BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

MOBILE APPLICATION MONITORING USING
TLS FINGERPRINTS

MONITOROVANi MOBILNiCH APLIKACi POMOCI OTISKU TLS

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAN KOCI
AUTOR PRACE
SUPERVISOR Ing. PETR MATOUSEK, Ph.D. M.A.

VEDOUCI PRACE

BRNO 2022

Vysoké uceni technické v Brné
Fakulta informaénich technologii

Ustav informaénich systéma (UIFS) Akademicky rok 2021/2022
Zadani diplomove prace [[[|[If{[/Il
245354
Student: Ko¢i Jan, Bc.
Program: Informacni technologie a uméla inteligence
Specializace: Kyberneticka bezpecnost
Nazev: Monitorovani mobilnich aplikaci pomoci otiskil TLS
Mobile Application Monitoring Using TLS Fingerprints
Kategorie: Pocitacové sité
Zadani:

1. Seznamte se s metodou JA3/JAS3S pro identifikaci mobilnich aplikaci pomoci otiskd TLS.
Vytvorte databazi otiskdl TLS bé&znych mobilnich aplikaci.

2. Navrhnéte zplsob ziskavani TLS otiskl z komunikace pomoci roz&ifeného monitorovani
tok(l IPFIX (vyuzijte sondy nprobe, flowmon probe apod.).

3. Navrhnéte a implementujte systém detekce mobilnich aplikaci ze sitovych dat.

4. Ovéite presnost detekce aplikaci a dale moznost profilovani uzivateld, detekci
nebezpecnych aplikaci, sledovani vytizenosti sité mobilnimi aplikacemi, apod.

5. Demonstrujte vyuziti monitorovani mobilnich aplikaci v realném provozu.

6. Zhodnot'te svou praci. Diskutujte vyhody i omezeni daného pfistupu pro spravu sité.

Literatura:

e MATOUSEK Petr, BURGETOVA Ivana, RYSAVY Ondiej a VICTOR Malombe. On
Reliability of JA3 Hashes for Fingerprinting Mobile Applications. In Proceedings of ICDF2C
2020, s. 20.

e van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois, D.J., Lindorfer, M., Cho ness,
D., van Steen, M., Peter, A.: FlowPrint: Semi-Supervised Mobile-App Fingerprinting on
Encrypted Network Trac. In: NDSS. The Internet Society, 2020.

e Anderson, B., McGrew, D.: TLS Beyond the Browser: Combining End Host and Network
Data to Understand Application Behavior. In: Proceedings of the Internet Measurement
Conference. pp. 379-392, 2019.

e Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N., Caballero,
J.: Coming of age: A longitudinal study of TLS deployment. In: Proceedings of the Internet
Measurement Conference 2018. pp. 415-428, 2018.

e Dokumentace k sondé nprobe dostupna online na URL https://www.ntop.org/guides/nprobe/
[zari 2021].

Pfi obhajobé semestralni ¢asti projektu je pozadovano:

e Body 1 az 3.

Podrobné zavazné pokyny pro vypracovani prace viz https://www.fit.vut.cz/study/theses/
Vedouci prace: Matousek Petr, Ing., Ph.D., M.A.

Vedouci Ustavu: Kolaf Dusan, doc. Dr. Ing.

Datum zadani: 1. listopadu 2021

Datum odevzdani: 18. kvétna 2022

Datum schvaleni: 26. fijna 2021

Zadani diplomové prace/24834/2021/xkocijo1 Strana 1z 1

Abstract

The main purpose of this thesis is to study the possibility of using TLS fingerprints for
mobile application monitoring and apply these methods to monitor network flows created
by the Flowmon probe. To create the fingerprints the JA3 and JA3S methods are used.
Apart from the TLS fingerprints, the implemented classifier uses SNI values to classify
input flows. First, a dataset containing fingerprints of selected applications is created. This
dataset is used together with the implemented classifier to classify input flows. Following
is a description of the proposed classification methods and the implemented classifier. The
classifier is evaluated using the Accuracy, Precision and Recall evaluation metrics. Finally,
the classifier is used in several experiments that demonstrate its possible applications.

Abstrakt

Tématem této diplomové prace je monitoroviani mobilnich aplikaci pomoci otiskt TLS a
pouziti téchto metod pro rozsirené monitorovani toki pomoci sondy Flowmon. K vytvoreni
otiskl byly vyuzity metody JA3 a JA3S. Kromé samotnych TLS otiskt jsou ke klasifikaci
pouzity také hodnoty SNI. Na zacatku prace je vytvoren dataset obsahujici otisky vybranych
aplikaci. Tento dataset slouzi ke spravné klasifikaci aplikaci v datovych tocich porizenych
sondou Flowmon. V praci se dédle nachazi popis implementovaného klasifikatoru a jeho
metod. Na zavér je implementovany klasifikdtor vyhodnocen pomoci metrik Accuracy,
Precision a Recall. Cinnost klasifikitoru je demonstrovana v nékolika experimentech, které
slouzi jako mozné piiklady jeho vyuziti v praxi.

Keywords

TLS fingerprinting, JA3 fingerprints, JA3S fingerprints, mobile app monitoring, traffic
monitoring, IPFIX, Flowmon probe.

Klicdova slova

Otisky TLS, JA3 otisky, JA3S otisky, monitorovani mobilnich aplikaci, IPFIX, Flowmon
sonda.

Reference

KOCI, Jan. Mobile Application Monitoring Using TLS Fingerprints. Brno, 2022. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Petr Matousek, Ph.D. M.A.

Rozsireny abstrakt

Monitorovani sitového provozu je proces zkoumani prichozi a odchozi komunikace v daném
misté sité pomoci specializovaného hardwaru ¢i softwaru. Jedna se o zakladni prvek umoznu-
jici operatorim sité provadét operace jako profilovani uzivatelti, monitorovani kapacity sité
¢i detekce nebezpeénych aplikaci. Jeden z dilezitych aspekti monitorovani sité je schopnost
klasifikovat prochazejici komunikaci. Klasifikace komunikace znamena prirazeni paketa ¢i
datovych tokia do jedné z nékolika znamych tiid.

Tématem této prace je monitorovani mobilnich aplikaci pomoci otiskti TLS. Cilem prace
je vytvorit systém, ktery je schopen, za pomoci TLS otisk, klasifikovat datové toky ziskané
ze sondy Flowmon a tUspésné v nich detekovat vybrané mobilni aplikace. Metody pouzité
k vytvoreni TLS otiskt se nazyvaji JA3 a JA3S. Kromé téchto metod pouziva vytvoreny
klasifikator také hodnoty SNI, indikujici nazev serveru, se kterym klient komunikuje.

Uvodni &st prace nabizi struéné vysvétleni metod pro vytvafeni TLS otiski. Prezen-
tovany jsou metody JA3 a JA3S. Nasledujici ¢ast se podrobné vénuje vytvareni datasetu
s otisky vybranych aplikaci. V této kapitole je vysvétlen proces odchytavani komunikace,
extrakce potfebnych hodnot ze zprav TLS handshaku a vytvoreni JA3 a JA3S otiski.
Nasledné jsou v této kapitole uvedeny vysledky analyzy vytvoreného datasetu. Hlavnim
tématem této analyzy je kvalita vytvorenych JA3 a JA3S otiski, jejich pocet a schopnost
jednoznacné identifikovat danou aplikaci.

Po tspésném vytvoreni datasetu a jeho nasledné analyze, bylo potfeba vybrat vhodnou
sondu, ktera bude v této praci pouzita k vytvoreni vstupnich datovych tokt pro navrzeny
klasifikator. Nésledujici kapitola se tedy vénuje srovnani dvou exportéru IPFIX flow dat.
Jednd se o sondu Flowmon a sondu nProbe. Obé sondy jsou vyhodnoceny a porovnany s
dirazem na jejich schopnost zpracovat dané hodnoty TLS protokolu, nutné pro vytvoreni
TLS otiskd.

Poté co je tspésné vybrana vhodné sonda, jsou v praci prezentovany metody pouzité
ve vytvoreném klasifikdtoru. Prvni metoda pouziva ke klasifikaci vstupniho datového toku
jeho JA3 otisk. Tato metoda porovnava vytvoreny otisk vstupniho toku s otisky aplikaci,
ulozenymi v datasetu. Pokud vstupni otisk odpovida nékteré z aplikaci, je tato aplikace vy-
hodnocena jako vysledek klasifikace. Dalsi metoda implementovana v klasifikatoru, pouziva
fetézec hodnot extrahovanych z TLS handshaku. Klasifikator nasledné hleda aplikaci, jejiz
Fetézec je nejvice podobny vstupnimu retézci. Posledni dvé metody provadi klasifikaci po-
moci hodnoty SNI. Klasifikdator hodnotu SNI zpracovava pomoci dvou ruznych pristupi -
Jaccardlv index a metoda TF-IDF.

Po predstaveni jednotlivych metod klasifikdtoru, jsou struc¢né uvedeny dilezité imple-
mentacni detaily prace. Nasledné je implementovany klasifikitor vyhodnocen pomoci tii
evalua¢nich metrik - Accuracy, Precision a Recall. Jednotlivé metody jsou vyhodnoceny
samostatné a porovnany. Daéle je klasifikator prezentovan v nékolika experimentech, které
ukazuji potencidlni oblasti jeho pouziti. Na zévér je zhodnocena vhodnost pouziti JA3
otisku pro klasifikaci datovych toka sondy Flowmon.

Mobile Application Monitoring Using TLS Fin-
gerprints

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author un-
der the supervision of Mr. Petr Matousek. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Jan Kodi
May 16, 2022

Acknowledgements

I hereby thank my supervisor Mr. Petr Matousek for his professional advice and guidance
throughout the process of writing this thesis. I am also very thankful to my lovely girlfriend
Miss Zanda Novéakova, for her amazing support and encouragement.

Contents

1 Introduction
2 Related work

3 TLS fingerprinting

3.1 TLS protocol L
3.2 TLS fingerprinting
3.3 JA3method
3.4 JA3Smethod
4 Creating the application dataset
4.1 Tested applications
4.2 Data preprocessingo e
4.3 Dataset Analysis

5 Choosing the Flow Exporter

5.1 The IPFIX protocol
5.2 nProbe.
5.3 Flowmon Probe

6 Analyzing Flowmon flows
6.1 Updating the application dataset

7 Proposed method

7.1 Classification using JA3 fingerprints
7.2 Classification using TLS values
7.3 Classification using SNIs L
7.3.1 Classification using Jaccard similarity
7.3.2 Classification using TF-IDF
7.4 Combining the classifiers oL

8 Implementation

8.1 Dataset Parsers e
8.2 Dataset e e e
83 Flow Parser e
84 Classifier. e
85 Evaluator e

9 Evaluation

20
20
21
22

24
28

31
32
33
34
35
37
40

41
42
43
45
45
46

48

9.1 Evaluation metrics e
9.2 Evaluation results

10 Experiments
10.1 User profiling L
10.2 Traffic monitoring

11 Conclusion
Bibliography
A Installing the Flowmon probe

B Contents of the included SD card

53
53
55

57

59

62

63

Chapter 1

Introduction

In the year 2020, the use of malware increased by 358% compared to the previous year as
stated in [16]. In fact, according to [20], cybercrime as a whole has increased by 600% since
the beginning of the global pandemic. The annual Cost of a Data Breach Report by IBM
[17] found out that remote work has increased the average cost of a data breach by $137,000
as employees do not have the same level of security at home as they would working in the
office.

The importance of cybersecurity is a well-known topic discussed on a daily basis all
around the world. And as the world continues to lean toward the use of technology and
automation it is expected to be more and more relevant. One of the methods that can
make computer networks safer is traffic monitoring. Traffic monitoring is the process of
using specialized hardware or software to investigate the incoming and outgoing traffic on
a computer network. And an essential part of traffic monitoring is traffic classification.
Traffic classification is defined in [33] as assigning a label from a pre-defined finite set of
labels to a particular network traffic object, e.g., a traffic flow. It is a significant feature
for network operators as it enables them to perform tasks such as capacity management or
performance monitoring. But most importantly it allows them to detect malicious software
in the network.

Numerous methods have been developed for the traffic classification task. Some of the
methods have even proven that it is possible to classify activities on the internet from
encrypted network traffic, e.g., [21] and [3]. One of those methods uses JA3 and JA3S
fingerprints.

The purpose of this thesis is to demonstrate the task of traffic classification and create
a system able to monitor mobile applications in a network based on their JA3 fingerprints.
The thesis starts by discussing similar work in the field of traffic classification in Chapter
2. After that, TLS fingerprinting and the JA3/JA3S methods are described in Chapter
3. Chapters 5 and 6 provide an introduction of two network probes - the nProbe and the
Flowmon probe - and analyse the outputs they produce. After that, Chapter 7 provides a
description of the methods used in the proposed classifier. Chapter 8 presents the imple-
mentation details of the most important classes and methods implemented in this thesis.
In Chapter 9 the classifier is evaluated using the Accuracy, Precision and Recall evalua-
tion metrics. Finally, Chapter 10 conducts several experiments to demonstrate possible
applications in which the proposed classifier can be used.

Chapter 2

Related work

The purpose of this chapter is to show similar work related to this thesis. The problem of
traffic classification has been visited many times in the past. It is an important task used
in many areas of network monitoring systems. It supplies internet providers with valuable
information that can be used to provide different levels of Quality-of-Service, detecting
anomalies and frauds etc. In addition, some enterprise services may need a higher priority
than other traffic.

As mentioned in study [33], some of the early methods of traffic classification used a
port-based approach. In these systems, the source and destination port numbers of a packet
were used to identify the application. This approach alone, however, does not deliver a
reasonable Accuracy and is therefore usually used in combination with other techniques. A
study by Bakhshi et al. [5] used machine learning techniques together with port numbers
in a two-phase system.

Another method known as deep packet inspection (DPI) utilises the patterns and signa-
tures available in the application layer of a packet. This technique is used for instance by
an open-source tool for traffic classification called nDPI [11].

Nowadays there is a rising interest in systems that use statistical, machine learning and
deep learning methods. These systems extract statistical features from a given flow, traffic
or even a single packet. Paper [31] describes a method using the cumulative sum of packet
lengths.

The authors of paper [31] created a method using the cumulative sum of lengths of the
first 100 packets in the flow and then using a k-Nearest Neighbor classifier to fingerprint
web pages. They achieved an Accuracy of 91,6%.

Another interesting approach was presented in paper [39], where they used the first 784
bytes of each flow representing it as a 28x28 matrix and feeding it into a convolutional neural
network. They achieved an Accuracy of 99.41% in the task of malware traffic classification.

All the above-mentioned methods presented different approaches to traffic classification.
In this thesis, the approach of TLS fingerprinting was used. The development of this
technique is connected to the research of Ivan Ristic. In his research in 2008 [1], he developed
an Apache module to fingerprint connected clients based on their cipher suites. Blake
Anderson et al. investigated encrypted TLS flows in paper [4]. They discovered a set of
observable data features from TLS Client and Server Hello messages. These were, e.g., the
TLS versions, TLS cipher suites and TLS extensions.

When it comes to using TLS fingerprinting for mobile applications several interesting
approaches could be mentioned. In a study [28] from 2017, the authors analyzed the TLS
usage in Android applications creating their own app Lumen that was intercepting TLS

communication and gathering various statistics. Stober et al. created a classifier for mobile
applications described in [35]. The classifier used side-channel information such as timing
and data volume. Side channels were also used in paper [36] by Taylor et al. They used
machine learning techniques to identify smartphone apps from this side-channel data. In
addition to merely fingerprinting and identifying smartphone apps, they also investigated
how app fingerprints change over time, across devices and across different versions of apps.

The approach used in this thesis is different from the techniques mentioned above.
It builds on top of the JA3/JA3S TLS fingerprinting technique and applies it to classify
selected mobile applications in network flows. Moreover, it also adds values from the SNI
field to improve the classification. This approach was chosen as it allows the classification
of encrypted traffic. The following section explains the JA3 and JA3S methods used to
create the fingerprints.

Chapter 3
TLS fingerprinting

This chapter is going to discuss the methods of TLS fingerprinting used in this thesis. First,
it briefly describes the TLS protocol and how it can be used to identify an application.
It then proceeds by explaining TLS fingerprinting focusing on the JA3 and JA3S hash
methods.

3.1 TLS protocol

The TLS Protocol Version 1.3 is described in RFC [30]. TLS stands for Transport Layer
Security. As the name suggests it is a protocol designed to facilitate confidentiality and data
security for communications over a computer network. The security is achieved by encrypt-
ing the communication between web applications and servers. TLS is widely used in many
applications such as email or instant messaging and is also used in the HTTPS protocol.
HTTPS is an implementation of TLS encryption on top of HT'TP which is the foundation
of any data exchange on the World Wide Web. The description of HI'TPS can be found in
RFC [29]. As Figure 3.1 shows the TLS protocol is between the Application and Transport
layer in the TCP/IP model.

[Application Iayer] HTTP, FTP

SSL/TLS

Transport layer TCP, UDP
Internet layer IP, ICMP
Link layer ARP, Ethernet

Figure 3.1: TCP/IP model and the TLS protocol.

Before any two applications are able to start the encrypted communication using TLS,
they need to initialize the connection. During the initialization, the two parties exchange
certain messages to acknowledge and verify each other, select the encryption algorithms
they will use and derive session keys. This process is known as the TLS handshake. Its
description can be found in RFC [30].

The main goal of the TLS handshake is to agree on a shared symmetric encryption key
that will be used to encrypt the communication. To do so, asymmetric cryptography is
used. Following are the TLS handshake messages in the order they occur as described in
[37][9][30]:

1.

Client Hello: The first message of the handshake is sent by the client and is called
the Client Hello Message. It contains some important information such as the TLS
versions supported by the client, the cipher suites that are available and some ran-
dom number called Client Random that will be further used to derive the symmetric

key. [9][30]

. Server Hello: The server responds with its Server Hello Message. It contains the

chosen TLS version and cipher suite. It further includes the digital certificate of the
server with a corresponding public key and another random number Server Random.
The server then proceeds by sending its digital signature. The signature is created as
a summary of the previous messages hashed and encrypted using its private key. The
server then ends its move by sending the Server Hello Done message.[9][30]

. Premaster Secret: Client verifies the validity of the provided certificate and its public

key by decrypting the digital signature. The client usually does not have to authen-
ticate itself. Therefore it continues by sending the Client Key Fxchange message
in which it sends another random value called Premaster Secret encrypted with the
public key presented by the server.[9][30]

. Deriving session keys: The server uses its private key to decrypt the Premaster Secret.

At this point, both client and server know the Client Random, the Server Random
and the Premaster Secret. They use these values to calculate the session keys. Since
the Premaster Secret is a secret value that can be decrypted only by the private key of
the server, it is guaranteed that no one else will be able to derive the session key.[9][30]

. Client Finished: The client concludes by sending the Change Cipher Spec message

indicating that from now on all communication will be encrypted. At last, it sends the
Client Finished message which combines all the previously sent messages encrypted
with the newly derived symmetric key.[9][30]

. Server Finished: Server verifies that the handshake was successful by decrypting the

Client Finished message. It concludes by sending its Change Cipher Spec and Server
Finished messages.[9][30]

Figure 3.2 demonstrates the messages of the handshake as they appear and displays
them in a sequence diagram. First of all the TCP 3-way handshake takes place. After that,
the client starts the TLS handshake with its Client Hello Message. After the handshake is
completed both sides can start transferring their encrypted data.

] ’

TCP Syn

TCP Syn, Ack

Ack

Y

Client hello
Server hello, certificate, done
Client key exchange, Change Cipher Spec

Change Cipher Spec

Encrypted data

Figure 3.2: TLS handshake.

The TLS handshake is without a doubt an essential part of the protocol. It establishes
the cryptography needed to create a secure channel between the two parts involved. In
the next section we are going to discuss how the TLS handshake can be used to create
fingerprints of applications.

3.2 TLS fingerprinting

Fingerprinting is a technique of creating some sort of a mark with the intention of using
this collected mark as a way of identification. The main idea behind TLS fingerprinting is
the fact that certain values exchanged during the TLS handshake could be used to identify
the client and server applications. These values are actually depending on the modules and
libraries that the application is using and therefore provide a stable and valuable method
of identification.

The methods used to create TLS fingerprints in this thesis are called JA3 and JA3S.
They were presented by John B. Althouse, Jeff Atkinson and Josh Atkins in 2015." The
primary concept of TLS fingerprinting came from Lee Brotherston in his research in 2015.

'See https://github.com/salesforce/ja3 [Accessed 2021-12-30]
2See https://blog.squarelemon.com/t1ls-fingerprinting [Accessed 2021-12-30]

https://github.com/salesforce/ja3
https://blog.squarelemon.com/tls-fingerprinting

3.3 JA3 method

The JA3 method is described in this [3] article by John Althouse. The method is used to
create a fingerprint for the client application. It operates by extracting certain values from
the Client Hello Message of the TLS handshake and converting the bytes into a decimal
format. The following fields are extracted:

e TLS version: The TLS version supported by the client.

e Supported cipher suites: A list of the supported cipher suites. A cipher suite is a
set of security algorithms. It specifies one algorithm for each of the following tasks:
key exchange, bulk encryption, message authentication.[3§]

o List of extensions: Specifies which extensions are supported by the client. These
extensions present a special mechanism for adding functionality to the protocol with-
out the need of modifying it. Some of the commonly used extensions are, e.g., the
Server Name Indication (SNI) extension and the Elliptic curves extension.[7]

o Elliptic curves: Also called Supported groups. An extension specifying the elliptic
curves supported by the client. Elliptic-curve cryptography is an approach to public-
key cryptography based on the algebraic structure of elliptic curves.[25]

« Elliptic curves formats: An extension specifying the formats of elliptic curves
supported by the client.[25]

This method then concatenates these values using a comma to delimit each field and a
dash to delimit each value within the field while also preserving their exact order. The
concatenated result is then hashed using the MD5 hash function creating the final 32-
character-long JA3 TLS client fingerprint. Figure 3.3 illustrates this process in a simple

way.

TLS-version Cipher suites Elliptic-curves Curves formats

769,47-53-5-10-49161-49162—49171-49172-50-56—19-4, ,23—24-25,0

|

ada70206e40642a3e4461f35503241d5

Figure 3.3: Construction of the JA3 hash.[3]

The fields extracted from the Client Hello Message are illustrated in Figure 3.4.

v Handshake Protocol: Client Hello

Handshake Type: Client Hello (1)

Length: 588

Version: TLS 1.2 (0x0303) #—

Random:

3d14aedat3b9c92d92abbaf7a5+t4d51d6chbebBeaf33i877f18471h

Session ID Length: 32
Session ID: febdcldfaf3cbPaaf77092380e5009a0btast884d47d46832
Cipher Suites Length: 54

Cipher Suites (27 suites)

B —

Compression Methods Length: 1
Compression Methods (1 method)

Extensions Length: 381

.‘_

Extension: Reserved (GREASE)} (len=0)

Extension: server_name (len=24)

Extension: extended master secret (len=@)
Extension: renegotiation_info (len=1)
Extension: supported groups (len=12) e
Extension: ec_point_formats (len=2) 4—r
Extension: application_ layer protocol negotiation (len=14)
Extension: status_request (len=5)

Extension: signature algorithms (len=24)
Extension: signed certificate timestamp (len=0)
Extension: key share (len=43)

Extension: psk _key exchange modes (len=2)

v~ Extension: supported versions (len=11)

Figure 3.4: Values extracted from the Client Hello Message[3].

3.4 JA3S method

The JA3S method is used for the server side of the communication and represents how the
server responds to a certain client. Description of this method was also obtained from the
[3] article. The following fields are extracted from the Server Hello Message of the TLS
handshake:

o TLS version: The TLS version used by the server.[30]

e Accepted cipher: Specifies the cipher suite that will be used from the list of cipher
suites supported by the client.[30]

o List of extensions: Defines the extensions that will be used within this session.[30]

The JA3S method extracts these values from the Server Hello Message converting them
into a decimal format and concatenating and separating them in the exact same way as the
JA3 method does. Finally these values are once again hashed using the MD5 hash function
creating the final fingerprint.[3]

10

TLS-version Accepted-cipher Extensions

769,47,65281-0-11-35-5-16

|

4835b19f14997673071435cb321f5445

Figure 3.5: Construction of the JA3S hash.[3]

The same server formulates its Server Hello Messages differently depending on the con-
tents of the Client Hello Message it receives. This means that the JA3S hash cannot be
used to fingerprint a server just based on its Server Hello Message. However, as mentioned
in [3], even though the same server responds differently to different clients, it always re-
sponds the same to the same client. The JA3S hash can therefore be used to increase the
ability to identify the client application.

This chapter provided an introduction to the problem of TLS fingerprinting. The two
methods used to obtain the fingerprints in this thesis were explained. These are the JA3 and
JA3S methods. The next section discusses the application dataset that contains fingerprints
of selected applications created using the JA3 and JA3S methods. This dataset will then
be used by the classifier, described in section 7, to classify input flows.

11

Chapter 4

Creating the application dataset

This chapter describes the process of creating the application dataset with JA3 and JA3S
fingerprints. It explains the network topology used to capture the traffic, provides an
overview of applications used in the dataset, discusses the necessary preprocessing of the
captured packets and finally conducts an analysis of the created fingerprints.

The main goal of this thesis is to be able to detect mobile applications in network traffic
using TLS fingerprints. In order to be able to identify the applications, it is necessary to
compare the obtained fingerprints with fingerprints of applications that have already been
seen. Therefore, the first step of this thesis is to create a dataset that contains JA3 and
JA3S hashes of known applications. The network topology used to create the dataset is
shown in Figure 4.1.

D ~ . :') Internet

)
Mobile device Access point

Capturing traffic

Preprocessing PCAP file

extracting values from _y creating JA3 excluding AD L
TLS handshake and JA3S hash servers | filtering by SNI ——> —

Database

Figure 4.1: Topology of the environment used to acquire the dataset.

To acquire the data from the communication between the applications and their servers,
a wireless access point was used. The access point was created on a computer connected to
a wired network through an Ethernet cable. The computer uses its own Wi-Fi to broadcast
the internet connection allowing other devices to wirelessly connect to it. The computer
then acts as a router for the connected devices. All their traffic is going through the

12

computer. Each application was run on a device connected to this access point and was
used for several minutes to generate as much traffic as possible. In the meantime, on the
access point, a program called Wireshark' was intercepting all the traffic going from the
device. Finally, the intercepted traffic was exported into a pcap file for further processing.

The processing includes tasks like extracting the desired TLS values from the hand-
shakes, creating the fingerprints from these values, excluding advertising servers from the
traffic and filtering the traffic by the SNI field to only include the traffic between the appli-
cations and their servers. The filtering was performed for each application in the dataset
and is done by comparing the SNI field of each application to a list of keywords belonging
to the application. The keywords of each application usually include the name of the ap-
plication and several other special identifiers. This whole preprocessing part is performed
by the TLSParser class described in Chapter 8.

4.1 Tested applications

To create the dataset, the applications that the classifier is going to work with need to be
selected. These applications are selected across several different areas of the industry from
social networks to games, finance, etc. The applications used in this thesis are described in
Table 4.1. Apart from the application name, the dataset also needs to contain the version of
each application. This is needed because different versions of the same application can use
different libraries and hence generate different JA3 hashes. Another important information
is the operating system of the device on which these applications were used. In this case,
it was an Apple smartphone with the iOS 15.0.2 operating system.

Application Version Category Description
Airbnb 21.43 Traveling Online marketplace for lodging.
Booking.com 31.3 Traveling Online travel agency.
Couchsurfing 5381 Traveling Social networlldng and hospitality
exchange service.
Crypto.com 3.122 Finance Cryptocurrency exchange app.
Duolingo 6.139.0 Education Language-learning app.
Equabank 22.0.0 Finance Mobile banking app.
Facebook 346.0 Social Social media and networking service.
George 21.30.11 Finance Mobile banking app.
Livesport 4.12.1 Sports Instant sports data and results.
Pinterest 9.42 Lifestyle Image sharing and social media service.
Quora 8.3.4 News & Magazines Social question-and-answer app.
Shazam 15.1.0 Music & Audio Music recognition app.
MS Teams 3.17.1 Business Business communication platform.
Tiktok 21.7.0 Social Video-focused social networking service.
Uber 3.481.10002 Maps & Navigation Transportation mobility service.
Whatsapp 2.21.210 Communication Instant messaging app.
Youtube 16.43.2 Video Players & Editors | Video sharing and social media platform.
Zalando 5.15.1 Shopping Fashion and lifestyle e-commerce app.

Table 4.1: Application used in the dataset.

!See nttps://www.wireshark.org/ [accessed 2021-12-31]

13

https://www.wireshark.org/

4.2 Data preprocessing

The captured traffic contains a lot of information that needs to be filtered. It includes
the entire communication of the device with the internet. Even though the capturing was
performed only when the application was being used, there is still a lot of traffic happening
in the background. This additional traffic could be generated by the system or even by
applications running in the background.

The captured pcap file is passed to the TLSParser class. This class uses the Scapy’
Python library to extract the desired values from packets inside the pcap file and outputs a
pandas DataFrame object. In particular, the parser extracts the IP source and destination
addresses and all the fields necessary for creating the JA3 and JA3S fingerprints. In order
to be able to assign a JA3S hash of a server to the correct JA3 hash of a client, the
parser needs to match the packets according to their IP addresses and their Sequence and
Acknowledgment Numbers.

Another important thing that the parser does is removing the GREASE values from
the TLS fields. The GREASE stands for Generate Random Extensions And Sustain Ex-
tensibility. It was designed by David Benjamin, a software engineer at Google, as a new
mechanism to spot potential compatibility issues in the TLS protocol. The description of
GREASE can be found in this [6] document. The main objective of this mechanism is to
detect interoperability issues early. It does so by using some reserved and currently unused
TLS values and advertising them randomly within the fields in the TLS handshake. Servers
and software that implement TLS correctly should be able to receive these GREASE values
from a client without the connection failing or terminating. If one of the values provided
by the client is not recognized by the server, it should be able to ignore it and successfully
establish a connection using the best available options. For example, if the client supports
some new cutting edge cipher but the server does not, the server is just going to ignore
that cipher and it will pick one that is supported by both. More about the mechanism of
GREASE can be found in this [23] article.

After parsing the values and creating the fingerprints the parser also filters the traffic
using the Server Name Indication (SNI) field. The SNI was initially created with the
intention of enabling the existence of virtual servers and their reachability through HTTPS.
It indicates the hostname to which the client is attempting to connect. The hostname needs
to be known during the TLS handshake. This allows the server to respond with one of the
multiple possible certificates each corresponding to different services running on the same
IP address. Therefore, the SNI field was added to the TLS protocol.

In this thesis, the SNI helps to identify the servers corresponding to the applications. For
each application, there is a list of keywords. Usually, an application has just one keyword -
the name of the application. The list of keywords was constructed manually by inspecting
the traffic. First, all packets with an empty SNI value are dropped. Then only those Client
and Server Hello messages with the SNI value containing at least one of the keywords of
the corresponding application are selected. The rest of the packets are excluded from the
dataset. By this, messages that were not generated by the application but rather by some
other programs running in the background and creating noise in the capturing process are
omitted. Finally, a list of advertising and tracking servers is used to filter out the traffic
generated by these servers and exclude it from the final dataset.

’https://scapy.net/

14

https://scapy.net/

Application Keywords SNIs
ls-api.duolingo.
Duolingo [duolingo] §oals apl.Cuoingo.com,
friends-prod.duolingo.com, ...
. teams.microsoft.com,
Teams [teams, microsoft] | . .
ic3.events.data.microsoft.com, ...
) george.csas.cz,
George [george, csas] storego.csas.cz, ...

Table 4.2: Example of application keywords and their corresponding SNIs

The final dataset includes not only the JA3 and JA3S hashes but also the actual values
from TLS handshakes that the hashes are created from. These values are stored in the dec-
imal format described in Section 3.3 and are used in the classifier to compute similarities
with input flows. This topic is described in Chapter 7. Table 4.3 shows the fields included
in the final dataset and the values they contain.

app_ name duolingo youtube

os__version ios_ 15.0.2 ios. 15.0.2
app__version 6.139.0 16.43.2

sni brb.duolingo.com | youtubei.googleapis.com
ja3__hash 03b2be863a... 89688f68c3...

ja3s__hash 35b476b106... eb1d94daaT...
ja3__decimal | 771,4865-4866... 771,4865-4866...
ja3s__decimal | 771,49199,11-16 771,4865,51-43

Table 4.3: Example of the final datset.

As already mentioned before, this dataset is used in the classification of input flows by
comparing the values extracted from these flows with those already collected in the dataset.
The next section provides a brief analysis of the created application dataset.

4.3 Dataset Analysis

Analysing the dataset is an important task that allows to better understand the collected
data. The applications that were used were chosen from a variety of different areas and
categories. This should make the results more unique and distinguishable.

The dataset consists of 18 different applications. It contains a total of 120 records
(record = one row in the dataset) with an average of 7 records per application. The median
being 3 and mode 2. It is good to mention, however, that the number of records for each
application is quite variable. The maximum is 31 records for TikTok and the minimum 1
record for Uber and Livesport. Following is a table showing the number of SNIs, JA3 and
JA3S hashes for each application.

15

Application | SNIs | JA3 hashes | JA3S hashes
airbnb 2 1 1
booking.com 6 1 2
couchsurfing 2 1 2
crypto.com 3 1 3
duolingo 12 1 4
equabank 2 1 3
facebook 6 4 2
george 4 2 2
livesport 1 1 1
pinterest 2 1 2
quora 19 1 2
shazam 2 1 2
teams 16 2)
tiktok 26 5 10
uber 1 1 1
whatsapp 2 2 1
youtube 2 1 1
zalando 3 1 2

Table 4.4: The number of SNIs, JA3 and JA3S hashes for each application.

Table 4.4 shows the number of SNIs, JA3 and JA3S hashes collected for each application.
These values are unique within the application meaning that e.g. Facebook has four unique
JA3 hashes but these hashes can be shared with other applications. They are not unique
throughout the whole dataset.

As we can see the number of SNIs is also quite variable with the biggest value being 26
SNIs for TikTok and the lowest 1 for Uber. This value indicates with how many servers
an application communicates. Most applications have only one JA3 hash. This could have
been beneficial if all of these hashes would be unique and therefore would identify each
application with certainty.

The important thing that needs to be discussed and learned from this analysis is whether
the created JA3 and JA3S hashes can be used to identify each application. In other words
we need to find out if each application has a hash that is unique and only occurs for this
application. If an application does not have a unique JA3 hash it can still be successfully
identified if it has a unique JA3S hash. Table 4.5 shows the results of this examination for
each application.

16

Application | Unique JA3 hash | Unique JA3S hash | Result
airbnb YES NO YES
booking.com NO NO NO
couchsurfing NO YES YES
crypto.com NO YES YES
duolingo NO YES YES
equabank NO YES YES
facebook YES NO YES
george YES YES YES
livesport NO NO NO
pinterest NO NO NO
quora NO YES YES
shazam NO YES YES
teams YES YES YES
tiktok YES YES YES
uber NO YES YES
whatsapp YES NO YES
youtube NO NO NO
zalando NO NO NO

Table 4.5: Unique hashes for applications and the result of the ability to identify them.

The result column displays whether an application can be identified using JA3 and JA3S
hashes. It is computed as a logical disjunction of the results in the previous two columns.
That means an application can be successfully identified if it has a unique JA3 hash or a
unique JA3S hash. The uniqueness of the JA3S hash does not need to be for the whole
dataset. It only needs to be unique within the applications that reached their server with
the same JA3 hash.

As shown in Table 4.5, 5 applications cannot be identified. In particular, they are
Booking.com, Livesport, Pinterest, Youtube and Zalando. Consequently, it is clear that
JA3 and JA3S hashes are not enough to solve our identification problem. That is why
additional techniques were used to enhance the classification abilities, for example SNI
values.

Additional inspections of the created JA3 hashes were performed. For the 18 applica-
tions and 126 collected records, there are 13 unique JA3 hashes. Some correspond to only
one application some are shared between many. The fact that two and more applications
generate the same hash is a common problem. It is caused by the fact that these applica-
tions use the same libraries or frameworks etc. Table 4.6 presents the results of this analysis
in greater detail.

Only two hashes are shared between multiple applications. The first one corresponds to
eight applications while the other one to even nine different applications. There are some
applications in these two groups that do not have any unique JA3 hash. They could only
be distinguished from the other applications from their group by the JA3S server hash.
Table 4.7 and 4.8 show the JA3S hashes and their applications corresponding to the two
common JA3 hashes. Applications that do not have their unique JA3S hash are not able to
be identified. These applications are marked in following tables using bold font and include
Livesport from the first group and Pinterest, Zalando, Youtube and Booking.com from the
second.

17

JA3 hash SNIs | Apps App names
duolingo, equabank, facebook, uber,
03b2be863a6f11cb9269bcc646797545 40 8 . .
quora, tiktok, livesport, whatsapp
13aa429c¢5dbaafb87d8fd5d52149ab36 3 1 facebook
1£3¢530£fc35e41300422550c3c980e85 10 1 tiktok
2438872a1892fbb853{8ded46fd72da2 1 1 whatsapp
7376b944d8a406b95e¢9408b3c52b8bba 1 1 facebook
7a39a2bb5aef9100fb75dd4169f560b95 6 1 tiktok
booking.com, teams, george,
89688f68c3d80a111d642ed73232¢e1e6 38 9 crypto.com, pinterest, shazam,
couchsurfing, youtube, zalando
8c7f19a25372add41{febf9879dd33d0a 1 1 facebook
a839cfeed30d55439b09debf1b47fada 13 1 tiktok
d38a313fla8b2dad3cbc52c69bf3ed1c 1 1 george
d889531a0389787425d5638caf6d84b3 1 1 tiktok
e4d448cdfe06dc1243c1eb026c74ac9a 3 1 teams
f469e7¢27055847567d4c5d8e45bb564 2 1 airbnb

Table 4.6: This table shows unique SNIs and applications per JA3 hash.

Table

03b2be863a6f11cb9269bcc646797545

JA3S hash Applications
040e57cd679445d961adbb68d4f9873¢ equabank
15af977ce25de452b96affa2addb1036 livesport, tiktok
35b476bf06aelcdb036b{f7246dcf499¢ duolingo
63ddcc036b96a2854f2db888363204d8 equabank
70745099b394fe3f42264227c098cc98 quora
896415616b22361262d7a961b6325cfd duolingo
af830039016ecfd26e620b69f9a3bcl4 equabank
eb1d94daa7e0344597e756a1fb6e7054 uber
f4febcbbeal2b3lael7cfb7e614afda8 duolingo, facebook, quora, whatsapp

4.7:

This table shows all the JA3S hashes corresponding to JA3 hash

03b2be863a6f11cb9269bcc646797545 and their applications.

18

89688f68c3d80al111d642ed73232e1e6
JA3S hash Applications
040e57c¢d679445d961adbb68d4f9873¢ shazam
0f5a6116chadbff8cbela8cctb2fbd95 george
15af977ce25ded452b96affa2addb1036 pinterest, teams, zalando
lea9f5eed8{642a7f190cfe16bc3del2 crypto.com
37193c4da5f334b9c542d38a26296d08 teams
545ffb1bd88f345709bd65c96be77dal teams
63ddcc036b96a2854f2db888363204d8 george
70745099b394£e3f42264227c098cc98 couchsurfing
78¢23e5cac676891c¢5{192ebf55e€966 teams
eb1d94daaTe0344597eT56alfbee7054 | | CLYPLO-com, pinterest,
shazam, youtube, zalando
eff7860f129871¢984e2dc46e87717ae teams
f4febchbeal2b31lael7cfb7e614afdal booking.com, couchsurfing

Table 4.8: This table shows all the JA3S hashes corresponding to JA3 hash
89688{68c3d80al11d642ed73232eleb and their applications.

This chapter discussed the created application dataset. The dataset consists of 18
applications and is stored as a csv file. Each row in the dataset contains the following
fields: name and version of the application, version of the operating system, SNI, JA3
hash, JA3S hash, a string of decimal JA3 values and a string of decimal JA3S values. The
analysis of the dataset revealed that using only JA3 and JA3S hashes would not enable the
classifier to certainly classify each application. Therefore, the SNI values are included in
the dataset and are also used to correctly classify input flows. The next section explains
the IPFIX protocol and describes the essentials of flow exporters.

19

Chapter 5

Choosing the Flow Exporter

The purpose of this chapter is to explain the process of collecting flow monitoring data
from the network. The first section describes the IPFIX protocol used for exporting the
flows. The following two sections introduce two network probes the Flowmon probe and
the nProbe. These two probes are evaluated for their ability to harvest the fields necessary
for the creation of JA3 and JA3S hashes.

5.1 The IPFIX protocol

This chapter is going to discuss the IPFIX protocol and explain the meaning of a network
flow. The source of information for this chapter were two RFC documents, [18] and [2],
describing the IPFIX protocol.

A network flow is defined as a set of IP packets passing through an observation point in
the network during a certain time interval. All packets belonging to a particular flow have
a set of common properties. In the standards defining network flows these properties are
usually the following:

e Source and destination IP address: Identify the location of both the sender and
the receiver of the traffic.

e Source and destination port: Identify the specific process or service running on
the sender and receiver sides.

e The protocol field: Identifies the protocol of the transferred packets.

A packet is defined to belong to a flow if it completely satisfies all the defined properties
of the flow. Meaning all packets with the same source and destination IP address, port
numbers and the same protocol belong to the same flow. An observation point is a location
in the network where packets can be observed (e.g. a router)

IPFIX is an IETF protocol for exporting flow information from routers, probes and other
devices that are used by mediation systems, accounting systems and network management
systems. This standard defines how the collected TP flow information should be formatted
and transferred from an exporter to a collector. Previously, before the IPFIX protocol,
many network systems were relying on the Netflow version 9 protocol developed by Cisco
Systems. IPFIX is heavily based on the implementation of Netflow version 9. It is often
identified as the Netflow version 10.

20

The protocol works as follows. A pool of metering processes collects data packets at one
or more observation points. An exporter then gathers all records from the observation points
together and sends them to a collector using the IPFIX protocol. Similarly as mentioned
above, IPFIX considers a flow to be a sequence of packets sharing the same properties such
as the source and destination IP addresses, port numbers and protocol.

The IPFIX is an important protocol used for network monitoring. This thesis uses it
to collect flow traffic information and detect mobile applications in the traffic. The next
section describes two probes used for exporting flow data and compares their abilities.

5.2 nProbe

The first flow traffic exporter software that is going to be discussed is the nProbe’. It is a
software probe able to collect, analyze and export network traffic reports using the standard
Netflow v5/v9 and IPFIX format. It is available for most platforms and operating systems.
When installed on a PC, nProbe turns the PC into a network-aware monitoring appliance.

The first thing that needs to be discussed is the fields that are supported by nProbe to
be exported using the IPFIX protocol. Table 5.1 shows the availability of the TLS fields
required for the JA3 fingerprints to be created obtained from the official guide?.

TLS field nProbe field Availability
TLS version TLS__VERSION YES
Cipher suites - NO

% Extensions - NO

75 | Elliptic curves - NO
Curve formats - NO
SNI TLS_SERVER_ NAME YES

= TLS version TLS VERSION YES

% Cipher suite TLS__CIPHER YES

»2 | Extensions - NO

Table 5.1: TLS fields supported by nProbe.

As the above table suggests, the support of the fields that nProbe provides is not
sufficient. The only fields provided are the client and server TLS versions, the SNI and
the server cipher suite. The abundance of the other fields results in the consequence that
nProbe could not be used for this task efficiently. It does, however, allow users to develop
custom plugins that could add the desired functionality.

The nProbe, in fact, offers its own implementation of the JA3 fingerprinting method.
Both client and server fingerprints can be obtained from the provided flow using the
JA3C HASH and JA3S HASH fields. However the method that creates the fingerprints
does not exclude the GREASE values from the TLS fields. This makes the fingerprints
unusable for applications that implement adding the GREASE values into their messages.

The conclusion is that nProbe is not suitable for the task of this thesis. It would be
necessary to extend its functionality with a custom plugin parsing the desired TLS fields
from the flow traffic. This would, however, exceed the scope of this thesis.

"https://www.ntop.org/guides/nprobe/
’https://www.ntop.org/guides/nprobe/cli_options.html

21

https://www.ntop.org/guides/nprobe/
https://www.ntop.org/guides/nprobe/cli_options.html

5.3 Flowmon Probe

The next probe to be discussed is the Flowmon Probe developed by the Flowmon Networks
company based in Brno, Czech Republic’. Its main focus is on developing products for
network performance monitoring and anomaly detection.

The Flowmon Probe is a powerful flow data exporter. It uses a non-intrusive approach
to access the network traffic. As explained at the official website [14], the probe connects
passively through a SPAN port or a network TAP. The SPAN (Switch Port Analyzer) is
a designated port on a network appliance (switch) that is programmed to send a copy of
all packets seen on one port or an entire VLAN to another port, where the packets can be
analyzed.

On the other hand, a network TAP (Test Access Point) is a purpose-built hardware
device that sits in a network segment, between two appliances (router, switch or firewall),
and allows to access and monitor the network traffic that flows through it. A comparison
of a SPAN and a TAP can be found at this [15] webpage.

Other characteristics of the Flowmon Probe include the following:[14]

o Visibility into L2, L3/4, L7: Collects information from L2, L.3/4 and L7 layers.

e Network Performance Monitoring: Provides a wide collection of metrics to an-
alyze the performance of a network.

e Encrypted traffic analysis: Collects network traffic metadata in the IPFIX format
using probes and enriches it with TLS protocol information.

e Application recognition and usage data: Reports on the use of applications by
analyzing L7 packets.

An important feature that the Flowmon probe provides is the encrypted traffic analysis.
The probe enriches the collected traffic with TLS metadata that is necessary to make TLS
fingerprinting possible. Table 5.2 shows all the TLS fields supported by the Flowmon
probe”.

TLS field Flowmon field Availability
TLS version FLOWMON_TLS CLIENT VERSION YES
Cipher suites | FLOWMON_TLS CIPHER _SUITES YES

g Extensions FLOWMON_ TLS EXTENSION TYPES YES

5 Elliptic curves | FLOWMON_TLS ELLIPTIC CURVES YES
Curve formats | FLOWMON_ TLS EC POINT FORMATS YES
SNI FLOWMON TLS SNI YES

= TLS version FLOWMON TLS SERVER VERSION YES

% Cipher suite FLOWMON TLS CIPHER SUITE YES

»2 | Extensions - NO

Table 5.2: TLS fields supported by Flowmon.

As Table 5.2 shows, the probe provides all fields necessary for the creation of JA3 hashes.
The probe is in fact able to generate the JA3 hash by itself. This build-in feature is available

3https://www.flowmon.com/cs
“https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards—
specifications

22

https://www.flowmon.com/cs
https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards-specifications
https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards-specifications

under the FLOWMON_TLS JA3 FINGERPRINT field. Unfortunately, the probe does
not provide any support for the server extensions field. The JA3S hash therefore cannot be
created as described in section 3.4.

This chapter introduced two potential flow exporters that could be used to obtain input
flows for the classifier. After analysing the capabilities of both probes it was decided that
Flowmon probe will be the flow exporter used in this thesis as it supports most of the TLS
fields that are necessary to create the fingerprints. The next section describes the flows
produced by the probe and provides an analysis of their contents.

23

Chapter 6

Analyzing Flowmon flows

This chapter offers an in-depth analysis of the flows obtained from the Flowmon probe.
These flows are exported from the traffic using the IPFIX protocol and are stored inside
cso files.

To perform the analysis it is first needed to capture the communication between an
application and its server. The traffic was captured using Wireshark and saved as a pcap
file. This file served as a reference point to which the created csv file was compared to, as
it holds the actual packets that were transported.

There are two ways to obtain the csv file with the captured flows. The first one is to
route the traffic through the virtual machine where the Flowmon probe is installed. The
probe listens at a specific port analyzing all the traffic coming through it. The exported
flows can be then downloaded from the web interface of the Flowmon collector.

The second option is to use a command line tool available at the Flowmon virtual ma-
chine called flowmonexp5. This tool can be supplied with a pcap file that is then processed
and exported to a csv file while parsing all the desired fields. To parse a csv file with the
flowmonexp5 tool, the following command is used:

flowmonexp5 -I pcap-replay:file=input.pcap -E csv: -P \
tls:fields=MAIN#CLIENT#JA3 > output.csv

where -1 specifies the capture and process options to use a pcap file as input, -E specifies
the export options to export the flows as a cswv file and -P specifies the plugins to be used to
process the input. Using this command the exported csv file will contain all the necessary
TLS fields described in Table 5.2. One of the fields is the JA3 fingerprint generated by
the Flowmon exporter. The exported flows, however, need to be further processed before
passing them to the classifier. The processing is performed by a class called FlowParser
described in Chapter 8. Figure 6.1 provides a graphical illustration of how the input flows
are created. The capturing process is the same as described in section 4. The captured pcap
file is passed to the flowmonexrp5 tool that creates a csv file with the exported flows. The
csv file is then passed to the FlowParser class that performs the necessary preprocessing of
the flows. After that, the flows can be passed to the classifier.

24

D /,Sl | ¢ I.',_ Internet

Mobile device Access point

Capturing traffic

PCAP file
Y
flowmonexp5 chv file csv file—> Classifier

Figure 6.1: Processing of the input flows.

The following part of this section describes the preprocessing necessary to prepare the
flows for the classifier. First, several fields in the csv files created by flowmonexrp5 have
to be converted from a hexadecimal to a decimal format. These fields include the cipher
suites, elliptic curves, elliptic curve formats, and other TLS extensions. The fields have to
be converted to a decimal format as it is used by the JA3 method to create the fingerprints.
Figure 6.2 describes the process of converting the cipher suites from hexadecimal to decimal
format.

1D0017001800 —— > 001D 0017 —> 29-23-

Divide by 2 bytes and convert

to little endian Decimal format

Elliptic Curves hexa

Figure 6.2: Converting elliptic curves to a decimal format.

The hexadecimal string in the elliptic curves TLS extension consists of several segments,
each describing one key exchange algorithm that is supported by the client. Each of these
segments is exactly two bytes long. The virtual machine where the Flowmon probe is
running uses a big-endian order of bytes. Therefore the two bytes within each segment have
to be switched before converting the segment to its decimal value. For example, as RFC
[26] describes, the 0x0018 hexadecimal value represents the 384-bit prime field Weierstrass
curve, also known as secp384r1. Finally, all the decimal values are concatenated together
using a dash symbol to delimit each value.

Another field that needs to be converted is the TLS extensions field. This field, just like
the elliptic curves, consists of two-byte segments and so the exact same process repeats.
Moreover, one more operation that needs to be performed during these conversions is ex-
cluding the GREASE values. Figure 6.3 shows the GREASE values that are excluded from
TLS extensions.

25

00001700 0A000B002300100005000D0033002D002B00 FFFFFF...

l

0-23- -10-11-35-16-5-13-51-45-43-

l

0-23-10-11-35-16-5-13-51-45-43
Figure 6.3: Excluding the GREASE and padding values from TLS extensions.

The extraction is performed using a list containing all the values reserved for GREASE.
Whenever one of these values occurs in the string it is excluded. From the above example in
Figure 6.3 the GREASE value is 65281. Number 21 indicates that everything that follows
until the end of the string are padding values. The padding is also removed from the
extensions.

The following part of this section describes the problems that emerged from using the
Flowmon probe to create JA3 fingerprints.

Flowmon probe JA3 fingerprints

The Flowmon probe allows to create JA3 fingerprints using the flowmonexpd tool. As the
official Flowmon website states the JA3 method “combines these five parameters of TLS
communication: version, ciphers, extensions, elliptic curves and its formats and produces
an MD5 hash.”[13]

According to this explanation the generated fingerprints should be identical to those in
the application dataset described in Section 4. After an attempt to recreate the fingerprints,
however, the resulting hashes were different from those created by the Flowmon probe. This
was caused by the fact that the Flowmon probe does not exclude GREASE values when
creating the fingerprints. The GREASE values, however, are not used in the application
dataset. Therefore, the JA3 fingerprints created by the Flowmon probe cannot be used.

Flowmon probe cipher suites

After some examination, it was discovered that Flowmon only takes the first eight cipher
suites from the TLS Client Hello Message. As the specification ! of the Flowmon collector
11.1 states, the TLS CIPHER_SUITES field supports the input length of only sixteen
bytes. This proves the above mentioned discovery as one TLS cipher suite takes two bytes
resulting in only eight cipher suites parsed by the Flowmon collector. Figure 6.4 shows the
comparison of the cipher suites retrieved by Flowmon and those found in a pcap file.

'See https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards—
specifications

26

https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards-specifications
https://support.kemptechnologies.com/hc/en-us/articles/4405949707789-Flow-standards-specifications

Cipher Suites comparison
PCAP: 4865-4866-4867-49195-49196-52393-49199-49200-52392-49171-49172-156-157-47-53

Flowmon: 4865-4866-4867-49195-49196-52393-49199-49200

Figure 6.4: Comparison of cipher suites parsed by the Flowmon probe and obtained from
a pcap file.

The fact that Flowmon does not parse all the cipher suites needs to be mirrored in the
creation of the application dataset so that it is possible to receive identical hashes. Section
6.1 describes how this change affected the application dataset.

Flowmon probe client TLS version

Another problem that was discovered in the Flowmon probe was the client TLS version
in the csv files. The JA3 method uses the client TLS version to create the fingerprints.
The client TLS version is obtained from the Client Hello Message. It was discovered that
to obtain the TLS version, Flowmon uses the supported wversions TLS extension. This
extension contains all the TLS versions that are supported by the client. The problem
is that the Flowmon probe takes only the first supported version from the list without
excluding the GREASE values. The TLS client version in the csv files, therefore, often
contains GREASE values instead of the actual TLS version. The TLS version extracted
by the probe is illustrated in Figure 6.5. The next section describes how the encountered
problems affected the application dataset.

27

~ Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 508
(version: TLS 1.2 (0x0303))
Random: 3dl4aedaf3b9c92d92abbAf7a5f4d51dbcbebBeat33877f18471h2
Session ID Length: 32
Session ID: fobdcldfaf3chBaaf77092380e5009a0bfaef884d47d46832d
Cipher Suites Length: 54
Cipher Suites (27 suites)
Compression Methods Length: 1
Compression Methods (1 method)
Extensions Length: 381
Extension: Reserved (GREASE) (len=8)
Extension: server_name (len=24)
Extension: extended master secret (len=80)
Extension: renegotiation_info (len=1)
Extension: supported_groups (len=12)
Extension: ec_point_formats (len=2)
Extension: application_layer_protocol_negotiation (len=14)
Extension: status_request (len=5)
Extension: signature_algorithms (len=24)
Extension: signed certificate_timestamp (len=0)
Extension: key_share (len=43)
Extension: psk key exchange modes (len=2)
(% Extension: supported versions (lenzlli)
Type: supported versions (43)
Length: 11
Supported Versions length: 1@
Supported Version: Unknown (@x2a2a)
Supported Version: TLS 1.3 (@x@384)
Supported Version: TLS 1.2 (@x@383)
Supported Version: TLS 1.1 (@x@382)
Supported Version: TLS 1.0 (@x@301)

Figure 6.5: TLS version extracted by the Flowmon probe.

6.1 Updating the application dataset

After analysing the Flowmon records it is necessary to update the application dataset in
order to make it possible to work with the probe. The changes that need to be applied
relate to the missing TLS versions and cipher suites in the csv files.

The JA3 fingerprints in the application dataset are created using the method described
in section 3.3. The csv files created by the Flowmon probe are, however, missing the
correct TLS version and also contain only the first eight cipher suites. In order to be able
to compare the fingerprints in the application dataset with those created from the csv files,
both fingerprints have to be constructed using the same values.

The application dataset was therefore updated to use only the following fields to create
the JA3 fingerprints:

28

o First eight supported cipher suites

e List of extensions

o Elliptic curves

« Elliptic curves formats

Figure 6.6 shows a comparison of the values used originally and after updating the

dataset.

Original: ~ TLS version

Updated:

Cipher suites

Cipher suites (first 8)

Elliptic curves Curves formats

Elliptic curves Curves formats

Figure 6.6: The TLS fields used to create the JA3 fingerprints before and after update.

Losing the information about the TLS version and some of the cipher suites may po-
tentionaly result in decreasing the variability of the created fingerprints. It is possible that
it would, therefore, decrease the number of unique JA3 fingerprints in the dataset. Table
4.5 shows the results of comparing the number of unique fingerprints in the original and
the updated dataset for each application with the intention to show how this changes affect

the dataset.

Application Unique JA3 hash | Unique JA3 hash
before update after update
airbnb YES NO
booking.com NO NO
couchsurfing NO NO
crypto.com NO NO
duolingo NO NO
equabank NO NO
facebook YES YES
george YES YES
livesport NO NO
pinterest NO NO
quora NO NO
shazam NO NO
teams YES YES
tiktok YES YES
uber NO NO
whatsapp YES YES
youtube NO NO
zalando NO NO

Table 6.1:

Unique hashes for applications before and after updating the dataset.

As described in Table 6.1, even before this change only six applications out of the eigh-
teen in the dataset had a unique JA3 fingerprint that allowed them to be distinguished from

29

other applications. After applying the changes, this number has dropped to five which does
not introduce a big downgrade. However, as it is not possible to create JA3S fingerprints
from the Flowmon records the ability to distinguish our applications is limited to the JA3
hash. This decreases the final number of distinguishable applications from thirteen to just
five. It is therefore necessary to boost the classification using other information, e.g., the
SNI values.

This chapter provided an analysis of the csv files with flows created by the Flowmon
probe. The preprocessing necessary to prepare the flows for the classifier was also discussed.
As it was already mentioned, the abilities of the Flowmon probe do not enable the creation
and usage of JA3S fingerprints. Therefore, only the JA3 fingerprints are used in this thesis.
The fingerprints have to be constructed from the fields inside the exported csv files. After
encountering several problems the original JA3 method described in section 3.3 had to be
updated. The new method only uses the first 8 cipher suites and does not use the client
TLS version to create the fingerprints.

30

Chapter 7

Proposed method

This chapter presents the methods and algorithms used to perform the classification. In
total, four different classification methods are discussed. Figure 7.1 provides a graphical
illustration of how the classifier works.

The input of the classifier is a csv file with network flows created by the Flowmon
exporter. The classifier uses the application dataset to compare values extracted from the
input flow with values in the dataset to perform classification. Finally, the output of the
classifier is an ordered list of tuples containing the names of applications and their scores,

as illustrated in Figure 8.3.

Dataset

duolingo: 0.987

Classifier | facebook: 0.563
livesport: 0.244
Figure 7.1: Input and output of the classifier.

The following sections provide a detailed explanation of the implemented classification
methods. The first section describes the method using JA3 fingerprints. The following
section presents another method that uses a string of values extracted from TLS handshakes
to perform the classification. The last two methods use the Server Name Indication (SNI)
TLS extension field to classify the input flows. All these methods can be used individually
or can be combined to ensure the best results for the classifier. This option is also discussed
at the end of this chapter. More information about the implementation of the classifier can
be found in Chapter 8. The evaluation of each method is further discussed in Chapter 9.

31

7.1 Classification using JA3 fingerprints

The first method that was implemented in the classifier uses the already discussed TLS
fingerprinting technique. The main principle of this technique is relying on the fact that
certain values exchanged during the TLS handshake could be used to identify the client
and server applications. These values are actually depending on the modules and libraries
that the application is using and therefore provide a rather stable and valuable method of
identification. The principle of this method was discussed in Chapter 3.3. To use the JA3
method together with the Flowmon probe, the process of creating the fingerprints had to
be modified. The reasons for this modification were discussed in Chapter 6.

First, the classifier computes the JA3 fingerprint of an input flow. After that, the clas-
sifier compares the obtained fingerprint with all unique fingerprints inside the application
dataset searching for an exact match. If the exact match is found the classifier looks at
the number of applications that exactly matched the fingerprint. If only one application
matches the fingerprint, the score for the application is 1 and all the other applications
have a score equal to 0. If the fingerprint matches more applications, the score for each
of these applications is computed as 1 divided by the number of matches. The score of an
application A and input flow f is computed as:

hy ¢ Hy, O

score(A, f) = 1 (7.1)
hye Ha, —
n

where hy is a JA3 hash created from the input flow, H4 is a set of all hashes in the
application dataset related to application A and n is the number of applications in the
dataset that contain an exact match with flow f.

Figure 7.2 provides a graphical illustration of the JA3 classification method.

)

JA3 Tshes
Search for d;cr)tl)lrr:tg)oo B‘O
Flow JA3 exact > D
george: 0.0,
match

Classifier

Figure 7.2: Diagram of the JA3 classification method.

32

7.2 Classification using TLS values

Another method of classification implemented in this thesis is the TLS string classification.
This method is very similar to the previous one using JA3 fingerprints in that it uses the
same values from which the fingerprints are created. Those are the values extracted from a
TLS handshake Client Hello Message. The difference is that this method does not use the
MD5 hash function to create the fingerprints.

This method also does not search for an exact match. Instead, it takes the constructed
string and compares it to all unique strings in the application dataset searching for the
most similar. The similarity is computed using the longest matching substring as shown in
Figure 7.3.

4865-4866-4867,43-10-51-1 3-0-+15-42 -41,29-23

match len 29 match len 9

4865-4866-4867,43-10-51-1 3-0-|I 6-45-27-41,29-23

Figure 7.3: Searching for the longest match between two strings.

Once the classifier finishes comparing all the strings it returns the result of the classifi-
cation which is an ordered list of tuples containing the names of the applications with the
computed score.

The score is computed as the length of the longest match between a TLS string from the
application dataset and the input flow divided by the length of the whole string. Therefore,
if an application has the exact same string as the input flow, the computed score is 1. If the
match is equal to only a half of the string the score is 0.5, etc. The score for an application
A and an input flow f is computed as follows:

max;er, len(longest_match(t,ty))
len(ty)

score(A, f) = (7.2)

where T4 is a set of all TLS strings in the application dataset corresponding to ap-
plication A, len is a function returning the length of the string that is passed to it,
longest__match is a function returning the longest common substring found between the
two compared strings and t; is the TLS string constructed from the input flow.

As already mentioned, this method is very similar to the method using JA3 fingerprints.
The TLS string used in the comparison is the same that is used for the fingerprints. This,
of course, means that the number of unique strings is the same as the number of unique
fingerprints. This method, therefore, does not introduce any additional value or information
that the classifier could benefit from.

The main reason to implement this method, however, is the fact that it searches for
similarities. As the method searches for the longest match and not for an exact match
it should be able to identify an application even in case of a change in the cipher suites
used by the application. This could happen for example after an update of the application.
Figure 7.4 shows a diagram of the TLS values method.

33

D

TLS strings

l

Search for duolingo: 0.934

. _ airbnb: 0.621,
UIES e (O " george: 0.341,

match

Classifier

Figure 7.4: Classification using TLS values.

7.3 Classification using SNIs

The last classification method implemented in this thesis is the SNI classification. It uses
the Server Name Indication (SNI) field extracted from the Client Hello Message. The source
of information for this section is the Transport Layer Security (TLS) Extensions RFC [7]
and the Transport Layer Security (TLS) Extensions: Extension Definitions RFC [12].

The SNI field is an extension to the TLS protocol. It is used by the client to indicate
which server it is attempting to connect to during the handshaking process.

With HTTP protocol this value would be specified inside the HTTP headers. When
using encryption and the HTTPS protocol, however, the server needs to be able to know
this value without the need to decrypt the packet. It needs to be accessible unencrypted in
order to allow multiple certificates to be presented by the server at the same IP address.

—> invite.duolingo.com

TLS SNI —
> brb.duolingo.com

client

A\ 4

157.240.30.18 L > (XX

Figure 7.5: SNI allows multiple HTTPS websites to be served at the same IP address

Comparison of an SNI of an input flow with SNIs stored in the application dataset should
result in a successful classification even in cases when the SNI of the flow is not in the dataset
as it usually contains words specific for that application (name of the application, names
of servers, etc.).

34

Application | SNIs

Airbnb api.airbnb.com, www.airbnb.com, ...

Booking.com | account.booking.com, experiences.booking.com, ...
Duolingo brb.duolingo.com, goals-api.duolingo.com, ...

Table 7.1: Example of SNIs and their applications.

Table 7.1 shows examples of the SNIs corresponding to certain applications in the ap-
plication dataset. As the table shows, most of the SNIs contain some keywords that are
typical for each application. For example, the name of the application typically occurs in
the SNI field.

Figure 7.6 shows a graphical interpretation of the SNI classifier. Two different ap-
proaches that use SNIs were implemented - the Jaccard similarity index and the TF-IDF
method.

Jaccard
similarity

f

SNis

- duolingo: 0.934
airbnb: 0.621,
=i george: 0.341,

SNIs

|

—> TF-IDF

Classifier

Figure 7.6: Classification using the SNI values.

7.3.1 Classification using Jaccard similarity

The first method that is used to implement classification of SNIs is the Jaccard similarity
index developed by Paul Jaccard[19]. The Jaccard index, also known as the Jaccard simi-
larity coefficient, is a statistical method that measures the similarity and diversity of two
finite sample sets. It defines the similarity as the size of the intersection divided by the size
of the union of the two sample sets. This method is described by Equation 7.3:

_|AnB| |AN B|

A B) — _
TAB) = 0B " A€ |BI= AN B

(7.3)

35

where A, B are finite sets of values. Note that the value of the Jaccard similarity coefficient
can be from interval (0; 1).

The more values two different sets have in common, the more similar they are. The
classifier applies this method on SNIs. To compute the similarity of two SNIs, the SNIs
first need to be transformed into sets. To do so each SNI is split by delimiters.

The delimiters are defined in the implementation of the classifier and include special
characters that are usually used to delimit or separate the words within SNIs (a dot, comma,
dash etc.).

The words that remain after the split are then used to create the set representing the
SNI. After that, two different sets of words are compared using the Jaccard similarity as
described in Equation 7.3. The transformation of an SNI into a set is also illustrated in
Figure 7.7.

audio duolingo static
lessons com ssl
audio-lessons.duolingo.com static-ssl.duolingo.com

Figure 7.7: Transforming SNIs into sets for the Jaccard similarity index.

In this particular example depicted in Figure 7.7, the SNIs are split by dots and dashes
resulting in two sets containing four words. The Jaccard similarity between the two sets is
computed as:

:|AﬂB|:2:1 (7.4)
|JAUB] 6 3

To use this method for the classification of an input flow it is used as follows. First,
the SNI is extracted from the input flow and transformed into a set. After that, the set is
compared with all SNI sets in the application dataset.

The final score for each application is computed as the maximum of all the Jaccard
similarities between the set of the flow and all SNI sets of the application. The score for
application A and input flow f is computed as follows:

J(A, B)

score(A, f) = max J(s, sy) (7.5)

sES A

where S4 is a set of SNIs in the application dataset related to application A, and sy
is the SNI extracted from the input flow. The output of the classifier is an ordered list of
tuples containing applications and the computed score.

36

7.3.2 Classification using TF-IDF

The last approach that was implemented for the classification using SNIs is the term
frequency-inverse document frequency (TF-IDF) method. TF-IDF is a numerical statis-
tics whose main intention is to reflect the importance of a word to a document given a
collection of documents. As stated in [27], the TF-IDF method and its variations are of-
ten used in various information retrieval tasks such as text mining, text summarization
and classification, user modelling, etc. This [8] survey conducted in 2015 also showed that
TF-IDF is used by 83% of text-based recommender systems in digital libraries.

In order to be able to fully understand the method, it is necessary to understand the
terminology that it uses.

e Term = word
e Document = collection of words

e Corpus = collection of documents

To compute how important a word ¢ is with respect to a document d, the TF-IDF
method uses two separate statistics: Term frequency and Inverse document frequency.

Term frequency

The first form of term frequency was developed by Hans Peter Luhn (1957)[22]. Term fre-
quency determines the relative frequency of term ¢ in a document d. It is proportional to
the number of times the term occurs in the document. That means the more times term ¢
occurs in a document d the bigger the resulting term frequency of ¢ is. The term frequency
of word t in document d is defined as[24]:

_ Jtd
tf(t,d) = 7213/@1 Foa (7.6)

where f; 4 is the number of times term ¢ occurred in document d, and the sum is
essentially the number of all terms in document d.

The term frequency alone could be directly used to determine the importance of a term
to a document. This method, however, has a small weakness that reduces its capabilities.
It gives bigger values to words commonly used in the language. In English, for example,
to words like: “the”, “a”, “be”, “to”, “of”, etc. These words do not have any importance
in defining documents, because they do not describe their content. Therefore the inverse
document frequency (IDF) statistics is used together with the term frequency.

Inverse document frequency

The cornerstone of inverse document frequency was laid by Karen Spérck Jones (1972)[34].
The inverse document frequency is used to define how much information a word provides.
That means whether it is a commonly used word or it is rare across the documents. The in-
verse document frequency of term ¢ in a corpus D is computed as a logarithmically scaled
fraction of the total number of documents divided by the number of documents that contain
term ¢. The inverse document frequency for term ¢ and corpus D is defined as[24]:

N

idf(t, D) = log |de D :ted|

(7.7)

37

where D is the corpus, N is the number of documents in the corpus (N = |D|) and
the denominator represents the number of documents from corpus D where term ¢ appears
(meaning that ¢ f(t,d) # 0). If the term ¢ is not present in any document across the corpus,
the above equation results in a division by zero. It is therefore a common practice to adjust
the denominator to 1+ |d € D : t € d|.

If a word appears in every document, its IDF value is 0. That is because such a word
does not have any special value for a single document and therefore does not represent the
uniqueness of a document. On the other hand, the fewer documents term ¢ occurs in, the
bigger significance it has.

Term frequency-inverse document frequency

The term frequency-inverse document frequency metric is defined as the product of the
two statistics: term frequency and inverse document frequency. The TF-IDF of term ¢ for
document d given a corpus of documents D is therefore defined as[24]:

tfidf (t,d, D) = tf(t,d) - idf (¢, D) (7.8)

The TF-IDF metric gives higher weight to a term that has higher frequency in a given
document and is not present in other documents. Such term is expected to be of greater
importance for the given document. The value of TF-IDF is always greater than or equal
to 0. The higher the value the more significant the given term is.

To apply the TF-IDF method for SNI classification it is necessary to identify the con-
nections and similarities between these two approaches and redefine the terminology of the
TF-IDF method to fit it to this specific use case.

The input of the classifier is an SNI string. The string is split by delimiters into separate
words as described in Section 7.3.1 and illustrated in Figure 7.8.

audio-lessons.duolingo.com —> [audio, lessons, duolingo, com]

input SNI list of terms

Figure 7.8: Converting an SNI into a list of terms.

After that, the SNI is represented as a list of words. Each word in this list can be
perceived as a term in the TF-IDF method. Finding the correct application for the input
SNI can now be addressed as finding a document that is, given the SNI as a query, most
relevant to that query.

In this interpretation, each document represents one application and consists of all words
from SNIs of that application that are stored in the application dataset. The entities of the
TF-IDF method are therefore redefined as:

e Term = a word from the SNI string
e Document = a list of words from SNIs belonging to a given application

e Corpus = a set of all application documents

38

Figure 7.9 illustrates how the SNIs of an application are transformed into a document
that represents the application.

audio-lessons.duolingo.com,

. audio, lessons, duolingo, com, brb,
brb.duolingo.com,

duolingo, com,

friends-prod.duolingo.com, —_— . . ’
. ; friends, prod, duolingo, com, goals,
goals-api.duolingo.com, . .
api, duolingo, com,
ios-api.duolingo.com » 10s, api, duolingo, com

all SNIs of App
duolingo Document

Figure 7.9: Converting SNIs of Duolingo application into a document.

All SNIs are split and concatenated together to create a big list of terms. To create the
corpus, all applications in the application dataset are transformed in this way. It is then
possible to compute a TF-IDF value of each term in an SNI against a document. Table 7.2
illustrates the TF-IDF values computed for the Duolingo application.

Term TF-IDF value
duolingo 2.2512
leaderboards 1.2663
audio 1.1959
brb 1.1959
friends 1.1959
goals 1.1959
invite 1.1959
ios 1.1959
lessons 1.1959
prod 1.0225
api 0.5928
com 0.2767

Table 7.2: The TF-IDF value of certain words for the Duolingo application.

Table 7.2 shows normalized TF-IDF values of some words for the Duolingo application
ordered from the biggest (most significant word) to the smallest (least significant). It is
obvious that the term “duolingo” is the most significant to the application as it appears
many times in the SNIs and does not appear in SNIs of other applications. On the other
hand, terms like “api” and “com” do not have a big significance even though they appear
many times in the SNIs. That is because they commonly appear in the SNIs of other
applications across the corpus.

The TF-IDF method can be used to compute the significance of a given word to a
document of SNIs belonging to a certain application. This approach was applied to compute
the score of an input flow. The score of input flow f and an application A is computed as
a sum of the TF-IDF values for each word obtained from the SNI of the input flow. The
computation of the score is described by the following equation:

39

score(A, f) =Y tfidf(t,da, D) (7.9)

tesy

where sy is the SNI of the input flow f, ¢ is a term, d4 is the document created for
application A, and D is the corpus of all application documents. Figure 7.10 provides a
graphical illustration of the computation. The output of the classifier is an ordered list of
tuples containing applications and the computed scores.

—> audio —> TF-IDF —

—> lessons —> TF-IDF —

Flow ——SNI—> audio-lessons.duolingo.com — @—> score

—> duolingo —> TF-IDF —

—> com —> TF-IDF —

Figure 7.10: Computing the score using the TF-IDF method.

7.4 Combining the classifiers

The last classification method implemented in the classifier combines all the above-mentioned
approaches and computes the score of an input flow as a sum of the scores computed by
the individual methods. The score of input flow f for an application A is computed as:

score(A, f) = Z c(A, f) (7.10)

ceC

where C' is a set of all the implemented classifiers. The output of the final classifier is
an ordered list of tuples containing applications and the computed scores.

This chapter provided an overview of the classification methods used to classify input
flows. These methods use different approaches to perform the classification, in particular:
exact matching of JA3 fingerprints, searching for the longest match of a string of TLS values,
applying Jaccard similarity for SNIs, applying the TF-IDF method for SNIs and a combi-
nation of the approaches. The next chapter presents the most important implementation
details including several parsers, the classifier, the application dataset, etc.

40

Chapter 8

Implementation

This chapter gives a comprehensive description of the work completed in the course of this
thesis, including the implementation of classification methods, parsers, evaluation tools, etc.
All classification models are constructed using the object-oriented programming paradigm
and implemented in Python version 3.9. Several Python libraries used for data science were
also used throughout this work, such as numpy', scipy”, pandas®, etc. Figure 8.1 provides
a class diagram of the most important classes.

TLSParser
+ parse_all() Evaluator
+ parse_pcap() AppDatasetFactory | - :
uses + classifer
+ build_from_pcaps()
+ build_from_csvs() : 2?;;;?%8
+ recall()
CSVParser uses | |
1 creates
+ parse_all() - ¢ usles
+ parse_one_source() A
. ppDataset .
+df . FlowClassifier
+ keywords + dataset
+ mappings
+ add_list + ja3_classification()
. + tls_values_classification()
+ save_pickle() <«—uses + sni_jaccard_classification(]
+ save_gsv() + sni_tf_idf_classification()
+ load_pickle() + classify()
+ load_csv()

Figure 8.1: Class diagram of the implemented classes.

Section 8.1 starts by describing the parsers created to construct a dataset of applica-
tions from various input sources. Section 8.2 describes the classes used to represent the
application dataset itself. After that, a class used for parsing the csv files containing the
input flows created by the Flowmon probe is covered in Section 8.3. Section 8.4 provides

"https://numpy.org/

2 .
https://scipy.org/
3https://pandas.pydata.org/

41

https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/

a thorough view into the implementation details of all the classification methods that were
explained in Chapter 7. Finally, Section 8.5 describes the Evaluator class that implements
several metrics used to evaluate the classifier.

8.1 Dataset Parsers

The first step in the implementation phase of this thesis was to create the application
dataset containing the selected applications and their information. For this purpose, two
parser classes were created.

CSVParser

The first class is the CSVParser that is implemented inside the csv_ parser.py file. This
parser is intended to be used together with a Perl script that was created as part of the
project Integrated platform for analysis of digital data from security incidents (Tarzan).”
This script receives a pcap file as input and creates JA3 and JA3S fingerprints by extracting
the underlying TLS communication. The output of this script is a csv file containing the
created fingerprints. The list of advertising servers used to exclude the servers from traffic
was also obtained from the Tarzan project.

The CSVParser takes this file and performs the preprocessing necessary to transform
the data into a form that suits the needs of the classifier. This includes excluding empty
fields, filtering by SNI, dropping traffic created by advertising servers, adding new columns
with the string of TLS values, version of the application, etc. The DataFrame data class
from the pandas library is used to represent the dataset. The preprocessing is illustrated
in Figure 8.2.

: add app
CSV ﬁ|es——>ﬂlter by SNI info ——> Dataset

drop
advertising —> Gl
TLS string

servers

Figure 8.2: The preprocessing performed by the CSVParser.

Columns of the resulting dataset are shown in Table 4.3. The CSVParser provides the
following public methods:

e parse_all(folderpath, keywords, sep): This method is used to parse all csv files
located in the folder. The first parameter indicates a path to the folder, the second
parameter is a dictionary containing special keywords for each application and the
last parameter is the separator used inside the csv files to separate each value.

o parse_one_source(filepath, config file, sep): This method parses the appli-
cation data from one csv file that contains data of all applications. The first parameter

‘https://github.com/matousp/ja3s-fingerprinting

42

https://github.com/matousp/ja3s-fingerprinting

is a path to the file, the second parameter indicates the path to a configuration file that
contains metadata about each application, and the last parameter is the separator.

The parse_all method parses all files in the folder. Each file in the folder needs to
have a name in the following format:

app-name_app-version_os-version_.csv

meaning that a csv file containing the fingerprints of the Duolingo application version
6.139.0 running on a device with the ios-15.0.2 operating system would be called:

duolingo_6.139.0_ios-15.0.2_.csv

The keywords parameter is a dictionary containing special keywords for each application.
These keywords are used to filter only communication that corresponds to the correct
application. The keys in this dictionary are the application names and the value for each
key is a list of the keywords. Usually, the list of keywords for an application contains the
name of the application and some other keywords that were discovered by manual inspection
of the traffic.

The parse_one_source method, on the other hand, uses one csv file containing the
communication of all applications. The name of this file does not have to follow any
special format. The method, however, needs to receive a configuration file in JSON format
containing metadata of the applications. The file specifies for each application the name
of the application, version of the application, version of the operating system and the
keywords.

TLSParser

The second parser class is the TLSParser. The TLSParser replaces the Perl script and
creates the fingerprints directly from pcap files. It uses the Scapy® Python library to extract
the necessary TLS fields from packets. Scapy is a powerful tool for interactive packet
manipulation running on top of the libpcap library. The TLSParser provides the following
public methods:

e parse_all(folderpath, keywords): This method is used to parse all pcap files
inside the folder indicated by the folderpath parameter. The second parameter is a
dictionary with a list of keywords for each application.

e parse_pcap(path, keywords): This method can be used to parse one pcap file. The
first parameter is a path to the PCAP file and the second parameter is a dictionary
with keywords.

For both methods the names of the files to be parsed need to follow the format defined
in the CSVParser section. Both parsers are intended to be used only by the AppDataset-
Factory class to create an AppDataset object representing the application dataset.

8.2 Dataset

This section introduces the classes used to work with the application dataset. There are two
classes that serve this purpose. The first one is a factory class called AppDatasetFactory
that creates the dataset. The second class called AppDataset represents the dataset itself.

Shttps://scapy.net/

43

https://scapy.net/

AppDatasetFactory

The AppDatasetFactory class follows the factory design pattern. The purpose of this class
is therefore to create an instance of the AppDataset class. The dataset is intended to be
constructed only in this way. The AppDatasetFactory class provides the following methods:

e build_from_pcaps(folder_path, keywords_path, addlist_path): A static method
that is used to create the dataset from pcap files. It uses the TLSParser presented in
the previous section. The first parameter is a path to the folder containing pcap files
that the dataset is created from. The second parameter is a path to the file with the
keywords in JSON format. The last parameter is a path to the file containing names
of advertising servers that are excluded from the dataset.

e build_from_csvs(folder_path, keywords_path, sep): A static method that cre-
ates the dataset from csv files created by the Perl script. It uses the CSVParser to
parse the files. The first parameter is a path to the folder with csv files, the second
parameter is a path to the file with keywords in JSON format and the last parameter
is a separator used inside the cswv files.

The return value of both methods is an instance of the AppDataset class representing
the application dataset.

AppDataset

The AppDataset class represents the application dataset of selected applications. The
dataset is represented as a two-dimensional array stored inside a pandas DataFrame object.
Each record in this dataset consists of the following columns: name of the application,
version of the application, version of the operating system, SNI, JA3 hash, JA3S hash, the
string of TLS values for the JA3 hash and the string of TLS values for the JA3S hash. The
AppDataset class contains the following properties:

e df: This property holds the DataFrame object containing the dataset.
e keywords: A dictionary with keywords for applications inside the dataset.

e mappings: A dictionary that maps each application to an integer id. It is used by
other classes to get the name of an application from its integer id.

e add_list: A list containing the advertising servers.
Besides the above properties, the AppDataset class provides the following methods:

e save_pickle(filename): Used to save an AppDataset instance into the file as a
pickle.

e save_csv(filename): Used to save an AppDataset instance into the cswv file.

e load_pickle(filename): A class method used to load an AppDataset instance from
the pickle.

e load_csv(filename): A class method used to load an AppDataset instance from the
csv file.

44

The AppDataset class is used by the classifier to classify input flows. The classifier
compares the values extracted from the flows with those stored inside an AppDataset object.
The dataset can be saved into a pickle or a csv format and restored later on.

8.3 Flow Parser

The FlowParser class is used to parse csv files containing the flows that represent input
for the classifier. It converts the values in the flows from hexadecimal to decimal for-
mat, excludes GREASE values and padding values from TLS fields, drops flows containing
empty fields, etc. Besides that, it also creates the JA3 fingerprints and attaches them as
a new column to the resulting pandas DataFrame. The FlowParser provides the following
methods:

e parse_nprobe_csv(df): This method parses a csv file containing flows exported by
the nProbe. The only parameter is a pandas DataFrame that contains the unprocessed
flows.

e parse_fm_csv(df): This method parses a csv file containing flows exported by the
Flowmon probe. The only parameter is a pandas DataFrame that contains the un-
processed flows.

The FlowParser class is used to parse flows from both nProbe and Flowmon probes.
Both methods return a pandas DataFrame object that contains processed flows. These
flows are then passed to the classifier.

8.4 Classifier

The classifier is implemented inside the FlowClassifier class. It works together with an
AppDataset object that must be provided in the constructor. The classifier offers several
different methods of classification and a method that combines all results of these methods
together. The only property of the classifier is the application dataset:

e dataset: An instance of the AppDataset class that contains the application dataset.
The classification methods provided by the FlowClassifier class are the following:

e ja3_classification(flow): This classification method uses JA3 fingerprints to find
an exact match between the input flow and the application dataset.

e tls_values_classification(flow): This method performs the classification using
the string of TLS values as it searches for the longest substring match between the
input flow and the application dataset.

e sni_jaccard_classification(flow): This method implements the Jaccard simi-
larity coefficient to classify the input flow by its SNI value.

e sni_tf_idf_classification(flow): This method implements the TF-IDF algo-
rithm to classify the input flow by its SNI value.

e classify(flow): This method combines all the approaches and computes the final
score as the sum of their results.

45

The only parameter for all classification methods is the input flow represented as a
pandas DataFrame object. The return value is an ordered list of tuples containing names
of applications and their resulting scores. The first tuple in this list, therefore, indicates
the application with the biggest score. Figure 8.3 shows an example of the return value.

[

('duolingo’, 0.85),
(‘airbnb’, 0.43),
('livesport', 0.21),
(...)

]

Figure 8.3: Example return value of the classifier.

8.5 Evaluator

The Evaluator class is used to evaluate the classification methods of the FlowClassifier. To
evaluate the classification it uses three evaluation metrics implemented as separate methods.
The only constructor parameter of the Evaluator is an instance of the FlowClassifier class.
The following methods are provided to perform the evaluation:

e accuracy(test_flows, method): This method computes the Accuracy of the classi-
fier. The first parameter is a pandas DataFrame containing test flows used to evaluate
the classifier. The second parameter specifies what classification method of the Flow-
Classifier will be used.

e precision(test_flows, method): This method computes the average Precision of
the classifier. The first parameter contains test flows and the second parameter spec-
ifies the classification method.

e recall(test_flows, method): This method computes the average Recall value of
the classifier. The first parameter contains test flows and the second parameter spec-
ifies the classification method.

All evaluation methods require the same parameters. The test_flows parameter con-
tains a labeled dataset of flows. Each flow is passed to the classifier and evaluated by
comparing the result to the correct label of the flow. The method parameter is used to
choose the classification method to evaluate. The evaluation metrics implemented in these
methods are explained in section 9.1. Table 8.1 shows an example of a labeled test flow.

46

This chapter described the most important classes and methods implemented in this
The next chapter explains the evaluation metrics used by the Evaluator class -

thesis.

Column Value
label airbnb
L3_IPV4_ SRC 192.168.137.222
L3_IPV4 DST 92.123.238.128
L4 PORT_SRC 64262

L4 _PORT_DST 443
BYTES 192204
PACKETS 260
TLS_SERVER__VERSION 772
TLS_CIPHER_SUITE 4866
TLS_ SNI api.airbnb.com
TLS_CLIENT_VERSION 56026

TLS_CIPHER_ SUITES

4865-4866-4867-49196-49195-52393-49200

TLS_EXTENSION_TYPES

0-23-10-11-16-5-13-18-51-45-43-27

TLS ELLIPTIC CURVES

29-23-24-25

TLS_EC_POINT_FORMAT

0

ja3__hash

207234e15864581680474c785657ae8

Table 8.1: Example of a labeled test flow.

Accuracy, Precision, Recall - and presents the results on two test datasets.

47

Chapter 9

Evaluation

The implemented classification methods need to be evaluated in order to determine their
Accuracy. This chapter is going to discuss the evaluation process. Section 9.1 provides
an introduction to the evaluation metrics and explains how these metrics work. Finally,
Section 9.2 presents the evaluation results of the implemented classifier and provides a
comparison of its classification methods.

9.1 Evaluation metrics

All evaluation metrics are implemented inside the Evaluator class discussed in Chapter 8.
The source of information for this chapter was the Advanced Data Mining Techniques book
[10]. This chapter also takes inspiration from this [32] article by Boaz Shmueli (2019).

The metrics used in this thesis are well-known methods frequently used for evaluating
pattern recognition, information retrieval and classification systems. They are used for
binary classification, multi-label classification as well as multi-class classification.

To explain the metrics it is important to understand the concept of a confusion matrix.
The confusion matrix represents a summary of prediction results on a classification problem
and is used for summarising the performance of a classification method. It is a square two-
dimensional matrix where the number of rows and columns is equal to the number of classes
in the dataset.

The confusion matrix is best explained on a binary classification problem. In binary
classification, the model chooses from two classes when making a prediction. These classes
are often called positive and negative. For example, given a model that predicts whether a
picture contains a dog, the positive class would be “yes” the picture contains a dog, while
the negative class would be “no” there is no dog in the picture. For a binary classifier, the
confusion matrix contains two rows and two columns and shows how many positive samples
were predicted as positive or negative and how many negative samples were predicted as
positive or negative. Figure 9.1 shows an example of a confusion matrix.

48

Actual

Positive Negative

Positve | 5 (TP) 1 (FP)

pajoIpaid

Negative | 2 (FN) 7 (TN)

Figure 9.1: Example of a binary confusion matrix [32].

This confusion matrix shows, that five positive samples were correctly predicted as
positive, two positive samples were incorrectly predicted as negative etc. The cells in a
confusion matrix are often referred to using the following terms[10]:

o True Positive (TP): Positive samples correctly classified as positive.
o False Positive (FP): Negative samples falsely classified as positive.
o True Negative (TN): Negative samples correctly classified as negative.

o False Negative (FN): Positive samples falsely classified as negative.

this terminology is used to define the evaluation metrics used in this thesis. The first
metric computes the Accuracy of the classifier. The Accuracy is simply defined as the
number of correct predictions divided by the total number of predictions made[10]:

TP+ TN
TP+TN+ FP+ FN
Another evaluation metric that is used in this thesis is Precision. Precision is used
to express what proportion of the predicted positive classes is truly positive. It can be
described with the following formula[10]:

(9.1)

Accuracy =

TP
Precision = ———— 2
recision = 7m0 (9.2)

The last metric that is frequently used together with the two previous metrics is Recall.
Recall describes what proportion of the actual positive samples were correctly classified[10]:

TP
Recall = m (93)

When dealing with a multi-class classification problem, the confusion matrix contains
all the possible classes in its rows and columns. The Precision and Recall metrics need
to be computed for each class separately. The average value of the Precision and Recall
computed for each class is then used to evaluate the whole model. Figure 9.2 shows an
example of a confusion matrix with three classes.

49

Actual

airbnb george duolingo

airbnb 5 1 O
george 2 7 1
duolingo 1 0 8

pajoIpaid

Figure 9.2: Example of a confusion matrix.

The rows in the matrix correspond to the classes predicted by the classifier. The columns
represent the actual/true labels of the classified samples. In this particular example, five
samples of the Airbnb application are classified correctly as the Airbnb application, two
are incorrectly classified as the George application and one sample is predicted to be the

Duolingo application.
To compute the Precision of class Airbnb the number of samples correctly classified as

Airbnb is divided by the total number of samples classified as Airbnb.

5
Precision(airbnb) = 5FiT0

which would result in a Precision of 83% for the Airbnb class. The Recall of class Airbnb
is computed as the number of samples correctly classified as Airbnb divided by the total
number of Airbnb samples in the test dataset.

5
5+2+41

this results in a Recall of 62.5% for the Airbnb application. The principle of computing
the Precision and Recall values using the confusion matrix is illustrated in Figure 9.3.

Recall(airbnb) =

Actual

airbnb george duolingo

airbnb [5 1 O Precision

-
3
o george 2 7 1
o
o

duolingo 1 O 8

Recall

Figure 9.3: Computing Precision and Recall from the confusion matrix.

50

All classification methods implemented in this thesis are evaluated using the Accuracy,
Precision and Recall metrics. The next section presents the evaluation results.

9.2 Evaluation results

The classification methods were evaluated using two test datasets. These datasets were
created using the Flowmon probe as described in section 6 and consist of the same appli-
cations as the application dataset. The first dataset is referred to as “Test Dataset 1”. It
consists of 384 flows and contains applications with the same versions as the application
dataset. The second dataset, called “Test Dataset 2”, consists of 268 flows and contains
applications in newer versions. The second dataset, therefore, should give an insight into
how the implemented methods are able to classify newer versions of applications.

First of all, the method using JA3 fingerprints is evaluated. The inabilities of the Flow-
mon probe did not make it possible to create the fingerprints using the original approach
described in section 3.3. Additionally, most of the fingerprints in the application dataset
are shared between many applications. Table 9.1 shows the Accuracy, Precision and Recall
of the method using JA3 fingerprints.

JA3 method | Test Dataset 1 | Test Dataset 2
Accuracy 0.0130 0.0149
Precision 0.1764 0.1428
Recall 0.0050 0.0053

Table 9.1: Evaluation of the JA3 fingerprints method.

As the results show, the JA3 fingerprints method produces a very low Accuracy and
Recall. The Precision is slightly better with over 17% on the first test dataset. The reason
for such bad results is the fact that when an unknown fingerprint is passed into the classifier,
it is not able to make a prediction. Also, when the classifier receives a fingerprint, that is
shared by several applications it is not able to decide which application is the right one.
Therefore, the classifier is only able to make a prediction if the input flow has a fingerprint
that corresponds to just one application. Unfortunately, only around 1-2% of the flows
meet this condition.

The next evaluated method uses the string of values extracted from a TLS handshake.
This method, in contrast with the JA3 fingerprints, searches not for an exact match, but for
the longest substring shared between the input flow and a value in the application dataset.
Table 9.2 shows evaluation results of this method.

TLS string method

Test Dataset 1

Test Dataset 2

Accuracy 0.1719 0.0932
Precision 0.1765 0.2142
Recall 0.0265 0.0183

Table 9.2: Evaluation of the TLS string method.

The TLS string method produced an Accuracy of 17.19% for the first test dataset and
9.32% for the dataset containing the applications in newer versions. The Precision of this
method reached to 17.65% on the first dataset and 21.42% on the second dataset. The

51

Recall values were only 2.65% and 1.83%. It is thus clear, that this method is also not good
enough for the classification task. It uses the same values that are used to create the JA3
fingerprints and therefore faces the same problems as the JA3 method.

The better of these two methods, however, turned out to be the method using TLS
strings. None of these methods, however, is capable enough to be declared usable neither
on its own nor combined with the other one. Combining these methods resulted in the
same Accuracy as the TLS string method alone. It is therefore necessary to boost the
classification with methods using the Server Name Indication (SNI) field.

Two different SNI methods were implemented. The first one uses Jaccard similarity
index while the other one the TF-IDF method to classify input flows. Table 9.3 shows the
comparison of these two methods.

Test Dataset 1 Test Dataset 2
Jaccard | TF-IDF | Jaccard | TF-IDF
Accuracy | 0.9972 0.9609 0.9776 0.9776
Precision 1.0 0.9510 1.0 1.0
Recall 0.9782 0.9338 0.9024 0.9345

Table 9.3: Comparison of the Jaccard index and the TF-IDF method.

As the results suggest, the method using Jaccard similarity performs better on the first
test dataset. The TF-IDF method, on the other hand, performs better for the second
dataset with the updated versions of applications. Regardless of this fact, the Jaccard
similarity outperforms the TF-IDF method and was therefore selected to be used for the
classification task.

The last method that is evaluated computes the predictions as a sum of results of the
following three methods: JA3 fingerprint method, TLS string method and SNI Jaccard
similarity method. The evaluation results of this approach are illustrated in Table 9.4.

Test Dataset 1 | Test Dataset 2
Accuracy 0.9972 0.9776
Precision 1.0 1.0
Recall 0.9782 0.9024

Table 9.4: Evaluation results of the final classifier.

As the evaluation shows, combining the three methods results in the same performance
as the SNI Jaccard similarity method. The JA3 fingerprints and TLS string methods did
not introduce any significant improvement at least on the test datasets used for evaluation.

To conclude this chapter, it is safe to say that none of the methods using values extracted
from TLS handshakes is capable enough for the classification task. The only methods that
performed well are the two methods using the SNI field. The best method turned out to be
the method using the Jaccard similarity index. The approach combining all implemented
methods together did not outperform the Jaccard method either. The next chapter presents
possible applications of the implementer classifier and conducts several experiments.

52

Chapter 10

Experiments

This chapter is going to briefly discuss the potential usage of the implemented classifier. One
of the requirements in the assignment of this thesis was to conduct several experiments with
the implemented classifier and show how it could be used for tasks such as user profiling,
malware detection etc.

The usage of JA3 fingerprints for malware detection is arguably one of the main applica-
tions of this method. The classifier implemented in this thesis, however, did not manage to
use the full potential of the JA3 fingerprints. The fingerprints are created from input flows
manually using a slightly modified approach than the original method described in section
3.3. In order to be able to detect malware, a new dataset of known malware fingerprints
would have to be created using this modified method. It was decided that this would exceed
the scope of this thesis.

10.1 User profiling

An interesting application of the implemented classifier is using it for user profiling. Users
can be detected in input flows using the source IP address. It is then possible to detect what
applications each user uses. To conduct this experiment a new class called UserProfiler was
implemented. The input for this class is a csv file containing all the flows that were captured
on a network. The profiler then groups the flows by their source IP address and looks at all
the SNIs in the groups. For each SNI it uses the Jaccard similarity method of the classifier
to predict what application the SNI corresponds to. If the score of the prediction is greater
than a given threshold, the predicted application is added to a set of applications for the
given user.

To evaluate the UserProfiler class a new dataset was created. This dataset is stored
inside the wusers.csv file. To construct this dataset, four different users connected to the
same access point. Each user had a set of applications that he interacted with within the
session. The captured traffic was then exported using the flowmonexp5 tool and parsed by
the FlowParser class resulting in a csv file with 389 rows - where each row represents one
flow. The set of applications each user interacted with within the captured session is shown
in Table 10.1.

53

User | IP address Applications

userl | 192.168.137.20 | Airbnb, Booking.com, Couchsurfing
user2 | 192.168.137.35 | Crypto.com, Equabank, George, Quora
userd | 192.168.137.48 | Facebook, Pinterest, Whatsapp

userd | 192.168.137.90 | Zalando

Table 10.1: Users and their applications in the users.csv dataset.

For the input csv file, the profiler returns a dictionary containing source IP addresses
as keys and the detected applications as values. The predicted applications rely heavily on
the threshold value. In the profiler, the threshold value determines the minimal difference
between the score of the most probable and the second most probable predicted application.
If the difference is greater than the threshold, it means that the classifier is certain enough
with the prediction.

For example, if the classifier predicts for an input flow that the most probable application
is Airbnb with a score of 1.0 and the second most probable application is Booking.com with
a score of 0.5, the difference between the two scores is 0.5. If this difference is greater than
the given threshold, the profiler trusts this prediction.

Following are the results of the profiler with different threshold values.

Threshold = 0.4
Key Value
192.168.137.20 | Airbnb, Booking.com, Couchsurfing
192.168.137.35 | Crypto.com, Equabank, Facebook, George, Quora
192.168.137.48 | Facebook, Pinterest, Whatsapp
192.168.137.90 | Zalando

Table 10.2: Result of the profiler for a threshold value of 0.4.

When the threshold is set to 0.4, all the desired applications are detected. For user2 the
classifier also detected the Facebook application. This application was not actively used by
the user and was probably running in the background.

Threshold = 0.3

Key Value

192.168.137.20 | Airbnb, Booking.com, Couchsurfing, Facebook, Youtube
192.168.137.35 | Crypto.com, Equabank, Facebook, George, Quora, Youtube
192.168.137.48 | Facebook, Pinterest, Whatsapp

192.168.137.90 | Facebook, Youtube, Zalando

Table 10.3: Result of the profiler for a threshold value of 0.3.

When the threshold value is lowered to 0.3, more applications start to appear. For
users 1,2 and 4 the classifier detected Facebook and Youtube. The detection of Youtube
was caused by some Google services running in the background.

54

Threshold = 0.6
Key Value
192.168.137.20 | Booking.com, Couchsurfing
192.168.137.35 | Equabank, George, Quora
192.168.137.48 | Facebook, Pinterest, Whatsapp
192.168.137.90 | Zalando

Table 10.4: Result of the profiler for a threshold value of 0.6.

On the other hand, when the threshold is set to 0.6, all the applications running in
the background disappear. For userl, however, the classifier is no longer able to detect the
Airbnb application.

10.2 Traffic monitoring

Another interesting application of the classifier is using its abilities for network traffic
monitoring. In particular, the classifier can be used to determine the volume of traffic that
was generated by mobile applications.

To demonstrate this usage of the classifier, the users.csv dataset was used. For each
flow in the dataset, the classifier computes the prediction using the Jaccard SNI method.
If the computed score is high enough - given a threshold value - all packets of the flow are
assigned to the predicted application. Each flow contains information about the number
of packets and bytes that were transferred within the flow. In this fashion, the classifier is
able to compute the statistics of how much traffic was transferred by each application as
shown in Table 10.5.

Application | Packets
Airbnb 914
Booking.com | 504
Couchsurfing | 256
Crypto.com 16442
Duolingo 0
Equabank 2227
Facebook 94
George 1145
Livesport 0
Pinterest 1092
Quora 4137
Shazam 0
Teams 0
Tiktok 0
Uber 0
Whatsapp 22
Youtube 0
Zalando 127

Table 10.5: Number of packets transferred by each application detected in the wusers.csv
dataset.

55

Table 10.5 shows the result of computing the number of packets transferred by each
application in the users.csv dataset using the implemented classifier with a threshold value
of 0.4. With this kind of data available, it is then possible to compute the percentage
of traffic that was generated by mobile applications. It is computed as the sum of traffic
generated by each detected application divided by the total number of traffic. Table 10.6
presents the results of such statistics for the users.csv dataset.

% of Applications
Bytes 58.24%
Packets 52.72%
Flows 25.19%

Table 10.6: Percentage of traffic generated by mobile applications in the users.csv dataset.

Over 52% of packets were generated by mobile applications. This represents over 58%
of bytes and over 25% of flows in the captured communication.

This chapter demonstrated possible applications of the implemented classifier. The first
section showed how the classifier could be used for user profiling. Each IP address in the
communication was assigned with a set of applications that were detected. This usage could
be used for tasks like user identification, recommendations of new applications etc.

The next section revealed how to use the classifier to compute multiple statistics of the
captured flows. These statistics included, e.g., the number of packets, bytes and flows that
were generated by each application.

Overall, it can be stated that the classifier offers several interesting applications that
utilize its abilities and apply them in different areas of computing.

56

Chapter 11

Conclusion

The main goal of this thesis was to study the possibilities of using TLS fingerprinting tech-
niques for monitoring mobile applications and create a system that would be able to detect
mobile applications and work with a state-of-the-art flow exporter software implementing
the IPFIX protocol.

This paper started by discussing the related methods that have been used for the prob-
lem of traffic monitoring in the past. After giving a few examples of such methods the
course shifted towards the method that was intended to be used in this thesis - TLS fin-
gerprinting. The discussion of this method initiated with a brief overview of the concepts
essential to its realization - the TLS protocol itself and the JA3/JA3S methods.

After explaining the essentials it was necessary to create the application dataset. The
main purpose of this dataset is to be used as a reference when classifying the input flows to
predict their corresponding classes (applications). With the application dataset ready it was
time to choose the right flow exporter software. Two different probes were being considered
- the Flowmon probe and the nProbe. After considering the abilities and weaknesses of both
the Flowmon probe was selected. This, however, introduced several obstacles to the TLS
fingerprinting method. The probe was only able to parse the first 16 bytes of the TLS cipher
suites and also used a TLS extension field that contained GREASE values to extract the
TLS version used by the client. These problems resulted in decreasing the variability of the
TLS values stored in the application dataset. Following was a comprehensive description of
the methods implemented inside the classifier. Three different approaches were combined
to construct the final classifier - the JA3 fingerprints, a string of TLS values, and the Server
Name Indication (SNI) field.

Despite all the effort, the proposed architectures using JA3 fingerprints and the TLS
values did not perform as expected. They were not found to be suitable for working with
the Flowmon probe. The evaluation of each method revealed that the classification relied
entirely on the performance of the SNI method. Even though the two methods were not
successful, this thesis produced other variable results. The created application dataset
together with the entire codebase was made available to the public and can therefore help
with further development of this idea. Another valuable outcome is the created TLSParser
class, that was used to create the application dataset. This parser can be used to extract
TLS values and create the JA3 and JA3S fingerprints directly from PCAP files.

The field of cyber security is still rapidly moving forward. It is, therefore, possible, that
the Flowmon probe will be more suitable for this task in a newer version. And as more and
more traffic is being encrypted new classification methods may occur and present a new
challenge to this field.

57

58

Bibliography

[1] ABEL, R. SSL/TLS fingerprint tampering jumps from thousands to billions. SC
Magazine. 2019.

[2] AITKEN, P., CLAISE, B. and TRAMMELL, B. Specification of the IP Flow Information
Ezport (IPFIX) Protocol for the Exchange of Flow Information. IETF RFC 7011,
september 2013.

[3] ALTHOUSE, J. B. TLS Fingerprinting with JA3 and JAS3S. [Online; accessed
2021-12-30]. Available at: https://engineering.salesforce.com/tls-fingerprinting-
with-ja3-and-ja3s-247362855967.

[4] ANDERSON, B., PAuL, S. and MCGREW, D. A. Deciphering Malware’s use of TLS
(without Decryption). CoRR. 2016, abs/1607.01639. Available at:
http://arxiv.org/abs/1607.01639.

[5] BaknsHI, T. and GHITA, B. On Internet Traffic Classification: A Two-Phased
Machine Learning Approach. Journal of Computer Networks and Communications.
january 2016, Volume 2016 (2016), p. 21 pages. DOI: 10.1155/2016,/2048302.

[6] BENJAMIN, D. Applying GREASE to TLS Extensibility. 2018. [Online; accessed
2022-01-19]. Available at:
https://tools.ietf.org/id/draft-ietf-tls-grease-01.html.

[7] BLAKE WILSON, S., MIKKELSEN, J., NYsTrROM, M., HopwooD, D. and WRIGHT, T.
Transport Layer Security (TLS) Extensions. IETF RFC 3546, june 2003.

[8] BREITINGER, J. B. C., LANGER, S. and GIPP, B. Research-paper recommender

systems: a literature survey. In:. 2016. International Journal on Digital Libraries ; 17
(2016), 4. - pp. 305-338. - ISSN 1432-5012. - eISSN 1432-1300.

[9] CLOUDFLARE. What happens in a TLS handshake? | SSL handshake. [Online;
accessed 2021-12-30]. Available at:
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/.

[10] DaviD L. OLSON, D. D. Advanced Data Mining Techniques. Springer Berlin,
Heidelberg, 2008. ISBN 978-3-540-76916-3. Page 138.

[11] DERI, L., MARTINELLI, M., BusLow, T. and CARDIGLIANO, A. NDPI: Open-source

high-speed deep packet inspection. 2014 International Wireless Communications and
Mobile Computing Conference (IWCMC). 2014, p. 617-622.

[12] EASTLAKE, D. E. Transport Layer Security (TLS) Extensions: Extension Definitions.
IETF RFC 6066, january 2011.

59

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
http://arxiv.org/abs/1607.01639
https://tools.ietf.org/id/draft-ietf-tls-grease-01.html
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/

[13] FLOWMON NETWORKS. Encrypted Traffic Analysis. [Online; accessed 2022-01-20].
Available at: https:

//www.flowmon.com/en/solutions/security-operations/encrypted-traffic-analysis.

[14] FLOWMON NETWORKS. Flowmon Probe, NetFlow and IPFIX Ezporter. [Online;
accessed 2022-01-02]. Available at:

https://www.flowmon.com/en/products/appliances/probe.

[15] GARLAND TECHNOLOGY. TAP vs SPAN. [Online; accessed 2022-01-02]. Available at:
https://www.garlandtechnology.com/tap-vs-span.

[16] HELP NET SECURITY. Malware increased by 358% in 2020. February 2021. [Online;
accessed 2022-01-26]. Available at:
https://www.helpnetsecurity.com/2021/02/17/malware-2020/.

[17] IBM. How much does a data breach cost? [Online; accessed 2022-01-26]. Available at:
https://www.ibm.com/security/data-breach.

[18] J. QuiTTEK, T. ZSEBY, B. CLAISE, S. ZANDER. Requirements for IP Flow
Information Export (IPFIX). IETF RFC 3917, 2004.

[19] JACCARD, P. The Distribution of the Flora in the Alpine Zone.l. New Phytologist.
1912, vol. 11, no. 2, p. 37-50. DOL:
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x. Available at:
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/.1469-8137.1912.tb05611.x.

[20] JasoN FIRCH. 10 Cyber Security Trends You Can’t Ignore In 2021. [Online; accessed
2022-01-26]. Available at: https://purplesec.us/cyber-security-trends-2021/.

[21] LoTFoLLAHI, M., ZADE, R. S. H., S1AvOsHANI, M. J. and SABERIAN, M. Deep
Packet: A Novel Approach For Encrypted Traffic Classification Using Deep Learning.
CoRR. 2017, abs/1709.02656. Available at: http://arxiv.org/abs/1709.02656.

[22] Lunn, H. P. A Statistical Approach to Mechanized Encoding and Searching of
Literary Information. IBM Journal of Research and Development. 1957, vol. 1, no. 4,
p. 309-317. DOI: 10.1147/rd.14.0309.

[23] LyNCH, V. Google Wants to GREASE Up Chrome. 2016. [Online; accessed 2022-01-19].
Available at: https://wwu.thesslstore.com/blog/google-wants-grease-chrome/.

[24] MANNING, C. D., RAGHAVAN, P. and SCHUTZE, H. Introduction to Information
Retrieval. Cambridge University Press, 2008. ISBN 9780521865715.

[25] MOELLER, B., BOLYARD, N., GUPTA, V., BLAKE WILSON, S. and HAWK, C. Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). IETF
RFC 4492, may 2006.

[26] NIR, Y., JOSEFSSON, S. and PEGOURIE GONNARD, M. Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier.
IETF RFC 8422, august 2018.

[27] RAJARAMAN, A., ULLMAN, J. and LESKOVEC, J. Mining of Massive Datasets. In:.
2011, chap. Data Mining, p. 1-17. DOI: 10.1017/CB09781139058452.002. ISBN
978-1-139-05845-2.

60

https://www.flowmon.com/en/solutions/security-operations/encrypted-traffic-analysis
https://www.flowmon.com/en/solutions/security-operations/encrypted-traffic-analysis
https://www.flowmon.com/en/products/appliances/probe
https://www.garlandtechnology.com/tap-vs-span
https://www.helpnetsecurity.com/2021/02/17/malware-2020/
https://www.ibm.com/security/data-breach
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://purplesec.us/cyber-security-trends-2021/
http://arxiv.org/abs/1709.02656
https://www.thesslstore.com/blog/google-wants-grease-chrome/

[28] RAZAGHPANAH, A., N1AKI, A. A., VALLINA RODRIGUEZ, N., SUNDARESAN, S.,
AMANN, J. et al. Studying TLS Usage in Android Apps. In: Proceedings of the 15th
International Conference on Emerging Networking EXperiments and Technologies.
New York, NY, USA: Association for Computing Machinery, 2017, p. 350-362.
CoNEXT ’17. DOI: 10.1145/3143361.3143400. ISBN 9781450354226. Available at:
https://doi.org/10.1145/3143361.3143400.

[29] RESCORLA, E. HTTP Over TLS. IETF RFC 2818, may 2000.

[30] RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.3. IETF RFC
8446, august 2018.

[31] SHEN, M., Liu, Y., CHEN, S., ZHU, L. and ZHANG, Y. Webpage Fingerprinting using
Only Packet Length Information. In: ICC 2019 - 2019 IEEFE International
Conference on Communications (ICC). May 2019, p. 1-6. DOLI:
10.1109/1CC.2019.8761167. ISSN 1938-1883.

[32] SHMUELI, B. Multi-Class Metrics Made Simple, Part I: Precision and Recall.
Towards Data Science. 2019. Available at: https://towardsdatascience.com/multi-
class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2.

[33] SiavosHANI, M. J., KHAJEPOUR, A., ZIAEL A., GATMIRI, A. A. and TAHERI, A.
Machine Learning Interpretability Meets TLS Fingerprinting. CoRR. 2020,
abs/2011.06304. Available at: https://arxiv.org/abs/2011.06304.

[34] SpArcK JONESs, K. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. In: Document Retrieval Systems. GBR: Taylor Graham
Publishing, 1988, p. 132-142. ISBN 0947568212.

[35] STOBER, T., FRANK, M., SCHMITT, J. and MARTINOVIC, I. Who Do You Sync You
Are? Smartphone Fingerprinting via Application Behaviour. In: Proceedings of the
Sixzth ACM Conference on Security and Privacy in Wireless and Mobile Networks.
New York, NY, USA: Association for Computing Machinery, 2013, p. 7-12. WiSec
'13. DOL: 10.1145/2462096.2462099. ISBN 9781450319980. Available at:
https://doi.org/10.1145/2462096.2462099.

[36] TAYLOR, V. F., SPOLAOR, R., CoNTI, M. and MARTINOVIC, I. Robust Smartphone
App Identification via Encrypted Network Traffic Analysis. IEEE Transactions on
Information Forensics and Security. 2018, vol. 13, no. 1, p. 63-78. DOL:
10.1109/TIFS.2017.2737970.

[37) TECHNET, MICROSOFT Docs. SSL/TLS in Detail. 2009. [Online; accessed
2021-12-30]. Available at: https://docs.microsoft.com/en-us/previous-versions/
windows/it-pro/windows-server-2003/cc785811(v=ws.10).

[38] TECHNET, MICROSOFT Docs. Cipher Suites in TLS/SSL (Schannel SSP). 2021.
[Online; accessed 2021-12-30]. Available at: https:
//docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel.

[39] WaANG, W., ZHU, M., ZENG, X., YE, X. and SHENG, Y. Malware traffic classification
using convolutional neural network for representation learning. In: 2017 International
Conference on Information Networking (ICOIN). Jan 2017, p. 712-717. DOI:
10.1109/ICOIN.2017.7899588.

61

https://doi.org/10.1145/3143361.3143400
https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
https://arxiv.org/abs/2011.06304
https://doi.org/10.1145/2462096.2462099
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc785811(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc785811(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel

Appendix A

Installing the Flowmon probe

The Flowmon collector and probe are both commercial software. In order to be able to
use them properly a license is needed. After reaching out to the Flowmon support they
provided a link to a download page' with virtual appliances as well as a demo license
for them. From this page the Flowmon collector virtual appliance for VMWare version
11.1.7 was downloaded and installed into the VM Ware virtualization software. This virtual
appliance also includes the Flowmon probe. The probe provides two monitoring ports that
generate the IPFIX data and send them locally to the embedded collector. The collector
can be accessed using a web interface running inside the virtual appliance. This interface
allows its users to set up the environment, inspect and analyse the captured flows with
various visualisation techniques and also export them to a csv file for further examination.
The virtual appliance also provides the flowmonezp5 tool that can be used for exporting
the flows from a captured pcap file.

"https://support.kemptechnologies.com/hc/en-us/articles/4404209325965-Download-Flowmon—
11-1

62

https://support.kemptechnologies.com/hc/en-us/articles/4404209325965-Download-Flowmon-11-1
https://support.kemptechnologies.com/hc/en-us/articles/4404209325965-Download-Flowmon-11-1

Appendix B

Contents of the included SD card

The SD card included as part of this thesis consists of the following files:

/

, data
csv_flows ... Directory containing csv files with test flows
csv_flows_new ... Directory containing csv files with test flows in

newer versions
experiments ... Directory with csv files used for experiments
pcap_files ... Directory with pcap files used to create the
application dataset

application_dataset.csv ... Contains the application dataset
test_flowsl.csv ... Contains test flows in original versions
test_flows2.csv ... Contains test flows in newer versions

| _doc ... Directory with the PDF documentation of this

thesis and the performed experiments

experiments.html
thesis.pdf

 doc_src ... Directory containing all source files of the

latex documentation
, _src ... Contains all implemented classes and other source
files
| README.md
| _requirements.txt ... File containing all required libraries

63

	Introduction
	Related work
	TLS fingerprinting
	TLS protocol
	TLS fingerprinting
	JA3 method
	JA3S method

	Creating the application dataset
	Tested applications
	Data preprocessing
	Dataset Analysis

	Choosing the Flow Exporter
	The IPFIX protocol
	nProbe
	Flowmon Probe

	Analyzing Flowmon flows
	Updating the application dataset

	Proposed method
	Classification using JA3 fingerprints
	Classification using TLS values
	Classification using SNIs
	Classification using Jaccard similarity
	Classification using TF-IDF

	Combining the classifiers

	Implementation
	Dataset Parsers
	Dataset
	Flow Parser
	Classifier
	Evaluator

	Evaluation
	Evaluation metrics
	Evaluation results

	Experiments
	User profiling
	Traffic monitoring

	Conclusion
	Bibliography
	Installing the Flowmon probe
	Contents of the included SD card

