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Abstract
The goal of this thesis is to simplify the creation and modification of complex system models
and to create a reliable and performant tool to serve this purpose. Primarily, an internal
data model is defined with an emphasis on effectiveness and avoiding redundancy. The
editor, created to support modeling in OPM (Object-Process Methodology), is implemented
with the help of web technologies and, most importantly, the web diagramming library
Cytoscape.js. The editor can automatically propagate relationships to other diagrams as
well as derive new relationships from existing ones. Both of which save time and make the
modeling process easier.

Abstrakt
Cílem této práce je zjednodušit tvorbu a modifikaci komplexních modelů systémů a také
vytvořit spolehlivý a výkonný nástroj, který je schopen splnit tento účel. Vnitřní datový
model editoru je navržen s důrazem na efektivitu a vyhnutím se redundanci. Výsledný
editor, který je vytvořen pro podporu modelování v OPM (Object-Process Methodology),
je implementován s pomocí webových technologií, především s knihovnou pro tvorbu dia-
gramů na webu, Cytoscape.js. Editor je schopný automaticky propagovat vazby do dalších
diagramů a také odvozovat nové vazby od existujících, což šetří čas a ulehčuje proces mod-
elování.
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Rozšířený abstrakt
Návrh reálných i softwarových systémů se postupem času stává čím dál problematičtější
díky jejich zvyšující se složitosti. Důkladné pochopení systému, jeho struktury, chování
nebo požadavků na jeho funkcionalitu, je nezbytné pro jeho úspěšný vývoj. Pokud je toto
pochopení nedostačující, může docházet k nákladným chybám, což plýtvá časem i penězi.

Jedním z osvědčených způsobů, jak bojovat se složitostí, je využívat modelů. Model
je abstrakce definovaná grafickými diagramy, které popisují daný aspekt modelovaného
systému. Například některé diagramy mohou popisovat strukturu systému, zatímco jiné
popisují jeho chování. Dále často tyto diagramy neukazují celý systém, ale pouze jeho
určité části.

Tento přístup při tvorbě systému je obecně přijímaný v tradičních inženýrských disci-
plínách, jako jsou letectví, stavebnictví nebo automobilový průmysl, a je především využíván
v případech, kdy je kladen důraz zejména na spolehlivost a bezpečnost. Nicméně v kontextu
softwarového inženýrství, které je v porovnání se zmíněnými mnohem mladším oborem, není
modelování vždy zavedenou praktikou.

Model může být kreslený ručně, jako prostředek pro rychlé sdělení složité myšlenky.
Obecně ale chceme od modelu to, aby byl kompletní a neobsahoval chyby. Tvorba takového
modelu může být časově náročná, a proto je důležité používat spolehlivý editor modelů,
který usnadňuje práci.

Tato práce má za cíl zejména vytvořit editor umožňující práci s komplexními modely.
Nejdříve ale pojednává o využití modelů při vývoji softwaru, které se často nazývá vývoj
řízený modely (angl. Model-driven development). Poté jsou představeny výhody tohoto
přístupu a je zhodnocena aktuální míra použití v praxi. Aby byl model univerzálně pocho-
pitelný a aby jeho elementy měli jednoznačný význam, musí model odpovídat pravidlům.
Tato pravidla se nazývají modelovacími jazyky a určují význam elementů a říkají, jak mohou
být elementy spojeny nebo kombinovány. Část práce je věnována modelovacím jazykům,
jmenovitě UML (Unified Model Language), SysML (System Modeling Language) a OPM
(Object-process methodology). UML a SysML – 2 nejrozšířenější modelovací jazyky – jsou
popsány krátce, zatímco OPM – méně známý, ale rozšiřující se jazyk – je popsán do detailu.
Výsledný editor, který je vytvořen pro modelovací jazyk OPM, umožňuje tvorbu a modi-
fikaci komplexních modelů. Nejdůležitějším předpokladem pro tento požadavek je kvalitní
a propracovaný návrh interního modelu dat, který je navržen se zaměřením na efektivitu a
s vyvarováním se duplicitě dat. Dále model umožňuje jednoduché odvozování nových vazeb
od již existujících.

Před implementací editoru je provedena důkladná analýza dostupných technologií, ze-
jména knihoven pro tvorbu diagramů. Z tohoto průzkumu vzešlo rozhodnutí, že knihovna
Cytoscape.js je pro účel editoru pro jazyk OPM nejvhodnější. Samotný editor je pak mimo
tuto knihovnu vytvořen za pomocí webových technologií, programovacího jazyka JavaScript
nebo knihovny pro tvorbu uživatelských rozhraní – React. Následuje popis implementace a
ovládání editoru, přičemž některé důležité a zajímavé funkcionality jsou popsány podrob-
něji.

Nakonec je výsledný editor zhodnocen a porovnán s již existujícími nástroji. Kvůli
časové náročnosti není editor úplný a neobsahuje některé méně podstatné funkce, které by
byly důležité pro potenciální uživatele. Umožňuje ale efektivní práci s komplexními modely
díky svému internímu modelu dat a narozdíl od existujících nástrojů umožňuje odvozovat
nové vazby a snadnou propagaci již existujících vazeb. Obě tyto funkce zjednodušují proces
modelování a šetří čas uživatele.
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Chapter 1

Introduction

When designing a system or gaining deeper knowledge about an existing one, we could
encounter a great amount of complexity. As software and real systems become more and
more complicated, the human mind does not adapt well. It takes time to understand
complicated structures, all their parts, and how they interact. And if comprehension is
poor, mistakes are being made, which wastes valuable time and money.

One way to fight the complexity is with the use of models. Models are abstractions;
diagrams that demonstrate one of the system’s aspects, for instance, structure or behavior.
They may show a certain part of the modeled system, describing only a limited subset of
related components, which facilitates understanding.

This approach to designing systems has been prevalent in traditional engineering fields,
for example, automotive, aerospace, defense, and infrastructure. Especially in cases where
reliability, security, and safety are of great importance. However, software engineering, as
a relatively young discipline, has a long way to go in this regard.

A model should not be an arbitrarily drawn scribble. But instead, the way it is con-
structed should conform to a set of rules, and the elements from which the model is as-
sembled must have a defined and unambiguous meaning. Because of this, several modeling
languages have been established throughout the years, most notably: UML (Unified Mod-
eling Language) and SysML (System Modeling Language). A new modeling language,
introducing a distinct way of constructing models, has been emerging in recent years, OPM
(Object-Process Methodology).

A model created in a modeling language can be drawn by hand as a way to quickly frame
a thought or convey ideas to others. But many times we want a model to be complete and
without flaws so that others may use it in their work. A proper diagram editor is needed
for the effective creation of models. Not only must the tool be reliable, but should also
save modelers’ time, and be intelligent, assisting the modeler in overcoming complexity. As
models are increasingly more elaborate, the performance of the editor is at the center of
attention as well.

One of the outcomes of this thesis is a prototype of a diagram editor1. The modeling
language for which the editor is implemented was chosen to be OPM. To develop a good
editor, theoretical foundations must be understood first. Then, a suitable architecture can
be designed for the editor to provide the required functionality.

In Chapter 2, MDD (Model-Driven Development), the model-centered software engi-
neering practice, is examined. Its definition is presented as well as how widely it is spread

1Available at: https://opm-editor.netlify.app/
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and the possible benefits it could bring us. This chapter also includes overviews of modeling
languages that specify created models. UML and SysML are described in short, whereas
OPM, the chosen language for the editor, is explained more thoroughly. In this chapter,
the usefulness of models is emphasized, so right in the following Chapter 3, this principle
is put into practice. Here, a data model, which is designed to satisfy the requirements
of OPM, is proposed. In the next chapter, Chapter 4, a survey of available technologies
is done, and the most suitable ones are chosen and justified. Additionally, this chapter
presents a high-level architecture of the editor. In Chapter 5, the editor is finally created,
and several interesting aspects of the implementation are discussed. Lastly, in Chapter 6,
the implemented editor is assessed, compared with the competition, and its strengths and
shortcomings are evaluated.

3



Chapter 2

Model-driven development

“Model-driven development (MDD) is simply the notion that we can construct a model of
a system that we can then transform into the real thing” [11]. MDD is a software engineer-
ing practice that places the models at the focus rather than the resulting program and
tries to use these models efficiently throughout the development process. MDD is also
known as model-based development, model-driven engineering, or model-driven software
development.

In this chapter, we will look at what MDD is, why and when it is used, and what
benefits it brings us. Next, we quickly examine the most widely used modeling languages
in software development: UML (Unified Modeling Language) and SysML (System Modeling
Language). Following, is the OPM (Object-Process Methodology), which will be explored
in greater detail as the editor is implemented for this language.

2.1 What is a model?
The word model could mean different things in different contexts, but generally speaking,
a model is an abstraction of reality. It simplifies the reality to make it easier to understand
and leaves out unnecessary details so that the final product could be easily created. A
model is a collection of formal elements that represent a system and is built to serve a
purpose, for example, communication of ideas, completeness checking, cost estimations, or
generation of test cases [11].

In software development, we usually think of models as diagrams, which describe a
modeled system, and are specified in a modeling language, e.g., UML or SysML. These
diagrams show the system’s various aspects, for example, its structure or behavior. An
advantage of models is that they are independent of the implementation and are not bound
to a specific programming language. They are easier to develop, understand, and maintain.
An example of a model is shown in Figure 2.1.

2.2 Current situation
The use of models is widespread in traditional engineering fields such as the automotive
and aerospace industry. In this context, the model-based approach is often called MBSE
(Model-Based Systems Engineering). All parts of a product are carefully thought out before
manufacturing the product itself, and models help visualize difficult problems and find their
solutions. In software development, it is quite common to do no preparation at all before

4



Person

+ name: string

+ emailAddress: string

Employee

+ employeeID: int

+ salary: int

+ promote(): bool

Customer

+ customerID: int

+ delete(): bool

Bank Acount

+ balance: double

+ deposit(double): bool

+ withdraw(double): bool

Figure 2.1: A simple example of a UML class diagram showing a part of a hypothetical
banking system.

the actual implementation. One of the reasons is that the software industry is relatively
new and industry-wide standards have not yet been established. This might not matter for
small and short-lived projects. For bigger projects, however, making bad design decisions
right at the start will certainly increase costs, waste time, or might even result in the failure
of the project. Software systems are especially known for their complexity; therefore, the
use of modeling techniques could be beneficial to the software development industry [15].

Table 2.1 presents the results of a survey [8] regarding the adoption of MBSE. The
table shows in which aspects the respondents see the biggest advantages of the model-
based approach. The conclusion is that most system engineers see the adoption as helpful,
while the opinion of it being a hindrance in their work is quite rare.

2.3 Benefits of model-driven development
Using models and modeling techniques at least partly in the development process, or putting
models at the center of attention and making full use of MDD’s features, has its upsides.
The following are the potential benefits [7]:

• Enhanced communication: Pictures say more than words. A diagram is easier
to understand than a paragraph in a documentation. On top of that, diagrams con-
forming to a standardized modeling language have an expected and unambiguous
meaning.

• Reduced development risks: A thought-out model reduces the chances of missed
details and can be a subject of early validation and verification. Detecting issues
before starting the implementation saves time and money later in the development
process. A model also provides a more accurate foundation for determining estimates.

• Improved quality: In MDD, the requirements are also part of the model. The
completeness of requirements and their traceability helps in achieving the best possible
software quality.

5



Big
improv.

Some
improv.

No
change

Some
impair.

Big
impair.

Not
applicable

Architecting
and design 49% 25% 10% 0% 2% 15%

Requirement
analysis 44% 29% 11% 0% 2% 15%

Architectural
view 42% 26% 10% 2% 2% 20%

Traceability
between
system
requirements
and the
realization

36% 27% 14% 2% 2% 19%

Technical
reviews 23% 33% 19% 7% 0% 18%

Verification
and validation 18% 38% 26% 3% 2% 13%

Technical risk
assessment 13% 38% 25% 3% 2% 19%

Table 2.1: In what aspects and to what extent has the addition of MBSE helped. (Taken
from [8])

• Increased productivity A good model promotes re-usability and saves time, es-
pecially during integration and testing phases. Automated code and documentation
generation is sometimes also possible.

2.4 Modeling languages
A modeling language is a notation for expressing models. It consists of semantics, the
meanings of elements, and syntax, the rules by which elements can be combined and con-
nected. Two modeling languages have been dominating the scene and have become industry
standards: UML and SysML.

The following sections take a closer look at these two modeling languages together
with OPM, which is has been getting traction lately, and compare their differences and
similarities.

Overview of UML

UML [5], introduced in 1997, was a fusion of many visual modeling languages that coexisted
in the 1990s. It was a result of a need for a versatile and standardized modeling language.
UML is designed for software systems and therefore supports key software concepts like
OOP (Object-Oriented Programming).

Software engineers use UML in three distinct ways [5]:

6



• Sketch: Used informally, without paying attention to details, and as a quick way to
communicate ideas or explain how parts of a system work. This is how UML is used
most of the time.

• Blueprint: Used formally, with attention to detail and completeness. It is a re-
sult of system designer’s efforts that can be turned directly into implementation by
programmers.

• Programming language: Used to generate code directly from the model. It requires
advanced tooling and usually generates only a general boilerplate code or a code
skeleton.

Diagram types

The most recent version (UML 2.5) includes fourteen different types of diagrams. They
can be divided into two main categories: structure and behavior. The following is their list
along with short descriptions of the most important ones. This taxonomy is visualized in
Figure 2.2.

• Structure diagrams:

– Class diagram: Shows the relationships between classes as well as their at-
tributes and methods. It is the most commonly used diagram type. An example
is shown in figure 2.1.

– Object diagram: Shows concrete examples (instances) of classes from a class
diagram.

– Component diagram: Shows relationships between components (higher level
than classes).

– Deployment diagram: Shows how the system is deployed with an emphasis
on hardware resources.

– Others: Composite structure diagram, Package Diagram, Profile dia-
gram.

• Behavior diagrams

– Use Case Diagram: Shows how the system is used by its users.
– State Machine Diagram: Shows states and state changes caused by events.
– Activity Diagram: Shows the order of actions that are executed as a reaction

on an event.
– Sequence Diagram: Shows the order and structure of messages sent between

parts of a system.
– Others: Communication Diagram, Timing Diagram, and Interaction

Overview Diagram.

7



Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Interaction
Diagram

State
Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram Notation: UML

Behaviour
Diagram

Structure
Diagram

Figure 2.2: A taxonomy of UML diagram types showing the two main categories: behavior
and structure. (Taken from [16])

Overview of SysML

SysML [7] is a general-purpose modeling language, which means that it is not only suitable
for software systems, but also for systems of all kinds. It provides various types of dia-
grams, each focusing on a different aspect of the modeled system. SysML 1.0 was officially
introduced in 2007 and is heavily inspired by UML.

SysML is a reaction to UML’s code-centric nature. It takes seven of the original fourteen
UML’s diagrams and adds additional two. SysML is much more expressive, allowing to
model a wide range of systems. The smaller set of diagrams results in the language being
simpler and easier to understand.

Diagram types

SysML is a collection of a total of nine different types of diagrams, each describing the
modeled system from a different point of view. They can be further divided into four
categories called pillars (Structure, Behavior, Requirement, and Parametric). Diagrams
from structure and behavior pillars are either the same as in UML or slightly modified
to be less software-based, while the requirement and parametric diagrams are entirely new
additions to SysML. Figure 2.3 presents the entire taxonomy of SysML diagrams along with
differences with UML. The following are short descriptions of the diagrams [7].

• Structure diagrams:

– Block Definition diagram: Shows relationships between system elements, i.e.,
their hierarchy, dependencies, and associations. Based on UML’s Class diagram.

– Internal Block diagram: Shows the internal structure of elements. Based on
UML’s Composite Structure diagram.

8



– Package diagram: Shows parts of the model grouped into packages and presents
a high-level view of the system.

• Behavior diagrams

– Activity diagram Modified from UML with added support for modeling con-
tinuous systems and probabilities.

– Sequence diagram, State Machine and Use Case diagram are identical to
UML and are already described in 2.4.

• Requirement diagrams: Shows the system requirements and their relationships to
the model elements.

• Parametric diagrams: Shows the constrains of the system. Could be in the form
of a mathematical or physical equation.

Figure 2.3: SysML diagram taxonomy. Diagram types devided into four main pillars:
Behavior, Requirement, Structure and Parametric. Figure also depicts similarities and
differences with UML2. (Taken from [10])

Overview of OPM

OPM [4] is a modeling language first introduced by Dov Dori in 1995 and then standardized
by ISO in 2014 as ISO 194501 [14]. What makes OPM stand out from other modeling
languages is its simplicity. It builds on the idea that the two main building blocks of

1https://www.iso.org/standard/62274.html
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every system are objects and processes. An OPM model does not consist of multiple types
of diagrams. Instead, OPM uses only one type of diagram to model all aspects of the
modeled system. Another notable difference is that a proper OPM model consists of two
parts: OPD (Object-Process Diagram), the graphical representation of a model, and OPL
(Object-Process Language), the textual representation. The next following sections explain
all the essential parts an OPM model is compiled of.

OPM Things

Elements in OPM are called things, and they can be either objects or processes. This is
the smallest set of elements that a language must contain to model any system. This fact
is sometimes called a minimal ontology. According to [4], a language with a smaller set of
elements (that is, a smaller ontology) should be preferred to a language with a larger set of
elements.

Objects, stateful or stateless, are the things that exist. They are parts of the system
or things that interact with it from the outside. Processes alter objects. They create or
consume objects or change objects’ states.

Both objects and processes can be further characterized by two attributes: essence and
affiliation. The essence value determines whether the object is physical or informatical.
Physical objects in an OPD are denoted by a shadow. Affiliation can be systemic or
environmental and describes whether an object is part of the system or its environment.
Environmental things are denoted with a dashed border, and systemic things are denoted
with a solid border. The visual representations of OPM things as well as different attribute
representations of essence and affiliation are shown in Figure 2.4.

Figure 2.4: Visual representations of objects, stateful objects, and processes with different
combination of attributes. (Redesigned from [4])

10



OPM Edges

Edges between things represent their relationship. OPM edges can be divided into two
categories: structural and procedural. Structural edges express static relationships, while
procedural edges express a dynamic aspect of a system. The following is a list of the most
common OPM edges with brief descriptions. The visual representations of all edges are
shown in Figure 2.5.

• Fundamental structural edges: A relationship between one superior thing and at
least one inferior thing.

– Aggregation-participation: Between a whole and its parts.
– Exhibition-characterization: Between a thing and its features (attributes).
– Generalization-specialization: Between a superclass and its subclasses.
– Classification-instantiation: Between a class and its instances.

• Tagged structural edges: Edges with a label that explicitly states the nature of
their relationship.

– Unidirectional tagged edge: The relationship goes from a source to a target.
– Bidirectional tagged edge: One edge that states two relationships.
– Reciprocal tagged edge: The relationship goes both ways.

• Procedural transforming edges: Edges that express a dynamic aspect of a system.

– Consumption edge: A source object is consumed by a target process.
– Result edge: A target object is created by a source process.
– Effect edge: A process has an effect on an object.
– In-out edge pair: Two edges showing that a process changes the state of an

object from the input state to the output state.

• Procedural enabling edges: Used between a process and an object which is re-
quired for that process to occur.

– Agent edge: The required object is a human.
– Instrument edge: The required object is nonhuman.

• Control edges: Procedural edges with added semantics that are denoted by a control
modifier at its edge arrow.

– Event edge: The source element is also a trigger for the target process.
– Condition edge: The target process is only executed if the source condition

element is present or at the desired state. Otherwise, the process is skipped.
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Figure 2.5: Visual representation of the most common OPM edges. (Redesigned from [4])

Object-Process Language

In addition to the visual diagram (OPD), another form of representation is provided by the
OPM diagramming tools, OPL (Object-Process Language). OPL is a textual representation
of a model and is expressed as a series of simple English sentences. The visual and textual
representations are semantically equal, so that one can be deduced from the other. This
duality makes understanding the model easier for people who are not so familiar with the
methodology. It also brings another form of verification, as it is possible to compare the
generated OPL sentences with the diagram and verify that they match our intent.

An example is shown in Figure 2.6. In this figure, there is a simple diagram that
contains an object, a process, and a consumption edge between them. At the bottom, there
are three OPL sentences describing the aforementioned diagram. The first two sentences
describe the existence of two things, and the third sentence describes the edge between
them. Additionally, the things mentioned in the sentences are color-coded to distinguish
objects and processes.
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Figure 2.6: The relationship between an OPD (Object-Process Diagram) and an OPL
(Object-Process Language)

Complexity management of OPM

Rather than utilizing many types of diagrams, OPM only uses one type to model all aspects
of a system. To deal with complexity, models are hierarchical, consisting of many diagrams
arranged in a tree-like structure (Diagram Tree). Each diagram describes a different part
of a system at a different level of detail. Diagrams at the top of the hierarchy are the
most abstract ones, presenting a high-level view of a system, while diagrams at the bottom
are the most detailed and concrete ones. A modeler should not clutter top-level views
with unnecessary details. But instead, refine the parts of the system in a new descendant
diagram. To facilitate this, OPM provides multiple ways of decomposition and refinement.

The most common method is called in-zooming, which is used when we need to model
parts of an element. An in-zoomed element is enlarged, and additional elements can be
added into the in-zoomed element’s body. This action is much more common with processes
than with objects and is an idiomatic way to model processes’ details. There are two kinds of
of in-zooming: in diagram in-zooming and new diagram in-zooming. In diagram in-zooming
is to be used when we want to show process’s refinement in the current diagram. However,
this is not as widely used as it adds extra elements to a possibly already overcrowded
diagram. Instead, new diagram in-zooming is much more common, as it creates a new
descendant diagram and creates a copy of the in-zoomed proess. After that action, the
process exists in two diagrams at once. In the parent diagram, the process is shown as an
abstraction and without its parts, while in the descendant diagram, the process could be
described in great detail, showing its parts as well as outside elements the process interacts
with.

An example of new diagram in-zooming is presented in Figure 2.7. In-zooming of
Process 1 results in the creation of a new diagram SD1, where Process 1 is duplicated
and placeholder subprocesses are added. The diagram SD1 is added as a descendant of
SD, which is depicted in the Diagram tree. Object 1 and the connected edge are also
added to the new diagram because they are linked to the in-zoomed process. This behavior
is present in the existing OPM diagramming tools.
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Figure 2.7: An example of in-zooming.
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Chapter 3

Proposed data model

As systems get more complex, outdated model editors cease to be effective, and modeling
with them becomes slow and inconvenient. Therefore, new tools that are more suitable for
large models need to be created. The editor’s performance will be highly influenced by its
data model, so in this chapter, the internal data model is designed. And just like in the
fashion of Model-Driven Development (MDD), described in Chapter 2, this approach could
save us time later on in the development process.

The requirement for the data model is that it should allow for automatic displaying of
elements and relationships where appropriate. For example, if we choose to display multiple
elements from different diagrams, the relationships between them could be easily read from
the data model and shown. To do these actions automatically means that a modeler would
not have to do so explicitly, which saves time. Another important feature that the data
model should enable is the derivation of new relationships from existing ones. For instance,
a relationship between two unrelated child elements can be applicable to their parents and
can be derived.

To facilitate this, there should be one data structure that contains all elements and
relationships between them. In doing so, even if the system model is composed of multiple
diagrams and elements may appear in multiple of them, all elements are stored at one place,
and no redundant copies are created. This structure is often called master model and its
usage also prevents inconsistencies from being made. A change of an element’s attribute
(for instance, name) would only have to be made in the master model, and then this change
would spread to all diagrams through references.

The master model can be divided into two parts: element model and edge model. There
is one additional auxiliary data structure that is needed for the implementation of the
editor, diagram tree model. The hierarchy of these data structures is shown in Figure 3.1.

The diagram tree model contains individual diagrams, which are the views of the system
showing only a limited subset of the master model. Diagrams are dependent on the master
model, as they reference its elements, whereas the master model is an entirely independent
entity. This approach to structuring data is common in the design of current diagramming
editors.

The following are the aforementioned data structures described in more detail.
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Figure 3.1: Hierarchy of data structures that represent an OPM model.

3.1 Element model
The element model is a tree1 that contains all elements (OPM things) present in the model.
The root node is the only exception; it does not represent any model element and serves
purpose only as a reference to the element model. An empty model contains only the
root node, and adding elements to a root diagram (SD) adds them as children of the root.
Transformation from a leaf node to a parent node is facilitated by zooming in, as described
in Section 2.4. Adding elements to a diagram of an in-zoomed element adds them as children
to that particular in-zoomed element.

An example explaining the connection between the actual diagrams and the element
model is shown in Figure 3.2. The top two boxes present two OPDs (Object Process
Diagrams), the left one being the root diagrams SD and the right one being its descendant
SD1. This relationship is depicted in the bottom-left box that contains the diagram tree.
The hierarchy of elements, defined in the top diagrams, is reflected in the element model
on the bottom right. The current state could be achieved from an empty model in these
steps:

1. Adding Object 1 and Process 1 into the root diagram (SD). The same elements
are added as children of root in element model

2. In-zooming of Process 1. This action creates a new child diagram SD1, with Pro-
cess 1 as its main element. The diagram tree is updated accordingly as well.

3. Adding Subprocess A and Subprocess B and Object 2. Note that existing OPM
editors add a couple of subprocesses as placeholders by default.

3.2 Edge model
A proper OPM model contains not only elements (OPM things) but also relationships
(edges) between them. Just like elements, edges in OPM commonly appear in multiple
diagrams, and therefore storing them in one place facilitates consistency. For this purpose,

1https://en.wikipedia.org/wiki/Tree_(data_structure)
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Figure 3.2: A relationship between two OPM diagrams and the element model.

a simple collection (array, list) could be used and its fields would hold information about
every individual edge, for example, name, source element, target element, and edge type
(see 2.4).

This collection is not sorted by default, but additional index structures could be easily
added to enhance the performance of frequent queries. For example, an index with edges
arranged by their source and target elements could speed up the resolution of finding all
edges that are connected to a given element.

Figure 3.3 shows two OPDs at the top, similar to those in Figure 3.2, and the state of
the edge model collections at the bottom. In SD, there are two edges, while in SD1, there
is only one edge. Edge x is present in both OPDs, and these two occurrences of the same
edge hold the same reference to the edge model. Therefore, the original edge collection
contains two edges in total, and the collection of derived edges, which will be discussed
subsequently, is empty.

When an edge is created and one or both endpoints are parts of another element (e.g.,
they are subprocesses of another process), this new relationship is also transitively applica-
ble to the parent elements. In a diagram with a higher level of abstraction, for instance, only
these parent elements might be present, and a modeler should be able to see all relation-
ships, even if they only relate to their descendant elements. Because of this transitivity of
relationships, it is convenient to store the original edges and their derived edges in separate
collections. The collection of derived edges works as a permanent cache, and edges should
be added or removed upon the change in state of their original, i.e., edge creation, recon-
nection, and deletion. Note that due to the hierarchical structure of the element model
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Figure 3.3: A relationship between two OPM diagrams and the edge model.

discussed above, an element could have multiple transitive parents. Therefore, deriving
edges could potentially be executed for all nodes leading all the way up to the root element.
The extent to which the edges are derived is up to the implementation of the diagramming
tool and should ideally reflect the average user’s needs. Optionally, the levels to which the
edges are derived could be selected by the user himself.

It is important to be able to couple these derived edges with their originals, as derived
edges should not have data of their own and should reference their original counterparts. In
this way, the change of attributes to either the original or the derivative would only change
the original data in one place and then would be propagated through references across the
entire model.

The principle of derived edges is explained in Figure 3.4, which is slightly modified from
Figure 3.3. The important difference is that edge x moved its target from Process 1 to
its descendant, Subprocess B. Because the target element has a parent element, a derived
edge must be created, which points to the parent element. Therefore, the new derived
edge is added to the collection of derived edges and visualized in the SD diagram.. The
derivative is dashed.

A situation can arise in which multiple edges need to be abstracted and merged into
one edge. This one edge is effectively a derivative of all the merged originals. An example
of this phenomenon is presented in Figure 3.5. When the original edges are of the same
type and have no tags, the situation is quite simple, the edges are abstracted into an
edge of their type. If they are tagged, a good solution might be to aggregate the tags at
the abstraction. If the edge types differ, one of them should be selected based on their
predetermined priority, or they can be combined. This is only possible with a consumption
and a result edge that combine into an effect edge; see Figure 3.5.

18



Figure 3.4: Relationship between two OPM diagrams and edge model with an emphasis on
derived edges.

Figure 3.5: An example of abstracted merged edges.

3.3 Diagram tree model
One last auxiliary data structure is needed to finish the design of the editor’s model, the
diagram tree. It is a tree structure very similar to the element model explained previously,
and its main function is to store data specific to each diagram. Each node holds data, such
as a list of elements present, their position, or their size. This information could not be part
of the element model or edge model, as multiple occurrences of elements or edges will have
different positions, for example. Note that this aspect is closely related to a functionality
of a diagramming library, discussed further in the following chapter.

Figure 3.6 shows two representations of the same diagram tree model. The right one
is more of a traditional way of depicting trees, while the left one is being used in OPM
diagramming tools, as it is more compact and better suited for graphical user interface.
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Figure 3.6: An example diagram tree model showed in two different representations.
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Chapter 4

Editor design

Now that the editor’s data model has been presented, technologies, frameworks, and li-
braries can be chosen to facilitate implementation. In this chapter, important architectural
design decisions are made and justified.

The first important decision is about the platform on which the editor should be im-
plemented. Creating the editor as a web-based application seems to be the best approach
nowadays and has the following benefits over traditional software applications [12]:

• It is compatible across all platforms, as the only tool required is the web browser.

• It does not need to be installed and, therefore, does not take up any space on the
hard drive.

• The application is always up-to-date and there is no need to worry about different
versions.

• It is accessible from anywhere.

• It demands lower technical requirements from users.

• The need for maintenance and support from the developer is reduced.

Moreover, a prototype of the editor, which focuses mostly on the diagramming capa-
bilities, can be client-only. Advanced functionalities (e.g., user authentication and cloud
diagram storage) would require a back-end server, but that is not the main focus of this
thesis.

For front-end web development, the most common choice of a programming language is
JavaScript, which is widely used and offers a wide variety of open source libraries. Addi-
tionally, its syntactical superset, TypeScript, is more suited for larger projects and provides
many solutions to the shortcomings of JavaScript. It introduces static typing, which yields
the main following benefits:

• Catching of common and runtime errors during the compilation stage

• Better code readability

• IDE support and Intellisense
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There are many JavaScript UI (User Interface) frameworks available; among the most
popular are: React, Angular, and Vue.js. The purpose of the UI framework is to create
a layout of the application and define elements for diagram modification, such as buttons,
menus, and modals. As all the frameworks satisfy the requirements, the choice is arbitrary
and, therefore, React was chosen because of my personal preference and prior experience
with it.

In React, the user interface is divided into components. A programmer can make his own
components, or a third-party library can be utilized to import already defined components
that just need to be customized. This approach also ensures a unified design, as global
themes can be easily specified. The Ant Design1 library was chosen, due to a wide selection
of components, especially the tree component that is well equipped to implement the visuals
of the diagram tree (see Figure 3.6).

4.1 Web diagramming libraries
By far the most important design decision is the selection of a web diagramming library.
This choice greatly influences the final result, as a great library could make key features
possible and save a lot of time during implementation. Therefore, before the actual imple-
mentation, a review of existing diagramming libraries was done and the most fitting one was
chosen. Libraries were evaluated on the basis of several factors, for example, the presence of
key functionalities, quality of documentation, provided demo examples, or community size.
Furthermore, simple prototypes were made to verify the presence of key functionalities for
some of these libraries.

The following is the list of rejected candidates, as well as their quick assessment and
reasons why they were not selected. The chosen library, Cytoscape.js, is then described in
more detail in the following section.

JointJS2 is a free open-source version of a commercial library Rappid, which is specifi-
cally made to build diagramming tools. Moreover, the newest and feature-rich OPM tool,
OPCloud, is written with the help of this commercial library. However, the free version is
very limited in its functionality. During prototyping, it proved to be especially difficult,
for example, to add new diagram elements on user action. This feature is possible in the
paid variant and, on top of that, it offers a broad variety of customizable toolbars. The
documentation is quite extensive; with many demo examples. Nevertheless, due to the lack
of key features, the JointJS library is not usable for our purposes.

GoJS3 is also a commercial library, with the possibility of a free trial. The reason why
it is included here is that it is very extensive and is suitable for the purpose of creating a
diagramming tool. On top of that, the documentation is detailed and comprehensive with
a huge number of examples. However, because the library is not open-source, it is not
possible to use it.

jsPlumb4, in contrast to the previous libraries, is quite simple. It facilitates draggable
HTML elements and edges between them. The functionality of the library is rather lim-

1https://ant-design.gitee.io/
2https://www.jointjs.com/
3https://gojs.net/latest/index.html
4https://jsplumbtoolkit.com/community
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JointJS GoJS jsPlumb mxGraph Cytoscape.js
made for diagrams yes yes usable yes usable
functionality limited extensive limited extensive extensive
documentation great great sufficient sufficient great
active yes yes yes no yes
open-source yes no yes yes yes
github stars 3.6k 6.1k 6.9k 6.3k 8.3k

Table 4.1: Comparison of all the tried-out diagramming libraries.

ited, and the absence of advanced features would lead to slow development and unnecessary
obstacles.

mxGraph5 is an extensive and time-tested library. It is used in many projects, most
notably the draw.io6 online diagram editor. The only downside, and an important one, is
that the library is no longer maintained. This fact could cause serious issues with compat-
ibility in the future, and it is advised not to start new projects with this library.

A comparison of the aforementioned libraries as well as the chosen library, Cytoscape.js,
is shown in Table 4.1. An exhaustive list of graphical JavaScript libraries is provided here
[13]. In addition, several other libraries are thoroughly compared in this thesis [9]. The
thesis also focuses on the implementation of a diagramming editor and comes to the same
conclusion that Cytoscape.js is the best option for our purpose.

4.2 Cytoscape.js
Cytoscape.js7 [6] is an open-source library released under the MIT license. At this time,
it is still actively maintained by its substantial community and has more than 8000 stars
on its github repository8. Its documentation is quite thorough and detailed and includes
interactive code examples.

Cytoscape.js uses the HTML canvas9 element and is a highly optimized graph library
for large and complicated networks. The library is mostly used as a graph visualization
tool that draws elements, and a user is able to interact with these elements. In addition, it
contains many useful functions for graph theory and graph analysis, as well as functions for
filtering elements, traversing the model, or creating animations. The library can even be
run headlessly, that is, without the visualization and only in a terminal. It is not specifically
made for building diagram editors, but its vast functionality makes it fitting even for this
use case. The library is built with extensibility in mind, as it provides an API (Application
Programming Interface) for attaching extensions. Therefore, it is possible to create an
extension or use one of many developed by the community.

In the following sections, some concrete features of the library are described and ex-
plained how to utilize them in the implementation of the final editor.

5https://jgraph.github.io/mxgraph/
6https://app.diagrams.net/
7https://js.cytoscape.org/
8https://github.com/cytoscape/cytoscape.js
9https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
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Cytoscape.js data model

As discussed in Section 2.4, an OPM model consists of multiple diagrams. During modeling,
switching between diagrams is an essential part of the process, and an OPM diagram editor
needs to provide ways to accommodate that. Cytoscape has a simple API for exporting
a currently displayed diagram and importing a saved one into the canvas container. This
feature makes diagram switching and their serialization easy to implement. The following
JavaScript code snippet demonstrates diagram switching.

let oldDiagram = cy.json();
cy.json(newDiagram);

In the code snippet, cy is the cytoscape instance. It is registered to a particular DOM
element in which the diagrams should be rendered. Calling its method json, with an
empty argument list, returns data of the currently displayed diagram. Note that these data
are not a string in the JSON format as the name of the method suggests, but a regular
JavaScript object. This object can then be serialized and saved afterwards. On the second
line, calling the same function with a diagram data object re-renders an old diagram with
the newly provided one.

Figure 4.1 shows an example of what the diagram data object could look like. The most
important field is elements, which contains elements (in Cytoscape.js these are both nodes
and edges) present in the diagram. Each element could hold generic data (e.g., position
and size) or custom data specified by the user, e.g., label. Other fields could determine the
position and behavior of the viewport, for example, pan and zoom.

Figure 4.1: Example of diagram data in JSON format exported from cytoscape.js

Compound nodes

Compound nodes are one of the key features for which Cytoscape.js was selected. It allows
the creation of elements that are nested and hierarchical and is a fitting way of implementing
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in-zoomed nodes (see 2.4). Most importantly, the size of a parent node is adjusted according
to the position of its children to always include them. Figure 4.2 shows two examples of
compound nodes.

Figure 4.2: Examples of Cytoscape.js compound nodes. (Taken from the Cytoscape.js
documentation [1])

4.3 Architecture
Now that the key components of the application are known and their functionality has been
explained, it is possible to propose a high-level architecture. The architecture is based on
the principles of MVC (Model-view-controller).

Figure 4.3 describes the design of the top-level architecture. The Controlling process
handles the actions made in Cytoscape Canvas and functions of UI Toolbar. It takes
care of modifying the state of the model and displaying the diagram in Cytoscape Canvas.
Conceptually, there are two models: Cytoscape Model (a model of a currently displayed
diagram, which is handled by Cytoscape.js) and Master Model (described in Chapter 3).
Both the actions of Cytoscape Canvas and UI Toolbars cause changes in either or
both models. The logic of the controller decides which model should be affected. For
example, changing the position of an element only affects Cytoscape Model, while adding
a new element concerns Cytoscape Model as well as Master Model. Additionally, the
figure shows that the Cytoscape Model, the currently displayed diagram, is one of many
diagrams present in the Diagram Tree Model.
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Figure 4.3: The top-level architecture of the editor specified in the OPM notation.
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Chapter 5

Implementation of the agile editor

In the previous chapter, the data model was designed, and the fitting technologies were
chosen. This chapter describes main features of the editor and specifies details of their
implementation. The application is available online on a free hosted website1 and the
source code is available on a public GitHub repository2.

Figure 5.1 shows the GUI (Graphical User Interface) of the application. In the center is
the diagram canvas, which displays the currently selected diagram and allows for interaction
with it. This canvas is handled by the Cytoscape.js library, discussed in Section 4.2, and
its extensions.

In the left sidebar, there is the diagram tree, described in Section 3.6. The top toolbar
contains the rest of the application’s functionality. The top toolbar sections are as follows,
listed from the left: propagation selection, demo example selection, export to PNG button,
export to JSON button, and import from JSON button. All of these functions are presented
in the following sections. In this chapter, the term diagram entity is used to describe any
part of an OPM diagram, which means an object, a process, a state, or an edge.

5.1 Context menu
Actions regarding modifications of a diagram (that is, element addition, element deletion,
change of attributes, etc.) are handled using a context menu, which can be invoked by right-
clicking on either a diagram entity or the diagram canvas. The context menu is provided
by an extension of Cytoscape.js, cytoscape-context-menus3 (its creation is associated with
this paper [2]). With the help of the extension, it is possible to specify menu options and
define actions that are executed upon clicking them. In addition, selectors can be added
to cause the options to show only on the specified targets. This is shown in Figure 5.2.
On the left, there is a context menu that is displayed upon right-clicking on the diagram
canvas, while on the right, there is a context menu for an object.

The following actions are available through the context menu: adding objects and pro-
cesses, adding states to objects, in-zooming processes, changing essence and affiliation of
objects and processes, hiding and removing of all diagram entities, option to show all hidden
diagram entities, options regarding the edge editing (adding bend and control points and

1https://opm-editor.netlify.app/
2https://github.com/micholenko/OPM_Editor
3https://github.com/iVis-at-Bilkent/cytoscape.js-context-menus
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Figure 5.1: Graphical user interface of the implemented OPM editor

their removal), bringing all states of a given object and bringing connected edges of a given
element.

Figure 5.2: Context menus difference based on the right-click target.

Bringing states and edges works in a similar manner; the master model is queried for
diagram entities, which is an inexpensive and a straightforward action. The Bring All
States option works as a way to propagate states associated with a certain object from
different diagrams. The Bring Connected option is more selective. It presents a list of
possible relationships that were modeled in different diagrams and can be propagated to the
current one. These options are listed in a pop-up modal shown in Figure 5.3 (implemented
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with the help of the Ant Design modal4 component). To render each option, an instance
of the Cytoscape.js library is conveniently used. A user is then able to select an edge and
this edge along with the connected element is added. Both of the aforementioned options
also take into account hidden entities; they are revealed or presented as an option to be
revealed.

Figure 5.3: List of options of edges that can be propagated to the Process 0. This modal
is displayed after selecting the context menu option, Bring Connected.

It is also worth mentioning the difference between hiding and removing diagram entities.
Hiding deletes the entity from the current diagram, and it is possible to restore these hidden
entities with the Show Hidden option, while removing deletes the element from the entire
model irreversibly and, therefore, in all diagrams.

Most of the other options are fairly trivial and are not worth being described in detail.
They simply modify the master model, using methods of the master model, and the current
diagram, using the Cytoscape.js API (Application Programming Interface).

5.2 Propagation
The propagation is a relatively unique feature that is not implemented in present-day
diagramming tools. Propagation aims to save time by automatically duplicating added
diagram entities to other affected diagrams. The modeler would then not have to repeat
the changes manually for every individual diagram. Note that propagation only affects the

4https://ant.design/components/modal/
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creation of diagram entities, whereas when it comes to deletion, the options are either to
hide in the current diagram or to remove it from the entire model.

A user can choose between three levels of propagation that change the behavior of the
editor: None, One level, and Complete. The propagation selection is located in the top
toolbar (see Figure 5.1).

One level is the default propagation option. It causes the created diagram entities to
be replicated to diagrams one level above and below in the diagram tree, but only when it
is possible. The Complete mode attempts to replicate the created diagram entities across
all the diagrams. And the None mode does no propagation at all, and the diagram entities
are unique to the current diagram.

Figure 5.4: Comparison of effects on diagrams of the three modes of propagation: None, One
level and Complete. The state of the each row is different after connecting the Object 1
in the third diagram.

To explain this more clearly, an example is shown in Figure 5.4. Each row shows the
same three diagrams after connecting Object 1 to Process A in the diagram SD1.1.
Depending on the propagation mode, Object 1 along with its connected edge is replicated
in the other diagrams. The situation in the first row is straightforward, as no diagram
entities were propagated. In the second row, propagation occurs, as the diagram entities
added from SD1.1 are copied over to SD1. Notice that the two edges share the source
and target elements in both diagrams and are, in fact, two projections of the same edge.
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However, in the third row, the edge added in the SD diagram is not the same as the other
two edges. The target of the edge is Process 1, which is the parent of Process A, and
therefore it is a derived edge. For more information on the derived edges, see 3.4. Note that
in this figure and many other figures shown in this thesis, the derived edge has a dashed
line style for visualizing purposes. In the actual editor, derived edges are solid, but with a
slightly lighter gray color.

5.3 Edge creation, reconnection and editing
Edges are created by right-clicking on the source element, holding the right mouse button,
and releasing it on the desired target element. The cytoscape-edgehandles5 extension fa-
cilitates this functionality. Upon the release of the right mouse button, a pop-up modal
appears with a selection of edge types, and the edge is created after the user selects the
type. Figure 5.5 shows the pop-up modal. Potential derived edges, presented in Section 3.2,
are also created at this point.

Figure 5.5: Edge type selection modal.

Reconnecting an edge to a different source or target (referred to only as reconnection) is
provided by another Cytoscape.js extension, cytoscape-edge-editing6 (its creation associated
with this paper [2]). It adds two anchor points at both ends of an edge. By clicking and

5https://github.com/cytoscape/cytoscape.js-edgehandles
6https://github.com/iVis-at-Bilkent/cytoscape.js-edge-editing
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dragging the anchor to a different element, it is possible to change the source or target of
an edge. Reconnection of an original edge could cause its former derivatives to no longer
be relevant and, therefore, they need to be removed in most cases. Reconnecting a derived
edge promotes the edge to be an original edge and removes its former associated edges: the
original and other derivatives. This solution may not be ideal for some use cases and may
seem confusing to some users. When it comes to the reconnection and many other features,
concrete behavior is the subject of debate.

The same extension also facilitates the option of editing edges by adding bend points or
control points. To add them to an edge, the edge context menu is extended with associated
options. The bend points, control points, and anchor points are shown in Figure 5.6. Note
that adding control points to any edge makes it a Bézier curve.

Figure 5.6: Bend points and control points allowing for interactive edge editing. The anchor
points on the ends of edges used for reconnection are shown as well.

5.4 Name editing
Changing names of diagram entities is an essential functionality that any diagram editor
should provide. This feature is implemented with the help of the cytoscape-popper7 exten-
sion, which dynamically adds HTML elements and positions them next to the associated
entities and over the diagram area (HTML canvas element). Double-clicking on an entity
invokes a prompt dialog with an input field to change the name. An example of such a
dialog is presented in Figure 5.7.

Figure 5.7: Name editing of an object.

7https://github.com/cytoscape/cytoscape.js-popper
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5.5 Diagram switching
Diagram switching occurs after two user actions: process in-zooming and selection of a
diagram in the diagram tree shown on the left in Figure 5.1.

In-zooming is simpler, as it creates a new diagram with the in-zoomed process as its
main element and optionally copying connected elements. Note that whether the connected
elements are copied over is based on the chosen propagation mode. In summary, One level
and Complete modes would propagate the connected elements, while None would not. An
example of in-zooming is shown in Figure 2.7.

Switching to an already existing diagram is a bit more complicated. While diagrams are
not displayed, they are not updated, as it would be time-consuming and resource-intensive
to identify all affected diagrams on every model change. In addition, a user might take his
changes back, which would make the modifications pointless. Instead, a diagram is updated
on demand when a user wants to see it.

First, the potentially outdated diagram is imported into the Cytoscape.js library. This
process is explained in more detail in Section 4.2. Names and attributes are automatically
updated as they are referenced from the master model. All diagram entities need to be
checked for existence because if they were removed, they would have to be removed from
the current diagram explicitly. When it comes to the removed elements and states, their
connected edges need to be removed as well. Then, for every individual element or state,
the master model is searched for new connected edges, and, if found, they are added. This
is how propagation is implemented. Reconnection of an edge could result in the removal of
its derived edges or its original edge, but this is determined when the reconnection event
occurs.

5.6 Changes in cytoscape source code
Some functionalities were not attainable with the features provided by Cytoscape.js or its
extensions. There is also a possibility to create our own extensions to add new features. In
our case, however, the issues do not stem from the lack of functionality but rather from the
unsuitability of the library’s inherent behavior. Instead, it was necessary to directly modify
the source code of the library. This fact means that moving to newer versions of the library
will be more difficult, as newer releases would have to be rebased on our modified version,
and merge conflicts may occur. Arguably, these issues might happen only rarely and could
be resolved quickly, as large code refactorings are not to be expected given the maturity of
the library.

Cytoscape.js does not support compound nodes that are ellipses. The reason for this
might be the fact that checking the boundaries of a circular shape is computationally
more expensive, and therefore developers chose not to include this option. In order to
enable this functionality, first, an ellipse had to be added to the list of supported shapes.
Second, because the ellipse bounding box would always be rectangular, the calculation of
the compound node size had to be changed.

The library offers only a limited number of arrow types and does not provide any
way to add new ones. In order to attain the exhibition-characterization and classification-
instantiation edge arrow types, it was necessary to implement them directly in the library
code.

Another notable modification was to the behavior of the taxi edges (right-angled edges
used, for example, for the aggregation-participation edge). In this case, the problem was
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that multiple edges would not reliably converge into one when approaching the superior
element. Due to this fact, the calculations of the taxi edge bend points had to be tweaked.

There are several other cases where it is necessary to change the behavior of the library.
If the editor were used by real users, these issues would need to be addressed. Modifying
the source code directly is a bit more time-consuming, but certainly possible, as shown
above. This fact reaffirms that the open-source approach and the chosen library are viable.

5.7 Export and import of diagrams
The application allows for export to PNG and JSON. Exporting to PNG works only for the
currently displayed diagram, although extending this feature to export all diagrams would
not be a difficult task. This conversion is handled by Cytoscape.js, which also supports
the JPG format. The SVG format is often problematic, as various implementations are
not always compatible. Converting a diagram to SVG is currently not supported by the
library or the implemented application, but the cytoscape-svg8 extension could potentially
be utilized for this purpose.

Exporting to JSON functions is a way to save the modeler’s work and is a bit more
complicated, as it is not concerned with just a single diagram but should encompass the
state of the whole model. This means that the resulting JSON file should include the
diagram tree model, which contains data of all diagrams, the element model, and the edge
model. All of this is discussed in Chapter 3.

In JavaScript, the standard way to serialize data to JSON format is through the built-in
call JSON.stringify(). However, this way does not work well with complex data struc-
tures because of two reasons: the call fails when circular references are encountered, and
it resolves objects to their attributes every time their reference is encountered, creating
redundancy. Both of these problems are present in our case. Although the circular ref-
erences could theoretically be removed, multiple references on the same objects are not
avoidable. Another important drawback of this approach is that using the built-in parsing
call JSON.parse() will not restore the previous model structure with all its interconnected
objects and references.

A way to solve this would require manually serializing all model elements, defining a
data format in which the model would be stored, and then implementing a functionality
that would recreate the model structure based on the stored data. This seems like a non-
trivial and time-consuming undertaking; fortunately, there are libraries that perform this
function well.

An open-source library called TeleJSON9 solves all the aforementioned problems. The li-
brary serializes each object only once and references objects with an absolute path. Through
functions provided by this library, it is possible to serialize complex object structures and
then deserialize them to their previous form. The only downside is that, through this pro-
cess, prototypes of the objects are lost, which means that the objects lose their methods,
and calls to these methods would result in an error. Because of this, the structures need to
be iterated over to reassign the prototypes. However, this is a fairly simple task.

Additionally, the resulting JSON files are created deterministically, which means that
if the model has not been changed, the JSON files will be indistinguishable. A change in a
model would be reflected only in the relevant JSON parts, so two files can be checked for

8https://github.com/kinimesi/cytoscape-svg
9https://www.npmjs.com/package/telejson
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differences. Models are often stored in textual form and versioned by tools like Git, and
for these purposes, it is important that the differences are minimal. This is not always the
case as (for example, element IDs) could be generated randomly, resulting in many changes
every time models are exported. Minimal differences are also important for porting a model
between different editors and for a possible collaborative extension of the editor.
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Chapter 6

Evaluation

The editor, implemented in the previous chapter, is evaluated in this chapter. First, a
non-trivial example model is created using the editor to prove that it is capable of serv-
ing its purpose. Next, the implemented editor is compared to the already existing OPM
diagramming tools. Finally, the shortcomings of the editor are discussed.

6.1 An example use case
In this section, a model is created with the help of the implemented editor to show its
usability. The models used in this section were created in the editor and then exported.

As an example, a bread baking model is used, which was inspired by [3]. The creation
of the model will not be as straightforward as is the case in the cited source. Instead, the
model is created gradually and with the aim of highlighting the full potential of editor’s
functionalities, namely propagation and derived edges. This is arguably much closer to the
reality of modeling, as it is usually hard to get the model right on the first try.

Figure 6.1 shows the first step in the modeling process. In SD, there is a high-level view
showing the process of Baking consuming Ingredients and producing Bread. Equip-
ment is necessary for Baking to occur. On the right, in SD1, there is the Baking process
zoomed in. Here, Baking is refined into multiple subprocesses (Mixing, Forming, Heat-
ing, Cooking) and transient objects (Dough and Loaf). At this level, it also makes sense
to add states to the Bread object and model the state transition by parts of the Baking
process. Notice the derived edges that are denoted with the dashed edge style. This is only
for the purpose of visualization, and in the actual editor, the derived edges only have a
slightly lighter gray color.

Next, we want to add Baker to both levels. To spare the modeler from repeating the
same action for multiple diagrams, the propagation feature could be used. Setting the
propagation mode to One Level, and subsequently creating the Baker object along with
an agent edge linked to Baking, will duplicate the action for both diagrams. This addition
could be done in either diagram and would be propagated into the other. Then Energy
is added as an instrument for Heating. Let us assume that it is only integral to the SD1
diagram and not SD. To do this, the propagation mode is set to None. In this way, only the
current diagram would be affected. The results of these actions are shown in Figure 6.2.

Finally, in SD1, Ingredients and Equipment are specified and modeled in more
detail. To do this, the aggregation-participation and generalization-specialization edges are
used, respectively. The objects Flour, Water, Yeast, and Salt are modeled as parts of
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Figure 6.1: Step 1 in modeling bread baking.

Figure 6.2: Step 2 in modeling bread baking.
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Ingredients, and Mixer and Oven are represented as specializations of Equipment.
The None propagation level ensures that these structural relationships are unique to SD1.
Furthermore, the newly added procedural edges of SD1 are abstracted into one edge in
SD. This phenomenon is described in detail in Section 3.2.

Figure 6.3: Step 3 in modeling bread baking.

6.2 Comparison with existing OPM editors
As of now, there are two currently available official OPM diagramming tools: OPCloud1

and Opcat2. Their GUIs (Graphical User Interfaces) are shown in Figures 6.4 and 6.5,
respectively.

Opcat is a free desktop application written in Java. However, it is an older one of the
two. In fact, it is no longer maintained, and the newer tool, OPCloud, is its successor.

OPCloud is a web-based diagramming tool that has been developed quite recently using
Angular and a web diagramming library, Rappid (discussed in 4.1). It is a full-featured
diagramming editor with plenty of advanced functionality, such as model simulation and
execution, or support for collaborative work of multiple users at the same time. Unfor-
tunately, OPCloud is not free software, although a free account is provided for academic
purposes. The demo version, available on the public OPCloud website, offers only a limited

1https://sandbox.opm.technion.ac.il/
2https://esml.technion.ac.il/opm/opcat-installation/
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Figure 6.4: OPCloud, the web-based OPM diagramming tool (demo version).

Figure 6.5: Opcat, the desktop OPM diagramming tool.
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functionality and, for example, lacks even essential importing and exporting. The conclu-
sion is that for now, there is no free, full-featured, and currently maintained OPM editor.
This makes the development of a new alternative a worthwhile investment, as the result
could be used by the open-source community.

There are a few features that make the implemented editor stand out from OPCloud.
The automatic propagation (None, One level, Complete) as well as the selective prop-
agation (Bring Connected and Bring States context menu options) and derived edges
might be difficult to comprehend at first, but once learned, they have the potential to save
time and make the modeling process easier. The automatic propagation is discussed in
Section 5.4, the selective propagation is described in Section 5.2, and the derived edges are
presented in Section 3.4.

To summarize, Table 6.1 presents a comparison of all existing editors.

Opcat OPCloud
(demo)

OPCloud
(full version)

OPM Editor
(this thesis)

Open-source No No No Yes
Basic diagramming
capabilities Yes Yes Yes Yes

Advanced OPM features
(simulation,
code generation, ...)

Yes No Yes No

Collaborative editing No No Yes No
Export/Import Yes No Yes Yes
Automatic relationship
derivation No No No Yes

Automatic propagation No No No Yes
Selective propagation No No No Yes
Master model
(no duplication of data) No No No Yes

Table 6.1: Comparison of Opcat, OPCloud demo version, OPCloud full version and the
implemented editor.

6.3 Missing functionality
The aim of this thesis was to implement an agile OPM diagram editor that focuses on
complexity management. This goal was achieved. However, creation of a full-featured
application would require more time, and therefore, the editor could be thought of as a
prototype. Some features are absent because it was decided that they were too difficult or
time-intensive to implement and not important enough for the usability of the editor. The
following is a list of improvements to the application.

• Allow the diagrams to move in the diagram tree. The tree component of the
Ant Design library is easily extensible with this functionality.

• Changing names of diagrams in the diagram tree. Again, the tree component
was selected with this functionality in mind.
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• Resizing elements. An extension3 is available, but due to compatibility issues, it is
not usable. To implement this feature would likely require modifications in the said
extension.

• Changing edge types on already created edges. A workaround is to remove
the edge and create a new one, but that is not an ideal solution.

• Sidebar for advanced element modification. Currently, all the modification of
elements is done by right-clicking and the context menus. It would be convenient to
have a sidebar for advanced element modification (for example, width or height) that
would get invoked on element selection.

• Undo/Redo. To support this feature for a single diagram is quite trivial as the
cytoscape.js-undo-redo4 extension does exactly that. However, this approach would
only take care of the visual modifications handled by Cytoscape.js, but user actions
often affect the whole model. Because of this, a possible solution might not be trivial.

• OPL generation. The OPL (Object-Process Language, see 2.6) sentences could
be advantageously generated from the used master model. Potentially, this could be
handled externally, by a different application, and only displayed in the editor.

• Restrict the options of edge types in edge creation based on source and
target. The absence of this feature allows users to create relationships that are
invalid according to the OPM standard.

• Export to SVG. Possibly solvable by the existing cytoscape-svg5 extension.

• etc.

3https://github.com/iVis-at-Bilkent/cytoscape.js-node-editing
4https://github.com/iVis-at-Bilkent/cytoscape.js-undo-redo
5https://github.com/kinimesi/cytoscape-svg
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Chapter 7

Conclusion

The objective of this thesis was to create a prototypeof an OPM diagram editor1 that is
able to handle complex models efficiently. The most important aspect in achieving this
goal is a well-designed internal data model without data duplication. This allowed efficient
implementation of derived relationships and easy realization of data propagation. Other
notable outcome is the survey of suitable technologies for diagram editors, most importantly
the web diagramming libraries.

First, MDD (Model-Driven Development) was introduced with all its potential benefits.
Then, overviews of three modeling languages, UML (Unified Modeling Language), SysML
(System Modeling Language) and OPM (Object-Process Methodology), were presented,
and their differences were highlighted. All important aspects of OPM were described,
since the editor was implemented to support modeling with this language. The data model,
whose structure was designed to facilitate the modeling nature of OPM, was then proposed.
Next, suitable technologies were chosen for the implementation, and a thorough evaluation
of the diagramming libraries was carried out. Out of this assessment, a library called
Cytoscape.js proved to be the most appropriate for our purpose. In the following part, the
editor’s implementation was described, its interesting aspects were pointed out as well as
obstacles encountered during the development process. And lastly, the editor was put to
the test by presenting a non-trivial use case while showcasing its functions. In addition,
this part included a comparison with its potential competitors.

The implemented prototype is usable but still offers many possibilities for improvement
and extensibility. Apart from smaller features, these are some non-trivial ways in which
the editor could be extended.

• Collaborative editing of multiple users at once

• Integration of the editor into an existing development support tools, such as Jira

• Code generation from models

• Animated simulation

A closely related thesis by Jana Treláková from Masaryk University – Faculty of In-
formatics is being created in parallel and in cooperation with this one. Her thesis focuses
mainly on the collaborative aspect but uses the same data model, which is an important
precondition for the integration of the results of these two theses.

1Available at: https://opm-editor.netlify.app/
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Appendix A

Manual

The following is a quick reference to the editor’s functions:

Basic functions:

Adding objects – Right-click on the diagram canvas and choose Add Object in the
context menu.
Adding processes – Right-click on the diagram canvas and choose Add Process in
the context menu.
Creating edges – Right-click on the desired source element, hold, and release on the
target element. In the pop-up modal, select an edge type.
In-zooming processes – Right-click on the a process and choose In-zoom in the
context menu.

Edge editing:

Reconnecting edges – Select an edge by left-clicking on it. Two anchors should
appear at both ends of the edge. By left-clicking, drag either of the anchors to a new
endpoint.
Adding bend points edges – Select an edge by left-clicking on it. Right-click on
the selected edge and choose Add Bend Point in the context menu. Position the bend
point to edit the edge.
Adding control points edges – Select an edge by left-clicking on it. Right-click on
the selected edge and choose Add Control Point in the context menu. Position the
bend point to edit the edge.
Removing bend points – Select an edge by left-clicking on it. Right-click on a bend
point and choose Remove Bend Point in the context menu.
Removing control points – Select an edge by left-clicking on it. Right-click on a
control point and choose Remove Control Point in the context menu.

Element editing:

Add states to objects – Right-click an object and choose Add State in the context
menu.
Change affiliation – Right-click on an object or process and choose Change Affilia-
tion in the context menu.
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Change essence – Right-click on an object or process and choose Change Essence in
the context menu.

Hide/Remove:

Hide elements or edges – Right-click an element or edge and choose Hide in the
context menu. This action hides the target in the current diagram.
Remove elements or edges – Right-click an element or edge and choose Remove in
the context menu. This action removes the target from all diagrams.
Show all hidden – Right-click on the diagram canvas and choose Show hidden in the
context menu.

Propagation:

Bring connected elements – Right-click an element and choose Bring Connected
in the context menu. A modal appears with options of elements connected to the
selected element. Click on an option to add it into the current diagram.
Bring states – Right-click an object and choose Bring States in the context menu.
This action automatically adds states of the selected object that are not present in the
current diagram.
Propagation selection – Choose a mode of propagation in the selection located in
the top toolbar. The options are None, One Level and Complete. Elements will be
automatically propagated (or not) based on the selected mode.

Select demo – In the top toolbar, select a demo to import an already pre-made model.

Export current diagram to PNG – Click on the associated button located in the top
toolbar.

Export/import the whole model to/from JSON – Click on the associated button
located in the top toolbar.
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Appendix B

Attached CD contents

/
thesis.pdf...................................................Text of the thesis
thesis_source/ ................................... Latex source files and images
application/....................................Files related to the application

build/.....................Packaged application ready to be run in a browser
public/..........................................................Static files
src/.................................................Application source code

components/ ................................. React components definition
controller/..........................................Controller functions
css/..........................................................Stylesheets
model/.........................................Definition of model classes
options/..............Initilizing options for Cytoscape.js and its extensions
data/...........................................Application data (images)
index.tsx..............................................React entry point

dependencies/ .... Dependencies not handled by NPM (modified Cytoscape.js)
demos/..................Pre-made model examples available in the application
package.json.................................NPM dependencies declaration
package-lock.json ........................... NPM dependencies declaration
tsconfig.json......................................TypeScript configuration
LICENSE ..................................................... MIT license file
README.md ...................... Readme file with manual and installation info
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