fate action needs to be on the lower index in the actions
list. The reverse order is not supported. Usage of meta pattern items is not allowed. It
is also possible to use a pattern filled only with items with no inner specification. The
matching properties can be defined with full or partial masks. The omission of items from
the bottom of the network stack in patterns is not supported. The ETH item cannot be
used alone.

However, the application of test suite raised some concerns – part of the tests failed.
Further inspection showed that I40E PMD interprets the matching pattern differently from
the previously tested PMDs. For example, a pattern with just L2 and L3 items matches
only fragmented packets without an L4 header. But in other PMDs, this pattern can
be matched without inspecting the presence or type of L4 header. For that reason, the
option to define a custom test by providing the configuration file through command line
arguments was added to the test suite. The tests were later repeated with files that respect
the interpretation of patterns by the I40E PMD. They prove the correct functionality of
the rules also for this NIC.

Due to found capabilities, the maximum capacity was tested only for rules without the
COUNT action. The discovered maximum amount was 7680 in all cases. After that, the
insertion times measurements were performed. They again detected the anomaly described
in the previous subsection. The insertion of the very first rule takes much longer than
for the others. Because of that, the time of the first insertion was not included in the
measurements. Outcomes are presented in Figure 6.3. The average insertion time soon
starts to grow extensively. That changes when the value reaches 6 ms. At this moment, it
sustains the increasing trend, but at a much slower pace. In the other graph, the value is
significantly low at the start. But when the burst sizes reach approximately 500 rules, it
begins to increase linearly.
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Figure 6.3: Average and total insertion times for rule bursts on NICs with I40E PMD.
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IXGBE

Testing on the card with IXGBE PMD was the shortest one. The level of rte_flow support
on this card turned out to be very limited. The only supported action is RSS. Rules also
need to have the default group value, default priority level, and ingress direction. For these
reasons, testing of the maximum capacity and measurement of insertion times were not
performed. The test suite was also not utilized due to insufficient support of pattern items
and actions.

6.3 Results summary and evaluation
This section summarizes the results produced by the testing process. As a result, it evaluates
the functionality of both implemented tools – the generate_report script for automated
collection of rte_flow capabilities (Section 5.2) and a test suite for verification of rules
functionality (Section 5.3). Apart from that, the discovered supports of the rte_flow
interface across all tested NICs are compared.

Testing was split into four sections. Each of them focused only on NICs with particular
PMD. The detailed course of the testing procedure is described in Section 6.1. At first,
the collection of capabilities by the generated_report script was tested. The evaluation
utilizes the script‘s ability to convert most of the processed rules into equivalent testpmd
commands. As a result, support assessment for all rules could be verified by testpmd.
Correct functionality was successfully confirmed in all sections. The second step was the
inspection of the maximum flow rules capacity. Testpmd was used to replicate the ob-
tained results. For all cases, the results were successfully approved. In another step, the
generate_report script was utilized to measure the insertion times of rules on tested NICs.
The results were visualized with appropriate graphs.

After all that, a test suite was employed to verify the functionality of the flow rules.
These tests helped to reveal several problematic behaviors (details in Section 6.2). All of
the failed tests were later reproduced with testpmd, thus proving the results. The first was
found on cards with MLX5 cards and is connected with matching ranges for IPV4 addresses.
These rules are matched only by the packets from the lower bound of the range. Another
inconsistency was found in NIC with I40E PMD. Unlike other PMDs, I40E interprets
the pattern explicitly. That means that the pattern with L2 and L3 items matches only
fragmented IP packets. The last three steps were skipped for NIC with IXGBE PMD due to
insufficient support of rte_flow capabilities.

The application of implemented tools showed that cards with MLX5 PMD offer the
most extensive support among all tested NICs. They enable the usage of multiple groups
and priorities, whereas the other NICs support only the default group and priority level.
Moreover, MLX5 cards support the creation of ingress but also egress rules. These cards also
provide the largest capacity for the flow rules. Unlike other cards, they support numerous
actions and allow the omission of pattern items from the bottom layers of the network
stack. On the other hand, the lowest level of rte_flow support was discovered on the card
with IXGBE PMD. This card allows only usage of RSS action.

The measurements of the insertion time provided the following results. The average
insertion time on the ICE card remains constant for different burst sizes. On the other
hand, the average time increases as the burst are closer to the maximum capacity for the
MLX5 and I40E cards. The values are by far the highest for the I40E card.
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Chapter 7

Conclusion and future work

The goal of his bachelor‘s thesis was to provide a method that enables the comfortable
evaluation of rte_flow interface support on network cards. Previously, this data could
be retrieved only by monotonous and time-consuming manual testing. For that reason,
I designed and implemented a pair of tools that automate the evaluation process. As
a result, all the supported rte_flow capabilities on a particular card can be inspected and
collected systematically.

At the beginning of the solution, I had to get familiar with the DPDK framework. This
process included a detailed study of all relevant tools (mainly the testpmd application) and
libraries. All the gained knowledge was continuously tested in practice using the testpmd
application. The increased focus was given to the main objective of the thesis – classifier
interface rte_flow. As a result, I learned how to configure hardware offloads in the network
card with the special flow rules.

After that, I spent a significant amount of time manually analyzing the rte_flow ca-
pabilities on different network cards with the help of the testpmd application. That helped
me to identify the possibilities for the automation and optimization of the manual process.
I decided to utilize Python as the major language for the realization. For that reason,
I needed to find and get familiar with suitable libraries/tools which would help me with the
latter implementation. Among others, the testing framework pytest was studied during
this phase. Apart from that, I also learned how to manipulate network traffic with the
Scapy library.

During the creation of design proposals, I realized that two approaches could be utilized
for the rte_flow support evaluation. Both require the DPDK application, which uses
the given flow rules to configure the NIC through the rte_flow interface. I decided to
design my own DPDK application precisely for this use case. The first testing approach
repetitively loads various flow rules into NIC and extracts the supported capabilities from
the successful attempts. That was utilized in the proposal of an automated pipeline for
capabilities collection. The second one focuses on the verification of the flow rules effect.
To achieve that, I proposed the testing architecture based on the pytest framework, which
verifies the correct functionality of the rules.

At first, it was necessary to implement the proposed DPDK application. It supports
three different run modes, which allow its usage by both mentioned approaches. The
implementation of an automated pipeline resulted in the production of the first tool. It
systematically generates appropriate rules, assesses their support on particular NIC, and
creates a report with supported features. It can also inspect the maximum capacity of rules
or their insertion times. The realization of the mentioned testing architecture led to the
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second tool – a test suite for rules functionality verification. It tests the effects of rules by
sending the testing traffic to the configured NIC and evaluating the results.

Both implemented tools were then applied to various network cards. Produced results
were validated using several testing scripts and the testpmd as the referential application.
Moreover, they were also compared with the experience I gained during manual testing of
rte_flow support. As a result, the functionality of both tools was successfully confirmed.
The application of both tools also showed that cards with the MLX5 driver provide the most
extensive support for the rte_flow. They allow the usage of numerous capabilities and
provide the largest capacity for the rules.

The main goal of this thesis, to provide tools for testing support of the rte_flow interface
on network cards, was fulfilled. But there is still room for several future improvements.
The test suite can currently verify the functionality of only ingress rules. That proved to be
sufficient since experiments have shown that only a few cards support egress rules. Despite
that, the addition of egress rules could be a potential improvement. Another improvement
might be an upgrade to the new stable version of the DPDK framework, which was recently
released. This version introduced several new features, such as INDIRECT action, that
deserve to be included in the inspection process. It might also be interesting to measure
the insertion time when the traffic flows through the NIC. All these and possibly also other
further improvements will be the objective of my future collaboration with CESNET.
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Appendix A

State automaton

S0 S2 S4S3
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DOCUMENT-START SEQUENCE-START
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Figure A.1: Scheme of state automaton for configuration file parsing. The events from
libyaml’s event-based API serve as an inputs.
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Appendix B

Flow rules log for MLX5 cards

### supported
flow create 0 priority 3 ingress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions drop / end

flow create 0 group 5 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions jump group 6 / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \

actions age timeout 100 / drop / end
flow create 0 egress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions jump group 3 / end

flow create 0 ingress \
pattern eth / ipv4 / end \
actions drop / end

flow create 0 ingress \
pattern eth src spec aa:bb:cc:dd:ee:ff src mask ff:ff:ff:00:00:00 / end \
actions drop / end

flow create 0 ingress \
pattern eth / ipv4 src is 195.168.0.1 src last 195.168.5.0 / end \
actions drop / end

flow create 0 ingress \
pattern ipv4 src is 195.168.0.1 / end \
actions drop / end

### unsupported
flow create 0 egress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions queue index 1 / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions mark id 42 / end

Code B.1: Snippet of the processed rules for MLX5 NICs.
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Appendix C

Flow rules log for ICE cards

### supported
flow create 0 ingress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions mark id 42 / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions queue index 1 / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions count identifier 128 / drop / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions drop / count identifier 128 / end

flow create 0 ingress \
pattern eth / ipv4 src spec 195.168.0.1 src mask 255.255.255.0 / end \
actions drop / end

### unsupported
flow create 0 priority 1 ingress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions drop / end

flow create 0 group 1 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions jump group 2 / end

flow create 0 egress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions count identifier 128 / end

flow create 0 ingress \
pattern eth / ipv4 / end \
actions drop / end

flow create 0 ingress \
pattern ipv4 src is 195.168.0.1 / end \
actions drop / end

Code C.1: Snippet of the processed rules for ICE NICs.
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Appendix D

Flow rules log for I40E cards

### supported
flow create 0 ingress \

pattern eth / ipv4 / end \
actions drop / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions mark id 42 / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions queue index 1 / flag / end

flow create 0 ingress \
pattern eth / ipv6 src spec ffee::1 src mask ffff:: / end \
actions drop / end

### unsupported
flow create 0 priority 1 ingress \

pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions drop / end

flow create 0 group 1 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions jump group 2 / end

flow create 0 ingress \
pattern eth / end \
actions drop / end

flow create 0 ingress \
pattern ipv4 src is 195.168.0.1 / end \
actions drop / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions flag / end

flow create 0 ingress \
pattern eth / ipv4 dst is 159.58.1.0 src is 195.168.1.0 / end \
actions flag / queue index 1 / end

Code D.1: Snippet of the processed rules for I40E NICs.
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