
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ABSTRACTION IN AUTOMATA ALGORITHMS
ABSTRAKCE V AUTOMATOVÝCH ALGORITMECH

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ KOCOUREK
AUTOR PRÁCE

SUPERVISOR doc. Mgr. LUKÁŠ HOLÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Kocourek Tomáš
Programme: Information Technology
Title: Abstraction in Automata Algorithms
Category: Algorithms and Data Structures
Assignment:
Finite automata are often combined using Boolean and other operators, which are prone to state
space explosion and easily become an efficiency bottleneck. Alternating automata allow to
circumvent this problem by allowing a succinct implicit representation of Boolean operations. The
price for this is an expensive language emptiness test. The goal of this work is to investigate
whether algorithm from [1], which uses abstraction, can significantly reduce the cost of alternating
automata emptiness testing.

1. Familiarise yourself with alternating automata and with the algorithm for testing language
emptiness of alternating automata from [1].

2. Implement the algorithm from [1].
3. Compare the performance of your implementation at least with the antichain based

alternating automata emptiness test, if possible also with other algorithms.
Recommended literature:

Ganty P., Maquet N., Raskin JF. (2009) Fixpoint Guided Abstraction Refinement for
Alternating Automata. In: Implementation and Application of Automata. CIAA 2009. Lecture
Notes in Computer Science, vol 5642. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-02979-0_19
Loris D'Antoni, Zachary Kincaid, Fang Wang, A Symbolic Decision Procedure for Symbolic
Alternating Finite Automata, Electronic Notes in Theoretical Computer Science, Volume 336,
2018, Pages 79-99, ISSN 1571-0661, https://doi.org/10.1016/j.entcs.2018.03.017.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Holík Lukáš, doc. Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24926/2021/xkocou10 Page 1/1

Abstract
The goal of this thesis is to implement and experimentally compare antichain-based al-
gorithms with and without abstraction, which decide the emptiness of alternating finite
automata. The author also proposes his own algorithms using abstraction and comes up
with a few optimizations of existing abstract algorithms. The thesis introduces the the-
oretical background of studied algorithms and describes efficient ways to implement data
structures which are used by these algorithms. The experimental evaluation over random
automata shows that the algorithms without abstraction give us better results in general
because they do not perform costly evaluation of closed set intersection and complemen-
tation. However, in case of automata with high transition density, the algorithms without
abstraction tend to decelerate, while the abstract ones accelerate.

Abstrakt
Tato práce si klade za cíl implementaci a experimentální porovnání protiřetězcových algo-
ritmů s abstrakcí a bez abstrakce, které testují prázdnost alternujících automatů. Autor
také navrhuje vlastní algoritmy s abstrakcí a navrhuje několik optimalizací pro existující
abstraktní algoritmy. Práce popisuje teoretické pozadí studovaných algoritmů a navrhuje
efektivní způsob implementace datových struktur, které jsou těmito algoritmy používány.
Experimentální vyhodnocení na náhodných automatech ukazuje, že algoritmy bez abstrakce
vykazují obecně lepší výsledky, neboť nevyužívají náročné operace průniku a komplemen-
tace shora a zdola uzavřených množin. V případě automatů s vysokou hustotou přechodů
však algoritmy bez abstrakce zpomalují a algoritmy s abstrakcí naopak zrychlují.

Keywords
alternating finite automaton, abstraction, antichain, language emptiness, concrete domain,
abstract domain, fixed point, partition

Klíčová slova
alternující konečný automat, abstrakce, protiřetězec, prázdnost jazyka, konkrétní doména,
abstraktní doména, pevný bod, rozklad

Reference
KOCOUREK, Tomáš. Abstraction in Automata Algorithms. Brno, 2022. Bachelor’s the-
sis. Brno University of Technology, Faculty of Information Technology. Supervisor doc.
Mgr. Lukáš Holík, Ph.D.

Rozšířený abstrakt
Tato práce si klade za cíl prozkoumat existující řešení pro testování prázdnosti alternujících
automatů pomocí protiřetězcových algoritmů s abstrakcí a bez abstrakce, implementovat
tyto algoritmy a experimentálně vyhodnotit jejich efektivitu s pomocí alternujících au-
tomatů generovaných náhodně dle rozličných parametrů.

Práce uvádí základní pojmy, jako je nedeterministický konečný automat (NFA), alter-
nující konečný automat (AFA) a objasňuje, že naivní převod AFA na NFA s následným
provedením všeobecně známého testu prázdnosti tohoto NFA může vést k exponenciálnímu
nárustu stavů, což nás motivuje k nalezení efektivnějšího řešení pro testování prázdnosti
AFA.

V práci jsou podrobně představeny protiřetězcové algoritmy pro testování prázdnosti AFA,
které pracují s abstrakcí (abstraktní algoritmy), a které pracují bez ní (konkrétní algoritmy).
Autor dále navrhuje vlastní abstraktní obousměrné algoritmy, které během svého běhu
počítají více užitečných informací, jež mohou vést k rychlejšímu nalezení řešení.

Následně jsou představeny datové struktury pro alternující automaty, inverzní přechodové
relace, shora a zdola uzavřené množiny a rozklady množin, jež jsou koncipovány tak, aby
zvýšily efektivitu provádění dílčích operací v rámci studovaných algoritmů.

V rámci experimentálního vyhodnocení implementovaných algoritmů práce nejprve před-
stavuje model Tabakova-Vardiho, jenž slouží k náhodnému generování NFA dle zvolené
mohutnosti množiny stavů, hustoty přechodové funkce a poměru koncových stavů ke všem
stavům. Autor následně představuje vlastní model generátoru automatů, jenž původní
model Tabakova-Vardiho rozšiřuje a umožňuje generovat také AFA pomocí parametru míry
alternace. Přináší rovněž možnost pomocí parametru opětovného navštěvování stavů lépe
kontrolovat strukturu generovaných automatů a potlačit pravděpodobnost, že náhodně vy-
generovaný automat bude sestávat z mnoha malých, vzájemně separovaných komponent.

Úvodní pozorování výsledků experimentálního vyhodnocení studovaných algoritmů nad
12 000 AFA ukazuje, že abstraktní algoritmy v průměru pracují výrazně méně efektivně
než algoritmy konkrétní. V práci jsou proto poté zkoumány důvody tohoto významného
rozdílu prostřednictvím měření času vykonávání jednotlivých operací v rámci abstraktních
algoritmů.

Měření ukazuje, že průnik a komplementace shora a zdola uzavřených množin představují
významně náročné operace v porovnání s ostatními procedurami. Je proto navrženo něko-
lik optimalizací, které modifikují původní abstraktní algoritmy i nově vymyšlené abstraktní
obousměrné algoritmy tak, aby nebylo nutné tyto náročné výpočty provádět tak často.
Jedna z modifikací, která výměnou za snížení přesnosti informací počítaných v rámci algo-
ritmu úplně odstraňuje nutnost provádění průniku shora a zdola uzavřených množin mimo
abstraktní doménu, přináší tak výrazné snížení průměrného času provádění abstraktních
algoritmů, že při zvyšující se mohutnosti množiny stavů vykazuje stále lepší výsledky než
jeden z konkrétních algoritmů.

Následně je popsáno, jak lze problémy inkluze a průniku NFA řešit pomocí testu prázd-
nosti alternujícího automatu. Několik stovek instancí těchto problémů je následně vyge-
nerováno a vyhodnoceno pomocí studovaných algoritmů. Ukazuje se, že v těchto případech
vykazují abstraktní dopředné algoritmy lepší výsledky než konkrétní dopředný algoritmus,
zvyšujeme-li hustotu přechodů jednotlivých komponent průniku nebo inkluze.

Abstraction in Automata Algorithms

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Mgr. Lukáš Holík, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Tomáš Kocourek

May 18, 2022

Acknowledgements
I would like to thank to doc. Mgr. Lukáš Holík, Ph.D. for his priceless advice, professional
guidence and also for his patience.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Nondeterministic Finite Automaton . 6
2.2 Language Emptiness Test of an NFA . 7
2.3 Alternating Finite Automaton . 8
2.4 AFA to NFA Transformation . 9
2.5 Naive Language Emptiness Test of an AFA 10

3 Concrete Forward and Backward Algorithms Deciding the AFA Empti-
ness 11
3.1 Predicate Transformers . 11
3.2 Fixed Points of Predicate Transformers . 14
3.3 Antichains . 15

3.3.1 Significant Properties of Antichains 16
3.4 AFA Emptiness . 18

4 Abstract Forward and Backward Algorithms Deciding the AFA Empti-
ness 20
4.1 Lattice of Partitions . 20
4.2 Concrete and Abstract Domain . 22

4.2.1 Abstraction and Concretization Functions 22
4.2.2 Abstraction and Concretization Functions over Formulae 23

4.3 Abstract Alternating Automaton . 24
4.3.1 Language of an Abstract AFA . 25
4.3.2 Predicate Transformers over Abstract AFA 27

4.4 Representability of Concrete Nodes in an Abstract Domain 27
4.5 The Abstract Algorithms . 28

4.5.1 The Abstract Forward Algorithm . 28
4.5.2 The Abstract Backward Algorithm 30

5 Abstract Bidirectional Algorithms Deciding the AFA Emptiness 31
5.1 Motivation of Using a Bidirectional Approach 31
5.2 Forward-like Abstract Bidirectional Algorithm 32
5.3 Backward-like Abstract Bidirectional Algorithm 36
5.4 Properties of Forward-like and Backward-like Algorithms 36

6 Design and Implementation 37

1

6.1 Alternating Automata . 37
6.2 Closed Sets . 38
6.3 Predicate Transformers . 39
6.4 Partitions . 41

7 Experimental Comparison of Algorithms Deciding AFA Emptiness 42
7.1 Tabakov-Vardi Model . 42
7.2 Extended Tabakov-Vardi Model . 43
7.3 Initial Observation of Randomly Generated AFAs Behaviour 44
7.4 Comparison of Studied Algorithms in Context of Emptiness of NFA Intersection 49
7.5 Comparison of Studied Algorithms in Context of NFA Inclusion 51

8 Conclusion 54

Bibliography 56

2

Chapter 1

Introduction

A finite automaton (FA) is a well-known formal computation model with many various
applications across the computer science.

An alternating finite automaton (AFA), which represents a generalization of the nondeter-
ministic FA (NFA) and the parallel machine, is a concept with precisely the same computing
power as FA.

Nevertheless, it allows us to express the same model in a more compact way using Boolean
formulae. Thus, an AFA is not predisposed to operate with a massive amount of states.

The price for this is the necessity to cope with the costly language emptiness test because it
is not possible to efficiently utilize the straightforward language emptiness test commonly
used for FA.

The naive method to check the language emptiness requires transforming an AFA to an
equivalent NFA and then using the conventional algorithm for language emptiness. Unfor-
tunately, this procedure would explosively increase the number of states of the automaton.
In the worst case, the amount of states expands exponentially, which we want to avoid.

Therefore, it is essential to study alternative techniques for effective language emptiness
test of an AFA.

First, we present two antichain-based algorithms, which work in a forward and in a back-
ward fashion. Next, this thesis introduces remarkable abstraction refinement algorithms by
Ganty, Maquet and Raskin [4] based on conversion between concrete and abstract domains
of AFAs and antichains utilisation. The implementation of the mentioned algorithm will
be described, and it will be experimentally compared with the alternative algorithms which
deal with the same problem.

In addition, we present two new proposed algorithms, which were created by the author of
this thesis and which are derived from the studied abstraction refinement algorithms, we
discuss the differences between them and we also experimentally compare their performance
over plenty of various AFAs.

3

Organization of the Thesis

Firstly, we present the basic theoretical background within Chapter 2. Both concepts of
NFA and AFA will be described in detail and the idea of the naive language emptiness test
of an AFA will be briefly discussed.

Subsequently, Chapter 3 introduces the idea of predicate transformers, which helps us to
inspect the behaviour of an AFA, and fixed point expressions over them and clarify the
relation between reachability of an AFA and fixed points of predicate transformers. The
theory of antichains, which comprises the core of language emptiness test presented at the
end of Chapter 3, will be also discussed.

While the language emptiness test shown in Chapter 3 operates in the concrete domain of
an AFA, which means that it does not use any kind of reduction of its state set, Chapter 4
finally brings the concept of abstraction of an AFA. This technique uses a partition of a state
set to create a smaller automaton, which over-approximates the language of the original
one. The possibility of using abstract automata to decide the emptiness of the concrete one
will be described in detail.

Within Chapter 5, we will present new proposed abstract bidirectional algorithms deciding
an AFA emptiness, which were made up by the author of this thesis. While the former
abstract algorithms introduced in Chapter 4 work exclusively in the forward or backward
fashion, we discuss the possibility of discover more information about an automaton at once
using a bidirectional approach.

Next, Chapter 6 discusses the design of data structures proposed by author of this the-
sis, which allows us to efficiently represent necessary information used to decide an AFA
emptiness by presented algorithms. This chapter also deals with implementation details.

Afterwards, Chapter 7 describes experimental evaluation of introduced algorithms. The
chapter brings the concept of Tabakov-Vardi model of randomly generated NFAs, which
is subsequently extended by the author of this thesis to the model which allows us to
generate AFAs using various parameters. These randomly generated automata will be used
to perform experiments. The results of these experiments will be also presented within the
chapter.

4

Chapter 2

Preliminaries

This section introduces the essential theoretical background for the thesis. First, it presents
formal terms like an alphabet, language, nondeterministic finite automaton and others con-
nected with finite automata, which were inspired by [7]. The term positive Boolean formula,
alternating finite automaton and corresponding concepts, which were all inspired by [4], will
be also discussed. Both nondeterministic and alternating finite automata are defined with
a single initial state within the referred literature. Since we decided to define these models
more generally, we allow an existence of multiple initial states, which means that we had
to adjust other definitions to this modification as well.

Definition 1 An alphabet Σ is defined as a finite, non-empty set of symbols.

Definition 2 The finite sequence of symbols 𝑤 = 𝑎0. . .𝑎𝑛, where ∀𝑖 ∈ N : 𝑖 ≤ 𝑛⇒ 𝑎𝑖 ∈ Σ,
is called a string over an alphabet Σ. |𝑤| = 𝑛 is a length of the string. Specifically, 𝜖 /∈ Σ
is denoted as an empty string, which has the unique property that |𝜖| = 0.

Definition 3 Σ* represents an infinite set of all possible strings over an alphabet Σ. Each
subset 𝐿 ⊆ Σ* is defined as a language over an alphabet Σ.

Definition 4 Let A be a set. A positive Boolean formula 𝜙 over a set 𝐴 is defined as
the formula which takes the following form 𝜙 , 𝑎 | ⊥ | ⊤ | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2, for 𝑎 ∈ 𝐴.
The set 𝐵+(𝐴) represents the union of all possible positive Boolean formulae over the set
𝐴.

Suppose that A is a set of propositions. We denote by J.K a denotation function
J.K : 𝐵+(𝐴) → 𝒫(𝒫(𝐴)), which maps a positive Boolean formula 𝜙 to a set J𝜙K, whose
elements represent all the possible valuations that satisfy the formula 𝜙. For an individual
valuation 𝑉 ∈ J𝜙K, the proposition 𝑣 ∈ 𝑉 is assumed to be true, whereas each proposition
𝑣 ∈ 𝐴 ∖ 𝑉 is perceived as false. Consider 𝜑, 𝜉 ∈ 𝐵+(𝐴) to be two formulae. We define
J𝜑 ∨ 𝜉K = J𝜑K ∪ J𝜑K and analogously J𝜑 ∧ 𝜉K = J𝜑K ∩ J𝜉K.

Example. Let 𝐴 = {𝑎, 𝑏}, 𝜙𝐴 ∈ 𝐵+(𝐴), since 𝜙𝐴 = (𝑎∧𝑏)∨𝑏. Then J𝜙𝐴K = {{𝑏}, {𝑎, 𝑏}}
because both {𝑏} and {𝑎, 𝑏} are sets which satisfy the formula 𝜙𝐴 if their elements are
considered to be true.

5

2.1 Nondeterministic Finite Automaton

Definition 5 Formally, a nondeterministic finite automaton 𝐴 (shortly denoted as
NFA 𝐴) is a quintuple 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹), where

– 𝑄 is a finite set of states

– Σ is an alphabet, Σ ∩𝑄 = ∅

– 𝑆0 ⊆ 𝑄, where 𝑆0 ̸= ∅, is a set of initial states

– 𝑅 is a transition relation 𝑅 ⊆ 𝑄× Σ×𝑄, which represents a finite set of transition
rules

– 𝐹 ⊆ 𝑄 represents a finite set of final states

Nondeterministic finite automaton (or alternatively known as nondeterministic finite state
machine) is a formal mathematical model of computation representing a regular language
[7].

Definition 6 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. A tuple 𝜏 = (𝑞, 𝑤), where 𝑞 ∈ 𝑄 and
𝑤 ∈ Σ*, is called a configuration of an automaton 𝐴.

Definition 7 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. Suppose that (𝑞0, 𝑎0, 𝑞1) ∈ 𝑅 is a tran-
sition rule such that 𝑞0, 𝑞1 ∈ 𝑄, 𝑎0 ∈ Σ and let both 𝜏0 = (𝑞0, 𝑎0𝑤), 𝜏1 = (𝑞1, 𝑤) be configu-
rations of 𝐴, where 𝑤 ∈ Σ*.

Then, the transition from the state 𝑞0 to the state 𝑞1 using the character 𝑎0 in accordance
to the rule (𝑞0, 𝑎0, 𝑞1) is symbolically denoted as 𝜏0 ⊢ 𝜏1.

Definition 8 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA, 𝜏0, 𝜏1, ...𝜏𝑛 are configurations of 𝐴.
Assume that there exist appropriate transition rules from 𝑅 such that it is possible to perform
each transition 𝜏𝑖 ⊢ 𝜏𝑖+1 where 𝑖 ∈ N ∧ 𝑖 < 𝑛.

In this case, a sequence 𝜏0 ⊢ 𝜏1 ⊢ . . . ⊢ 𝜏𝑛 is called a run of 𝐴 according to rules from 𝑅.
We can simply denote this fact as 𝜏0 ⊢* 𝜏𝑛 using the reflexive and transitive closure of ⊢.

Definition 9 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. We say that the string 𝑤 ∈ Σ* is
accepted by the automaton 𝐴 if and only if there exists a run 𝜏0 ⊢* 𝜏𝑛 of 𝐴 for some
𝑛 ∈ N, where 𝜏0 = (𝑠0, 𝑤), 𝜏𝑛 = (𝑓, 𝜖), 𝑓 ∈ 𝐹 and 𝑠0 ∈ 𝑆0.
Otherwise, the string 𝑤 is not accepted by the automaton 𝐴.

Definition 10 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. The accepted language 𝐿(𝐴) of the
automaton 𝐴 is equivalent to the set of all accepted strings of 𝐴. The automaton 𝐴 accepts
the language 𝐿(𝐴).

Specifically, if the equation 𝐿(𝐴) = ∅ holds, the automaton 𝐴 does not accept any single
string. We say that the automaton represents an empty language. This fact could be
determined by a procedure called language emptiness test.

6

2.2 Language Emptiness Test of an NFA

Since every NFA could be understood as a directed graph, we can use an algorithmic way
of searching for an accepting run of the given automaton. In what follows, two simple algo-
rithms which use the idea of terminating and reachable sets of an NFA will be introduced.

Definition 11 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. We say that the state 𝑞 ∈ 𝑄 is termi-
nating if there exists a run 𝜏0 ⊢* 𝜏𝑛 such that 𝜏0 = (𝑞, 𝑤), 𝜏𝑛 = (𝑓, 𝜖), where 𝑤 ∈ Σ* and
𝑓 ∈ 𝐹 .

An intuitive language emptiness test is shown in Algorithm [1]. The algorithm operates
with an idea of terminating states of an NFA. It tries to decide whether at least one of
the initial states 𝑠0 ∈ 𝑆0 could be considered to be terminating by iteratively building a
complete set of terminating states of the given NFA.

It is easy to see that the language of the given NFA is empty if and only if none of the
initial states 𝑠0 ∈ 𝑆0 is terminating.

Algorithm 1: Language emptiness test of an NFA
Input: NFA 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 𝑇0 ← 𝐹 ;
2 𝑖 ← 0;
3 do
4 𝑖← 𝑖+ 1;
5 𝑇𝑖 ← 𝑇𝑖−1 ∪ {𝑝 | (𝑝, 𝑎, 𝑠) ∈ 𝑅 ∧ 𝑠 ∈ 𝑇𝑖−1};
6 while 𝑇𝑖 ̸= 𝑇𝑖−1;
7 return 𝑆0 ∩ 𝑇𝑖 = ∅;

Definition 12 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) be an NFA. We say that the state 𝑞 ∈ 𝑄 is reach-
able if there exists a run 𝜏0 ⊢* 𝜏𝑛 such that 𝜏0 = (𝑠0, 𝑤1𝑤2), 𝜏𝑛 = (𝑞, 𝑤2), where 𝑤1, 𝑤2 ∈ Σ*

and 𝑠0 ∈ 𝑆0.

Analogously, it is possible to iteratively compute a set of all reachable states of an 𝐴𝐹𝐴
and check whether there exists any final state of the given 𝐴𝐹𝐴 which is reachable. This
idea is summarized in Alghoritm [2].

Algorithm 2: Language emptiness test of an NFA
Input: NFA 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 𝐼 ← 𝑆0;
2 𝑖 ← 0;
3 do
4 𝑖← 𝑖+ 1;
5 𝐼𝑖 ← 𝐼𝑖−1 ∪ {𝑠 | (𝑝, 𝑎, 𝑠) ∈ 𝑅 ∧ 𝑝 ∈ 𝐼𝑖−1};
6 while 𝐼𝑖 ̸= 𝐼𝑖−1;
7 return 𝐹 ∩ 𝐼𝑖 = ∅;

7

𝑠

𝑞1

𝑞2

𝑎 𝑎 𝑏

𝑏

Figure 2.1: An example of an alternating finite automaton

2.3 Alternating Finite Automaton

Definition 13 Alternating finite automaton A (shortly denoted as AFA) is a quintuple
𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹), where

– 𝑄 is a finite set of states

– Σ is an alphabet, Σ ∩𝑄 = ∅

– 𝑆0 ⊆ 𝑄, where 𝑆0 ̸= ∅, is a set of initial states

– 𝛿 : 𝑄 × Σ → 𝐵+(𝑄) stands for a discrete transition function, where 𝐵+(𝑄) is a set
of positive Boolean formulae over 𝑄

– 𝐹 ⊆ 𝑄 is a finite set of final states

Example. Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA, 𝑄 = {𝑠, 𝑞1, 𝑞2}, Σ = {𝑎, 𝑏}, 𝑆0 = {𝑠}, 𝛿 =
{((𝑠, 𝑎), (𝑞1 ∧ 𝑞2) ∨ 𝑠), ((𝑠, 𝑏),⊥), ((𝑞1, 𝑎),⊥), ((𝑞1, 𝑏), 𝑞1), ((𝑞2, 𝑎),⊥), ((𝑞2, 𝑏), 𝑞1)}, 𝐹 = {𝑞1}.
The graphical representation of the automaton 𝐴 is shown in Figure 2.1. Note that the
arc which forms a circular sector around a symbol of Σ represents an universal transition,
while the existential transition is symbolised by explicitly mentioning the character by each
transition.

In future examples of AFAs, all tuples (𝑠, 𝑎) ⊆ 𝑄×Σ which are mapped to ⊥ by a function
𝛿 will be left implicit.

Definition 14 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. In what follows, each set 𝑁 ⊆ 𝑄 will
be referred as a node of the AFA 𝐴. In case of 𝑁 ∩ 𝑆0 ̸= ∅, we say that N is an initial
node of 𝐴. A set of all initial nodes of 𝐴 will be denoted by 𝐼0(𝐴). In the other way, 𝑁 is
a final node as soon as 𝑁 ⊆ 𝒫(𝐹).

Definition 15 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Suppose that 𝑁 is a node of 𝐴. A tuple
𝜏 = (𝑁,𝑤), where 𝑤 ∈ Σ*, is called a configuration of an AFA 𝐴.

8

The essential difference between a configuration of an AFA and a configuration of an NFA
lies in its first component. While an NFA is always in exactly one state, an AFA could be
located in multiple states in paralell because of the universal transitions, which is expressed
using the concept of nodes of an AFA.

Definition 16 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Consider 𝑁0, 𝑁1 to be two nodes of 𝐴
and 𝑎 ∈ Σ. The triplet (𝑁0, 𝑎,𝑁1) is an edge of 𝐴 if and only if 𝑁1 ∈ J

⋀︀
𝑞∈𝑁0

𝛿(𝑞, 𝑎)K. We
will denote by 𝐸(𝐴) a set of all edges of 𝐴.

Definition 17 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Suppose that 𝜏0 = (𝑁0, 𝑎𝑤), 𝜏1 =
(𝑁1, 𝑤) are two configurations of 𝐴 and (𝑁0, 𝑎,𝑁1) is an edge of 𝐴. Under these conditions,
it is possible to perform a transition from all states of 𝑁0 in parallel using the symbol 𝑎.
We will denote this fact as 𝜏0 ⊢𝐸(𝐴) 𝜏1.

Definition 18 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA, 𝜏0, 𝜏1, . . . , 𝜏𝑛 are configurations of 𝐴.
Assume that the discrete transition function 𝛿 allows the automaton to perform each tran-
sition 𝜏𝑖 ⊢𝐸(𝐴) 𝜏𝑖+1 where 𝑖 ∈ N ∧ 𝑖 < 𝑛.

In this case, the sequence 𝜏0 ⊢𝐸(𝐴) 𝜏1 ⊢𝐸(𝐴) . . . ⊢𝐸(𝐴) 𝜏𝑛 is a run of the given AFA.
Similarly to the definition of the sequence of transitions of an NFA, we can simply write
𝜏0 ⊢*𝐸(𝐴) 𝜏𝑛 using the reflexive and transitive closure of ⊢𝐸(𝐴).

Definition 19 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. The string 𝑤 ∈ Σ* is accepted by the
automaton 𝐴 if and only if there exists a run 𝜏0 ⊢* 𝜏𝑛 of 𝐴 for some 𝑛 ∈ N such that
𝜏0 = (𝑁0, 𝑤) and 𝜏𝑛 = (𝑁𝑓 , 𝜖), where 𝑁0 ∈ 𝐼0(𝐴) is an initial node and 𝑁𝑓 ⊆ 𝒫(𝐹) is a
final node.

Definition 20 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. An accepted language 𝐿(𝐴) of the
automaton 𝐴 is the set of all accepted strings of 𝐴.

Compared to the NFA, which accepts a string as soon as a configuration (𝑓, 𝜖), where 𝑓 ∈ 𝐹
is reached, an AFA has to stop reading the input string in all the parallel branches all at
once to accept a string.

Example. Let 𝐴 be an AFA defined above in Example 2.3.1 and shown in Figure 2.1.
Suppose that we work with the input string 𝑤 = 𝑎𝑏.

In view of the fact that there exists a run ({𝑠}, 𝑎𝑏) ⊢ ({𝑞1, 𝑞2}, 𝑏) ⊢ ({𝑞1}, 𝜖) and also
{𝑞1} ∈ 𝒫(𝐹), the string 𝑤 is accepted by 𝐴.

2.4 AFA to NFA Transformation

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝜙 ∈ 𝐵+(𝑄). Since 𝛿 maps its input to an element
of 𝐵+(𝑄) and each valuation 𝑁 ∈ J𝜙K is in fact a node of 𝐴, we can use the idea of such
a subset construction to convert 𝐴 to a corresponding NFA 𝐴NFA, such that the language
𝐿(𝐴) = 𝐿(𝐴NFA).

9

We define 𝑄NFA = 𝒫(𝑄), 𝑆NFA = 𝐼0(𝐴), 𝑅 = 𝐸(𝐴) and 𝐹NFA = 𝒫(𝐹). Then, the quintuple
𝐴NFA = (𝑄NFA,Σ, 𝑆NFA, 𝑅, 𝐹NFA), forms such an NFA that the equation 𝐿(𝐴) = 𝐿(𝐴NFA)
holds. Therefore, the AFA 𝐴 and the NFA 𝐴NFA are equivalent.

This idea is summarized in the Algorithm 3 below.

Algorithm 3: AFA to NFA transformation
Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹)
Output: NFA 𝐴NFA = (𝑄NFA,Σ, 𝑆NFA, 𝑅, 𝐹NFA)

1 𝑄NFA ← 𝒫(𝑄);
2 𝑅← ∅;
3 𝑆NFA ←

⋃︀
𝑠0∈𝑆0

J𝑠0K;
4 for (𝑝, 𝑎, 𝑠) in 𝑄NFA × Σ×𝑄NFA do
5 if 𝑠 ∈ ⋂︀

𝑞∈𝑝J𝛿(𝑞, 𝑎)K then
6 𝑅← 𝑅 ∪ {(𝑝, 𝑎, 𝑠)};
7 end
8 𝐹NFA ← 𝒫(𝐹);
9 return (𝑄NFA,Σ, 𝑆NFA, 𝑅, 𝐹NFA)

2.5 Naive Language Emptiness Test of an AFA

The intuitive algorithm for checking language emptiness of an AFA utilizes all the ideas
explained above.

Since it is possible to easily perform a language emptiness test over an NFA, the core of
the naive test is based on transforming an AFA to an equivalent NFA using the subset
construction introduced in Algorithm 3. Then, we compute either the set of all terminating
states of the NFA, or the set of all reachable states of the NFA using the Algorithm 1 or
Algorithm 2, respectively, to decide whether an original automaton is empty or not.

It is well known that for every finite set 𝑆, the cardinality of its power set |𝒫(𝑆)|= 2|𝑆|. Due
to the fact that the set of states of the NFA computed by the Algorithm 3 contains each
node of the given AFA, we conclude that such a process leads to the exponential explosion
of states.

Thus, the naive language emptiness test of an AFA is unfortunately not effective at all. In
the following chapters, more sophisticated methods which omit the costly explicit AFA to
NFA transformation, will be introduced.

10

Chapter 3

Concrete Forward and Backward
Algorithms Deciding the AFA
Emptiness

In was explained in Section 2.5 that the language emptiness test of an AFA, which uses
explicit conversion from a given AFA to the corresponding NFA, is prone to state space
explosion. Thus, it is required to avoid the conversion and run an emptiness test directly
over a given AFA.

This chapter introduces the theoretical background for the forward and backward algorithms
deciding the AFA emptiness in the concrete domain of the given AFA [4].

First, the concept of predicate transformers, which allow us to explore behaviour of the
given AFA by inspecting its edges without explicitly computing the whole set 𝐸(𝐴), will
be described [4].

Then, it will be shown how the concept of a fixed point [9, 6] of predicate transformers is
related to a set of terminating and reachable sets of an AFA and it will be discussed how
it is possible to compute such a fixed point.

The following sections introduces an idea of antichains, which significantly facilitate the
evaluation of predicate transformers.

At the end of the chapter, both forward and backward algorithms for testing the AFA
emptiness will be finally presented using the theory of preceding sections.

3.1 Predicate Transformers

Definition 21 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Assume that there exists an edge
(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴). In what follows, such a node 𝑁1 will be called a successor of 𝑁0.
Dually, 𝑁0 is a predecessor of 𝑁1.

The predicate transformer 𝑝𝑜𝑠𝑡𝐴 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑄)) creates a set of all the successors
of the nodes on its input considering the given AFA 𝐴. Formally, this fact can be expressed
as follows:

11

𝑝𝑜𝑠𝑡𝐴(𝑋) =
⋃︁
𝑎∈Σ
{𝑁1 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋}.

Similarly, the predicate transformer 𝑝𝑟𝑒𝐴 : 𝒫(𝒫(𝑄))→ 𝒫(𝒫(𝑄)), constructs a set of all the
predecessors of its input according to the given AFA 𝐴, which is summarized below:

𝑝𝑟𝑒𝐴(𝑋) =
⋃︁
𝑎∈Σ
{𝑁0 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁1 ∈ 𝑋}.

Definition 22 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA, 𝑋 is a set of nodes of 𝐴 and 𝑁 is a
single node of 𝐴. Suppose that ∀(𝑁0, 𝑎,𝑁) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋. Then, the node 𝑁 is called a
controlled successor of 𝑋. Analogously, the node 𝑁 is called a controlled predecessor
of 𝑋 if the proposition ∀(𝑁, 𝑎,𝑁0) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋 is true.

The following equation describes the predicate transformer ̃︂𝑝𝑜𝑠𝑡𝐴 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑄)),
which takes a set of nodes 𝑋 ⊆ 𝒫(𝑄) as its input and transforms it to the set of all the
controlled successors of nodes in 𝑋.

̃︂𝑝𝑜𝑠𝑡𝐴(𝑋) =
⋂︁
𝑎∈Σ
{𝑁1 | ∀(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋}.

Likewise, the predicate transformer ̃︂𝑝𝑟𝑒𝐴 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑄)) maps its argument 𝑋 ⊆
𝒫(𝑄) to a set of all the controlled predecessors of elements in 𝑋. This idea is summarized
in the following equation:

̃︂𝑝𝑟𝑒𝐴(𝑋) =
⋂︁
𝑎∈Σ
{𝑁0 | ∀(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁1 ∈ 𝑋}.

Note that since for all 𝑋0, 𝑋1 ⊆ 𝒫(𝑄) holds that

𝑝𝑜𝑠𝑡𝐴(𝑋0 ∪𝑋1)

=
⋃︁
𝑎∈Σ
{𝑁1 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋0 ∪𝑋1}

=
⋃︁
𝑎∈Σ

(︁
{𝑁1 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋0} ∪ {𝑁1 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴) : 𝑁0 ∈ 𝑋1}

)︁
= 𝑝𝑜𝑠𝑡𝐴(𝑋0) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑋1),

we can define the predicate transformer 𝑃𝑜𝑠𝑡𝐴 : 𝒫(𝑄) → 𝒫(𝒫(𝑄)), which operates over a
smaller domain, as follows:

𝑃𝑜𝑠𝑡𝐴(𝑁) =
⋃︁
𝑎∈Σ
{𝑁0 | (𝑁, 𝑎,𝑁0) ∈ 𝐸(𝐴)}.

Then,

12

𝑞1

𝑠

𝑞2

𝑏

𝑎

𝑏

𝑏

𝑎

𝑎

Figure 3.1: AFA 𝐴

𝑝𝑜𝑠𝑡𝐴(𝑋) =
⋃︁
𝑁∈𝑋
{𝑃𝑜𝑠𝑡𝐴(𝑁)}.

In a similar way, it is possible to construct a analogous predicate transformer 𝑃𝑟𝑒𝐴 :
𝒫(𝑄)→ 𝒫(𝒫(𝑄)), where

𝑃𝑟𝑒𝐴(𝑁) =
⋃︁
𝑎∈Σ
{𝑁0 | (𝑁0, 𝑎,𝑁) ∈ 𝐸(𝐴)}.

Since both equations

̃︂𝑝𝑟𝑒𝐴(𝑋) = 𝑝𝑟𝑒𝐴(𝑋)

̃︂𝑝𝑜𝑠𝑡𝐴(𝑋) = 𝑝𝑜𝑠𝑡𝐴(𝑋)

hold true [4], we can compute each predicate transformer 𝑝𝑟𝑒𝐴, 𝑝𝑜𝑠𝑡𝐴,̃︂𝑝𝑟𝑒𝐴, ̃︂𝑝𝑜𝑠𝑡𝐴 using
simpler predicate transformers 𝑃𝑟𝑒𝐴, 𝑃𝑜𝑠𝑡𝐴.

Example. Let 𝐴 be an AFA shown in Figure 3.1. Suppose that there exists an edge
(𝑁0, 𝑎,𝑁1) of 𝐴. Table 3.1 summarizes all the triplets that satisfy this property. The first
column corresponds to 𝑁0, while the first row represents 𝑁1. The inner cells contain sets
of symbols 𝑎 such that (𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴).

Then, we can express, for instance, 𝑝𝑜𝑠𝑡𝐴({{𝑠}, {𝑞1}}) = {𝑃𝑜𝑠𝑡𝐴({𝑠})} ∪ {𝑃𝑜𝑠𝑡𝐴({𝑞1})} =
{{𝑠}, {𝑞1}, {𝑠, 𝑞1}, {𝑠, 𝑞2}, {𝑞1, 𝑞2}, {𝑠, 𝑞1, 𝑞2}}.

13

∅ {𝑠} {𝑞1} {𝑞2} {𝑠, 𝑞1} {𝑠, 𝑞2} {𝑞1, 𝑞2} {𝑠, 𝑞1, 𝑞2}
∅ {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏} {𝑎, 𝑏}
{𝑠} ∅ {𝑎} {𝑏} ∅ {𝑎, 𝑏} {𝑎} {𝑏} {𝑎, 𝑏}
{𝑞1} ∅ {𝑏} ∅ ∅ {𝑏} {𝑏} {𝑏} {𝑏}
{𝑞2} ∅ ∅ ∅ {𝑎} {𝑎} {𝑎} {𝑎} {𝑎}
{𝑠, 𝑞1} ∅ ∅ ∅ ∅ {𝑏} ∅ {𝑏} {𝑏}
{𝑠, 𝑞2} ∅ ∅ ∅ ∅ {𝑎} {𝑎} ∅ {𝑎}
{𝑞1, 𝑞2} ∅ ∅ {𝑏} ∅ {𝑏} ∅ {𝑏} {𝑏}
{𝑠, 𝑞1, 𝑞2} ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 3.1: Predecessors and successors in AFA 𝐴

3.2 Fixed Points of Predicate Transformers

Definition 23 Let 𝑃 be a set. Suppose that ⊑ is a reflexive, antisymmetric and transitive
binary relation over 𝑃 (partial order over 𝑃). Then, the tuple (𝑃,⊑) is called a partially
ordered set.

Definition 24 Let (𝑃,⊑) be a partially ordered set. Consider its subset 𝑅 ⊆ 𝑃 . If there
exists an element 𝑟0 ∈ 𝑅, such that ∀𝑟 ∈ 𝑅 : 𝑟 ⊑ 𝑟0, then 𝑟0 is called a ⊑-maximal
element of 𝑅. Dually, 𝑟0 is a ⊑-minimal element of 𝑅 if ∀𝑟 ∈ 𝑅 : 𝑟0 ⊑ 𝑟.

Definition 25 Let (𝑃,⊑) be a partially ordered set and 𝑅 ⊆ 𝑃 is a non-empty set. Suppose
that 𝑆 ⊆ 𝑃 is a set such that 𝑆 =

⋂︀
𝑟∈𝑅{𝑝 ∈ 𝑃 | 𝑝 ⊑ 𝑟}. If there exists a ⊑-maximal element

𝑠0 of 𝑆, then 𝑠0 is an infimum of 𝑅. In what follows, the infimum of a set 𝑅 will be denoted
as ⊔𝑅 or inf⊑(𝑅).

Definition 26 Let (𝑃,⊑) be a partially ordered set and 𝑅 ⊆ 𝑃 is a non-empty set. Suppose
that 𝑆 ⊆ 𝑃 is a set such that 𝑆 =

⋂︀
𝑟∈𝑅{𝑝 ∈ 𝑃 | 𝑟 ⊑ 𝑝}. If there exists a ⊑-minimal element

𝑠0 of 𝑆, then 𝑠0 is an supremum of 𝑅. In what follows, the supremum of a set 𝑅 will be
denoted as ⊓𝑅 or sup⊑(𝑅).

Definition 27 Let (𝑃,⊑) be a partially ordered set. Suppose that 𝑓 : 𝑃 → 𝑃 is a function
over (𝑃,⊑). Then, a fixed point of the function 𝑓 is each member 𝑝 ∈ 𝑃 such that
𝑓(𝑝) = 𝑝.

Definition 28 Assume that (𝑃,⊑) is a partially ordered set and 𝑃𝑓 = {𝑝 ∈ 𝑃 | 𝑓(𝑝) = 𝑝}
is a set of all the fixed points of 𝑓 . An element 𝑝0 ∈ 𝑃𝑓 is called the least fixed point of
𝑓 , if 𝑝0 = ⊔𝑃𝑓 . In what follows, we denote the least fixed point of 𝑓 by 𝜇𝑋 · 𝑓(𝑋).

Definition 29 Let (𝑃,⊑) be a partially ordered set. Suppose that there exists the infimum
⊔𝑅 and the supremum ⊓𝑅 for each non-empty subset 𝑅 ⊆ 𝑃 . Let ⊥ , ⊔𝑃 and ⊤ , ⊓𝑃 .
Then, the sextuple (𝑃,⊑,⊔,⊓,⊤,⊥) is called a complete lattice.

Definition 30 Let (𝑃,⊑,⊔,⊓,⊤,⊥) be a complete lattice. A function 𝑓 : 𝑃 → 𝑃 is called
a monotonically increasing function if ∀𝑝0, 𝑝1 ∈ 𝑃 : 𝑝0 ⊑ 𝑝1 ⇒ 𝑓(𝑝0) ⊑ 𝑓(𝑝1).

14

Let 𝑀 = (𝑃,⊑,⊔,⊓,⊤,⊥) be a complete lattice such that the carrier 𝑃 is a finite set.
Suppose that 𝑓 : 𝑃 → 𝑃 is a monotonically increasing function over 𝑀 . Under these
conditions, there exists an unique least fixed point of 𝑓 , which results from the Knaster-
Tarski theorem [9]. The least fixed point is equal to 𝑓𝑘(⊥), where 𝑘 ∈ N ∖ {0}, such that
𝑓𝑘(⊥) = 𝑓𝑘+1(⊥) [6].

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and suppose that 𝑋 ⊆ 𝒫(𝑄), 𝑋 ̸= ∅. Then, the sextuple
(𝒫(𝒫(𝑄)),⊆,∪,∩,𝒫(𝑄),∅) forms a complete lattice due to the fact that there exists an
infimum inf⊆(𝑋) =

⋂︀
𝑥∈𝑋 𝑥 and the supremum sup⊆(𝑋) =

⋃︀
𝑥∈𝑋 𝑥 for each non-empty

subset of 𝒫(𝑄).

It was proven above in Equation 7.3 that 𝑝𝑜𝑠𝑡𝐴(𝑋0 ∪𝑋1) = 𝑝𝑜𝑠𝑡𝐴(𝑋0)∪ 𝑝𝑜𝑠𝑡𝐴(𝑋1), where
𝑋0, 𝑋1 ⊆ 𝒫(𝑄). In case of 𝑋0 ⊆ 𝑋1, the equation 𝑋0 ∪𝑋1 = 𝑋1 is true and 𝑝𝑜𝑠𝑡𝐴(𝑋0) ⊆
𝑝𝑜𝑠𝑡𝐴(𝑋1) could be also considered to be true because 𝑝𝑜𝑠𝑡𝐴(𝑋1) = 𝑝𝑜𝑠𝑡𝐴(𝑋0 ∪ 𝑋1) =
𝑝𝑜𝑠𝑡𝐴(𝑋0) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑋1).

This implies that the predicate transformer 𝑝𝑜𝑠𝑡𝐴 : 𝒫(𝒫(𝑄))→ 𝒫(𝒫(𝑄)) is a monotonically
increasing function.

Suppose that 𝐼0(𝐴) =
⋃︀
𝑠0∈𝑆0

J𝑠0K and consider 𝑓 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑄)) to be a func-
tion 𝑓(𝑋) = 𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑋). It was shown in the preceding paragraphs that 𝑝𝑜𝑠𝑡𝐴 is
monotonically increasing. Due to the fact that 𝐼0(𝐴) is a constant, the function 𝑓 is also
monotonically increasing.

Since the sextuple (𝒫(𝒫(𝑄)),⊆,∪,∩,𝒫(𝑄),∅) is a complete lattice and the function 𝑓 is
monotonically increasing, there exists a least fixed point of 𝑓 .

Thus, the equation 𝜇𝑋 · 𝑓(𝑋) = 𝑓𝑘(∅) (where 𝑘 ∈ N ∖ {0} and 𝑓𝑘(∅) = 𝑓𝑘+1(∅)) and the
fact that such a fixed point always exists for every AFA are the corollaries of the statements
mentioned above. Let us show that the fixed point 𝜇𝑋 · 𝑓(𝑋) corresponds to a set of all
reachable nodes of 𝐴.

Since 𝑝𝑜𝑠𝑡𝐴(∅) =
⋃︀
𝑎∈Σ{𝑠 | (𝑝, 𝑎, 𝑠) ∈ 𝐸(𝐴) : 𝑝 ∈ ∅} = ∅, it is easily comprehensible that

𝑓1(∅) = 𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴(∅) = 𝐼0(𝐴) could be understood as a set which contains all the
nodes that could be reached in 0 or less steps.

Let us assume that 𝑓 𝑖(∅) is a set of all nodes of 𝐴 which are reachable from some of initial
nodes in 𝑖− 1 or less steps. Then, 𝑓 𝑖+1(∅) = 𝑓 ∘ 𝑓 𝑖(∅) = 𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑓 𝑖(∅)). With use
of the induction hypothesis, it is clear that 𝑝𝑜𝑠𝑡𝐴(𝑓 𝑖(∅)) is a set of all successors of nodes
which are reachable in 𝑖 − 1 or less steps. Thus, 𝑓 𝑖+1(∅) is a set of all nodes which are
reachable in 𝑖 or less steps.

Since 𝑄 is a finite set, there has to exists 𝑘 ∈ N ∖ {0}, such that 𝑓𝑘(∅) = 𝑓𝑘+1(∅) and
therefore, 𝜇𝑋 · (𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑋)) is a set of all nodes which are reachable in 𝐴.

Analogous arguments could be used to prove that 𝜇𝑋 · (𝒫(𝐹) ∪ 𝑝𝑟𝑒𝐴(𝑋)) is a set of all
nodes of 𝐴 which are terminating.

3.3 Antichains

Definition 31 Let (𝑃,⊑) be a partially ordered set. Consider a subset 𝑅 ⊆ 𝑃 . The
function ↑: 𝒫(𝑃)→ 𝒫(𝑃) maps 𝑅 to a corresponding upward-closure ↑𝑅 which is defined

15

as follows: ↑𝑅 = {𝑝 ∈ 𝑃 | ∃𝑟 ∈ 𝑅 : 𝑟 ⊑ 𝑝}. Therefore, an upward-closed set is such a
set 𝑅 ⊆ 𝑃 which satisfies a condition that 𝑅 = ↑𝑅.

Definition 32 Let (𝑃,⊑) be a partially ordered set and 𝑅 ⊆ 𝑃 . Analogously, the map
↓: 𝒫(𝑃) → 𝒫(𝑃) represents a set transformation to the downward-closure ↓𝑅 with the
following definition: ↓𝑅 = {𝑝 ∈ 𝑃 | ∃𝑟 ∈ 𝑅 : 𝑝 ⊑ 𝑟}. A set is called a downward-closed
set if the equality 𝑅 = ↓𝑅 holds.

Definition 33 Let (𝑃,⊑) be a partially ordered set and suppose that 𝑅 ⊆ 𝑃 . A func-
tion ⌈.⌉ : 𝒫(𝑃) → 𝒫(𝑃) converts 𝑅 to a corresponding set of maximal elements ⌈𝑅⌉.
Formally, the set ⌈𝑅⌉ = {𝑟 ∈ 𝑅 | ∀𝑠 ∈ 𝑅 : 𝑟 ⊑ 𝑠⇒ 𝑟 = 𝑠}.

Definition 34 Let (𝑃,⊑) be a partially ordered set. and 𝑅 ⊆ 𝑃 . A map ⌊.⌋ : 𝒫(𝑃)→ 𝒫(𝑃)
transforms a domain element to a set of minimal elements ⌊𝑅⌋, where the following
equation holds: ⌊𝑅⌋ = {𝑟 ∈ 𝑅 | ∀𝑠 ∈ 𝑅 : 𝑠 ⊑ 𝑟 ⇒ 𝑠 = 𝑟}.

Definition 35 Let (𝑃,⊑) be a partially ordered set. An antichain over 𝑃 is a set 𝑅 ⊆ 𝑃
which satisfies the condition that ∀𝑟, 𝑠 ∈ 𝑅 : 𝑟 ⊑ 𝑠⇒ 𝑟 = 𝑠, which means that each pair of
non-equal elements of 𝑅 is ⊑-incomparable.

Let (𝑃,⊑) be a partially ordered set and 𝑅 ⊆ 𝑃 . It is obvious from the definition of set of
minimal and maximal elements that ⌈𝑅⌉ and ⌊𝑅⌋ are both antichains because they cannot
contain ⊑-comparable elements. Likewise, the equations ↑𝑅 = ↑⌊𝑅⌋ and ↓𝑅 = ↓⌈𝑅⌉ are
both true [4].

Example. Let 𝑆 = {0, 1, 2}. The sextuple (𝒫(𝑆),⊆,∩,∪, 𝑆,∅) forms a complete lattice
shown in Figure 3.2 using a Hasse diagram.

Suppose that 𝑅 = {{0, 1}, {2}}. The set 𝑅 is an antichain since its all elements are ⊆-
incomparable. Note that 𝑅 = ⌊𝑅⌋ and 𝑅 = ⌈𝑅⌉, which means that 𝑅 is both set of
minimal elements and set of maximal elements.

Next, we can construct a set ↑𝑅 = {{0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}}. Such a set contains
all supersets of elements in 𝑅 which belong to 𝒫(𝑆). For a better illustration, each member
of ↑𝑅 is drawn in bold on the left diagram in Figure 3.2.

Dually, ↓𝑅 = {{0, 1}, {2}, {0}, {1},∅}. The Hasse diagram on the right in Figure 3.2
emphasises the elements of ↓𝑅.

3.3.1 Significant Properties of Antichains

In what follows, 𝑆↑ , {↑𝑠 | 𝑠 ⊆ 𝒫(𝑆)} will be a symbolic representation of set of all possible
upward-closed sets over the domain 𝒫(𝒫(𝑆)) in respect of the relation ⊆. Analogously,
𝑆↓ , {↓𝑠 | 𝑠 ⊆ 𝒫(𝑆)} plays the role of the set of all possible downward-closed sets over the
domain 𝒫(𝒫(𝑆)).

Similarly, we consider 𝑆⌈.⌉ , {⌈𝑠⌉| 𝑠 ⊆ 𝒫(𝑆)} and 𝑆⌊.⌋ , {⌊𝑠⌋| 𝑠 ⊆ 𝒫(𝑆)} to be a set
of all sets of maximal elements over the domain 𝒫(𝒫(𝑆)) and a set of all sets of minimal

16

∅

{1}{0} {2}

{1, 2}{0, 2}{0, 1}

{0, 1, 2}

∅

{1}{0} {2}

{1, 2}{0, 2}{0, 1}

{0, 1, 2}

Figure 3.2: Complete lattice (𝒫(𝑆),⊆,∩,∪, 𝑆,∅)

elements over the domain 𝒫(𝒫(𝑆)), respectively. Apparently, each member of 𝑆⌈.⌉ and 𝑆⌊.⌋
is an antichain since every set of maximal and minimal elements has to be ⊆-incomparable.

Consider two non-equal sets 𝑇,𝑈 ∈ 𝑆↑. Without loss of generality, it is possible to define
𝑈 ̸⊆ 𝑇 . Then, ∃𝑠 ∈ 𝑈 : 𝑠 ̸∈ 𝑇 . We know from the definition of the set of minimal elements
that some set 𝑢 ⊆ 𝑠 has to be a member of ⌊𝑈⌋. It is obvious that 𝑢 cannot belong to ⌊𝑇 ⌋
because otherwise its superset 𝑠 would be surely an element of 𝑈 which is in contradiction
with the preconditions. Thus, the formula ∀𝑈, 𝑇 ∈ 𝑆↑ : 𝑈 ̸= 𝑇 ⇒ ⌊𝑈⌋ ≠ ⌊𝑇 ⌋ must be
true, which means that each pair of non-equal upward closed sets correspond to a pair of
different sets of minimal elements.

Analogically, the formula ∀𝑈, 𝑇 ∈ 𝑆⌊.⌋ : 𝑈 ̸= 𝑇 ⇒ ↑𝑈 ̸= ↑𝑇 holds as well. Suppose that
𝑈 ̸⊆ 𝑇 , then ∃𝑠 ∈ 𝑈 : 𝑠 ̸∈ 𝑇 which signifies that either ∀𝑢 ∈ 𝑇 ;𝑢 ̸⊆ 𝑠 and therefore
𝑠 ̸∈ ↑𝑇 or ∃𝑢 ∈ 𝑇 ;𝑢 ⊆ 𝑠 which implies that 𝑢 ̸∈ ↑𝑈 . These two branches prove the initial
statement.

The essential corollary of such formulas is the fact that for a finite set 𝑆, there always
exists a bijection between two domains 𝑆↑ and 𝑆⌊.⌋. In consequence, each upward-closed set
corresponds to an unique antichain which also represents exactly one upward-closed set.

Dually, we can use similar arguments to prove that for a finite set 𝑆, there also exists a
bijection between two domains 𝑆↓ and 𝑆⌈.⌉.

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Assume that 𝑋 ⊆ 𝒫(𝑄) and 𝑠 ∈ 𝑝𝑜𝑠𝑡𝐴(𝑋). We know
from the definition of 𝑝𝑜𝑠𝑡𝐴 that there exists an edge (𝑝, 𝑎, 𝑠) ∈ 𝐸(𝐴), 𝑠 ∈ J

⋀︀
𝑞∈𝑝 𝛿(𝑞, 𝑎)K.

It is obvious from the definition of J.K that J
⋀︀
𝑞∈𝑝 𝛿(𝑞, 𝑎)K has to be an upward-closed set.

Since each element of J
⋀︀
𝑞∈𝑝 𝛿(𝑞, 𝑎)K belongs to 𝑝𝑜𝑠𝑡𝐴(𝑋), the set 𝑝𝑜𝑠𝑡𝐴(𝑋) must be always

upward-closed.

The explanation that a result of ̃︂𝑝𝑟𝑒𝐴 is always upward-closed and both 𝑝𝑟𝑒𝐴 and ̃︂𝑝𝑜𝑠𝑡𝐴
map every input to a downward-closed would be expressed in a similar way.

Consider 𝑋 ∈ 𝑄⌊.⌋, 𝑥 ∈ 𝑋 and 𝑦 ∈ ↑𝑋 such that 𝑥 ⊆ 𝑦. Note that 𝑋 is an antichain.
It was shown above that 𝑝𝑜𝑠𝑡𝐴 is a monotonically increasing function. Therefore, we can
say that 𝑝𝑜𝑠𝑡𝐴(𝑋) ⊆ 𝑝𝑜𝑠𝑡𝐴(𝑋 ∪ {𝑦}). We also know that 𝑝𝑜𝑠𝑡𝐴(𝑋 ∪ {𝑦}) = 𝑝𝑜𝑠𝑡𝐴(𝑋) ∪
𝑝𝑜𝑠𝑡𝐴({𝑦}). Apparently, the inclusion J

⋀︀
𝑞∈𝑦 𝛿(𝑞, 𝑎)K ⊆ J

⋀︀
𝑞∈𝑥 𝛿(𝑞, 𝑎)K can be perceived as

true since J
⋀︀
𝑞∈𝑦 𝛿(𝑞, 𝑎)K = J(

⋀︀
𝑞∈𝑥 𝛿(𝑞, 𝑎))K∩ J(

⋀︀
𝑞∈𝑦∖𝑥 𝛿(𝑞, 𝑎))K can be shown for each 𝑎 ∈ Σ.

17

In conclusion, 𝑝𝑜𝑠𝑡𝐴({𝑦}) ⊆ 𝑝𝑜𝑠𝑡𝐴({𝑥}). Since 𝑥 is a member of 𝑋, we conclude that
𝑝𝑜𝑠𝑡𝐴(𝑋) = 𝑝𝑜𝑠𝑡𝐴(𝑋 ∪ {𝑦}). In general, 𝑝𝑜𝑠𝑡𝐴(𝑌) = 𝑝𝑜𝑠𝑡𝐴(⌊𝑌 ⌋) for any 𝑌 ⊆ 𝒫(𝑄).

We can also use similar arguments to show that ̃︂𝑝𝑟𝑒𝐴(𝑌) = ̃︂𝑝𝑟𝑒𝐴(⌊𝑌 ⌋) for every 𝑌 ⊆ 𝒫(𝑄)
and also 𝑝𝑟𝑒𝐴(𝑌) = 𝑝𝑟𝑒𝐴(⌈𝑌 ⌉) and ̃︂𝑝𝑜𝑠𝑡𝐴(𝑌) = ̃︂𝑝𝑜𝑠𝑡𝐴(⌈𝑌 ⌉).
The crucial consequence of these properties of antichains is the fact that the following
equations hold for any 𝑋 ⊆ 𝒫(𝑄):

𝑝𝑜𝑠𝑡𝐴(𝑋) = ↑⌊𝑝𝑜𝑠𝑡𝐴(⌊𝑋⌋)⌋̃︂𝑝𝑜𝑠𝑡𝐴(𝑋) = ↓⌈̃︂𝑝𝑜𝑠𝑡𝐴(⌈𝑋⌉)⌉
𝑝𝑟𝑒𝐴(𝑋) = ↓⌈𝑝𝑟𝑒𝐴(⌈𝑋⌉)⌉̃︂𝑝𝑟𝑒𝐴(𝑋) = ↑⌊̃︂𝑝𝑟𝑒𝐴(⌊𝑋⌋)⌋

3.4 AFA Emptiness

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. It was explained above that it is possible to iteratively
construct a set of all reachable and terminating nodes using the fixed point expressions
and therefore decide whether the input automaton corresponds to an empty language. The
previous parts of this chapter led to conclusion that there is no need to evaluate predicate
transformers over each element of the set 𝒫(𝒫(𝑄)) because the result of computing the
functions 𝑝𝑜𝑠𝑡𝐴 and ̃︂𝑝𝑟𝑒𝐴 over 𝑆 ⊆ 𝒫(𝑄) is the same as the result of computing that
function over ⌊𝑆⌋. In the similar way, it is possible to perform a computation of 𝑝𝑟𝑒𝐴 and̃︂𝑝𝑜𝑠𝑡𝐴 directly on the corresponding antichain ⌈𝑆⌉ since the results are equivalent.

In addition, each element of 𝒫(𝑄) can be evaluated by 𝑝𝑜𝑠𝑡𝐴 and 𝑝𝑟𝑒𝐴 only once and then,
the result can be reused in the future computation due to the fact that 𝑝𝑜𝑠𝑡𝐴 and 𝑝𝑟𝑒𝐴 can
be transformed to the union of 𝑃𝑜𝑠𝑡𝐴 and 𝑃𝑟𝑒𝐴, respectively.

Thus, the emptiness of an AFA can be decided using these formulae:

𝐿(𝐴) = ∅⇐⇒ ⌊𝜇𝑋 · (⌊𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴(𝑋)⌋)⌋ ⊆ 𝒫(𝐹)

𝐿(𝐴) = ∅⇐⇒ ⌈𝜇𝑋 · (⌈𝒫(𝐹) ∪ 𝑝𝑟𝑒𝐴(𝑋)⌉)⌉ ⊆ 𝐼0(𝐴)

The algorithms which ale based on these equivalences are presented below. The concrete
forward language emptiness test introduced in Algorithm 4 uses the idea of computing

18

the reachable nodes of 𝐴, while the backward language emptiness test in Algorithm 5
summarizes the theory of terminating nodes of 𝐴.

Algorithm 4: Concrete forward language emptiness test of an AFA
Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 NonFinal ← 𝒫(𝐹);
2 Previous ← ∅;
3 Next ← 𝐼0(𝐴);
4 while Previous ̸= Next do
5 Previous ← Next;
6 Next ← 𝐼0(𝐴);
7 for 𝑥 in ⌊𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠⌋ do
8 Next ← Next ∪ {𝑃𝑜𝑠𝑡𝐴(𝑥)};
9 end

10 if ⌊Next⌋ ̸⊆ NonFinal then
11 return False;
12 end
13 return ⌊𝑁𝑒𝑥𝑡⌋ ⊆ 𝑁𝑜𝑛𝐹𝑖𝑛𝑎𝑙;

Algorithm 5: Concrete backward language emptiness test of an AFA
Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 Previous ← ∅;
2 Next ← 𝐹𝑖𝑛𝑎𝑙;
3 while Previous ̸= Next do
4 Previous ← Next;
5 Next ← 𝒫(𝐹);
6 for 𝑥 in ⌊𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠⌋ do
7 Next ← Next ∪ {𝑃𝑟𝑒𝐴(𝑥)};
8 end
9 if ⌊Next⌋ ̸⊆ 𝑆0 then

10 return False;
11 end
12 return ⌊𝑁𝑒𝑥𝑡⌋ ⊆ 𝑆0;

19

Chapter 4

Abstract Forward and Backward
Algorithms Deciding the AFA
Emptiness

The previous chapter introduced the algorithmic way to test language emptiness of an AFA
in a concrete domain using the properties of antichains. In subsequent sections, the idea of
using an abstract domain of an AFA to perform a language emptiness test will be presented.

First, the concept of a partition of a set, which plays the crucial role in the abstraction
scheme, will be explained [1].

Next, a partition of a set of states of an AFA will be used to formally define an abstract
domain of an AFA. We will also put emphasis on the relation between abstract and concrete
domain of an AFA [4].

The possibility of a conversion between concrete and abstract domain using concretization
and abstraction functions and remarkable algebraic properties of such functions will be
discussed subsequently [4, 2].

The following paragraphs bring the concept of an abstract AFA constructed by an AFA and
a partition of its set of states. They also clarify the relation between languages of these two
automata.

Afterwards, both abstract forward and abstract backward algorithms will be described. The
necessity of modifications of the original algorithms will be elucidated [4].

4.1 Lattice of Partitions

Definition 36 Let 𝑆 be a non-empty set. The partition 𝑃 ⊆ 𝒫(𝑆) of 𝑆 is a system of
sets that satisfies the following conditions:

⋃︀
𝑝∈𝑃 𝑝 = 𝑆, ∀𝑝, 𝑞 ∈ 𝑃 : 𝑝 ∩ 𝑞 ̸= ∅⇒ 𝑝 = 𝑞 and

∀𝑝 ∈ 𝑃 : 𝑝 ̸= ∅. Each element 𝑝 ∈ 𝑃 will be called a class of the partition 𝑃 .

In other words, a partition is a system of disjunctive non-empty classes such that each
member of the former set 𝑆 is represented in exactly one class.

20

{{𝑝0}, {𝑝1}, {𝑝2}}

{{𝑝0}, {𝑝1, 𝑝2}} {{𝑝1}, {𝑝0, 𝑝2}} {{𝑝2}, {𝑝0, 𝑝1}}

{{𝑝0, 𝑝1, 𝑝2}}

Figure 4.1: Lattice of partitions (P,⪯,f,g, 𝑃⊤, 𝑃⊥)

Let us say that 𝑆 is a non-empty set and 𝑃 is its partition. Then, it is possible to define a
function 𝑃𝑆 : 𝑆 → 𝒫(𝑆) which maps a single element from 𝑆 to a corresponding class of 𝑃 .

Assume that P is the set of all possible partitions of 𝑆 and 𝑃0, 𝑃1 ∈ P are both partitions of
𝑆. We define the order relation ⪯ as follows: 𝑃0 ⪯ 𝑃1 ⇐⇒ ∀𝑝0 ∈ 𝑃0 ∃𝑝1 ∈ 𝑃1 : 𝑝0 ⊆ 𝑝1. It
is obvious from the definition that for 𝑃0 ⪯ 𝑃1, the partition 𝑃1 is coarser than 𝑃0 which
implies that |𝑃0| ≥ |𝑃1|. We also say that 𝑃0 refines 𝑃1.

Let 𝑃⊤ ∈ P be a ⪯-maximal partition of 𝑆 such that 𝑃⊤ = {𝑆}. Similarly, 𝑃⊥ ∈ P is a
⪯-minimal partition of 𝑆 due to the fact that 𝑃⊥ =

⋃︀
𝑠∈𝑆{𝑠}. Then, ∀𝑃 ∈ P : 𝑃⊥ ⪯ 𝑃 and

∀𝑃 ∈ P : 𝑃 ⪯ 𝑃⊤.

Definition 37 The greatest lower bound of two partitions 𝑃0 and 𝑃1, which is denoted
by 𝑃0f𝑃1 ∈ P, is the least coarse partition of 𝑆 which satisfies the properties that 𝑃0f𝑃1 ⪯
𝑃0 and 𝑃0 f 𝑃1 ⪯ 𝑃1. Formally, 𝑃0 f 𝑃1 , {𝑝 | ∃𝑝0 ∈ 𝑃0 ∃𝑝1 ∈ 𝑃1 : 𝑝 = 𝑝0 ∩ 𝑝1 ∧ 𝑝 ̸= ∅}.
Dually, the least upper bound of two partitions 𝑃0 and 𝑃1, which will be written as
𝑃0 g 𝑃1 ∈ P, is the coarsest partition of 𝑆 such that 𝑃0 ⪯ 𝑃0 g 𝑃1 and 𝑃1 ⪯ 𝑃0 g 𝑃1.

Now, we can create a sextuple (P,⪯,f,g, 𝑃⊤, 𝑃⊥) which forms a complete lattice of par-
titions due to the fact that for each non-empty set 𝑇 ⊆ P there exists the infimum
inf⪯(𝑇) = f𝑝∈𝑇 𝑝 and the supremum sup⪯(𝑇) = g𝑝∈𝑇 𝑝.

A possibility of creating such a complete lattice is essential for the studied algorithms.
Later, it will allow us to define an abstraction domain of an AFA and we will be able to
use predicate transformers directly on the classes of partitions of states of an AFA.

Example. Let 𝑆 = {𝑝0, 𝑝1, 𝑝2} be a set. Assume that (P,⪯,f,g, 𝑃⊤, 𝑃⊥) is a correspond-
ing complete lattice of partitions of 𝑆. The complete lattice of partitions is illustrated as a
Hasse diagram in Figure 4.1.

In this case, the ⪯-maximal partition 𝑃⊤ = {{𝑝0, 𝑝1, 𝑝2}}, while the ⪯-minimal partition
𝑃⊥ = {{𝑝0}, {𝑝1}, {𝑝2}}.
Suppose that 𝑃 = {{𝑝0}, {𝑝1, 𝑝2}} and 𝑄 = {{𝑝1}, {𝑝0, 𝑝2}}. Then 𝑃𝑆(𝑝0) = {𝑝0}, 𝑃𝑆(𝑝1) =
{𝑝1, 𝑝2}. We can say that 𝑃 f𝑄 = 𝑃⊥, 𝑃 g𝑄 = 𝑃⊤ and 𝑃⊥ ⪯ 𝑃 ⪯ 𝑃⊤.

21

4.2 Concrete and Abstract Domain

Definition 38 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. As was stated in the previous chapter,
the sextuple 𝑀 = (𝒫(𝒫(𝑄)),⊆,∩,∪,𝒫(𝑄),∅) forms a complete lattice. In what follows,
such a sextuple 𝑀 will be called a concrete domain of the automaton 𝐴. Each element
𝑞 ∈ 𝒫(𝑄) is then a concrete node.

Definition 39 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Assume that P ⊆ 𝒫(𝒫(𝑄)) is a set
of all partitions of 𝒫(𝑄). The sextuple 𝑀 = (𝒫(𝒫(𝑃)),⊆,∩,∪,𝒫(𝑃),∅), where 𝑃 ∈ P,
corresponds to an abstract domain of the automaton 𝐴. We also use the collocation
abstract node to each member of 𝒫(𝑃).

Let B , {⊤,⊥}. Due to the fact that each class of an abstract domain corresponds to a set
of nodes of the concrete domain, we should be able to symbolically express such a relation.
Let us define a function 𝐶 : 𝒫(𝑄)×𝒫(𝑃)→ B such that 𝐶(𝑞, 𝑝)⇐⇒ 𝑝 = {𝑃𝑄(𝑞0) | 𝑞0 ∈ 𝑞},
where 𝑝 ∈ 𝒫(𝑃), 𝑞 ∈ 𝒫(𝑄). In this context, 𝐶 is an abbreviation for covering.

Since the abstract domain is smaller than the concrete domain, for each 𝑞 ∈ 𝒫(𝑄), there
always exists only one 𝑝 ∈ 𝒫(𝑃) which satisfies 𝐶(𝑞, 𝑝) = ⊤. In opposite, it is possible that
for an element 𝑝 ∈ 𝒫(𝑃) there exists multiple different 𝑞 ∈ 𝒫(𝑄), such that 𝐶(𝑞, 𝑝) = ⊤.

Example. Let 𝑄 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}, 𝑃 = {𝑝0 : {𝑠0, 𝑠1, 𝑠2}, 𝑝1 : {𝑠3, 𝑠4}, 𝑝2 : {𝑠5}}.
Under these conditions, for instance 𝐶({𝑠3}, {𝑝1}) = ⊤ and 𝐶({𝑠5, 𝑠0}, {𝑝0, 𝑝2}) = ⊤. On
the other hand, 𝐶({𝑠0}, {𝑝1}) = ⊥ and 𝐶({𝑠0, 𝑠3}, {𝑝0, 𝑝2}) = ⊥.

4.2.1 Abstraction and Concretization Functions

Definition 40 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA, 𝑃 is a partition of 𝑄. Then, we denote
by 𝛼𝑃 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑃)) an abstraction function, which is formally defined as
follows : 𝛼𝑃 (𝑋) = {𝑥𝛼 | ∃𝑥𝛾 ∈ 𝑋 : 𝐶(𝑥𝛼, 𝑥𝛾)}.

Definition 41 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Assume that 𝑃 is a partition of 𝑄. We
denote by 𝛾𝑃 : 𝒫(𝒫(𝑃))→ 𝒫(𝒫(𝑄)) a concretization function, which has the following
definition: 𝛾𝑃 (𝑋) = {𝑐𝛾 | ∃𝑐𝛼 ∈ 𝑋;𝐶(𝑐𝛼, 𝑐𝛾)}.

Such a abstraction function converts all concrete nodes on its input to corresponding sets
of classes of 𝑃 . Likewise, the concretization function maps members of an abstract domain
to appropriate concrete nodes.

Definition 42 Let X = (𝑋,⊑𝑋),Y = (𝑌,⊑𝑌) be two partially ordered sets. Suppose that
both 𝜒 : 𝑋 → 𝑌 and 𝜓 : 𝑌 → 𝑋 are maps such that ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 : 𝑥 ⊑𝑋 𝜓(𝑦) ⇐⇒
𝜒(𝑥) ⊑𝑌 𝑦. In this case, the quadruple (X, 𝜒, 𝜓,Y) forms a Gallois connection [2] which
will be symbolised as X (𝜒,𝜓)←→ Y.

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. Suppose that 𝑋𝑄 ⊆ 𝒫(𝑄) and
𝑋𝑃 ⊆ 𝒫(𝑃). It is obvious that both tuples X𝑄 = (𝑋𝑄,⊆) and X𝑃 = (𝑋𝑃 ,⊆) are partially

22

ordered sets. Firstly, assume that 𝑋𝑄 ⊆ 𝛾𝑃 (𝑋𝑃). This implies that for each concrete node
𝑥𝑄 ∈ 𝑋𝑄, the set 𝑋𝑃 contains an abstract node 𝑥𝑃 such that 𝑃𝑄(𝑥𝑄) = 𝑥𝑃 . Then, it is
easy to see that 𝛼𝑃 (𝑋𝑄) ⊆ 𝑋𝑃 since the equation 𝛼({𝑥𝑄}) = 𝑥𝑃 also holds. The other
direction of this implication would be shown similarly.

Thus, the quadruple (X𝑄, 𝛼𝑃 , 𝛾𝑃 ,X𝑃) forms a Gallois connection X𝑄
(𝛼𝑃 ,𝛾𝑃)←→ X𝑃 .

The definitions of 𝛼𝑃 and 𝛾𝑃 and the fact that X𝑄
(𝛼𝑃 ,𝛾𝑃)←→ X𝑃 is a Gallois connection imply

few significant properties of these functions. In case of 𝑋0, 𝑋1 ⊆ 𝒫(𝑄) and 𝑌0, 𝑌1 ⊆ 𝒫(𝑃),
we can write 𝛼𝑃 (𝑋0 ∪𝑋1) = 𝛼𝑃 (𝑋0) ∪ 𝛼𝑃 (𝑋1) and 𝛾𝑃 (𝑌0 ∩ 𝑌1) = 𝛾𝑃 (𝑌0) ∩ 𝛾𝑃 (𝑌1) [4].

The equations 𝛾𝑃 (𝑌0 ∪ 𝑌1) = 𝛾𝑃 (𝑌0) ∪ 𝛾𝑃 (𝑌1) and 𝛼𝑃 (𝑋0 ∩ 𝑋1) = 𝛼𝑃 (𝑋0) ∩ 𝛼𝑃 (𝑋1) are
also valid if 𝑋0, 𝑋1, 𝑌0 and 𝑌1 are all upward-closed or downward-closed [4].

Example. Let 𝑄 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4} and 𝑃 = {𝑝0 : {𝑠0, 𝑠1}, 𝑝1 : {𝑠2, 𝑠3, 𝑠4}} is a partition
of 𝑄. Then, 𝛼𝑃 ({{𝑠0}, {𝑠0, 𝑠1}}) = {{𝑝0}} and 𝛼𝑃 ({{𝑠2, 𝑠3}}) = {{𝑝1}}. In opposite,
𝛾𝑃 ({{𝑝1}}) = {{𝑠2}, {𝑠3}, {𝑠4}, {𝑠2, 𝑠3}, {𝑠2, 𝑠4}, {𝑠3, 𝑠4}, {𝑠2, 𝑠3, 𝑠4}}. This example also
shows that 𝛼𝑃 and 𝛾𝑃 are not inverse to each other.

4.2.2 Abstraction and Concretization Functions over Formulae

Definition 43 Let 𝑄 be a finite set of states and 𝑃 is a partition of 𝑄. The abstraction
function over positive Boolean formulae will by symbolised as 𝛼𝐵𝑃 : 𝐵+(𝑄)→ 𝐵+(𝑃).
Given the input 𝑞 ∈ 𝑄, the function 𝛼𝐵𝑃 (𝑞) , 𝑃𝑄(𝑞) simply converts an element of concrete
domain to a corresponding class of 𝑃 . Suppose that 𝜙0, 𝜙1 ∈ 𝐵+(𝑄). Then, 𝛼𝐵𝑃 (𝜙0 ∨𝜙1) =
𝛼𝐵𝑃 (𝜙0) ∨ 𝛼𝐵𝑃 (𝜙1) and also 𝛼𝐵𝑃 (𝜙0 ∧ 𝜙1) = 𝛼𝐵𝑃 (𝜙0) ∧ 𝛼𝐵𝑃 (𝜙1).

Definition 44 Let 𝑄 be a finite set of states and 𝑃 is a partition of 𝑄. The concretization
function over positive Boolean formulae will be shortly denoted as 𝛾𝐵𝑃 : 𝐵+(𝑄) →
𝐵+(𝑃). Let us define 𝛾𝐵𝑃 (𝑝) ,

⋁︀
𝑝0∈𝑝 𝑝0, where 𝑝 ∈ 𝑃 , transforms an abstract class to the

clause composed of the members of the given class. Given two formulae 𝜓0, 𝜓1 ∈ 𝐵+(𝑃),
we define 𝛾𝐵𝑃 (𝜓0 ∨ 𝜓1) = 𝛾𝐵𝑃 (𝜓0) ∨ 𝛾𝐵𝑃 (𝜓1) and 𝛾𝐵𝑃 (𝜓0 ∧ 𝜓1) = 𝛾𝐵𝑃 (𝜓0) ∧ 𝛾𝐵𝑃 (𝜓1).

Let us recall that sets of valuations of each formula 𝜙 ∈ 𝐵+(𝑄) and 𝜓 ∈ 𝐵+(𝑃) could be
represented as J𝜙K and J𝜓K, respectively, where J𝜙K ∈ 𝑄↑ and J𝜓K ∈ 𝑃↑.
Let us show that J𝛼𝐵𝑃 (𝜙)K = 𝛼𝑃 (J𝜙K), where 𝜙 ∈ 𝐵+(𝑄). Since such a positive Boolean for-
mula could be expressed in the disjunctive normal form using only positive logical variables
𝑞 ∈ 𝑄, we can write (without loss of generality) that 𝜙 =

⋁︀𝑛
𝑖=0

⋀︀𝑚
𝑗=0 𝑞𝑖,𝑗 .

Using the definition of 𝛼𝐵𝑃 , 𝛼𝑃 and the relation between logical and set connectives empha-
sised within the definition of J.K, we say that J𝛼𝐵𝑃 (

⋁︀𝑛
𝑖=0

⋀︀𝑚
𝑗=0 𝑞𝑖,𝑗)K = J

⋁︀𝑛
𝑖=0

⋀︀𝑚
𝑗=0 𝑃 (𝑞𝑖,𝑗)K =⋃︀𝑛

𝑖=0

⋂︀𝑚
𝑗=0J𝑃 (𝑞𝑖,𝑗)K =

⋃︀𝑛
𝑖=0

⋂︀𝑚
𝑗=0 𝛼𝑃 (J𝑞𝑖,𝑗K) = 𝛼𝑃 (

⋃︀𝑛
𝑖=0

⋂︀𝑚
𝑗=0J𝑞𝑖,𝑗K) = 𝛼𝑃 (J

⋁︀𝑛
𝑖=0

⋀︀𝑚
𝑗=0 𝑞𝑖,𝑗K) =

𝛼𝑃 (J𝜙K). The initial equation is proven.

Such a crucial statement allows us to define the abstract automaton in the next section.

Example. Let 𝑄 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}. 𝑃 = {𝑝0 : {𝑠0, 𝑠1}, 𝑝1 : {𝑠2, 𝑠3}, 𝑝2 : {𝑠4, 𝑠5}}
is a partition of 𝑄. Assume that 𝜙 = 𝑠0 ∨ (𝑠2 ∧ 𝑠5) and 𝜓 = 𝑝0 ∧ (𝑝1 ∨ 𝑝2). It is obvious

23

that 𝜙 ∈ 𝐵+(𝑄) and 𝜓 ∈ 𝐵+(𝑃). Under these conditions, it is possible to say that
𝛼𝐵𝑃 (𝜙) = 𝑃 (𝑠0) ∨ (𝑃 (𝑠1) ∧ 𝑃 (𝑠5)) = 𝑝0 ∨ (𝑝0 ∧ 𝑝2) = 𝑝0. We can also demonstrate 𝛾𝐵𝑃 as
follows: 𝛾𝐵𝑃 (𝜓) =

⋁︀
𝑝∈𝑝0 𝑝∧ (

⋁︀
𝑝∈𝑝1 𝑝∨

⋁︀
𝑝∈𝑝2 𝑝) = (𝑠0 ∨ 𝑠1)∧ (𝑠2 ∨ 𝑠3 ∨ 𝑠4 ∨ 𝑠5). To illustrate

the validity of the equation J𝛼𝐵𝑃 (𝜙)K = 𝛼𝑃 (J𝜙K), we can say that J𝛼𝐵𝑃 (𝜙)K = J𝑝0K = ↑{{𝑝0}}
and also 𝛼𝑃 (J𝜙K) = 𝛼𝑃 (↑{{𝑠0}, {𝑠0, 𝑠2}}) =↑{{𝑝0}}.

4.3 Abstract Alternating Automaton

Definition 45 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. An abstract
alternating finite automaton 𝐴𝛼𝑃 (shortly denoted as an abstract AFA) constructed of
the concrete AFA 𝐴 using the partition 𝑃 is a quintuple 𝐴𝛼𝑃 = (𝑄𝛼,Σ, 𝑆𝛼0 , 𝛿

𝛼, 𝐹𝛼), where

– 𝑄𝛼 , 𝑃 is a set of states of an abstract AFA

– Σ is an alphabet

– 𝑆𝛼0 ,
⋃︀
𝑠0∈𝑆0

{𝑃 (𝑠0)} is a set of initial states of an abstract AFA

– 𝛿𝛼 : 𝑃 × Σ → 𝐵+(𝑃) stands for an abstract transition function, which is defined as
𝛿𝛼(𝑝, 𝑎) , 𝛼𝐵𝑃 (

⋁︀
𝑝0∈𝑝 𝛿(𝑝0, 𝑎)), where 𝑝 ∈ 𝑃 and 𝑎 ∈ Σ

– 𝐹𝛼 ,
⋃︀
𝑓∈𝐹 {𝑃 (𝑓)} is a finite set of final states of an abstract AFA

It is obvious from the definition that it is possible to construct various abstract automata
from the concrete automaton depending on the given partition of states. This allows us to
separate the original automaton to several parts, temporarily ignore the behaviour within
each part and inspect the relations between various parts of the automaton. The example
below demonstrates the construction of several different abstract automata from the given
concrete automaton in detail.

Since an abstract AFA is in fact still an AFA, each additional definition presented in Section
2.3 is reusable in context of an abstract AFA.

Example. Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be a concrete AFA, such that 𝑄 = {𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑓},
Σ = {𝑎, 𝑏}, 𝑠0 = {𝑠} and 𝐹 = {𝑓}. The transition relation is defined as follows:

𝛿(𝑠, 𝑎) = 𝑞1 ∧ 𝑞2
𝛿(𝑞1, 𝑏) = 𝑞2, 𝛿(𝑞1, 𝑎) = 𝑞3

𝛿(𝑞2, 𝑎) = 𝑞3

𝛿(𝑞3, 𝑎) = 𝑞3 ∧ 𝑓, 𝛿(𝑞3, 𝑏) = 𝑓.

The diagram of the concrete AFA 𝐴 is shown in Figure 4.2 on left. Next, we have three
partitions of 𝑄, which are chosen as follows:

𝑃0 = {𝑝0 : {𝑠, 𝑞1, 𝑞2}, 𝑝1 : {𝑞3, 𝑓}}
𝑃1 = {𝑝0 : {𝑠, 𝑞1, 𝑞2, 𝑞3}, 𝑝1 : {𝑓}}
𝑃2 = {𝑝0 : {𝑠, 𝑞1}, 𝑝1 : {𝑞2, 𝑞3}, 𝑝2 : {𝑓}}

24

𝑠

𝑞1

𝑞2

𝑞3

𝑓

𝑎 𝑏 𝑎

𝑎

𝑏
𝑎

𝑝0 𝑝1

𝑎, 𝑏 𝑎, 𝑏

𝑎

Figure 4.2: Concrete AFA 𝐴 and abstract AFA 𝐴𝛼𝑃0

𝑝0 𝑝1

𝑎

𝑏

𝑎, 𝑏

𝑝0 𝑝1 𝑝2

𝑎

𝑎

𝑎

𝑏

𝑎

𝑏

Figure 4.3: Abstract AFA 𝐴𝛼𝑃1
and abstract AFA 𝐴𝛼𝑃2

Then, we can define three various abstract AFAs 𝐴𝛼𝑃0
(shown in Figure 4.2 on right), 𝐴𝛼𝑃1

(shown in Figure 4.3 on left) and 𝐴𝛼𝑃2
(shown in Figure 4.3 on right).

Let us demonstrate a construction of 𝐴𝛼𝑃0
in detail. An abstract automaton 𝐴𝛼𝑃0

is a
quintuple 𝐴𝛼𝑃0

= (𝑄𝛼,Σ, 𝑆𝛼0 , 𝛿
𝛼, 𝐹𝛼), where 𝑄𝛼 = 𝑃0 = {𝑝0 : {𝑠, 𝑞1, 𝑞2}, 𝑝1 : {𝑞3, 𝑓}},

which implies that 𝐴𝛼𝑃0
is composed of two states. Next, 𝑆𝛼0 =

⋃︀
𝑠0∈𝑆0

{𝑃 (𝑠0)} = {𝑝0} and
𝐹𝛼 =

⋃︀
𝑓∈𝐹 {𝑃 (𝑓)} = {𝑝1}. The function values of 𝛿𝛼 would be computed for each tuple

(𝑝, 𝑥) ∈ {{𝑝0, 𝑝1} × {𝑎, 𝑏}}. The following equation shows the computation of 𝛿𝛼(𝑝0, 𝑎) in
detail.

𝛿𝛼(𝑝0, 𝑎)

= 𝛼𝐵𝑃 (𝛿(𝑠, 𝑎) ∨ 𝛿(𝑞1, 𝑎) ∨ 𝛿(𝑞2, 𝑎))

= 𝛼𝐵𝑃 ((𝑞1 ∧ 𝑞2) ∨ 𝑞3 ∨ 𝑞3)
= (𝑃 (𝑞1) ∧ 𝑃 (𝑞2)) ∨ 𝑃 (𝑞3)

= (𝑝0 ∧ 𝑝0) ∨ 𝑝1
= 𝑝0 ∨ 𝑝1

Similarly, such a procedure leads to the results 𝛿𝛼(𝑝0, 𝑏) = 𝑝0, 𝛿
𝛼(𝑝1, 𝑎) = 𝑝1, 𝛿

𝛼(𝑝1, 𝑏) = 𝑝1.

4.3.1 Language of an Abstract AFA

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. Using the definition of
abstract AFA from the previous section, we are now able to construct an automaton 𝐴𝛼𝑃 ,
which represents an abstraction of 𝐴. Since the abstract AFA 𝐴𝛼𝑃 is composed of less or

25

equal amount of states than 𝐴, it could possibly make the whole process of the language
emptiness test easier by direct inspecion of the abstract automaton. Thus, it is necessary
to find out the connection between language of the concrete AFA 𝐿(𝐴) and language of the
abstract AFA 𝐿(𝐴𝛼𝑃). The following paragraphs prove that 𝐿(𝐴) ⊆ 𝐿(𝐴𝛼𝑃). Since the proof
presented in [4] is based on a graph-like representation of an AFA, we figured out a proof
which corresponds to our definition of a run of an AFA.

Suppose that 𝑤 = 𝑎0𝑎1. . .𝑎𝑛, where ∀𝑖 ∈ N : 𝑖 ≤ 𝑛⇒ 𝑎𝑖 ∈ Σ, is a string, which is accepted
by 𝐴. We say that 𝑤 ∈ 𝐿(𝐴). Then, there exists a run 𝜏0 ⊢*𝐸(𝐴) 𝜏𝑛 of 𝐴, such that
𝜏0 = (𝑁0, 𝑤) and 𝜏𝑛 = (𝑁𝑓 , 𝜖), where 𝑁0 is an initial node of 𝐴 and 𝑁𝑓 is a final node of 𝐴.

We also conclude from the definition of a transition that each transition 𝜏𝑖 ⊢ 𝜏𝑖+1, where
𝑖 ∈ N ∧ 𝑖 < 𝑛, is equivalent to (𝑁𝑖, 𝑎𝑖𝑤0) ⊢ (𝑁𝑖+1, 𝑤0), such that (𝑁𝑖, 𝑎𝑖, 𝑁𝑖+1) ∈ 𝐸(𝐴) and
𝑤0 is a suffix of 𝑤.

Now, we try to decide whether there exists such a run 𝜏𝛼0 ⊢*𝐸(𝐴) 𝜏
𝛼
𝑛 of 𝐴𝛼𝑃 , where 𝜏𝛼0 =

(𝑁𝛼
0 , 𝑤) and 𝜏𝛼𝑛 = (𝑁𝛼

𝑓 , 𝜖) where 𝑁𝛼
0 is an initial node of 𝐴𝛼𝑃 and 𝑁𝛼

𝑓 is a final node of 𝐴𝛼𝑃 .
If so, then 𝑤 ∈ 𝐿(𝐴𝛼𝑃).

Suppose that 𝑁𝛼
𝑖 , 𝑁

𝛼
𝑖+1 ⊆ 𝒫(𝑃) are both abstract nodes created of concrete nodes 𝑁𝑖

and 𝑁𝑖+1, respectively, which means that 𝛼𝑃 ({𝑁𝑖}) = {𝑁𝛼
𝑖 } and 𝛼𝑃 ({𝑁𝑖+1}) = {𝑁𝛼

𝑖+1}.
It follows from the definition of an edge of 𝐴𝛼𝑃 that (𝑁𝛼

𝑖 , 𝑎𝑖, 𝑁
𝛼
𝑖+1) ∈ 𝐸(𝐴𝛼𝑃) as soon as

𝑁𝛼
𝑖+1 ∈ J

⋀︀
𝑝∈𝑁𝛼

𝑖
𝛿𝛼(𝑝, 𝑎𝑖)K. We can derive J

⋀︀
𝑝∈𝑁𝛼

𝑖
𝛿𝛼(𝑝, 𝑎𝑖)K = J

⋀︀
𝑝∈𝑁𝛼

𝑖
𝛼𝐵𝑃 (

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖))K =

J𝛼𝐵𝑃 (
⋀︀
𝑝∈𝑄𝛼

𝑖

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖))K = 𝛼𝑃 (J

⋀︀
𝑝∈𝑄𝛼

𝑖

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖)K).

The definition of 𝐸(𝐴) implies that 𝑁𝑖+1 ∈ J
⋀︀
𝑞∈𝑁𝑖

𝛿(𝑞, 𝑎𝑖)K, or equivalently {𝑁𝑖+1} ⊆
J
⋀︀
𝑞∈𝑄𝑖

𝛿(𝑞, 𝑎𝑖)K. Since J
⋀︀
𝑞∈𝑁𝑖

𝛿(𝑞, 𝑎𝑖)K ⊆ J
⋀︀
𝑝∈𝑁𝛼

𝑖

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖)K, we conclude from transi-

tivity that {𝑁𝑖+1} ⊆ J
⋀︀
𝑝∈𝑁𝛼

𝑖

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖)K. The function 𝛼𝑃 is monotonically increas-

ing in relation to ⊆. Thus, {𝑁𝛼
𝑖+1} ⊆ 𝛼𝑃 (J

⋀︀
𝑝∈𝑁𝛼

𝑖

⋁︀
𝑞∈𝑝 𝛿(𝑞, 𝑎𝑖)K), which signifies that

(𝑁𝛼
𝑖 , 𝑎𝑖, 𝑁

𝛼
𝑖+1) ∈ 𝐸(𝐴𝛼𝑃) and (𝑁𝛼

𝑖 , 𝑎𝑖𝑤0) ⊢ (𝑁𝛼
𝑖+1, 𝑤0) is a valid transition of 𝐴𝛼𝑃 which

can be denoted as 𝜏𝛼𝑖 ⊢ 𝜏𝛼𝑖+1.

Due to the fact that 𝑤 ∈ 𝐿(𝐴𝛼𝑃), we deduce that 𝐿(𝐴) ⊆ 𝐿(𝐴𝛼𝑃). This essential finding
signifies that an abstract AFA over-approximates an original concrete AFA. Note that the
emptiness of an abstract AFA indicates that its corresponding concrete AFA is also empty,
owing to fact that ∅ is an only subset of itself.

Example. Suppose that 𝐴,𝑃0, 𝑃1 and 𝑃2 have the same meaning as in Example 4.3.1.
Inspecting the automaton 𝐴, we would find out that 𝑤 = 𝑎𝑎𝑏 is the only string accepted
by 𝐴. Therefore, 𝐿(𝐴) = {𝑎𝑎𝑏}.
In context of 𝐴𝛼𝑃0

, we are able to discover the run ({𝑝0}, 𝑎𝑎𝑏) ⊢ ({𝑝0}, 𝑎𝑏) ⊢ ({𝑝1}, 𝑏) ⊢
({𝑝1}, 𝜖) which shows that 𝑎𝑎𝑏 ∈ 𝐿(𝐴𝛼𝑃) and therefore 𝐿(𝐴) ⊆ 𝐿(𝐴𝛼𝑃0

). Analogously,
we are capable of constructing such runs ({𝑝0}, 𝑎𝑎𝑏) ⊢ ({𝑝0}, 𝑎𝑏) ⊢ ({𝑝0}, 𝑏) ⊢ ({𝑝1}, 𝜖)
and ({𝑝0}, 𝑎𝑎𝑏) ⊢ ({𝑝1}, 𝑎𝑏) ⊢ ({𝑝1}, 𝑏) ⊢ ({𝑝2}, 𝜖) which show that 𝐿(𝐴) ⊆ 𝐿(𝐴𝛼𝑃1

) and
𝐿(𝐴) ⊆ 𝐿(𝐴𝛼𝑃2

), respectively.

26

4.3.2 Predicate Transformers over Abstract AFA

We are already able to decide whether an automaton 𝐴 corresponds to an empty language
using predicate transformers. In the context of an abstract domain, it seems to be necessary
to perform 𝛾𝑃 conversions back to the concrete domain whenever the predicate transformers
are required. Since the 𝛼𝑃− and 𝛾𝑃−conversions are computationally expensive, its crucial
to find more effective way to avoid explicit 𝛼𝑃 ∘ 𝑝𝑜𝑠𝑡𝐴 ∘ 𝛾𝑃 and 𝛼𝑃 ∘ 𝑝𝑟𝑒𝐴 ∘ 𝛾𝑃 operations.

The following properties of predicate transformers are the crucial result of [4]:

𝑝𝑜𝑠𝑡𝐴𝛼 = 𝛼𝑃 ∘ 𝑝𝑜𝑠𝑡𝐴 ∘ 𝛾𝑃
𝑝𝑟𝑒𝐴𝛼 = 𝛼𝑃 ∘ 𝑝𝑟𝑒𝐴 ∘ 𝛾𝑃 .

Such a discovery allows us to perform predicate transformers directly over the abstract au-
tomata and inspect their behaviour without a necessity of provide 𝛼𝑃− and 𝛾𝑃−conversions
within each step of exploring them.

4.4 Representability of Concrete Nodes in an Abstract Do-
main

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. It was emphasised earlier that
𝛼𝑃 and 𝛾𝑃 are not inverse to each other. Therefore, given a partition 𝑃 , a lot of concrete
nodes of 𝐴 cannot be represented in the abstract domain without loss of precision because
it would not be possible to convert them correctly back to the concrete domain in general.

Suppose that 𝑋 ⊆ 𝒫(𝑄) is a set of concrete nodes of 𝐴. Let us say that nodes of 𝑋 are the
only concrete nodes we want to work with in the abstract domain. Then, when creating
an abstract AFA, we can choose such a partition of 𝑄 which guarantees us that the set of
concrete nodes 𝑋 would be convertible between a concrete and abstract domain without
loss of precision. At the same time, we do not care about the behaviour of concrete nodes
which are not members of 𝑋.

This section summarizes the theory of computing the coarsest (g-maximal) partition pre-
sented in [4] which complies with the requirements explained above.

Definition 46 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Assume that 𝑋 ⊆ 𝒫(𝑄). In what
follows, the composite function 𝛾+𝑃 : 𝒫(𝒫(𝑄)) → 𝒫(𝒫(𝑄)), where 𝛾+𝑃 , 𝛾𝑃 ∘ 𝛼𝑃 , will be
referred as an concretization closure.

Definition 47 Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. Consider
𝑋 ⊆ 𝒫(𝑄). We say that 𝑋 is representable in the abstract domain of 𝐴𝛼𝑃 if 𝑋 is a fixed
point of the concretization closure, which means that 𝛾+𝑃 (𝑋) = 𝑋. Under these conditions,
𝛾𝑃 ∘ 𝛼𝑃 (𝑋) = 𝑋.

Definition 48 Let 𝑆 be a finite set, 𝑋 ⊆ 𝒫(𝑆) is an upward-closed set and 𝑠 ∈ 𝑆. The
𝑋-neighbours of 𝑠 are all members of the set 𝒩𝑋(𝑠) = {𝑦 ∖ {𝑠} | 𝑦 ∈ ⌊𝑋⌋ ∧ 𝑠 ∈ 𝑦}.

27

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA, 𝑃 is a partition of 𝑄 and 𝑋 ⊆ 𝒫(𝑄) is an upward-
closed set of concrete nodes. 𝑋 is representable in the abstract domain 𝒫(𝒫(𝑃)) if and
only if ∀𝑞, 𝑠 ∈ 𝑄 : 𝑃𝑄(𝑠) = 𝑃𝑄(𝑞) ⇒ 𝒩𝑋(𝑠) = 𝒩𝑋(𝑞). If we create such a partition that
each class consists of elements of 𝑄 which are 𝑋-neighbours, then we obtain a g-maximal
partition 𝑃g of 𝑄 such that 𝑋 is representable in the abstract domain 𝒫(𝒫(𝑃g)). Thus, the
automaton 𝐴𝛼𝑃g

will be the smallest which is able to represent 𝑋 without loss of precision.

Given a downward-closed set 𝑌 ⊆ 𝒫(𝑄), it is possible to utilize the crucial property that
𝛾+𝑃 (𝑌) = 𝑌 ⇐⇒ 𝛾+𝑃 (𝑌) = 𝑌 and simply reuse the arguments shown above for a complement
of 𝑌 , which is upward-closed.

4.5 The Abstract Algorithms

In comparison to the concrete forward and backward algorithms for testing AFA emptiness,
the abstract algorithms presented in [4] use the idea of an abstract domain. Similarly to the
concrete forward and backward algorithms, the abstract algorithms decide whether there
exists a reachable final state or whether one of the initial states is terminating. In case
of the abstract forward algorithms, the set 𝑍𝑖, which is iteratively built during the whole
process, represents in 𝑖𝑡ℎ iteration an over-approximation of all concrete nodes which cannot
reach any final node within 𝑖 or less steps. By contrast, the abstract backward algorithm
looks for all the states which are not reachable from none of initial states within 𝑖 or less
steps and stores its over-approximation in 𝑍𝑖 as well.

Due to the fact that it is necessary to guarantee that a set 𝑍𝑖 is always representable in
an abstract domain, both algorithms use the g-maximal partition 𝑃g of 𝑄 to create an
abstract AFA 𝐴𝛼𝑃g

, such that 𝑍𝑖 is representable in 𝒫(𝒫(𝑃g)).

This procedure allows us to perform the computation of fixed points of predicate trans-
formers directly over the abstract domain. This process is obviously less computationally
complex since the abstract automaton consists of less states than the proper concrete au-
tomaton. Nevertheless, the set 𝑍𝑖 is an over-approximation, so it can be inevitable to
perform its computation multiple times over various abstract AFAs to get a sufficient re-
sult.

This section introduces both abstract algorithms originally presented in [4] and clarifies all
changes which had to be done by the author of this thesis to make them work properly.

4.5.1 The Abstract Forward Algorithm

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. As was stated above, the abstract forward algorithm
computes a set 𝑍𝑖, which corresponds to an over-approximation of all concrete nodes which
cannot reach any final node within 𝑖 or less steps. Since final nodes are exactly those nodes
which are reachable from themselves in 0 steps, the very first abstract AFA is created using
the partition 𝑃0 = {𝐹,𝑄 ∖ 𝐹} with exactly two clases [step 5] and the corresponding 𝑍0

representable in 𝒫(𝒫(𝑃0)) is chosen as 𝑍0 = 𝒫(𝑄) ∖ 𝒫(𝐹) [step 6]. Due to the fact that
according to the definition of a partition any class of a partition cannot be empty, it is
neccessary to chceck whether 𝐹 = ∅ or 𝑄 ∖ 𝐹 = ∅ [step 1 − 4]. In these cases, the AFA

28

emptiness could be trivially decided without any additional computation. These lines were
added to the original algorithm presented in [4] to solve these extreme cases.

Next, the main loop will be executed. First, it will be checked whether there exists an
initial node of 𝐴 which is not part of 𝑍𝑖 [step 8]. If so, the automaton is surely not empty,
because this node is able to reach a final node in 𝑖 or less steps.

Otherwise, the proper abstract automaton 𝐴𝛼𝑃𝑖
will be constructed [step 10] and subse-

quently, a set 𝑅𝑖 will be computed. This set should contain all the abstract nodes which
are reachable from some of the initial nodes and which correspond to a concrete node in
𝑍𝑖. In other words, if there exists a abstract node 𝑟 ∈ 𝑅𝑖, then 𝑟 is reachable in 𝐴𝛼𝑃𝑖

and all
the concrete nodes 𝛾𝑃 ({𝑟}) cannot reach none of the final states in 𝐴 within 𝑖 or less steps
[step 11].

If there does not exist any successor of any node of 𝑅𝑖 which cannot leave the set of abstract
nodes corresponding to 𝑍𝑖 in one step, then the automaton is surely empty. This means
that both abstract nodes of 𝑅𝑖 and their successors cannot reach any of the final nodes in
𝑖 or less steps in the concrete domain [step 12].

In the original algorithm presented in [4], this step preceded the 8𝑡ℎ step which determines
whether the automaton is not empty. To ensure generality of presented algorithms, the
order of these lines was changed by the author of this thesis. In some cases, the condition
on line 12 is satisfied although the automaton is not empty, which leads to wrong results.

Next, the set 𝑍𝑖+1 will be computed as all the nodes of 𝑅𝑖 converted to a concrete domain
which are also controlled predecessors of 𝛾𝑃𝑖(𝑅𝑖) in respect of 𝐴.

Finally, the new abstract domain will be defined as the coarsest partition of 𝑄 which is able
to represent 𝑍𝑖+1.

Algorithm 6: Abstract forward algorithm deciding the AFA emptiness
Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 if 𝐹 = 𝑄 then
2 return False;
3 if 𝐹 = ∅ then
4 return True;
5 𝑃0 ← {𝐹,𝑄 ∖ 𝐹};
6 𝑍0 ← 𝒫(𝑄) ∖ 𝒫(𝐹);
7 for 𝑖 in N do
8 if 𝐼0(𝐴) ̸⊆ 𝑍𝑖 then
9 return False;

10 𝐴𝛼𝑃𝑖
← (𝑄𝛼,Σ, 𝑆𝛼0 , 𝛿

𝛼, 𝐹𝛼);
11 𝑅𝑖 ← 𝜇𝑥 · (𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴𝛼

𝑃𝑖
(𝑥)) ∩ 𝛼𝑃𝑖(𝑍𝑖);

12 if 𝑝𝑜𝑠𝑡𝐴𝛼
𝑃𝑖

(𝑅𝑖) ⊆ 𝛼𝑃𝑖(𝑍𝑖) then
13 return True;
14 𝑍𝑖+1 ← 𝛾𝑃𝑖(𝑅𝑖) ∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖));
15 𝑃𝑖+1 ← g{𝑃 ∈ P | 𝛾+𝑃 (𝑍𝑖+1) = 𝑍𝑖+1};
16 end

29

4.5.2 The Abstract Backward Algorithm

Due to the fact that the abstract backward algorithm is dual to the abstract forward one
presented above, it will be described more briefly.

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. The abstract backward algorithm computes a set 𝑍𝑖,
which corresponds to an over-approximation of all concrete nodes which are not reachable
from any initial state within 𝑖 or less steps. Then, the initial partition is equal to 𝑃0 =
{𝑆0, 𝑄∖𝑆0} with two classes since the initial nodes are the only nodes which can be reached
from initial nodes in 0 steps [step 5]. Analogously, we define 𝑍0 = 𝒫(𝑄) ∖ 𝐼0(𝐴) [step 6].

Next, the main loop will be executed. Before anything else, it will be checked if there exists
a concrete final node that is reachable from one of the initial nodes in 𝑖 or less steps. If so,
the automaton 𝐴 is not empty [step 8].

Then, the corresponding abstract AFA will be created using the partition 𝑃𝑖 [step 10] and
the set of terminating nodes which are part of 𝛼𝑃𝑖(𝑍𝑖) will be computed as 𝑅𝑖 [step 11].

If none of the abstract nodes in 𝑅𝑖 has a predecessor whose corresponding abstract node
is reachable from one of the initial nodes in 𝑖 or less steps, the given AFA is surely empty
[step 12].

Finally, 𝑍𝑖 and the new coarsest partition which can represent 𝑍𝑖 will be computed [step
14− 15].

Algorithm 7: Abstract backward algorithm deciding the AFA emptiness
Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 if 𝐹 = 𝑄 then
2 return False;
3 if 𝐹 = ∅ then
4 return True;
5 𝑃0 ← {𝑆0, 𝑄 ∖ 𝑆0};
6 𝑍0 ← 𝒫(𝑄) ∖ 𝐼0(𝐴);
7 for 𝑖 in N do
8 if 𝒫(𝐹) ̸⊆ 𝑍𝑖 then
9 return False;

10 𝐴𝛼𝑃𝑖
← (𝑄𝛼,Σ, 𝑠𝛼0 , 𝛿

𝛼, 𝐹𝛼);
11 𝑅𝑖 ← 𝜇𝑥 · (𝒫(𝐹𝛼) ∪ 𝑝𝑟𝑒𝐴𝛼

𝑃𝑖
(𝑥)) ∩ 𝛼𝑃𝑖(𝑍𝑖);

12 if 𝑝𝑟𝑒𝐴𝛼
𝑃𝑖

(𝑅𝑖) ⊆ 𝛼𝑃𝑖(𝑍𝑖) then
13 return True;
14 𝑍𝑖+1 ← 𝛾𝑃𝑖(𝑅𝑖) ∩ ̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃𝑖(𝑅𝑖));
15 𝑃𝑖+1 ← g{𝑃 ∈ P | 𝛾+𝑃 (𝑍𝑖+1) = 𝑍𝑖+1};
16 end

30

Chapter 5

Abstract Bidirectional Algorithms
Deciding the AFA Emptiness

In Chapter 4, the abstract forward and backward algorithms, which decide the AFA empti-
ness, were presented. Let us recall that both mentioned algorithms iteratively build a set
𝑍𝑖, which contains all concrete nodes which cannot reach a final node in 𝑖 or less steps, or
all concrete nodes which are not reachable from one of the initial nodes in 𝑖 or less steps,
respectively. In each iteration of those algorithms, such a set is represented in an abstract
domain to reduce the number of states of an AFA. To achieve this goal, the g-maximal
partition of a state set which is able to represent 𝑍𝑖 in the abstract domain is used.

In what follows, the author of this thesis present his own idea of the possibility of computing
a set 𝑍𝑖 in forward and backward fashion at the same time. This chapter also introduces
newly proposed abstract bidirectional algorithms, which were made up by the author of this
thesis, and discusses the motivation of using a bidirectional approach.

5.1 Motivation of Using a Bidirectional Approach

Suppose that 𝐴1 and 𝐴2 are both AFAs shown in Figure 5.1 and Figure 5.2, respectively.
Notice that both mentioned AFAs are empty. We can use both Algorithm 6 and Algorithm
7 to verify this statement.

The Table 5.1 summarizes some of the important sets which are computed during the
process of using an abstract forward algorithm to decide emptiness of 𝐴1, while Table 5.2
contains corresponding sets which are created by abstract backward algorithm to decide
emptiness of the same AFA. Let us recall that an AFA is considered to be empty as soon
as 𝛼𝑃𝑖(𝑍𝑖) ⊆ 𝑝𝑜𝑠𝑡𝐴𝛼

𝑃𝑖
(𝑅𝑖) or 𝛼𝑃𝑖(𝑍𝑖) ⊆ 𝑝𝑟𝑒𝐴𝛼

𝑃𝑖
(𝑅𝑖), respectively.

Note that the abstract forward algorithm required only one iteration of its main loop to
decide emptiness of 𝐴1. In opposite, the abstract backward algorithm performed 4 iterations
of its main loop. Since it is necessary to create an abstract automaton, compute a fixed
point of a predicate transformer over the abstract AFA, recompute 𝑍𝑖 and create a new
partition during each iteration of these algorithms, it is possible to say that Algorithm 6
decided emptiness of 𝐴1 more effectively than Algorithm 7.

31

𝑠 𝑞1 𝑞2 𝑞3 𝑓
𝑎

𝑎 𝑎 𝑎

Figure 5.1: AFA 𝐴1

𝑠 𝑞1 𝑞2 𝑞3 𝑓
𝑎

𝑎 𝑎 𝑎

Figure 5.2: AFA 𝐴2

By contrast, the Tables 5.3 and 5.4 show the process of deciding emptiness of 𝐴2 using
the same algorithms. In this case, the abstract backward algorithm required less iterations
than the abstract forward algorithm to find the correct result.

𝑖 𝑍𝑖 𝛼𝑃𝑖(𝑍𝑖) 𝑝𝑜𝑠𝑡𝐴𝛼
𝑃𝑖

(𝑅𝑖)

0 ↑{{𝑠}, {𝑞1}, {𝑞2}, {𝑞3}} ↑{{𝑝1}} ↑{{𝑝1}}

Table 5.1: Deciding emptiness of 𝐴1 using abstract forward algorithm

This observation signifies that there exists a class of AFAs whose emptiness is decided more
effectively using Algorithm 6 than using Algorithm 7 and vice versa.

Let 𝐴3 be another AFA, such that 𝐿(𝐴3) ̸= ∅. In this case, both abstract forward and
abstract backward algorithms iteratively reduce the size of a set 𝑍𝑖, until there exists an
initial or a final node which was removed from this set. If we use a bidirectional approach,
we possibly could find a node which is reachable in 𝑖 or less steps and which is terminating
in 𝑖 or less steps at the same moment. In this case, it is possible that the result will be found
faster since we could reuse plenty of previously computed information while computing two
different sets 𝑍𝑖 in both directions. This idea will be described in following sections more
in detail.

Thus, the main idea of the bidirectional approach is as follows. Firstly, it could be a mean-
ingful compromise between both former abstract algorithms in case of an empty automaton
on input. Secondly, the bidirectional approach could possibly reuse some information com-
puted before in case of non-empty automaton and work more efficiently with it.

5.2 Forward-like Abstract Bidirectional Algorithm

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Let us recall that Algorithm 6 iteratively computes a set
𝑍𝑓𝑖 , which is an over-approximation of all nodes of 𝐴 which cannot reach a final node in 𝑖 or

32

𝑖 𝑍𝑖 𝛼𝑃𝑖(𝑍𝑖) 𝑝𝑟𝑒𝐴𝛼
𝑃𝑖

(𝑅𝑖)

0 ↓{{𝑞1, 𝑞2, 𝑞3, 𝑓}} ↓{{𝑝2}} ↓{{𝑝1, 𝑝2}}
1 ↓{{𝑞2, 𝑞3, 𝑓}} ↓{{𝑝2}} ↓{{𝑝1, 𝑝2}}
2 ↓{{𝑞3, 𝑓}} ↓{{𝑝2}} ↓{{𝑝1, 𝑝2}}
3 ↓{{𝑓}} ↓{{𝑝2}} ↓{{}}

Table 5.2: Deciding emptiness of 𝐴1 using abstract backward algorithm

𝑖 𝑍𝑖 𝛼𝑃𝑖(𝑍𝑖) 𝑝𝑜𝑠𝑡𝐴𝛼
𝑃𝑖

(𝑅𝑖)

0 ↑{{𝑠}, {𝑞1}, {𝑞2}, {𝑞3}} ↑{{𝑝1}} ↑{{𝑝1}, {𝑝2}}
1 ↑{{𝑠}, {𝑞1}, {𝑞2}, {𝑞3, 𝑓}} ↑{{𝑝1}, {𝑝2, 𝑝3}} ↑{{𝑝1}, {𝑝2}}
2 ↑{{𝑠}, {𝑞1}, {𝑞2, 𝑞3}, {𝑞2, 𝑞4}, {𝑞3, 𝑓}} ↑{{𝑝1}, {𝑝2, 𝑝3}, {𝑝2, 𝑝4}, {𝑝3, 𝑝4}} ↑{{𝑝1}}

Table 5.3: Deciding emptiness of 𝐴2 using abstract forward algorithm

less steps. Analogously, the Algorithm 7 computes a set 𝑍𝑏𝑖 , which is an over-approximation
of all nodes of 𝐴 which cannot be reached from any of the initial nodes in 𝑖 or less steps.

We can define 𝑍→𝑖 to be a set of all concrete nodes of 𝐴 which are reachable in 𝑖 or less
steps and 𝑍←𝑖 , 𝑍𝑓𝑖 . Notice that the relation 𝑍→𝑖 ̸⊆ 𝑍←𝑖 holds if the given automaton is
not empty. We can conclude from that relation that ∃𝑥 ∈ 𝒫(𝑄) : 𝑥 ∈ 𝑍→𝑖 ∧ 𝑥 ̸∈ 𝑍←𝑖 , which
means that 𝑥 is reachable from an initial node in 𝑖 or less steps and it is possible to reach
a final node of 𝐴 from 𝑥 in 𝑖 or less steps.

It follows from the presented algorithms that 𝑍←𝑖 is always an upward-closed set. We can
conclude from the definition of 𝑝𝑜𝑠𝑡𝐴 that 𝑍→𝑖 is also upward-closed. We are already able
to compute coarsest partitions 𝑃→𝑖 , 𝑃←𝑖 of 𝑄 such that 𝑍→𝑖 is representable in 𝐴𝛼𝑃→𝑖

and
𝑍←𝑖 is representable in 𝐴𝛼𝑃←𝑖 . Due to the fact that we require to represent both 𝑍←𝑖 and 𝑍→𝑖
in the same abstract domain to avoid working with two different AFAs in each iteration, it
is neccessery to find a corresponding partition 𝑃↔𝑖 of 𝑄, such that both 𝑍←𝑖 and 𝑍→𝑖 are
representable in 𝐴𝛼𝑃↔𝑖

.

Suppose that P is a set of all partitions of 𝑄 and 𝑋,𝑌 ⊆ 𝒫(𝑄) are both upward-closed
sets of concrete nodes of 𝐴. We know from before that 𝑃𝑋 = g{𝑃 ∈ P | 𝛾+𝑃 (𝑋) = 𝑋} and
𝑃𝑌 = g{𝑃 ∈ P | 𝛾+𝑃 (𝑌) = 𝑌 } are both the coarsest partitions which can represent 𝑋,𝑌 ,
respectively, in an abstract domain of 𝐴.

Let us define 𝑃𝑋f𝑌 = 𝑃𝑋 f 𝑃𝑌 . Since (P,⪯,g,f, 𝑃⊤, 𝑃⊥) forms a complete lattice of
partitions, it is easy to see that 𝑃𝑋f𝑌 ⪯ 𝑃𝑋 and also 𝑃𝑋f𝑌 ⪯ 𝑃𝑌 . The question is whether
𝑋 is representable in the abstract domain 𝒫(𝒫(𝑃𝑋f𝑌)), if we know that it is representable
in the abstract domain 𝒫(𝒫(𝑃𝑋)).

Since we could derive 𝛾+𝑃𝑋
(↑𝑋) = 𝛾𝑃𝑋

(𝛼𝑃𝑋
(↑𝑋)) = 𝛾𝑃𝑋

(𝛼𝑃𝑋
(↑⌊𝑋⌋)) =↑𝛾𝑃𝑋

(𝛼𝑃𝑋
(⌊𝑋⌋)) =

↑𝛾𝑃𝑋
(∪𝑥∈⌊𝑋⌋𝛼𝑃𝑋

({𝑥})) = ↑∪𝑥∈⌊𝑋⌋𝛾𝑃𝑋
(𝛼𝑃𝑋

({𝑥})) and also ↑𝑋 = ↑∪𝑥∈⌊𝑋⌋{𝑥}, we can
conclude that ↑∪𝑥∈⌊𝑋⌋𝛾𝑃𝑋

(𝛼𝑃𝑋
({𝑥})) = ↑∪𝑥∈⌊𝑋⌋{𝑥} due to the fact that 𝑋 is representable

in 𝒫(𝒫(𝑃𝑋)).

Note that ⌊𝑋⌋ is an antichain, which also means that ∀𝑥 ∈ ⌊𝑋⌋ : ↑𝛾𝑃𝑋
(𝛼𝑃𝑋

({𝑥})) =↑{𝑥}.
It is possible to say that ∀𝑥 ∈ ⌊𝑋⌋ : 𝛾+𝑋f𝑌 ({𝑥}) ⊆ 𝛾+𝑋({𝑥}) because 𝑃𝑋f𝑌 ⪯ 𝑃𝑋 , which
also means that ∀𝑥 ∈ ⌊𝑋⌋ :↑𝛾+𝑋f𝑌 ({𝑥}) ⊆↑𝛾+𝑋({𝑥}) and ∀𝑥 ∈ ⌊𝑋⌋ :↑𝛾+𝑋f𝑌 ({𝑥}) ⊆↑{𝑥}.

33

𝑖 𝑍𝑖 𝛼𝑃𝑖(𝑍𝑖) 𝑟𝑒𝐴𝛼
𝑃𝑖

(𝑅𝑖)

0 ↓{{𝑞1}, {𝑞2}, {𝑞3}, {𝑓}} ↓{{𝑝1}} ↓{{𝑝1, 𝑝2}}
1 ↓{{𝑞2}, {𝑞3}, {𝑓}} ↓{{𝑝1}, {𝑝2, 𝑝3}} ↓{{𝑝1}}

Table 5.4: Deciding emptiness of 𝐴2 using abstract backward algorithm

It follows from the definition of Gallois connection that ∀𝑥 ∈ ⌊𝑋⌋ : ↑{𝑥} ⊆ ↑𝛾+𝑋f𝑌 ({𝑥}),
which means that we can conclude ∀𝑥 ∈ ⌊𝑋⌋ : ↑{𝑥} = ↑𝛾+𝑋f𝑌 ({𝑥}) = ↑𝛾+𝑋({𝑥}) and in
general, 𝛾+𝑋(𝑋) = 𝛾+𝑋f𝑌 (𝑋).

Since we can simply substitute 𝑋 for 𝑌 , we also know that 𝛾+𝑌 (𝑌) = 𝛾+𝑋f𝑌 (𝑌), which
means that both sets 𝑋 and 𝑌 are representable in the abstract domain 𝒫(𝒫(𝑃𝑋f𝑌)).

Such an observation allows us to say that both 𝑍←𝑖 and 𝑍→𝑖 and representable in 𝐴𝛼𝑃↔𝑖
,

where 𝑃↔𝑖 , 𝑃←𝑖 f 𝑃→𝑖 .

This idea is summarized in Algorithm 8 below. It follows from the definition of 𝑍←𝑖 and
𝑍→𝑖 that 𝑍←0 = 𝒫(𝑄) ∖ 𝒫(𝐹) [step 10] and 𝑍→0 = 𝐼0(𝐴) [step 11]. Thus, we conclude that
𝑃←0 = {𝐹,𝑄 ∖ 𝐹} and 𝑃→0 = {𝑆0, 𝑄 ∖ 𝑆0}. Then, 𝑃↔0 = 𝑃←0 f 𝑃→0 = {𝐹, 𝑆0, 𝑄 ∖ (𝐹 ∪ 𝑆0)}
[step 9].

Such an initial partition requires to eliminate few extreme cases of given AFAs, whose state
sets could not be meaningfully used to create a partition 𝑃↔0 . In case of 𝑄 = 𝐹 or 𝐹 = ∅,
the emptiness of a given AFA could be decided trivially [step 1-4]. If there exists an initial
state of 𝐴 which is final at the same moment, the automaton is obviously non-empty [step
5-6]. Finally, if there does not exist a state which is neither initial, nor final, the question
is, whether it is possible to leave the set 𝐼0(𝐴) within one step [step 7-8].

In other cases, 𝑃↔0 corresponds to a valid partition of 𝑄, which allows us to enter the main
loop of Algorithm 8.

First, we check whether the automaton is non-empty using the condition which has been
discussed above [step 13-14]. If not so, then we create an abstract AFA 𝐴𝛼𝑃↔𝑖

using the
partition 𝑃↔𝑖 [step 15].

Next, we compute sets 𝑅←𝑖 , 𝑅→𝑖 , which should contain all the reachable nodes of 𝐴𝛼𝑃↔𝑖 ,
which also belong to an abstraction of 𝑍←𝑖 , 𝑍→𝑖 , respectively. If it is not possible to leave
an abstraction of 𝑍←𝑖 or 𝑍→𝑖 in one step, the given AFA is surely empty [step 18-19].

Finally, both sets 𝑍←𝑖 and 𝑍→𝑖 will be recomputed [step 20-21] and the new partition 𝑃↔𝑖+1

will be created.

34

Algorithm 8: Forward-like abstract bidirectional algorithm deciding the AFA
emptiness

Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 if 𝐹 = 𝑄 then
2 return False;
3 if 𝐹 = ∅ then
4 return True;
5 if 𝐹 ∩ 𝑆0 ̸= ∅ then
6 return False;
7 if 𝐹 ∪ 𝑆0 == 𝑄 then
8 return 𝑝𝑜𝑠𝑡𝐴(𝐼0(𝐴)) ⊆ 𝐼0(𝐴);
9 𝑃↔0 ← {𝐹, 𝑆0, 𝑄 ∖ (𝐹 ∪ 𝑆0)};

10 𝑍←0 ← 𝒫(𝑄) ∖ 𝒫(𝐹);
11 𝑍→0 ← 𝐼0(𝐴);
12 for 𝑖 in N do
13 if 𝑍→𝑖 ̸⊆ 𝑍←𝑖 then
14 return False;
15 𝐴𝛼𝑃↔𝑖

← (𝑄𝛼,Σ, 𝑆𝛼0 , 𝛿
𝛼, 𝐹𝛼);

16 𝑅←𝑖 ← 𝜇𝑥 · (𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴𝛼
𝑃↔
𝑖

(𝑥)) ∩ 𝛼𝑃↔𝑖 (𝑍←𝑖);
17 𝑅→𝑖 ← 𝜇𝑥 · (𝐼0(𝐴) ∪ 𝑝𝑜𝑠𝑡𝐴𝛼

𝑃↔
𝑖

(𝑥)) ∩ 𝛼𝑃↔𝑖 (𝑍→𝑖);
18 if 𝑝𝑜𝑠𝑡𝐴𝛼

𝑃↔
𝑖

(𝑅←𝑖) ⊆ 𝛼𝑃↔𝑖 (𝑍←𝑖) || 𝑝𝑜𝑠𝑡𝐴𝛼
𝑃↔
𝑖

(𝑅→𝑖) ⊆ 𝛼𝑃↔𝑖 (𝑍→𝑖) then
19 return True;
20 𝑍←𝑖+1 ← 𝛾𝑃↔𝑖 (𝑅←𝑖) ∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃↔𝑖 (𝑅←𝑖));
21 𝑍→𝑖+1 ← 𝛾𝑃↔𝑖 (𝑅→𝑖) ∪ 𝑝𝑜𝑠𝑡𝐴(𝛾𝑃↔𝑖 (𝑅→𝑖));
22 𝑃↔𝑖+1 ← (g{𝑃 ∈ P | 𝛾+𝑃 (𝑍←𝑖+1) = 𝑍←𝑖+1}) f (g{𝑃 ∈ P | 𝛾+𝑃 (𝑍→𝑖+1) = 𝑍→𝑖+1});
23 end

35

5.3 Backward-like Abstract Bidirectional Algorithm

Analogously, it is possible to define the dual algorithm to Algorithm 8. Due to the fact
that both algorithms share several ideas, the backward-like abstract bidirectional algorithm
won’t be described in detail.

Algorithm 9: Backward-like abstract bidirectional algorithm deciding the AFA
emptiness

Input: AFA 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹)
Output: True iff 𝐿(𝐴) = ∅

1 if 𝐹 = 𝑄 then
2 return False;
3 if 𝐹 = ∅ then
4 return True;
5 if 𝐹 ∩ 𝑆0 ̸= ∅ then
6 return False;
7 if 𝐹 ∪ 𝑆0 == 𝑄 then
8 return 𝑝𝑜𝑠𝑡𝐴(𝐼0(𝐴)) ⊆ 𝐼0(𝐴);
9 𝑃↔0 ← {𝐹, 𝑆0, 𝑄 ∖ (𝐹 ∪ 𝑆0)};

10 𝑍←0 ← 𝒫(𝑄) ∖ 𝐼0(𝐴);
11 𝑍→0 ← 𝒫(𝐹);
12 for 𝑖 in N do
13 if 𝑍→𝑖 ̸⊆ 𝑍←𝑖 then
14 return False;
15 𝐴𝛼𝑃↔𝑖

← (𝑄𝛼,Σ, 𝑆𝛼0 , 𝛿
𝛼, 𝐹𝛼);

16 𝑅←𝑖 ← 𝜇𝑥 · (𝒫(𝐹) ∪ 𝑝𝑟𝑒𝐴𝛼
𝑃↔
𝑖

(𝑥)) ∩ 𝛼𝑃↔𝑖 (𝑍←𝑖);
17 𝑅→𝑖 ← 𝜇𝑥 · (𝒫(𝐹) ∪ 𝑝𝑟𝑒𝐴𝛼

𝑃↔
𝑖

(𝑥)) ∩ 𝛼𝑃↔𝑖 (𝑍→𝑖);
18 if 𝑝𝑟𝑒𝐴𝛼

𝑃↔
𝑖

(𝑅←𝑖) ⊆ 𝛼𝑃↔𝑖 (𝑍←𝑖) || 𝑝𝑟𝑒𝐴𝛼
𝑃↔
𝑖

(𝑅→𝑖) ⊆ 𝛼𝑃↔𝑖 (𝑍→𝑖) then
19 return True;
20 𝑍←𝑖+1 ← 𝛾𝑃↔𝑖 (𝑅←𝑖) ∩ ̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃↔𝑖 (𝑅←𝑖));
21 𝑍→𝑖+1 ← 𝛾𝑃↔𝑖 (𝑅→𝑖) ∪ 𝑝𝑟𝑒𝐴(𝛾𝑃↔𝑖 (𝑅→𝑖));
22 𝑃↔𝑖+1 ← (g{𝑃 ∈ P | 𝛾+𝑃 (𝑍←𝑖+1) = 𝑍←𝑖+1}) f (g{𝑃 ∈ P | 𝛾+𝑃 (𝑍→𝑖+1) = 𝑍→𝑖+1});
23 end

5.4 Properties of Forward-like and Backward-like Algorithms

Although the proposed algorithms iteratively build two different sets, we are still able to
work with only one abstract AFA within each iteration of their main loops. They also require
to compute a fixed point of 𝑝𝑜𝑠𝑡𝐴𝛼

𝑃↔
𝑖

or 𝑝𝑟𝑒𝐴𝛼
𝑃↔
𝑖

only once within each iteration, because
both 𝑅←𝑖 and 𝑅→𝑖 are calculated using the same fixed point of a predicate transformer. This
implies that the forward-like and backward-like algorithms can reuse previously computed
results and thus save computational time. However, both forward-like and backward-like
algorithms always use less coarse partition to create a corresponding abstract AFA than
the naive approach because they require to represent two different sets in the same abstract
domain, which can possibly decrease the efficiency.

36

Chapter 6

Design and Implementation

In this chapter, we will describe the data structures which are used in the implementation
of algorithms presented in previous parts of the thesis. First, we will discuss the represen-
tation of an AFA and corresponding data structures which facilitate evaluation of predicate
transformers.

Next, the inner representation of a closed set will be described. Due to the fact that it is
crucial to manipulate effectively with closed sets, we will also focus on the implementation
of set operations over them.

Subsequently, we will pay attention to the data structure which represents a partition of
a set and to the possibility of mapping between an concrete and abstract domain of an AFA
using this data structure.

All the presented data structures and algorithms were implemented in the C++ language
using the standard libraries and containers (namely std::set, std::vector, std::list,
std::map) with respect to the object-oriented paradigms.

6.1 Alternating Automata

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. Suppose that N𝑛 , {𝑖 ∈ N | 𝑖 ≤ 𝑛} for any 𝑛 ∈ N.

Due to the fact that the only meaning of names of states is the possibility to distinguish
them, we can easily perform a substitution using the bijective maps 𝜃 : 𝑄 → N|𝑄|−1 and
Θ : 𝒫(𝑄)→ 𝒫(N|𝑄|−1), where Θ(𝑋) =

⋃︀
𝑥∈𝑋{𝜃(𝑥)} without any loss of information.

Thus, it is sufficient to create an inner representation for 𝐴Θ = (Θ(𝑄),Σ,Θ(𝑆0), 𝛿Θ,Θ(𝐹)),
where 𝛿Θ = {((𝜃(𝑞), 𝑎),

⋁︀𝑚
𝑖=0

⋀︀𝑛
𝑗=0 𝜃(𝜙𝑖,𝑗)) | ((𝑞, 𝑎),

⋁︀𝑚
𝑖=0

⋀︀𝑛
𝑗=0 𝜙𝑖,𝑗) ∈ 𝛿}. Next, we will

discuss an inner representation of each part of 𝐴Θ.

Transititon relation 𝛿Θ. It will be represented as follows. Let (𝑞, 𝑎, 𝜑) ∈ 𝛿Θ be a transition
of 𝐴Θ. Without loss of generality, it is possible to say that 𝜑 is in a disjunctive normal
form, which means that 𝜑 =

⋁︀𝑚
𝑖=1

⋀︀𝑛
𝑗=1 𝜙𝑖,𝑗 . Then, we can represent 𝜑 using the set

𝜑Θ =
⋃︀𝑚
𝑖=1{

⋃︀𝑛
𝑗=1{𝜙𝑖,𝑗}}, which allows us to create a Transition structure which holds the

triplet (𝑞, 𝑎, 𝜑Θ).

37

Then, we can create a TransitionList as a list of Transitions, such that each transition
in a transition list shares the former state 𝑞 with each other, while the symbols on transition
always differ.

Finally, the data structure TransitionRelation consists of TransitionLists such that
the former states across each transition list differ. The TransitionRelation is represented
as a vector, which means that there is no need to explicitly hold the information about the
name of each state since the name corresponds to an index of the vector.

State set Θ(𝑄). Since Θ(𝑄) corresponds to indices of a vector of length |𝑄|, we can simply
leave the set Θ(𝑄) implicit.

Alphabet Σ. Analogously, there is no need to store Σ in our inner representation of 𝐴Θ

explicitly since the information about used symbols is already part of the relation 𝛿Θ.

Sets of initial and final states Θ(𝑆0),Θ(𝐹). Both sets Θ(𝑆0) and Θ(𝐹) will be conven-
tionally represented as sets of states.

Example. Suppose that 𝐴 is an AFA defined in Example 3.1.1 and depicted in Figure
3.1. The diagram shown in Figure 6.1 corresponds to an inner representation of 𝛿Θ.

0

1

2

a

a

b

b

{{2},{0,1}}

{{0}, {1,2}}

{{0}}

{{1}}

Figure 6.1: Inner representation of a transition relation of an AFA 𝐴

6.2 Closed Sets

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑋 ⊆ 𝒫(𝑄) is an upward-closed or downward-closed
set.

Due to the fact that every state set consist of a finite sequence of natural numbers starting
with 0, we can say that 𝑄 = N|𝑄|−1. This implies that there is no need to represent neither
𝒫(𝑄) nor 𝑄 as a carrier of 𝑋 explicitly, we can simply store a value |𝑄|−1 in our data
structure as a maximal element of a state set and leave the rest of states implicit.

Next, we need to know whether a closed set is upward-closed or downward-closed.

Due to the relation between closed sets and sets of minimal or maximal elements, it is
sufficient to represent each closed set with its corresponding antichain.

38

These three information unambiguously describe every possible closed set of nodes of a
given AFA.

In what follows, we will describe commonly used set relations and set operations in context
of closed sets and an efficient way to evaluate them. Let 𝑋,𝑌 ⊆ 𝒫(𝑄) be upward-closed
sets and 𝑥 ∈ 𝒫(𝑄).

Membership. We can say that 𝑥 ∈ ↑𝑋 ⇐⇒ ∃𝑥0 ∈ ⌊↑𝑋⌋ : 𝑥0 ⊆ 𝑥. This implies
that it is sufficient to simply test a set inclusion between 𝑥 and each element of antichain
corresponding to ↑𝑋.

Inclusion. Since ↑𝑌 ⊆ ↑𝑋 ⇐⇒ ∀𝑦0 ∈ ⌊↑𝑌 ⌋ : 𝑦0 ∈ ↑𝑋, we can simply repeatedly perform
a membership test described above.

Union. The equation ↑𝑋 ∪ ↑𝑌 = ↑⌊⌊↑𝑋⌋ ∪ ⌊↑𝑌 ⌋⌋ holds. We can thus simply create an
union of antichains corresponding to given closed sets.

Intersection. We know that ↑𝑋 ∩ ↑𝑌 = ↑{𝑥0 ∪ 𝑦0 | (𝑥0, 𝑦0) ∈ ⌊𝑋⌋ × ⌊𝑌 ⌋}. It is thus
sufficient to compute an union of every pair of elements of antichains corresponding to given
closed sets.

Complement. To express an complement of a set unambiguously, let us suppose that
𝑋
𝑄
, 𝑄∖𝑋, where the superscript emphasises the context. For a single element 𝑥 ∈ 𝒫(𝑄),

we can say that ↑{𝑥}𝒫(𝑄)
= ↓{⋃︀𝑥0∈𝑥 {𝑥0}

𝑄}. Since ↑𝑋 =
⋃︀
𝑥∈⌊𝑋⌋ ↑{𝑥}, we conclude that

↑𝑋𝒫(𝑄)
=

⎮⎮⌄ ⋂︁
𝑥∈⌊𝑋⌋

{︁ ⋃︁
𝑥0∈𝑥
{𝑥0}

𝑄
}︁
.

This implies that the complement of a closed set could be easily computed using ideas
of intersection and union mentioned above and using a compelement of 𝑄. It is easy to
see that the complement of an upward-closed set will always be downward-closed and vice
versa.

Notice that all the procedures explained above could be used similarly in context of downward-
closed sets. However, it is not possible to combine upward-closed and downward-closed sets
while performing presented binary set operations.

6.3 Predicate Transformers

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA. In what follows, we will describe the evaluation of
predicate transformers in context of our representation of an AFA.

PostA. Let 𝑥 ∈ 𝒫(𝑄). To compute 𝑃𝑜𝑠𝑡𝐴(𝑥), it is necessary to perform |𝑥| accesses
to the TransitionRelation vector of 𝐴 (for each 𝑥0 ∈ 𝑥), use the results to create |𝑥|
corresponding upward-closed sets. The result is an intersection of these upward-closed sets,
which is also an upward-closed set.

Each result of 𝑃𝑜𝑠𝑡𝐴 is immediately stored to the cache to avoid its potential recomputation.

postA. Let 𝑋 ⊆ 𝒫(𝑄). Then, 𝑝𝑜𝑠𝑡𝐴(𝑋) is computed as
⋃︀
𝑥∈⌊𝑋⌋ 𝑃𝑜𝑠𝑡𝐴(𝑥), which is an

upward-closed set.

39

̃︂postA. Let 𝑋 ⊆ 𝒫(𝑄). Then, ̃︂𝑝𝑜𝑠𝑡𝐴(𝑋) is computed as 𝑝𝑜𝑠𝑡𝐴(𝑋), which is a downward-
closed set.

PreA. To be able to efficiently compute the predicate transfomer 𝑃𝑟𝑒𝐴 in our implemen-
tation, we need to somehow represent an inverse transition relation 𝛿−1 of 𝐴. Due to the
fact that 𝛿−1 is not an explicit part of 𝐴 and it follows from 𝑄,Σ and 𝛿 implicitly, it is
necessary to compute 𝛿−1 using these components of 𝐴.

Note that we cannot simply create 𝛿−1 : 𝐵+(𝑄)×Σ→ 𝑄 by switching first and third element
of each (𝑞, 𝑎, 𝜑) ∈ 𝛿, since 𝛿 is not injective. The other possibility is to create a function
𝛿−1 : 𝒫(𝑄) × Σ → 𝒫(𝒫(𝑄)) such that 𝛿−1(𝑁1, 𝑎) = {𝑁0 ⊆ 𝑄 | ∃(𝑁0, 𝑎,𝑁1) ∈ 𝐸(𝐴)} for
each 𝑁1 ⊆ 𝑄. Then, we can simply say that 𝑃𝑟𝑒𝐴(𝑁) =

⋃︀
𝑎∈Σ 𝛿

−1(𝑁, 𝑎). However, this
straightforward method leads to the necessity of storing an exponentially many subsets of
𝑄 to the memory, which we require to avoid.

Thus, we propose the following definition of 𝛿−1 : 𝑄×Σ→ 𝒫(𝒫(𝑄)×𝒫(𝑄)) and the data
structure which represents it.

Let 𝛿−1(𝑞, 𝑎) = {(𝑁1, 𝑆1), (𝑁2, 𝑆2)}. Note that each element of the result set is a tuple. In
what follows, we will call first elements of such tuples result nodes and second elements will
be called sharing lists. The sharing list always contains a former element 𝑞 which was on
input of the function. It means that 𝑞 ∈ 𝑆1 and 𝑞 ∈ 𝑆2. Furthemore, suppose that 𝑠 ∈ 𝑆1.
Then, we can conclude that (𝑁1, 𝑆1) ∈ 𝛿−1(𝑠, 𝑎), which means that both 𝑞, 𝑠 share the same
tuple (𝑁1, 𝑆1) within their output if 𝑎 is used as an input symbol.

Suppose that 𝑛 ∈ 𝑁1. Then, we can conclude that there exists a triplet (𝑛, 𝑎, 𝜑) ∈ 𝛿, such
that 𝑆1 ∈ ⌊J𝜑K⌋. In other words, each element of a result node 𝑁1 could be used to perform
a transition via a symbol 𝑎 to the node 𝑆1.

Then, we can alternatively define 𝑃𝑟𝑒𝐴 using 𝛿−1 as follows:

𝑃𝑟𝑒𝐴(𝑁1) =
⎮⎮⌄ ⋃︁
𝑎∈Σ

{︁ ⋃︁
𝑛∈𝑁1

{︁
𝑁0

⃒⃒⃒
(𝑁0, 𝑆0) ∈ 𝛿−1(𝑛, 𝑎) ∧ 𝑆0 ⊆ 𝑁1

}︁}︁

Example. Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA defined in Example 3.1.1 and depicted in
Figure 3.1. The graphical representation of the corresponding function 𝛿−1 of 𝐴 is shown
in Figure 6.2. The first row represents a set 𝑄 and the second row depicts an alphabet for
each 𝑞 ∈ 𝑄. The boxes below represent tuples (𝑁,𝑆) ∈ 𝒫(𝑄)× 𝒫(𝑄). The upper element
corresponds to a result node, while the lower states for a sharing list.

Let us thoroughly describe a computation of 𝑃𝑟𝑒𝐴({0, 1}).
To compute 𝑃𝑟𝑒𝐴({0, 1}), we firstly need to evaluate both 𝛿−1(0, 𝑎) and 𝛿−1(1, 𝑎). It
is obvious from Figure 6.2 that 𝛿−1(0, 𝑎) = {({0}, {0}), ({2}, {0, 1})} and 𝛿−1(1, 𝑎) =
{({2}, {0, 1})}. Since both ({0}, {0}), ({2}, {0, 1}) are tuples whose sharing list is a subset
of the input {0, 1}, we create the union {0} ∪ {2} = {0, 2} of corresponding result nodes.
Analogously, we continue with the symbol 𝑏. Notice that 𝛿−1(0, 𝑏) = {({1}, {0})} and
𝛿−1(1, 𝑏) = {({0}, {1}), ({1}, {1, 2})}. In this case, only ({1}, {0}) and ({0}, {1}) are found
tuples whose sharing list is a subset of the input {0, 1}, so we ignore the other one. We
should thus remember the union {0, 1} of the result nodes {0} and {1}.

40

Thus, 𝑝𝑟𝑒𝐴({0, 1}) = ↓{{0, 2}, {0, 1}}. We can simply check the result using the diagram
depicted in Figure 6.1 and convince ourselves that for each 𝑁 ∈↓{{0, 2}, {0, 1}}, the relation
{0, 1} ∈ 𝑃𝑜𝑠𝑡𝐴(𝑁) holds, while for any other node this relation does not hold.

a b a b a b

0 1 2

{1}

{1,2}

{0}

{0}

{2}

{2}

{1}

{0}

{2}

{0,1}

{0}

{1}

Figure 6.2: Inner representation of an inverse transition function 𝛿−1 of an AFA 𝐴

preA. Let 𝑋 ⊆ 𝒫(𝑄). Then, 𝑝𝑟𝑒𝐴(𝑋) is computed as
⋃︀
𝑥∈⌊𝑋⌋ 𝑃𝑟𝑒𝐴(𝑥), which is a

downward-closed set.̃︂preA. Let 𝑋 ⊆ 𝒫(𝑄). Then, ̃︂𝑝𝑟𝑒𝐴(𝑋) is computed as 𝑝𝑟𝑒𝐴(𝑋), which is an upward-closed
set.

6.4 Partitions

Let 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) be an AFA and 𝑃 is a partition of 𝑄. According to the definition of
a partition, 𝑃 ⊆ 𝒫(𝑄). Due to the fact that the partition corresponds to a state set of an
abstract AFA, we want to represent each class of 𝑃 as a natural number 𝑛 ∈ N|𝑃 |−1 rather
than work with 𝑃 explicitly.

Therefore, it is necessary to store the value |𝑃 |−1 in our inner representation of 𝑃 and
create maps 𝑃𝑄 : 𝑄 → 𝑃, 𝑓 : N|𝑃 |−1 → 𝑃, 𝑓−1 : 𝑃 → N|𝑃 |−1 to facilitate conversions
between concrete and abstract domains of 𝐴.

41

Chapter 7

Experimental Comparison of
Algorithms Deciding AFA
Emptiness

In this chapter, we will present results of experimental evaluation of concrete, abstract and
abstract bidirectional algorithms over various AFAs. Measured values will be compared
and used to describe few classes of AFAs whose emptiness could be efficiently decided using
each algorithm.

First, we introduce the Tabakov-Vardi model for generating random nondeterministic finite
automata and Büchi automata using uniform probability distribution [8, 3]. Subsequently,
we describe proposed extension of Tabakov-Vardi model which will be able to randomly
generate alternating automata.

Next, we discuss the significant efficiency bottlenecks of abstract algorithms and we propose
several optimizations which reduce the cost of studied algorithms. We also experimentally
evaluate the optimized algorithms over randomly generated AFAs to find out whether pro-
posed modifications accelerate the computation.

At the end of the chapter, we consider a few problems which are decidable by performing an
AFA emptiness test and we try to find out whether the abstract algorithms give us better
results in context of these problems.

All the experiments were performed on a machine with the Intel Xeon E5-2630 @ 2.60Hz
processor and 32 GB RAM.

7.1 Tabakov-Vardi Model

Definition 49 Let TV , (N∖{0, 1})×R+×(0; 1). In what follows, a triplet (𝑛, 𝑑, 𝑓) ∈ TV,
where 𝑛 is a state-set cardinality, 𝑑 is a transition density and 𝑓 is a final states
density, will be called a generator of Tabakov-Vardi random automaton. A class
TV thus contains all possible generators of Tabakov-Vardi random automata.

42

Suppose that 𝐺 = (𝑛, 𝑑, 𝑓) ∈ TV. We want to generate random NFA using these param-
eters. Let us say that 𝐴 = (𝑄,Σ, 𝑆0, 𝑅, 𝐹) is an NFA, which was randomly generated by
𝐺. Since a state-set cardinality 𝑛 corresponds to a fixed positive number, we simply state
that 𝑄 = N𝑛−1. Due to the fact that no parameter of 𝐺 describes an alphabet and a set
of initial states of 𝐴, we define Σ = {0, 1} and 𝑆0 = {0} for all automata generated by a
generator from TV.

The final states density 𝑓 describes a ratio between the number of final states and the
amount of all the states. This implies that 𝐹 ⊆ 𝑄 ∖ 𝑆0 is a randomly chosen set, such that
|𝐹 | = ⌊𝑛 · 𝑓⌋. Due to the fact that the emptiness test of an NFA is trivially decidable if
𝑆0 ∩ 𝐹 ̸= ∅, the initial state 0 is not allowed to be randomly generated as a final state.

The remaining part of 𝐺, which is denoted by 𝑑, approximately expresses a ratio between
number of transitions which use one symbol 𝑎 ∈ Σ and amount of all states of 𝐴. We can
thus write |𝑅| ≈ |Σ|·𝑛 · 𝑑. The transitions are generated as follows. For each 𝑎 ∈ Σ, 𝑛 · 𝑑
tuples (𝑞1, 𝑞2) ⊆ 𝑄 × 𝑄 are randomly generated and stored in a set 𝐷𝑎. Due to the fact
that a set cannot contain duplicate elements, the cardinality |𝐷𝑎| could be possibly less
than 𝑛 · 𝑑. Finally, the transition relation is chosen as

⋃︀
𝑎∈Σ{(𝑞1, 𝑎, 𝑞2) | (𝑞1, 𝑞2) ∈ 𝐷𝑎}.

7.2 Extended Tabakov-Vardi Model

Due to the fact that the Tabakov-Vardi model enables us to generate only NFAs and Büchi
automata, we propose an extension of the introduced model which is able to generate AFAs
and also influence the probability of increasing the number of reachable nodes in an AFA.

Definition 50 Let ETV , (N ∖ {0, 1}) × R+ × (0; 1) × ⟨0; 1⟩ × ⟨0; 1). In what follows,
every quintuple (𝑛, 𝑑, 𝑓, 𝑝, 𝑐) ∈ ETV, where 𝑛 is a state set cardinality, 𝑑 is a transition
density, 𝑓 stands for a final states density, 𝑝 corresponds to a revisition probability
and 𝑐 is an alternation probability, will be called a generator of Extended Tabakov-
Vardi random automaton. Thus, ETV is a class of all possible generators of Extended
Tabakov-Vardi random automata.

Suppose that 𝐺 = (𝑛, 𝑑, 𝑓, 𝑝, 𝑐) ∈ ETV and 𝐴 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹) is an AFA randomly
generated by 𝐺. All three values 𝑛, 𝑑, 𝑓 share the same meaning with a former Tabakov-
Vardi model. Analogously, 𝑄 = N𝑛−1,Σ = {0, 1}, 𝑆0 = {0} and 𝐹 ⊆ 𝑄 ∖ 𝑆0, where
|𝐹 |= ⌊𝑛 · 𝑓⌋.
The main difference between these two models lies in the random choice of a transition
relation. We have already seen that the destination of an alternating transition could be
represented as a node of 𝐴. Thus, for each 𝑎 ∈ Σ, we require to generate sets 𝐷𝑎 ⊆ 𝑄×𝒫(𝑄)
rather than 𝐷𝑎 ⊆ 𝑄×𝑄. The rate of alternation is described by the value 𝑐. Suppose that
(𝑞,𝑁) ∈ 𝐷𝑎. It is always guaranteed that the generated successor of 𝑞 contains at least one
element. The probability of generating 𝑘 additional elements equals to 𝑐𝑘, which means
that the probability of generating another element decreases geometrically. Note that in
case of 𝑐 = 0, 𝐺 in fact always generates an NFA, since there cannot be any alternating
transition.

Let (𝑞, 𝑎, 𝜑) ∈ 𝛿 be a transition randomly generated by 𝐺 and 𝑁 = ⌊J𝜑K⌋. The remaining
element of 𝐺, which is denoted by 𝑝 and corresponds to a revisition probability, reduces

43

a size of the set of states which could be chosen as 𝑞. Since 𝛿 is generated iteratively by
constructing sets 𝐷𝑎, where 𝑎 ∈ Σ, we can say that 𝐷𝑛

𝑎 ⊆ 𝐷𝑎 is the result of generating
𝐷𝑎 in 𝑛𝑡ℎ iteration and 𝐷0

𝑎 = ∅. Then, when generating an element (𝑞𝑛, 𝑎,𝑁𝑛) in the 𝑛𝑡ℎ
iteration, we uniformly choose 𝑞𝑛 ∈ 𝑄 with probability of 1− 𝑝. However, with probability
of 𝑝, 𝑞𝑛 is generated from the set {𝑞 ∈ 𝑁𝑖 | ∃(𝑞𝑖, 𝑎,𝑁𝑖) ∈ 𝐷𝑛−1

𝑎 }∪𝑆0 ⊆ 𝑄, which means that
𝑞 has been already generated or it is an initial state. Note that this does not necessarily
guarantees us that with probability of 𝑝, 𝑞 is a reachable state because we also allow
generating alternating transitions. However, in the special case of 𝑝 = 1 and 𝑐 = 0, each
state which is a destination of a transition is always reachable because 𝐴 is a NFA.

7.3 Initial Observation of Randomly Generated AFAs Be-
haviour

In this section, we try to generate plenty of AFAs using the extended Tabakov-Vardi model
with various parameters and summarize time of evaluating our algorithms over them.

Let 𝑇 ⊆ ETV be a finite set of extended Tabakov-Vardi model generators. Concretely,
we consider all quintuples (𝑛, 𝑑, 𝑓, 𝑝, 𝑐) ∈ EVT, such that 𝑛 ∈ {10, 20, 30, 40}, 𝑓 = 0.1,
𝑑 ∈ {1, 1.2, 1.4, 1.6, 1.8, 2}, 𝑝 ∈ {0, 0.25, 0.5, 0.75, 1} and 𝑐 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For each
generator 𝐺 ∈ 𝑇 , we will generate 20 separate AFAs and evaluate previously presented
algorithms over them. Altogether, we will work with 12 000 AFAs generated using various
parameters of extended Tabakov-Vardi model.

The Table 7.1 summarizes measured time of performing presented algorithms over these
AFAs. Let us recall that A. Forw. states for the Algorithm 6, A. Back. is the Algorithm 7,
C. Forw. corresponds to the Algorithm 4, C. Back. refers to the Algorithm 5 and finally,
Bi. Forw. and Bi. Back. correspond to newly proposed Algorithms 8, 9, respectively.

The first column ephasises the cardinality of state sets of AFAs, while the others correspond
to measured time in seconds. The symbol ∅ states for a arithmetical mean and ̃︀𝑡 represents
a median.

A. Forw. A. Back. C. Forw. C. Back. Bi. Forw. Bi. Back.

|𝑄| ∅ ̃︀𝑡 ∅ ̃︀𝑡 ∅ ̃︀𝑡 ∅ ̃︀𝑡 ∅ ̃︀𝑡 ∅ ̃︀𝑡
10 .014 .010 .008 .006 .002 .001 .001 .001 .007 .004 .006 .004
20 .328 .059 .249 .013 .026 .003 .003 .002 .072 .016 .163 .013
30 4.343 .267 2.025 .027 .031 .004 .006 .003 .209 .050 .694 .036
40 15.234 .880 4.768 .045 .023 .005 .007 .004 .455 .129 1.243 .089

Table 7.1: Duration of evaluation the algorithms over 12 000 various AFAs in seconds.

We have found out that in case of total random AFAs, we do not gain any advantage while
using abstract algorithms in general. Let us focus on the behaviour of abstract algorithms
and inspect which steps of them represent the most significant efficiency bottleneck.

Let us reuse those generators 𝑇 ⊆ ETV presented above which generate AFA𝑠 with 30
states. Suppose that for each generator 𝐺 ∈ 𝑇 , which satisfies this condition, we generate

44

20 AFAs, which means that we work with 3 000 AFAs in total. All four algorithms which
work over an abstract domain will be evaluated over these AFAs.

The bar charts depicted in Figure 7.1 summarize average computational time of some
lines of Algorithms 6, 7, 8 and 9. Since forward and backward algorithms act similarly,
we show them within the same chart. Note that we did not covered all lines of these
algorithms because most of them deal with trivial operations. To create these charts,
we have computed average time of computation with no respect to number of executed
iterations of these algorithms. Notice that the 𝑦-axis is shown in logarithmic scale.

8 10 11 12 14 15
1

10

100

1,000

Line of the algorithm

Av
er

ag
e

du
ra

tio
n

in
m

ill
ise

co
nd

s

A. Forward A. Backward

13 15 16-17 18 20 21 22
1

10

100

Line of the algorithm

Av
er

ag
e

du
ra

tio
n

in
m

ill
ise

co
nd

s

A. Bi. Forw.-like A. Bi. Back.-like

Figure 7.1: Average execution time of individual lines of presented algorithms over 3 000
random AFAs

We have observed that the lines number 14 or former abstract algorithms (computation
of 𝛾𝑃𝑖(𝑅𝑖) ∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖)) and 𝛾𝑃𝑖(𝑅𝑖) ∩ ̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃𝑖(𝑅𝑖))) and lines 20 of proposed bidirec-
tional algorithms (computation of 𝛾𝑃↔𝑖 (𝑅𝑖)∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃↔𝑖 (𝑅𝑖)) and 𝛾𝑃↔𝑖 (𝑅𝑖)∩̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃↔𝑖 (𝑅𝑖)))
correspond to the least effective ones because their execution reuqieres significantly more
computational time than the others.

Let us recall that ̃︂𝑝𝑟𝑒𝐴(𝑋) = 𝑝𝑟𝑒𝐴(𝑋) and ̃︂𝑝𝑜𝑠𝑡𝐴(𝑋) = 𝑝𝑜𝑠𝑡𝐴(𝑋). This implies that the
discussed lines of our algorithms consist of five various operations, concretely conversion to
a concrete domain 𝑋1 = 𝛾𝑃𝑖(𝑅𝑖), a complementation 𝑋2 = 𝑋1, an evaluating of predicate
transformer 𝑋3 = 𝑝𝑟𝑒𝐴(𝑋2) (or 𝑋3 = 𝑝𝑜𝑠𝑡𝐴(𝑋2)), another complementation 𝑋4 = 𝑋3 and
an intersection 𝑋5 = 𝑋1 ∩𝑋4.

To understand better which of these operations requires most computational time, we have
created additional bar charts depicted in Figure 7.2 which express this information. The
charts summarize the behaviour of the same 3 000 AFAs mentioned above while executing
discussed operations.

We have observed that the intersection of two closed sets in the concrete domain and
the complementation of a closed set correspond to the operations which takes the most
computational time. Notice also the column 15 in the Firuge 7.1 on left and the column 22
on right. These lines create a new partition by computing 𝑋-neighbours. The considerable
difference between behaviour of forward and backward algorithms is caused by properties
of representability of a closed set in an abstract domain mentioned in Section 4.4. In case

45

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

1

10

100

1,000

Operation

Av
er

ag
e

du
ra

tio
n

in
m

ill
ise

co
nd

s

A. Forward A. Backward

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

1

10

100

Operation

Av
er

ag
e

du
ra

tio
n

in
m

ill
ise

co
nd

s

A. Bi. Forw.-like A. Bi. Back.-like

Figure 7.2: Average execution time of some operations over 3 000 random AFAs

of downward-closed sets, we need to perform two more complementation of a closed set,
which significantly disadvantages both abstract backward and the abstract bidirectional
backward-like algorithms.

Due to the fact that the concrete algorithms compute the complement of a closed set
only once and they also compute an intersection of closed sets only over smaller domain
when computing 𝑃𝑟𝑒𝐴(.) or 𝑃𝑜𝑠𝑡(.), it is understandable that their evaluation over 12 000
various AFAs gave us significantly better results. To reduce the influence of computing an
intersection and a complement, we can consider several strategies described in following
paragraphs in detail.

Implement intersection and complementation more effectively. Both implemented
algorithms for computing an intersection and a complementation of a closed set explained
in Chapter 6 already use all the benefits of the theory of closed sets and antichains pre-
sented in Chapter 3. The author of this thesis could not find any way to improve these
algorithms of intersection and complementation of closed sets to decrease the differences
between concrete and abstract language emptiness tests.

Modify the algorithms to avoid the necessity of computing intersection and
complementation so often. Several attempts of changing the former abstract algo-
rithms to achieve this goal had been done by the author of this thesis. Since we are able
to derive

46

𝛾𝑃𝑖(𝑅𝑖) ∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖))

= 𝛾𝑃𝑖(𝑅𝑖) ∩ 𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖))

= 𝛾𝑃𝑖(𝑅𝑖) ∩ 𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖))

= 𝛾𝑃𝑖(𝑅𝑖) ∪ 𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖))

= 𝛾𝑃𝑖(𝑅𝑖) ∪ 𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖)),

we can possibly avoid the computation of an intersection and still perform a complementa-
tion only twice due to the fact that the subresult 𝛾𝑃𝑖(𝑅𝑖) can be reused. However, the other
complementation is executed over a larger set which can possible cause another deceleration.
Analogously, we can conclude that 𝛾𝑃𝑖(𝑅𝑖)∩̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃𝑖(𝑅𝑖)) = 𝛾𝑃𝑖(𝑅𝑖) ∪ 𝑝𝑜𝑠𝑡𝐴(𝛾𝑃𝑖(𝑅𝑖)). In
what follows, we will refer to this modification as the first optimization of abstract algo-
rithms.

Next, we can try to completely change the semantics of discussed lines to avoid executing
intersection over large closed sets, yet preserve the correctness of studied algorithms. The
intersection in the expression 𝛾𝑃𝑖(𝑅𝑖)∩̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖)) decreases the size of newly computed
𝑍𝑖 by excluding such nodes from ̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖)) which do not belong to 𝛾𝑃𝑖(𝑅𝑖). Suppose
that we omit the intersection and state that 𝑍𝑖 = ̃︂𝑝𝑟𝑒𝐴(𝛾𝑃𝑖(𝑅𝑖)). Then, 𝑍𝑖 still corresponds
to an over-approximation of nodes which cannot reach an final node in 𝑖 or less steps.
However, we have lost the crucial property of former 𝑍𝑖, which says that the sequence of
𝑍𝑖, 𝑍𝑖+1, . . . is strictly decreasing and it therefore ensures us that in case of 𝐿(𝐴) = ∅, the
algorithm always terminates. To elude entering an infinite loop, we can store each newly
computed 𝑍𝑖 in a cache and check whether we have already seen the same set of nodes
before. If so, we have detected entering an infinity loop and we are thus able to terminate
with result of 𝐿(𝐴) = ∅. Note that we are working in a finite domain, which means that
the infinite loop caused by omitting the intersection will be always detected using this
procedure.

This idea allows us to avoid computationally expensive intersections of closed sets. However,
it might cause executing more main loops of the algorithm since the newly computed 𝑍𝑖 is
not as precise as before. In addition, we are now required to store an information which
maximal size is bounded by |𝑄⌊.⌋| to the memory.

Analogously, we can state that 𝑍𝑖 = ̃︂𝑝𝑜𝑠𝑡𝐴(𝛾𝑃𝑖(𝑅𝑖)). In what follows, we will refer to this
modification as the second optimization of abstract algorithms.

To find out whether these proposed optimizations significantly reduce the cost of studied
algorithms, we use a set of generators 𝑇 ⊆ ETV, where 𝑠 ∈ {15, 20, 25, 30, 35}, 𝑓 = 0.1, 𝑑 ∈
{1, 1.5, 2, 2.5, 3}, 𝑐 ∈ {0.1, 0.3, 0.5}, 𝑝 ∈ {0, 0.5, 1}. For each 𝐺 ∈ 𝑇 , we generate 20 AFAs,
which means that we use 4 500 automata in total. We execute both abstract forward and
abstract bidirectional forward-like algorithms over these AFAs using their former definition
and both presented optimizations. We also perform a concrete forward test over these AFAs
to be able to determine whether our optimizations work better than it. The measured results
are depicted in Figure 7.3.

We have found out that not even the optimizations of former abstract algorithms cannot
beat the concrete one on average time of execution over random AFAs. However, when

47

15 20 25 30 35

10

100

1,000

10,000

|Q|

A
vg

.
du

ra
ti

on
in

m
s

A. Forw. 1. Opt
2. Opt C. Forw.

15 20 25 30 35

10

100

1,000

|Q|

A
vg

.
du

ra
ti

on
in

m
s

Bi. Forw. 1. Opt
2. Opt C. Forw.

Figure 7.3: Comparison of studied algorithms and their optimizations over 4 500 random
AFAs

using these optimizations in context of proposed bidirectional algorithms, the cost of the
emptiness test working in an abstract domain happens to be lower than the test operating
in a concrete domain.

Look for a class of AFAs which disadvantages the concrete algorithms We have
found out that the computation of intersection and complementation of closed sets corre-
spond to the most costly operations. To illustrate the influence of closed sets cardinality
on the computation time, we have measured the average and maximal sizes of sets com-
puted during the process of abstract language emptiness tests over the same 3 000 AFAs
mentioned in the paragraphs above.

In the table 7.2, we can see the average and maximal cardinality of a partition, 𝑍𝑖 and the
sets which are used to compute 𝑍𝑖. The symbol ∅ corresponds to an average value, ̃︀𝑡 is a
median and max refers to a maximal measured value.

To understand this influence more deeply, we can observe how the cardinality of 𝑍𝑖 depends
on the number of iteration in Figure 7.4.

We have observed that at first, the cardinality of ⌊𝑍𝑖⌋ and ⌈𝑍𝑖⌉ is prone to increase, which
signifies the dramatic rise of the cost of an intersection and complementation. However, in
case of abstract bidirectional algorithms, both computed sets 𝑍→𝑖 and 𝑍←𝑖 do not grow so
fast, which explains the better results in context of them.

Thus, we consider few practical examples of evaluating the emptiness test of an AFA to
decide whether the impact of costly intersection and complementation computation would
be acceptable in comparison with operations which are performed by concrere algorithms.

48

A. Forw. A. Back. Bi. Forw. Bi. Back.

∅ ̃︀𝑡 max ∅ ̃︀𝑡 max ∅ ̃︀𝑡 max ∅ ̃︀𝑡 max

𝑖 2.4 2 20 2.3 2 13 1.4 1 7 1.4 1 7
|𝑃𝑖| 7.5 5 30 5.4 4 29 7.7 6 30 7.6 6 30
|⌊𝑍𝑖⌋| 72 43 856 - - - 29.6 27 277 - - -
|⌈𝑍𝑖⌉| - - - 10.4 2 1398 - - - 2 1 52
|⌊𝛾𝑃𝑖(.)⌋| 56.4 35 627 - - - 33.5 27 239 - - -
|⌈𝛾𝑃𝑖(.)⌉| - - - 6.3 1 547 - - - 2.5 1 302
|⌊̃︂𝑝𝑟𝑒𝐴(.)⌋| 76.5 45 856 - - - 42.4 32 256 - - -
|⌈̃︂𝑝𝑜𝑠𝑡𝐴(.)⌉| - - - 27 4 1698 - - - 16.1 2 1119

Table 7.2: Subresults computed within an execution of studied algorithms

1 3 5 7 9 11 13

50

100

150

200

250

i

A
vg

.
si

ze
of

th
e

an
ti

ch
ai

n
of
Z
i

A. Forw. Zi Bi. Forw. Z→i
Bi. Forw. Z←i

1 3 5 7 9 11 13

10

20

30

40

i

A
vg

.
si

ze
of

th
e

an
ti

ch
ai

n
of
Z
i

A. Back. Zi Bi. Back. Z→i
Bi. Back. Z←i

Figure 7.4: Average cardinality of a set ⌊𝑍𝑖⌋ or ⌈𝑍𝑖⌉ with respect to a iteration 𝑖 of abstract
algorithms

7.4 Comparison of Studied Algorithms in Context of Empti-
ness of NFA Intersection

.

Definition 51 Let 𝐴,𝐵 be two AFAs. In what follows, the pseudointersection of two
AFAs 𝐴,𝐵, will be every AFA 𝐴 ̃︀∩ 𝐵, which satisfy the property that 𝐿(𝐴 ̃︀∩ 𝐵) = ∅ ⇔
𝐿(𝐴) ∩ 𝐿(𝐵) = ∅. In case of 𝐿(𝐴 ̃︀∩ 𝐵) ̸= ∅, the language of 𝐿(𝐴 ̃︀∩ 𝐵) could be equal to
anything except the empty language.

Suppose that 𝐴 = (𝑄𝐴,Σ𝐴, 𝑆𝐴, 𝑅𝐴, 𝐹𝐴) and 𝐵 = (𝑄𝐵,Σ𝐵, 𝑆𝐵, 𝑅𝐵, 𝐹𝐵) are two NFAs,
where 𝑄𝐴∩𝑄𝐵 = ∅, 𝑎 ∈ Σ𝐴 and 𝑠0, 𝑎0, 𝑏0 ̸∈ 𝑄𝐴∪𝑄𝐵. Then, we can replace the image of the
transition relations with logical variables conncected by conjunctions and obtain two AFAs
𝐴AFA = (𝑄𝐴,Σ𝐴, 𝑆𝐴, 𝛿𝐴, 𝐹𝐴), 𝐵AFA = (𝑄𝐵,Σ𝐵, 𝑆𝐵, 𝛿𝐵, 𝐹𝐵), where 𝐿(𝐴) = 𝐿(𝐴AFA) and

49

𝐿(𝐵) = 𝐿(𝐵AFA). To decide whether 𝐿(𝐴) ∩ 𝐿(𝐵) = ∅, it is sufficient to find out whether
𝐿(𝐴AFA ̃︀∩ 𝐵AFA) = ∅. Thus, we present an algorithmic way to create a pseudointersection
of given AFAs without evaluating their language.

To achieve this goal, we can simply consider three new transitions 𝑈 = {(𝑠0, 𝑎, 𝜑), (𝑎0, 𝑎, 𝜑𝑎),
(𝑏0, 𝑎, 𝜑𝑏)}, where 𝜑 = 𝑎0 ∧ 𝑏0, 𝜑𝑎 =

⋁︀
𝑠∈𝑆𝐴

𝑠 and 𝜑𝑏 =
⋁︀
𝑠∈𝑆𝐵

𝑠 and create an automaton
𝐴AFA ̃︀∩ 𝐵AFA = (𝑄𝐴 ∪𝑄𝐵 ∪ {𝑠0, 𝑎0, 𝑏0},Σ𝑎 ∪ Σ𝑏, {𝑠0}, 𝛿𝐴 ∪ 𝛿𝑏 ∪ 𝑈,𝐹𝐴 ∪ 𝐹𝐵).

Notice that we can use this method to create a pseudointersection of more than 2 NFAs in
once. In what follows, we will call each former NFA which was used to create a pseudoint-
ersection a component of an intersection.

Suppose that 𝑇 ⊆ ETV are all the generators of extended Tabakov-Vardi model such that
𝑠 = 10, 𝑟 ∈ {5, 10, 15, 20}, 𝑓 = 0.1, 𝑐 = 0.0, 𝑝 ∈ {0, 0.5, 1}. Then, we generate 60 AFAs using
each generator 𝐺 ∈ 𝑇 and we separate them into 20 triplets (𝐴,𝐵,𝐶). It is easy to see
that we are able to construct 240 AFAs 𝐴 ̃︀∩ 𝐵 ̃︀∩ 𝐶. Let us execute studied and proposed
algorithms over these pseudointersections of AFAs.

5 10 15 20

100

1,000

10,000

Transition density d of each component

A
vg

.
du

ra
ti

on
in

m
ill

is
ec

on
ds

A. Forw. C. Forw. Bi. Forw.

5 10 15 20

10

100

1,000

10,000

Transition density d of each component

A
vg

.
du

ra
ti

on
in

m
ill

is
ec

on
ds

A. Back. C. Back. Bi. Back.

Figure 7.5: Average execution time of an emptiness test of 3 NFAs intersection over 240
triplets of random NFAs

The results are summarized in Figure 7.5, which shows the dependency between transition
density of each component of an pseudointersection and the average time of evaluation
the emptiness tests. We have observed that in case of the forward fashion, the abstract
algorithms gave us significantly better results than the concrete one. We can conclude
that the growth of the transition density of each component of an pseudointersection even
reduces the cost of abstract forward and abstract bidirectional forward-like tests.

However, the emptiness tests working in backward fashion brought us completely different
results. We have found out that the concrete backward test still works much more effective
than the abstract backward ones. Nevertheless, we can observe again that the cost of these
algorithms decreases when the transition density of each component grows.

50

7.5 Comparison of Studied Algorithms in Context of NFA
Inclusion

Let 𝐴,𝐵 be two NFAs. To determine whether 𝐿(𝐴) ⊆ 𝐿(𝐵), we can use the formula

𝐿(𝐴) ⊆ 𝐿(𝐵)⇐⇒ 𝐿(𝐴) ∩ 𝐿(𝐵) = ∅.

We can again reuse the idea of simple NFA to AFA conversion and pseudointersection
presented in 7.4. Then, we conclude that

𝐿(𝐴) ⊆ 𝐿(𝐵)⇐⇒ 𝐿(𝐴 ̃︀∩ 𝐵) = ∅.

Let us discuss the possibility of converting an AFA 𝐵 = (𝑄,Σ, 𝑆0, 𝛿, 𝐹), where 𝑠𝑖𝑛𝑘 ̸∈ 𝑄
to its complement 𝐵, such that 𝐿(𝐵) = 𝐿(𝐵). First, we convert 𝐵 to a corresponding
AFA 𝐵′ = (𝑄 ∪ {𝑠𝑖𝑛𝑘},Σ, 𝑆0, 𝛿′, 𝐹), such that we state 𝛿′ = {(𝑞, 𝑎, 𝜑) ∈ 𝛿 | 𝜑 ̸= ⊥}
∪ {(𝑞, 𝑎, 𝑠𝑖𝑛𝑘) | ∃(𝑞, 𝑎, 𝜑) ∈ 𝛿 : 𝜑 = ⊥} ∪ {(𝑠𝑖𝑛𝑘, 𝑎, 𝑠𝑖𝑛𝑘) | 𝑎 ∈ Σ}.
Then, we create a function 𝛿′′ by transforming each element (𝑞, 𝑎, 𝜑) ∈ 𝛿′. We replace
each occurrence of ∧ by ∨ in 𝜑 and vice versa. Since we use only formulae in DNF in our
implementation, we obtain a CNF by this procedure, which will be then converted back to
DNF using the distributive laws of Boolean algebra [5].

Finally, we can state that 𝐵 = (𝑄 ∪ {𝑠𝑖𝑛𝑘},Σ, 𝑆0, 𝛿′′, 𝑄 ∖ 𝐹).

In what follows, we consider 𝑇 ⊆ ETV to be set of all generators of extended Tabakov-Vardi
model, such that 𝑠 ∈ {10, 15, 20}, 𝑑 ∈ {1, 2, 5, 10, 20}, 𝑝 ∈ {0, 0.5, 1}, 𝑐 = 0.0, 𝑓 = 0.1. For
each 𝐺 ∈ 𝑇 , we generate 40 AFAs and we separate them to 20 triplets (𝐴,𝐵). We are thus
able to construct 900 AFAs 𝐴 ̃︀∩ 𝐵. Let us execute studied and proposed algorithms over
these pseudointersections of AFAs.

The measured results are depicted in the following charts. In Figure 7.6, we show how
the average duration of studied algorithms evaluation depends on a state-set cardinality of
each compoment of a pseudointersection. We have observed that the abstract algorithms
do not reduce the cost of emptiness test in context of deciding NFA inclusion, if a state-set
cardinality is our main criterion.

Thus, we tried to summarize the dependency between a transition density and an average
duration of studied algorithms execution. The graphs shown in Figure 7.7 expresses this
dependency. We can conclude that in context of concrete algorithms, the average duration
of concrete algorithms execution increases while the transition density grows, while the
average duration of abstract algorithms execution tends to decrease. In case of 𝑑 = 20, the
abstract bidirectional forward-like algorithm brougth us better results than the concrete
one. However, the concrete backward algorithm remains unbeaten.

Next, we have chosen a single generator 𝐺 ∈ ETV, where 𝑠 = 30, 𝑓 = 0.1, 𝑝 = 0.5, 𝑐 = 0.0
and 𝑑 = 10 to generate 800 tuples (𝐴,𝐵) of AFA to test our hypothesis about the influence
of a high transition density to average duration of our algorithms.

To achieve this goal, we have used our optimizations presented in Section 7.3. Concretely,
we have chosen the second optimization of the abstract forward algorithm and the second

51

10 15 20

100

1,000

10,000

|Q| of each component

A
vg

.
du

ra
ti

on
in

m
s

A. Forw. C. Forw. Bi. Forw

10 15 20
1

10

100

1,000

|Q| of each component

A
vg

.
du

ra
ti

on
in

m
s

A. Back. C. Back. Bi. Back.

Figure 7.6: Average execution time of NFA inclusion test over 900 tuples of random AFAs

1 2 5 10 20
10

100

1,000

10,000

Transition density d

A
vg

.
du

ra
ti

on
in

m
s

A. Forw. C. Forw. Bi. Forw.

1 2 5 10 20

10

100

1,000

Transition density d

A
vg

.
du

ra
ti

on
in

m
s

A. Back. C. Back. Bi. Back.

Figure 7.7: Average execution time of NFA inclusion test over 900 tuples of random AFAs

52

optimization of the bidirectional abstract forward-like algorithm to test a language inclusion
between NFAs with 30 states.

In Figure 7.8 on left, we can see the comparison between second optimization of the abstract
forward algorithm and the concrete forward algorithm. Note that the scale of the axis is
logarithmic. We have observed that in case of a huge transition density 𝑑 = 10, there is
a significant difference between execution of a concrete forward test over automata which
are empty and over automata which are non-empty. In case of non-empty automata, the
concrete forward test terminates very fast, while in case of empty automata, the abstract
algorithms gives us better results.

Finally, we can notice in Figure 7.9, that the abstract bidirectional forward-like algorithm
gives us slightly better results in case of non-empty automata than the former abstract one.

631 1,000 1,580
10

100

1,000

10,000

Abstract forward algorithm in ms

C
on

cr
et

e
fo

rw
ar

d
al

go
ri

th
m

in
m

s

L(A) ̸⊆ L(B) L(A) ⊆ L(B)

158 251 398 631 1,000 1,580 2,510
10

100

1,000

10,000

Bi. forward-like algorithm in ms

C
on

cr
et

e
fo

rw
ar

d
al

go
ri

th
m

in
m

s

L(A) ̸⊆ L(B) L(A) ⊆ L(B)

Figure 7.8: Comparison of forward algorithms over 800 instances of NFA inclusion problem

102.8 103 103.2

102.5

103

Abstract forward algorithm in ms

B
i.

fo
rw

ar
d-

lik
e

al
go

ri
th

m
in

m
s

L(A) ̸⊆ L(B) L(A) ⊆ L(B)

Figure 7.9: Comparison of forward algorithms over 800 instances of NFA inclusion problem

53

Chapter 8

Conclusion

In this thesis, we have presented several algorithms for testing emptiness of alternating finite
automata and we experimentally evaluated the performance of these studied algorithms over
thousands of randomly generated automata.

First, we have introduced the crucial theoretical background about NFAs and AFAs and
we discussed the necessity not to use the naive AFA to NFA conversion to decide an AFA
emptiness. Thus, we presented so-called antichain-based concrete forward and concrete
backward algorithms which avoid the explicit AFA to NFA conversion.

Next, we presented both abstract forward and abstract backward algorithms which come up
with the idea of a abstract domain of states to reduce a size of given AFAs and possibly
facilitate the emptiness test. We have modified the studied algorithms to make them work
properly, since the former version gave us wrong results in some edge cases.

Subsequently, the author of this thesis proposed his own abstract bidirectional forward-like
and abstract bidirectional backward-like algorithms for deciding AFA emptiness, which are
based on the concept of the concrete ones. The proposed algorithms take advantage of the
former abstract algorithms and compute additional useful information which can possibly
accelerate the process of the AFA emptiness testing.

Then, we have discussed the efficient way to represent all the data structures within the
implementation of presented algorithms. The author proposed his own way to efficiently
compute an inverse transition relation of an AFA to enable the possibility to effectively
inspect the behaviour of an AFA.

Finally, we have introduced a Tabakov-Vardi model for generating random NFAs and we
proposed its extension to be able to generate AFAs and influence the process of random
generating by more parameters. We have used this extended model to generate thousands
of random AFAs and we have experimentally evaluated studied algorithms over these AFAs.

We have observed that in case of total random AFAs, the abstract algorithms do not bring
us any advantage in context of evaluation speed and that the former concrete algorithms
work more efficiently.

Thus, we have inspected the behaviour of abstract algorithms in detail to find out which
operations correspond to the greatest efficiency bottleneck. It was discovered that the
computation of closed set intersection and closed set complementation massively decelerate

54

the whole procedure. To deal with this problem, we have figured out few optimizations
of both former and proposed abstract algorithms to avoid computing an intersection of
closed set so often. One of the optimizations brings the idea of giving up on precision
of iteratively computed information in exchange for the possibility not to perform costly
closed set intersection over large sets. We have observed that this optimization significantly
reduce the cost of presented abstract algorithms and in case of huge transition density, it
is possibly able to work faster than the concrete algorithms.

Next, we considered several real-world problems which are connected to the AFA emptiness
test. Concretely, we have introduced the NFA inclusion and the NFA intersection problems
which are solvable using studied algorithms. We have generated hundreds of NFAs to
experiment with. We have the observed that in context of intersection of several NFAs, the
forward abstract algorithms give us significantly better results than the concrete forward
one and they tend to improve when increasing transition density. However, the concrete
backward algorithm still works better than the abstract backward ones.

In future, we could try to find more classes of AFAs which reduce the cost of the abstract
algorithms in comparison to the concrete ones. We could also design another model for
generating random AFAs to somehow disadvantage the concrete backward algorithm or
even evaluate studied algorithms over real-world benchmarks. Next, we can figure out
an improvement for the abstract backward algorithms to avoid double evaluating of a
complement of a closed set when computing a new abstract domain.

55

Bibliography

[1] Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. Springer,
1981. Available at: http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.

[2] Erné, M., Koslowski, J., Melton, A. and Strecker, G. E. A primer on Galois
connections. Annals of the New York Academy of Sciences. Blackwell Publishing Ltd
Oxford, UK. 1993, vol. 704, no. 1, p. 103–125.

[3] Fisher, C., Fogarty, S. and Vardi, M. Random Models for Evaluating Efficient
Büchi Universality Checking. In: Ghosh, S. and Prasad, S., ed. Logic and Its
Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, p. 91–105. ISBN
978-3-662-54069-5.

[4] Ganty, P., Maquet, N. and Raskin, J. Fixed point guided abstraction refinement
for alternating automata. Theoretical Computer Science. 2010, vol. 411, p. 3444–3459.
DOI: https://doi.org/10.1016/j.tcs.2010.05.037.

[5] Halmos, P. and Givant, S. Introduction to Boolean Algebras. Springer New York,
2009. 8–13 p. Available at: https://doi.org/10.1007/978-0-387-68436-9.

[6] Larsen, K. S. A Note on Lattices and Fixed Points. 2007.

[7] Meduna, A. Automata and languages : theory and applications. London New York:
Springer, 2000. ISBN 978-1852330743.

[8] Tabakov, D. and Vardi, M. Y. Experimental Evaluation of Classical Automata
Constructions. In: Sutcliffe, G. and Voronkov, A., ed. Logic for Programming,
Artificial Intelligence, and Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, p. 396–411. ISBN 978-3-540-31650-3.

[9] Tarski, A. et al. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics. Pacific Journal of Mathematics. 1955, vol. 5, no. 2,
p. 285–309.

56

http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
https://doi.org/10.1007/978-0-387-68436-9

	Introduction
	Preliminaries
	Nondeterministic Finite Automaton
	Language Emptiness Test of an NFA
	Alternating Finite Automaton
	AFA to NFA Transformation
	Naive Language Emptiness Test of an AFA

	Concrete Forward and Backward Algorithms Deciding the AFA Emptiness
	Predicate Transformers
	Fixed Points of Predicate Transformers
	Antichains
	Significant Properties of Antichains

	AFA Emptiness

	Abstract Forward and Backward Algorithms Deciding the AFA Emptiness
	Lattice of Partitions
	Concrete and Abstract Domain
	Abstraction and Concretization Functions
	Abstraction and Concretization Functions over Formulae

	Abstract Alternating Automaton
	Language of an Abstract AFA
	Predicate Transformers over Abstract AFA

	Representability of Concrete Nodes in an Abstract Domain
	The Abstract Algorithms
	The Abstract Forward Algorithm
	The Abstract Backward Algorithm

	Abstract Bidirectional Algorithms Deciding the AFA Emptiness
	Motivation of Using a Bidirectional Approach
	Forward-like Abstract Bidirectional Algorithm
	Backward-like Abstract Bidirectional Algorithm
	Properties of Forward-like and Backward-like Algorithms

	Design and Implementation
	Alternating Automata
	Closed Sets
	Predicate Transformers
	Partitions

	Experimental Comparison of Algorithms Deciding AFA Emptiness
	Tabakov-Vardi Model
	Extended Tabakov-Vardi Model
	Initial Observation of Randomly Generated AFAs Behaviour
	Comparison of Studied Algorithms in Context of Emptiness of NFA Intersection
	Comparison of Studied Algorithms in Context of NFA Inclusion

	Conclusion
	Bibliography

