
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ULTRASOUND SIMULATION IN PYTHON
ULTRAZVUKOVÁ SIMULACE V PYTHONU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DAVID ČERNÝ
AUTOR PRÁCE

SUPERVISOR doc. Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Systems (DCSY) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Černý David
Programme: Information Technology
Title: Ultrasound Simulation in Python
Category: Software Engineering
Assignment:

1. Familiarize yourself with the k-Wave software toolbox for simulation of ultrasound wave
propagation.

2. Study the features of the Python language related to the high performance computing.
3. Design a method for transforming simulation codes written in Matlab to Python considering

the performance as a primary objective.
4. Implement the designed solution.
5. Evaluate the performance of the developed solution on a standard set of test tasks.
6. Discuss the impact and contribution of your work to the future development of k-Wave.

Recommended literature:
According to supervisor's advice.

Requirements for the first semester:
Items 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Jaroš Jiří, doc. Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: October 29, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24884/2021/xcerny74 Page 1/1

Abstract
k-Wave is a MATLAB toolbox for the simulation of sound wave propagation. The aim of
this thesis is to re-implement a subset of k-Wave in Python while focusing on computational
performance. The second goal is to develop a set of guidelines for transforming MATLAB
source code to Python that could aid in further development. The thesis first summarises
core features of the k-Wave toolbox, explores available technologies for high performance
computing in Python, and highlights the most important aspects of transforming MATLAB
source codes to Python. The second part of the thesis discusses architecture, testing and
benchmarking of the Python implementation. The result of this thesis is a Python imple-
mentation of the three-dimensional sound propagation simulation compatible with k-Wave.
The new implementation improves the structure of the original toolbox while providing
performance comparable to the original k-Wave. In some instances, the performance of the
new implementation surpasses the original implementation.

Abstrakt
k-Wave je MATLAB nástroj pro simulaci šíření zvukových vln. Cílem této práce je reimple-
mentovat část nástroje k-Wave v jazyce Python se zaměřením na výpočetní výkon. Druhým
cílem je formulace sady doporučení pro transformaci zdrojových kódu z jazyka MATLAB
do jazyka Python, které by mohly přispět při dalším vývoji. Tato práce nejprve shrnuje
klíčové funkce nástroje k-Wave, zkoumá technologie pro vysoce výkonné výpočty dostupné
v jazyce Python a zdůrazňuje nejzásadnější aspekty transformace zdrojových kódů z jazyka
MATLAB do jazyka Python. Druhá část práce se zabývá architekturou, testováním a
měřením výkonu výsledné Python implementace. Výsledkem této práce je implementace
trojrozměrné simulace šíření zvuku, která je kompatibilní s k-Wave. Nová implementace
vylepšuje strukturu původního nástroje a poskytuje výkon srovnatelný s původním nástro-
jem, v určitých případech výkon původního balíku převyšuje.

Keywords
k-Wave, simulation, optimization, OOP, NumPy, Python, MATLAB

Klíčová slova
k-Wave, simulace, optimalizace, OOP, NumPy, Python, MATLAB

Reference
ČERNÝ, David. Ultrasound Simulation in Python. Brno, 2022. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor doc. Ing. Jiří
Jaroš, Ph.D.

Rozšířený abstrakt

k-Wave je simulační nástroj pro prostředí MATLAB, který umožňuje simulaci šíření ultra-
zvuku v jednorozměrném, dvojrozměrném i trojrozměrném prostoru. Ultrazvuková simu-
lace je často využívána na poli medicíny. Protože ultrazvukové simulace většího rozsahu jsou
výpočetně náročné, využívá k-Wave externí akcelerátory jako např. k-Wave-Fluid-OMP,
které umožňují urychlit proces simulace jak na procesoru, tak pomocí grafických karet.
K vývoji těchto akcelerátorů se povětšinou používají poměrně nízkoúrovňové jazyky jako
C++, které ale nejsou pro všechny uživatele k-Wave dostatečně přístupné. Další nevýhodou
nízkoúrovňových jazyků je dlouhá doba vývoje nových funkcí simulátoru.

Kvůli popularitě jazyka Python ve vědecké sféře je i v komunitě uživatelů nástroje k-
Wave poptávána verze tohoto nástroje v jazyce Python. Díky vysoké úrovni abstrakce
jazyka Python by také bylo umožněno jeho nasazení při rychlém prototypování nových
funkcí simulačního nástroje k-Wave. Dalším přínosem verze k-Wave simulátoru pro jazyk
Python by byla možnost propojení s velkou škálou jiných populárních nástrojů a knihoven,
které byly pro jazyk Python vytvořeny.

Cílem této práce je implementovat verzi simulačního nástroje k-Wave v jazyce Python
a vytvořit sadu doporučení pro konverzi zdrojových kódů z jazyka MATLAB do jazyka
Python, to vše s důrazem na výpočetní výkon.

Práce nejprve shrnuje základní pojmy a koncepty nástroje k-Wave a popisuje princip
jeho fungování, zejména s ohledem na strukturu simulačních dat, komunikaci s externími
akcelerátory a funkcemi nástroje, které jsou předmětem implementace. Následně jsou pop-
sány nejzásadnější rozdíly mezi jazyky MATLAB a Python z hlediska konverze zdrojových
kódů. Mezi tyto problematiky patří indexování, datové struktury, aritmetické operace,
fourierovy transformace a vizualizace dat. V souvislosti s těmito otázkami jsou představeny
výpočetní a vizualizační knihovny dostupné v jazyce Python. Zejména je implementace v
jazyce Python založena na knihovnách NumPy, numexpr a pyFFTW, které umožňují efek-
tivní vědecké výpočty. Dále jsou vyjmenovány některé zásadní návrhové vzory, které byly
použity při implementaci pro zlepšení struktury a modularity výsledného řešení.

Praktická část práce popisuje strukturu výsledné implementace, její návrhová rozhod-
nutí a odlišnosti od původní implementace v jazyce MATLAB. Nová implementace byla
otestována pomocí nástroje kWaveTester, který je součástí referenčního balíku k-Wave.

Nástroj kWaveTester slouží k automatickému generování testovacích dat a srovnávání
výsledků simulace akcelerátorů s referenčními výsledky simulace. Práce představuje několik
vzorových testovacích příkladů, na kterých byla implementace testována, a zhodnocuje
jejich výsledky. Celá implementace je nakonec zhodnocena z hlediska výkonnosti pomocí
optimalizačních nástrojů, výkonnost je také porovnána s původní implementací v jazyce
MATLAB. Během optimalizace je zhodnocena i práce s pamětí a jsou představeny problémy,
které neefektivní přístup k paměti způsobuje.

Po zhodnocení stávajícího stavu jsou navrženy další potenciální způsoby optimalizace
včetně příkladů typicky řešených optimalizačních problémů.

Výsledkem práce je shrnutí důležitých aspektů převodu zdrojových kódů z jazyka MAT-
LAB do jazyka Python se zameřením na výpočení výkon. Hlavním výstupem je verze balíku
k-Wave v jazyce Python, která obsahuje všechny nezbytné nástroje pro trojrozměrnou ul-
trazvukovou simulaci. Nová implementace vylepšuje strukturu původního nástroje a také
poskytuje výkon srovnatelný s původním balíkem k-Wave, v určitých případech výkon
původního balíku převyšuje.

Ultrasound Simulation in Python

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Ing. Jiří Jaroš, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
David Černý

May 11, 2022

Acknowledgements
I want to thank my supervisor, doc. Ing. Jiří Jaroš, Ph.D., for his guidance and willingness
to help during the writing of this thesis. This work was supported by the Ministry of
Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140).

Contents

1 Introduction 3

2 A brief overview of k-Wave 4
2.1 Structure of the toolbox . 4
2.2 Simulation data . 4
2.3 Data exchange with k-Wave accelerators . 8
2.4 k-Wave tester . 9

3 Guidelines for converting MATLAB code to Python 11
3.1 Basic comparison of MATLAB and Python 11
3.2 Python computation libraries . 12
3.3 Indexing . 14
3.4 Data structures . 15
3.5 Matrix and scalar arithmetic . 16
3.6 Fourier transforms . 17
3.7 Data visualization . 17
3.8 Design patterns . 18
3.9 Summary . 21

4 k-Wave-Python implementation 22
4.1 Project structure . 22
4.2 Input and output file handling . 23
4.3 kspaceFirstOrder . 24
4.4 Sources . 26
4.5 Sensors and recorders . 28
4.6 Command line interface . 30

5 Testing and optimization 32
5.1 Testing . 32
5.2 Performance benchmarks . 34
5.3 Memory profiling and optimization . 36

6 Conclusion 41

Bibliography 42

A Contents of the included storage media 44

B k-Wave Python user manual 45

1

B.1 Using the simulator . 46

C Benchmark 47

D k-Wave-Python help menu 49

E Example output log 51

2

Chapter 1

Introduction

Ultrasound simulation, or more generally the simulation of sound wave propagation, is a
type of continuous physics simulation. It models changes in pressure and velocity inside a
media over a given span of time using a set of physics equations, the media having predefined
density and other characteristics. Common applications include the study of acoustics,
modeling of human tissue in biomedicine, and other applications, where propagation of
sound in materials is important. One of the many simulation programs available is k-
Wave [21], a toolbox written for the environment. It includes configurable tools for sound
propagation simulations in up to 3 dimensions. Since both the time and memory complexity
of such simulations sharply increase with the size of the simulation medium, optimization
is essential to make large-scale simulations feasible. Due to this, k-Wave relies on optimized
C++ and CUDA accelerators to provide the necessary performance for larger tasks.

C++ and CUDA, while very fast, require a higher level of programming expertise than
would generally be expected of an average user of k-Wave. The time and effort needed to
develop new features in said languages is also significantly increased by their verbosity.

Ideally, the selected implementation language should be abstract enough to speed up
development time and provide good performance at the same time. While these two re-
quirements go against each other to some degree, it is possible to find a compromise. The
Python programming language presents a good candidate for such a compromise. It is
sufficiently abstract and can also benefit from a large number of performant computation
libraries. Because Python is also increasingly more popular in the scientific field, a Python
version of k-Wave is in demand from the k-Wave community.

This thesis aims to implement a subset of the k-Wave toolbox in Python while focusing
on the computational performance of the designed solution. The second objective is to
create a set of guidelines for converting MATLAB source codes to Python based on the ex-
perience gained during the implementation and to discuss techniques for writing performant
Python programs.

Chapter 2 introduces the structure and algorithms of k-Wave, which will be the focus of
the final implementation. Chapter 3 discusses the conversion of MATLAB source codes to
Python, emphasizing the most important differences and performance. Libraries and design
patterns used during the implementation are also summarized. Chapter 4 describes the
structure, features, and implementation k-Wave-Python. Chapter 5 describes the testing
the new implementation, explores the effects of various optimizations on the performance
of the simulator, avenues for further development are also explored. The thesis concludes
in chapter 6 with a summary.

3

Chapter 2

A brief overview of k-Wave

k-Wave, as previously described, is a simulation toolbox for MATLAB1. Created by Bradley
E. Treeby and Benjamin T. Cox in 2010 [21], the project has since been continuously under
development. Extensions were later written in C++ and CUDA to accelerate performance-
critical parts of the toolbox on both the CPU and the GPU. This chapter will outline
the general structure of the MATLAB implementation of the toolbox, its most important
features, and architectural decisions.

2.1 Structure of the toolbox
k-Wave consists of a set of core modules that contain the implementation of the k-space
first-order simulation algorithms [20, p. 26]. All simulations can be performed in 1, 2,
and 3 dimensions, the 3-dimensional variant being the most common in real-world ap-
plications such as low-intensity ultrasound neurostimulation [11] or high-intensity focused
ultrasound tumor ablation [15]. Variants of the core algorithms are executed using the
functions kspaceFirstOrder1D, kspaceFirstOrder2D, and kspaceFirstOrder3D for each
number of dimensions respectively. Apart from the core modules, the toolbox also includes
many auxiliary modules that handle the initialization and preparation of simulation data,
visualization, data recording, and testing.

2.2 Simulation data
Multiple data structures, global variables, and flags serve as input data for initializing and
running the simulation. Simulation input data is divided into four groups: the kGrid,
the Medium, the Source and the Sensor. These four groups are passed to the simulation
function as data structures together with additional optional parameters that are described
in the k-Wave manual [20, p. 68]. This section summarizes contents of all input data groups
and the PML (Perfectly Matched Layer).

kGrid

The kGrid contains variables that define the simulation time and dimensions of the simu-
lation medium. The variables Nx, Ny, Nz define the discrete number of grid points in each

1https://www.mathworks.com/products/matlab.html

4

https://www.mathworks.com/products/matlab.html

cardinal direction and dx, dy, dz define the physical spacing of grid points in the respective
direction. The variables Nt and dt set the number of simulation time steps and their length.

Medium

The Medium describes the physical medium in which sound waves propagate, the most
important value being the sound_speed, which defines the speed of sound propagation in
the medium. The field density describes the density of the medium. In case the simulation
is non-linear and/or absorbing, additional coefficients are also included.

The medium can be either homogenous, or heterogenous. A homogenous medium only
contains one scalar value per field that is used for the entire domain, a heterogenous medium
defines each field as an array, that contains a value for every grid point.

% ... Preceding initialization steps
Nx = 64;
Ny = 64;

medium.sound_speed = 1700 * ones(Nx, Ny);
medium.density = 800 * ones(Nx, Ny);

medium.sound_speed(:, 1:Ny) = 2000;
medium.density(Nx/2:Nx) = 500;

% ... Following initialization steps
sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

Listing 2.1: Initialization of a heterogenous medium in the k-Wave toolbox

Listing 2.1 shows the initialization of a simulation with a heterogenous medium 2. Both the
medium.sound_speed and medium.density are defined as arrays with values for pressure
and density for each grid point. Following the allocation of arrays, slices of values in both
the sound speed array and the density array are changed. This allows the simulation of
sound propagation through a medium composed of different materials.

Source

The Source defines the sources which dictate where the sound wave originates from in the
simulation medium. There are two types of sources: initial pressure sources and time-
varying sources. Initial pressure sources only inject pressure into the simulation in the
beginning (as defined by the variable p0), whereas time-varying sources continuously add
pressure (or velocity) at grid points specified by a mask.

2Similar to an example from k-Wave: examples/example_ipv_heterogenous_medium.m

5

Figure 2.1: Time-varying source

Figure 2.1 represents the function of a time-varying source. The source_pos_index points
to the grid points of a domain (in this case, a two-dimensional domain), that contain the
time-varying source. After each step of the simulation, the source fetches the current source
value pointed to by t_index (index of the current simulation step) from the source_input
array. This value is then either set or added to the target grid cells, depending on the
simulation settings. The source_input and source_pos_index have the prefix p_ and u_
for pressure and velocity respectively. The target domain depends on the source type. The
p array (containing current pressure) is used for pressure sources and the ux_sgx, uy_sgy
and uz_sgz arrays are used for injection of particle velocity for each cardinal direction.

% ... Preceding initialization steps

Nx = 32;
Ny = 32;
source.p0 = zeros(Nx, Ny);
source.p0(Nx/2-2:Nx/2+2, Ny/2-2:Ny/2+2) = 5;

% ... Following initialization steps
sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

Listing 2.2: Creation of an initial pressure source in the k-Wave toolbox

Listing 2.2 shows the initialization of an initial pressure source for a two-dimensional sim-
ulation. The p0 array containing initial pressure is first initialized zeroed. Afterwards, a
cube of initial pressure measuring 2x2 grid points with the value of 5 pascals is placed in
the center of the medium. The initial pressure is copied to the p pressure array during the
first time step of the simulation, then the initial pressure then propagates.

Sensor

Changes in pressure and particle velocity during simulation are recorded using Sensors.
The grid points where measurements are taken can be set using either a binary mask or
cuboid corners. With boolean masks, the presence of a sensor at a given grid point is
defined by the corresponding binary value (0 or 1) in the sensor mask. This allows for more
granular control over the shape of the sensors but requires more memory to store values
for each coordinate. Cuboid corners, on the other hand, only require the coordinates of

6

two opposing points of a geometric shape to describe the mask. In 3D, the two opposing
coordinates form a cuboid, a rectangle in 2D, and a line in 1D [20, p. 36]. The record
field contains the list of all measurements to be recorded – this includes pressure, particle
velocity, and their various aggregations like the maximum, minimum, or final recorded
value.

Figure 2.2: Cuboid corners mask

Figure 2.2 shows a two-dimensional grid with two overlapping cuboid corner masks. The
first mask originates at coordinate (1,1) and ends at (3,4), the second mask originates at
(2,2) and end at (3,4). As can be seen, this way of representing masks is very compact, a
binary sensor mask would require the storage of a value for each individual point contained
in the masks, whereas cuboid masks only define spans of coordinates for each dimension.

% ... Preceding initialization steps

% Defining a cuboid mask
sensor.mask = [2 2 4 5; 3 3 4 5].’;

% Running the simulation
sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

Listing 2.3: Creation of a cuboid corners mask in the k-Wave toolbox

Listing 2.3 contains the definition of a cuboid corners mask in the MATLAB version of
k-Wave, similar to one of the mask definitions in the k-Wave example folder 3. Each cuboid
is defined as a sequence of numbers in the format [x1_start y1_start x1_end y1_end],
forming the span of columns that will be the part of the cuboid mask. If multiple masks
are defined, each mask is stored in a separate column of the array. Because figure 2.2 shows
NumPy coordinates, all indices in the MATLAB example are incremented by 1.

3Similar to an example from k-Wave: examples/example_ipv_opposing_corners_sensor_mask.m

7

PML

The PML (Perfectly Matched Layer) is a layer at the boundary of the simulation medium.
It emulates the effect of pressure waves leaving the simulation medium. Without the PML,
the waves would cause ‘echoes’ in the simulation medium, creating noise in the sensors.

2.3 Data exchange with k-Wave accelerators
For simulations with smaller grid sizes, the default MATLAB implementation of k-Wave
provides sufficient performance. However, larger simulations require the usage of external
accelerators that implement the core algorithms in more efficient compiled languages such
as C++. The accelerators function as self-sufficient command-line utilities that accept
arguments in order to configure the simulation, the simulation data discussed in the previous
section 2.2, is passed to the accelerator using an HDF4 file. k-Wave that is being run
with an accelerator does not call the kspaceFirstOrder...() function but instead saves
all simulation input data to an input file (sec. 2.3), calls the accelerator specified by the
options.cpp_binary_name5 variable. The accelerator then executes the simulation, saving
the results back to an output file (sec. 2.3). The k-Wave then reads the externally computed
result and continues normal operation.

Exchange of data using HDF files is well suited for this purpose given, the number of
variables needed for the initialization of the simulation. The format is also open source and
platform independent, enabling the implementation of accelerators in any language which
supports the HDF format. Another important feature is the ability to stream data to/from
on-disk files, saving memory when working with large domains. This section describes three
kinds of HDF files that are used in k-Wave: input files, output files, and checkpoint files.

Input files

The input file is created by k-Wave-MATLAB and consumed by the accelerator. It contains
data required to initialize and execute the simulation. The data fields are grouped according
to the structure of the simulation input data (sec. 2.2). The location and type of used
sensors are stored in the input file, fields being recorded are toggled using command line
flags (sec. 4.6). The full list of input fields is available in the k-Wave manual[20, p. 71].

Output files

Output files are created by the accelerator upon the completion of the simulation. Apart
from basic information about the simulation, which is similar to fields in the input file,
results of simulation and values recorded by the sensors are also stored. The recordings can
either be scalar (maximum pressure, minimum velocity, etc.), contain the entire state of
the grid (for example, final state of pressure), or contain a value for each sensor grid point
and time step, forming a timeline of values for further analysis. The last type of recorded
data is the data captured using a cuboid sensor. Cuboid sensors capture a slice of the array
for each time step, the shape of which is defined by the cuboid mask. All available output
fields are described in the k-Wave manual [20, p. 75].

4https://www.hdfgroup.org/solutions/hdf5/
5Even though the name contains cpp, any executable program or script can be specified, as long as it is

compliant with the k-Wave command line interface

8

https://www.hdfgroup.org/solutions/hdf5/

Checkpoint files

Checkpoint files only contain the grid size and the current simulation state: pressure,
velocity, density, and the current time step index. This file type is used during long-
running simulations to avoid the need to re-run the entire simulation in case of an outage
or an error were to occur. Unlike input and output files, checkpoint files are only created
if enabled using a command line argument.

2.4 k-Wave tester
The k-Wave tester tool was created for standardized testing of both the MATLAB tool-
box and the accelerators. The test suite is located in the kwave/testing/kWaveTester
folder, the core implementation of the test script is in the kWaveTester.m file. The target
executable to be tested can be set using the options.cpp_binary_name, as discussed in
section 2.3.

The options.custom_test_case list contains various flags for setting up the simula-
tion. The utility kwt_save_input_data.m can be used for saving the customized simulation
files to disk, making it a useful tool when testing various types of simulation implemen-
tations. The script kwt_run_omp_comparison_tests_<DIM>.m can be used for automatic
testing of many different simulation settings combinations. The tester first runs the k-
Wave-MATLAB version of the simulation, storing recorded results for later comparison.
After the k-Wave-MATLAB simulation ends, the tester creates an input file, calls the ac-
celerator specified by options.cpp_binary_name and reads the results from an output file.
The values measured by the accelerator stored in the output file are then compared with
the reference results, creating the graphs and metrics described below.

Figure 2.3: kWaveTester example output

Figure 2.3 shows an example output of the kWaveTester tool. The leftmost plot shows the
reference output generated by the k-Wave-MATLAB, the picture next to it the output of
the accelerator being tested. The images show the values captured as the pressure wave
passes through the sensor. The two images on the right show the local and global error
measured in percent. The local error displays the difference between reference and measured
values for each grid point individually. The global error shows error as percentage of the
maximum recorded value.

A text summary of the test performed by the kWaveTester is always listed at the end
of the simulation log file. The output for the simulation displayed in 2.3 can be seen below.

9

C++ ACCURACY COMPARED TO MATLAB:

Error in sensor_data(1).p
MAX VALS = 223497.7471 (MATLAB) 223497.8125 (CPP)
L2 = 0.00088376
LINF = 0.20907 (9.3546e-07 normalised to max value)

Listing 2.4: kWaveTester test log summary

The output log summary in listing 2.4 contains three metrics. The MAX VALS shows the
maximum values recorded in both MATLAB and the accelerator being tested. If the maxi-
mum values are similar but the recorded results are not, it could mean that the calculation
is performed correctly, but the sensor is recording at incorrect indices (indexing is a common
source of issues, as discussed in section 3.3). The L2 shows the RMSE (Root Mean Square
Error) [1] of the compared results. The LINF measures the maximum absolute difference
between values in the output, this value is then normalized by dividing it by the absolute
maximum measured value. For testing CPU implementations of k-Wave, the tester sets the
error tolerance at 1× 10−5.

10

Chapter 3

Guidelines for converting
MATLAB code to Python

This chapter will summarize the main differences between MATLAB and Python, the im-
portant aspects of code conversion, mainly those related to performance. Differences in
basic syntax of both languages will not be discussed.

Because Python does not support many scientific computing features present in MAT-
LAB by default, this guide will use the NumPy library for performing such tasks. The
NumPy documentation includes a guide created for MATLAB users [8] that summarizes all
basic equivalents between MATLAB and NumPy code. The summary of the recommenda-
tions in this chapter is available in section 3.9.

3.1 Basic comparison of MATLAB and Python
The author of Python, Guido van Rossum, called Python a language that can “glue together
existing components” [12], speeding up development times while offloading performance-
intensive tasks to languages like C, C++ or Java [12]. Although Python has since out-
grown this original purpose, the description matches the intended use case – setup of the
simulation (loading of arrays, setting up the simulation environment) can be quickly im-
plemented in Python while the performance-critical simulation algorithms are executed in
more performant languages without the overhead of calling an external executable.

MATLAB is described as a “computing environment for engineers and scientists” [18].
This math-first, programming-second approach gives MATLAB an edge when it comes to
scientific computing – it is highly optimized for science-related tasks [17]. Python, on the
other hand, was first designed as a programming language and scientific computing is just
one of the many applications.

Both approaches have advantages and disadvantages - MATLAB is tried and tested
when it comes to scientific computing but is also monolithic, Python is malleable and can
be applied to any task, albeit at the cost of being less polished in certain aspects. The
two approaches are also reflected in the respective available toolboxes – official MATLAB
toolboxes come preinstalled and are tightly integrated with the product, Python requires the
installation of third-party libraries to add advanced functionality. Third-party libraries can
also be advantageous because of greater flexibility – the user is not tied to one particular
library, and a library can be swapped for another one if required. Python users can also

11

benefit from a large ecosystem. As of the time of writing, the PyPI1 contains more than 350
000 Python packages [10]. Another big difference between MATLAB and Python is that
MATLAB is proprietary, whereas Python and the vast majority of third-party libraries are
free and open source.

Both MATLAB and Python share a similar level of abstraction, the user does not have to
manually manage memory allocation and other low-level tasks, but this level of abstraction
comes at the price of performance.

3.2 Python computation libraries
In order to implement k-Wave using Python, it is necessary to find suitable libraries to
replace built-in MATLAB functions in two areas – fast computation and visualization.
This section discusses selected replacement libraries used in the Python implementation.

NumPy

The NumPy2 library is used for vector computations in Python. It allows efficient storage of
n-dimensional arrays of data and efficient vectorized computations with said arrays. These
features are essential for efficiently computing simulation step operations in parallel, as
k-Wave often utilizes arithmetic operations on n-dimensional data. NumPy also serves as
the foundation for many other scientific libraries. Due to this de facto industry standard
status, NumPy objects are natively supported in many other libraries. The performance
of FFT-related functions in NumPy falls short of MATLAB, which internally relies on the
highly optimized FFTW library [16].

numexpr

One of the disadvantages of NumPy is that it only optimizes individual arithmetic opera-
tions between two operands, which can lead to unnecessary allocation of arrays that store
intermediate results. The numexpr3 library further optimizes NumPy expressions to reduce
unnecessary reallocation.

1Python Package Index
2https://numpy.org/
3https://github.com/pydata/numexpr

12

https://numpy.org/
https://github.com/pydata/numexpr

Table 3.1: NumPy vs NumExpr benchmark comparison for the expression 1.5 * x**2 -
(x + y + z) * g

NumPy duration [s] NumExpr duration [s]
Domain size
323 0.28 0.22
643 0.26 0.19
1283 0.20 0.18
2563 0.21 0.20
5123 14.40 1.71

A short benchmark 3.1 has been performed to illustrate the impact of numexpr on compu-
tation speed. The machine used for the benchmark is described in chapter 5. A random
expression 1.5 * x**2 - (x + y + z) * g has been chosen for the benchmark, the ex-
pression represents the kind of calculation that might be performed during simulation. Each
of the variables x, y, z, and x is a three-dimensional NumPy array in the shape of a cube,
the side of which is equivalent to the domain size (32x32x32, etc.). With smaller domain
sizes, the difference between NumPy and NumExpr is not that significant, but as the do-
main gets bigger, the reallocations NumPy performs start slowing down the computation
significantly.

Despite the significant speed improvement, numexpr is relatively easy to implement.
The expression is simply wrapped into numexpr.evaluate(”1.5 * x**2 - (x + y + z)
* g“, out=output_array), the numexpr compiler takes care of the optimization. Al-
though the compilation of expressions also incurs a time cost, the speed gain for larger
domains largely outweighs the disadvantages.

The only disadvantage of numexpr is, that it only supports arithmetic operators and a
set of predefined functions, it is not possible to use Python functions in the target expression.
In k-Wave, this is problematic mainly because of the frequent use of FFTs.

pyFFTW

pyFFTW4 is the Python wrapper around the FFTW library5. It provides access to well-
optimized FFT functions that have built-in multithreading support. The interface of the
library is similar to NumPy FFT functions, NumPy FFT drop-in replacements are also
included with the library for simple replacement of NumPy. The drop-in replacements
provide a small speed boost with almost no changes required to the source code [14],
although certain modifications are required to fully utilize the available performance of
the library. The most significant difference between NumPy and pyFFTW functions is,
that NumPy returns a newly initialized array with results, pyFFTW overwrites an internal
result array and returns a reference to it. The internal array makes the computation faster
by eliminating inefficient copying of data. On the other hand, it breaks interchangeability
with NumPy FFT functions.

4https://pypi.org/project/pyFFTW/
5https://www.fftw.org/

13

https://pypi.org/project/pyFFTW/
https://www.fftw.org/

matplotlib

Matplotlib6 is a Python data visualization library. It offers various kinds of commonly
used plot types, all of which are highly customizable. The library is also well integrated
into other libraries and tools, for example such as pandas7 and Seaborn8, plots created
by Matplotlib are natively supported in data science toolkits such as Jupyter9. Another
advantage of Matplotlib is its native support of NumPy arrays, which are often used during
implementation of high-performance computing algorithms.

3.3 Indexing
The first major difference between the languages is array indexing. Differences in array
indexing might not be noticed at first, but will cause erroneous results and indexing errors
during runtime. For this reason, indexing differences must always be remembered when
converting code.

The first notable difference is that MATLAB uses column-major (Fortran-style) indexing
by default [19] and Python uses row-major (C-style) indexing. Additionally, indexing starts
at 1 in MATLAB and at 0 in both Python and NumPy [8], this means all indices must be
subtracted by one during conversion.

To illustrate, a 3D array that is indexed p(1, 2, 3) in MATLAB would be indexed
p[2, 0, 1] in Python. When letters are used to denote dimensions in a 3D array: X for
row, Y for column, and Z for frame (in other words the z coordinate), MATLAB dimensions
are ordered p(X, Y, Z), and Python dimensions are ordered p[Z, X, Y].

(a) NumPy (b) MATLAB

Figure 3.1: Comparison of indexing

When working with 3D arrays, it is useful to think of them as cubes when slicing. Figure 3.1
shows a comparison of the indexing of 3D arrays in NumPy and MATLAB. Both arrays are
of shape (3, 3, 3). Figure 3.1a uses C-style indexing used in NumPy, indexing starts at 0.
The maximum index for each cardinal direction is therefore 2. Figure 3.1b shows indexing
in MATLAB, which uses the Fortran-style indexing. Additionally, indexing in MATLAB
starts at 1, the maximum index for each dimension is therefore 3.

6https://matplotlib.org/
7https://pandas.pydata.org/
8https://seaborn.pydata.org/
9https://jupyter.org/

14

https://matplotlib.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://jupyter.org/

The different indexing style together with different starting indices can be confusing.
Moreover, additional precautions must be taken when dimensions of the array are of dif-
ferent lengths. An array of shape (128, 64, 32) in MATLAB would be displayed as an
array of shape (64, 32, 128) in NumPy.

As of the time of writing, indexing in the k-Wave input files is neither row-major, nor
column-major. All arrays are stored from the last dimension to the first – 3D arrays in
the order (Z, Y, X), 4D arrays (with the time dimension) as (T, Z, Y, X).

Figure 3.2: Coordinate conversion schema

The conversion between all used coordinates systems can be seen in figure 3.2. Appropriate
indexing conversions must be performed any time when reading from and saving to a
different format.

Linear indexing

To conserve memory and disk space, k-Wave uses linear indexing10 to store mask indices
for sensors and sources. Linear indexing compresses an n-dimensional array coordinate
to a single number, which denotes the array position if the array were to be collapsed
to a one dimensional array. It is important to correctly convert linear indices stored by
MATLAB to their corresponding NumPy counterparts, this can be done using the function
np.unravel_index(flat_indices-1, shape, order=’F’)11, the shape of the original ar-
ray must also be specified.

A common task is the lookup of all linear indices in an array that contain nonzero
values. In MATLAB, this is done using the find(array) function, which returns an array
of all non-zero linear indices found in the array. The equivalent function in NumPy is
np.flat_nonzero(array)12. MATLAB allows direct indexing using linear indices such as
array(123). In NumPy, a special flat indexer array.flat[123] must be used.

3.4 Data structures
Structs13 are used in MATLAB to group data semantically, they can either be created
explicitly using struct() or implicitly by assigning a field to a struct (even one that does

10Alternatively called flat indexing
11https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html
12https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html
13https://www.mathworks.com/help/matlab/ref/struct.html

15

https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html
https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html
https://www.mathworks.com/help/matlab/ref/struct.html

not exist) like struct1.field1 = value1;. Python does not have any direct equivalents,
but there are multiple possible replacements.

The first option is to use dictionaries, a data type containing key-value pairs initialized
like dict1 = {”field1“: value1}. Dictionaries provide a fast and easy way to group
related data, but lack the means to enforce data types, declare mandatory fields and add
logic like classes do.

The second option is to use classes, which allow for encapsulation [13, p. 14] of the
initialization logic. In the case of classes that only contain fields and do not require any
substantial related logic, data classes14 can be used. Data classes automatically generate
boilerplate code from declared fields. They can be declared by adding the @dataclass
decorator to a class definition and moving the fields from the constructor to the class body.

3.5 Matrix and scalar arithmetic
Arithmetic operators in MATLAB are either scalar (+-*/) – they can be used to perform
arithmetic on scalars or between a scalar and a matrix, division and, multiplication op-
erators also have a variant for performing element-wise operations with two matrices, the
operators start with a dot (.* and ./). MATLAB also has a dedicated operator .’ for
transposing matrices.

Python only has operators +-*/ (and a dedicated matrix multiplication operator ’@’),
which perform different operations based on context. New operators can not be defined,
but they can be overloaded by a subclass to implement custom behavior. NumPy exploits
this property of Python, two NumPy arrays always perform element-wise operations when
multiplied/divided. Python does not provide an operator for transposition, a matrix can
be transposed using the array.T attribute of NumPy arrays, the equivalent in MATLAB
would be array.’.

Data broadcasting

A special case is the MATLAB function bsxfun15. It performs an element-wise operation
between two matrices with the distinction that they don’t need to have the same shape,
for example, the matrix A of shape (32, 32, 32) (3D) can be multiplied efficiently with
the array B of shape (32,) (1D). Normally, array B would need to be enlarged to have the
same shape as A, bsxfun performs this without this additional step making the operation
faster while also saving memory, NumPy performs this optimization automatically. When
two matrices of mismatched shapes are used, NumPy performs automatic broadcasting16.
The only requirement is that the matrices must have at least one length in common – array
of shape (32, 32, 32) can be multiplied with shape (32, 1, 1) or (32, 32, 1) but not
with (16, 1, 1).

As an example, the expression from k-Wave-MATLAB kspaceFirstOrder3D rhox =
bsxfun(@times, pml_x, bsxfun(@times, pml_x, rhox) - dt .* rho0 .* duxdx);
can be rewritten in NumPy to rhox = pml_x * (pml_x * rhox - dt * rho0 * duxdx),
the clarity is greatly improved thanks to implicit broadcasting, matrix and scalar multipli-
cation also use the same * operator.

14https://docs.python.org/3/library/dataclasses.html
15https://www.mathworks.com/help/matlab/ref/bsxfun.html
16https://numpy.org/doc/1.22/user/basics.broadcasting.html

16

https://docs.python.org/3/library/dataclasses.html
https://www.mathworks.com/help/matlab/ref/bsxfun.html
https://numpy.org/doc/1.22/user/basics.broadcasting.html

3.6 Fourier transforms
Performing FFT related computations can be done efficiently in MATLAB using the built-in
functions fft, fftn, ifftn, etc. NumPy has equivalent functions in the package numpy.fft,
they are not suitable for high performance applications, as is discussed in chapter 5. It is
advisable to use the pyFFTW library as it is also used for FFT in MATLAB [7].

Caution is required when replacing NumPy FFT functions with pyFFTW functions,
although the functions and their arguments are similar, there are some notable distinctions.
This section will compare FFT functions in NumPy and pyFFTW, namely fftn and ifftn
which are often used in k-Wave.

Firstly, NumPy FFT functions promote input data types differently from pyFFTW.
With an input of type float32, the resulting datatype will be complex128 in NumPy but
complex64 in pyFFTW. With an input datatype of float64, datatype of the result will be
complex128 for both libraries. This discrepancy in input and output data types can cause
differences in results, it is also not easily detectable during debugging because of Pythons
dynamic type system. More details about this and other differences between NumPy and
pyFFTW can be found in the pyFFTW manual [3, p. 20].

Another important difference is that results from calls to NumPy FFTs return a newly
initialized array each time, pyFFTW (when not used in the drop-in mode, as discussed
in section 3.2) returns a reference to the same internal result array[3, p. 11], results must
be copied using numpy.array.copy() as a subsequent call to the function overwrites the
internal result array, causing the previous result to be destroyed. Each pyFFTW function
that is initialized by default creates an internal input and output array, to avoid extra
memory allocation, the function func.update_arrays(input_array, output_array)17

can be used to set a single shared array for multiple functions, it can also be used to make
pyFFTW use the same array for both input and output for a given function.

During initialization, FFTW compares a number of FFT algorithms and chooses the
fastest one in a process called planning, the generated configuration is called wisdom18.
pyFFTW supports different kinds of FFTW planning with varying speed and optimality:
FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT and FFTW_EXHAUSTIVE [2].

The FFTW_MEASURE planner (the default option in pyFFTW) provides a good compro-
mise between planning speed and performance, it was therefore chosen for k-Wave-Python.
Because planning can have a noticeable startup cost, it is best to cache the generated wis-
dom to a file for re-use. In the pyFFTW library, exporting can be done using the function
pyfftw.export_wisdom()19, importing is likewise done using
pyfftw.import_wisdom(wisdom). The Python standard library pickle20 can be used for
serializing and deserializing of wisdom for storage on disk.

3.7 Data visualization
Although visualization is not necessary for k-Wave to function, it is useful for checking
progress of a simulation. As previously said in section 3.2, Matplotlib is the library of
choice for visualization in the Python implementation. In the following paragraphs, the

17https://pyfftw.readthedocs.io/en/latest/source/pyfftw/pyfftw.html#pyfftw.FFTW.update_arrays
18https://www.fftw.org/fftw3_doc/Wisdom.html
19https://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html#pyfftw.export_wisdom
20https://docs.python.org/3/library/pickle.html

17

https://pyfftw.readthedocs.io/en/latest/source/pyfftw/pyfftw.html#pyfftw.FFTW.update_arrays
https://www.fftw.org/fftw3_doc/Wisdom.html
https://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html#pyfftw.export_wisdom
https://docs.python.org/3/library/pickle.html

symbol plt refers to the library imported using the standard import matplotlib.pyplot
as plt command.

For one dimensional simulations, a simple line graph can be used for visualization,
a pressure curve can be plotted using plt.plot(data)21.

For two and three dimensional simulations, the visualization technique is the same
because only a two-dimensional slice of the array can be plotted.

0 20 40 60
x

0

10

20

30

40

50

60

y

x-y plane (front view)

0 20 40 60
z

0

10

20

30

40

50

60

y
y-z plane (side view)

0 20 40 60
x

0

10

20

30

40

50

60

z

x-z plane (top view)

80000
60000
40000
20000

0
20000
40000
60000
80000

[P
a]

Step 304 of 321

Figure 3.3: Example plot using plt.imshow()

The plt.imshow(data)22 can be used for visualizing 2D slices of arrays as images. Fig-
ure 3.3 shows a k-Wave-Python simulation progress visualized using Matplotlib.

3.8 Design patterns
During the implementation of the object oriented Python version of the k-Wave toolbox,
numerous measures were taken to improve the code structure of the simulation. One of
the means of improving code structure is to utilize software design patterns, solutions to
commonly occuring problems in software engineering. The advantage of design patterns is
their abstract nature – they can be applied to any programming language which has at
least some of the concepts in OOP: abstraction, encapsulation, inheritance, and polymor-
phism [13, p. 18].

Design patterns are divided into three categories: creational (concerned with creation
of objects), structural (concerned with creating larger structures from objects), and behav-
ioral (concerned with communication and interaction between objects) [13, p. 29]. This
section lists multiple important design patterns used in the implementation: the Builder,
the Observer, the Strategy and the Adapter.

Builder

The Builder is a creational design pattern [13, p. 105]. The task of the Builder is to
make the initialization process of objects more flexible. With simple classes, initialization
using the constructor is sufficient, but with complex objects like the ones used for k-Wave
simulations, the class constructor becomes very long, as well as the parameter list. The

21https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.plot.html
22https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.imshow.html

18

https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.imshow.html

Builder solves the issue of complicated initialization by breaking it down into separate
steps. The builder instance holds a semi-initialized instance of the target class internally,
the instance is initialized step by step using setter methods of the builder.

There are multiple advantages to this approach: the constructor is simplified, the initial-
ization is separated from the usage of the class (this also enables creating different builders
for the same class), some parts of the instance can only be initialized optionally, the parts
can also be initialized in any order since the order in which the setters are called is not
predetermined. After all initialization steps are complete, the fully initialized instance is
retrieved from the builder. Builders are used in the k-Wave-Python implementation for
initializing the kspaceFirstOrder simulation classes (sec. 4.3).

Observer

The Observer, a behavioral design pattern [13, p. 336], allows the state of an object (or
changes thereof) to be observed by any number of Observers. The Observable (the object
being observed) curates a list of observers, allowing them to be added and removed at
any time. After an event in the observable occurs, it notifies each observer in its list of
the change, the observers can then perform any logic defined by their callback functions.
The advantage of using observers is the independence of the logic responsible for recording
values from the core logic of the simulation. This design pattern is closely related to the
publish/subscribe model [5, p. 158]. The kSensor objects (sec. 4.5) are observers observing
the kspaceFirstOrderBase subclasses.

Strategy

The Strategy, similarly to the observer, is a behavioral design pattern [13, p. 368]. It is
used when a group of algorithms share a common structure but differ in certain aspects or
settings. Conventionally, algorithm variants and options are handled by branch statements,
this however becomes more and more difficult as more variants of the algorithm are added,
making the algorithm difficult to navigate. The Strategy solves this by keeping the structure
of the algorithm but delegating the parts that differ to objects which encapsulate the
differing logic. During initialization, the suitable strategy (algorithm variant) is chosen
based on configuration. This way different algorithms can be used with the same basic
structure without the need for changing the core structure. This pattern is used in the
core simulation algorithms of kspaceFirstOrder 4.3 for setting up pressure and velocity
sources.

Adapter

The Adapter is a structural design pattern [13, p. 150]. It solves the problem of compatibility
between two parts of a program that need to communicate, but the format of data they use
is different. Conversion to the target format could be handled by the consumer of the data,
but this approach does not scale well when the data source is being used in multiple places.
Furthermore, if the source format changes in any way, the change needs to be reflected
everywhere the source is used. The Adapter solves this by wrapping the original source of
data, creating an interface between the data source and the data consumer. Any time the
consumer requests data, the adapter can translate the request to the data source. After
the data from the source is retrieved, it can be converted to the target format and passed
to the consumer.

19

Figure 3.4: Indexing adapter

The class HDFIndexingAdapter is an example of an adapter. Because the k-Wave-MATLAB
stores arrays using (Z, Y, X), it is incompatible with the rest of the simulator, which
uses C-style indexing. The situation can be seen in figure 3.4. Because data from the
input files is handled in many places of the program, an Adapter is required to ensure
compatibility without making the implementation-dependent on a particular indexing style.
If the indexing in the input files changes in the future, the adapter can either be easily
modified to accommodate the change or discarded if the indexing in the input file becomes
C-style.

20

3.9 Summary
This section contains the summary of technologies and guidelines discussed in this chapter.

1. Convert basic syntax (if statements, for loops, function definitions, etc.) to Python.

2. Replace MATLAB structs (sec. 3.4) with classes, data classes or other equivalents.

3. In places where multi-dimensional arrays are used, use the NumPy library (sec. 3.2).

4. Convert operators to operators used by NumPy (sec. 3.5), replace the bsxfun(...)
with a simple * multiply operator, NumPy performs automatic broadcasting.

5. When indexing, always remember to subtract 1 (usually not in code, just during re-
writing) from indices when re-writing. If indices are being loaded from an input file
(sec. 2.3), subtract 1 before doing other operations, as the indices were stored by
MATLAB, which starts indexing at 1.

6. When indexing multi-dimensional arrays, remember to convert Fortran-style indices
to C-style indices (sec. 3.3). Apply extra caution when loading linear/flat indices from
an input file, as they are stored in MATLAB column-major order.

7. Preferably use the pyFFTW library (sec. 3.2) for good FFT performance.

8. Use numexpr (sec. 3.2) where possible, avoid creating temporary copies of arrays by
preallocating them. Perform in-place operations where possible.

9. If visualization is needed, use matplotlib (sec. 3.2) but be aware of the performance
implications.

10. For details about NumPy equivalents for MATLAB features, refer to the official
guide [8].

21

Chapter 4

k-Wave-Python implementation

The goal of the implementation is to create a Python version of the core k-Wave sound
propagation simulation and all key features surrounding it. The simulation should be
able to load all necessary data from an input HDF file, initialize all objects required for
the simulation, perform the specified simulation and finally save all results and recorded
outputs to an output HDF file. The implementation must be able to communicate with
k-Wave-MATLAB using the command line, passing input and output data with HDF files.

The command line interface must be compliant with the options specified in [20, p. 54],
ideally interchangeable with the k-Wave-Fluid-OMP [22] C++ implementation.

Apart from specified functional requirements, the implementation has multiple goals:

1. Performance - performance of the new implementation must be better or at least
comparable to the original MATLAB version

2. Accuracy - the results must be reasonably accurate and not deviate from the refer-
ence implementation

3. Ease of use - the simulator should be easy to set up, easy to use and easy to extend

The secondary focus is on modularity and extensibility – k-Wave-MATLAB is tightly
coupled, this means it is sometimes difficult to modify or access k-Wave functionality sep-
arately, examples of this include duplication of certain snippets of logic and code used for
visualization located directly in the simulation loop. k-Wave-Python attempts to mitigate
such issues by adhering to the DRY (Don’t Repeat Yourself) principle [5, p. 26] completely
separating logic related to simulation and other logic used for recording values and load-
ing/saving of arrays. The final implementation of k-Wave-Python consists of around 2000
lines of code (not including empty lines and comments), which is a substantial improve-
ment over versions written in C++.

This chapter describes the design and implementation of k-Wave-Python. Differences
from the original MATLAB implementation, architectural choices and improvements over
the original implementation are also discussed.

4.1 Project structure
Unlike the monolithic, predominantly procedural MATLAB implementation of k-Wave, the
Python implementation puts a much greater emphasis on modularity and abstraction, as
was stated in the implementation goals. The MATLAB implementation usually defines

22

variables in the global scope and manipulates them by calling functions or executing entire
modules that contain logic in the global scope. This approach is more convenient due to
the large number of variables, but it also has many disadvantages:

1. hard to unit test - very long functions (or entire modules) that complete many
different tasks in sequential order are difficult to unit test, because it is not possible
to test individual parts in isolation.

2. hard to re-use - for the same reason, code that is not sufficiently subdivided into
functions is difficult to re-use. This leads to the MATLAB implementation having
many duplicated snippets of code that could otherwise be defined once, making the
source code longer and harder to maintain.

3. hard to extend - the global scope allows functions to have immediate access to
all needed data, but on the other hand also other unrelated data. By minimizing
the amount of data a function has access to and hiding implementation details, it is
possible to create code that is easier to extend and test – making changes to one part
of the program will not affect other parts.

4. hard to understand - unclear flow of data within the program and low abstraction
make the code more difficult to understand. It is not always clear, where a change of
state ocurred because many variables are being modified in the global scope, semantic
blocks of code that would otherwise be labelled by their function name are left without
context.

4.2 Input and output file handling
k-Wave simulations are initialized using standardized input files (sec. 2.3) generated by k-
Wave-MATLAB. These files are also the main means of communication between the Python
modules and the MATLAB modules.

Input files

The h5py library is used for accessing and manipulating HDF files. It provides a simple
interface h5py.File to access a specified file similarly to a Python dict. The module
kwave.utils.h5_utils contains classes that provide additional layers of abstraction over
h5py.File.

The class H5File which wraps h5py.File, simplifies retrieval and setting of values in
HDF files, it also handles retrieval of scalar values from input files. Since scalar values are
written by k-Wave-MATLAB to the input files as an array of dimensions (1, 1, 1), it is
necessary to unwrap it before retrieval. It is also needed to convert unsigned integer values
to the NumPy type of int64 because data types are not enforced in Python, making the
resultant bugs related to unsigned values hard to detect.

The final abstraction layer is the kWaveH5Dataset, it wraps the H5File and serves for
loading specific fields required during initialization of the simulation. The individual fields
can either be accessed directly using the indexer like file[”field“],
dataset[”p0_source_flag“] or using specialized methods and attributes. Some methods
require the dimension (x, y, z, t, etc.) to be specified - dataset.get_kgrid_dim(”x“).

One of the implementation issues is a relatively large number of parameters that are
used. For example, the kGrid (k-Wave grid) requires the Nx (number of grid points) and dx

23

(the distance between grid points), this adds up to 6 parameters used in the constructor, not
to mention other additional parameters. To mitigate this, multiple classes used expressly
for storing related data were used. They are used only for simplifying the initialization and
passing of related data. The list includes PMLDim and PMLDimProperties for initializing the
PML; SoundProperties, DensityProperties and AbsorptionProperties for initializing
the Medium. These objects are returned by the kWaveH5Dataset initialized using the data
from the wrapped file.

Output files

The output file is created using the H5File class. Input and output files share many
common fields, some fields are therefore directly copied from the input file to the output
file. Other fields are populated using results from the simulation and data from kSensor
sensor based on selected CLI flags.

4.3 kspaceFirstOrder
The group of kspaceFirstOrder classes represent the core logic of the simulation algorithm.
The k-Wave-Python implementation focused only on the three-dimensional
kspaceFirstOrder3D variant of the simulation. The lower-dimensional variants have a
similar structure and can be implemented similarly to the three-dimensional implementa-
tion. Because the implementation relies on inheritance, the simulation equations are shared,
avoiding duplication of logic.

ABC kspaceFirstOrderBase

kspaceFirstOrder3D

P0Source

PSource

USource

kSensor

Figure 4.1: kSpaceFirstOrder class hierarchy

The kspaceFirstOrderBase class hierarchy can be seen in figure 4.1. All shared logic
is contained in the base class kspaceFirstOrderBase. Shared logic includes simulation
equations, management of attached sensors, control of simulation step iteration, calculat-
ing number of remaining steps, etc. The base class contains multiple important abstract
methods: the init_data() method handles the allocation and the initialization of simula-
tion data, the _sim_step is the core of the simulation algorithm. These two methods are
overridden by the simulation subclasses and adapted to the number of dimensions. The

24

simulation class is dependent on pressure and velocity sources, which are described in sec-
tion 4.4. For the recording of data during the simulation, the simulation class also holds a
list of sensors, which are described in section 2.2.

The class kspaceFirstOrder3D inherits the previously mentioned features and adapts
them for three-dimensional simulations, overriding the init_data() and _sim_step() with
three-dimensional simulation logic. The method _sim_step() containing the simulation
algorithm is significantly shorter than the k-Wave-MATLAB counterpart as most of the
equations, recording, and pressure/velocity sources are hidden behind interfaces. Unlike
the k-Wave-MATLAB, the k-Wave-Python is not aware of the type of source being used,
nor is it aware of the equation of state, linearity, data recording and visualization. The
modularity of the algorithm is the adaptation of the Strategy design pattern, which was
described in section 3.8.

kspaceFirstOrder initialization

Full initialization of k-Wave is a complex process, it requires multiple related objects to be
initialized, some of them in a fixed order because of interdependence. The initialization
steps are the following:

1. Load kGrid

2. Load Medium and setup absorption variables using kGrid data

3. Load PML using data from kGrid and Medium

4. Select equation of state

5. Select linear or non linear mode

6. Configure sources (p0, p and u source)

7. Setup and attach a kSensorRecorder for data recording (optional)

The H5InputDataLoader class executes this sequence and initializes all objects using data
from a specified input file. Instead of directly initializing an instance of k-Wave, an auxil-
iary data structure called kspaceInputData is returned by the loader, this allows greater
flexibility when initializing the simulation - the loaded data can be inspected or overridden
manually. The only component that is not loaded from the input file is the PML (sec. 2.2),
it is instead initialized using data from the Medium and the kGrid.

Some initialized objects can additionally be adjusted using supplied command line ar-
guments. Namely the computation backend (the backend option) described in section 4.3),
the number of simulation time steps (the benchmark option overrides kgrid.Nt), and the
data recorded by the kSensorRecorder. These adjustments are however not handled by
the input data loader.

kspaceFirstOrderBuilder

One of the innovations of the Python implementation is the kspaceFirstOrderBuilder
which implements the Builder design pattern (sec. 3.8). It allows the final kspaceFirstOrder
object to be initialized gradually instead of passing a large number of arguments to the
constructor. All objects needed for the initialization can be directly retrieved from the
kspaceInputData loaded from an input file. The computation backend is selected based
on command line options.

25

Computation backends

Computation backends are classes containing references to different implementations of
common functions used by k-Wave during simulation, usually related to FFTs (fft, fftn,
ifftshift, etc.). The two currently available backends are NumpyBackend and
PyFFTWBackend, each of them using functions from their respective libraries - NumPy and
pyFFTW.

Swappable backends simplify the comparison of benchmarks using different computation
libraries. It also allows fast replacements of libraries or fallback libraries in case a library is
not available for the target platform. The simulation itself does not know, which backend
is being used, the pointers to functions are simply replaced during initialization by the
builder.

4.4 Sources
As described in section 2.3, there are three kinds of sources, which inject pressure or ve-
locity into the simulation: p0 sources, p sources and u sources. The k-Wave simulation is
initialized with instances of all three of the sources, their methods are called at particular
points in the simulation algorithm to inject pressure or velocity, the self reference of the
simulation is passed to allow access to the internal simulation state. Depending on the
selected options, the density and velocity variables of the simulation are changed. When a
disabled source is used, the called methods do not perform any action.

P0 sources

The initial pressure sources are the simplest of the tree source types. On the first step
of the simulation (t_index == 0), the pressure at all grid points is set to pre-determined
values, this pressure then propagates and no more pressure is injected during the course of
the simulation.

ABC P0Source

P0SourceActive

P0SourceInactive

Figure 4.2: P0 source class hierarchy

Figure 4.2 shows the class hierarchy of p0 sources. The class P0SourceActive is used, when
the p0 source is enabled by the p0_source_flag in the input file (sec. 2.3) and is initialized
by data from the p0_source_input from the input file, the class P0SourceInactive is used
when the source is disabled. Because the simulation classes (sec. 4.3) only see the P0Source
interface, the simulation is not dependent on the kind of source used.

26

P sources

The variable pressure sources add pressure to the simulation continuously. The mechanism
of time varying sources is described in section 2.2. The indices, where the pressure is set
after each iteration is defined by the p_source_pos_index mask indices. The value being
set to all points of the mask is selected from a list of pressure values. When p_source_many
is enabled, the pressure value is set for each point of the mask individually. The series of
pressure values can be both shorter or longer than the number of time steps, the source will
either not use all the available values or stop emitting pressure if the time index t_index
exceeds the length of the array.

ABC PSource

PSourceInactive

PSourceActive

PSourceDirichlet

PSourceAdditive

PSourceAdditiveNoCorrection

Figure 4.3: P source class hierarchy

Similarly to the p0 source (sec. 4.4), the p source also has its class hierarchy, as seen in
figure 4.3. The p source can either be PSourceInactive or PSourceActive, based on the
p_source_flag from the input file. PSourceActive is further subdivided into three sub-
classes PSourceDirichlet, PSourceAdditiveNoCorrection and PSourceAdditive based
on the configured source mode p_source_mode. The simulation only communicates with
the PSource interface.

U sources

The last source type is the velocity source. Instead of changing the pressure, it injects
particle velocity for each cardinal direction. Selection of mask indices is similar to the p
source, they are stored in u_source_pos_index field in the input file. The velocity source
can be independently enabled for each direction by the ux_source_flag, uy_source_flag
and uy_source_flag respectively. The values for the velocity sources are also stored sepa-
rately in ux_source_input, etc. The stored values can either be scalar or defined for each
source point, depending on the ”u_source_many“ flag. The time varying source mechanism
is the same at with p sources (sec. 4.4) and is described in section 2.2.

27

ABC USource

USourceInactive

USourceActive

USourceDirichlet

USourceAdditive

USourceAdditiveNoCorrection

Figure 4.4: U source class hierarchy

The class hierarchy, as shown in figure 4.4, is almost identical to the p source class hierarchy,
the difference being the injection of particle velocity instead of pressure. The source can
be either enabled with USourceActive or disabled with USourceInactive, depending on
the u_source_flag from the input file. The available variants of enabled u sources are
USourceDirichlet, USourceAdditiveNoCorrection and USourceAdditive, depending on
the u_source_mode setting. As with the two previous source types, the simulation only
interacts with the USource interface.

4.5 Sensors and recorders
k-Wave relies on sensors to record measurements of the simulation state, the sensor mask
can be defined either as a binary mask or a cuboid corners mask, as described in section 2.2.

ABC

kSensor

Recorder

CheckpointHandler

kSensorRecorder PressureRecorder

VelocityRecorder

Figure 4.5: Class hierarchy of sensors and recorders

Figure 4.5 shows the class hierarchy of sensors and recorders in k-Wave-Python. The
kSensor (sec. 4.5) serves as the base class for all sensors attachable to the simulation. The
kSensorRecorder, which is the subclass of kSensor has the same role as the sensors in the
original k-Wave-MATLAB. In the original implementation, the values being recorded (for
example p, p_max, u_rms) were checked in a large if statement to determine, whether the
recording of a particular value is enabled. The kSensorRecorder improves this by using a
list of Recorder (sec. 4.5) instances instead. Each Recorder represents a single value being
recorded. During the initialization of the simulation, a list of recorders is generated based
on the command line recording flags, this list is then passed to the kSensorRecorder.

28

kSensor

k-Wave-Python introduces sensors, that can be optionally attached to the simulator. The
simulation itself is not aware of any implementation details of the attached sensors, it simply
calls callback functions of each attached sensor after a simulation step, passing itself as an
argument in the process. The attached sensors can then extract any needed data directly
from the simulation instance which contains current simulation state. The way sensors
process data depends solely on the user. Data recorded after each step can be stored in
memory and later visualized, saved as a spreadsheet or streamed directly to disk.

This implementation approach is comparable with the Observer design pattern (sec. 3.8).
The abstract base class kSensor contains methods and attributes expected by the simula-
tion objects during callbacks, this base class can then be inherited and easily extended by
the user. Sensors are attached to an initialized simulation object using the
.attach_sensor(kSensor) method at any time during simulation.

Recorder

Recorders handle the recording of individual sensor fields, which can use different slicing
and aggregation functions. Examples of fields include p_raw (records the entire pressure
domain), p_max (records the maximum pressure at the sensor grid points for each time step),
u_min_all (records the minimum particle velocity in the pressure arrays for each direction
respectively), etc. The full list of available flags is listed in the k-Wave manual [20, p. 54]
under output flags.

ABC

Recorder

DatasetBackend

PressureRecorder

VelocityRecorder

NumPyDataset

HDFDataset

Figure 4.6: Recorder class hierarchy

The above shown figure 4.6 displays the recorder class hierarchy. The Recorder class
is the abstract base class for all recorder types, it contains abstract methods related to
allocation (_allocate()), indexing (_dst_index(), _src_data()) and aggregation func-
tions (_func()). To isolate the format to which data is recorded from the recorders, the
DatasetBackend is used. The DatasetBackend provides an abstract interface for the al-
location of arrays, accessible using the allocate(shape, name) method. Each backend
initializes an array differently, the NumPyBackend returns a new NumPy array of the speci-
fied shape, the HDFBackend returns an h5py.File HDF file handle.

The pressure and velocity recorder groups both have their subclasses: PressureRecorder
and VelocityRecorder. The fundamental difference between them is, that pressure recorders

29

only allocate one array for pressure recording and velocity recorders allocate up to three
arrays (for each velocity direction), depending on the number of dimensions. The individ-
ual recorders are further subclassed from these two groups. For instance the previously
mentioned u_min_all field is represented by the U_MIN_ALL_Recorder class.

class U_MIN_ALL_Recorder(Binary, Single, VelocityRecorder):
template = "u{}_min_all"

def _func(self, current_data, new_data):
return np.minimum(current_data, new_data)

Listing 4.1: Definition of the U_MIN_ALL_Recorder class

The definition of the u_min_all recorder field can be seen in listing 4.1. The class utilizes
multiple inheritance to configure the properties of the recorder. The order of inheritance is
generally in the order this order:
class ExampleRecorder(<indexing_type>, <count_type>, <recorder_type>).
The <indexing_type> configures the type of indexing the recorder field uses:

• Flat - record at grid points defined by a list of linear/flat indices (sec. 3.3)

• Cuboid - record at grid points defined by a cuboid mask (sec. 2.2)

• Binary - record the entire domain

The <count_type> defines, whether the values are recorded for each time step (Multiple),
or if the recorded values overwrite previously recorded ones (Single). The <recorder_type
selects the type of recorder (PressureRecorder or VelocityRecorder).

Although this approach creates many subclasses and makes certain parts of the recording
process less transparent, it greatly simplifies the introduction of changes. A change made
in the base class is automatically applied to all subclasses, the entire behavior of a recorder
can be changed by simply changing the classes it inherits from, this also allows the creation
of new recorders using a very small number of lines of code.

4.6 Command line interface
k-Wave-Python provides a command line interface for simple access to its simulation capa-
bilities. This interface is based on the standardized command line interface for accelerators
described by the k-Wave manual [20, p. 54] with the exception of implementation-specific
flags (-g for GPU accelerators), compression (-c) and recording non-staggered grid velocity
recording (–u_non_staggered_raw). The full list of available arguments and flags can be
viewed by using the –help flag, the example output can be seen in appendix D.

Apart from the standard arguments, k-Wave-Python introduces non-standard ones. The
–show flag enables the pressure domain preview visualization which utilizes Matplotlib
(sec. 3.2). The refresh rate of the visualization is tied to the -r <interval_in_percent>
parameter which sets the logging interval in percent. The show flag should only be used
for debugging and with large refresh intervals, as it will slow down the simulation loop.
The other non-standard parameter is the backend which sets the default backend used for
calculating FFTs as described in section 3.2. The available backends are numpy and pyfftw
(the default), the numpy backend being significantly slower. The backend selection can be

30

used for debugging and for comparing various FFT libraries. Non-standard arguments can
be disabled and hidden by setting the compatibility_mode. For details on usage of the
command line, refer to appendix B.1.

31

Chapter 5

Testing and optimization

This chapter describes the process of testing of k-Wave-Python using the kWaveTester and
analyzes performance of the new implementation from the point of both computational
performance and memory usage. Performance bottlenecks, their causes and possible avenues
for further optimization are also discussed.

If not stated otherwise, all benchmarks were conducted on a laptop with the Intel
i5-8257U CPU clocked at 1.4 Ghz and 8GB of RAM.

5.1 Testing
The testing of k-Wave-Python was performed using the kWaveTester tool from k-Wave-
MATLAB. The kWaveTester serves as the ground truth because it can both generate input
data for any combination of simulation settings and compare the output out the program
being tested with the reference results.

The kwt_run_omp_comparison_tests_3D test script was used for thorough testing.
The script iterates trough more than 200 test configurations, ensuring every aspect of the
program is tested. Because of unimplemented features and known issues, some of the
test cases generate invalid results. Because k-Wave-Python currently does not support the
staggered grid and the kspace, they must be disabled using options.use_sg = false;
and options.use_kspace = false in the k-Wave-MATLAB simulation file that is being
run using the kWaveTester (kspaceFirstOrder3D in the case of k-Wave-Python). Multiple
simulation runs were conducted to test the implementation k-Wave-Python. The simula-
tions used non-linear, heterogenous and absorbing settings (LIN=1, ABS=1, HET=2) and the
grid size of 128x64x32 to test as many implementation edge cases as possible at the same
time.

32

Figure 5.1: kWaveTester output for p0 source

Figure 5.1 shows the output of the kWaveTester for a simulation using a single p0 source.
Execution in k-Wave-MATLAB took 30.55s, execution in k-Wave-Python took 25.84s.
The total normalized error was LINF=2.619e-07.

Figure 5.2: kWaveTester output for multiple p sources

Figure 5.2 shows the output of the kWaveTester for a simulation using multiple p sources.
Execution in k-Wave-MATLAB took 34.86s, execution in k-Wave-Python took 26.44s.
The total normalized error was LINF=8.4321e-07.

33

Figure 5.3: kWaveTester output for multiple u sources

Figure 5.3 shows the output of the kWaveTester for a simulation using multiple u sources.
Execution in k-Wave-MATLAB took 30.08s, execution in k-Wave-Python took 25.65s.
The total normalized error was LINF=5.3346e-07.

The results of the above described tests show, that the k-Wave-Python implementation
is reasonably accurate and around 18% faster for this configuration. There are some cases
where calculated results are currently incorrect or cannot be tested because of unimple-
mented features.

5.2 Performance benchmarks
A performance comparison between k-Wave-MATLAB and k-Wave-Python was conducted
using the kWaveTester for various domain sizes. The used version of MATLAB was R2021a,
version of Python 3.10.4, NumPy 1.21.4, numexpr 2.8.1. The simulation settings used
were 3D, non-linear, heterogenous, and absorbing. A simulation was executed for each
medium shape using the kWaveTester. Duration of data preprocessing is not included in
the performance measurements.

34

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Grid points 1e7

102

103

104

Ti
m

e
pe

r s
te

p
[m

s]

k-Wave-MATLAB and k-Wave-Python performance comparison
MATLAB
Python

Figure 5.4: Time step duration comparison with domain sizes from 64x64x64 up to
512x256x256

Figure 5.4 shows the comparison of time step speeds based on measured data from ap-
pendix C. As can be seen, k-Wave-Python outperforms k-Wave MATLAB in every case. The
average speedup over the MATLAB implementation is around 50%, the biggest speedups
were observed with domain sizes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Grid points 1e7

0

1000

2000

3000

4000

Pe
ak

 m
em

or
y

us
e

[M
B]

Peak memory use in k-Wave-Python

Figure 5.5: Peak memory usage in k-Wave-Python with domain sizes from 64x64x64 up to
512x256x256

35

Figure 5.5 shows the peak memory usage in k-Wave-Python, as measured during bench-
marking. The recorded values are on average higher than reference values from the k-Wave
manual [20, p. 80]. One of the reasons is the inherent overhead of the Python, the other
reason is the usage of temporary arrays in some parts of k-Wave-Python. After the initial
spike in memory use, the memory usage usually decreases, as seen in figures 5.4 and 5.5,
meaning the recorded peak memory usage only occurs in a fraction of the total runtime.

5.3 Memory profiling and optimization
Optimization of memory handling is closely tied to the overall performance of the simulation
algorithm. Effects of inefficient memory handling might not be perceivable with smaller
arrays, but as the domain size increases, every unnecessary allocation or reallocation de-
creases performance and might also make the program run out of memory. In low-level
languages such as C and C++, the user has tight control over allocations that occur in the
program and accidental allocation is less likely. However, with high-level garbage-collected
languages such as Python, the situation is much less clear.

Even when using libraries such as NumPy that store arrays efficiently, close attention
must be paid to the way a particular expression is written. Seemingly analogous implemen-
tations of an expression can often have very different performance characteristics. One of
the common causes of unnecessary allocations is the incorrect usage of assignment: whereas
the expression y = x[:] will create a new object for y in memory each time executed, y[:]
= x will copy values of x without reallocating y. This style of writing code requires some
changes in the way functions are written. For instance, functions should not return the
computed values but instead copy them to an already existing array, which is passed to the
function as an argument.

Memory profiling example

In this example, the effects of temporary variables on memory allocation are analyzed. A
simulation with the dimensions of 256x256x256 grid points is used for demonstration of the
effects of temporary variables.

0 5 10 15 20
time (in seconds)

0

250

500

750

1000

1250

1500

1750

m
em

or
y

us
ed

 (i
n

M
iB

)

/usr/local/opt/python@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_256_256_256.h5 -o output_file.h5 --p_final --benchmark 10

08 / 05 / 2022 - start at 14:20:40.690
 _sim_step 4.093s
 _sim_step 1.757s
 _sim_step 1.710s
 _sim_step 1.697s
 _sim_step 1.709s
 _sim_step 1.769s
 _sim_step 1.776s
 _sim_step 1.781s
 _sim_step 1.752s
 _sim_step 1.769s

Figure 5.6: Memory allocation with temporary array captured using mprof

36

Figure 5.6 displays total allocated memory as a function of time captured using the mprof1

memory profiler. Functions decorated with the @profile decorator (such as _sim_step in
this example) are highlighted in blue. The red dashed cross highlights the time of peak
memory consumption.

In k-Wave-Python, the first simulation step usually creates a large spike in memory
allocation, because all temporary arrays and libraries are being initialized. Peak memory
consumption cannot be easily compared with languages such as C++ because the user does
not always have full control over allocation and de-allocation.

As can be seen in figure 5.6, a pattern of periodic spikes in memory consumption can be
observed during each time step after the initial memory allocations. This pattern indicates,
that temporary arrays are being created during calls to certain functions. This is not
desirable because the allocation of memory becomes less predictable.

0 5 10 15 20
time (in seconds)

0

500

1000

1500

2000

m
em

or
y

us
ed

 (i
n

M
iB

)

/usr/local/opt/python@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_256_256_256.h5 -o output_file.h5 --p_final --benchmark 10

08 / 05 / 2022 - start at 14:18:18.523
 _sim_step 4.179s
 _sim_step 1.839s
 _sim_step 1.800s
 _sim_step 1.720s
 _sim_step 1.700s
 _sim_step 1.730s
 _sim_step 1.713s
 _sim_step 1.742s
 _sim_step 1.753s
 _sim_step 1.729s

Figure 5.7: Memory allocation with a pre-allocated array captured using mprof

Figure 5.7 displays memory allocation after a pre-allocated array for temporary results was
introduced. Because temporary data is written to the pre-allocated array instead of creating
new arrays, the spikes in memory consumption from the previous example disappear. This
memory consumption of the program becomes more predictable and less time is consumed
by allocation.

1https://pypi.org/project/memory-profiler/

37

https://pypi.org/project/memory-profiler/

0 10 20 30 40 50
time (in seconds)

0

500

1000

1500

2000

2500

3000
m

em
or

y
us

ed
 (i

n
M

iB
)

/usr/local/opt/python@3.10/bin/python3.10 kwave/kspaceFirstOrder3DP.py -i test_inputs/input_data_nl_abs_het_256_256_256.h5 -o output_file.h5 --p_final --benchmark 10

08 / 05 / 2022 - start at 15:54:40.705
 _sim_step 6.056s
 _sim_step 3.018s
 _sim_step 3.133s
 _sim_step 3.122s
 _sim_step 2.968s
 _sim_step 3.021s
 _sim_step 3.039s
 _sim_step 3.107s
 _sim_step 3.038s
 _sim_step 2.976s

Figure 5.8: Memory allocation with non-linear, heterogenous, and absorbing settings cap-
tured using mprof

Figure 5.8 shows an example of a non-linear, heterogenous, and absorbing simulation. Even
though the numexpr library is being used, it sometimes is not possible to avoid temporary
allocations. Even if temporary arrays can be avoided, it does not always guarantee an
increase in speed. Forcefully rewriting expressions to avoid reallocation may make the
calculations less efficient, thus slowing the program down.

Analysis of bottlenecks

Multiple profiling tools were used during optimization of the implementation. The perfor-
mance profiling tools cProfile2 and py-spy3 provide an aggregate overview of the most
performance intensive function calls, they are mainly used to identify the general location of
a bottleneck. Once an approximate location of the bottleneck is found, a line profiler can be
used to locate the exact lines of code causing the slowdown. The kernprof/line_profiler4

profiler was used for measuring the percentage of time spent in individual functions. In
this section, a 128x128x128 simulation was run for 1000 time steps with py-spy attached,
generating figures described below.

Figure 5.9: Performance profile of a linear, lossless, and homogenous simulation captured
using py-spy

Figure 5.9 displays a flame chart that breaks down percent of runtime spent in each func-
tion of the call stack. More than 90% of the runtime is spent in the kspace_runner, which

2https://docs.python.org/3/library/profile.html
3https://github.com/benfred/py-spy
4https://github.com/pyutils/line_profiler

38

https://docs.python.org/3/library/profile.html
https://github.com/benfred/py-spy
https://github.com/pyutils/line_profiler

executes the main simulation loop and all related behavior such as data recording and visu-
alization. The runtime is evenly spread between the individual simulation functions, which
is to be expected. The simulation function kspaceFirstOrder3D._sim_step() was pro-
filed using the line_profiler tool for 1000 time steps and the domain size of 128x128x128.
Simulation settings used were linear, homogenous, and lossless. Around 45% of computa-
tion time was spent in the function calc_duxdx(), 43% in calc_ux_sgx(), 6% of time was
spent in recalculate_rho(). With the selected settings, the computation time is roughly
divided by the number of FFTs computed.

Figure 5.10: Performance profile of a non-linear, absorbing, and heterogenous simulation
captured using py-spy

With non-linear, absorbing, and heterogenous simulations, the profile changes consid-
erably. A large portion of runtime, as shown in figure 5.10, is spent in the function
recalculate_p(), that handles the updates of the pressure array. The function causing
the slowdown in this case is the EosAbsorbing.recalculate_p_nonlinear(). It contains
four FFT calculations (fftn() and ifftn()) and is also difficult to optimize using num-
expr. Similarly to the first example, the kspaceFirstOrder3D._sim_step() function was
profiled using the line_profiler with the same domain size and number of time steps.
The settings used were non-linear, heterogenous and absorbing. This time, the function
recalculate_p() consumed almost 36% of the computation time, 29% of time was spent
in calc_duxdx(), and around 27.5% in calc_ux_sgx(). It can thus be concluded, that
the calculation of FFTs has the most significant impact on the overall performance of the
simulation.

Process of optimization

This section outlines the approximate steps taken during the optimization of k-Wave-
Python. In the first optimization phase, unnecessary reallocations of NumPy arrays were
eliminated where possible. Reallocations are usually unintentionally caused by assigning
a result of a calculation to an variable pointing to an already existing array, this makes
the garbage collector destroy the object and a reallocation occurs. Reallocations can be
eliminated by assigning a new value to an already existing array like x[:] = result or
by using np.copyto(x, result). Any such optimizations should first be verified since
copying might not always be faster than creating a new array.

In the second phase, all equations, that can benefit from it, were wrapped with numexpr.
This mainly applies to equations for recalculating pressure and density, which contain a large
number of arithmetic operations. Equations that contain FFTs which cannot be included
into numexpr can be optimized this way at least partially.

Since FFTs form a large majority of the computation time, as described in section 5.3,
the performance is ultimately tied to the performance of the underlying FFT library (in
this case pyFFTW).

39

Further avenues for optimization

One of the ways better performance could be achieved is by using various Python libraries,
that enable ahead-of-time, just-in-time compilation, or improve parallelism of the compu-
tations.

Ahead-of-time compiled functions provide speeds comparable to C, this can be done
by writing functions in Cython5 as separate modules and compiling them. Compiling to
C might not always equate to a speed boost. Since k-Wave-Python uses the NumPy and
numexpr libraries, which are already vectorized, the benefit of compiling
might be negligible [4, p. 162].

Just-in-time compiled solutions are easier to deploy to the target program. The Numba6

library allows compilation of individual functions using a decorator. Compilation occurs
during the first call of the functions, the JIT compiled code is then cached for further use.
Limitations are however similar to the previously described pre-compiled Cython. Further
deployment of numexpr, which could also be classified as a JIT library, is also an option.

While pyFFTW automatically works in multiple threads, some parts of the simulation
algorithm could still benefit from added parallelization. This mainly applies to equations
that are calculated for each dimension of the array separately. This includes velocity and
density calculations for each cardinal direction X, Y, and Z. Since the Python GIL (Global
Interpreter Lock) prohibits parallel computation using threads [9], separate processes must
be used instead of threads. This can be achieved using the multiprocessing standard
library, which allows the simple creation of worker pools. There are multiple caveats to
this approach. For smaller domains, the overhead of forking and joining threads might
outweigh the possible speed benefits. For larger domains, the cost of synchronizing results
between threads might also be an issue [4, p. 280]. Another issue could be the duplication
of allocated arrays during forking, a possible solution is to allocate shared NumPy arrays
using multiprocessing.Array to avoid duplication of the memory from the
main thread [4, p. 298].

One of the components which is currently not optimized is the class HDFIndexingAdapter
(sec. 3.8) used for converting indices from HDF to NumPy. The slowdown is caused by the
indexing conversion during runtime, which often needs to re-shape the target data.

While the k-Wave-Python performance was also benchmarked on the Barbora cluster
from IT4Innovations [6] with Python 3.9.6 (and other versions) and MATLAB R2021a,
the performance measured indicates, that locally measured speed improvements over the
k-Wave-MATLAB do not translate to computational clusters. One of the further avenues of
development could therefore be the adaptation of k-Wave-Python take advantage of cluster
computing.

5https://cython.org/
6https://numba.pydata.org/

40

https://cython.org/
https://numba.pydata.org/

Chapter 6

Conclusion

The goal of this thesis was to analyze conversion of MATLAB programs to Python and to
summarize the main issues arising from such conversions. The topics discussed mainly relate
to the issues encountered during the re-implementation of the k-Wave toolbox, emphasizing
the aspect of performance. The second goal was to create a Python implementation of a
subset of the k-Wave toolbox, thus laying the groundwork for further development.

As a part of this thesis, a working Python k-Wave implementation was developed. The
performance of the new implementation is comparable to the original MATLAB implemen-
tation, in some cases, the new implementation surpasses the performance of the original
implementation by around 10-50%. The total number of lines of code is approximately
2000 lines (not including empty lines and comments), which is a substantial improvement
over C++ implementations.

Based on the insights gained during implementation and conversion from MATLAB,
a set of guidelines and tips was proposed. A summary of high performance computing
technologies used in Python was also compiled.

The takeaway from this thesis is, that optimization is a non-trivial multi-faceted issue.
Proper optimization requires due diligence and careful balancing of counteracting effects.

Currently, the performance of the implementation is limited by a small portion of the
total lines of code, mainly due to FFT computations. In terms of optimization, acceleration
of the most performance-critical simulation functions could provide substantial performance
improvements. Function calls to FFTs currently prevent the application of numexpr to
entire equations, bridging this gap could lead to improved memory handling. Performance
on computer clusters could also be the focus of further development.

In the future, the implementation could be expanded to include 1D and 2D simulations.
Due to the popularity of Python, k-Wave could also be brought to a wider audience of
potential users while also enabling integration with other powerful Python libraries.

41

Bibliography

[1] Eurostat. Root mean square error (RMSE) [online], 9. may 2019 [cit. 2022-05-09].
Available at:
https://ec.europa.eu/eurostat/cros/content/root-mean-square-error-rmse_en.

[2] fftw.org. Planner Flags [online]. [cit. 2022-05-06]. Available at:
https://www.fftw.org/fftw3_doc/Planner-Flags.html.

[3] Gomersall, H. pyFFTW Documentation rev.86df872 [online]. 2021-12-27 [cit.
2022-01-16]. Available at: https://pyfftw.readthedocs.io.

[4] Gorelick, M. and Ozsvald, I. High Performance Python. 2nd ed. Sebastopol:
O’Reilly Media, Inc., may 2020. ISBN 9781492055020.

[5] Hunt, A. and Thomas, D. The Pragmatic Programmer. 1st ed. Addison-Wesley,
2000. ISBN 0-201-61622-X.

[6] It4Innovations. Barbora [online]. [cit. 2022-05-10]. Available at:
https://www.it4i.cz/en/infrastructure/barbora.

[7] Moler, C., Eddins, S. and MathWorks. Faster Finite Fourier Transforms
MATLAB [online]. [cit. 2022-01-15]. Available at: https://www.mathworks.com/
company/newsletters/articles/faster-finite-fourier-transforms-matlab.html.

[8] NumPy Developers. NumPy for MATLAB users [online]. [cit. 2022-01-15].
Available at: https://numpy.org/doc/1.22/user/numpy-for-matlab-users.html.

[9] Python Software Foundation. GlobalInterpreterLock [online]. [cit. 2022-05-06].
Available at: https://wiki.python.org/moin/GlobalInterpreterLock.

[10] Python Software Foundation. Python Package Index [online]. [cit. 2022-01-15].
Available at: https://pypi.org.

[11] Robertson, J. L., Cox, B. T., Jaros, J. and Treeby, B. E. Accurate simulation of
transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation.
J. Acoust. Soc. Am. 2017, vol. 141, no. 3, p. 1726–1738. DOI: 10.1121/1.4976339.
Available at: http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf.

[12] Rossum, G. van. Glue It All Together With Python. In: Thompson, C.,
ed. Workshop on Compositional Software Architecture [online]. [cit. 2022-01-15].
Available at: http://www.objs.com/workshops/ws9801/papers/paper070.html.

[13] Shvets, A. Dive Into Design Patterns [online]. V2021-2.32th ed. 2021 [cit.
2022-05-03]. Available at: https://refactoring.guru/design-patterns/book.

42

https://ec.europa.eu/eurostat/cros/content/root-mean-square-error-rmse_en
https://www.fftw.org/fftw3_doc/Planner-Flags.html
https://pyfftw.readthedocs.io
https://www.it4i.cz/en/infrastructure/barbora
https://www.mathworks.com/company/newsletters/articles/faster-finite-fourier-transforms-matlab.html
https://www.mathworks.com/company/newsletters/articles/faster-finite-fourier-transforms-matlab.html
https://numpy.org/doc/1.22/user/numpy-for-matlab-users.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://pypi.org
http://bug.medphys.ucl.ac.uk/papers/2017-Robertson-JASA.pdf
http://www.objs.com/workshops/ws9801/papers/paper070.html
https://refactoring.guru/design-patterns/book

[14] Stenson, I. Faster Fast Fourier Transforms in Python [online], 11. june 2021 [cit.
2022-05-09]. Available at: https://blog.hpc.qmul.ac.uk/pyfftw.html.

[15] Suomi, V., Treeby, B. E., Jaros, J., Makela, P., Anttinen, M. et al.
Transurethral ultrasound therapy of the prostate in the presence of calcifications: A
simulation study. Med. Phys. 2018, vol. 45, no. 11, p. 4793–4805. DOI:
10.1002/mp.13183. Available at:
http://bug.medphys.ucl.ac.uk/papers/2018-Suomi-MP.pdf.

[16] The MathWorks, Inc.. Fft [online]. [cit. 2022-05-07]. Available at:
https://www.mathworks.com/help/matlab/ref/fft.html.

[17] The MathWorks, Inc.. MATLAB Performance [online]. [cit. 2022-05-09]. Available
at: https://www.mathworks.com/products/matlab/performance.html.

[18] The MathWorks, Inc.. MATLAB vs. Python: Top Reasons to Choose MATLAB
[online]. [cit. 2022-01-15]. Available at:
https://www.mathworks.com/products/matlab/matlab-vs-python.html.

[19] The MathWorks, Inc.. Row-Major and Column-Major Array Layouts [online].
[cit. 2022-01-15]. Available at: https://www.mathworks.com/help/coder/ug/what-are-
column-major-and-row-major-representation-1.html.

[20] Treeby, B., Cox, B. and Jaros, J. k-Wave - User Manual [online]. August 2016,
2016-08-27 [cit. 2022-01-17]. Available at:
http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf.

[21] Treeby, B. E. and Cox, B. T. k-Wave: MATLAB toolbox for the simulation and
reconstruction of photoacoustic wave fields. [online]. SPIE. vol. 15, no. 2, p. 1 – 12,
[cit. 2022-01-15]. DOI: 10.1117/1.3360308.

[22] Treeby, E. B., Jaroš, J., Rendell, P. A. and Cox, T. B. Modeling nonlinear
ultrasound propagation in heterogeneous media with power law absorption using a
k-space pseudospectral method. Journal of the Acoustical Society of America. 2012,
vol. 131, no. 6, p. 4324–4336. DOI: 10.1121/1.4712021. ISSN 1520-8524. Available at:
https://www.fit.vut.cz/research/publication/10069.

43

https://blog.hpc.qmul.ac.uk/pyfftw.html
http://bug.medphys.ucl.ac.uk/papers/2018-Suomi-MP.pdf
https://www.mathworks.com/help/matlab/ref/fft.html
https://www.mathworks.com/products/matlab/performance.html
https://www.mathworks.com/products/matlab/matlab-vs-python.html
https://www.mathworks.com/help/coder/ug/what-are-column-major-and-row-major-representation-1.html
https://www.mathworks.com/help/coder/ug/what-are-column-major-and-row-major-representation-1.html
http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf
https://www.fit.vut.cz/research/publication/10069

Appendix A

Contents of the included storage
media

• k-Wave-MATLAB/ - folder containing source code of the k-Wave-MATLAB toolbox
which served as the reference during implementation of k-Wave-Python

• Sources/ - folder containing source files of the k-Wave-Python implementation

• Thesis/ - folder containing source files of the thesis text

• Data/ - folder containing example data, measurements and simulation logs

• README.md - file describing contents of the storage media

• xcerny74.pdf - PDF version of the thesis text

44

Appendix B

k-Wave Python user manual

This appendix contains the guide for the installation and usage of k-Wave-Python. The
basic requirements include:

• A UNIX-like operating system such as Linux or MacOS.

• Python1 version 3.10, lower versions such as Python 3.9 may run, but full compati-
bility is not guaranteed.

• The Python libraries numpy2, numexpr3, matplotlib4. Although the simulator can
run without the library pyFFTW5, it is highly recommended because of performance
benefits.

• If the pyFFTW library is used, the underlying FFTW36 library must also be installed
on the target system.

Python libraries can be installed using the Python pip package management tool using
the command pip install -r requirements.txt, the requirements.txt file contains
above listed required libraries. The pip tool may also be called pip3 depending on the
configuration of the target system.

To simplify the installation process, k-Wave-Python can be directly installed using pip.
This can be done by navigating to the root folder of the project and using the pip install
. command. A new kwave python package will be installed system-wide. A new utility
kspaceFirstOrder3DP will also be installed and can be used in any terminal. The default
install only installs the NumPy FFT backend, to install the additional pyFFTW backend,
use the command pip install ”.[fftw]“. For more information, refer to README.md.

1https://www.python.org/
2https://numpy.org/
3https://github.com/pydata/numexpr
4https://matplotlib.org/
5https://github.com/pyFFTW/pyFFTW
6https://www.fftw.org/

45

https://www.python.org/
https://numpy.org/
https://github.com/pydata/numexpr
https://matplotlib.org/
https://github.com/pyFFTW/pyFFTW
https://www.fftw.org/

B.1 Using the simulator
The command line interface of the simulator can be accessed using the file
kspaceFirstOrder3DP.py. It can be executed using the commands:
python3 kspaceFirstOrder3DP.py or ./kspaceFirstOrder3DP.py on Linux/MacOS (this
may require granting execution permissions using chmod).

To use the simulator with k-Wave-MATLAB during development, create a hard link of
the CLI script using ln kspaceFirstOrder3DP.py kspaceFirstOrder3DP, then move the
kspaceFirstOrder3DP hard link to the k-Wave-MATLAB/k-Wave/binaries folder in the k-
Wave-MATLAB. To ensure individual modules are correctly found, and add the root folder
of k-Wave-Python to the PATH and PYTHONPATH environment variables.

To simplify the process of using k-Wave-Python within the k-Wave-MATLAB tool-
box, the link_kwave.py utility was developed. After executing python3 link_kwave.py
path/to/kwave/binaries, the utility will create a new hard link for the
kspaceFirstOrder3DP in the specified binaries folder, permissions to execute the script
will also be added. Additionally, the k-Wave-Python folder will be exported to PATH and
PYTHONPATH. Because the environment variable export is not persistent, the script lists
the shell commands that should be added to the configuration file of the terminal. The
command
python3 kspaceFirstOrder3DP.py -i input_file.h5 -o output_file.h5 is the sim-
plest example of usage of the command line interface, only the input and output files are
defined. By default, the simulator will only record the p_raw field and log progress every
5% of time steps. The log output will resemble the example output in appendix E. All
available parameters can be seen in appendix D.

46

Appendix C

Benchmark

47

Table C.1: Time step duration [ms] and maximum memory usage in k-Wave-Python [MB]

MATLAB Python Memory [MB]
Domain size
64x64x64 47.42 30.32 111
96x64x64 64.52 46.90 135
128x64x64 83.52 59.65 160
96x96x64 94.07 68.93 173
96x96x96 138.35 103.76 231
128x128x64 163.90 120.71 259
128x96x96 186.07 140.26 284
128x128x96 249.72 187.80 364
128x128x128 337.02 248.29 465
160x128x128 418.46 313.31 566
160x160x128 526.11 450.23 688
160x160x160 671.74 584.03 843
256x128x128 684.18 615.97 860
192x160x160 827.36 719.57 1001
192x192x160 1064.74 877.12 1188
192x192x192 1381.20 1077.28 1415
224x192x192 1674.80 1145.75 1640
224x224x192 2128.18 1450.44 1910
224x224x224 2582.44 1744.35 1855
256x224x224 2890.54 2197.79 2267
256x256x256 4164.30 2759.15 2720
288x256x256 4723.41 3166.60 2915
288x288x256 9180.95 4138.25 3378
288x288x288 10088.54 4983.87 3677
320x288x288 12347.96 5637.26 4072
320x320x288 14813.73 7234.01 4217
320x320x320 18922.59 9761.35 4468
512x256x256 20854.13 10784.86 4547

48

Appendix D

k-Wave-Python help menu

usage: kspaceFirstOrder3D [-h] -i <file_name> -o <file_name> [--version]
[-r <interval_in_%>] [--verbose <level>]
[--benchmark <time_steps>] [--show] [-b <backend>]
[-t <num_threads>] [-s <time_step>]
[--checkpoint_interval <sec>]
[--checkpoint_file <file_name>] [-p] [--p_rms]
[--p_max] [--p_min] [--p_max_all] [--p_min_all]
[--p_final] [-u] [--u_rms] [--u_max] [--u_min]
[--u_max_all] [--u_min_all] [--u_final]
[--copy_sensor_mask]

kspaceFirstOrder3D launcher script. This script can be used to run
kspaceFirstOrder3D simulations using HDF input files. Simulation dimensions
and settings are automatically loaded from the input dataset. Other available
options are described below.

options:
-h, --help show this help message and exit

mandatory parameters:
-i <file_name> name of HDF5 input file
-o <file_name> name of HDF5 output file

optional parameters:
--version print version and build info
-r <interval_in_%> progress print interval (default = 5%)
--verbose <level> level of verbosity <0, 2> (default = 1)
--benchmark <time_steps>

run only a specified number of time steps
-t <num_threads> number of CPU threads for FFT (default = 8)
-s <time_step> time step when data collection begins (default = 0)
--checkpoint_interval <sec>

checkpoint after a given number of seconds (default =
60)

49

--checkpoint_file <file_name>
name of HDF5 checkpoint file

implementation specific parameters:
--show will display simulation progress preview
-b <backend>, --backend <backend>

backend used for FFT computations (default = pyfftw)

output flags:
-p, --p_raw store time varying acoustic pressure
--p_rms store rms of P
--p_max store max of P
--p_min store min of P
--p_max_all store max of P (whole domain)
--p_min_all store min of P (whole domain)
--p_final store final pressure field
-u, --u_raw store time varying particle velocity (ux, uy, uz)
--u_rms store rms of ux, uy, uz
--u_max store max of ux, uy, uz
--u_min store min of ux, uy, uz
--u_max_all store max of ux, uy, uz (whole domain)
--u_min_all store min of ux, uy, uz (whole domain)
--u_final store final particle velocity field
--copy_sensor_mask copy sensor mask to output file

50

Appendix E

Example output log

+---+
| kSpaceFirstOrder3D-Python v0.1 |
+---+
| Number of CPU threads: 8 |
| Reading simulation configuration: Done |
+---+
| Simulation details |
+---+
| Simulation dimensions: 128 x 128 x 128 |
| Simulation time steps: 50 |
+---+
| Initialization |
+---+
| Memory allocation: Done |
| Data loading: Done |
| Elapsed time: 0.08s |
+---+
| FFT plans creation: Done |
| Pre-processing phase: Done |
| Elapsed time: 0.08s |
+---+
| Computational resources |
| Current host memory in use: 240MB |
+---+
| Simulation |
+----------+----------------+--------------+--------------------+
| Progress | Elapsed time | Time to go | Est. finish time |
+----------+----------------+--------------+--------------------+
4%	0.464s	22.29s	06/05/22 11:58:43
8%	1.047s	16.048s	06/05/22 11:58:37
12%	1.581s	13.913s	06/05/22 11:58:35
16%	2.121s	12.725s	06/05/22 11:58:35
20%	2.646s	11.76s	06/05/22 11:58:34
24%	3.167s	10.94s	06/05/22 11:58:34

51

28%	3.692s	10.225s	06/05/22 11:58:34
32%	4.223s	9.571s	06/05/22 11:58:34
36%	4.767s	8.973s	06/05/22 11:58:33
40%	5.303s	8.374s	06/05/22 11:58:33
44%	5.842s	7.79s	06/05/22 11:58:33
48%	6.382s	7.214s	06/05/22 11:58:33
52%	6.913s	6.637s	06/05/22 11:58:33
56%	7.441s	6.063s	06/05/22 11:58:33
60%	7.958s	5.488s	06/05/22 11:58:33
64%	8.475s	4.921s	06/05/22 11:58:33
68%	8.993s	4.36s	06/05/22 11:58:33
72%	9.508s	3.803s	06/05/22 11:58:33
76%	10.034s	3.254s	06/05/22 11:58:33
80%	10.564s	2.709s	06/05/22 11:58:33
84%	11.087s	2.163s	06/05/22 11:58:33
88%	11.615s	1.621s	06/05/22 11:58:33
92%	12.145s	1.08s	06/05/22 11:58:33
96%	12.673s	0.539s	06/05/22 11:58:33
98%	12.936s	0.27s	06/05/22 11:58:33
+----------+----------------+--------------+--------------------+			
Elapsed time: 13.47s			
+---+			
Summary			
+---+			
Peak memory in use: 505MB			
+---+			
Total execution time: 13.8536s			
+---+			
End of computation			
+---+

52

	Introduction
	A brief overview of k-Wave
	Structure of the toolbox
	Simulation data
	Data exchange with k-Wave accelerators
	k-Wave tester

	Guidelines for converting MATLAB code to Python
	Basic comparison of MATLAB and Python
	Python computation libraries
	Indexing
	Data structures
	Matrix and scalar arithmetic
	Fourier transforms
	Data visualization
	Design patterns
	Summary

	k-Wave-Python implementation
	Project structure
	Input and output file handling
	kspaceFirstOrder
	Sources
	Sensors and recorders
	Command line interface

	Testing and optimization
	Testing
	Performance benchmarks
	Memory profiling and optimization

	Conclusion
	Bibliography
	Contents of the included storage media
	k-Wave Python user manual
	Using the simulator

	Benchmark
	k-Wave-Python help menu
	Example output log

