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Abstract
The aim of this thesis is the creation of a Named Entity Recognition system based on
an older state-of-the-art model and studying how subword information can improve the
recognition of out-of-vocabulary words. This proposed system besides English has to sup-
port two additional Indo-European languages: German and Hungarian. This work features
a named entity tagger based on deep learning using pretrained and custom-trained word
embeddings, sparse features, and character embeddings extracted by a Convolutional Neu-
ral Network. All these features are then processed by sequence-based (bidirectional Long
Short-Term Memory) and feature-based (Conditional Random Field) approaches with the
goal of achieving a F1-score similar to the work it is based on, and to compare how far
present time state-of-the-art systems have evolved. The result is a system that achieves
a 90.98% F1-score on the CoNLL 2003 English test dataset using pretrained word embed-
dings, not far behind the original work’s 91.26%. For the other two languages, the model
scores 89.34% on the WikiAnn German test dataset and 93.04% on the WikiAnn Hungarian
test dataset with the usage of custom-trained embeddings.

Abstrakt
Cieľom tejto bakalárskej práce je zhotovenie systému rozpoznania názvoslovnej entity zho-
tovenej na základe modelu, ktorý bol nedávno považovaný za jeden z najmodernejších
a popri tom skúma aký vplyv majú podslovné informácie na nahradenie slov mimo slovnej
zásoby. Vytvorený systém vedľa anglického jazyka podporuje aj dva Indo-Európske jazyky
konkrétne nemčinu a maďarčinu. Bakalárska práca predstavuje systém využívajúci hlboké
učenie pre rozpoznávanie názvoslovných entít, ktorý používa predtrénované a samotréno-
vané slovné vnorenia, zriedkavé vnorenia a charakterové vnorenia vyzdvihnuté konvolučnou
neurónovou sieťou. Tieto vnorenia najprv spracujeme sekvenčnou (dlhodobá-krátkodobá
pamäť) a potom charakteristickou (podmienené náhodné pole) metódou. Cieľom je dosiah-
nuť podobnú F1-mieru akú má inšpiračný model s možnosťou porovnania s ostatnými
modernými systémami. Výsledkom našej práce je systém, ktorý na anglickej testovacej
sade CoNLL 2003 dosiahol 90.98%-né F1-mieru používajúci predtrénované vnorenia a pri-
bližuje sa k inšpiračnej práci s hodnotou 91.26%. V prípade ďalších jazykov používajúcich
samotrénované slovné vnorenia dosiahol systém na testovacej sade WikiAnn pre nemčinu
89.34%-nú a pre maďarčinu 93.04%-nú F1-mieru.
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tion
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Rozšírený abstrakt
V rýchlo sa rozvíjajúcom svete kde značné percento dát je prítomné v textovej forme je
čoraz dôležitejšie, aby sme názvoslovné entity vedeli rýchlo a presne vyfiltrovať. Na dosi-
ahnutie tohoto cieľa použili umelé neurónové siete, čím vytvorili nové odvetvie spracovania
prirodzeného jazyka – spoznanie názvoslovnej entity. Má to však aj svoje úskalia, nakoľko
najviac jazykov sa úplne odlišuje tak v gramatike ako aj v slovnej zásobe, tým sťažu-
júc túto úlohu. Táto bakalárska práca skúma v troch jazykoch – angličtine, nemčine a
maďarčine – ako informácie získané z písmen, slovných koreňov a slov ovplyvňujú vyzdvi-
hovanie názvoslovných entitít.

Vďaka medzinárodnosti anglického jazyka vzniklo nespočetné množstvo sústav špecia-
lizujúcich sa na vyzdvihovanie názvoslovných entitít, ktoré pomocou kombinácie rozdielnych
neurónových sietí dosahovali stále precíznejšie výsledky. Na vyhodnotenie takejto sústavy
považujeme do dnešného dňa za smerodajnú F1-mieru, dosiahnutú na anglickej dátovej sade
CoNNL 2003. Táto bakalárska práca berie za základ dva existujúce modely. Prvý skom-
binoval dlhodobo krátkodobú pamäť (LSTM) s konvolučnou neurónovou sieťou (CNN).
Tento model ukázal, že vedľa vnorení slov sa dajú vytvoriť aj vnorenia písmen vďaka čomu
nielen jednotlivé slová ale aj v nich obsiahnuté písmena môžu byť reprezentované číslami.
Druhý model je kombináciou podmieneného náhodného pola (CRF) a dlhodobo krátkodobej
pamäte (LSTM) skúša dosiahnuť, aby slová tvoriace jednotlivé vety neboli skúmané jed-
notlivo ale v závislosti od seba, tým berúc na ohľad kontext slov.

Model nachádzajúci sa v téze používa všetky tri hore spomínané moduly a vedľa dvoch
hustých (slovné, charakterové) vnorení používa aj zriedkavé vnorenie. Cieľom je, aby
vo forme rozdielnych testov vyšlo najavo nakoľko ovplyvňuje celkový výsledok množstvo
a kvalita rôznych vnorení. Pritom cez mnou trénované slovné vnorenia skúšame vyriešiť
takzvaný problém slov mimo slovnej zásoby, ktorý je zlovestnou výzvou rozpoznávania
názvoslovných entít.

Pri budovaní modelu sme pomocou anglickej dátovej sady skúmali efektivitu rozdiel-
nych neurónových sietí, hľadajúc ktorá sieť má najväčší vplyv na výkon modelu. Potom
nasledovala jednotlivá optimalizácia hyperparametrov neurónových sietí, kde vyšlo najavo
ktorými parametrami sa oplatí zaoberať a urobiť viac pokusov. V ďalšom kroku sa testovali
vnorenia a analyzovali výsledky medzi mnou trénovanými a vopred trénovanými slovnými
vnoreniami stiahnutými z internetu. Nakoniec sme sa pozreli či sa môže vylepšiť kvalita
samotrénovaných slovných vnorení doplnením slov mimo slovnej zásoby rôznym spôsobom.
Posledné dva kroky boli zopakované aj v prípade ďalších dvoch jazykov, kým pri hyper-
parametroch boli zmenené iba najvplyvnejšie.

Najlepšie dosiahnuté výsledky sme nakoniec porovnali s výsledkami iných moderných
modelov ktoré pracovali s rovnakou dátovou sadou. Pri anglickom jazyku bolo našim cieľom
priblížiť sa k výsledkom inšpiračného modelu. V tejto bakalárskej práci je najvyššia F1-
miera pri anglických validačných dátach 94.82% pri použití predtrénovaného slovného vnore-
nia, kým pri inšpiračnom modeli je toto číslo 94.03%. Žiaľ pri anglickej testovacej dátovej
sade dosiahol náš model 90.98% čím zaostal oproti pôvodnému modelu s 91.26%. Ostatné
dva jazyky sa nachádzajú v dátovej sade WikiAnn, ktorá vyšla len nedávno, a preto ju málo
modelov používa ako základ pri porovnávaní výsledkov. Pri nemeckom jazyku na testovacej
sade pri použití samotrénovaného slovného vnorenia dosiahol systém 88.82%-né F1-mieru,
po doplnení vnorení pre slová mimo slovnej zásoby sa výsledok zlepšil na 89.34%. V prí-
pade maďarského jazyka bola situácia veľmi podobná, pred doplnením vnorení dosiahol
systém na testovacej sade 92.44%-né F1-mieru, po vnorení týchto slov vyskočila hodnota
na 93.04%.
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Chapter 1

Introduction

Despite rapid technological advances, most of the information is still in textual form. To-
day, even spoken information can be automatically transcribed into text. Yet, since no text
follows the exact same structure, it is nearly impossible to create a system that can ex-
tract information – images, legal information, named entities – in an always consistent
and reliable way. One of the main problems is the diversity of existing languages, all with
their own distinct grammatical rules, making processing the data and finding the required
information a difficult task.

Natural Language Processing (NLP) aims to solve certain problems in information re-
trieval and extraction. Its interest includes, but is not limited to: speech recognition,
lemmatisation, and a subtask of information retrieval, Named Entity Recognition (NER).
As the name suggests, the main purpose of NER is to find proper nouns in a given text and
categorise them. For the English language, one might think of it as a trivial problem since
every proper noun starts with a capital letter, but it is too insufficient for the categorisa-
tion itself, as there are many exceptions, such as the first letter of a sentence or entities
composed of several words, only some of which are capitalised. In addition to this, there
are languages that actually do not have a concept of capital letters, like most languages of
East Asia.

In this work, our aim is to study and understand NER’s statistical methods while har-
nessing the power of neural networks and putting an emphasis on the usage of subword
units. Three different types of neural networks are combined for achieving positive results,
namely a bidirectional Long Short-Term Memory network, a linear-chain Conditional Ran-
dom Field, and finally a character-based Convolutional Neural Network. When it comes to
subword units, the main focus is on word and character embeddings, sparse features, and
the challenges they are able to solve. With all these tools, the goal is to create a system
based on a once state-of-the-art system capable of recognising named entities supporting
English next to two other Indo-European languages, specifically German and Hungarian,
where one has to rely on additional subword information.

Chapter 2 introduces all the necessities, including the different approaches and chal-
lenges associated with NER. It also describes how different neural networks function and
their role within NER. The chapter ends with an introduction of the state-of-the-art systems
that were used as inspiration for the model proposed in this thesis. Chapter 3 describes
the datasets and pretrained embeddings used for each language, and briefly explains how
the custom-trained embeddings were created. Chapter 4 describes the proposed model and
the tools and repositories used for its implementation. Chapter 5 summarises the experi-
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ments conducted with each language while evaluating the accuracy, and finally compares
the results with various state-of-the-art systems.
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Chapter 2

Formulation, approaches and
challenges of Named Entity
Recognition

Thanks to human and machine interaction and communication being a daily occurrence
and a tremendous amount of textual data generated and shared on the Internet, Natural
Language Processing (NLP) has become widely used in the world of data sciences. From
automatic speech recognition to machine translation, this field contains numerous challenges
dedicated to understanding the intricacies of interactions between humans and computers.
One of these tasks, namely Named Entity Recognition (NER), is gaining popularity, as it
is widely applicable for various information extraction problems. This chapter will briefly
explain what NLP is and then dive deeper into how NER works and quickly explains the
challenges that are present during the task and the approaches are used to solve them
plus the metrics used for evaluation. Then this is followed by the exact formulation of the
problem, followed by what neural networks are and how they are used inside the model.
And finally, a paragraph about already existing state-of-art systems, that this work is based
upon.

2.1 Natural Language Processing in a nutshell
There are two types of languages: formal (computer) languages and natural languages. Any
language that has evolved naturally and is used for communication by humans like English,
German, or Czech is considered to be a natural language. NLP studies said languages from
both computational and linguistic standpoint and examines how computers can interact
with them [13].

Elizabeth D. Liddy [14] defines NLP the following way: “Natural Language Process-
ing is a theoretically motivated range of computational techniques for analysing
and representing naturally occurring texts at one or more levels of linguistic
analysis for the purpose of achieving human-like language processing for a range
of tasks or applications.”
Parts of this definition can be elaborated on even more.”Range of computational techniques”
means that there are various approaches existing when it comes to the type of language
analysis. “Naturally occurring texts” means any language that humans use to communi-
cate, both oral and written. The analysed text should not be created for analysis only,
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but taken from actual use. The concept of “levels of linguistic analysis” indicates that we
humans use multiple types of language processing to comprehend or produce languages.
It is speculated that humans utilise every level, since they all convey a different type of
meaning. The problem is that a given NLP system might use only one level, while others
may apply multiple levels of linguistic analysis. This might cause confusion on what can
we consider to be an NLP system, so specialist agreed that if a system uses any subset
of the aforementioned levels of analysis, they are considered to be an NLP-based system.
“Human-like language processing” tells us that it is a branch of Artificial Intelligence (AI).
Even thought NLP depends on other disciples, it still aims to simulate human performance
and can even outperform humans accuracy-wise in certain task, thanks to processing infor-
mation in an entirely different way. “Range of tasks or applications” means that NLP itself
is used to achieve a variety of tasks, be it Information Retrieval (IR), Machine Translation
(MT) or Question-Answering [14].

2.2 Named Entity Recognition
Named Entity Recognition (NER) is one of the challenging subtasks of information extrac-
tion, where the goal is to filter both structured and unstructured documents and pinpoint
phrases that refer to names of persons, locations or organisations. NER is an essential task
and is considered to be a cornerstone of a NLP system. NER can be split into two tasks:
the first is identifying proper names in text. The second part includes the classification into
predefined categories such as names of persons, locations, organisations and other miscella-
neous names. These proper names have been called Named Entities since the sixth Message
Understanding Conference (MUC-6), which contributed significantly to the research of this
area[17]. A typical tagged text made by a NER system looks like the following:

In [LOC Kansas City], [PER Juan Guzman] tossed a complete-game six-hitter to
win for the first time in over a month and lower his league-best [MISC ERA] as the
[ORG Toronto Blue Jays] won their fourth straight, 6-2 over the [ORG Royals].

Contrary to part-of-speech tagging, where every word gets its own tag, NER finds and
labels spans of text where the difficulty stems from the ambiguity of segmentation, meaning
we have to set the boundary of what is considered a named entity and what is not. A high
percent of the words will not be named entities, that is to be expected. The type ambiguity
can cause problems as well. For example, the word “Chelsea” can refer to an individual,
an area in West London, or even a football club [12].

The standard labelling format for NER is BIO tagging [28]. This helps us label the
words with tags that contain both boundaries and the type of the named entity. The BIO
tagging uses 3 characters: B for the beginning of a span of interest, I for words still inside
the span, and O for words that are outside any span. There are also variations like the
IO tagging, which neglects the B tag, thus losing some accuracy and the BIOES tagging
introducing the E tag for ending a given span and the S tag for a single word span [12].
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Word IO Tag BIO Tag BIOES Tag
Martinez I-PER B-PER S-PER
begins O O O
play O O O
against O O O
Ruxandra I-PER B-PER B-PER
Dragomir I-PER I-PER E-PER
of O O O
Romania I-LOC B-LOC S-LOC
. O O O

Table 2.1: Differences between IO, BIO, BIOES tagging illustrated on a sentence taken
from the training set of CoNLL 2003, adapted from [12]

The first approaches to NER were mainly rule-based. They consist of a set of rules
for named entity extraction plus a lexicon containing domain specific words (gazetteers)
which are applied to the text with the help of an extraction engine. The gazetteers and
rule sets were either handmade by humans or extracted from custom-made examples. Rule-
based systems precision is mostly reliant on how comprehensive the gazetteers and rules
are, which explains why they are effective only on narrow domains. Manually incorporating
more words into the lexicons, makes it a very expensive effort for a slight improvement [19].

With more data resources becoming available, the popularity of statistical NLP methods
has risen, incentivising NER research to focus on a more data-driven approach, which
has greatly reduced the cumbersome human work needed to create rule sets and lexicons.
Statistical NER requires two components:

1. A text corpus with annotated words also called training data, as seen in Table 2.1.

2. A statistical model trained to fit this training data.

A statistical model contains parameters that map events of a language to the probability of a
predefined label. If a model would be trained on the sentence “Chelsea bought Lukaku.” the
model would try to predict how likely each word can be marked with one of the predefined
labels. There are multiple choices for classification, one of them is to classify every word on
its own, which is usually done by supervised learning models but this would mean that the
dependency between words would fail to be taken into account. Instead, NER is considered
to be a sequence labelling task in which the system tries to predict the labels of an entire
sequence of tokens, thus modelling the dependency existing between tokens. This way,
in the previous example, the word “Chelsea” is easier to label correctly when the entire
sequence is known, as it reduces the problem of disambiguation [19].

2.2.1 Challenges in Named Entity Recognition

There are various challenges one has to solve when dealing with NER, like the previously
mentioned word ambiguity. In addition to that, there are abbreviations such as writing
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WHO instead of Word Health Organisation or just simple grammatical mistakes found in
the text corpora. One of the major challenges when it comes to datasets or even real data
is the so-called out-of-vocabulary (OOV) problem. To put it simply, let us suppose that a
training set has a thousand-word vocabulary, while the test set contains another thousand.
Each word that is found in the training set, but not present in the test set is considered to
be an OOV word.

There are multiple methods to solve the OOV problem. One of the easiest techniques
is simply assigning random embeddings to each word that does not have one. This solution
is mediocre at best because assigning random numbers and hoping that the model can
optimise them during training is not reliable. A different approach would be to use the
neighbouring words as a reference to create a word embedding for the OOV word. This
is done by averaging two or three neighbouring embeddings from both sides to acquire a
better representation of the unknown word. This works better most of the time, as words
usually depend on each other to form a coherent sentence, but it still heavily relies on
the optimisation of the training process. One of the best methods is to use external tools
like fastText1 to train word vectors on a large amount of data, which results in a model
capable of creating word embedding for words it has never before seen. The accuracy of
the embeddings is still dependent on words seen during the training of the external model,
but with a large enough training data finding similar expressions to deduce embeddings for
OOV words. All of these techniques are going to be tested to see which method performs
the best on real data.

The second big challenge is tied more so to the language itself, as different languages
have distinct grammatical rules, syntaxes, and morphologies. This thesis deals with two
Indo-European languages, namely English and German, where the former is classified as
an analytic language and the latter is an inflected language. Besides these two, there is
also Hungarian, which is an agglutinative language. The similarities and differences that
are considered important for NER are demonstrated with short sentences in Table 2.2.

English German Hungarian
I love Czechia. Ich liebe Tschechien. Szeretem Chehországot.
I live in Czechia. Ich lebe in Tschechien. Chehországban élek.
I travel to Czechia. Ich fahre nach Tschechien. Chehországba utazom.
I come from Czechia. Ich komme aus Tschechien. Chehországból jövök.
I write about Czechia. Ich schreibe über Tschechien. Chehországról írok.

Table 2.2: Illustrating the similarities and differences between English, German and Hun-
garian languages.

It is immediately obvious that the biggest difference is in the usage of prepositions. Both
English and German use prepositions, which ensures that the named entity itself does not
change its form, as seen in the examples “Czechia” and ”Tsechien” always stay the same.
For Hungarian, it is the exact opposite, as agglutinative languages keep adding affixes to
the stem of the word to change its meaning. So, while the stem “Csehország” is consis-
tent, adding different affixes like “-ban” or “-ból” change both meaning and form of the
word. This causes a substantial problem when it comes to word embeddings, because each
affix connected to the word, means another entry added into the word embeddings. This
results in having the same named entity unnecessarily repeated multiple times without a

1https://fasttext.cc/
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meaningful change in its numerical representation. The solution to this problem is to try to
detect the stem of the word instead of trying to create word embeddings for each variation.
This is why character-based Convolutional Neural Networks are commonly used to handle
this problem, as they look at the word character by character. When it comes to words
like “Csehország” and “Csehországot”, which differ only in two characters, the Convolu-
tional Neural Network detects this and creates two very similar character embeddings for
them. Therefore, the ideal way to solve this problem is combining both word and character
embeddings to get the best possible numerical representation for each word.

2.3 Evaluation metrics
During training it is important to measure how well the system performs, so at regular
intervals the model evaluates how accurate it is in predicting the correct tags for all sentences
in the development set and when the model performs the best a model checkpoint is set
up to be later used on the test set. However, simply calculating the amount of predictions
guesses and dividing it by all of the predictions made would give a poor representation of
how accurate the model really is, since correctly predicting the O tag is also counted, which
is the most frequent tag. A better method is to evaluate only the named entities, which is
why the F-score is used instead for measuring how well the system does. The rest of this
section is based on [33]. To be able to measure the classification’s quality, both correct and
incorrect examples have to be taken into account, meaning there are four possible outcomes
of the recognition, which is easily demonstrated on the following confusion matrix:

Recognized as Positive Recognized as Negative
Positive True Positive False Negative
Negative False Positive True Negative

Table 2.3: A confusion matrix for classification. Taken from [33].

When it comes to NLP, the interest lies in finding the positive cases; thus two metrics
named precision and recall have been defined with the following formulas:

precision =
number of true positives

number of true positives + number of false positives (2.1)

recall = number of true positives
number of true positives + number of false negatives (2.2)

The F-score is the harmonic mean of precision and recall, the only thing left is adding the
variable 𝛽 which is used to choose which of these two measurements is preferred. In case
of 𝛽 being 1 it is balanced, if 𝛽 < 1 recall is considered to be the more important metric in
the other case the precision is favoured.

𝐹 -𝑠𝑐𝑜𝑟𝑒 = (𝛽2 + 1) · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙

(2.3)

2.4 Formulation of the problem
This section is adapted from [34]. The goal of NER is to predict the output variables y
given a set of input variables x. To be more precise, x is a vector representing each word
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in a sentence, while y is a vector containing the corresponding tag for every word. For
example, there are 𝑁 input and output pairs x𝑖,y𝑖 ∀𝑖 = 1 . . . 𝑁 within the input sequence
x. To make it simpler, let us work only with one sentence, which has 𝑇 number of tokens.
This way, the two vectors can be written as:

1. Input sequence tokens :
xi = [𝑥1, 𝑥2, . . . , 𝑥𝑇 ]

2. Output labels :
yi = [𝑦1, 𝑦2, . . . , 𝑦𝑇 ]

There are various approaches and models that exist when it comes to NER. The easiest
way to look at the problem would be to simply consider it as a classification problem
and try to classify each word independently. This technique is non-traditional naive Bayes
classification, and as the name suggests, it is based on the Bayes theorem, but the emphasis
is on the naive assumption that all the input tokens are independent. It is also non-
traditional, as in the case of traditional naive Bayes 𝑦 is not a sequence. A probabilistic
formulation would be the following:

𝑝𝜃(y | x) = 𝑝(x,y)

𝑝(x)
=

𝑝(x | y)𝑝(y)∑̄︀
y∈𝒴

𝑝(x | y = ȳ)𝑝(ȳ)

=

𝑇∏︀
𝑡=1

𝑝(𝑥𝑡 | 𝑦𝑡)𝑝(𝑦𝑡)∑̄︀
y∈𝒴

[︂∏︀
𝑡
𝑝(𝑥𝑡 | 𝑦𝑡 = 𝑦𝑡)𝑝(𝑦𝑡 = 𝑦𝑡)

]︂
(2.4)

Here, 𝒴 marks all the possible tags. The equation above can be illustrated graphically,
which makes understanding the essence of the non-traditional naive Bayes easier. Figure 2.1
illustrates how it would look as a simple directed graph.

X1 X2 XT

y1 y2 yT

Figure 2.1: Directed graph of the naive Bayes classifier. Neither the input tokens, nor the
output labels are dependent on each other, each and every one of them is classified on its
own.

As mentioned in Section 2.2 it is important to model the dependency between words.
This is why a better approach for this task is the Maximum Entropy Markov Model
(MEMM), also known as Logistic Regression. Unlike the naive Bayes classifier, it assumes
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that the input sequences are conditionally dependent on each other. The formulation of
the logistic regression is the following:

𝑝𝜃(y | x) =
𝑇∏︁
𝑡=1

𝑝(𝑦𝑡|x) =
𝑇∏︁
𝑡=1

exp

{︂
𝜑(x, 𝑦𝑡)

}︂
∑︀
𝑦𝑡∈𝒴

∏︀
𝑡
exp

{︂
𝜑(𝑥, 𝑦𝑡 = 𝑦𝑡)

}︂ (2.5)

Here in the case that 𝜑 would be a linear regression then this would be considered a
MEMM, but in the case that it being, for example, a BiLSTM then it cannot be considered
one. The MEMM uses the whole input sequence x as a monolithic variable. This means
that the output is dependent on the whole sequence instead of only the current word.
Figure 2.2 shows this dependency:

y1 y2 yT

x

Figure 2.2: Directed graph illustrating linear regression.

The final improvement to this model would be creating a dependency between the output
tags as well. An obvious upgrade would be to make each output label dependent on the
previous label. This would allow for better recognition, especially when it comes to named
entities consisting of multiple words. This is precisely what the linear chain Conditional
Random Field is capable of doing, which is formulated in the following way:

𝑝𝜃(y | x) = 𝑝(𝑦1 | x)
𝑇∏︁
𝑡=2

𝑝(𝑦𝑡 | 𝑥, 𝑦𝑡−1)

=

exp

{︂
𝜑(𝑥, 𝑦𝑡) + 𝑇 (𝑦𝑡, 𝑦𝑡−1)

}︂
𝑍(𝑥)

(2.6)

The training of a linear-chain CRF is usually done with maximum likelihood seeking 𝜃*,
which can be imagined as the combination of the model’s parameters meaning the weights,
biases, embeddings and transitional probabilities. In the above equation, T stands for the
transition scores, and Z(x) is called the partition function. All of these parameters will
be explained later in detail in Section 2.5.5. So, the main objective is to maximise this
likelihood:

𝜃* = argmax𝜃
∏︁
𝑖

𝑝𝜃(yi|xi) (2.7)
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Technically, to get the exact same results, one can also just minimise the loss as follows:

argmin𝜃 −
∏︁
𝑖

𝑝𝜃(𝑦𝑖|𝑥𝑖) (2.8)

Figure 2.3 demonstrates how the linear-chain Conditional Random Field would look
like:

x

y1 y2 y3 yT

Figure 2.3: Directed graph illustrating the linear-chain Conditional Random Fields.

2.5 Approaches to Named Entity Recognition

2.5.1 Word embeddings

This subsection is based on [4].One of the significant breakthroughs for NLP problems was
the usage of word embeddings, allowing words that are similar in meaning to have resem-
bling representations. Word embeddings are real vectors in a predefined vector space where
every individual word gets its own vector, thus creating a densely distributed representa-
tion. These vectors can have tens, or even up to hundreds of dimensions, which is still
significantly less than the thousand of dimensions used for methods like one-hot encoding.
The distributed representation tries to capture the meaning of words, so words that are
used in a similar fashion are closer to each other. This strongly differs from the bag-of-
words model where the usage of the words is not taken into account, so different words all
get their own representation.

There are three main ways that word embeddings can be learned from text. The first
one is called an embedding layer, which needs the document to be prepared, so then every
word can get one-hot encoded. Then the vectors are randomly initialized, while the size of
the vector space varies based on the model. This so-called embedding layer then gets fed
into the neural network, aiding the supervised learning process. This method requires a big
amount of training data and is quite slow, and can be used only with the specific data it
was trained on.

The second is a statistical method called Word2Vec [18] specialised for developing pre-
trained word embeddings from a text corpus. It introduced a deeper analysis of word
vectors and created stronger ties between the representations of words. For example, if we
take the word “King” and subtract “manliness” from it, and then we add “womanliness”
the result would be the word “Queen” because these embeddings learned to capture the
relationship between man and woman. Word2Vec introduced two learning models as well:
one being the Continuous Bag-of-Words (CBOW) model, which learns by using the context
to predict the current word. The other is the Continuous Skip-Gram Model doing the exact
opposite, predicting the context based on the current word. These approaches have a huge
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advantage, namely their low time and space complexity allows learning embeddings from
bigger corpora, often with billions of words.

The final algorithm is the Global Vectors for Word Representation (GloVe) [25] refining
the Word2Vec method, applying matrix factorisation techniques that excel at using global
text statistics with the aforementioned context-based learning. With the construction of a
word co-occurrence matrix and the help of statistics extracted from the corpus, it manages
to create a learning model resulting in a higher quality word embeddings.

2.5.2 Neural network

This section has been adopted from [40]. Artificial neural networks (in simple terms, neural
networks) take the human brain as an inspiration, where billions of neurons work tirelessly
to process information in parallel. Neural networks are made up of layers: an input layer
of nodes, one or multiple hidden layers of nodes, and an output layer of nodes. Every node
in one layer is connected to the adjacent one, and every connection is associated with a
numerical value called weight. If we have a neuron 𝑖 in the hidden layer, we can write its
output as:

ℎ𝑖 = 𝜎(
𝑁∑︁
𝑗=1

𝑉𝑖𝑗𝑥𝑗 + 𝑇 ℎ𝑖𝑑
𝑖 ) (2.9)

where:

ℎ𝑖 = output of neuron i

𝜎 = activation function

𝑁 = number of input neurons

𝑉𝑖𝑗 = weights

𝑥𝑗 = inputs fed to the input layer

𝑇 ℎ𝑖𝑑
𝑖 = threshold of the hidden neurons

The intention behind the activation function is to confine the value of a neuron, so that the
neural network is not impaired by divergent neurons. One common activation function is
the sigmoid function, but there are also others, such as the arc tangent or the hyperbolic
tangent. With this architecture, any computable function can be approximated to an
arbitrary precision.

The other crucial component of a neural network application is training, which is per-
formed by feeding the neural network data from the training set. The purpose of training
is to adjust the weights of the connected neurons, which is done by minimising the loss
function. One of the common functions is Mean Squared Error, which takes the sums of
the squared differences between the expected outputs and the actual outputs of the neural
network. In the case of this work, if the CRF is used, then the Negative Log Likelihood Loss
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is used to minimise the loss, in other case the Cross-Entropy loss is used instead, which
aims to maximise the posterior probability of the correct label, given the input data and the
model parameters. To help experiment with different architectures, another data set can be
applied to the already trained network, simply named as validation set. The one producing
the best results is then picked up and used later on. Finally, the last independent data
set named test set is utilised to determine the level of performance, showing how well the
neural network performs on a previously unseen set. On the one hand, if the performance
is good on the test set, it means that the neural network is able to generalise well. On the
other hand, if the performance is poor on the test set but at the same time good on the
training set, that could boil down to the following:

1. The neural network did not generalise well enough.

2. The neural network has overfit on the training data.

3. The test data can be from an entirely different domain.

To avoid either of these possibilities, the training set has to be big enough, so the neural
network could memorise characteristics embedded in it, but at the same time not too big
as to avoid making the network waste precious resources on fitting the noise. Therefore,
a thoughtful representation of the data is vital to creating a successful implementation of
neural networks.

N1 N2 N3 N4

N5 N6 N7

N8 N9

w1
w2
w3 

Output
layer

Input
layer

Hidden
layer

Ni ... neurons

wi ... weights

Figure 2.4: Possible architecture of a feed forward neural network

2.5.3 Long Short-Term Memory

Human thoughts have persistence, if we are reading some text we do not start thinking from
scratch every time but try understanding the next word based on the previous one read. The
same cannot be said for the aforementioned neural networks. Recurrent neural networks
(RNN) solve this issue by having loops in them, thus allowing information to persist. It
can be imagined as multiple copies of the same network, and every one of them passes a
message to their neighbour. In theory, carefully choosing the right parameters means that
RNNs are capable of handling long-term dependencies. In practice, this is not the case,
this is why a special kind of RNN has been designed explicitly to solve this dependency
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problem. The Long Short-Term Memory Network (LSTM) was created by Hochreiter and
Schmidhuber [11] to remember information for a long period of time[6].

Neural Network Layer Pointwise
Operation Vector Transfer Concatenate Copy

X

X +

Xt-1

ht-1

tanh

sigmsigm tanh sigm

X
Previous Cell

X

X +

Xt+1

ht+1

tanh

sigmsigm tanh sigm

X
Next Cell

X

X +

Xt

ht-1

tanh

sigmsigm sigm

X

tanh

Figure 2.5: Repeating modules in an LSTM network, inspired by [6].

LSTM layer is described by [10] in the following way: “An LSTM layer consists of a set of
recurrently connected blocks, known as memory blocks. These blocks can be thought of as
a differentiable version of the memory chips in a digital computer. Each one contains one or
more recurrently connected memory cells and three multiplicative units – the input, output
and forget gates – that provide continuous analogues of write, read and reset operations for
the cells. . . . The net can only interact with the cells via the gates.”

One of the most significant improvements of the LSTM is the bidirectional LSTM.
Conventional RNN has another weakness, it only makes use of previous context and does
not take future context into account. Bidirectional RNN solves this issue by having two
separate hidden layers processing the input data from both directions: one layer in the
forward direction, the other in reverse. For every time step, the output of the BiLSTM
layers is generated by combining the cell memory vectors of the two LSTM from both
sides. This means that the contextual information of the whole sequence is taken into
consideration [39].

2.5.4 Convolutional Neural Network

Convolutional Neural Networks (CNNs) were inspired by mammal’s cortical region, to be
more exact small areas of cells in the cortex that are sensitive to specific areas in the
field of vision. CNN is made up of different collection of layers, each different in their
functionality, so they are divided into three categories: convolution layer, pooling layer and
fully connected layers [31].The rest of the subsection is based on [42].

The convolution layer is a crucial part of CNN that is responsible for feature extraction,
which combines convolution operation with an activation function. The most frequently
used activation function is the rectified linear unit (ReLU), but the sigmoid or the hyperbolic
tangent functions are viable as well. The convolution operation uses a kernel, which is
a small array of numbers that is applied across the input. This input is also an array
of numbers called tensor. Both kernel and input can be either one-dimensional (audio,
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text), two-dimensional (image) or even three-dimensional (video, 3D image). A Hadamard
product between every element of the kernel and the tensor is computed and summed at
every location of the tensor. The output values make up the output tensor also called
feature map. This method is repeated with multiple kernels to create arbitrary amounts of
feature maps, each representing a different characteristic of the input tensor.

One problem with this operation is that it does not allow the centre of any kernel to
overlap with the outermost element of the input tensor, thus reducing both the height
and the width of the feature map. This problem is counteracted by using zero padding,
simply adding rows and columns of zeros to each side of the input tensor. Without it, each
consecutive feature map would shrink in size after a convolution. The final parameter of
convolution is the stride, describing the distance between two successive kernel positions. A
stride greater than 1 is used in case feature maps need to be downsampled. During training,
the main goal of the convolution layer is the identification of the best kernels based on the
training data. Only the values of the kernel are learned automatically during training; the
aforementioned hyperparameters, like kernel size, number of kernels, padding, and stride
are set before the training starts.

0 2 4 3 5 2 1 4 0

1 1 0
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Input tensor (7x1) 
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Zero  padding
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Figure 2.6: Example of a convolution operation on a one-dimensional tensor with zero
padding and kernel size 3× 1 with a stride of 1

The pooling layer reduces the dimension of feature maps (downsampling), thus decreas-
ing the amount of subsequent learnable parameters. During training, the pooling layer is
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unable to learn anything, but has almost identical hyperparameters as the previous layer,
namely: filter size, stride, and padding. One established operation is max pooling, which
extracts patches from the input feature maps and returns the maximum value from each
patch. For image classification a commonly used filter size is 2 with a stride of 2, which
achieves downsampling the feature map’s in-plane dimension by a factor of two, while keep-
ing the depth dimension unchanged. For the creation of character embeddings as there is
no downsampling needed, a stride of 1 is preferred instead.

4
7

9
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7

7
9

7

Input tensor (6 x 1)

Output (3 x 1)

Figure 2.7: Example of max pooling with filter size of 2 and with a stride of 2.

The output of the final convolution or pooling layer is transformed into a one-dimensional
array, which then serves as the input for one or multiple fully connected layers, which is a
simple feed forward neural network. After each fully connected layer, there is an activation
function like the previously used ReLU. The final fully connected layer most of the time has
the same amount of output nodes as the number of classes in the given classification task.
Following the final fully connected layer, an appropriate activation function is needed based
on the task at hand. For a classification problem with multiple classes, the softmax function
is applied, which normalises the output real numbers to the target class probabilities, so
the values are between 0 and 1 and their sum equals to 1.
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Figure 2.8: Example of how the thesis model will use the Convolutional Neural Network to
extract character features.

2.5.5 Conditional Random Field

Conditional Random Field (CRF) combines discriminative classification with graphical
modelling, which allows the creation of models having multivariate outputs y while us-
ing a considerable amount of input features x for prediction [34]. They are all undirected
graphical models, but the most commonly used graphical structure is the linear chain,
which resembles a finite-state machine, which is therefore qualified for sequence labelling
[24]. The rest of this section is adapted from [38]. For a sequence labelling problem, we
want to solve the conditional probability 𝑝(y | x) where y is a sequence of labels and x is
a sequence of input vectors. Considering this as a regular classification problem, we can
multiply the probability of each item at k-th position, which results in:

𝑃 (y|x) =
ℓ∏︁

𝑘=1

𝑃 (𝑦𝑘|𝑥𝑘)

=
ℓ∏︁

𝑘=1

exp (𝑈(𝑥𝑘, 𝑦𝑘))

𝑍(𝑥𝑘)

=
exp

(︁∑︀ℓ
𝑘=1 𝑈(𝑥𝑘, 𝑦𝑘)

)︁
∏︀ℓ

𝑘=1 𝑍(𝑥𝑘)

(2.10)

Here, ℓ means the length of the given sequence. There are multiple reasons for using the
exponential, as it helps avoiding problems like underflow and having to work with negative
numbers, and most importantly it allows to create a log-linear formulation. 𝑈(𝑥, 𝑦) is called
unary scores because it gives a score to a label y given the x vector at time step k. The
unary function can be based on simple rules or statistics that can provide a score for the
probability that the input 𝑥𝑘 belongs to label 𝑦𝑘. In the case of the thesis model, the easiest
way is to think of them as the outputs of the BiLSTM. 𝑍(𝑥) is named partition function,
which is used for normalisation since the results will be probabilities.
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After this, new learnable weights are added to represent the probability of label 𝑦𝑘 being
followed by 𝑦𝑘+1. This way, there is a dependency between each successive label, which
justifies the name linear chain CRF. The previous probability is multiplied by 𝑃 (𝑦𝑘+1|𝑦𝑘)
and by using the exponential properties the result is:

𝑃 (𝑦|𝑋) =
𝑒𝑥𝑝

(︁∑︀ℓ
𝑘=1 𝑈(𝑥𝑘, 𝑦𝑘) +

∑︀ℓ−1
𝑘=1 𝑇 (𝑦𝑘, 𝑦𝑘+1)

)︁
𝑍(𝑋)

(2.11)

where:

𝑈 = Unary scores meaning how likely is the label 𝑦𝑘 given 𝑥𝑘 as the input

𝑇 = Transition score meaning the probability of the label 𝑦𝑘 being followed by 𝑦𝑘+1

𝑍 = Partition function used for normalization

The problem lies within the partition function, which would need to cycle through and
sum over every possible combination the label set can have at each time step. This would be
computationally difficult, so it is solved by using dynamic programming with an algorithm
called the Viterbi algorithm, but its specific explanation is beyond the scope of this work.

2.6 State-of-art Name Entity Recognition system
This work is based on two different NER systems. The work of Chiu and Nichols [5] com-
bines both word and character embeddings next to lexicons to achieve a high accuracy on
the CoNLL 2003 English dataset. Their model extracts features from every word, which
then gets fed into a stacked bidirectional LSTM network and gets turned into probabilities
with the help of different layers such as linear and log-softmax. With the help of a con-
volution and max pooling layer, they create feature vectors for each character using the
character embedding. To make this easier, zero padding is used to make every word have
the same length. For word embeddings, they experimented with both GloVe and Word2Vec
embeddings, but their best performing model uses the 50 dimensional embeddings created
by [8]. Additionally, a lexicon was compiled from named entities from DBpedia, to help
encode words found both in the corpus and the lexicon into their BIOES annotated form.
With these features, their model has managed to achieve a 94.03 F1-score on the CoNLL
2003 development set.
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Figure 2.9: The model of Chiu & Nichols. Picture from [5].

The other work from Abujabal and Gaspers [1] concentrates on subword units and uses
a bidirectional LSTM-CRF network. The CRF part replaces the normally used softmax
layer, which turns the LSTM output into probabilities. For every subword unit, there
is a bidirectional LSTM creating a word embedding based on the characters, bytes, and
phonemes that are making the current word up. This allows to mitigate the problem
with out-of-vocabulary words not being present in the pretrained word embeddings. Their
datasets contain requests made to voice-controlled gadgets in four languages, including
English, French, German, and finally Spanish. Their best performing model combined the
character and phoneme units to achieve a 94.02 F1-score on a real-world English dataset.
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Figure 2.10: The model of Abujabal & Gaspers uses a bidirectional LSTM layer with
the CRF layer used for decoding. For every word, their model learns the embeddings
from characters, phonemes and bytes, meaning the usage of dedicated embeddings is not
required. Source: [1].
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Chapter 3

Used datasets and pretrained word
embeddings

When training a neural network, a large amount of data is needed as it attempts to learn
semantic representations of words in context. There is a large amount of textual data
available for use, and finding correctly annotated data for Named Entity Recognition(NER)
in many languages has become easier than ever. The same applies to word embeddings,
as there are many tools that allow their creation given enough text resources. For NER in
English, one of the regularly used datasets for performance benchmark is the CoNLL-2003
Shared Task [37] dataset. When it comes to other languages, the more recent WikiAnn
dataset [22] contains annotated sentences for around 200 languages from which Hungarian
and German will be used. Word embeddings are just as important for the success of NER, so
two variants will be mentioned in this chapter. Word embeddings that were already trained
on some data and available for download, called pretrained embeddings, and custom-trained
embeddings, which were created by downloading different corpora and using tools to create
embeddings for each language.

3.1 CoNLL-2003 dataset
The CoNLL-2003 dataset covers two languages: German and English. The English data
is created from 1 year’s worth of stories from the Reuters Corpus, which contains news
articles. The data contain 4 types of named entities: persons, organisations, locations and
miscellaneous marked as PER, ORG, LOC and MICS, respectively. The dataset uses the
BIO tagging to distinguish multi-word named entities.

Training Development Test
Sentences 14 987 3 465 3 683
Tokens 204 567 51 578 46 666
Named entities 23 499 5 942 5 648
LOC 7 140 1 837 1 668
MISC 3 438 922 702
ORG 6 321 1 341 1 661
PER 6 600 1 842 1 617

Table 3.1: Statistics of the CoNLL-2003 English data.
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3.2 WikiAnn dataset
Wikipedia is currently one of the largest multilingual datasets that contains labels specifi-
cally for NER and supports a myriad of languages. The original WikiAnn dataset [22] uses
Wikipedia articles to create annotated data for 282 languages, using external knowledge
bases and neural networks. Their work was refined by [27], thus producing balanced splits
for 176 languages, with the BIO tagging and supporting 3 types of named entities: loca-
tions, persons and organisations. Out of these 176 languages, this work uses the German
and Hungarian datasets.

WikiAnn - Hungarian Training Development Test
Sentences 20 000 10 000 10 000
Tokens 180 653 88 792 90 302
Named entity tokens 28 507 14 086 14 163
LOC 11 566 5 611 5 671
ORG 8 070 4 025 3 982
PER 8 871 4 450 4 510

Table 3.2: Statistics of the Wikiann - Hungarian dataset

WikiAnn - German Training Development Test
Sentences 20 000 10 000 10 000
Tokens 195 387 97 805 97 646
Named entity tokens 27 643 13 818 13 868
LOC 9 778 4 968 4 961
ORG 8 575 4 281 4 157
PER 9 290 4 569 4 750

Table 3.3: Statistics of the WikiAnn - German dataset

3.3 Pretrained word embeddings
When it comes to pretrained word embeddings, the two most popular choices are created
through Word2Vec or GloVe, as already discussed in 2.5.1. For the English dataset, two
pretrained embeddings made by GloVe1 were experimented with. One of them has been
made out of Wikipedia dumps and Gigaword5, and contains 6 billion tokens with a 400
thousand word vocabulary, while the other one from 2 billion tweets, which adds up to
27 billion tokens with a 1.2 million word vocabulary. For the German language, GloVe
embeddings created from Wikipedia articles were acquired from Deepset2. For all three
languages, word embeddings from fastText3 were used, which were created based on the
work of Bojanowski et al.[3]. They were trained on Wikipedia data, using a skip-gram
model.

1https://nlp.stanford.edu/projects/glove/
2https://www.deepset.ai/german-word-embeddings
3https://fasttext.cc/docs/en/pretrained-vectors.html
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3.4 Data for training word embeddings
Thanks to the large amount of text resources available and tools such as fastText4 and
GloVe5 existing, creating word embeddings is now an easily achievable task. The process
starts with the acquisition of a large amount of textual data for the three languages, from the
website Opus6. The tables below give information about the corpora used for each language.
All text data are concatenated, then sentences are tokenised followed by word tokenization
with the help of the NLTK library7. These tokenised data are then used to train a skip-gram
with subword information. The first output is the word embeddings themselves, the other
is the model itself, that can be used to infer embeddings for out-of-vocabulary(OOV) words
via the nearest neighbour query. As mentioned in Section 2.2.1 there are multiple strategies
for obtaining embeddings for OOV words, and the nearest neighbour was one of them. The
experiments carried out using different methods are presented later in Chapter 5.

English
Corpus Tokens
WikiMatrix [32] 1 000 000 000
EU bookshop [36] 380 200 000
Wikimedia [36] 349 200 000
TildeMODEL [30] 131 400 000
Europarl [36] 33 000 000
TED2020 [29] 5 900 000
News Commentary [36] 4 900 000
Multi UN [36] 4 700 000
Global Voices [36] 1 300 000
Sum 1 910 600 000
Unique Words 5 062 525

German
Corpus Tokens
WikiMatrix 443 100 000
Wikimedia 11 000 000
TildeMODEL 108 800 000
EU bookshop 337 400 000
Europarl 30 500 000
TED2020 5 400 000
News Commentary 5 000 000
MultiUN [36] 4 300 000
Global Voices 1 300 000
ParaCrawl8 450 700 000
Open Subtitles9 [15] 4 000 000
Sum 1 397 900 000
Unique Words 8 477 877

Table 3.4: Statistics of the English and German corpora used for training of embeddings.

4https://fasttext.cc/docs/en/unsupervised-tutorial.html
5https://github.com/stanfordnlp/GloVe
6https://opus.nlpl.eu/
7https://www.nltk.org/
8https://paracrawl.eu/
9https://opus.nlpl.eu/OpenSubtitles-v2018.php
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Hungarian
Corpus Tokens
WikiMatrix 99 700 000
Wikimedia 2 300 000
TildeMODEL 43 000 000
EU bookshop 14 800 000
Europarl 12 300 000
TED2020 4 900 000
ParaCrawl 3 800 000
Open Subtitles 500 000
Sum 181 300 000
Unique Words 3 538 450

Table 3.5: Statistics of the Hungarian corpora used for training of embeddings
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Chapter 4

Design and implementation of the
proposed system

With the theory discussed above, the next step is to show how the proposed Named En-
tity Recognition(NER) model is designed. This chapter gives a brief overview of how the
proposed model block schema looks like and what important parameters does it use, and
going over which technologies were used to create the system.

4.1 The proposed Named Entity Recognition system
As this thesis is inspired by the two previously mentioned systems in Chapter X the first
obvious choice is to include a bidirectional Long Short-Term Memory (BiLSTM) network
as it serves as the basis for both of these models. As the goal is to utilize subword units,
the addition of the character-based Convolutional Neural Network’s(CNN) improves per-
formance especially when used together with word embeddings as it reduces problems when
it comes to out-of-vocabulary words. And finally a Conditional Random Field layer which
makes the predictions for a word dependent on every immediate neighbour, thus incorpo-
rating context for every prediction. With all this in mind, I decided to create the system
shown in Figure 4.1.

This system exploits subword information with the combination of three different vec-
tors, starting with loading in the pretrained word embeddings (dense features) giving a
multidimensional numerical representation for each word. This is followed by the creation
of the sparse features, which take into account only three properties per word, namely: if
it starts with a capital letter, if it is a digit, or if it contains a digit. For every matching
property, it gets a 1 otherwise a 0, creating a vector mostly containing zeros, hence the
name sparse representation. And finally, the features extracted from the characters via the
character-based CNN. The pretrained word embeddings, sparse features, and representa-
tions from the character-based CNN are concatenated and fed into the BiLSTM memory
network with the goal of acquiring tag scores. The Hidden to Tag layer is there in respect
to the implementation as it helps transform the output of the BiLSTM into the correct
shape, meaning it can transition forward into the layer with the Conditional Random Field
(CRF). During training the CRF layer will be used to calculate the negative log-likelihood
loss, which will be used for the backpropagation process, which simply means updating the
parameters of the model which include the weights of the neural network and the transition
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probabilities of the CRF. When it comes to the evaluation part, the Viterbi algorithm is
used, to get the most likely sequence of tag scores.

Figure 4.1: The proposed NER model, containing three different modules : Convolutional
Neural Network (Char CNN), a Long Short-Term Memory (LSTM) network and finally the
Conditional Random Field (CRF).

Naturally, as the system is made up of smaller functioning units, it is unavoidable to
have multiple important parameters where each of them has a significant say in what the
final results will be. Some of the important hyperparameters and the results achieved with
them are presented later in Chapter 5. There are various hyperparameters just for the
character-based Convolutional Neural Network alone, for example:

• Character embedding dimension – deciding the size of the vector representing each
character in a word.
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• Number of character filters (kernels) and the convolution width – indicating how
many times the convolution and max pool layers are repeated in the network, and
how many filters are applied at each convolution operation.

• The other hyperparameters are related to the convolution operation, assigning the
kernel’s size, the stride used and if padding is necessary as seen already in 2.6

The following important hyperparameters are connected to the training itself:

• Dropout – zeroes some of the elements in a tensor, to avoid overfitting.

• Batch size – meaning how many sentences does the system go through before updating
the model parameters. For example, having 1000 sentences with a batch size of 50
means that there will be 20 batches with 50 sentences each.

• Epochs – indicate how many times does the program go through the whole training
set, simply said going through every batch.

• Optimizer – for obtaining the gradient and updating the model parameters.

• Learning rate – connected to the optimizer, decides how quickly does the model adapt
to the task, and how big of a change is allowed for the weights during backpropagation.

4.2 Implementation tools
I chose Python1 as the implementation language as it is very versatile and universally used
to tackle different machine learning tasks. It also supports object-oriented programming,
making it easier to build the application as individual blocks working together.

With that in mind, the next step is choosing a machine learning library to fit the needs
of the system. One of the best open source libraries, PyTorch [23], created by Facebook’s
Artificial Intelligence Research lab, has become really popular thanks to its intuitive nature
and well-documented functionality. The library was written mostly in C++, thus ensuring
high performance. It provides not only computation with tensors, which can be accelerated
by the graphics card for faster and more efficient calculations, but also contains frameworks
for different deep neural networks. It also provides the ability to convert NumPy arrays into
PyTorch tensor, and support creating custom datasets by subclassing the library’s dataset
class and implementing methods for indexing and returning the length.

There are countless implementations of NER systems online. As such, I have taken
inspiration from cswangjiawei’s public GitHub repository2 for the creation of the model
itself and how the character-based Convolutional network is built up. For the Conditional
random field the code has been taken from NCRF++ repository3 which is an open source
sequence labelling toolkit. When it comes to the evaluation the CoNLL 2000 Shared Task
included an evaluation script in Perl language, and the same script4 has since been remade
in Python language supporting every kind of dataset, provided that it is made with IOB2
or IOBES tagging.

1https://www.python.org/
2https://github.com/cswangjiawei/pytorch-NER
3https://github.com/jiesutd/NCRFpp/tree/master/model
4https://github.com/sighsmile/conlleval
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Chapter 5

Experimentation and comparison
with state-of-the-art systems

Experimentation is the most important part of this thesis, as the goal is to achieve better
results by combining two existing Named Entity Recognition (NER) models and, more
importantly, to study and analyse the NER approaches for OOV words. Detailed analysis is
performed to see how the addition of neural networks and Conditional Random Field (CRF)
affects the precision of the system. Testing will take place on different datasets for English,
German, and Hungarian languages, but to avoid repetition, hyperparameter tuning and
detailed analysis are only included once on the English dataset for the sake of comparison.
This chapter contains experiments showing how influential adding different modules is to
the system when working with the English dataset, then how the best hyperparameters
were found during the continuous testing, how exactly did the system fare with the other
two languages, and finally a comparison with other state-of-the-art systems.

5.1 Experimentation with neural networks
To start with the experimentation, the bidirectional Long Short-Term Memory (LSTM) net-
work has been implemented, followed by the character-based Convolutional Neural Network
(CNN) and the Conditional Random Field(CRF). As mentioned, each of the experiments
uses the CoNLL 2003 English dataset and one of the available pretrained word embeddings.
I decided to use the 100 dimension GloVe embeddings downloaded from the Stanford1 web-
site, as it has been trained on both news and Wikipedia articles. When it comes to the
out-of-vocabulary words, the model initialises them to zeros and relies on the training to
correct their value. As the hyperparameters of the model have not yet been optimised, all
experiments are going to use the same parameters for easier comparison. Table 5.1 contains
all hyperparameters used to train the model, while Table 5.2 displays the hyperparameters
used by the CNN only.

1https://nlp.stanford.edu/projects/glove/
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Word
embedding
dimension

LSTM
hidden

dimension

Batch
size

Learning
rate Dropout Epochs Optimizer

Random
number

seed

100 200 10 0.01 0.1 100
Stochastic
Gradient
Descent

32

Table 5.1: Hyperparameters of the model used throughout the early testing. The goal is
to add each neural network and different features to create the proposed model and then
fine-tune all of its hyperparameters.

Character
embedding
dimension

Number of kernels Kernel size Padding Stride

50 1 2 1 1

Table 5.2: The initial hyperparameters of the character-based CNN.

As the goal is to assess how precise the system is, after every fifth epoch, the model
runs the evaluation process on both the development and the test set. The result of each
evaluation is saved and later used to create a graph to compare how well the model per-
forms on these sets. The highest F1-score achieved in the development set is taken as the
basis for the final comparison. So, even though the model could theoretically achieve a
higher score for the test set, the one shown in the results is based on the highest score of
the development set. With the parameters mentioned above and the evaluation process,
experiments were conducted with the goal of finding out how the combinations of differ-
ent neural networks perform. Table 5.3 contains each combination and the performance
achieved on the development set and the test set.

NER model Development set Test set
Precision Recall F1-score Precision Recall F1-score

BiLSTM 92.53 92.19 92.36 87.69 87.50 87.59
BiLSTM + CNN 93.21 94.19 93.7 88.62 90.01 89.31
BiLSTM + CRF 94.24 92.73 93.48 89.73 88.05 88.88
BiLSTM + CNN + CRF 94.22 94.45 94.34 90.30 90.86 90.58
BiLSTM + CNN + CRF + Sparse 94.30 94.35 94.32 90.64 90.88 90.76

Table 5.3: Comparison between the performance of different neural networks using the
same parameters. The final entry uses sparse features to enrich the embeddings used with
word-specific information.

From the results, it is easy to assess that the character-based CNN greatly improves
the performance when it comes to both the development and the test sets. It is not a
surprise because when it comes to word embeddings, 2235 words are OOV ones, which
represents exactly 8.87 % of the overall vocabulary that the dataset has. This means that,
for these OOV words, the addition of character embeddings enhances the model’s ability
to predict these words correctly even when there is literally no numerical representation at
the beginning. The high recall also supports this claim, as it indicates the model’s ability
to distinguish positive samples.
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When it comes to the CRF, the recall is almost as low as it was during the BiLSTM
run. This is understandable, as the problem with the OOV words is not solved with the
addition of this module. However, the precision of this model is relatively much higher.
This can be explained by the CRF making the labels depend on each other, making the
identification of named entities consisting of multiple words more accurate, thus increasing
positive classifications.

The combination of these two modules achieves a better balance between these two
metrics. The addition of sparse features gives minor gains, as it only helps to distinguish
words starting with a capital letter and to decide whether a word is a digit or just contains
a digit. Figure 5.1 illustrates the evaluation metrics in the development and test sets as the
training progresses with the model using all the modules found in the last row in Table 5.3.

Figure 5.1: The evaluation process of the model using BiLSTM + CNN + CRF + Sparse
during the training. The highest values are achieved between the 30th and 40th epoch after
which the model starts to stagnate. The highest F1-score achieved on the development set
was 94.32%, while on the test set it was 90.76%.

5.2 Optimization of hyperparameters
Having a functional model ready, the next step is all about trying to find the most opti-
mal settings that produce the best results. As the model has a large number of different
hyperparameters, it is crucial to find the ones that are the most influential when it comes
to achieving the highest possible F1-score. The best possible way to find out, is to conduct
many experiments while only changing one aspect of the model to see how beneficial the
change actually is. I decided not to experiment with every possible hyperparameter, so the
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following values also found in Table 5.1 and Table 5.2 will remain consistent throughout
the testing phase:

• Epochs – the length of the training process should always remain consistent, to make
comparison easier, and to give each model the same chance to achieve the highest
accuracy.

• Optimizer - Pytorch offers a large number of optimisation algorithms2, testing them
all would take a long time while offering diminishing returns.

• Kernel size – while the kernel size could be constant for each convolution, in the
final version this hyperparameter linearly increases with the number of kernels in the
model. So, if the number of kernels is five, the first configuration will have a kernel
size of one, while the last one will have a kernel size of five.

• Padding and stride – these two hyperparameters are mostly used for downscaling,
which is not necessarily used when working with text, and thus there is no need to
change them.

With this in mind, the experimentation started with the remaining hyperparameters. As
the LSTM plays an important role in the model, I decided to conduct the first experiments
with its hidden dimension. Figure 5.2 shows the highest F1-score achieved with different
values on the test and development sets. From the results, it is clear that when it comes to
the development set, the 150 hidden dimension does slightly better than the others, but at
the same time it does a bit worse than the 100 dimensional when it comes to the test set.
As the goal is to achieve the best score on the development set, a decision has been made
to rather use the 150 dimension variant.

50 100 150 200
90

91

92

93

94

95

LSTM hidden dimension

F1
-s

co
re

Development
Test

Figure 5.2: The comparison between the highest F1-score while using 4 distinct hyperpa-
rameters for the LSTM hidden dimension. The difference between the development set
score is almost negligible, but the F1-score for the test set can be almost half a percent.

2https://pytorch.org/docs/stable/optim.html#algorithms
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The next hyperparameter on the list that might have a greater impact on the F1-score
is the batch size. Most commonly, powers of two are used as values for batch size. From
the results seen in Figure 5.3, it is clear that a smaller batch size is preferable, as 16 and
32 did the best considering both sets. Although 16 performs better on the test set, 32 still
performs slightly better when it comes to the development set.

16 32 64 128
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Batch size
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-s
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Development
Test

Figure 5.3: Comparison of model’s highest F4 score with batch sizes being the powers of
two. Lower numbers produce better results especially on the development set.

Since the scores of 16 and 32 are not far from each other, I decided to take into account
another aspect of the training, time. To be more precise, the question is how long one epoch
of training takes with a given batch size. Smaller batch sizes obviously mean longer training
epochs, as going through all sentences takes a longer time. Table 5.4 also confirms this and
shows a substantial difference in time between the highest and lowest batch sizes. Even
between the values 16 and 32, there is exactly half a minute of difference during training
and even more when it comes to evaluation. This is why in the long run it is beneficial to
choose 32 as the final batch size as it performs better on the development set and is twice
as fast during training.

Batch size Average Training Epoch Length Average Evaluation Epoch Length
16 64.12 ≈ 64 sec 92.10 ≈ 92 sec
32 33.64 ≈ 34 sec 59.26 ≈ 59 sec
64 27.39 ≈ 27 sec 53.21 ≈ 53 sec
128 24.81 ≈ 25 sec 52.05 ≈ 52 sec

Table 5.4: The average time of one epoch during training and evaluation ni seconds. Higher
batch size means faster training as more sentences are being processed at the same time.

For the next hyperparameters, I considered having a closer look at how the word and
character embedding size influences the model’s output. The model is tested with the pre-
trained GloVe embeddings, which have four different dimensional versions. From Figure 5.4
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it is obvious that the 100-dimensional embedding performs exceptionally well in the devel-
opment set compared to its counterparts and reasonably well on the test set to be chosen
as the final hyperparameter.
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Figure 5.4: Comparison of model’s highest F1-score while using English pretrained GloVe
embeddings containing the same words with different embedding dimensions.

For character embeddings, I decided to hover around the value that Chiu and Nichols [5]
used as their final hyperparameter, which is 53. But the results seen in Figure 5.5 actually
prove that in this case values smaller than 50 perform better on the development set, while
being quite close to or even better than the high values for the test set. The differences
here are not substantial. between the worst and the best performer on the test set is a mere
0.06 difference. So, even though the value 30 is the worst performer on the test set, it is
still chosen as the final hyperparameter due to its performance on the development set.
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Figure 5.5: The difference of the highest F1-score with using different output sizes for the
Convolutional Neural Network.

The same experiments were conducted for each hyperparameter, which was not men-
tioned at the beginning of Section 5.2. Table 5.5 contains the range and results of hyperpa-
rameter optimisation. Using optimised parameters means that the system should achieve
the highest F1-score on the development set. Figure 5.6 shows how the evaluation process
looks when using the highest performing hyperparameters.

Hyperparameter Range Final
Convolution width [1, 3] 3
Character embedding dim [20, 50] 50
Word embedding dim [50, 300] 100
LSTM hidden dimension [50, 200] 150
Learning rate [10−2, 10−1.7] 0.015
Batch size [16, 64] 32
Dropout [0.2, 0.5] 0.3

Table 5.5: The range of hyperparameter values on which the experiments were carried out.
The final column contains the values achieving the best results on the English dataset, and
were used with the other two languages as well.
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Figure 5.6: The evaluation of the model with the final hyperparameters. It is clear that
there is less fluctuation compared to the results of the initial model seen in Figure 5.1. The
highest F1-score for the development set is 94.82% compared to the initial 94.32%. For the
test set, the best score is 90.98% next to the initial 90.76%.

5.3 Experimentation with word embeddings
As all the hyperparameters are optimised, the next objective is to try to determine how
different word embeddings influence the model’s performance. As mentioned in Chap-
ter 3, there are pretrained and custom-trained word embeddings available for the English
language. For easier comparison, every embedding is changed to be exactly 100 dimen-
sional. There are three pretrained embeddings acquired from the Internet and one that was
custom-trained with the use of fastText. The results of their performance can be found in
Table 5.6.

English embedding Trained on Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Pretrained GloVe Wikipedia 94.79 94.85 94.82 90.85 91.11 90.98
Twitter 93.94 93.87 93.91 89.87 89.64 89.75

Pretrained fastText Wikipedia 94.17 93.79 93.98 89.65 89.13 89.39
Custom-trained fastText Custom 94.25 94.01 94.13 90.53 90.00 90.26

Table 5.6: The highest performance on the CoNLL 2003 English dataset with the optimised
model, using four different word embeddings. The custom-trained embeddings have been
trained on the corpora found in Table 3.4.
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With these results, the next objective is to find out if the number of out-of-vocabulary
(OOV) words actually affects how well the model performs. Table 5.7 shows the statistics
for each embedding file and exactly how many OOV words they contain.

English embedding Trained on Unique words CoNLL 2003 Dataset
Perfect match Case match OOV words OOV %

Pretrained GloVe Wikipedia 400 000 11 415 11 656 2235 8.83
Twitter 1 193 514 10 872 9785 4649 18.37

Pretrained fastText Wikipedia 2 518 768 10 848 11 770 2688 10.62
Custom-trained fastText Custom 2 933 851 23 301 188 1817 7.18

Table 5.7: The number of out-of-vocabulary (OOV) words found in different English word
embeddings. Even though the custom-trained word embeddings have the least amount
of OOV words, they are still not performing as well as the pretrained GloVe embeddings
trained on data from Wikipedia.

From the results, it is evident that the model works better when using the GloVe
embeddings. Interestingly enough, even though the Twitter GloVe embedding has the
highest OOV percentage, it still has a barely worse performance on the development set
than the pretrained fastText data. So, at first glance, it might seem that having a lower
OOV percentage means nothing when it comes to performance. Up to this point, OOV
words were not taken into account in any way, instead they were represented with zero
embeddings and left to the model to update them during the training process. However,
as mentioned in Section 2.2.1 there are multiple ways of solving the OOV problem, which
will be tested on the custom-trained dataset with the goal of seeing how these different
approaches influence performance. The first approach, reffered to as “Zero” only fills up
the OOV word embedding with zeros. This is followed by the “Random” method, whereas
the name suggest the embeddings are uniformly distributed random numbers from the
interval [−1, 1). Next up, the “Average” approach which during the first epoch finds each
OOV word in a sentence, takes the embeddings of the two neighbouring words from both
sides (if they exist) and averages them. And finally, the “Nearest neighbour” technique,
which uses the custom-trained fastText model to create embeddings for the OOV words that
are actual named entities based on subword information encountered during its training.
The results produced by each approach can be seen in Table 5.8.

English OOV approach Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Zero 94.25 94.01 94.13 90.53 90.00 90.26
Random 94.25 94.04 94.15 90.16 90.01 90.09
Average 94.36 94.06 94.21 89.74 89.24 89.49
Nearest neighbour 94.36 94.28 94.32 90.15 90.26 90.21

Table 5.8: Comparison of four different approaches to solving the out-of-vocabulary (OOV)
problem with the English custom-trained word embeddings.

On the basis of their performance, the zero and random approaches do not differ much,
but it is clear that using zero embeddings guarantees better performance on the test set.
Unfortunately, even when using the nearest neighbour query and essentially having no
named entities as OOV words, the performance is still not on par with the more sophis-
ticated GloVe embeddings. At a first glance, it seems that word embeddings infered with
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the nearest neighbour approach are clearly superior to the other methods, as it uses sub-
word information combining the embeddings of similar words to produce the best possible
numerical representation. Another thing worth investigating is the amount of OOV named
entities that were actually predicted correctly while using different methods. The statistics
of correct predictions of OOV named entities can be seen in Table 5.9. The results show
that even though all of the OOV named entities are filled in with the nearest neighbour
approach, that does not mean that every word necessarily gets the correct representation,
but it is still more reliable than either the random or the average approach.

English OOV approach Development set Test set
OOV named entities Correct % Incorrect % OOV named entities Correct % Incorrect %

Zero 206 83.98 16.02 236 77.12 22.88
Random 206 83.01 16.99 236 74.15 25.85
Average 206 83.01 16.99 236 74.15 25.85
Nearest neighbour 0 88.35 11.65 0 79.24 20.76

Table 5.9: Statistics on the prediction of the OOV named entities in the Enlgish test and
development sets. While the nearest neighbour approach essentially creates embeddings for
all the OOV named entities, the same entities are checked to see if the dedicated embeddings
helped to predict them correctly.

5.4 Experiments with the German language
With the experimentation on the English dataset completed, there are still two languages
left to run the same tests on. Although the model was optimised, during previous ex-
perimentation, a decision was made to still run tests with some of the most influencing
hyperparameters, such as the hidden dimension of the LSTM network and the batch size.
In some cases, when the hidden dimension is changed, the model actually performs better,
which is always indicated below the results. The best performance of the model with the
use of three different word embeddings can be found in Table 5.10.

German embeddings Trained on Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Pretrained GloVe Wikipedia 88.63 87.07 87.85 88.56 87.22 87.88
Pretrained fastText Wikipedia 89.14 87.65 88.39 89.04 87.63 88.33
Custom-trained fastText Custom 89.34 87.97 88.65 89.47 88.18 88.82

Table 5.10: Comparison of the best performance using the WikiAnn German dataset, with
three different word embeddings. Both fastText embeddings performed better with the
LSTM hidden dimension being 200 and the batch size being 32. The custom-trained em-
beddings were trained on the corpora found in Table 3.4.

The custom-trained word embeddings clearly outperform the other two pretrained em-
beddings. But even though it is the best performer, the results are very far from the
performance seen in the English language. This is probably due to an unusual property
of the German language, namely that every noun starts with a capital letter. This means
that it is harder to differentiate named entities from normal nouns, and that the model
does not gain any meaningful advantage by having sparse features available. Yet again, it
is important to analyse whether the number of OOV words actually sway the performance
in a significant way. Statistics related to OOV words can be seen in Table 5.11.
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German embeddings Trained on Unique words WikiAnn German dataset
Perfect match Case match OOV words OOV %

Pretrained GloVe Wikipedia 1 309 281 8015 41 251 11 437 18.84
Pretrained fastText Wikipedia 2 274 727 8491 44 129 8083 13.32
Custom-trained fastText Custom 5 771 728 53 953 50 6700 11.84

Table 5.11: The number of out-of-vocabulary (OOV) words found in different German word
embeddings. The custom-trained embeddings have been trained on the biggest amount of
data, that is why it has the least amount of OOV words.

For the German language, there seems to be a correlation between the percentage of
OOV words and performance. The next step is to once again see if different OOV approaches
on custom-trained word embeddings have any positive impact on overall performance. Ta-
ble 5.12 shows how performance differs with the use of different approaches.

German OOV approach Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Zero 89.34 87.97 88.65 89.47 88.18 88.82
Random 89.04 88.00 88.52 89.38 88.43 88.90
Average 89.50 88.25 88.88 89.59 88.35 88.97
Nearest neighbour 89.85 88.45 89.15 90.09 88.60 89.34

Table 5.12: Comparison of four different approaches to solving the out-of-vocabulary (OOV)
problem with the German custom-trained word embeddings.

Once again, it shows that the zero and random embeddings are pretty close to each other
when comparing the F1-scores, this time around the zero embeddings performing slightly
better on the development set. For German, the averaging technique produces better
results than the previously mentioned approach but still does not surpass fastText-generated
embeddings, which improve performance with 0.5% on the development set compared to the
original zero embedding version. The statistics of the OOV word predictions can be found
in Table 5.13. In the case of the average approach, even though there is a clear increase
in the F1-score achieved on the development set, there is barely an increase in the number
of correctly predicted OOV entities. But the system using the nearest neighbour method
clearly benefits from the dedicated embeddings, as the number of correctly predicted entities
increased on both development and test sets, thus clearly improving both F1-scores.

German OOV approach Development set Test set
OOV named entities Correct % Incorrect % OOV named entities Correct % Incorrect %

Zero 629 63.59 36.41 663 64.56 35.44
Random 629 63.75 36.25 663 65.16 34.84
Average 629 65.98 34.02 663 64.86 35.14
Nearest neighbour 0 79.01 20.99 0 80.69 19.31

Table 5.13: Statistics on the prediction of the OOV named entities in the German test and
development sets. While the nearest neighbour approach essentially creates embeddings for
all the OOV named entities, the same entities are checked to see if the dedicated embeddings
helped to predict them correctly.
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5.5 Experiments with the Hungarian language
The final language in which the experiments were conducted was Hungarian. Once again,
four different LSTM hidden dimensions and batch sizes were tested to see which one per-
forms the best. Unfortunately, pretrained GloVe embeddings for Hungarian are not avail-
able, so instead a pretrained embedding trained with a combination of Word2vec and fast-
Text made by Szántó et al. [35] was used. The best results can be found in Table 5.14.

Hungarian embeddings Trained on Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Pretrained fastText Custom 92.05 91.84 91.95 91.72 91.23 91.47
Wikipedia 92.21 92.13 92.17 92.46 92.03 92.25

Custom-trained fastText Custom 92.55 92.23 92.39 92.63 92.25 92.44

Table 5.14: Comparison of the model’s performance on the WikiAnn Hungarian dataset
with three different word embeddings. All of these experiments were carried out with an
LSTM hidden dimension of 200 and a batch size of 32. Custom-trained embeddings were
trained on the corpora found in Table 3.5.

The results show that the custom-trained embeddings are slightly superior to the other
two pretrained variants. For the Hungarian language, subword information is crucial, as
it adds various affixes to the stem of a word to create new ones. Exactly because of
this property, Hungarian word embeddings contain a high percentage of OOV words, even
though a lot of words actually originate from the same stem, but even if they differ in one
letter, an entirely new embedding would have to be added. This is exactly why solving the
OOV problem for this language is of utmost importance. The number of OOV words can
be found in Table 5.15

Hungarian embeddings Trained on Unique words WikiAnn Hungarian dataset
Perfect match Case match OOV words OOV %

Pretrained fastText Custom 2 618 006 46 012 522 14 168 23.34
Wikipedia 793 630 24 801 24 932 10 969 18.07

Custom-trained fastText Custom 1 406 719 48 732 458 11 512 18.96

Table 5.15: The out-of-vocabulary (OOV) statistics of the different Hungarian embeddings.
While the pretrained custom dataset has more than three times the unique words, it still
performs worse than the one trained on Wikipedia data, which is due to the high percentage
of OOV words.

From these statistics, it is certain that having the least amount of OOV words does not
immediately guarantee the highest performance, yet having an overall lower percentage of
OOV words definitely has a noticeable positive effect. Once again, the objective is to test the
different approaches for removing the OOV words and see if there is a notable improvement.
The best performance of the four different approaches can be found in Table 5.16.
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Hungarian OOV approach Development set Test set
Precision Recall F1-Score Precision Recall F1-Score

Zero 92.55 92.23 92.39 92.63 92.25 92.44
Random 92.35 92.26 92.30 92.34 92.39 92.36
Average 92.42 92.27 92.34 92.39 91.96 92.17
Nearest neighbour 93.54 93.25 93.39 93.28 92.80 93.04

Table 5.16: Comparison of four different approaches to remove or reduce the out-of-
vocabulary (OOV) problem with the Hungarian custom-trained word embeddings.

Again, the zero and random embeddings do not have a significant difference in perfor-
mance, even the averaging technique barely improves the score achieved on the development
set. However, the nearest neighbour approach has the biggest impact yet on the develop-
ment set, improving the original score achieved with the original approach by a whole
percent. This is most likely because the custom-trained fastText model encountered the
stem of most OOV words, and thus was able to create accurate representations for a large
percentage of these never-before-seen words. This is supported by the number of correctly
predicted OOV entities found in Table 5.17. Therefore, this method might be extremely
effective when applied to languages that use multiple affixes to create new words.

Hungarian OOV approach Development set Test set
OOV named entities Correct % Incorrect % OOV named entities Correct % Incorrect %

Zero 1436 79.74 20.26 1452 80.85 19.15
Random 1436 80.78 19.22 1452 81.82 18.18
Average 1436 80.92 19.08 1452 80.99 19.01
Nearest neighbour 0 89.14 10.86 0 88.5 11.50

Table 5.17: Statistics about the prediction of the OOV named entities in the Hungarian
test and development sets. While the nearest neighbour approach essentially creates embed-
dings for all the OOV named entities, the same entities are checked to see if the dedicated
embeddings helped to predict them correctly.

5.6 Comparison with state-of-the-art models
With the experiments completed, the next step is to see how the model performs compared
to state-of-the-art technologies. For each language, the model with the highest F1-score
is used as the basis for comparison, starting with English. As the CoNLL 2003 dataset
is quite popular in the circles of NER, there is a myriad of different approaches existing
for the English language. The comparison in Table 5.18 contains models that had a large
influence on the development of the NER task.

NER model Author Word embeddings Model trained on Model training time CoNLL 2003 English dataset
Test F1

SENNA Collobert et al. [8] 50D SENNA CPU 7 weeks 89.59
BiLSTM + charCNN + lex Chiu & Nichols [5] 50D SENNA CPU 6 h 91.26
BiLSTM + CRF + ELMo Peters et al. [26] 50D SENNA – – 92.22
BiLSTM + CRF + Context Akbik et al. [2] GloVe GPU 168 h 93.09
BERT-Large + CMV Luoma & Pyysalo [16] Wikipedia + BookCorpus 16 TPU 96 h 93.74
BiLSTM + CRF + ACE Wang et al. [41] GloVe + fastText + ... GPU 45 h 94.60
BiLSTM + charCNN + CRF Thesis model GloVe GPU 2 h 90.98

Table 5.18: Comparison of statistics detailing training and consistently achieved F1-score
on the CoNLL 2003 test set by different state-of-the-art models.
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The model presented in this thesis used the work of Chiu & Nichols as the basis, and
while their work achieved a higher score on the test set, it is important to remember that
the goal is always to maximise the score achieved on the development set. Fortunately,
the work of Chiu & Nichols states that their model achieved a 94.03%, while the model
presented in this thesis reached a 94.82% F1-score on the development set.

As the WikiAnn dataset is fairly new, it is currently not widely used yet for tackling
NER related problems for multiple languages. Another problem is that the sizes of the
train, development and test sets differ, which can lead to quite different results. This is
because the original WikiAnn dataset made by Pan et al.[22] did not contain balanced sets;
those were created by Rahimi et al.[27]. Even so, there are some community-created NER
systems that can be used as a basis for comparison, just to have a better understanding of
how precise the thesis model actually is. With these things in mind, Table 5.19 contains
the comparison between German NER systems using the WikiAnn dataset, and Table 5.20
shows the same for the Hungarian language.

NER model Author Word embeddings Model trained on Model training time WikiAnn German dataset
Test F1

Bi-LSTM + CRF Rahimi et al. [27] 300D fastText GPU – 89.00
24-layer Transformer (Zero-shot) Chung et al. [7] Wikipedia 64 TPU 16 h 84.00
Bi-LSTM + charCNN + CRF Thesis model Custom (Table 3.4) GPU 2 h 89.34

Table 5.19: Comparison of training statistics and the highest F1-scores achieved on the test
set of the WikiAnn German dataset.

NER model Author Word embeddings Model trained on Model training time WikiAnn Hungarian dataset
Test F1

Bi-LSTM + CRF Rahimi et al. [27] 300D fastText GPU – 90.00
Fine-tuned BERT Taner Akdeniz Webcorpus 2.0 v3-256 TPU Pod 47 h 94.26
Bi-LSTM + charCNN + CRF Thesis model Custom (Table 3.5) GPU 2h 30m 93.04

Table 5.20: Comparison of training statistics and the highest F1-scores achieved on the
test set of the WikiAnn Hungarian dataset. Taner Akdeniz is the creator of the community
model3 which is fine-tuned on the WikiAnn German dataset. Training statistics are taken
from the original work of Nemeskey [20, 21]

On the basis of these comparisons, it is clear that there has been a lot of improvement
over the years, slowly but surely improving the accuracy of NER systems. Advancements
such as Embeddings from Language Models (ELMo) [26], contextual string embeddings
[2], Bidirectional Encoder Representations from Transformers (BERT) [9], Contextual Ma-
jority Voting (CMV), and Automated Concatenation of Embeddings (ACE) [41] all had a
large impact on the performance of NER as a whole. However, this does not mean that
Convolutional Neural Networks or Conditional Random Fields have become obsolete; it
is more about computational power, as pretraining BERT or ELMo requires much larger
computational resources while the approaches explored in this thesis are budget friendly in
terms of computation.

In conclusion, although the thesis model performed reasonably well on the German
WikiAnn dataset, it still underperformed on the Hungarian and English datasets when
compared to state-of-the-art models, meaning that there is substantial room for improve-
ment.

3https://huggingface.co/akdeniz27/bert-base-hungarian-cased-ner
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Chapter 6

Conclusion

The objective of this thesis was to study and create a baseline system for Named Entity
Recognition (NER) based on the works of Chiu & Nichols [5] and Abujabal & Gaspers [1].
With the system ready, the main goal was to see how subword information influences the
results produced by the model, not only for the English language but also for two other
Indo-European languages as well. With the created system, hundreds of experiments were
conducted to see how different neural networks, hyperparameters, and subword features
influence the model when working with the English dataset. The system started with using
only a bidirectional Long Short-Term Memory network and achieving a mere 87.59% on
the testing dataset. With two more modules added, such as the Convolutional Neural Net-
work to extract word embeddings from characters, and a linear-chain Conditional Random
Field to create dependencies between words, and the small addition of sparse features, the
previous score already shoots up to 90.76%. With all the neural networks present, the next
step was to try to optimise the model’s hyperparameters, with the aim of improving perfor-
mance little by little. With all the different hyperparameters tested and finalised, the model
already achieved an F1-score of 90.98%, which was the highest during the testing. The ex-
periments continued with the testing of multiple pretrained and one custom-trained word
embeddings, where on the latter different approaches were attempted to solve one of the
major challenges in NER which is the out-of-vocabulary (OOV) problem, but none of the
methods could match the accuracy provided by the pretrained GLoVe embeddings. With a
fine-tuned model, two Indo-European languages were chosen, namely German, and Hungar-
ian, and the same experiments were carried out to see how influential subword information
is when applied to different languages. On the German language, the custom-trained word
embeddings with the nearest neighbour OOV approach far outperformed any pretrained
variant, achieving an F1-score of 89.34%. The same happened with the Hungarian lan-
guage, the custom trained variant using the nearest neighbour approach surpassed every
pretrained embedding, finishing at a 93.04% F1-score. Both of these languages attest that
subword information is indeed an important factor in NER tasks. For future work, I would
propose the usage of a subword-based tokenizer called Byte-Pair Encoding (BPE). It would
help solve the OOV problem during the tokenization process, as it represents each common
word as one token and concentrates on less frequent words by breaking them down into
multiple subword tokens. For example, a rare word like impetus would be represented as
substrings ’imp’, ’et’, and ’us’ as they are commonly pairs in more frequent words. Modern
NER systems already use an improved version of BPE called WordPiece.
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Appendix A

Content of the submitted storage
media

/
datasets/

deu/
eng/
hun/

embeddings/
results/
thesis/
character_cnn.py
conlleval.py
crf.py
dataset.py
LICENCE
model.py
ner.py
README.md
shrink_embeddings.py
sparse.py
thesis.pdf
train.py
utilities.py
vocabularies.py

The README.md file contains all the information necessary to recreate any of the
experiments seen in the thesis. The directories found in the storage media briefly contain
the following:

1. datasets/ – contains datasets for each different language, each in its own subfolder
named based on the ISO 639-2/T: standard. Each subfolder contains 3 files with the
name of the language code, but each set is marked with a different extension: .train
for the training set, .testa for the development set, and .testb for the test set

2. embeddings – contains the custom-trained embeddings for each language, and the
best performing pre-trained GLoVe embedding for the English language
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3. thesis – contains the LATEXsource files for creating the thesis

4. results – contains the Figures and statistics of the best performing models found in
the thesis

5. README.md – contains a brief description of each Python script and instructions man-
ual for running the experiments
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