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Abstract
Delta-t protocol represents a network transport protocol that is currently available only as
a specification. The aim of this work is to implement the protocol as a Linux kernel module,
extending the current TCP/IP stack. Delta-t supports reliable, connection-oriented, full
duplex communication between two endpoints. Main contribution of the protocol is in the
area of connection management. No extra packet exchanges are needed for that purpose.
Delta-t employs timer-based mechanism in order to avoid connection hazards. Apart from
connection management, Delta-t and TCP are quite similar. Therefore, comparison of the
two will be provided.

Abstrakt
Transportní protokol Delta-t se v současné době vyskytuje pouze ve formě návrhu. Cílem
této práce je vytvoření implementace protokolu v prostředí Linuxového TCP/IP zásobníku.
Implementace bude mít formu zásuvného modulu. Protokol Delta-t patří mezi protokoly
zajišťující obousměrný spolehlivý přenos. Protokol přichází s velmi jednoduchým a efek-
tivním způsobem správy spojení. Spolehlivé sestavení a ukončení spojení není realizováno
prostřednictvím handshake zpráv. Aktuální stav spojení je dán pouze dobou, která uběhla
od posledního přijetí či odeslání datového segmentu. V ostatních aspektech se Delta-t
podobá protokolu TCP, a proto budou jejich implementace vzájemně porovnány.
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Rozšířený abstrakt
Ještě v nedávné minulosti byly informace šířeny pouze skrze televizní a rádiové vysílání,
noviny, či pomocí mluveného slova. To se však v posledních dekádách razantně změnilo.
Inovace v oblasti elektroniky, zejména v polovodičové technologii, zapříčinily postupné
pronikání počítačových systémů do našich životů. Tyto počítačové systémy jsou reprezen-
továny například chytrými telefony, televizemi, laptopy či herními konzolemi. Všechna tato
zařízení mají jedno společné, a to schopnost vzájemně komunikovat. Tuto schopnost jim
zprostředkovávají počítačové sítě. Nejproslulejší počítačovou sítí je Internet, jenž se skládá
z obrovského počtu vzájemně propojených zařízení.

V každé síti, včetně Internetu, se můžeme setkat s celou řadou protokolů. Protokoly lze
dle jejich vlastností roztřídit do několika skupin, které označujeme jako vrstvy. Protokol
formálně definuje, jakým způsobem má vypadat určitá zpráva v podobě posloupnosti bitů
a bajtů. Mimoto může protokol také udávat, jakým způsobem by měl systém reagovat při
přijetí nebo odeslání dané zprávy.

Internet tvoří rodina protokolů označovaná jako TCP/IP sada nebo zkráceně TCP/IP.
Tato zkratka je spojením názvů dvou nejvýznamnějších protokolů, a to protokolu TCP
(Transmission Control Protocol) a protokolu IP (Internet Protocol). Protokol IP zajišťuje
doručování síťových paketů z jednoho konce sítě na druhý, z jednoho koncového zařízení do
druhého. Pakety se však po cestě mohou ztratit, poškodit anebo dorazit k příjemci vícekrát
(duplikace) či v jiném pořadí, než byly odeslány. Protokol IP nedokáže zaručit spolehlivé
doručení.

Na druhou stranu protokol TCP spolehlivé doručení zaručit dokáže. Zajišťuje totiž
spolehlivý přenos dat skrze nespolehlivou síť. Před tím, než mohou být pomocí TCP
odeslána data, je nejdříve nutné s protistranou navázat spojení. Proces navazování spojení
TCP protokolu se označuje jako třícestný handshake (three-way handshake). Při tomto
procesu je nutné odeslat tři segmenty. Spojení je taktéž nutné explicitně ukončit. To může
vyžadovat odeslání až čtyř segmentů na samém konci datové komunikace. V jaké fázi se
dané spojení právě nachází je interně uloženo ve stavové proměnné. Tato proměnná, s
ohledem na procedury navazování a ukončování spojení, může nabývat mnoha hodnot, což
má za následek značnou složitost protokolu.

V této práci se budeme věnovat protokolu Delta-t, jenž se v mnoha ohledech podobá
protokolu TCP. Zásadně se však liší v přístupu k navazování a ukončování spojení. Navázání
a ukončení spojení nevyžaduje odeslání jediného segmentu. Stav aktuálního spojení závisí
pouze na době, která uběhla od posledního odeslání či přijetí datového segmentu. Protokol
Delta-t v této době existuje pouze na papíře a nemá reálnou implementaci. Našim cílem
je implementovat tento protokol jako zásuvný modul Linuxového jádra. Za tímto účelem
se nejdříve hlouběji seznámíme s návrhem protokolu a také s Linuxovým síťovým zásob-
níkem. Rovněž ukážeme klíčové body implementace modulu, kterým rozšíříme množinu
podporovaných protokolů o protokol Delta-t. Na závěr Delta-t porovnáme s TCP a dosažené
výsledky zhodnotíme.

Implementaci protokolu Delta-jsme porovnávali s TCP v podmínkách, ve kterých jsme
simulovali ztrátu a zpoždění paketů. Delta-t bylo v jednom scénáři schopno držet krok
s TCP, nicméně v ostatních dvou TCP dominovalo. Při simulaci vysokého procenta pake-
tové ztráty Delta-t selhalo, zatímco TCP zajistilo spolehlivý přenos. Selhání Delta-t bylo
zapříčiněno absencí mechanismu řízení zahlcení. Do budoucna by bylo určitě vhodné tento
mechanismus začlenit do Delta-t. Obecně vzato modul prezentovaný v této práci toho má
ještě mnoho co zlepšit. Cílem této práce však nebylo vytvořit dokonalou implementaci
spolehlivého transportního protokolu, nýbrž ověřit koncept protokolu Delta-t v praxi.
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Chapter 1

Introduction

It was not so long ago, when any new information could be spread only by means of
radio/television broadcast, local newspaper, or a spoken word. However, in the past few
decades things changed quite noticeably. Unceasing developments in the area of electronics,
especially in semiconductor technology, led to slow but steady proliferation of computer
systems into our lives. These computer systems are represented by a wide variety of devices
such as smartphones, TVs, laptops, gaming consoles and many others. There is one thing
that all these devices have in common. It’s the ability to communicate with each other and
that is the place where computer networks come into play.

The most well-known example of a computer network is the Internet. It consists of an
astrological number of interconnected devices. The Internet plays a substantial role in our
day-to-day routines. Accessing video streaming platforms, World Wide Web, using instant
messaging apps and electronic mail, represent just the tip of the iceberg of the possible uses
of the Internet. But how does that Internet thing work?

When describing computer networks, two closely related terms will almost certainly
pop up – protocols and layers. For computer systems to communicate, there needs to be
an agreement ahead of time on the order and format of individual messages. Network
protocols are used for this purpose. They formally describe exact sequences of bits and
bytes that constitute given message. They can also mandate what actions should be taken
upon reception or transmission of such a message.

A layer is an abstract concept that enables us to group protocols based on their prop-
erties. Individual layers are stacked together. Starting from the bottom, each subsequent
layer (and corresponding protocol) takes care of different aspect of network communication.
Upper layer protocols rely on the services provided by the layers below it and usually add
some functionality on top. As a result, an action as simple as sending an email message
requires the message to pass through multiple layers, which in turn involves a cooperation
of multiple network protocols.

Although the range of protocols that constitute today’s Internet is quite broad, there
are two that stand out. Its Transmission Control Protocol (TCP), specified in RFC 793,
and Internet Protocol (IP), specified in RFC 791. IP represents network layer, commonly
referred to as layer 3 (L3), protocol. It is responsible for delivering network packets from
one host to another, from one side of the network to the other. During this process packets
could get lost, damaged or could be delivered in different order than they were originally
sent. In other words, IP performs unreliable network packet delivery as it cannot guarantee
that packet reached its destination.

3



TCP on the other hand can give such a guarantee. TCP performs reliable data delivery
over unreliable network. TCP belongs to the family of transport layer protocols. Transport
layer is in literature often denoted as layer 4 (L4). When using TCP, a connection must
be established between client and server prior to any data being sent. In standard mode of
operation, it is accomplished by three-way handshake (3WHS). This requires three segments
to be sent at the beginning of each connection. In addition to that, connection termination
procedure may require up to four segments to be exchanged. In consequence, TCP internally
requires a state machine with many states to indicate where in the opening or closing
sequence we are currently at. This fact increases the overall protocol complexity.

In this work we will survey Delta-t transport layer protocol. It guarantees reliable
delivery, in similar fashion as TCP, but it employs completely different approach when
it comes to connection establishment and termination. No segments are exchanged when
the data transfer is about to start or after it finishes. In a nutshell, the current state of
a connection is based exclusively on the amount of time that has passed since last data
segment was sent or received.

For any network protocol to be of any use it must have a software implementation.
The implementation of standard Internet protocols is called TCP/IP stack. It is usually
included in the kernel of the operating system of our choice. In contrast with TCP, no
implementation of Delta-t has been preserved to this day.

The primary goal of this work is to make a proof-of-concept implementation of Delta-t
transport protocol. The freely available Linux kernel platform was chosen as implementa-
tion target. Delta-t support will be added in the form of loadable kernel module.

First, we need to familiarize ourselves with the ideas behind the Delta-t protocol. We
can do so in chapter 2. In chapter 3 a brief introduction of Linux TCP/IP stack and its
core data structures can be found. Chapter 4 will first lay out the plan four our work
– the design of Delta-t kernel module will be presented. After that, the most important
components of Delta-t module implementation are mentioned. Chapter 5 evaluates the
implemented protocol in different scenarios and compares it with TCP. Finally, chapter 6
contains the conclusion of my work.
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Chapter 2

Delta-t Protocol

This chapter describes Delta-t protocol and its major features. Primary source of infor-
mation is the working draft of Delta-t protocol specification [18]. Before we begin, it is
necessary to point out that Delta-t, unlike TCP, was not designed to operate on top of
IP. Instead, it uses services provided by another connectionless network protocol (called
DeltaGram). In the text to follow only the most relevant facts regarding the protocol are
mentioned. Consequently, details such as data units originally used or addressing conven-
tions are omitted from our discussions.

TCP and Delta-t have many similarities. Both are connection-oriented transport layer
protocols that provide reliable data transfer. Also, both are flow controlled and allow
full-duplex style of communication. The reliability of Delta-t is accomplished by using
sequence numbers, positive acknowledgements (acks), retransmission mechanism and, most
importantly, bounds on packet lifetime [18].

The primary contribution of Delta-t transport protocol is in the area of connection
management [17]. As opposed to other transport protocols, there is no packet exchange
taking place to manage a connection. The connection management scheme of Delta-t is
based on the use of two timers for each connection.

2.1 Connection Management
When two entities are reliably exchanging data over a network, at each end there is a
data structure that keeps state information describing the progress of data transfer. In
compliance with [18], we will call this data structure connection record (CR), although
these days it is commonly referred to as socket.

To ensure reliable data delivery, Delta-t assigns sequence number (SN) and checksum to
each data segment transmitted. Connection management must properly initialize SNs and
update CRs, so that they correctly reflect the state of a connection throughout its lifespan.

There are 3 conceptual phases connection management can be divided into. First, the
connection needs to be opened/established. To do that, we need to allocate and initialize
a CR. After the initialization, we can start with the actual communication, that is, start
exchanging data. During this phase, the CR is frequently updated. Finally, when we have
no more data to send we can close the connection and release resources (i.e., free the CR).

To open a connection, we need to choose an initial SN. To perform reliable open the
SN cannot be chosen arbitrarily. Facing a network where segments can potentially get
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damaged, lost, duplicated, or delivered out of order, we need to choose initial SN so that
the following conditions hold (from [19]):

O1: If no connection exists and the receiver is willing to receive, then no segments from a
previously closed connection should cause a connection to be initialized and duplicate
data to be accepted.

O2: If a connection exists, then no packets from a previously closed connection should be
acceptable within the current connection.

Terminating a connection is another important aspect of connection management. Ide-
ally, each connection should be closed gracefully. This way the connection is not closed until
all segments needing acks can be acknowledged. When the connection is closed, each end
knows whether the other end received all data sent or not. As a result, the ambiguity about
the state of data sent is eliminated when protocol performs graceful close. The following
two conditions imply a graceful close of a connection (from [17]):

C1: A receiving side must not close until it has received all of a sender’s possible retrans-
missions and can respond to them.

C2: A sending side should not close until it has received acknowledgement of all that
it has sent. In particular it should allow time for an acknowledgement of its final
retransmission, if needed, before reporting a failure to its client program.

Delta-t connection management is purely timer-based. Both ends of a connection need
to manage one timer for each direction of data flow. In other words, two timers are needed
if duplex communication takes place. Receive-timer (Rtimer) is tied with inbound traffic,
while the outbound traffic is under control of Send-timer (Stimer).

The conditions to perform reliable open (conditions O1 and O2) and graceful close
(conditions C1 and C2) are satisfied, if the timers are initialized properly and if we follow
a set of rules. Safe values to initialize the timers are:

Rtimer = 2 · Δt

Stimer = 3 · Δt

where Δt = MPL + R+A

• MPL (Maximum Packet Lifetime) is a worst-case estimate of the time for traversing
the network.

• R is the maximum time a sender will keep retransmitting a segment.

• A is the maximum time a receiver will wait before sending (delayed) ack.

Additionally, this set of rules must be applied:

R1: Stimer is refreshed whenever a new SN (i.e., a new data or rendezvous segment) or
reliable-ack is sent.

R2: Once a segment 𝑠𝑖 has had its maximum retransmission time (or equivalently max-
imum number of retransmissions) no new segments can be transmitted until 𝑠𝑖 has
been acked; segments 𝑠𝑖+𝑘 which had previously been transmitted can continue being
retransmitted until their maximum retransmission time.
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R3: Rtimer refreshed whenever a new SN is accepted, or data overflow occurs.

R4: When Rtimer expires, the receive state is reset to its default values.

R5: Once a data or rendezvous or reliable-ack segment is initially transmitted its lifetime
is set equal to Δt and starts counting down.

R6: At the point an SN is tested for acceptance, the lifetime of any ack segment generated
is set equal to Δt and begins counting down.

R7: When Stimer expires the send state is reset to its default values, any initial SN can
be used when new data needs sending, and if unacked SNs exist an error is reported.

There are no dedicated segments for connection opening or closing in Delta-t. Sending
the first segment causes the sender’s Stimer to be initialized and the connection to be
opened. The reception of this segment opens the receiver’s connection and leads to Rtimer
initialization. The connection is closed (or put equivalently — restored to default state)
when both Stimer and Rtimer reach zero. If Stimer goes to zero, then any initial SN for an
outgoing segment can be used. If it is nonzero, then the next SN expected by the receiver
must be applied. Receiver must only accept segments with SNs in its acceptance window.
If the Rtimer is zero, any SN is acceptable.

There is one flaw in the procedure presented so far. The receiver cannot detect out of
order segments before initializing its state. To cope with that, Delta-t employs so called
data-run flag in segment header. This flag is set only if all previously sent segments have
been acknowledged. Consequently, when Rtimer is zero only segments with data-run flag
set are acceptable. An example of unidirectional communication (for the sake of simplicity)
using Delta-t protocol is illustrated in figure 2.1.

                  DATA, SN: x, length: j, DRF               DATA, SN: x+j, length: k

Sender Receiver

                   DATA, SN: x+j+k, length: l, DRF

                       
   ACK, SN: x+j+k

                       
   ACK, SN: x+j+k+l

set Rtimer (DRF = data-run flag)

CR in default state

set Stimer

set Stimer

set Rtimer

CR in default state

set Rtimer

set Stimer

2 · Δt
3 · Δt

CR in default stateCR in default state

Rtimer expiredStimer expired

Figure 2.1: Example of Delta-t communication (taken from [18], modified).

Unfortunately, computer systems are subjects of occasional crashes in practice. In this
case a graceful close is not an option as any outstanding connection will be shutdown
immediately, regardless of connection management mechanism being used.
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Proper recovery routines need to be in place to eliminate connection management haz-
ards resulting from a crash/failure of either side of a connection. Due to its timer-based
nature the recovery routine of Delta-t has the form of waiting an interval before initiating
or accepting a connection.

• After crash, the sender must wait 3 · Δt. After this interval it is guaranteed that any
data or ack segments having the same SN have died out and that any initial SN will
be accepted by receiver (because Rtimer will not be set by that time).

• Receiver’s recovery interval is Δt. It ensures that all segments from previous connec-
tion have expired (assuming sender sticks to its recovery interval).

In summary, at most two timers per host are needed for Delta-t’s connection manage-
ment. During unidirectional communication sender’s Stimer and receiver’s Rtimer are set
to 3 · Δt and 2 · Δt, respectively. Furthermore, it is important to note that in duplex mode
the value of Δt might be different for each direction of data movement. There is no packet
exchange overhead related to opening or closing a connection. Reliable delivery of any data
at any point in time makes use of at most two segments. One segment for the data and
one for its ack. If delayed acks are used even better protocol efficiency can be achieved.

2.2 Flow Control
Flow control is a mechanism that systematically deals with senders that want to transmit
data faster than the receivers can accept them. This situation can occur if sender is running
on fast, powerful computer (e.g., Web server) and the receiver is running on a much slower
machine (e.g., smart phone). Soon the slower machine would not be able to buffer incoming
segments and start dropping them. [16]

Fortunately, this issue has been thought of when designing the protocol. Delta-t uses
sliding window approach to control the flow of data exchange. An implementation of sliding
window flow control maintains a set of SNs a sender is permitted to send at any given instant
of time [16]. The concrete details of window management, described in Delta-t specification,
are skipped because they are no longer relevant from the perspective of this work.

However, there is one important procedure outlined. It is called rendezvous-at-sender.
It reliably takes care of the situation when sender’s sending window shrinks to zero, but
there is still some data to send. This situation is solved in a lightweight manner without
the need of polling, used for example, in TCP. The procedure works as follows:

When all data sent have been acked and the send buffer is not empty, but sender
faces zero window, it sends rendezvous segment. When the segment reaches the other
end, it is an indication that the sender wants to be informed when the window opens.
The rendezvous segment is transferred reliably meaning that it is assigned a SN and it is
retransmitted until acked or until the retransmission interval expires. When the receiver’s
input window opens, after previously accepting a rendezvous segment, it will send an ack
segment with dedicated flag set (window-opening ack). The receiver will retransmit this
ack segment until an acceptable data segment is received. The data segment effectively acks
the window-opening ack. The window-opening ack is in Delta-t called reliable-ack because
it has the reliable flag set in segment header.

Right now, the rendezvous-at-sender procedure is straightforward: send rendezvous
segment when all previous data segments have been acked and then wait for reliable-ack.
The description presented so far is not complete, nonetheless. An issue might occur if the
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amount of data sent could not fit in the receiver’s advertised window. This situation is
called window overrun. Data that overflown the window will never be acked. Subsequently,
the rendezvous segment would never be sent.

Luckily, Delta-t offers a solution to this issue. An event of window overrun is signaled
to sender via overflow flag in ack segment header. Once an ack with the overflow flag set
is received the state of segments that exceeded the window is reset as if they were never
sent. As a result, no segments are unacked, and the rendezvous segment can be generated.

Nevertheless, a potential hazard exists still. Duplicates of overrun segments might ack
a reliable-ack. If the reliable-ack and the ack of duplicate data (i.e., overrun segment) just
accepted by the receiver are both lost, then the sender will never get to know that the
window has opened.

The countermeasure to this problem employed in Delta-t is to use a SN offset. The
sender chooses sufficient offset so that when it is added to the current SN it yields a SN
larger than any SN already sent. The offset value is put in rendezvous segment. SN
assigned to the rendezvous segment is the same as the one in the last ack segment so
that the receiver accepts the rendezvous segment. After the rendezvous segment has been
transmitted, sender shifts its SNs by the offset. Once the rendezvous segment is received,
receiver reads the offset value and shifts its input window SNs as well. Rendezvous-at-sender
procedure, described in previous paragraphs, is illustrated in figure 2.2.

                 DATA, SN: x, length: j              DATA, SN: x+j, length: k

Sender Receiver

         RENDEZVOUS, SN: x+j, offset: k

         DATA, SN: x+j+k, length: l (l < n)

              ACK, SN: x+j, window: 0, OF

                 ACK, SN: x+j+k, window: 0

                      RELIABLE-ACK, window: n

                   ACK, SN: x+j+k+l

delayed ACK sent
indicate overflow (OF flag)
and zero window
enter don't-accept data state

DATA segment 
acks RELIABLE-ACK

enter accept-data state

consume k SN's

second DATA segment's
lifetime reset as if
never sent

wait for window to open
(meanwhile Stimer
could expire)

Figure 2.2: Rendezvous-at-sender procedure with window overrun (from [18], modified).
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2.3 Congestion Control
Each computer network is limited in terms of the amount of data it can handle. There
are some unpleasant consequences of putting a network under heavy load. To name a few,
decrease of the overall throughput, increase of packet delay and even a packet loss can
be observed. Exceeding the network capacity inevitably leads to congestion. Congestion
control (CC) mechanisms are trying to solve the problem of using the network as efficiently
as possible while achieving the highest possible throughput with minimal loss ratio and
small delay [20].

Delta-t protocol specification lacks any CC mechanism. We must bear in mind that at
the time the protocol was designed network congestion was not considered as troublesome
area that could potentially cause serious issues. RFC 793 (TCP) from 1981 did not mention
any CC algorithm either. However, the widespread use of TCP without any CC algorithm
did not last very long.

In October 1986 congestion collapse happened. It had been observed that important
component of the early Internet operated 1000 times worse than it should have due to
aggressive retransmission caused by packet loss. The network became persistently congested
resulting in massive packet loss and low throughput. [4]

Nowadays, the need for congestion control/avoidance algorithms in transport layer pro-
tocols is clearly more understood. They are incorporated in TCP, DCCP and SCTP pro-
tocols and it would be desirable to utilize them also in Delta-t.

2.4 Services of Lower Layers
In section 2.1 we introduced the theory behind reliable connection management using
timers. However, for this theory to work it is crucial that we have some way to bound
segment lifetime. Moreover, we need to bound this lifetime in units of time rather than
routing hops.

In Delta-t, lifetime field in network layer header is used to limit packet lifetime. Delta-t
usually initializes the value of this field to Δt when new segment is being formed. The
underlying network then performs packet aging services and discards packets whose lifetime
has expired. This must be accounted for during the design of Delta-t Linux kernel module.
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Chapter 3

Linux Kernel

Linux kernel is the at the core of any Linux operating system. The most common and
probably the easiest way to run Linux kernel is by installing a Linux distribution (e.g.,
Debian, Ubuntu, Fedora and so on). These distributions package the Linux kernel with
other utilities to suit the needs of most users. In the rest of this work the term Linux will
be referring to Linux kernel.

Linux was created by a Finnish student, Linus Torvalds, back in 1991. Over the years it
has proven to be reliable, stable and its popularity has started to grow. These days we can
encounter Linux operating system in data centers, embedded devices like wireless routers,
set-top boxes, or medical instruments. Moreover, the Android operating system, which can
be found in many smartphones and smart TVs, is based on the Linux kernel. [12]

One of the key characteristics of Linux is that it’s not a proprietary product. It is open
source software licensed under GNU General Public License (GPL). As a result, anyone is
free to download the source code and make changes to it. [6]

The fact that Linux is easily modifiable, free, and open source makes it perfect fit
for education and academic purposes. However, there is one downside to it. Linux code
base is very large (millions of lines of code) [2]. In addition to that, due to the continual
improvements and performance optimizations the learning curve for newcomers might be
very steep.

Fortunately, as we are concerned with implementing new transport layer protocol, we
can leave the code dealing with process scheduling, memory management and other core
internals aside and focus only on the networking subsystem.

3.1 Socket API
The networking subsystem is necessary for any sort of network communication, but by
itself is not sufficient. What is required in addition, is an interface between the networking
subsystem and user space applications. Without this interface the kernel and user space
programs could not interoperate. Linux implements the POSIX socket API, which was
specified by the IEEE in POSIX.1g [12]. This API is also called BSD or Berkeley sockets
API because it originated with the 4.2BSD system, introduced in 1983 [14]. Through the
use of commonly known socket API functions (socket(), bind(), listen(), connect(),
accept(), etc.) we can instruct the kernel to issue network related operations on our behalf.

When opening a socket, we can choose from multiple socket types. Socket type defines
the semantics of the communication. The assignment of a socket type to transport layer
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protocol is based on protocol properties. From the perspective of this work, the following
socket types are of interest:

• stream socket (type SOCK_STREAM) provides reliable, sequenced, full-duplex octet
streams between the socket and a peer to which the socket is connected. ... Record
boundaries are not maintained; data sent on a stream socket using output operations
of one size may be received using input operations of smaller or larger sizes without
loss of data. Data may be buffered; successful return from an output function does
not imply that the data have been delivered to the peer or even transmitted from the
local system. If data cannot be successfully transmitted within a given time, then the
connection is considered broken, and subsequent operations shall fail. ... [5]

• sequenced stream socket (type SOCK_SEQPACKET) is similar to the SOCK_STREAM type,
and is also connection-oriented. The only difference between these types is that record
boundaries are maintained using the SOCK_SEQPACKET type. ... Record boundaries
are visible to the receiver via the MSG_EOR flag in the received message flags returned
by the recvmsg() function. ... [5]

3.2 Networking subsystem
At the bottom layer of networking subsystem resides network device (represented by struct
net_device in kernel code). It communicates with other devices using link layer protocol,
for example, Ethernet. The network device is managed by device driver. Device driver
forwards input packets to the network layer. Output packets, received from the network
layer, are checked by device driver and then passed to the network device to send them
over the medium.

Network layer is right above the link layer. In the view of this work, it is represented
by the IP protocol. Egress packets might get fragmented before being passed to the link
layer. In a similar way, IP might reassemble multiple ingress packets into one before being
delivered to the transport protocol.

Transport layer processing is the closest one to the user application that is still carried
out by the kernel. Depending on the type of traffic (i.e., outbound, or inbound) transport
protocol either hands the data over to the application through the socket interface or passes
the data directly to the network layer.

Linux networking subsystem is generic enough so that we can omit link layer and network
layer specific code from our discussions. However, the transport layer will not be described
in detail here. The reason for that is that transport layer processing is implemented by a
collection of callback pointers (callbacks). All these callbacks are protocol (e.g., TCP, UDP,
etc.) specific. Instead, we will gloss over three key data structures of transport layer code
and their most prominent fields. Once we become acquainted with those data structures
we can proceed to a brief explanation of transport protocol registration procedure.

3.2.1 Data structures

struct socket

BSD sockets are internally represented by struct socket. Socket-related system calls work
with this structure. This structure has only 7 fields, the most notable are:
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• struct sock *sk — pointer to the network layer representation of this BSD socket.
In the rest of this work the term BSD socket will be used for user-space socket or
struct socket, while the term NET socket will refer to struct sock. NET sockets
are further described in the text that follows.

• const struct proto_ops *ops — struct proto_ops contains a number of call-
backs, that implement functions like connect(), listen(), sendmsg(), recvmsg(),
etc. Implementation of these functions is network family (e.g., AF_INET) specific.
Transport layer protocols do not share struct proto_ops, but what they might
share are the callbacks inside. For example, when sendmsg() is called on a BSD
socket the call will eventually be resolved to ops->sendmsg. ops->sendmsg of both
TCP and UDP points to the inet_sendmsg() function. Although these protocols are
completely different, the same function will be invoked when new data is being sent.
How is this possible will be revealed when we describe NET socket.

struct sock

It is the third representation of a socket when going from top to bottom. At the top
there is user-level socket, then follows its in-kernel version – struct socket. Ultimately,
at bottom resides NET socket – struct sock, which is the network layer representation of
the previous two. It is the place where all the networking-related information is stored. To
give an idea, here are some of its members:

• struct socket *sk_socket — the BSD socket associated with this NET socket.

• int sk_sndbuf — the size of the send buffer (write queue) in bytes.

• int sk_rcvbuf — the size of the receive buffer (receive queue) in bytes.

• struct sk_buff_head sk_receive_queue — a queue of incoming packets.

• struct sk_buff_head sk_write_queue — a queue for outgoing packets.

• atomic_t sk_drops — number of packets dropped by this socket.

• struct proto *sk_prot — this structure contains mostly callbacks. These call-
backs implement transport layer protocol-specific actions. Continuing with our dis-
cussion about the sendmsg() socket function call, we will show the implementation
of inet_sendmsg(). Definition of the function is presented in figure 3.11.

int inet_sendmsg(struct socket *sock, struct msghdr *msg,
size_t size)

{
struct sock *sk = sock->sk;
...
return sk->sk_prot->sendmsg(sk, msg, size);

}

Figure 3.1: Definition of the inet_sendmsg() function.
1Note that the code snippet was simplified, and a portion of the code was left out (...).
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First, the NET socket is acquired by reading the sk field of a BSD socket. Next,
the protocol-specific callback is invoked. For TCP sk->sk_prot->sendmsg points to
tcp_sendmsg and for UDP to udp_sendmsg. In conclusion, every elementary socket
function will eventually call the right protocol handler by means of a chain of callbacks.

struct sk_buff

This structure is ubiquitous to Linux networking subsystem. The socket buffer alias
struct sk_buff (SKB) represents any incoming or outgoing packet, including the head-
ers, the payload and other related information [12]. The most noteworthy members are the
following:

• struct sock *sk — pointer to the NET socket that is associated with this packet.

• unsigned char *head

• unsigned char *data

• sk_buff_data_t tail

• sk_buff_data_t end

– These four fields are closely interrelated. head points to the start of the linear
data area of a SKB. In this area packet data and headers can be stored. end
marks the end of this area (sk_buff_data_t type optimizes memory usage – an
offset is kept instead of a pointer). Our current position in the buffer is held in
data pointer. End of the actual packet data is delimited by tail. To aid with
the description, an illustration of a SKB a) right after it has been allocated and
b) right before it is handed over to the device driver is provided in figure 3.2.

tailroom

head

data

tail

end

truesize

destructor

sk

cb[]

...

...

tailroom

head

data

tail

end

truesize

destructor

sk

cb[]

...

... TCP header

IP header

headroom

user
DATA

a) b)

struct sk_buffstruct sk_buff

Figure 3.2: struct sk_buff a) freshly allocated b) after leaving the network layer.
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• char cb[48] — this is where per packet control information is stored. Transport
layer protocols are free to use this space as desired. For example, TCP stores here
segment SN as well as acknowledgement SN in host byte order. Using this approach,
the SN stored in TCP header does not have to be accessed and converted every time
some function needs it.

• unsigned int truesize — total size of a SKB. It sums the size of the data area we
allocated for the packet and the size of the struct sk_buff itself.

• void (*destructor)(struct sk_buff *skb) — function callback to invoke when
we free this socket buffer.

3.2.2 Transport protocol registration

When a network packet is received, an array of 256 records is indexed by the value of protocol
(IPv4) or next header (IPv6) packet header field. The selected record contains handler for
the incoming packet. New protocol is added to the array using inet_add_protocol().
When an invocation of this function succeeds, the kernel is ready to accept and process
packets carrying the new protocol.

There is no way to generate traffic, however. No sockets matching the new protocol can
be created. A remedy for this situation is the inet_register_protosw() function. It takes
struct inet_protosw as its only argument. The protocol registration will be discussed
more thoroughly in implementation section where we will include snippets of actual code.

In conclusion, only two function calls are required to register new transport layer proto-
col. Nevertheless, a great amount of work must be done to properly initialize the arguments
of those two function calls.

3.3 Loadable kernel modules
Linux is a monolithic kernel. The entire kernel code runs in special, privileged mode called
kernel mode. Ordinary applications run in user mode. When code running in user mode
(e.g., some user application), starts to misbehave, the kernel has the ability to shut it down.
Nonetheless, kernel is not under any sort of supervision. Faulty operation performed by
the kernel might seriously damage or even crash the entire system. Key feature of Linux is
its ability to dynamically load separate binaries, called loadable kernel modules (LKMs),
into the kernel image. [6]

These modules enable us to extend the functionality of the kernel without the need to
rebuild and reboot it every time we make any changes. Thus, the development process can
be faster [13]. However, there is one downside to it. Monolithic kernels typically exist on
disk as a single static binary [6]. In other words, all source files of Linux kernel are linked
into a single base image. As a result, built-in kernel code can call any nonstatic function
(assuming it is declared in one of the included header files). For LKMs the situation is
different. Only explicitly exported functions are available. Specifically, kernel symbol must
be enclosed in EXPORT_SYMBOL or EXPORT_SYMBOL_GPL macros to be usable from external
module.

Example of a trivial LKM is demonstrated in figure 3.3. Every module must imple-
ment initialization and cleanup function. In older kernels, it was necessary to name these
functions init_module() and cleanup_module(), respectively. Nowadays, the preferred
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method is to use a name of our choosing and then use module_init() and module_exit()
macros. For the module to compile, license must be specified.

#include <linux/module.h> /* Needed by all modules */

static int my_init_fn(void)
{

pr_info("Init done!\n");
return 0;

}

static void my_cleanup_fn(void)
{

pr_info("Cleanup done!\n");
}

module_init(my_init_fn);
module_exit(my_cleanup_fn);

MODULE_LICENSE("GPL");

Figure 3.3: Example of a (trivial) loadable kernel module.

Kernel modules, as well as the whole Linux kernel, are built by the kbuild build system.
Usually, a simple makefile with few special directives will suffice to build the module.
However, the prerequisite for the build is that we have the kernel headers available.
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Chapter 4

Delta-t kernel module

Having introduced the Delta-t protocol and Linux networking infrastructure in chapters 2
and 3, we can proceed to the next step. It is time to translate the concepts surrounding
Delta-t, currently expressed only on paper, into a loadable kernel module. This module
will extend the set of supported transport layer protocols. IP packets will carry Delta-t
segments.

Unfortunately, Delta-t specification in its current format is not compatible with IP. More
specifically, the connection management hazards might not be prevented. In the following
sections a solution to this problem will be presented and a foundation for our work will be
laid out.

4.1 Design
In IP networks the lifetime of a packet is kept in time-to-live/hop count field of IPv4/IPv6
header. Value stored in this field limits the number of routing hops that a given packet
may traverse. Delta-t segment lifetime must be bound in units of time, rather than by
the number of routing hops. Only this way the connection management hazards will be
avoided (assuming the rules and recovery intervals from chapter 2 are followed and timers
are initialized accordingly). New network layer protocol, capable of packet aging services,
similar to the one used originally alongside Delta-t, would solve this issue. In this work, a
different solution will be outlined.

4.1.1 Segment Lifetime

Introducing lifetime and timestamp field into Delta-t segment header could potentially
resolve our problem. The sender would set the lifetime and fill in the timestamp field with
current time before sending a segment. The receiver would be able to check that segment
lifetime has not expired by comparing segment expiration time (i.e., sum of the timestamp
and lifetime field) against its current time. Such a scenario is illustrated in figure 4.1. To
change “could potentially resolve” at the beginning of this paragraph into “could actually
resolve” the clocks of the sender and receiver must be synchronized.

Clocks are said to be synchronized when they run at the same frequency and their time
is set so that they agree at a particular epoch with respect to coordinated universal time
(UTC) [9]. Fortunately, the challenge of synchronizing computer clocks has already been
solved by Network Time Protocol (NTP) [7]. NTP is a distributed system consisting of
primary and secondary time servers, clients, and interconnecting transmission paths [9].
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network

timestamp:
segment lifetime:

10:30:00
00:00:15

current time:
segment expiration time:

10:30:10
10:30:15

=
segment acceptable

Figure 4.1: Bounding segment lifetime using timestamp and lifetime field.

The objective of NTP is to synchronize the clocks in all participating computers to the
order of less than a millisecond or two relative to UTC [10]. The ins and outs of NTP
protocol are not relevant to this work.

NTP daemon is a software implementation of NTP protocol [10]. It is readily available
for any Linux distribution. Having NTP daemon setup and running is the prerequisite
for correct Delta-t operation1. In the rest of this work, we will assume that clocks of
communicating computers are synchronized.

4.1.2 Recovery Intervals

In its normal mode of operation Delta-t connection should not be closed until both Stimer
and Rtimer expire. Otherwise, connection management hazards will reappear once again.
Recovery interval must be in place to face computer crashes (or even ordinary reboots).
They ensure that sender or receiver wait long enough before initiating or accepting a con-
nection to prevent these hazards.

It has been decided that the current implementation of Delta-t will not take recovery
intervals into account. The problem is that Linux kernel does not store the information
about open sockets in persistent memory. Doing so would be very inconvenient and would
never be bulletproof. For example, the computer could crash before the I/O operation has
finished. As a result, recovery intervals cannot be enforced on individual sockets. It would
be necessary to apply them at the very start of every connection (i.e., right after a socket
has been opened). In consequence, first read operation would be delayed by Δt and first
write by 3 · Δt.

In this work, no delay will be enforced at the very beginning of a communication after
crash or reboot. Protocol implementation will be tested and evaluated in a setup where
connection management hazards, resulting from the omission of recovery intervals, are
guaranteed to be nonexistent.

4.1.3 Interaction with Socket API

Delta-t was originally designed to reliably transmit stream of messages. Message boundaries
were marked in segment header. This type of communication is in contemporary socket
API represented by SOCK_SEQPACKET socket type. In this work, Delta-t protocol will be

1As a consequence, Delta-t is dependent on the UDP protocol because NTP packets are carried by UDP
datagrams [10].
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implemented as if it was a byte-stream oriented protocol. As a result, Delta-t sockets will
be of type SOCK_STREAM.

The intention is to make Delta-t behave the same way as TCP does when elementary
socket functions are invoked. Therefore, the sequence of socket function calls performed
by Delta-t to communicate with other party will be the same as of TCP. Porting a TCP
application to Delta-t will be only the matter of changing the last argument of the initial
socket() function call (i.e., socket(AF_INET, SOCK_STREAM, IPPROTO_DELTAT)). Also,
this decision will make the process of testing and evaluating the implemented protocol less
of a burden.

Typical Delta-t client–server style of a communication, in relation to elementary socket
functions, is depicted in figure 4.2. In this diagram two differences can be seen when
compared to TCP.

Executing connect() by the client will not result in Delta-t segment being transmitted.
The connection will not be established until the first data segment is sent (by means of
write()/ sendmsg(), or any related system call).

Furthermore, there is no connection termination signalling between the client and the
server. The socket stays open until explicitly closed by the close() system call (assuming
all segments are being successfully delivered between the two). Even when timers are not
running (i.e., enough time has passed since last receive or send operation) the socket stays
open. It is application’s responsibility to close the socket when appropriate.

Delta-t Server

Delta-t Client

socket()

bind()

listen()

accept()

close()

read()

write()

socket()

write()

close()

read()

process request

                  data (request)

                    
data (reply)

connect()

block until
connection-establishing

segment arrives

data (first request)

Figure 4.2: Socket functions for elementary Delta-t client–server.
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4.1.4 Delta-t state diagram

State transition diagram depicts the operation of a protocol regarding connection estab-
lishment and connection termination. Transitions from one state to another are based on
the current state and the event that occurred. [14]
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Figure 4.3: Delta-t state transition diagram.

Based on Delta-t protocol description, diagram depicted in figure 4.3 has been proposed.
Socket is initially in the CLOSED state. By issuing the listen() system call, it transitions
to the LISTEN state. This kind of opening is commonly referred to as passive open. It is
performed by server application. Socket will remain in the LISTEN state until an acceptable
segment is received. It could be either rendezvous or data segment. Data-run flag must be
set in this segment. When this segment arrives the connection is established, i.e., the socket
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moves to the ESTABLISHED state. Internally, the accept()2 socket function has to be called
to establish the connection. Immediately after server socket gets to the ESTABLISHED state
its Rtimer is initialized because a segment was just received. When the server decides to
send response to the client, its Stimer will be initialized as well.

Now, let us describe how the connection is established from client’s perspective. Client
must first call connect(). Unlike TCP, no network traffic will be generated. This call
should only register peer’s address. As a result, connect() will return immediately3 and
will always succeed (if valid address structure was given). The connection is considered to
be established from now on, i.e., the socket transitions to the ESTABLISHED state. Initiating
a connection as a client is referred to as active open. Client’s timers are initialized when
first data segment is sent or received.

In theory, there is third possibility to open a connection, which is not present in TCP.
Two clients can make a connection between themselves. However, they need to know their
corresponding addresses in order to pass them to the connect() function. Once they reach
the ESTABLISHED state, they are free to exchange data.

From the ESTABLISHED state onward, state transitions are the same for both client and
server. The socket is kept in this state even when timers expire. It is up to the application
to decide when to close the socket with the close() system call.

If close() is invoked the socket moves either back to the CLOSED state, or transitions
to the TIME_WAIT state, depending on the state of timers. In case Rtimer and Stimer are
not set the socket moves back to the CLOSED state. Subsequently, any resource that has
been allocated can be freed.

If at least one of the timers is running the path to the TIME_WAIT state must be taken.
The socket will stay in this state until both expire. The rationale behind the TIME_WAIT
state is the following. Being in the TIME_WAIT state means that the socket was closed
prematurely. Ideally, an application should not be able to close the socket when timers are
running. Unfortunately, this rule cannot be enforced in socket API. Applications are free
to close the socket at any time. Using the TIME_WAIT state we keep the socket open at
protocol level. With this approach, we stick to Delta-t specification – the socket returns
to its default state when both timers go to zero. All segments, received in the TIME_WAIT
state, are discarded because we know the data can never reach user application (user-level
socket is already closed). Local socket address (i.e., local IP address and port) of a socket
in the TIME_WAIT state cannot be reused. Trying to bind a new socket to this address will
fail. SO_REUSEADDR socket option can be used to circumvent this behavior. Nevertheless, it
is not advised as it might influence protocol reliability.

4.1.5 Header Format

In general, Delta-t kernel module should provide reliable delivery of a stream of bytes4.
Additionally, full-duplex mode of operation should be supported and the communication
should be flow controlled. Delta-t segment header will be constructed based on these
criteria.

2accept() is a blocking call, servers usually call accept() right after listen() and wait for incoming
connections.

3connect() in TCP returns only after 3WHS is finished or an error occurs [14].
4See subsection 4.1.3 for an explanation why a stream of bytes was chosen instead of a stream of messages.
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UDP datagram header forms the basis of Delta-t segment header. Consequently, valid
Delta-t segments can be considered as valid UDP datagrams. Also, there is an opportunity
to implement Delta-t as user-space library, using UDP to transport Delta-t segments.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source port | Destination port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Deadline |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ve.|Ty.|D|O|R|U| Lifetime | Window size / Error code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.4: Delta-t segment header format.

The format of Delta-t segment header is illustrated in figure 4.4. There are no optional
fields so the header is always twenty bytes long. At the segment level, Delta-t can support
only half-duplex communication because there is only one field to store the SN. Unlike
TCP, Delta-t segments carry either data or an ack, never both. However, full-duplex mode
of communication is supported at the protocol level. In the following text, description of
individual header fields will be given:

• Source port (16 bits) — Delta-t source port number.

• Destination port (16 bits) — Delta-t destination port number.

• Length (16 bits) — length of this segment, including Delta-t header, in octets (the
minimum value of this field is 20).

• Checksum (16 bits) — standard UDP checksum.

• Sequence number (32 bits) — based on the segment type this field contains:

– data segment — the SN of the first data octet in this segment.
– rendezvous segment — the SN of the ack segment that announced zero window.
– ack segment — the next SN the receiver is expecting in next data segment.
– nak segment — the SN of the segment that caused the generation of this nak.

• Deadline (32 bits) — Delta-t segment expiration time. It has the same format
as timestamp field of IP timestamp option – a right-justified, 32-bit timestamp in
milliseconds modulo 24 hours from midnight UTC [15].

• Version (2 bits) — Delta-t version number (currently always set to zero).

• Type (2 bits) — Delta-t segment type. One of the following:
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– 0: Data segment.
– 1: Ack segment.
– 2: Rendezvous segment.
– 3: Nak segment.

• Flags (4 bits)

– D: data-run flag, set in data/rendezvous segment, if all previously sent segments
have been acknowledged.

– O: overflow flag, set in ack segment, when window overrun occurs.
– R: reliable flag, set in ack segment, when zero window opens.
– U: unused bit, always set to 0.

• Lifetime (8 bits) — lifetime of this segment, in seconds. It is the value of Δt.
When Rtimer is not set and first acceptable segment is received, receiver’s Rtimer is
initialized based on the value of this field (i.e., Rtimer is set to 2 · Δt).

• Window size/Error code (16 bits)

– data/ack/rendezvous segment — the number of data octets which the sender of
this segment is willing to accept.

– nak segment — the error code.

4.2 Implementation
When developing new protocol for the Linux kernel, it is much easier to use existing pro-
tocols as a reference. Also, using fragments of code that has already proven to work makes
the development process faster, rather than starting from scratch. [8]

In this work TCP will be used as a reference. The intention is to follow TCP as close
as possible so that anyone acquainted with Linux TCP stack will find the code in Delta-t
module easy to understand. At the same time, anyone who will be able to grasp Delta-t
implementation will also gain an insight into the Linux TCP stack.

The main goal of this work is to make a proof-of-concept implementation of Delta-t.
With respect to this fact, we will target only IPv4 and leave out any additions that are
required for IPv6 support. Moreover, Linux is constantly evolving with new releases being
published fairly frequently. Delta-t implementation presented in this work is based on the
version 5.11 of Linux kernel released on 14th of February 2021. Porting to older or newer
kernels in the 5.0+ kernel series should not require much work, however.

There is a quite a bit of complexity associated with reliable transport protocols. In
the rest of this chapter we will point only the key components and aspects of Delta-t
implementation. There might not always be a perfect match between the code in Delta-t
module and code snippets found in the following subsections. Some snippets were simplified
in order to make them shorter or to give an explanation more easily.

4.2.1 Protocol registration

Transport layer protocols must have an internet protocol identifier/number assigned. This
identifier is placed in the protocol field of IPv4 header (next header field of IPv6 header).
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For example, 6 is the protocol number of TCP and 17 is the protocol number of UDP.
Number 253 has been chosen as Delta-t protocol identifier. It is perfect fit for our purpose
because it is meant to be used for experimentation and testing5.

When registering new transport layer protocol, we need to tell the kernel what the
protocol number is and what handler it should use when a network packet is received.
For AF_INET protocol family it is accomplished by the function inet_add_protocol().
It takes struct net_protocol and protocol number as arguments. Figure 4.5 shows the
invocation of inet_add_protocol() alongside the definition of its arguments. After this
portion of code is executed, the deltat_v4_rcv() function will be invoked for every Delta-t
segment received (identified by number 253 in corresponding IP header field). Callback
deltat_v4_err() is responsible for processing ICMP packets that have Delta-t segment as
a payload.

#define IPPROTO_DELTAT 253
static const struct net_protocol deltat_v4_protocol = {

.handler = deltat_v4_rcv,

.err_handler = deltat_v4_err,

.no_policy = 1,

.netns_ok = 1
};
inet_add_protocol(&deltat_v4_protocol, IPPROTO_DELTAT);

Figure 4.5: Adding input handlers for Delta-t protocol.

Although the kernel gained the ability to process Delta-t segments, it will eventually
discard every single one of them. It will try to find a socket associated with a given segment
based on IP addresses and port numbers, but no socket will be found, and the segment will
be dropped. No socket will be found because there can be none. We have not told the
kernel how to create Delta-t sockets yet (or even that Delta-t protocol exists). To register
Delta-t protocol with the kernel inet_register_protosw() must be used. In figure 4.6
we can see kernel representation of a protocol (i.e., struct inet_protosw) and subsequent
registration.

static struct inet_protosw deltat_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_DELTAT,
.prot = &deltat_prot,
.ops = &inet_deltat_ops,
.flags = INET_PROTOSW_ICSK

};
inet_register_protosw(&deltat_protosw);

Figure 4.6: Registration of Delta-t protocol with the kernel.
5See https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
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Linux kernel keeps supported protocols in linked lists. There is a separate list for each
protocol type (one for SOCK_STREAM, one for SOCK_DGRAM, etc.). Function call in figure
4.6 extends one of these lists by adding deltat_protosw. When Delta-t socket is opened
by socket(AF_INET, SOCK_STREAM, IPPROTO_DELTAT), list of SOCK_STREAM protocols is
traversed until some of them matches IPPROTO_DELTAT.

Simple socket() function call opens three sockets. User-level socket, its internal kernel
representation – struct socket and associated NET socket – struct sock. For Delta-t
sockets the ops field of struct socket will point to inet_deltat_ops and the sk_prot
field of struct sock will point to deltat_prot.

Every function (except deltat_v4_rcv() and deltat_v4_err()) in Delta-t module can
characterized as follows: it is either a callback function used to initialize deltat_prot or
inet_deltat_ops, or it is a utility function invoked by a callback.

inet_deltat_ops

Structure inet_deltat_ops contains 17 callbacks in total. Only three of them, shown in
figure 4.7, were reimplemented while the rest (omitted for the sake of brevity) is shared
with other transport layer protocols.

Moreover, these three functions are almost identical to their TCP counterparts with
only minor modifications being made. For example, connect() callback in TCP first calls
protocol specific6 connect function (i.e., tcp_connect()) and then blocks waiting for the
3WHS to complete. deltat_inet_connect() does the same thing except it does not block
and returns as soon as the protocol specific function is done.

const struct proto_ops inet_deltat_ops = {
...
.connect = deltat_inet_connect,
...
.poll = deltat_poll,
...
.listen = deltat_inet_listen,
...

};

Figure 4.7: Initialization of inet_deltat_ops.

deltat_prot

Compared to inet_deltat_ops, initializing deltat_prot is much more involved. At first,
having both inet_deltat_ops and deltat_prot may seem redundant. However, this is
not the case. inet_deltat_ops is oriented towards the BSD socket while deltat_prot is
interfacing with the network. As a result, all the networking-related handlers as well as other
information is kept in deltat_prot. This structure has a lot of members. Most of them
are defined in Delta-t module (i.e., definitions from other protocols could not be reused).

6The mechanism of invoking protocol specific handler has been discussed in subsection 3.2.1, where
struct sock data structure is described.
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In figure 4.8 few notable members of deltat_prot can be seen with their corresponding
values. Description of each member is given in the following text.

#define MAX_DELTAT_HEADER (sizeof(struct deltathdr) + 64 + MAX_HEADER)
static struct proto deltat_prot = {

.connect = deltat_v4_connect,

.sendmsg = deltat_sendmsg,

.backlog_rcv = deltat_v4_do_rcv,

.h.hashinfo = &deltat_hashinfo,

.hash = inet_hash,

.max_header = MAX_DELTAT_HEADER,

.obj_size = sizeof(struct deltat_sock),

...
};

Figure 4.8: deltat_prot (incomplete) initialization.

• connect() — In contrast with TCP, Delta-t specific connect procedure, which is
deltat_v4_connect() (called by deltat_inet_connect), only consults the destina-
tion address with IP layer and records it for subsequent use.

• sendmsg() — All write operations on a BSD socket (i.e., write(), send(), sendmsg(),
etc.) will eventually invoke this callback.

• backlog_rcv() — It is necessary to lock a socket before any user-level read operation
so that the kernel cannot modify the underlying data. If a segment arrives in the
meantime, it cannot be processed because the socket is locked. The segment is added
to the backlog queue and processed by a callback saved in this field when the socket
lock is released. Output operations lock the socket as well.

• h.hashinfo — Transport protocols store bound sockets (i.e., sockets with IP address
and port assigned) in a hash table. This hash table is consulted whenever new segment
arrives to find corresponding socket.

• hash() – One of the few functions that could be reused. It adds a socket to the hash
table just mentioned.

• max_header — When new Delta-t segment is allocated enough headroom must re-
served in the data are of a corresponding SKB. Transport, network, and link layer
headers must fit in this space. At each layer maximum header size is assumed and
their sum is put in max_header field.

• obj_size — Transport layer protocols have to keep per socket state variables. For
example, a timestamp of last segment sent or a SN that is expected to be received.
Protocols extend NET socket (struct sock) by adding additional fields to it.7 Nat-
urally, the resulting data structure will be bigger than struck sock. When the
extended NET socket is allocated obj_size is used to make space for additional state
variables.

7The principle applied to accomplish this will be shown in subsection 4.2.2.
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4.2.2 Data structures

Linux kernel uses simple scheme to extend existing data structures that mimics inheritance
pattern from object-oriented languages. New struct has to be defined and the existing one
must be placed at the very beginning. Subsequently, we can add in any additional fields.

The base structure is placed at the beginning to enable pointer casting. Using pointer
casting we can access fields of the base structure more easily, especially when data structure
is expanded multiple times.

Different protocols have different needs and the NET socket structure is not designed
to cover all of them. Transport layer protocol has to extend struct sock8 and make a
custom version of it.

Network layer representation of a Delta-t BSD socket is struct deltat_sock. From
now on the term “Delta-t NET socket” will refer to this structure9. Its full definition can be
seen in figure 4.9. The definition is so short because it uses TCP NET socket as a starting
point. Consequently, opening Delta-t socket will consume (slightly) more resources than
opening TCP socket. Generally, Delta-t implementation presented in this work will not be
better than TCP in terms of memory usage.

struct deltat_sock {
struct tcp_sock tcp;
u8 rcv_deltat; // Δt for acks (not reliable-acks)
u8 snd_deltat; // Δt for all other segments
u32 rcv_timer; // 2 * rcv_deltat * HZ
u32 snd_timer; // 3 * snd_deltat * HZ
u32 last_rcv; // last new SN received timestamp
u32 last_snd; // last new SN sent timestamp
u32 rtx_timeout; // the value of R in Δt = MPL + R + A
u8 rendezvous_state:3, // current rendezvous state

wnd_oflow:1, // window overrun occurred
unused:4;

};

Figure 4.9: Definition of deltat_sock – network layer representation of Delta-t socket.

However, using TCP NET socket as a basis of Delta-t NET socket gives us the ability to
reuse substantial portion of TCP logic. Some of it can be reused directly by a plain function
call. This is possible when the function in question is explicitly exported. Unfortunately,
most TCP functions are not visible from loadable modules. Instead of rebuilding the kernel,
these functions were simply copied into the Delta-t module.

8To be precise, transport layer protocols do not extend struct sock directly. Instead, they use already ex-
panded version of it. For example, custom TCP NET socket is tcp_sock and it uses inet_connection_sock
as a basis. The complete sequence is the following: tcp_sock → inet_connection_sock → inet_sock →
sock → sock_common (struct sock is an expansion of struct sock_common).

9Similarly, TCP NET socket will refer to struct tcp_sock.
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4.2.3 Input Path

When looking at the implementation of Delta-t input handler – deltat_v4_rcv(), one can
get lost fairly quickly. After initial sanity checks the code gets somewhat convoluted. In
this subsection, we will describe input processing done for the first segment of a connection.
We assume that the segment is valid and there exists a listening socket that will accept this
segment.

Diagram in figure 4.10 shows the input path by means of a sequence of function calls.
At each level in the hierarchy only the most important functions are depicted. Moreover,
some of the functions are called using callback mechanism, but in the diagram, they are
presented as if they were called directly.

deltat_v4_rcv()

__inet_lookup_sk()

deltat_v4_do_rcv()

deltat_rcv_state_process()

deltat_v4_conn_request()

__inet_lookup_sk()

deltat_check_req()

deltat_child_process()

deltat_rcv_state_process()

deltat_data_queue()

2nd pass

1st pass

sock_def_readable()

Figure 4.10: Path taken by the first (valid) data segment received by a listening socket.

The primary input handler is actually called twice for each connection-establishing seg-
ment (i.e, first data segment with data-run flag set). After segment validity has been
tested, __inet_lookup_sk() is called. In our scenario, it will find the associated listening
socket. deltat_v4_do_rcv() is used to quickly demultiplex segments for established sock-
ets. However, our socket is in the LISTEN state. deltat_rcv_state_process() handles
segments of non-established sockets. deltat_v4_conn_request() checks that the queue
of requests is not full and creates new request socket. Request socket is minimalistic ver-
sion of Delta-t NET socket. To create fully formed Delta-t NET socket a (recursive) call
to deltat_v4_rcv() is made. This time around, __inet_lookup_sk() will return the
request socket instead of the listening one. Delta-t NET socket is allocated and initial-
ized by deltat_check_req(). Subsequently, deltat_rcv_state_process() will be called
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again. New socket will be in the SYN_RECV10 state and the segment will be added to the
receive queue using deltat_data_queue(). Finally, the parent socket will be woken up by
sock_def_readable().11

Segments received in the future will be handled by deltat_rcv_established() (not in
the diagram) and the path will less complicated: deltat_v4_rcv() → deltat_v4_do_rcv()
→ deltat_rcv_established().

4.2.4 Output Path

Unfortunately, Delta-t output path cannot be described as a simple sequence of function
calls. External events influence which segment will be transmitted at what time. All output
operations will eventually invoke deltat_transmit_skb(). This function processes Delta-t
SKBs based on the information stored in the control block (cb[] field of a SKB). It prepends
Delta-t header to each segment and passes it to the network layer. Few possible ways to
reach deltat_transmit_skb() are shown in figure 4.11.

The most obvious starting point is the deltat_sendmsg() function. It is invoked when
a socket is written to. Less obvious one is deltat_data_snd_check(), which is called at
the end of input processing just before deltat_v4_rcv() returns.12

Output operation can be initiated by deltat_retransmit_timer(). As the name sug-
gests, it is responsible for handling retransmission timer events. Unlike the previous two
functions, this one does not use deltat_write_xmit() along the way. The reason for it is
quite simple. Segments to retransmit are in the retransmit queue, not in the send buffer
where deltat_write_xmit() expects them.

deltat_sendmsg() deltat_write_xmit()

deltat_retransmit_timer()

deltat_transmit_skb()

deltat_retransmit_skb()

deltat_data_snd_check()

deltat_tasklet_func()

timer event

interrupt event

user event

input event

Figure 4.11: Incomplete list of Delta-t output functions and their interrelation.
10This is purely internal state indicating that the socket was just allocated. The socket will transition to

the ESTABLISHED immediately after some more initializations are done.
11The parent socked is probably sleeping in the accept() system call.
12deltat_data_snd_check() was omitted from the discussion in the previous subsection for the sake of

brevity.
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There can be only limited amount of SKBs in the networking queues below Delta-t
at any instant of time. If they are full, Delta-t must delay the sending of new SKBs.
Once a segment leaves the network device, destructor callback will be invoked to free the
corresponding SKB. That callback will schedule a task (deltat_tasklet_func()) that will
try to send new Delta-t segments by the time next software interrupt occurs. Destructor
cannot issue the output operation itself because of locking.

There are two queues that hold outgoing segments. New segments are appended to
the end of the send queue by deltat_sendmsg(). This queue is implemented as a doubly
linked list and sk_write_queue field points to the head. Each SKB transmitted by Delta-t
is removed from the head of the send queue and put in the retransmit queue. Retransmit
queue is represented by tcp_rtx_queue field.13 SKB is kept in the retransmit queue until
acked. An illustration of send and retransmit queue is provided in figure 4.12. Initially, a)
three SKBs are waiting in the send queue, retransmit queue is empty, and b) first segment
(head of the send queue) is transmitted and placed in the retransmit queue.

Delta-t NET socket

a)

tcp_rtx_queue

sk_write_queue

...

...

Delta-t NET socket

tcp_rtx_queue

sk_write_queue

...

...

b)

NULL

Figure 4.12: Output queues: a) before send operation b) after send operation.

In general, Delta-t output functions are very similar to their TCP counterparts but
one aspect of Delta-t output differs significantly from TCP. Current implementation is not
congestion controlled. Congestion-related variables are not updated, and congestion window
quota is not respected. There is only one simple heuristic used. If no ack is received after
three consecutive retransmits, we cease sending new data and focus only on transmitting
segments from the retransmit queue. However, all other output logic (e.g., flow control,
Nagle’s algorithm, etc.) is kept in place.

4.2.5 Value of Δt

In fact, there are two Δts, one for each direction of data flow. They are represented by
rcv_deltat and snd_deltat in Delta-t NET socket.

rcv_deltat is initialized from lifetime header field when Rtimer is zero and first
acceptable segment is received. This value is put in lifetime field of subsequent ack
segments. rcv_deltat is controlled by the other end of a connection.

snd_deltat is initialized during socket creation and it reflects the value of global variable
deltat, which also happens to be a parameter of the module. deltat is set to 32 seconds by
default. This value was chosen so that the time spent in TIME_WAIT state is approximately
the same compared to TCP14 and there is enough time for retransmissions. The number of

13Unlike send queue, the underlying data structure of retransmit queue is as a red-black tree.
14In the worst-case scenario, Delta-t spends 1 minute and 36 seconds in the TIME_WAIT state. TIME_WAIT

state of TCP is always 1 minute long (this holds for Linux).
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retransmissions performed by Delta-t before giving up is dependent on the value of deltat.
The retransmission logic will be discussed in the following subsection 4.2.6.

The value of deltat can be modified when the module is loaded into the kernel. The
following snippet shows how to increase its default value (32 seconds) to 128 seconds.

sudo insmod deltat.ko deltat=128

Current deltat value is stored in /sys/module/deltat/parameters/deltat. To read
it we can issue the following command.

cat /sys/module/deltat/parameters/deltat

The value can be tweaked even after the module has been loaded. The way to do it
is shown in the snippet below. Executing this command will not affect existing sockets,
however. Only sockets opened after this point will reflect the new value.

echo 16 | sudo tee /sys/module/deltat/parameters/deltat

Lifetime check

Segment expiration time is checked by the function remaining_lifetime(). Value in the
deadline header field stores the number of milliseconds since midnight UTC. If a segment
is sent less than Δt seconds before midnight, then its deadline value will wrap around. The
remaining_lifetime() function takes wraparound into account and the segment should
be correctly validated at any time.

4.2.6 Retransmission logic

Lifetime of Delta-t segments is bound. In consequence, there is no point in trying to
retransmit segment that is already dead. Once this situation occurs, the socket is closed,
and error is reported to the user application.

The same retransmission scheme that is used in TCP is followed. The retransmission
timeout (RTO) is doubled with each retransmission – this is called exponential backoff.
Currently, segment is being actively retransmitted for three quarters of its lifetime (24
seconds by default). The other half is spent waiting for an ack to arrive or retransmitting
other segments that have not hit their maximum retransmission time. New segments are
not sent in this period to meet rule R2 from section 2.1.

Ideally, RTO should not be too short so that segments are not retransmitted unneces-
sarily. On the other hand, it should not be too long either. Long delay before lost segment
is retransmitted would have negative effect on performance. [16]

Delta-t uses different value to initialize the RTO than TCP because the subsequent
behavior differs. TCP implements the algorithm from RFC 6298 – it takes round-trip time
samples and updates the RTO value accordingly [11]. Delta-t implementation presented
in this work does not take any round-trip time samples and the value is updated only by
exponential backoff. RTO is set to 0.5 seconds during socket initialization15. After successful
retransmission it is reset back to 0.5 seconds.

15TCP initializes RTO to 1 second.
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Not only the retransmission timer can trigger retransmit event. Delta-t module, after
having received three duplicate acks, performs fast retransmit. As a result, segment at
the head of the retransmit queue is sent immediately, instead of waiting for the retransmit
timer to expire.

4.2.7 Timer management

Timers are fundamental to proper Delta-t protocol operation. In Linux kernel, the flow of
time can be measured by two types of timers. Both allow us to defer work to some point
in the future. Generally, these two types differ by the resolution they have and by the
precision they can achieve.

To implement Stimer/Rtimer logic no actual timer has been employed. This is possible
because there is no work to be done associated with the timer expiration. In Delta-t module,
instead of setting up timers we simply record the time of last send and receive event. These
events are defined as follows:

• Send event is triggered whenever new data, rendezvous or reliable-ack is sent. Re-
transmissions of the previous segments are not considered as send events. The time
of last send event is stored in last_snd field of Delta-t NET socket.

• Receive event is triggered whenever new data or rendezvous segment is received and
accepted, or it is received and rejected because of window overrun. The time of last
receive event is stored in last_rcv field of Delta-t NET socket.16

When new segment is received, we compare the elapsed time17 against the value of
2·Δt18. If the elapsed time is bigger than 2·Δt, then any SN is acceptable and the SN stored
inside the segment does not have to be checked. Thus, the segment will be accepted and
the last_rcv field will be populated with current time because receive event just occurred.

In this implementation, we check the expiration of Stimer (i.e., comparing the elapsed
time since last send event against 3·Δt) only on socket close. Expiration of Stimer indicates
that the receiver will accept any initial SN. However, we decided to simply leave the SN
unchanged throughout the lifespan of a socket. This unchanged value should be equally
valid as any other value.

4.2.8 Rendezvous-at-sender
Receiving zero window advertisement (i.e., ack segment with zero window size) causes the
rendezvous-at-sender procedure to be initiated. This procedure avoids periodic polling
utilized in TCP. It is simple sequential process consisting of few steps. Current state in the
process is held in the rendezvous_state field of Delta-t NET socket. Rendezvous-at-sender
implementation presented in this work follows the diagram in figure 4.13.

RENDEZVOUS NONE is the default state where traditional data exchange takes place. How-
ever, as soon as an ack with zero window is received, sender sends a rendezvous segment
as a response and transitions to the RENDEZVOUS SENT state. Rendezvous segment must be
acked. Doing so changes the state to RENDEZVOUS ACKED. Sender will remain in this state
until the window opens (i.e., until reliable-ack arrives).

16There are very similar fields to last_snd and last_rcv in the TCP NET socket, but they cannot be
repurposed for Delta-t’s use case.

17Calculated by subtracting the time of last receive event from current time.
18Which is precomputed and stored in the rcv_timer field of Delta-t NET socket (in jiffies).

32



RENDEZVOUS
NONE

RENDEZVOUS
SENT

RENDEZVOUS
ACKED

RENDEZVOUS
AWAIT

RENDEZVOUS
RECEIVED

RENDEZVOUS
RELACK_SENT

rcvd:
send:

<nonthing>
ack

rcvd:
send:

ack
rendezvous

rcvd:
send:

ack
<nothing>

rcvd:
send:

rendezvous
ack

rcvd:
send:

<nothing>
reliable-ack

rcvd:
send:

data
ack

rcvd:
send:

reliable-ack
data
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segment to be recieved for this transition
segment sent in response to this transition

Figure 4.13: State diagram of the rendezvous-at-sender procedure.

Let us look at the previous scenario from receiver’s point of view. When receive buffer
is full and consequently receive window shrinks to zero, receiver marks this fact in the next
ack to be sent19. Once this ack is sent, receiver will move to the RENDEZVOUS AWAIT state.
Receiving rendezvous segment in this state has three outcomes. An ack will be generated
for the rendezvous segment. Receiver’s window will be shifted and state transition to the
RENDEZVOUS RECEIVED state will be taken. Receiver can leave this state only when user
application reads enough data from the receive buffer.

In contrast with the description of rendezvous-at-sender procedure given in section 2.2,
rendezvous segments in this implementation of Delta-t do not carry the offset20 value.
Instead, the same fixed value is added to the SNs currently in use to shift the windows.
Maximum window size (i.e., 65 53521) is used as offset. It is assumed that the sender cannot
send more than a full window of data.

4.2.9 Utilities

Packet analyzers are very handy tools when troubleshooting network related issues. Even
more so when new transport protocol is being implemented. The ability to capture and
analyze Delta-t traffic was essential throughout the development process.

Probably the most popular packet analyzers are wireshark (GUI application) and
tcpdump (CLI application). Both have been extended by adding Delta-t protocol support.

19If some data could not fit in the receive buffer the overflow flag will be set in this ack.
20As a remainder, offset is used to shift sender’s and receiver’s window so that any possible duplicates

will not cause issues.
21Window size field is 16 bits long. Therefore, the value is 216 − 1.
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Particularly, LUA dissector plugin has been written for wireshark. We can see wireshark
in action in figure 4.14.

Figure 4.14: Using wireshark to analyze Delta-t segment.

Extending tcpdump was more involved because it does not have any plugin infrastruc-
ture. Modifications have been made directly to its source code. Fortunately, the required
changes were straightforward. Nevertheless, to use tcpdump with Delta-t support, we must
download its dependencies and recompile/build it.

4.2.10 Testing

For ad hoc testing, especially in the early stages of development, a simple echo client–server
application was implemented. Client reads data from standard input line by line and then
transmits each line to the server. Server echoes every received segment back to the client.
However, it took considerable amount of time until the implementation was mature enough
to act according to the scenario just mentioned.

Manual testing proved to be very useful when the module was not fully operational, but
it became increasingly tedious once the module started working as expected. As a result,
some other approach had to be devised, ideally a scriptable one. We decided to solve this
issue by using packetdrill to test Delta-t implementation presented in this work.

packetdrill is an open source utility, released by Google, aimed at testing the entire
TCP/UDP/IP network stack in a scriptable fashion. It defines its own scripting language
to specify test scenarios. This language enables us to represent packet events, or to execute
system calls and shell commands. Simply put, packet event is a description of inbound
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or outbound packet. When an inbound packet event is encountered in the script file, real
packet is constructed based on the description and injected into the kernel. When an
outbound packet is sent by the kernel, it is sniffed by packetdrill and compared against
the packet event provided in the script file. [1]

The source code of both, the packetdrill tool and the scripting language, has been
modified to enable testing of Delta-t protocol. Individual test cases were written as new
features were implemented. Currently, there are 17 tests. These tests simulate: simple
communication scenarios, invalid socket function calls, out of order delivery, sending expired
segments as well as the rendezvous-at-sender procedure. packetdrill provides a utility
script that runs all these tests one after another. An excerpt of a packetdrill script that
simulates rendezvous-at-sender is illustrated in figure 4.15. Full version of the script can
be found in appendix B.

// Establish a connection.
+0 < deltat data D 0:1000(1000) win 32792
+0 accept(3, ..., ...) = 4
+0 > deltat ack - 1000:1000(0)

// The following segment should fill receiver's window
+0 < deltat data D 1000:1460(460) win 32792
+0 > deltat ack - 1460:1460(0) win 0 // Zero window adv.

// Trying to squeeze in another segment
+0 < deltat data - 1460:2460(1000) win 32792
+0 > deltat ack O 1460:1460(0) // Not succesfull
+0 < deltat rendezvous D 1460:1460(0) win 32792
+0 > deltat ack - 1461:1461(0)

// Empty the receive buffer
+0 read(4, ..., 1460) = 1460
+0 > deltat ack R 66995:66995(0) // Reliable-ack sent

// (Overflow) segment that dit not fit can be sent again
+0 < deltat data D 66995:67995(1000) win 32792
+0 > deltat ack - 67995:67995(0)

Figure 4.15: Portion of a script that simulates rendezvous-at-sender with window overrun.

Let us briefly describe the script in figure 4.15. packetdrill uses C/C++ style syntax
for comments. There are only two system calls shown (accept() and read()). The rest of
the script is composed of packet events. The +0 at the beginning of each line means that
the line will be executed right after the previous line without any delay. Inbound segments
are constructed by packetdrill, and they are denoted by <. Outbound segments, denoted
by >, are generated by the kernel as a response to the inbound segment. Individual fields
of a packet event are broken down in figure 4.16.

time direction deltat type flags start-SN:end-SN (length) win window-size
+0 < deltat data D 66995 : 67995 (1000) win 32792

Figure 4.16: Break down of a Delta-t packet event.
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Chapter 5

Evaluation

In this chapter, the implementation of Delta-t protocol will be evaluated in different network
scenarios. Moreover, comparison with TCP, operating in the same conditions, will be
provided. We will accomplish this task using two directly connected virtual machines.

In this work, we used virtualbox platform. Two guest machines were instantiated
having 2 GB of available memory and running Ubuntu distribution kernel version 5.11.
Guest machines are configured to use virtualbox internal networking mode. Virtualbox
support driver acts as a Ethernet switch between the two. Additionally, both operating
systems use Intel PRO/1000 MT Desktop virtualized networking hardware.

Over the years TCP has registered many improvements, which increase its overall per-
formance. For example, RFC 4614 which keeps track of RFCs related to TCP, registers 26
of them as recommended enhancements [3]. Linux implements most of these enhancements.

However, we will attempt to provide unbiased comparison and disable performance-
related TCP extensions. In Linux, the TCP stack can be tuned via sysctl parameters1.
We will turn off the following features: TCP window scaling, receive buffer auto-tuning,
selective acknowledgements (SACKs), duplicate SACK support and F-RTO algorithm. The
command to disable all of these features at once is shown in figure 5.1.

sudo sysctl -w \
net.ipv4.tcp_window_scaling=0 net.ipv4.tcp_moderate_rcvbuf=0 \
net.ipv4.tcp_sack=0 net.ipv4.tcp_dsack=0 net.ipv4.tcp_frto=0

Figure 5.1: sysctl command to disable TCP advanced features.

Furthermore, TCP supports software and hardware offload mechanisms that can also
improve its performance. In context of TCP, we are referring to: TCP segmentation offload
(TSO), generic segmentation offload (GSO) and generic receive offload (GRO). Using these
mechanisms, TCP can pass to or receive from the network layer segments that exceed the
maximum segment size of the connection. These offloads are turned off by the command
in figure 5.2.

The performance of the two protocols will be assessed using simple file transfer client–
server application. iperf tool relies on the fact that (reliable) transport protocol explicitly

1These parameters are documented at https://www.kernel.org/doc/html/latest/networking/ip-
sysctl.html.
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sudo ethtool -K <interface> tso off gso off gro off

Figure 5.2: ethtool command to modify networking hardware settings.

closes the connection, but this is not the case for Delta-t. As a result, iperf could not be
used for benchmarking because the results would be inaccurate.

The order of operation of the benchmarking file transfer application is straightforward.
Client first opens a file, determines its size, sends the size to the server, and starts trans-
ferring the data. This way, the server knows how many bytes are expected (i.e., after how
many bytes the file transfer will be over). The server measures and reports elapsed time
of the file transfer. Subsequently, we will calculate the throughput based on the file size
and the time of the file transfer. The throughput reported in the following sections is an
average of 10 runs.

We will use Delta-t default lifetime (i.e., 32 seconds) and we will simulate the same
setting in TCP through TCP_USER_TIMEOUT socket option. This option specifies the max-
imum amount of time data may stay buffered without being transmitted, or transmitted
data may remain unacknowledged. After this period, the TCP connection will be closed.
Snippet shown in figure 5.3 sets the client’s user timeout to 32 seconds. Using this option,
we will overwrite default behavior of TCP. By default, TCP in established state can send
up to 15 retransmits before reporting a failure to the user application. Depending on the
current RTO it may take from 13 to 30 minutes to send all these retransmits.

unsigned timeo = 32000;
setsockopt(sockfd, IPPROTO_TCP, TCP_USER_TIMEOUT, &timeo,

sizeof(timeo));

Figure 5.3: Setting the TCP timeout option to 32 seconds.

Different network properties in the rest of this chapter are simulated using netem (net-
work emulation) module. This module is controlled by tc command line utility. Using a
simple notation, we can instruct a networking interface to delay, lose, damage, reorder, or
duplicate packets. It is important to note that these events affect only outgoing packets.
In each scenario only one interface will be controlled by netem and, as a result, only the
traffic in one direction will be altered.

5.1 Scenario 1
This is the simplest scenario to be presented. We will study how network delay affects the
protocol performance. More precisely we will take a closer look at the protocol operation
with 50, 100, 200, 300, 400 and 500 milliseconds round trip time delays. The round trip
time delay is set using the command in figure 5.5.

sudo tc qdisc add dev <interface> root netem delay <delay>ms

Figure 5.4: Command to instruct netem to simulate network delay.
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The results are shown in the graph in figure 5.5. It can be seen, that TCP was more
performant in each case. However, the performance gap between the two stays approxi-
mately the same. The performance gap (i.e., how much is Delta-t less performant than
TCP) is shown in table 5.1.

0

1

2

3

4

5

6

7

8

50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t

[M
bi

t/
s]

Delay [ms]

TCP
Delta-t

TCP vs. Delta-t: varying packet delay

Figure 5.5: Test scenario with with varying packet delay.

Delay 50 ms 100 ms 200 ms 300 ms 400 ms 500 ms
performance gap 26,11 % 23,93 % 25,56 % 25,83 % 25,517 % 25,28 %

Table 5.1: The difference between Delta-t and TCP performance

5.2 Scenario 2
This scenario is similar to the previous one, except now we will introduce packet loss. The
packet loss ratio will stay fixed at 5 % while the network delay will vary. Corresponding
netem command is in figure 5.6. The results are summarized in the graph in figure 5.7.

sudo tc qdisc add dev <interface> root netem loss 5% delay <delay>ms

Figure 5.6: Command to instruct netem to simulate network delay and 5 % packet loss.

Delta-t was able to achieve higher throughput than TCP. This might be caused by TCP
congestion control algorithm which slows down TCP output in the event of packet loss. In
the next scenario, we will see that the absence of congestion control in Delta-t makes the
protocol less reliable, nevertheless.
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Figure 5.7: Test scenario with fixed packet loss (5 %) and varying packet delay.

5.3 Scenario 3
In this last scenario, we will increase the packet loss ratio and keep the delay fixed at 50
milliseconds. The impact on the performance is depicted in the graph in figure 5.8.

From the results we can see that TCP deals with packet losses much better than Delta-t.
Additionally, Delta-t file transfer occasionally failed when packet loss reached 20 %. This
failure is caused by the lack of congestion control algorithm. Delta-t sends segments in
bursts. When this burst is sent all the segments are put in the retransmit queue and
their lifetime starts counting down. Lost segment is retransmitted when third duplicate
acks is received, or when the retransmission timer expires. Either way, only the head of
the retransmit queue is retransmitted. With higher packet losses the time spent in the
retransmit queue increases as well as the probability that the segment lifetime will expire,
while being in the retransmit queue.

One solution to this problem would be to increase the segment lifetime – value of
deltat. However, it would not solve the issue, only postpone it. Proper solution would
be to implement congestion control mechanism. With this approach there would be a
manageable number of segments in the retransmit queue because new segments would stay
longer in the send queue where their lifetime is not counting down.
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Chapter 6

Conclusion

In this work we studied Delta-t protocol design and its major features. We learned that
the protocol relies heavily on the packet aging services provided by lower layer. Moreover,
a brief description of Linux networking subsystem and its ability to load separate binaries
into the kernel image was provided.

Delta-t protocol cannot operate on top IP as is. First, we had to make some mod-
ifications to it, to make it compatible with IP and lay out the plan for the subsequent
implementation. Luckily, substantial portion of TCP logic could be reused. Nevertheless,
the implementation of any reliable transport layer protocol is very complex. Delta-is no
different in this regard. In consequence, only the key aspects of the implementation were
pointed out.

Finally, we provided performance comparison with TCP. Before starting with the eval-
uation, we first turned off TCP advanced features (i.e., offloads, SACKs, etc.) to make
unbiased comparison. In summary, TCP is more performant and more reliable.

Current version of Delta-t module is not perfect. However, there is still a lot of room for
improvement. Congestion control mechanism and better RTO estimations would definitely
enhance Delta-t reliability and performance. Also, the memory usage of Delta-module could
be significantly reduced, and better observability of the module operation, through a set of
statistics, would be desirable as well.

To sum up, the area of reliable transport protocol implementation is very broad and
complex and to implement one is not a one-man job. It took decades and several dozens
RFCs for TCP to reach its current state. Nevertheless, the main goal of this work was not
to make an alternative to TCP. Instead, this work is trying to meet the objective of making
a proof-of-concept implementation of Delta-t.
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Appendix A

Contents of the included storage
media

• deltat –

– src – deltat kernel module implementation
– test – simple Delta-t/TCP echo client–server application
– benchmark – Delta-t/TCP file transfer application

• wireshark – wireshark LUA plugin adding Delta-t support

• tcpdump – modified version of tcpdump that can parse Delta-t segments

• packetdrill – modified version of packetdrill

• doc – latex source files of this thesis, including the pdf version of this work
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Appendix B

Example packetdrill script

// Alleviate the timing constraints
--tolerance_usecs=500000
// Setup the enviroment for the test
`../defaults.sh`

// Open a socket and shrink its window on purpose
0 socket(..., SOCK_STREAM, IPPROTO_DELTAT) = 3

+0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [2048], 4) = 0
+0 getsockopt(3, SOL_SOCKET, SO_RCVBUF, [4096], [4]) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1) = 0

// Establish a connection.
+0 < deltat data D 0:1000(1000) win 32792
+0 accept(3, ..., ...) = 4
+0 > deltat ack - 1000:1000(0)

// The following segment should fill receiver's window
+0 < deltat data D 1000:1460(460) win 32792
+0 > deltat ack - 1460:1460(0) win 0 // Zero window adv.

// Trying to squeeze in another segment
+0 < deltat data - 1460:2460(1000) win 32792
+0 > deltat ack O 1460:1460(0) // Not succesfull
+0 < deltat rendezvous D 1460:1460(0) win 32792
+0 > deltat ack - 1461:1461(0)

// Empty the receive buffer
+0 read(4, ..., 1460) = 1460
+0 > deltat ack R 66995:66995(0) // Reliable-ack sent

// (Overflow) segment that dit not fit can be sent again
+0 < deltat data D 66995:67995(1000) win 32792
+0 > deltat ack - 67995:67995(0)

Figure B.1: Full version of a packetdrill script that simulates rendezvous-at-sender with
window overrun.
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