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Abstract
We explore possibilities of using various abstractions of finite automata languages in op-
timization of automata algorithms used in automata reasoning. We focus on abstracting
languages of states to sets of accepted lengths of word or Parikh images, represented as
semi-linear sets, and explore options of using them to optimize automata constructions
by pruning states based on abstractions of their languages. We propose several abstrac-
tions and work on optimizing their performance. We use two common finite automata
problems, synchronous product construction and deciding the emptiness of finite automata
intersection, as benchmark problems on which we test our optimizations. Nevertheless, our
abstractions are applicable on many other typical automata operations, e.g., complement
generation etc. Our experiments show that the proposed optimizations reduce generated
state space for both benchmark problems substantially.

Abstrakt
Prověřujeme možnosti použití různých abstrakcí jazyků konečných automatů pro opti-
malizaci automatových algoritmů používaných pro rozhodování založené na automatech.
Zajímáme se o abstrakci jazyků stavů na množiny přijímaných délek slov nebo Parikovy
obrazy, reprezentované jako semi-lineární množiny, a zkoumáme možnosti jejich využití
k optimalizaci automatových konstrukcí odstraňováním stavů založeném na abstrakcích
jejich jazyků. Předvádíme několik abstrakcí a pracujeme na optimalizaci jejich výkonu.
Používáme dva běžné automatové problémy, synchronní produkt konstrukci a rozhodování
prázdnosti průniku konečných automatů, jako operace pro experimentální vyhodnocení, na
kterých testujeme naše optimalizace. Naše abstrakce jsou nicméně aplikovatelné na mnohé
další typické automatové operace, například generaci doplňku aj. Provedené experimenty
ukazují, že navrhované optimalizace podstatně zmenšují generovaný stavový prostor pro
oba testované problémy.
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Rozšířený abstrakt
Konečné automaty nachází mnohá využití v různých oblastech výpočetní teorie, zejména

v oblasti rozhodování založeném na automatech (model checking, string solving a analýza,
WS1S). Přestože jsou konečné automaty konceptuálně jednoduché, často s nimi potřebu-
jeme provádět operace, které jsou výpočetně drahé a generují rozsáhlý stavový prostor,
jehož mnohé části jsou nadbytečné.

V této práci zkoumáme možnosti použití různých abstrakcí jazyků stavů automatů pro
optimalizaci takových automatových algoritmů. Pomocí vhodných abstrakcí se snažíme
předpovědět, které stavy výsledného automatu jsou nepotřebné, a mohou proto být odstraněny
z generovaného stavového prostoru bez narušení jazyka výsledného automatu, pokud jsou
získané abstrakce navzájem nekompatibilní.

Pro demonstraci našich abstrakcí jsme se rozhodli použít operaci průniku konečných
automatů prováděnou synchronní produkt konstrukcí a test prázdnosti průniku automatů.
Naše předvedené abstrakce jsou však navrženy tak, aby byly aplikovatelné na širokou škálu
automatových operací (například konstrukci doplňku aj.). Význam naší práce proto pře-
sahuje samotnou optimalizaci produkt konstrukce automatů. Všechny navrhované ab-
strakce s jejich inverzními funkcemi navíc tvoří Galois connection, tedy popisují nad-
abstrakci jazyků stavů. Díky tomu není nebezpečí, že bychom při odstraňování stavů
s nekompatibilními abstrakcemi nechtěně odstranili i stavy důležité pro popis jazyka přijí-
maného generovaným automatem.

Při konstrukci průniku automatů dochází k tzv. stavové explozi, kdy jsou generovány
rozsáhlé části stavového prostoru, které tvoří neukončující stavy, ze kterých nebude dosažitelný
žádný koncový stav ve výsledném produktu. Naše optimalizace sestává z kontroly kompat-
ibility abstrakcí jazyků stavů pro stavy, ze kterých se skládá daný produkto-stav, za běhu
produkt konstrukce. Pokud určíme abstrakce jako nekompatibilní, můžeme bezpečně takový
produkto-stav odstranit. Výhodou našich abstrakcí je, že stavový prostor zmenšují již při
generaci výsledného automatu. Některé stavy tak nebude třeba vůbec ani generovat, pokud
všechny jejich předchůdci budou odstraněni. Naproti tomu u naivní produkt konstrukce
musíme nejdříve vygenerovat celý automat, než můžeme rozhodovat o kompatibilitě jazyků
vstupních automatů.

Mezi zkoumané abstrakce jazyků stavů patří délková abstrakce a abstrakce Parikovými
obrazy. Dále zkoumáme možnosti optimalizace těchto abstrakcí či předzpracování vstupních
automatů, například pomocí mintermizace automatů.

Délková abstrakce tvoří nadaproximaci jazyka stavů na lineární množiny možných délek
slov přijímaných jazykem pomocí lineárních délkových formulí. Aby daný produkto-stav
patřil do průniku, přijímané délky slov stavů ve vstupních automatech si musí odpovídat,
tedy formule popisující délkovou abstrakci musí být splnitelné zároveň. V opačném případě
jazyky stavů nepřijímají stejný jazyk (délky přijímaných slov se liší) a jejich průnik je
prázdný. Takové produkto-stavy mohou být odstraněny z generovaného stavového prostoru
a jejich následníci nemusí být generováni.

Délky slov modelujeme pomocí tzv. laso automatů přijímajících nadmnožinu jazyka
vstupních automatů: laso automaty přijímají slova o všech délkách slov přijímaných vs-
tupními automaty. Vzájemnou splnitelnost délkových abstrakcí v podobě délkových for-
mulí sestavených z laso automatů ověřujeme zadáním příkazu pro SMT solver, nicméně
můžeme optimalizovat otázku splnitelnosti délkových formulí nahrazením SMT solveru za
matematický výpočet založený na vlastnostech lineární kongruence, který je schopný rychle
a efektivně rozhodnout o splnitelnosti délkových formulí.



Abstrakce Parikovými obrazy definuje semi-lineární množiny založené na Parikově teorému
abstrahující jazyky stavů na počty výskytů symbolů na přechodech bez závislosti na jejich
umístění v přijímaném slově pomocí semi-lineárních formulí Parikových obrazů. Za nekom-
patibilní abstrakce považujeme takové, kde si neodpovídají počty použitých symbolů jazyků
stavů pro daný produkto-stav. Tedy, pokud jsou formule Parikových obrazů navzájem ne-
splnitelné, můžeme opět odstranit daný produkto-stav z generovaného stavového prostoru.

Abstrakci Parikovými obrazy je možné nadále optimalizovat další redukcí Parikových
obrazů či inkrementálním SMT výpočtem, který umožňuje předpočítat společné části for-
mulí jednou a využívat výsledky předchozího výpočtu po celý průběh konstrukce produktu.
Nadále můžeme zavést timeout pro předčasné ukončení rozhodování splnitelnosti formulí
Parikových obrazů.

Obě abstrakce mohou využít optimalizace přeskočitelných produkto-stavů, kdy není
třeba vyhodnocovat splnitelnost formulí abstrakcí, pokud daný produkto-stav byl vytvořen
z produkto-stavu generujícího pouze tento jediný následující produkto-stav. Tedy, aby
měl předcházející produkto-stav kompatibilní abstrakce jazyků stavů vstupních automatů,
musí využívat aktuálního produkto-stavu pro dosažení koncového stavu, a proto musí nutně
i abstrakce jazyků stavů pro tento následující produkto-stav být navzájem kompatibilní.

Naše abstrakce jsme navrhli tak, aby tvořily obecný a samostatný popis jazyků stavů,
což umožňuje abstrakce volitelně kombinovat, rozšiřovat o další abstrakce či optimalizační
techniky, a tím využít výhod každé abstrakce, zatímco minimalizujeme dopad nevýhod
daných abstrakcí. Tím umožňujeme využívat naše optimalizace pro širokou oblast problémů
řešených konečnými automaty. Přístup za běhu řešených abstrakcí jazyků stavů taktéž
umožňuje operace paralelizovat nebo vhodně rozdělit na podproblémy.

Provedli jsme experimentální vyhodnocení navrhovaných abstrakcí optimalizujících kon-
strukci průniku. Podle provedených experimentů můžeme soudit, že navrhované abstrakce
mají předpokládané optimalizační schopnosti a zmenšují generovaný stavový prostor i lépe
rozhodují test prázdnosti průniku automatů než naivní přístupy konstrukce produktu.

Délková abstrakce je rychlá a jednoduchá, její optimalizační síla je však nižší než u ab-
strakce Parikovými obrazy. Délková abstrakce výborně optimalizuje produkty s dlouhými
linkami stavů, může mít však potíže s odstraňováním stavů v hustě propletené síti pře-
chodů. Abstrakce Parikovými obrazy je velmi přesná. Skvěle optimalizuje generovaný pro-
dukt, ovšem výpočet vzájemné splnitelnosti formulí Parikových obrazů je pro SMT solver
náročný a časově drahý. Můžeme si tedy zvolit, jestli chceme dosáhnout rychlého, i když
možná méně důkladného zmenšení stavového prostoru; přesné, ale výpočetně náročnější
minimalizace průniku; případně vhodné kombinace těchto vlastností.
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Chapter 1

Introduction

Finite automata are a well-known model of computational theory used in many areas. Finite
automata are commonly used in automata reasoning (e.g., in model checking [29], string
solving and analysis [27] or WS1S [15, 16]).

Finite automata are conceptually straightforward. However, operations on finite au-
tomata are often expensive: have high complexity, require extensive computational time
and generate vast state space.

Our goal is to find different heuristics for optimizing several typical problems connected
to finite automata. We study possibilities of using various abstractions of languages of
finite automata states in optimization of automata algorithms. We abstract languages of
states to sets of lengths of words in state languages and to Parikh images, represented as
semi-linear sets, and explore options of using them to optimize the automata constructions
by pruning states whose language abstractions represent an empty language. We work on
optimizing performance of these abstractions. Moreover, besides optimization techniques
specific for concrete state language abstractions, we also consider a general technique of
mintermization to allow using our abstractions on additional structures such as regular
expressions represented as finite automata and to optimize our abstractions further.

The idea of using abstraction in automata problem-solving is not new, but it is not
properly explored either. There were first attempts of using abstraction techniques in
automata such as alternating automata [18] or abstract regular model checking [5], both
using techniques similar to a general predicate abstraction [8, 19] and CEGAR [7].

We want to optimize operations on finite automata which take lots of computational
time and generate vast state space. We are considering operations such as product con-
struction, determinization of complement construction, minimization or determinization
and inclusion test. Furthermore, we want to create state language abstractions which can
work for different automata structures: operations on transducers, operations with alter-
nating automata such as its emptiness or a conversion of an alternating automaton to its
NFA representation, conversion of finite automata to flat automata, etc.

We focus on the construction of finite automata intersection generated by the syn-
chronous product construction. We consider two common forms of this finite automata
operation as our benchmark problems on which we test our optimizations:

• first, construction of the intersection automaton by the synchronous product con-
struction, which means completion of the entire product construction, and

• testing the emptiness of finite automata intersection (emptiness problem) which asks
whether the language of the product is empty. Here, it is not always necessary to
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construct the entire product (or parts of the product) to resolve the emptiness of the
intersection.

Nevertheless, even if our optimizations are introduced on product construction and
emptiness problem, our discoveries have wider impact and are in some form applicable on
many typical automata operations.

The intersection of finite automata combines the original states from the individual au-
tomata to tuples called product states in the generated state space by finding correspond-
ing transitions with the same symbols. Every product state represents an intersection of
languages of the corresponding states in the original automata. The synchronous product
construction is computationally costly: for two finite automata, the generated product state
space can increase quadratically to the number of input finite automata states (number of
states in one finite automaton times number of states in the second finite automaton) and
transitions. And, for multiple finite automata, exponentially to the number of used finite
automata. However, there are often large parts of the generated state space which cannot
accept any words (no final states can be reached from these states), yet are still generated1.
Therefore, it is important to have a decent algorithm to minimize the generated product
state space as much as possible.

In our optimizations, we try to identify which generated product states cannot lead to
any accepting state or are successive only to such states. When state language abstractions
of states in product state are not compatible—the original languages of the corresponding
states cannot accept the same words—we can omit such product state and all their potential
successive states, pruning the generated state space.

We start with an optimization using length abstraction of state languages. For each
state, we construct a so-called lasso automata. It is used to compute a semi-linear formula
which codes the lengths of the words in the languages of current states (we call them
accepted lengths). We use SMT solver to resolve satisfiability of these formulae. When
accepted lengths of states in the product states are not compatible (their formulae are not
satisfiable), their languages have no common words. There is no path from the product state
leading to the accepting product state. We can prune such product states. Consequently,
this removes the need to even consider their potential successive states.

Even though there still might be states which do not lead to any final state in the
final product, this simple optimization often trims substantial parts of the state space.
Length abstraction can also be implemented simply and efficiently. However, sometimes
the abstraction is too coarse. For instance, it cannot detect unnecessary product states for
finite automata with rich alphabets, since their states accept a multitude of word lengths.

For that reason, we investigate a finer state language abstraction which uses Parikh
images of state languages. Parikh image of a word tells us how many times each symbol
occurs in the word2. Parikh image of a language is a semi-linear formula describing the
relation between the number of symbol occurrences in words in a language. In contrast to
the length abstraction, it contains additional information about the numbers of symbols in
words. We can more precisely identify unnecessary state space by determining compatibility
of Parikh image abstractions. To solve satisfiability of their formulae, we use SMT solver.
However, the Parikh image computation is expensive. There is a trade-off between the
precision of the Parikh image abstraction and its cost.

1The generated product state space sometimes explodes.
2A function which assigns each transition symbol a number of occurrences in a word.
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Generating smaller state space using our Parikh image optimization can improve com-
putation time for the product generation in case substantial parts of the state space are
pruned. Moreover, it is even enough to decide the emptiness of the intersection on the
initial product state immediately in many cases.

An important part of this work is researching optimizations of the specific state language
abstractions to make their usage efficient. For both abstractions, we find a way to skip eval-
uation of state language abstractions for product states in long lines (linear non-branching
sequences of states). If a product state with compatible accepted lengths generates a single
sequence of states, all states in the line have compatible length abstractions.

For length abstraction, we reduce lasso automata generation for each state to a single
expanding lasso automaton for the whole finite automaton. We also efficiently evaluate
length abstractions without SMT solver by resolving satisfiability of their formulae with a
special construction using linear congruences.

For Parikh image computation, we remove parts of Parikh image formula, which can
reduce its precision, but it occurs that it has no impact on pruning capabilities on our
benchmark automata. The formulae are large. However, extensive parts of them remain
unchanged for different product states. We utilize incremental SMT solving to precompute
the common parts and for each state recompute only the remainder of the formulae. This
speeds up the evaluation of compatibility of Parikh image abstractions. If resolving satisfi-
ability of formulae takes too long, we can introduce a timeout for SMT solver to stop the
computation and not prune the product state.

We also consider combinations of our abstractions, particularly we experiment with
computing cheap length abstraction first and computing the Parikh images only when
length abstraction fails to prune product states.

Further, we use mintermization for intersection of finite automata as a different ap-
proach to processing the initial automata before applying other optimizations. We compute
minterms, which can be used instead of transition symbols while retaining all information
about the automata to compute Parikh images and other optimization abstractions faster.

We implement the proposed abstractions and evaluate their impact on the emptiness
problem and the product construction experimentally. We experiment with a benchmark
containing a set of different finite automata obtained from runs of a regular model checking
tool on verification of pointer programs and parametric protocols created in [4] based on
a method of abstract regular model checking from [5]. We generate products of various
combinations of these finite automata and solve the emptiness problem of their intersections
or generate the whole products. We focus on the number of trimmed product states and
their nature, their position in the product or other significant properties. For certain types
of automata, our optimizations work really well. Parikh image abstraction usually trims vast
state spaces where length abstraction cannot prune everything and unoptimized product
state space explodes (e.g., from 20000 to 10 product states). In addition, the abstractions
are sometimes successful at immediately stopping product construction on the first initial
product state if the intersection is empty, while, in some cases, product construction would
take hours (in one case, more than 7 hours, compared to 1 minute with Parikh image
abstraction).

The contribution of this work can be summarized as follows:

1. heuristics trimming the generated state space of finite automata operations based on
abstractions of specific state languages: length abstraction and Parikh image compu-
tation; or general approaches as mintermization,
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2. optimizations for explored state language abstractions:

• skipping evaluation of state language abstractions for some product states for
sequences of product states in long lines,

3. optimizations specific for length abstraction:

• generating a single lasso automaton for the whole finite automaton,
• efficient evaluation of length abstraction without SMT solver,

4. optimizations specific for Parikh image abstraction:

• reduced Parikh image to resolve satisfiability of Parikh image formulae faster,
• resolving Parikh images with incremental SMT solving,
• resolving Parikh images with a timeout for SMT solver,

5. combination of state language abstractions to optimize automata problems, and

6. implementation and experimental evaluation of said heuristics and their optimiza-
tions.

5



Chapter 2

Preliminaries

Let us clarify a few definitions and terms often used throughout this paper. The following
definitions are mostly adapted from [12] or [30].

Alphabet is a finite, non-empty set denoted by Σ. Elements of an alphabet are called
symbols or letters. A finite, possibly empty, sequence of symbols over an alphabet is a word
𝑤 from the set of all words Σ∗ over an alphabet Σ.

Definition 2.0.1 (Deterministic finite automaton)
A deterministic finite automaton (DFA) is a 5-tuple 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), where:

• Q is a non-empty set of states,

• Σ is an input alphabet,

• 𝛿 is a transition function: 𝑄 ×Σ→ 𝑄,

• 𝐼 ∈ 𝑄 is an initial state, and

• 𝐹 ⊆ 𝑄 is a set of final (accepting) states.

A run of 𝐴 on input 𝑎0𝑎1𝑎2 . . . 𝑎𝑛−1 is a sequence 𝑞0
𝑎0Ð→ 𝑞1

𝑎1Ð→ 𝑞2
𝑎3Ð→ . . .

𝑎𝑛−1ÐÐ→ 𝑞𝑛, such
that 𝑞𝑖 ∈ 𝑄 for 0 ≤ 𝑖 ≤ 𝑛, 𝑞0 = 𝐼 and 𝛿(𝑞𝑖, 𝑎𝑖) = 𝑞𝑖+1 for 0 ≤ 𝑖 ≤ 𝑛−1. A run is accepting if 𝑞𝑛 ∈ 𝐹 .
𝐴 accepts a word 𝑤 ∈ Σ∗ if 𝐴 has an accepting run on input 𝑤. A language recognized by
𝐴 is a set 𝐿(𝐴) = {𝑤 ∈ Σ∗ ⋃︀𝑤 is accepted by 𝐴}. A single transition from 𝛿 is denoted as
𝑞

𝑎Ð→ 𝑞′ if 𝑞′ ∈ 𝛿(𝑞, 𝑎) and means one can get from state 𝑞 to state 𝑞′ with a transition symbol
𝑎. For every state, DFA has at most one transition for a given symbol. Consequently, DFA
has exactly one run on a given word from initial state to one of the accepting states (or
non-terminating states1 in case the word is not accepted by the automaton at all).

Definition 2.0.2 (Non-deterministic finite automaton)
A non-deterministic finite automaton (NFA) is a 5-tuple 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), where 𝑄, Σ
and 𝐹 are as for DFA and:

• 𝛿 is a transition relation: 𝛿 ∶ 𝑄 ×Σ → 𝑃 (𝑄), where 𝑃 (𝑄) = {𝑅 ⋃︀𝑅 ⊆ 𝑄} is a set of
subsets of 𝑄, and

• 𝐼 = {𝑞 ⋃︀ 𝑞 ∈ 𝑄} is a non-empty set of initial states.
1No accepting state is accessible from them.
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For every state and its transition symbol, 𝑃 (𝑄) ∈ 𝛿(𝑞, 𝑎) is a singleton. For example,
𝛿(𝑞1, 𝑎) = {𝑞1, 𝑞2}.

Two finite automata 𝐴1 and 𝐴2 are said to be equivalent when both accept the same
language: 𝐿(𝐴1) = 𝐿(𝐴2).

For every NFA 𝐴 exists a corresponding equivalent DFA 𝐴′. Determinization is a
process of converting such NFA to DFA.

Definition 2.0.3 (Powerset (subset) construction)
The powerset construction is a method for creating a corresponding deterministic finite au-
tomaton from its equivalent non-deterministic finite automaton. Produces finite automaton
𝐴′, where 𝑄′ = 2𝑄, 𝐹 ′ = {𝑆 ∈ 𝑄′⋃︀𝑆 ∩ 𝐹 ≠ ∅}, 𝐼 ′ = 𝐼 and for 𝑆 ∈ 𝑄′ ∶ 𝛿′(𝑆, 𝑎) = ⋃𝑠∈𝑆 𝛿(𝑠, 𝑎).

Definition 2.0.4 (Product construction)
Given two NFAs 𝐴1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1) and 𝐴2 = (𝑄2,Σ, 𝛿2, 𝐼2, 𝐹2) over the same alphabet
Σ, operations on 𝐴1 and 𝐴2 yield a result—a product 𝐴 as a 5-tuple deterministic finite
automaton 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) where:

• 𝑄 = 𝑄1 ×𝑄2,

• 𝛿 ∶ 𝑄 ×Σ→ 𝑃 (𝑄),

• 𝐼 = 𝐼1 × 𝐼2, and

• 𝐹 = 𝐹1 × 𝐹2.

𝛿 is described as ((︀𝑞1, 𝑞2⌋︀, 𝑎) = 𝛿1(𝑞1, 𝑎) × 𝛿2(𝑞2, 𝑎). For pairs of states 𝑞1 and 𝑞2 from
𝐴1 and 𝐴2, respectively, and a common transition symbol 𝑎 of transitions 𝑞′1 ∈ 𝛿1(𝑞1, 𝑎) and
𝑞′2 ∈ 𝛿2(𝑞2, 𝑎), we denote a single product transition as (︀𝑞1, 𝑞2⌋︀

𝑎Ð→ (︀𝑞′1, 𝑞′2⌋︀, where
(︀𝑞′1, 𝑞′2⌋︀ ∈ 𝛿((︀𝑞1, 𝑞2⌋︀, 𝑎) for the corresponding states (︀𝑞1, 𝑞2⌋︀ and (︀𝑞′1, 𝑞′2⌋︀ in 𝐴 are called product
states.

Focusing on an intersection of finite automata, the product construction tells that
𝐿(𝐴) = 𝐿(𝐴1) ∩ 𝐿(𝐴2). Finally, we test the emptiness of the intersection. Given 𝐴1 and
𝐴2, emptiness test asks whether the language of the product is empty: 𝐿(𝐴1 ∩𝐴2) = ∅.

We work with an unoptimized product construction in Algorithm 1.

Definition 2.0.5 (Galois Connection)
Galois connection is a quadruple 𝜋 = (𝒫, 𝛼, 𝛾,𝒬) such that:

• 𝒫 = ∐︀𝑃,≤̃︀ and 𝒬 = ∐︀𝑄,⊑̃︀ are partially ordered sets (posets) and

• abstraction function 𝛼 ∶ 𝑃 → 𝑄 and concretization function 𝛾 ∶ 𝑄 → 𝑃 inverse to 𝛼.
∀𝑝 ∈ 𝑃 and ∀𝑞 ∈ 𝑄:

𝑝 ≤ 𝛾(𝑞)⇔ 𝛼(𝑝) ⊑ 𝑞.

In the terminology of abstract interpretation, 𝑃 is a concrete domain and 𝑄 is an
abstract domain. If 𝛼 and 𝛾 functions form a Galois connection, ∀𝑝 ∈ 𝑃 (𝑝 ≤ 𝛾(𝛼(𝑝))).
That is, the abstraction may only over-approximate the concrete semantics.
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Input : NFA 𝐴1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1), NFA 𝐴2 = (𝑄2,Σ, 𝛿2, 𝐼2, 𝐹2)

Output: NFA 𝐴 = (𝐴1 ∩𝐴2) = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) with 𝐿(𝐴1 ∩𝐴2) = 𝐿(𝐴1) ∩𝐿(𝐴2)

1 𝑄, 𝛿,𝐹 ← ∅
2 𝐼 ← 𝐼1 × 𝐼2
3 𝑊 ← 𝐼
4 while 𝑊 ≠ ∅ do
5 pick (︀𝑞1, 𝑞2⌋︀ from 𝑊
6 add (︀𝑞1, 𝑞2⌋︀ to 𝑄
7 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
8 add (︀𝑞1, 𝑞2⌋︀ to 𝐹

9 forall 𝑎 ∈ Σ do
10 forall 𝑞′1 ∈ 𝛿1(𝑞1, 𝑎), 𝑞′2 ∈ 𝛿2(𝑞2, 𝑎) do
11 if (︀𝑞′1, 𝑞′2⌋︀ ∉ 𝑄 then
12 add (︀𝑞′1, 𝑞′2⌋︀ to 𝑊

13 add (︀𝑞′1, 𝑞′2⌋︀ to 𝛿((︀𝑞1, 𝑞2⌋︀, 𝑎)

Algorithm 1: Classic unoptimized product construction used by our state language abstractions
to optimize the generated product state space by deciding the compatibility of state language
abstractions.
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Chapter 3

State Language Abstractions

In this chapter, we introduce several state language abstractions, presented on product
construction and deciding the emptiness problem.

When constructing a product, a considerate number of product states are non-terminating
and thus unnecessary. Moreover, the whole product must be constructed before we can de-
termine whether the automata intersection is empty. We want to minimize the number of
generated product states when resolving the product construction of an automata intersec-
tion and deciding the emptiness of the intersection.

We try to guess which product states do not lead to any final states and consequently can
be omitted, and the following states do not need to be generated at all. Our optimizations
decide the emptiness of parts of the product (or the whole product) already in the process of
generating the product (on the fly). We can thus prune non-terminating states before they
are added to the product and omit extensive product state space before even considering it in
the classic product construction. We achieve this by computing state language abstractions
for each state the generated product state consists of and deciding the compatibility of
these abstractions.

Our product construction optimizations are applicable on two and more automata, but
for the ease of explanation, we consider only two automata. In the following, we will define
an abstraction of languages of the states 𝑞, 𝛼(𝑞). We define two kinds of abstractions: length
abstraction 𝛼𝐿𝐴(𝑞) and Parikh image abstraction 𝛼𝑃𝐼(𝑞). These abstractions represent
formulae in first-order predicate logic. Both our 𝛼𝐿𝐴(𝑞) and 𝛼𝑃𝐼(𝑞) together with their
inverse functions form a Galois connection. Hence, they are an over-approximation of state
language of 𝑞.

For a product state 𝑝 = (︀𝑞1, 𝑞2⌋︀ of the product 𝑃 , we use abstractions of languages of
states 𝛼(𝑞1) and 𝛼(𝑞2) to quickly detect whether 𝑝 has an empty language. That can be
achieved by checking whether 𝛼(𝑞1) and 𝛼(𝑞2) are compatible. If they are incompatible,
product language is empty and 𝑝 can be pruned (there is no run from 𝑝 to any final
state). Therefore, the optimized product language is the same as the unoptimized product
language.

3.1 Length Abstraction of State Languages
In this section, we discuss length abstraction 𝛼𝐿𝐴(𝑞). Length abstraction looks at lengths of
words accepted by the state language, creating a set of accepted lengths. In the following,
we first discuss the basic principle of length abstraction. Later, we propose efficiency
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optimizations for length abstraction. To start with, we introduce lasso automata as a finite
automata representation of length abstraction.

3.1.1 Length Abstraction Represented by Lasso Automata

Length abstraction over-approximates the language of 𝑞 by considering only the accepted
lengths of words. This is, if a length of a word does not belong to the length abstraction of
𝑞, it cannot be accepted by state language of 𝑞, either.

Computing length abstraction over the languages of finite automata states is accom-
plished using lasso automata (LSA, handle and loop automata)—deterministic finite au-
tomata with a unary alphabet (similar as in [1]). They consist of a handle (a sequence of
states from the initial state) and a loop (resolving the cycles in the original automaton)
resembling a lasso with a few final states representing the accepted word lengths.

You can create a lasso automaton for a state 𝑞, lsa(𝑞), by taking the finite automaton 𝐴,
𝑞 ∈ 𝑄𝐴, setting 𝐼𝐴 = {𝑞}, considering all transition symbols as a single transition symbol and
determinizing the result with subset construction. lsa(𝑞) is an automaton accepting every
length of any word in state language of 𝑞. Consequently, it is easy to compute semi-linear
set (formulae in the form of a disjunction of linear equations) for the accepted lengths of
words, which can be efficiently evaluated. We are computing length formulae for individual
states in the product state, checking their satisfiability, and constructing only those product
states for which the length abstraction formulae are satisfiable.

The length abstraction formulae are generated from lsa(𝑞). For every state 𝑞, we get one
or more existentially quantified formulae 𝜙 in Presburger arithmetic describing language
abstracting 𝛼𝐿𝐴(𝑞) in the form

𝜙 ∶ ∃𝑘(⋃︀𝑤⋃︀ = ℎ + 𝑙 ⋅ 𝑘)

where ⋃︀𝑤⋃︀ is a length of a recognized word, ℎ is the length of a handle to a certain final
state 𝑓 , and 𝑙 is the length of a loop to return to 𝑓 going through the loop. 𝑘 is the number
of cycles through the loop states until a word ends in 𝑓 . When multiple depicted formulae
are created (because there are more final states or different accepting runs for a single final
state in LSA resulting in multiple accepted lengths), we append these formulae with logical
or :

𝛼𝐿𝐴 ∶ ∃𝑘(𝜙1 ∨ . . . ∨ 𝜙𝑛)

where 𝑛 is a number of generated 𝜙.

Running Example We demonstrate the construction of 𝛼𝐿𝐴(𝑞0) for initial state 𝑞0 of
the following NFA 𝐴1 = ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5},{0,1}, 𝛿1,{𝑞0},{𝑞4}) where transition relation
𝛿1 is depicted in Figure 3.1. That is, we construct lsa(𝑞0). We will continue using 𝐴1

throughout the section.
𝐴1 is a non-deterministic finite automaton (see state 𝑞1) and uses multiple input sym-

bols. Due to the fact we work with only recognized word lengths, we can substitute the
automaton alphabet with a unary alphabet of a single input symbol ∗1. See the obtained
finite automaton 𝐴′1 in Figure 3.2.

1Even though we do not actually need any particular input symbol, we use * here as an example to
depict the process. In general, all we need to know is that there is a transition between two states. The
specific transition symbols are not significant for our length abstraction.
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Figure 3.1: Non-deterministic finite automaton 𝐴1.
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Figure 3.2: Non-deterministic finite automaton 𝐴′1: 𝐴1 with unified transition symbols.

Then, we can generate lsa(𝑞0), which is its deterministic equivalent. For the final lsa(𝑞0),
generated from 𝐴′1 by its product construction determinization, see Figure 3.3. Lasso
automaton for 𝑞0 accepts any words of lengths of words recognized by state language of 𝑞0.

*q0

*

q1

q2q4

q3q5

**

Figure 3.3: Lasso automaton lsa(𝑞0) for the original NFA 𝐴1 generated from 𝐴′1 by its
determination with subset construction.

3.1.2 Single Lasso Automaton for Each Original Automaton

When we are constructing a product of finite automata 𝐴 and 𝐵, we do not want to
regenerate lsa(𝑞𝐴) and lsa(𝑞𝐵) for each product state 𝑝 = (︀𝑞𝐴, 𝑞𝐵⌋︀. This is inefficient. Due
to the nature of LSAs, the successive product states 𝑝′ = (︀𝑞′𝐴, 𝑞′𝐵⌋︀ generate LSAs very similar
to the LSAs for 𝑝. We can construct one summary lasso automaton for the whole finite
automaton 𝐴, LSA(𝐴), which contains all the lasso automata lsa(𝑞𝐴) for all states in 𝐴.
Similarly for 𝐵.

LSA(𝐴) is a lasso automaton created as a union of all lsa(𝑞𝐴) for each 𝑞𝐴 ∈ 𝑄𝐴. That
is, LSA(𝐴) is a union of all lasso states, transitions, final and initial states for each 𝑞𝐴. As
a result, 𝛼𝐿𝐴 for product construction generates only one LSA for each finite automaton
(possibly with multiple loops and/or multiple handles). All singleton states in LSA(𝐴) can
be initial states. The initial state changes to which state 𝑞𝐴 we want lsa(𝑞𝐴) for.
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To generate only the necessary lsa(𝑞𝐴), we can construct LSA(𝐴) gradually, state by
state, for only the currently required 𝑞𝐴. We generate lsa(𝑞𝐴) as the first part of LSA(𝐴).
If we need lsa(𝑞′𝐴) later, we extend lsa(𝑞𝐴) with lsa(𝑞′𝐴) by union of both LSAs. When the
new LSA state 𝑙𝐴 is not already present in LSA(𝐴), we add 𝑙𝐴 to LSA(𝐴) and continue with
the following states 𝑙′𝐴 until we either create an entirely new loop in LSA(𝐴) or generate
𝑙′𝐴 already in LSA(𝐴) (we can stop generating 𝑙′𝐴 as from now on, all 𝑙′𝐴 are already in
LSA(𝐴).

By executing the same steps for 𝐵, we get two LSAs, one for each finite automaton.

Running Example For our finite automaton 𝐴1, Figure 3.4 shows LSA(𝐴1), currently
prepared for an extraction of the length formulae for 𝑞0. However, the initial state is
irrelevant for the general LSA(𝐴1), as it changes to the state we are currently computing
length abstraction formulae for.

*q0

*

q1

* q5*
q4 q2q4

q3q5

**

q2 q3*
*

Figure 3.4: Summary lasso automaton LSA(𝐴1).

3.1.3 Product Construction with Length Abstraction

The core of the product construction remains unchanged, but there are a few differences.
The Algorithm 2 shows how we alternate the original product construction to optimize the
algorithm with length abstraction.

We call 𝑊 from line 3 a work set. It stores the potential product states prepared for
processing, which we pick from 𝑊 one by one2.

The optimization process starts when we pick a product state 𝑝 from 𝑊 . Instead of
immediately generating new successive product states 𝑝′, we generate lsa(𝑞1) and lsa(𝑞2)
to gain length formula. We test the satisfiability of this formula: sat(Φ𝐿𝐴(𝑝)) where

Φ𝐿𝐴(𝑝) ∶ 𝛼𝐿𝐴(𝑞1) ∧ 𝛼𝐿𝐴(𝑞2) and

sat(𝜓) is True iff 𝜓 is satisfiable (Φ is sat), 𝐹𝑎𝑙𝑠𝑒 otherwise. On line 9, we check whether
sat(Φ𝐿𝐴(𝑝)) holds and store a result as a boolean value to 𝑟𝑒𝑠. We are only interested in
the satisfiability test result because we do not need any additional information from the
computed formulae. Therefore, a simple boolean value is sufficient. Φ𝐿𝐴(𝑝) is passed to an
SMT solver to solve its satisfiability. The 𝛼𝐿𝐴 compatibility check 𝛼𝐿𝐴(𝑞1)∧𝛼𝐿𝐴(𝑞2) is sat
can be implemented in SMT solver as in Algorithm 3. SMT solver returns sat when

2In spite of the fact more approaches are valid, we strongly recommend picking the last added product
state from 𝑊 (see line 7)—using depth-first search—as this allows us to quickly advance through the
automaton and get to any final state faster—in case we just want to know whether automata have a non-
empty intersection, this change will get us the answer most of the time in less steps. It works even better
when implemented with a satisfiable state skipping optimization, explained in Section 3.1.4.
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Input : NFA 𝐴1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1), NFA 𝐴2 = (𝑄2,Σ, 𝛿2, 𝐼2, 𝐹2)

Output: NFA 𝑃 = (𝐴1 ∩𝐴2) = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) with 𝐿(𝑃 ) = 𝐿(𝐴1) ∩𝐿(𝐴2)

1 𝑄, 𝛿,𝐹 ← ∅
2 𝐼 ← 𝐼1 × 𝐼2
3 𝑊 ← 𝐼
4 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒
5 𝑠𝑜𝑙𝑣𝑒𝑑← ∅
6 while 𝑊 ≠ ∅ do
7 picklast (︀𝑞1, 𝑞2⌋︀ from 𝑊
8 add (︀𝑞1, 𝑞2⌋︀ to 𝑠𝑜𝑙𝑣𝑒𝑑

9 𝑟𝑒𝑠← 𝛼𝐿𝐴
(𝑞1) ∧ 𝛼

𝐿𝐴
(𝑞2) is sat

10 if 𝑟𝑒𝑠 = 𝑇𝑟𝑢𝑒 then
11 add (︀𝑞1, 𝑞2⌋︀ to 𝑄
12 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
13 add (︀𝑞1, 𝑞2⌋︀ to 𝐹

14 forall 𝑎 ∈ Σ do
15 forall 𝑞′1 ∈ 𝛿1(𝑞1, 𝑎), 𝑞′2 ∈ 𝛿2(𝑞2, 𝑎) do
16 if (︀𝑞′1, 𝑞′2⌋︀ ∉ 𝑠𝑜𝑙𝑣𝑒𝑑 and (︀𝑞′1, 𝑞′2⌋︀ ∉𝑊 then
17 add (︀𝑞′1, 𝑞′2⌋︀ to 𝑊

18 add (︀𝑞′1, 𝑞′2⌋︀ to 𝛿((︀𝑞1, 𝑞2⌋︀, 𝑎)

Algorithm 2: Product construction with length abstraction.

satisfiable (𝑟𝑒𝑠 is set to True) and unsat when unsatisfiable (𝑟𝑒𝑠 is set to False). If unsat
is returned, length abstractions are incompatible. We have now pruned the generated state
space by omitting the product state 𝑝.

1 smtInit()
2 smtAdd(𝑘 ≥ 0,𝑚 ≥ 0)
3 for 𝜙𝑞1 ∈ 𝛼

𝐿𝐴
(𝑞1) do

4 for 𝜙𝑞2 ∈ 𝛼
𝐿𝐴
(𝑞2) do

5 smtPush()
6 smtAdd(𝜙𝑞1 .ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑞1 .𝑙𝑎𝑠𝑠𝑜 ∗ 𝑘 = 𝜙𝑞2 .ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑞2 .𝑙𝑎𝑠𝑠𝑜 ∗𝑚)
7 𝑟𝑒𝑠← smtCheck()
8 if 𝑟𝑒𝑠 = 𝑇𝑟𝑢𝑒 then
9 break

10 smtPop()

Algorithm 3: Check compatibility of length abstractions with SMT solver.

If sat(Φ𝐿𝐴(𝑝)), i.e., there will be an accepting run using 𝑝 (see line 10), we add 𝑝 to 𝑄,
possibly to 𝐹 and generate 𝑝′.

A note of caution. It is important to understand that we are working only with possible
word lengths and when we test the emptiness of the intersection of automata, we can resolve
only such cases where words lengths are not accepted by both automata. When the test
shows there could be some words of certain length accepted by both automata and for that
reason by their intersection too—sat(Φ𝐿𝐴(𝑝))—we cannot be sure there truly are any words
accepted by both automata with their intersection non-empty, because there may be words
of the suggested length, but it may be a different word for each automaton (which differ
from one another in the containing symbols or their position in the word). For resolving
such cases, we have to proceed with the classic algorithm steps to produce product states
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according to their original transition symbols, not only by comparing the possible words
lengths. With certainty, we can omit only the cases where ¬sat(Φ𝐿𝐴(𝑝)).

Running Example We will continue with our running example. The second automaton
we will be working with is a NFA 𝐴2 = ({𝑠0, 𝑠1, 𝑠2, 𝑠3},{0,1}, 𝛿2,{𝑠0},{𝑠3}) where 𝛿2 is
depicted in Figure 3.5.

0
s0

1
0

s1

1 s2
s3

0

Figure 3.5: Non-deterministic finite automaton 𝐴2.

In Figure 3.6, there is LSA(𝐴2), which we will be using together with LSA(𝐴1) shown
in Figure 3.4 for product construction of 𝐴1 and 𝐴2.

*s0

*
*

s2 *

s3
*

s2s3

s1s2
s1

*

Figure 3.6: Lasso automaton LSA(𝐴2) for 𝐴2.

When we start the algorithm, we get the following length abstraction formulae for
𝑝 = (︀𝑞0, 𝑠0⌋︀. From LSA(𝐴1) for 𝑞0 (𝑞0 is the new initial state of LSA(𝐴1)), we get an
existential formula representing length abstraction 𝛼𝐿𝐴(𝑞0)3. From LSA(𝐴2) for 𝑠0 (𝑠0 is
the new initial state of LSA(𝐴2)), we get a formula for length abstraction 𝛼𝐿𝐴(𝑠0)4.

𝛼𝐿𝐴(𝑞0) ∶ ∃𝑘(⋃︀𝑤⋃︀ = 2 ∨ ⋃︀𝑤⋃︀ = 4 + 2 ⋅ 𝑘)
𝛼𝐿𝐴(𝑠0) ∶ ∃𝑚(⋃︀𝑤⋃︀ = 2 + 1 ⋅𝑚)

When we compare 𝛼𝐿𝐴(𝑞0) and 𝛼𝐿𝐴(𝑠0), we get:

𝛼𝐿𝐴(𝑞0) ∧ 𝛼𝐿𝐴(𝑠0) ∶ ∃𝑘(⋃︀𝑤⋃︀ = 2 ∨ ⋃︀𝑤⋃︀ = 4 + 2 ⋅ 𝑘) ∧ ∃𝑚(⋃︀𝑤⋃︀ = 2 + 1 ⋅𝑚)

or in a simplified notation:

𝛼𝐿𝐴(𝑞0) ∧ 𝛼𝐿𝐴(𝑠0) ∶ ∃𝑘∃𝑚(2 ∨ 4 + 2 ⋅ 𝑘 = 2 + 1 ⋅𝑚).

To solve satisfiability of Φ𝐿𝐴((︀𝑞0, 𝑠0⌋︀), we try to find values of 𝑘 and 𝑚 such that ⋃︀𝑤⋃︀ in
both formulae are equal (some expressions on the left and on the right side of the equation
are equal).

3This formula consists of two independent disjuncts 𝜙1 and 𝜙2 describing there are more possible lengths
for accepted words from the same initial state.

4We are using variable 𝑚 here instead of 𝑘 to emphasize variables from different formulae are not
dependent on each other—they belong to different LSAs.
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In Figure 3.7, we can see the product of 𝐴1 and 𝐴2 being constructed using length ab-
straction. Red states represent product states whose formulae are resolved as unsatisfiable
and therefore the algorithm omits any successive product states—dashed states (such as
𝑞4𝑠2 or 𝑞3𝑠2) which are generated in the unoptimized product construction. The green state
represents final states in both automata. Here, we have found a solution accepted by both
𝐴1 and 𝐴2. If we desire to resolve only the emptiness problem, we can stop the execution
of the algorithm here as we have found one final state—automata have non-empty inter-
section. The blue state is a normal product state whose significance will be explained in
section 3.1.4.

q0s0 q1s1

q2s2

q4s2

q1s2

q2s3

q3s2

q4s3

q5s2

0
1

1
0

1

0

0
1

1

Figure 3.7: Constructed product with depiction of optimization with length abstraction.

As you can notice in Figure 3.8, the product generated by our algorithm has only 4
product states in comparison to 9 product states generated by the unoptimized product
construction.

0

1
0

1 q4s3

q1s2

q5s2

q0s0

Figure 3.8: Final product minimized by length abstraction.

3.1.4 Optimization with Skipping Satisfiable States

When we take new 𝑝 from 𝑊 and sat(Φ𝐿𝐴(𝑝)), it is time to add all the possible successive
product states 𝑝′ to 𝑊 . When 𝑝 generates only a single 𝑝′ and 𝑝 ⇑∈ 𝐹𝑃 (final states are
obviously in the product) or satisfiable length was not zero5, we can say with certainty that
sat(Φ𝐿𝐴(𝑝′)) as there is only a single branch in the automaton leading from 𝑝 to a final
state (through 𝑝′). 𝑝′ is skippable, iff there exists 𝑝 ⇑∈ 𝐹𝑃 or with satisfiable length not zero
for which sat(Φ𝐿𝐴(𝑝)) and whose only successor is 𝑝′, we add 𝑝′ to 𝑊 with the information
of being skippable. If 𝑝′ is already in 𝑊 , we append the information to 𝑝′ in 𝑊 .

We skip checking for sat(Φ𝐿𝐴(𝑝′)) when we pick 𝑝′ from 𝑊 . We can immediately
check for final states and generate the successive product states. This optimization saves

5If the satisfiable length is zero, we are in a final product state and 𝑝 generated from final state might
not lead to any final state, but the length abstractions for final state are compatible, of course.
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us generating the length abstraction formulae for 𝑝′ and testing the formulae in the SMT
solver for their satisfiability.

If automata have long lines (with non-splitting branches), this will prove extremely use-
ful, because only a few proper iterations with formulae computing and running SMT solver
computation will be executed. The application of skipping satisfiable states is depicted in
Algorithm 4. The line 9 from Algorithm 2 is substituted with the contents of Algorithm 4.

1 if skippable((︀𝑞1, 𝑞2⌋︀) then
2 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒
3 else
4 𝑟𝑒𝑠← 𝛼𝐿𝐴

(𝑞1) ∧ 𝛼
𝐿𝐴
(𝑞2) is sat

Algorithm 4: Substitution of line 9 in Algorithm 2 with skipping satisfiable states.

The only change is a test for every checked 𝑝, which decides whether 𝑝 can be skipped.
You can see that we proceed with the satisfiability check in SMT solver only for 𝑝 which
are generated from the product states with multiple transitions generating 𝑝 and at least
one more product state (in general at least two new potential product states). If only one
𝑝 was generated earlier from a product state with satisfiable formulae, we skip the check
for sat(Φ𝐿𝐴(𝑝)) and continue to generating its successive states immediately.

You can notice there is one skippable state in the former example, which had to be
evaluated and tested for satisfiability earlier. The blue state in Figure 3.7 is such a skippable
state. In our case for state 𝑞5𝑠2, when only one new state is generated from state 𝑞4𝑠3 while
this state is resolved as satisfiable (with not zero length—otherwise, if 𝑞5𝑠2 did not lead back
to 𝑞4𝑠3, 𝑞5𝑠2 would be skippable even though it would not lead to any final state), newly
generated product state has to be satisfiable as well, because the check for 𝑞4𝑠3 already
considered the state 𝑞5𝑠2 as its only way to any final state with not zero length.

When we have a series of such states, we can highly optimize generating the whole
branch with only one initial check for satisfiability. In real world examples, there are often
automata with long branches splitting into multiple branches only occasionally. We will
check for satisfiability for all the initial states of each new branch and then either omit the
entire branch (if unsat is returned) or skip checking satisfiability in the entire branch (if sat
is returned).

3.1.5 Resolving Length Abstraction Satisfiability without SMT Solver

Evaluating satisfiability of length abstractions formulae in SMT solver is expensive. We
try to replace SMT solver with a specialized structure which transforms the problem of
solving satisfiability of length abstraction formulae to evaluating satisfiability of a linear
congruence equations.

Length abstraction formulae have the same, simple structure. Length abstraction can
be implemented as a set of length formulae represented as a two-tuple of handle length and
lasso length. Therefore, we can easily compare such sets in order to resolve satisfiability
of length abstraction formulae without SMT solver. Φ𝐿𝐴(𝑝) forms a set of linear congru-
ence equations, which can be resolved just by utilizing basic mathematical operations and
properties of linear congruences.

The Algorithm 5 shows how to determine sat(Φ𝐿𝐴(𝑝)) from line 9 using linear congru-
ences.

We execute the following steps for each equation

𝜙𝑞1 .ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑞1 .𝑙𝑎𝑠𝑠𝑜 ⋅ 𝑘 = 𝜙𝑞2 .ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑞2 .𝑙𝑎𝑠𝑠𝑜 ⋅𝑚.
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1 for 𝜙𝑞1 ∈ 𝛼
𝐿𝐴
(𝑞1) do

2 for 𝜙𝑞2 ∈ 𝛼
𝐿𝐴
(𝑞2) do

3 if 𝜙𝑞1 .ℎ𝑎𝑛𝑑𝑙𝑒 = 𝜙𝑞2 .ℎ𝑎𝑛𝑑𝑙𝑒 then
4 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒
5 else if 𝜙𝑞1 .ℎ𝑎𝑛𝑑𝑙𝑒 > 𝜙𝑞2 .ℎ𝑎𝑛𝑑𝑙𝑒 then
6 𝑟𝑒𝑠← solveForOneHandleLonger(𝜙𝑞1 , 𝜙𝑞2)
7 else
8 𝑟𝑒𝑠← solveForOneHandleLonger(𝜙𝑞2 , 𝜙𝑞1)

9 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒

Algorithm 5: Check satisfiability using length abstraction algorithm without SMT solver.

If the handle lengths of 𝜙𝑞1 and 𝜙𝑞2 are equal, there are words of the same length
accepted by both 𝛼𝐿𝐴(𝑞1) and 𝛼𝐿𝐴(𝑞2) (they are mutually compatible) without stepping
into the loops of LSA(𝐴1) and LSA(𝐴2). Otherwise, handle lengths differ, and we must
consider lengths of loops in our determination of compatibility of 𝛼𝐿𝐴(𝑞1) and 𝛼𝐿𝐴(𝑞2).

We now have to determine sat(𝜙𝑞1 ∧𝜙𝑞2) for abstractions with one handle longer. This
is solved by the function solveForOneHandleLonger in Algorithm 6.

First, to simplify the equation (line 2), we move handle lengths from the side of the
equation with the shorter handle 𝜙𝑠 to the side with the longer handle 𝜙𝑙 to solve:

𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 ⋅ 𝑘 = 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 ⋅𝑚 (3.1)

which represents the number of loops a word must make in 𝜙𝑠 to be accepted by 𝜙𝑙 (as if
with shorter 𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒).

If both 𝜙𝑙 and 𝜙𝑠 have no loops (line 4), 𝜙𝑞1 ∧ 𝜙𝑞2 is unsatisfiable because the handles
differ. Else, if only 𝜙𝑠 has no loop (line 6), every word accepted by 𝜙𝑠 is shorter than words
accepted by 𝜙𝑙 and the formulae cannot be satisfiable.

Else, if only 𝜙𝑙 has no loop (line 8), we can try to manually iterate over loops in 𝜙𝑠 to
see whether the difference of word lengths between handles can be equalized by looping in
𝜙𝑠.𝑙𝑎𝑠𝑠𝑜.

Otherwise, both 𝜙𝑙 and 𝜙𝑠 have loops (line 16). We can apply linear congruence proper-
ties to the equation 3.1 to determine whether the formulae are satisfiable. The equation 3.1
says that if formulae are satisfiable, the left side of the equation is divisible by some multiple
of 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜. We can rewrite that in a linear congruence equation as follows:

𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 + 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 ⋅ 𝑘 ≡ 0 (mod 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜) (3.2)
𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 ⋅ 𝑘 ≡ −𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 (mod 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜) (3.3)

which is the same as solving a linear Diophantine equation

𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 ⋅ 𝑘 − 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 ⋅𝑚 = −𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒. (3.4)

Properties of multiplicative inverse [9, 20], based on Bézout’s identity [9], say that iff
𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 and 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 are relatively prime (coprime)—the greatest common divisor (GCD)
of 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 and 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 is equal to 1—there exists a multiplicative inverse for 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜
in modulo 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 which ensures that linear congruence 3.3 is always solvable for some
𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 in modulo 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜

6. Therefore, the formulae are satisfiable.
Otherwise, 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 and 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 are not coprime (GCD is different from 1) and by prop-

erties of linear Diophantine equations [20], iff GCD precisely divides 𝑦 without a remainder
6We can get the precise solution by multiplying both sides of the equation with the multiplicative inverse.
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1 Function solveForOneHandleLonger(𝜙𝑙, 𝜙𝑠):
Data: Input length abstraction formulae of potential product state.
𝜙𝑙: Length abstraction formula with the longer handle,
𝜙𝑠: Length abstraction formula with the shorter handle.
Result: bool: True if satisfiable, False otherwise.

2 𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒← 𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 − 𝜙𝑠.ℎ𝑎𝑛𝑑𝑙𝑒
3 𝜙𝑠.ℎ𝑎𝑛𝑑𝑙𝑒← 0
4 if 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 = 0 and 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 = 0 then
5 return 𝐹𝑎𝑙𝑠𝑒

6 else if 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜 = 0 then
7 return 𝐹𝑎𝑙𝑠𝑒

8 else if 𝜙𝑙.𝑙𝑎𝑠𝑠𝑜 = 0 then
9 𝑖𝑡← 0 // Current length resembling the iteration of the shorter lasso loop.

10 while 𝑖𝑡 ≤ 𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 do
11 if 𝑖𝑡 = 𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒 then
12 return 𝑇𝑟𝑢𝑒
13 else
14 𝑖𝑡← 𝑖𝑡 + 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜

15 return 𝐹𝑎𝑙𝑠𝑒

16 else
17 𝑔𝑐𝑑← getGCD(𝜙𝑙.𝑙𝑎𝑠𝑠𝑜, 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜)
18 if 𝑔𝑐𝑑 = 1 then
19 return 𝑇𝑟𝑢𝑒
20 else
21 𝑦 ← −𝜙𝑙.ℎ𝑎𝑛𝑑𝑙𝑒
22 while 𝑦 < 𝑔𝑐𝑑 do
23 𝑦 ← 𝑦 + 𝜙𝑠.𝑙𝑎𝑠𝑠𝑜

24 if (𝑦 mod 𝑔𝑐𝑑) = 0 then
25 return 𝑇𝑟𝑢𝑒
26 else
27 return 𝐹𝑎𝑙𝑠𝑒

Algorithm 6: Solve satisfiability of length abstraction formulae for one handle longer.

where 𝑦 is the right side of the linear congruence 3.3 or its any congruent equivalent, there
exist solutions to the linear congruence7. Otherwise, there are no solutions.

3.2 Parikh Image Abstraction of State Languages
Length abstraction is a simple and fast optimization, but can be too coarse to detect
non-terminating states in some cases. In this section, we present an abstraction of state
languages with Parikh images, 𝛼𝑃𝐼 , which aims to replace length abstraction to make the
abstraction more precise to prune larger quantities of product state space.

Parikh images provide more information about the finite automata than simple length
abstraction. While length abstraction considers only accepted word lengths without know-
ing which transition symbols are actually in the transitions, Parikh image abstracts the
state language to numbers of occurrences of specific transition symbols in words regardless
of their position in said words. Thus, Parikh image abstraction allows us to more precisely
determine whether the product state has non-empty language. However, Parikh image

7We can apply extended Euclidean algorithm to find the precise values for the Diophantine equation 3.4.
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computation itself is expensive. The question is, whether the added computation time
compensates for more precise product generation with higher state pruning capabilities.

We will introduce an algorithm for Parikh image abstraction 𝛼𝑃𝐼 applied on each prod-
uct state 𝑝 = (︀𝑞1, 𝑞2⌋︀ to decide the compatibility of 𝛼𝑃𝐼(𝑞1) and 𝛼𝑃𝐼(𝑞2).

3.2.1 Parikh Image

We derive our Parikh image construction from the Parikh’s theorem [26] described in [13],
creating a semi-linear Parikh image formulae for the given regular language as a set of
Parikh images for each word in the language. However, our usage of Parikh image of
some regular language (and therefore of the corresponding finite automaton recognizing
such regular language) is restricted to determining the compatibility of Parikh image state
language abstractions. Therefore, we only test for satisfiability of Parikh image formulae
describing 𝛼𝑃𝐼(𝑞). We use SMT solver to resolve the satisfiability of Parikh image formulae
of the current potential product state.

Given an NFA 𝐴 = (𝑄,Σ,∆, 𝐼, 𝐹 ), Parikh image formula 𝜙 (as described in [25] for
solving string constraints) consists of several constraints in conjunctive normal form. 𝜙
describes runs of 𝐴. Each satisfiable assignment defines properties of the run. 𝜙 consists
of the following conjuncts:

1. Foremost, we define a variable 𝑢𝑞 for each state 𝑞 ∈ 𝑄. 𝑢𝑞 defines how many times
we enter 𝑞 and exit 𝑞 by specifying the difference between the number of entries and
exits. We construct equations with 𝑢𝑞 for a run as follows:

• 𝑢𝑞 = 1 for 𝑞 ∈ 𝐼,
• 𝑢𝑞 ∈ {0,−1} for 𝑞 ∈ 𝐹 and
• 𝑢𝑞 = 0 for 𝑞 ∈ 𝑄 ∖ (𝐼 ∪ 𝐹 ).

2. Second, we define a variable 𝑦𝑡 for each transition 𝑡 ∈ ∆ such that 𝑦𝑡 ≥ 0 describing
how many times is 𝑡 used in the run.

3. We can now present an equation introducing a connection between 𝑢𝑞 and 𝑦𝑡 to
evaluate the difference between the number of entries and exits for each 𝑞 ∈ 𝑄 as
follows:

𝑢𝑞 + ∑
𝑡∈Δ+𝑞

𝑦𝑡 − ∑
𝑡∈Δ−𝑞

𝑦𝑡 = 0.

where ∆+𝑞 is a set of ingoing transitions ∆+𝑞 = {(𝑞′, 𝑎, 𝑞) ∈ ∆} and ∆−𝑞 is a set of
outgoing transitions ∆−𝑞 = {(𝑞, 𝑎, 𝑞′) ∈∆} from the given state 𝑞.

4. Furthermore, we need to make sure that the states used in runs described by the
satisfying assignments are connected and start in the initial state. Variable 𝑧𝑞 for
each 𝑞 ∈ 𝑄 is introduced. 𝑧𝑞 represents the length of any path from 𝐼 to 𝑞 in a
spanning tree of the subgraph with 𝑦𝑡 ≥ 0. If 𝑧𝑞 = 0, there is no path from 𝐼 to 𝑞 and
the state 𝑞 is not used in the run. 𝑧𝑞 > 0 means there is a path from 𝐼 to 𝑞 and 𝑞 is
used in the run.
If 𝑞 ∈ 𝐼, we add a constraint 𝑧𝑞 = 1 ∧ 𝑦𝑡 ≥ 0. Otherwise,

(𝑧𝑞 = 0 ∧ ⋀
𝑡∈Δ+𝑞

𝑦𝑡 = 0) ∨ ⋁
𝑡∈Δ+𝑞

(𝑦𝑡 ≥ 0 ∧ 𝑧𝑞′ ≥ 0 ∧ 𝑧𝑞 = 𝑧𝑞′ + 1).

If the distance 𝑧𝑞 is 0, 𝑞 is not in the run.
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5. Last but not least, we declare the only free variable #𝑎 for each transition symbol
𝑎 ∈ Σ. #𝑎 describes the number of occurrences of 𝑎 in accepted words regardless of
their position in the words (the number of 𝑎 in the run). #𝑎 is the only variable
common to different Parikh image abstractions when we test their compatibility. The
constraint #𝑎 = ∑𝑡=(𝑞,𝑎,𝑞′)∈Δ 𝑦𝑡 ensures #𝑎 is consistent with the number of used 𝑡
with 𝑎.

We gain an existentially quantified formula 𝜙 in Presburger arithmetic describing lan-
guage abstracting 𝛼𝑃𝐼 for 𝐴 with free variables #𝑎:

𝛼𝑃𝐼 ∶ ∃𝑢𝑞1 , . . . , 𝑢𝑞𝑛 , 𝑧𝑞1 , . . . , 𝑧𝑞𝑛 , 𝑦𝑡1 , . . . , 𝑦𝑡𝑚(𝜙)

where 𝑛 = ⋃︀𝑄⋃︀ is the number of states and 𝑚 = ⋃︀∆⋃︀ is the number of transitions in the finite
automaton.

Notice that 𝛼𝑃𝐼 is an existential formula, which is great for SMT solving where comput-
ing with universal quantifiers can take a long time. SMT solver are specialized on efficient
solving of existential or quantifier-free formulae.

As for length abstraction for product state 𝑝 = (︀𝑞1, 𝑞2⌋︀, we decide compatibility of Parikh
image formulae 𝛼𝑃𝐼(𝑞1) and 𝛼𝑃𝐼(𝑞2) as follows: sat(Φ𝑃𝐼(𝑝)) such that

Φ𝑃𝐼(𝑝) ∶ 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2)8.

3.2.2 Product Construction with Parikh Image Abstraction

We introduce the unoptimized product construction using Parikh image abstraction. The
algorithm is analogous to the product construction optimized by length abstraction from
Algorithm 2. The difference is that we now compute Parikh image formulae and determine
their satisfiability instead of generating lasso automata and determining satisfiability of
length abstraction formulae.

We use Parikh image formulae to determine whether 𝑝 is to be added to the product 𝑃 .
As for length abstraction, we test whether Parikh image abstractions are compatible (a
conjunction of Parikh image formulae is satisfiable). Therefore, instead of length abstraction
on line 9 in Algorithm 2, we compute Parikh image abstractions: line 9 is replaced with

𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is 𝑠𝑎𝑡

We can see our proposed algorithm using Parikh image computation to optimize product
construction in the Algorithm 7. Parikh image formulae are computed on line 9 and their
satisfiability is determined.

3.2.3 Reduced Parikh Image

The presented Parikh image would work well regarding its pruning capabilities. However,
the described Parikh image computation requires extensive resources and computation time
and we need Parikh images computed only for determining the emptiness of the intersec-
tion. Given that most of the computation time is spent by the evaluation of Parikh image

8In reference implementation, we replace existential formulae with quantifier-free formulae with renamed
variables without existential quantifiers.
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Input : NFA 𝐴1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1), NFA 𝐴2 = (𝑄2,Σ, 𝛿2, 𝐼2, 𝐹2)

Output: NFA 𝑃 = (𝐴1 ∩𝐴2) = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) with 𝐿(𝑃 ) = 𝐿(𝐴1) ∩𝐿(𝐴2)

1 𝑄, 𝛿,𝐹 ← ∅
2 𝐼 ← 𝐼1 × 𝐼2
3 𝑊 ← 𝐼
4 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒
5 𝑠𝑜𝑙𝑣𝑒𝑑← ∅
6 while 𝑊 ≠ ∅ do
7 picklast (︀𝑞1, 𝑞2⌋︀ from 𝑊
8 add (︀𝑞1, 𝑞2⌋︀ to 𝑠𝑜𝑙𝑣𝑒𝑑

9 𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is sat
10 if 𝑟𝑒𝑠 = 𝑇𝑟𝑢𝑒 then
11 add (︀𝑞1, 𝑞2⌋︀ to 𝑄
12 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
13 add (︀𝑞1, 𝑞2⌋︀ to 𝐹

14 forall 𝑎 ∈ Σ do
15 forall 𝑞′1 ∈ 𝛿1(𝑞1, 𝑎), 𝑞′2 ∈ 𝛿2(𝑞2, 𝑎) do
16 if (︀𝑞′1, 𝑞′2⌋︀ ∉ 𝑠𝑜𝑙𝑣𝑒𝑑 and (︀𝑞′1, 𝑞′2⌋︀ ∉𝑊 then
17 add (︀𝑞′1, 𝑞′2⌋︀ to 𝑊

18 add (︀𝑞′1, 𝑞′2⌋︀ to 𝛿((︀𝑞1, 𝑞2⌋︀, 𝑎)

Algorithm 7: Product construction with Parikh image abstraction.

conjuncts in SMT solver, we want to minimize the number of Parikh image conjuncts SMT
solver needs to evaluate for each 𝜙.

Consequently, we infer our reduced Parikh image from the shown Parikh image to
further optimize Parikh image computation. We modify several conjuncts in Parikh image
formula and unify initial states and accepting states to simplify the formula and reduce its
complexity.

Due to how we have reduced our Parikh image, we work only with finite automata with
a single initial state and a single accepting state. However, we can easily convert any finite
automaton into the required format with adding two new states: one for a new initial state
from which one can transition to all previous initial states and one for a new accepting
state to which lead all previous accepting states. The previous initial and accepting states
are changed to common automata states.

Our reduced Parikh image consists of the following conjuncts:

1. We use the conjuncts 1, except now we restrict 𝑢𝑞 for each final state to have only
the value −1, i.e.:

𝑢𝑞 = −1 for each state 𝑞 ∈ 𝐹 .

We can perform this reduction, because we know for sure that by unifying final states
of the automaton into one abstract final state, there will be exactly only one final
state where all words accepted by the automaton end, but none passes through this
state earlier.

2. The conjuncts 2 and 3 remain unchanged, the same holds for conjuncts 5.

3. However, we completely omit the conjuncts for 𝑧𝑞. The reason is that, as we have
found out, the difference in pruning capabilities of Parikh image with or without
the conjuncts 4 on our benchmark automata is insignificant in comparison to the
computation time spared by removing these conjuncts.
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The reason conjuncts 4 are so computationally costly is that they are complex for
even simple automata. Even then, if we want to keep them, we can include these
conjuncts, but, we can reduce their complexity by not having to compute 𝑧𝑞 lengths
for initial and final states.
The constraint for when 𝑞 is an initial state (𝑧𝑞 = 1 ∧ 𝑦𝑡 ≥ 0) remains unchanged as
a starting length for other states. However, for every other state, we remove the
possibility of 𝑦𝑡 = 0 and 𝑧𝑞′ = 0 in the second half of the conjuncts (as the option
cannot occur with unified initial and final states). The conjuncts look like this:

(𝑧𝑞 = 0 ∧ ⋀
𝑡∈Δ+𝑞

𝑦𝑡 = 0) ∨ ⋁
𝑡∈Δ+𝑞

(𝑦𝑡 > 0 ∧ 𝑧𝑞′ > 0 ∧ 𝑧𝑞 = 𝑧𝑞′ + 1).

Skippable States Optimization

Same as for the length abstraction, we can make use of skipping satisfiable product states
optimization. When sat(Φ𝑃𝐼(𝑝)) for some potential product state 𝑝 = (︀𝑞1, 𝑞2⌋︀ and 𝑝 gener-
ates only one consecutive potential product state 𝑝′ = (︀𝑞′1, 𝑞′2⌋︀ such that 𝑝 𝑎Ð→ 𝑝′ where 𝑎 ∈ Σ,
we can skip computing Parikh images for 𝑝′ as we know for sure sat(Φ𝑃𝐼(𝑝′)) in order to
get a satisfiable result for Parikh image for 𝑝. We can add this functionality to our previous
algorithm by replacing line 9 with the content of Algorithm 8.

1 if skippable((︀𝑞1, 𝑞2⌋︀) then
2 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒
3 else
4 𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is sat

Algorithm 8: Parikh image computation with skippable states optimization.

3.2.4 Optimization with Incremental SMT Solving

Parikh image formulae are large and SMT solving is expensive. We have to recompute
Parikh image formulae for every potential product state. However, formulae generated for
different product states in one intersection problem are very similar. Large parts of Parikh
image formulae do not change between the product states at all.

We try to use SMT solver with incremental SMT solving to reuse parts of the previous
computation in the next one. We can specify parts of the Parikh image formulae in the
SMT solver once, without passing them to the solver for each product state. Further,
once a formula have been computed, the solver can use its cache to reuse parts of the
computation9. In this section, We explain how we use incremental SMT solving for Parikh
images in product construction to compute similar, consecutive Parikh image formulae
faster.

Notice that some conjuncts of Parikh image remain unchanged for the whole automaton,
i.e., for every product state. Only some conjuncts which work with initial states (conjuncts 1
and 4) have to be rewritten, because the only difference between states in two different
product states are the different initial states.

Assume finite automata 𝐴1 and 𝐴2 (whose intersection we generate) and a product
state 𝑝 = (︀𝑞, 𝑠⌋︀ where 𝑞 ∈ 𝑄𝐴1 , 𝑠 ∈ 𝑄𝐴2 . The changes of conjuncts in 𝜙𝐴1 and 𝜙𝐴2 are caused
by moving (setting) the states in both 𝐴1 and 𝐴2 corresponding to 𝑝 as new initial states

9Consequently, the computation of the first Parikh image takes longer than for the next states.
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𝐼𝐴1 = {𝑞} and 𝐼𝐴2 = {𝑠} as we proceed further into the automata with product construction.
We start with the abstract initial states (one for each original automata, 𝐼𝐴1 = {𝑞′0} and
𝐼𝐴2 = {𝑠′0}).

First, we compute Φ𝑃𝐼(𝑝0) such that 𝑝0 = (︀𝑞′0, 𝑠′0⌋︀. Iff sat(Φ𝑃𝐼(𝑝0)), we generate new
potential product states (e.g., 𝑝1 = (︀𝑞1, 𝑠1⌋︀ and 𝑝2 = (︀𝑞1, 𝑠2⌋︀). Now we need to check
whether to include 𝑝1 and 𝑝2 to the generated product, i.e., check that sat(Φ𝑃𝐼(𝑝1)) and
sat(Φ𝑃𝐼(𝑝2)), respectively. Taking 𝑝1, we set new initial states 𝐼𝐴1 = {𝑞1}, 𝐼𝐴2 = {𝑠1}.
Similarly, for 𝑝2, we would set 𝐼𝐴1 = {𝑞1}, 𝐼𝐴2 = {𝑠2}.

We now need to change every mention of initial states in 𝜙𝐴1 and 𝜙𝐴2 because the initial
states are different from those we used at the start (𝑞′0 and 𝑠′0) and for which we already
computed Φ𝑃𝐼(𝑝0). We now introduce an optimization of Parikh image computation which
precomputes unchanged conjuncts only once and recomputes only conjuncts mentioning
initial states.

Persistent and State Specific Clauses

To present optimization with incremental SMT solving, we split 𝛼𝑃𝐼(𝑞) conjuncts into two
groups: persistent clause and state specific clause.

Persistent clause represents Parikh image conjuncts which can be precomputed once
for all states in the finite automaton and used throughout the whole product construction.
Persistent clause consists of unchanged conjuncts of reduced Parikh image described in 3.2.1:
conjuncts 2, conjuncts 3 and conjuncts 5.

The state specific clause consists of conjuncts which change with every product state 𝑝,
and as such have to be constructed and recomputed for every satisfiability test. The process
of recomputing state specific clauses is the most expensive part of the product construction
algorithm using Parikh images. Therefore, our goal is to minimize the number of conjuncts
in a state specific clause as much as possible. The state specific clause consists of conjuncts 1
in reduced Parikh image as they directly change according to initial states and, optionally,
if we want to include 𝑧𝑞 conjuncts, conjuncts 3. We would need to recompute 𝑧𝑞 conjuncts
for each potential product state too because the conjuncts compute with initial states.

It is worth to note that the conjuncts 3 in reduced Parikh image manipulate with initial
states, but the structure of the conjuncts could be reversed to compute connectedness of
the automaton in reversed order, from the accepting states to the initial states. In that
case, the conjuncts could be reconstructed as a part of the persistent clause dependent
on accepting states which remain unchanged (the abstract accepting state) for the entire
time. This additional optimization might be worth inspecting. Because the inclusion of
conjuncts 3 does not generate smaller state spaces with our benchmark automata, we did
not investigate further yet.

Algorithm for Incremental SMT solving Using Parikh Image

To implement incremental SMT solving to our current Parikh image computation shown
in Algorithm 7, we need to make the following adjustments.

We need to precompute persistent clauses once for both 𝐴1 and 𝐴2. We insert a new
line to our algorithm between lines 5 and 6. The new line contains a call to a function
addPersistentClauses() which precomputes persistent clauses for both 𝐴1 and 𝐴2. Note
that the function is called only once, before we enter the while loop for iterating over
potential product states.
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We compute state specific clauses as normal when we ask whether sat(Φ𝑃𝐼(𝑝)) when
we are checking compatibility of both 𝛼𝑃𝐼 on line 9. However, we push the previously
precomputed state persistent clauses to the SMT solver stack. This preserves them when the
current state specific clauses are dropped after sat(Φ𝑃𝐼(𝑝)) is resolved. For a pseudocode
of the replacement of line 9, see Algorithm 9.

1 smtPush()
2 𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is sat
3 smtPop()
Algorithm 9: Add state specific clauses to SMT solver for incremental SMT solving optimiza-
tion.

The line 2 computes Parikh image formulae and determines their satisfiability, as ex-
plained in Section 3.2.3.

3.2.5 Optimization with SMT Solver Timeout

In the case of Parikh images computed with SMT solver, it is easier to determine ¬sat(Φ𝑃𝐼(𝑝))
than sat(Φ𝑃𝐼(𝑝)). Based on our experiments, we use timeout functionalities of SMT solver
to speed up the process of resolving satisfiability of potential product states.

We define a maximal amount of time SMT solver can compute sat(Φ𝑃𝐼(𝑝)) for a single
product state 𝑝 to resolve its satisfiability. If SMT solver resolves sat(Φ𝑃𝐼(𝑝)) before the
time runs out, we proceed as normal. However, if the time runs out, the result of the
satisfiability test is unknown and we must presume Φ𝑃𝐼(𝑝) could be satisfiable: we must
set 𝑟𝑒𝑠 to 𝑇𝑟𝑢𝑒.

This approach resolves sat(Φ𝑃𝐼(𝑝)) of an over-abstraction described previously. We
prune such potential product states that sat(Φ𝑃𝐼(𝑝)) can be resolved quickly (within the
defined timeout) while allowing the inclusion of some potential product states which are
in fact unnecessary to the generated product. Nevertheless, we find pruning capabilities of
this optimization satisfactory and the computation time decreases noticeably.

The timeout is chosen empirically. One has to experiment with their finite automata.
The ideal timeout can vary for different benchmarks. One timeout is usually successfully
usable for operations on similar finite automata. The timeout is directly proportional to
a precision of Parikh image abstraction and reversely proportional to the scale of Parikh
image over-abstraction.

3.3 Combination of State Language Abstractions
Length abstraction is fast but coarse; Parikh image abstraction is precise but expensive.
We can combine both abstractions to take advantage of respective strengths of our ab-
stractions. In this section, we present an algorithm which introduces a modification to
evaluation of compatibility of state language abstractions. We use both length abstraction
and Parikh image computation to determine satisfiability of state abstraction to optimize
product construction. The pruning capabilities remain the same as if we computed Parikh
image alone, or even better in cases where Parikh image computation times out.

The Algorithm 10 shows how we apply our modifications on a single evaluation of
compatibility of abstractions.

First, we test whether 𝛼𝐿𝐴 alone can prune the generated product state space by omit-
ting the current potential product state (︀𝑞1, 𝑞2⌋︀ if ¬sat(Φ𝐿𝐴((︀𝑞1, 𝑞2⌋︀)). If length abstraction
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1 if 𝛼𝐿𝐴(𝑞1) ∧ 𝛼𝐿𝐴(𝑞2) is unsat then
2 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒
3 else
4 𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is sat
5 if 𝑟𝑒𝑠 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 then
6 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒

Algorithm 10: Implementation of checking compatibility of state abstractions using both length
abstraction and Parikh image computation optimizations.

succeeds in omitting (︀𝑞1, 𝑞2⌋︀ from the product, we do not need to compute Parikh images for
(︀𝑞1, 𝑞2⌋︀ and can continue with the product construction as if ¬Φ𝑃𝐼((︀𝑞1, 𝑞2⌋︀). Otherwise, we
continue with Parikh image computation for (︀𝑞1, 𝑞2⌋︀ (resolving satisfiability of its formulae
as in the basic Parikh image algorithm from Algorithm 7).

3.4 Abstraction of State Languages with Mintermization
In this section, we introduce a method of optimizing operations on finite automata using
minterms [24]. Minterm computation abstracts the state language of automata differently
than what we have explored so far, allowing us to follow a diverse set of characteristics about
the state language. We can afterwards make use of computed minterms for the automata
with other optimization methods introduced in this paper, as well as another optimization
approaches.

Foremost, we give an algorithm for minterm computation adapted from [11], further
defined and expanded in [23] for simulation algorithms for symbolic automata and now
optimized for product construction to compute minterms for the non-empty multiset of
input finite automata 𝐴 = {𝐴1,𝐴2, . . . ,𝐴𝑛} where 𝑛 equals the number of finite automata.
Gained minterms abstract automata state language in such a way we do not lose any
information about the original automata (minterms are not an over-approximation of the
original automata), but might create a more concise finite automata which will be easier to
work with in our other abstractions and may significantly decrease the computation time
required for optimizations such as Parikh image computation.

The general idea is to get sets of transition symbols between two states for all our
considered finite automata. Compute minterms from these sets, and substitute transition
symbols between two states in our automata with corresponding minterms created from
these transition symbols.

For now, let us explain what minterms are and how you can generate them.

Definition 3.4.1 (Minterms)
Given an NFA 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), let Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑛} be a finite set of non-empty finite
sets of transition symbols 𝜙𝑖 = {𝑎 ⋃︀𝑎 ∈ Σ ∧ 𝑞 𝑎Ð→ 𝑞′} for 1 ≤ 𝑖 ≤ 𝑛 where 𝑞, 𝑞′ ∈ 𝑄, 𝑛 equals the
number of state pairs (𝑞, 𝑞′) such that 𝑞 𝑎Ð→ 𝑞′ where 𝑞′ ∈ 𝛿(𝑞, 𝑎).

We call 𝜙𝑖 a transition set for the given pair of automaton states 𝑞, 𝑞′. We denote Ψ or
Minterms(Φ) as a set of all minterms 𝜓 for 𝐴 such that

Ψ =𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(Φ) = {𝜓 = ⋂
1≤𝑖≤𝑛

𝜓𝑖 ⋁︀ ∀𝑖 ∈ {1, . . . , 𝑛}((𝜓𝑖 ∈ {𝜙,𝑄 ∖ 𝜙}) ∧ 𝜓 ≠ ∅)(︀.

Minterms are computed once, at the beginning of the optimization process, for all
considered finite automata. We generate so called minterm tree with nodes as intersection
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between sets of transition symbols in case the intersection is non-empty. Each node can
have up to two children, representing intersection with the next transition set and its
complement, respectively.

When such minterms for the given automaton are computed, we can abstract the state
language of the automaton by replacing transitions from the state by their corresponding
minterms. We say minterm 𝜓 is created from the set of transition symbols 𝜙 ∈ Φ if 𝜙 is
used in the intersection defining 𝜓 in its direct form, not as a complement 𝑄 ∖ 𝜙.

Notice that we can compute minterms over multiple NFAs, which allows us to use
minterms state language abstraction for optimization of operations on those automata.

Given finite automata 𝐴1 = ({𝑠0, 𝑠1, 𝑠2, 𝑠3},Σ, 𝛿1,{𝑠0},{𝑠3}) and
𝐴2 = ({𝑞0, 𝑞1, 𝑞2},Σ, 𝛿2,{𝑞1},{𝑞0}) over alphabet Σ = {𝑎, 𝑏, 𝑐, 𝑑} with 𝛿1 and 𝛿2 according to
Figure 3.9 and Figure 3.10, respectively, the Figure 3.14 depicts how we could mark each
transition set in our automata to be used in mintermization process. For example, a transi-
tion set 𝜙1 could be a set of transition symbols from state 𝑠0 to 𝑠1: 𝜙𝑖 = {𝑎, 𝑏, 𝑑}. Similarly,
we mark the remaining transition sets. Now, we can proceed to execute mintermization
operations.

a, b, d
s0 s1

a, b
s2

c, d

a, b, c, d

s3

Figure 3.9: Finite automaton 𝐴1 with tran-
sitions 𝛿1.

q1

q2

a, b, c, d

a, b, d

c, dq0

Figure 3.10: Finite automaton 𝐴2 with
transitions 𝛿2.

Figure 3.11: Finite automata 𝐴1 and 𝐴2 used as example automata for mintermization.

a, b, d
s0 s1

a, b
s2

c, d

a, b, c, d

s3

φ1

φ3

φ2

φ4

Figure 3.12: Finite automaton 𝐴1 with
transition sets 𝜙𝑖.

q1

q2

a, b, c, d

a, b, d

c, dq0

φ3

φ1φ2

Figure 3.13: Finite automaton 𝐴2 with
transition sets 𝜙𝑖.

Figure 3.14: Finite automata 𝐴1 and 𝐴2 with marked transition sets used in mintermization.

Computation of minterms for 𝐴1 and 𝐴2 is illustrated in Figure 3.15 in a diagram.
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Σ

φ1:

{a, b, d} {c}

φ2:

{a, b, d} {c}

φ3:

{d} {a, b} {c}

{c}

φ4:

{d} {a, b}

𝜓1 𝜓2 𝜓3

∩ φ1 ∩ (Σ \ φ1)

∩ φ2∩ φ2

∩ φ3 ∩ (Σ \ φ3) ∩ φ3

∩ (Σ \ φ4) ∩ φ4 ∩ (Σ \ φ4)

Figure 3.15: Mintermization process executed on example finite automata 𝐴1 and 𝐴2. We
start with the whole alphabet and make our way down through all mintermization sets
𝜙𝑖, where 1 ≤ 𝑖 ≤ 𝑛. For each mintermization set, we compute the intersection of the
preceding set with the current mintermization set 𝜙𝑖. The results are shown in the diagram
as the nodes of the tree. When operations on all mintermization sets were executed, the
leaves of the tree (indicated by the green square) represent the final minterms for the given
mintermization sets Φ over the given alphabet Σ. We denote each minterm 𝜓𝑖, where
1 ≤ 𝑖 ≤ ⋃︀Ψ⋃︀ where ⋃︀Ψ⋃︀ represents the total number of generated minterms.

We start with the whole alphabet of both automata10 at the top of the minterm tree
to be generated. Afterwards, we iterate over transition sets. For each transition set 𝜙𝑖, we
compute the intersection of the current minterm tree leaves with:

• the current transition set 𝜙𝑖 and store the result as a left node of this particular tree
node,

• the complement of the current transition set 𝑄 ∖ 𝜙𝑖 and store the result as a right
tree node of this particular tree node.

If the intersection is empty, we omit creating the corresponding child node entirely. In
the end, we are left with a complete minterm tree for the given set of transition sets Φ
representing the specified finite automata.

10If the automata had non-equal alphabets, we would start with their intersection: Σ = Σ1 ∩Σ2. This is
an optimization specific to product construction: If some transition symbols are not used by every finite
automaton, we can safely omit such symbols as they are definitely not present in the intersection of these
automata.
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The acquired minterms are:

Ψ =𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(Φ) = {{𝑑},{𝑎, 𝑏},{𝑐}} = {𝜓1, 𝜓2, 𝜓3}.

We can now substitute the former transition sets 𝜙𝑖 for finite automata with the appro-
priate minterms 𝜓𝑗 ,1 ≤ 𝑗 ≤ ⋃︀Ψ⋃︀ which were created from the specific transition sets 𝜙𝑖 ∈ Φ
such that 𝜙𝑖 is used in its direct form (not as a complement) in the process of computing
𝜓𝑗 (optimized for product construction). The gained automata can be seen in Figure 3.18.
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Figure 3.16: Finite automaton 𝐴1 with
transitions substituted by corresponding
minterms 𝜓𝑖 ∈ Ψ created from these transi-
tion sets.
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𝜓1,𝜓2,𝜓3

𝜓2,𝜓3

𝜓1,𝜓3q0

Figure 3.17: Finite automaton 𝐴2 with
transitions substituted by corresponding
minterms 𝜓𝑖 ∈ Ψ created from these transi-
tion sets.

Figure 3.18: Finite automata 𝐴1 and 𝐴2 with substituted transitions with minterms in the
process of mintermization.

As we can see, we are able to get rid of some transition symbols and reduce the alphabet
as well as the number of transitions in finite automata. Considering we have minterms over
alphabet of 𝐴, we know that the intersection of two minterms has to be an empty set and
that ∀𝜓 ∈ Ψ(𝜓 ⊆ 𝜙,𝜙 ∈ Φ) if 𝜓 is created from 𝜙. Important improvement of using minterms
in product construction is the fact that ⋃︀Ψ⋃︀ ≤ ⋃︀Σ⋃︀ instead of at most 2⋃︀Σ⋃︀ as is the case for
minterms over general predicates for general operation (e.g., [23]). We make use of these
points further.

We can use the method of minterm computation with length or Parikh image abstrac-
tions of state languages. We choose this approach in order to improve pruning capabilities
of length abstraction for some finite automata or speed up demanding Parikh image com-
putation, especially for automata with multitude of transitions between two states varying
only in transition symbols, which require considerate time to compute and evaluate.

This method proceeds to represent such sets of transitions between two states with
(ideally) only a single minterm representing these transitions. We can therefore apply any
previously mentioned optimization methods (or any other optimization method) on such
modified automata with minterms as their transition symbols to construct their product
without the need to compute, for example, Parikh image with every single transition symbol
between two states. We can now compute possibly fewer transitions with the acquired
minterms instead. Worst case is that the minterms do not reduce any transition symbols
and we continue with the same, unchanged original automata. Minterm computation is
quick and practically free optimization, which can be used every time an intersection of
finite automata is computed.

We apply the minterm computation before we start executing any optimized algorithms
introduced here or any others. Instead of putting original automata as the input to opti-
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mized algorithms, we compute minterms for such automata and substitute all transitions
with the generated minterms. The new input to optimized algorithms are automata with
minterms which can be easier to work with, and their intersection can be computed quickly
and more precisely. If we need to use the intersection automaton further, not just to re-
solve the emptiness problem, we simply substitute the minterms in the product with the
corresponding original transition symbols back.

Mintermization of our benchmark automata used in our experiments is however not
useful, as the benchmark automata do not have multiple transitions between two states
which could be changed into a minterm. Nevertheless, it is not hard to imagine instances
of problems where minterms are essential.

For instance, take regular expressions. If we want to use our abstractions on finite au-
tomata representing regular expressions, we have to use mintermization in advance. Other-
wise, gained abstractions would be extremely complex to evaluate for even simple regular
expressions. Mintermization would allow us to modify such automata into finite automata
with manageable number of transitions and transition symbols.

As a future work, we want to try our abstractions in optimizing automata operations in
string solving methods such as [1] or [27]. These methods generate regular expressions with
rich alphabets and complex transitions with character classes, which would be unsolvable
for state language abstractions which have to consider each transition and its symbol.

As an example, imagine a simple regular expression 𝑎(︀𝑎− 𝑧⌋︀∗𝑐.∗ with its finite automa-
ton. It contains numerous transitions for each of the symbols in character classes. Our
abstractions would have to compute with each specific transition symbol. However, if we
use mintermization on the automaton first, most of the transitions would be simplified into
a few minterms: {𝑎}, {𝑐}, {𝑏, 𝑑−𝑧} and {𝛽} where 𝛽 represents a set of the remaining sym-
bols of .∗ not included in the previous minterms. Instead of complex automata transitions,
we now have a finite automaton with only four transition symbols and eleven transitions.
Our abstractions can now easily evaluate compatibility of such regular expressions.
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Chapter 4

Experiments

The reference implementation1 of the proposed optimizations, written in Python 3, as
well as a complete table of all of our experiments and their results and graphs is publicly
accessible on a Codeberg repository2.

Benchmark with sets of different finite automata used on our benchmark problems are
available on a GitHub repository3. These finite automata are obtained from runs of regular
model checking tool on verification of pointer program and parametric protocols created
in [4] based on method of abstract regular model checking from [5]. Such verification runs
often execute operations similar to emptiness problem or product construction.

Our experiments cover the benchmark automata from 40 various categories of verifi-
cation runs. In the benchmark, there are in total 5707 finite automata. However, each
category contains similar finite automata recognizing similar languages. The results of our
experiments on our benchmark problems for different combinations of finite automata from
the same category are nearly identical. Thus, we choose representative finite automata from
each category randomly. In total, we have executed more than 300 various experiment runs
for combinations of more than 600 finite automata (over 300 pairs of two finite automata
from one category). A timeout of 10 minutes for a single test was used.

We test combinations of finite automata from each category to determine the product
construction and decide the emptiness of the finite automata intersection. In our experi-
ments, our main objective is to find out how much our optimizations reduce product state
space in both our benchmark problems. We want to know what are the pruning capabili-
ties of both our optimizations and whether they are efficient. Further, we want to compare
pruning capabilities of length abstraction and Parikh image abstraction to see whether
Parikh image pruning capabilities are higher and by how much.

Our abstractions implemented by the reference implementation are not mature enough
to properly compete in reduction of time cost of computation yet. Future work includes
efficient implementation and further optimizations of our abstractions. Nevertheless, our
experiments show our optimizations can sometimes speed up the execution of both bench-
mark problems.

In this chapter, we present a few experiments which show and compare the pruning
capabilities of our optimizations on our benchmark problems. Second, we show what im-

1In the reference implementation, we use Z3 as an SMT solver and automata operations are handled by
for our purposes modified library Symboliclib.

2https://codeberg.org/Adda/optifa
3https://github.com/ondrik/automata-benchmarks/tree/master/nfa/non-vtf/armc
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pact have optimizations on our abstractions on computation time on our both benchmark
problems.

4.1 Length Abstraction
In our first experiment, we want to find out what are the pruning capabilities of length
abstraction for both our benchmark problems on our benchmark automata. The graph
in Figure 4.1 shows a comparison of product state spaces sizes in unoptimized product
construction and our optimized algorithm considering length abstraction for emptiness
problem. The graph in Figure 4.2 shows a comparison of product state spaces sizes for
unoptimized product and product optimized by length abstraction.
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Figure 4.1: Emptiness problem.
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Figure 4.2: Product construction.

Figure 4.3: Comparison of state space sizes generated by unoptimized product and product
optimized by length abstraction for both benchmark problems. Both axes are in symmet-
rical logarithmic scale5, x-axis showing the number of states generated by the unoptimized
algorithms, y-axis state space sizes of the optimized algorithms.

As we can see, length abstraction successfully prunes state space in some cases. The
improvement can be seen especially for the emptiness problem. Notice that for some cases,
length abstraction can stop product generation immediately on the first product state.
However, if finite automata have large density of final states, they often accept plenty of
different word lengths and length abstraction can have problems with finding incompatible
abstractions.

The results where length abstraction have difficulties with pruning product space are
influenced by our benchmark automata. The combinations of benchmark automata in each
category rarely have empty intersections. Therefore, for our next experiment, we want to
see whether slight modifications of input automata can highlight the strengths of length
abstraction. To further extend the set of benchmark automata for this experiment, to each
category, we add finite automata with slight modifications which we combine with original
representatives in our experiments. These modifications imitate generation of variations of
the same finite automata with different final states (similar to finite automata generated by
string solving method from [1]) or little modifications of transitions (removed transitions or

5Plot is linear around 0 instead of logarithmic.
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changed transition symbols). We want to observe whether length abstraction can notice the
difference in finite automata and react accordingly by pruning the generated state space.

The following graphs show the results of intersection of combinations of the modified
benchmark automaton with the original representative from each category for both decid-
ing the emptiness problem and product construction. The graph in Figure 4.4 shows the
comparison of product state spaces sizes in unoptimized and our optimized product con-
struction for emptiness problem. The graph in Figure 4.5 shows the comparison of product
state spaces sizes in unoptimized and our optimized product construction for product con-
struction.
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Figure 4.4: Emptiness problem.
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Figure 4.5: Product construction.

Figure 4.6: Comparison of state space sizes generated by unoptimized product and product
optimized by length abstraction of both our benchmark problems with modification of
benchmark automata. Both axes are in symmetrical logarithmic scale, x-axis showing the
state space size of the unoptimized product, y-axis state space size of the optimized product.

Length abstraction is able to prune state space here more often, and the pruning ca-
pabilities of length abstraction are sufficient for these automata. We conclude that length
abstraction can usually notice the difference between modified and original automata and
truly prunes substantial parts of the newly unnecessary state space, which we might have
created by our modifications. We can see from the graphs that the larger the unoptimized
product gets, the higher impact length abstraction has on the product state space size.
Product construction optimized by length abstraction generates much smaller products.
Length abstraction accomplishes to eliminate state space explosion in most cases.

It is worth mentioning that we have neglected the number of generated states for our
lasso automata. Their states are not in the product, but they are required for computation
of the product. As we can see in Figure 4.9, even when counting with lasso states, the total
number of generated states in the whole process of the product construction can be lower
than the unoptimized product state space size. The larger the automata are, the better
results we get. It is understandable that for smaller original automata, the overhead of
generating lasso automata is significant in comparison with the small generated product
state space sizes. However, the larger the original automata get, the lesser the overhead of
the number of lasso states is in comparison with the unoptimized product state space.

We can see that even that the overhead of generating lasso automata for length ab-
straction is necessary, if length abstraction can prune product states, it still pays off: The
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Figure 4.7: Emptiness problem.
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Figure 4.8: Product construction.

Figure 4.9: Comparison of state space sizes in unoptimized product and product optimized
by length abstraction with a sum of states generated for both lasso automata. Both axes are
in symmetrical logarithmic scale, x-axis showing the number of states in the unoptimized
product, y-axis the number of states in the optimized product.

number of total states generated for either the product or lasso automata is smaller than
the number of states in the unoptimized product.

For the rest of our experiments, we use only the original unmodified automata again.

4.1.1 Length Abstraction Optimization without SMT solver

We optimize evaluation of compatibility of length abstractions by substituting SMT solver
with solving linear congruence equations. To show how linear congruences speed up the
evaluation of compatibility of length abstractions on the original benchmark automata, we
present the following experiment.

The Figure 4.10 shows computation time from our benchmark problems pruned by
length abstraction with and without SMT solver.
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Figure 4.10: Comparison of time consumption of length abstraction evaluated by SMT
solver and length abstraction evaluated without SMT solver, combining both benchmark
problems. Both axes are in symmetrical logarithmic scale. They show time consumption
in seconds: x-axis length abstraction evaluated by SMT solver, y-axis length abstraction
evaluated without SMT solver.
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We can see that computation of both benchmark problems is faster for length abstrac-
tions solved by linear congruences. This optimization improves significantly computation
time. Thus, whenever we use length abstraction, we should only evaluate compatibility
with linear congruences instead of SMT solver.

Even though we do not focus on time cost of computation in our experiments, to get a
first impression of how our optimized length abstraction compares to unoptimized product
construction, we present an experiment in Figure 4.11 showing the difference in time cost
for unoptimized product construction and our optimized length abstraction.
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Figure 4.11: Comparison of time consumption of unoptimized product construction and
length abstraction evaluated without SMT solver, combining both benchmark problems.
Both axes are in symmetrical logarithmic scale. They show time cost in seconds: x-axis
unoptimized product construction, y-axis length abstraction evaluated without SMT solver.

As we can see, with length abstraction optimization of removing SMT solver, we can
compute both our benchmark problems in time comparable to basic product construction.
If parts of product construction can be pruned, we can even speed up both our benchmark
problems. Our future work includes further optimizing length abstraction to lower time
cost to time comparable to unoptimized product construction or better for most cases,
even when length abstraction cannot prune large state space.

Out of all experiments with length abstraction, one weakness of length abstraction is
clear. The more final states the original automata have, the more difficult it is to optimize
product construction using length abstraction. Every final state increases the number of
accepted different lengths of automaton. Therefore, with automata where nearly every
state is a final state, length abstraction cannot easily determine which product states can
be pruned.

4.2 Parikh Image Computation
Length abstraction can sometimes prune product state space significantly, sometimes can-
not. We introduced finer abstraction of state languages using Parikh images. Parikh image
abstraction computes more precise over-approximation of the state language which would
allow us to prune state space more often, even in cases where length abstraction fails. We
aim at improving pruning capabilities of our abstractions. In this section, we show exper-
iments with Parikh image abstractions. First, we are interested in pruning capabilities of
Parikh image abstraction. Later, we evaluate optimizations of Parikh image abstraction.
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We want to find out what are the pruning capabilities of Parikh image abstraction in
both our benchmark problems on our benchmark automata. In Figure 4.14, we can see how
Parikh image prunes state space.
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Figure 4.12: Emptiness problem.
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Figure 4.13: Product construction.

Figure 4.14: Comparison of state space sizes generated by unoptimized product construc-
tion and product optimized with Parikh image abstraction. Both axes are in symmetrical
logarithmic scale, showing state space sizes: x-axis of unoptimized product, y-axis of opti-
mized product.

We can see that Parikh image prunes the state space significantly in many cases and
substantially more than length abstraction, especially for product construction problem.
Notice that in some cases, Parikh image is able to stop product construction immediately for
the initial product state. However, in total, Parikh image timed out 6 times on emptiness
problem and 40 times on product construction. From this we can deduce, that Parikh
image is able to decide emptiness problem even for complex automata. but, for product
construction, Parikh image computation often takes significantly longer.

To see more clearly what is the difference in pruning capabilities of length and Parikh
image abstractions, in the next experiment, we compare pruning capabilities of both ab-
stractions between each other. The Figure 4.15 compares pruning capabilities of length and
Parikh image abstractions.

Clearly, we can conclude from the experiment that Parikh image often optimizes the
product state space more than length abstraction (at worst products are equal). Thus,
pruning capabilities of Parikh image abstraction are higher than of length abstraction. In
many cases, Parikh image optimization is able to prune vast state space by determining
incompatible abstractions even if length abstractions are compatible. It is concluded that
Parikh image is more precise abstraction, allowing us to prune more aggressively.

Furthermore, notice the dots at the bottom of the graph. Here, Parikh image is able to
determine that product language is empty on the first product state and immediately stop
the product construction even though length abstraction failed.

4.2.1 Incremental SMT solving

Incremental SMT solving proves to be a great improvement to the Parikh image compu-
tation optimization. We want to know how large part of Parikh image formulae can be

35



0 100 101 102 103 104
0

100

101

102

103

104

Figure 4.15: Comparison of state spaces generated by length abstraction and Parikh image
abstraction, combining both benchmark problems. Both axes are in symmetrical logarith-
mic scale. Axis show product state space sizes: x-axis for length abstraction, y-axis for
Parikh image abstraction.

precomputed and how many conjuncts have to be recomputed for each state. The number
of conjuncts in Parikh images depends on the number of states in finite automata, the num-
ber of transitions and the number of initial or final states. See Table 4.1 for an example
comparison of the number of all conjuncts in Parikh image, conjuncts common to all states
(persistent clauses) and state specific conjuncts (state specific clauses).

Product States All Conjuncts Persistent Conjuncts State Specific Conjuncts Ratio
434 2652 1782 870 67.2%

Table 4.1: An example proportion of persistent and state specific conjuncts in Parikh image
computation with incremental SMT solving optimization. Product States column shows the
number of product states in the whole intersection product, All Conjuncts column shows the
number of conjuncts in each computed Parikh image, Persistent Conjuncts column shows
the number of persistent conjuncts in the whole Parikh image (out of the all Parikh image
conjuncts), State Specific Conjuncts column states how many Parikh image conjuncts have
to be recomputed for each product state and Ratio column shows the ratio of persistent
conjuncts in all Parikh image conjuncts.

In this example, for a product of 434 states, each product state Parikh image contains
2652 conjuncts. From those, 1782 conjuncts are persistent conjuncts and the remaining
870 are state specific conjuncts. A proportional ratio of persistent conjuncts in whole
Parikh image is around 67.2%. The number of persistent conjuncts means around 70% of
computed Parikh image conjuncts can be precomputed once and used for the whole product
generation, and SMT solver can use its cache for efficient evaluation of parts of the Parikh
image formulae. Only 30% of conjuncts must be computed repeatedly for each product
state.

Even if our abstractions are not mature enough to properly optimize time cost, we
want to get a first impression of what is the cost of more precise pruning capabilities of
Parikh image abstraction in both our benchmark problems on our benchmark automata. In
Figure 4.18, we can see how Parikh image optimized by incremental solving cost compares
to length abstraction optimized by SMT solver substitution with solving linear congruences.
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Figure 4.16: emptiness problem.
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Figure 4.17: product construction.

Figure 4.18: Comparison of the time cost of more precise pruning capabilities of Parikh
image abstraction with incremental SMT solving and length abstraction optimized by SMT
solver substitution with solving linear congruences. Both axes are in symmetrical logarith-
mic scale, showing time cost in seconds: x-axis of length abstraction, y-axis of Parikh image
abstraction.

As we can see, the time cost for both problems is higher for Parikh image than for length
abstraction. However, time cost of emptiness problem is less affected by the complexity
of finite automata. For product construction, Parikh image may take longer to decide
compatibility of all product states. We can conclude from the experiment that Parikh
image time cost of more precise pruning capabilities is present, but in many cases, Parikh
image is able to finish the solving of the problem in reasonable time.

4.2.2 Precise Timeout Selection

For our benchmark automata, we have experimentally concluded the ideal timeout for SMT
solver to solve Parikh image abstractions compatibility is around 600 ms. This gives SMT
solver enough time to compute most incompatible cases, while it does not wait too long for
the confirmation of satisfiability of Parikh image formulae for compatible cases. Our bench-
mark automata have however large numbers of transitions from each state, and therefore
our timeout might not work best for other types of automata and their complexity. We sug-
gest trying running our optimizations first without any timeout and then, according to the
results, adjust the timeout according to the needs of given operations and the complexity
of used automata.

4.3 Combination of State Language Abstractions
When we combine length and Parikh image abstraction optimizations in one algorithm, we
want to help length abstraction to more precisely prune state space and reduce the number
of product states for which Parikh image must be computed. In Figure 4.19, we can see
how many product states can be skipped with our skippable states optimization, how many
states is pruned by length abstraction and how many states is pruned by Parikh image
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abstraction (if length abstraction resolves length abstraction formulae as satisfiable). We
provide comparison of pruning capabilities of both abstractions on the same automata.
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Figure 4.19: Summary comparison of pruning capabilities of length and Parikh image state
language abstractions in optimization algorithm combining both abstractions with opti-
mizations by skippable states. Both axes are in the logarithmic scale: x-axis shows the
number of processed product states in product construction (how many product states we
have considered in total), y-axis the number of states resolved by respective abstractions.
The blue column shows the number of skipped states (we do not need to evaluate abstrac-
tions for them), the red column the number of states with compatible both length and
Parikh image abstractions, the yellow column the number of states pruned by Parikh image
abstraction, but not by length abstraction, and the green column the number of states
pruned by length abstraction alone. In the graph, we have summed the number of states
resolved by each abstraction or optimization according to the number of processed states
as follows (from left to right): 0 to 499, 500 to 999, 1000 to 1999, 2000 to 2999 and 3000+.

We can clearly see that substantial number of states can be resolved by skippable states
optimization or pruned by length abstraction. Parikh images do not have to be computed
for any of these states. For the rest of the states, Parikh image have to be computed. We
see here again how Parikh image abstraction is precise and helps when length abstraction
cannot: Parikh image can prune large numbers of states even though length abstraction
fails to prune them. The red and blue column together represent the number of states in
the intersection, the yellow and green column the number of pruned states.

Notice that for the fourth column, for number of processed states between 2000 and
2999, length abstraction managed to prune extensive parts of product state space and
therefore the number of product states pruned by Parikh image is clearly lower than for
other categories. This shows that if length abstraction can prune the state space, there are
less product states for Parikh image to resolve and therefore much less product states to
be pruned by Parikh images. Length abstraction helped here substantially.

To sum it up, large parts of product can be pruned. We conclude that combined
algorithm using both length abstraction Parikh image abstraction prunes state space really
well.

To get an impression of how computation time is affected in product construction with
Parikh image abstraction and with combined algorithm in both our benchmark problems
on our benchmark automata, we present the following experiment. In Figure 4.22, we can
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see how Parikh image cost compares to combined approach using both length and Parikh
image abstractions.
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Figure 4.20: Emptiness problem.
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Figure 4.21: Product construction.

Figure 4.22: Comparison of the time cost of Parikh image abstraction and combined algo-
rithm using both our abstractions. Both axes are in symmetrical logarithmic scale, showing
time cost in seconds: x-axis of Parikh image abstraction, y-axis of combined algorithm.

We can see that length abstraction pruning capabilities can help prune some product
state which do not have to be evaluated by Parikh image abstraction and consequently
speed up the product construction. There is also a cost of generating lasso automata with
our abstractions, which can slightly increase the time cost in cases where there are no
product state that can be pruned and both Parikh image and length abstraction have to
be evaluated for each one of them.

We believe there is a space for further improvements to get better results with combined
algorithm for every case. The key factor here is whether finite automata accept multitude
of lengths. If they do, length abstraction cannot prune much and many evaluations of
Parikh images have to be computed. On the other hand, if we had finite automata with
empty intersections or accepting limited number of lengths, length abstraction can solve
nearly the problem alone and Parikh image can be computed just for a few hard-to-resolve
product states. This would significantly speed up the product construction.

4.4 Results
The experiments show that our abstractions often prune large parts of the product state
space. Length abstraction pruning capabilities are decent, but sometimes it fails to prune
state space for intersection of automata with multiple accepted lengths. Pruning capabili-
ties of Parikh image are much higher. Parikh image often succeeds in pruning states where
length abstraction fails. Further optimizations of the abstractions have impact on perfor-
mance of our abstractions. State language abstractions are combinable without affecting
pruning capabilities.
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Chapter 5

Conclusion

The most costly parts of the intersection computation is the generation of product states
and transitions of the product automaton. We tried to reduce the size of the generated state
space by pruning the states which cannot lead to any final state by deciding the emptiness
of the corresponding state languages for the product states using various state language
abstractions over the finite automata states, such as length abstraction using lasso automata
or Parikh image computation based on Parikh’s theorem. Our abstractions are based on
over-approximating abstraction of state languages. Each approach has been experimentally
tested and further optimizations to the proposed algorithms were introduced.

According to our experiments, product state space can be reduced substantially. Prun-
ing capabilities of our abstractions are satisfactory, and their optimizations have high impact
on computation time. We get great results especially for intersections with long lines or
for intersections of automata which differ in accepted lengths. Experiments show our algo-
rithm generates smaller state spaces for both resolution of emptiness problem and product
construction.

We have concluded that length abstraction is fast and coarse abstraction, Parikh image
precise but expensive. Our abstractions can be combined, parallelized and further extended.

Due to our discoveries, as a future work, we want to continue working on our state
language abstractions, optimize their performance with efficient implementation and ex-
plore possibilities of additional improvements of these abstractions. We also want to paral-
lelize evaluation of the compatibility of the abstractions. Further combinations with other
abstraction techniques described below, to see how the generated product state space is
affected, are in consideration, too.

The idea of using abstraction in automata problem-solving is not new, but it is not
properly explored either. There were first attempts of using abstraction techniques in
automata such as alternating automata [18] or abstract regular model checking [5, 14],
both using techniques similar to a general predicate abstraction [8, 19] and CEGAR [7].

However, we have not encountered similar approaches to optimization of product con-
struction using length or Parikh image abstractions to compare our results with. Techniques
using abstraction were explored especially in a field of program analysis. In the context of
automata problem-solving are relevant namely CEGAR [7], IC3/PDR [21, 6, 22, 31, 10] or
IMPACT [28]. There were some experiments using techniques similar to length abstrac-
tion using information about length constraints [3] to speed up string solving. There are
also methods based on the interpolation-based approach of McMillan [2, 17]. All the men-
tioned techniques have proven efficient in hardware or software verification, and they can
be applied in automata too.
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We believe state language abstractions introduced in this work are promising and their
pruning capabilities have potential in various automata problems. For that reason, we will
continue exploring this approach to automata problem-solving and investigate options of
using state language abstractions to optimize operations on finite automata.
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Appendix A

Complete Optimization Algorithm

Input : NFA 𝐴1 = (𝑄1,Σ, 𝛿1, 𝐼1, 𝐹1), NFA 𝐴2 = (𝑄2,Σ, 𝛿2, 𝐼2, 𝐹2)

Output: NFA 𝑃 = (𝐴1 ∩𝐴2) = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) with 𝐿(𝐴1 ∩𝐴2) = 𝐿(𝐴1) ∩𝐿(𝐴2)

1 𝑄, 𝛿,𝐹 ← ∅
2 𝐼 ← 𝐼1 × 𝐼2
3 𝑊 ← 𝐼
4 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒
5 𝑠𝑜𝑙𝑣𝑒𝑑← ∅
6 addPersistentClauses()
7 while 𝑊 ≠ ∅ do
8 picklast (︀𝑞1, 𝑞2⌋︀ from 𝑊
9 add (︀𝑞1, 𝑞2⌋︀ to 𝑠𝑜𝑙𝑣𝑒𝑑

10 if skippable((︀𝑞1, 𝑞2⌋︀) then
11 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒
12 else
13 if 𝛼𝐿𝐴(𝑞1) ∧ 𝛼𝐿𝐴(𝑞2) is unsat then
14 𝑟𝑒𝑠← 𝐹𝑎𝑙𝑠𝑒
15 else
16 smtSolverPush()
17 addStateSpecificClauses((︀𝑞1, 𝑞2⌋︀)
18 𝑟𝑒𝑠← 𝛼𝑃𝐼(𝑞1) ∧ 𝛼𝑃𝐼(𝑞2) is sat
19 smtSolverPop()
20 if 𝑟𝑒𝑠 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 then
21 𝑟𝑒𝑠← 𝑇𝑟𝑢𝑒

22 if 𝑟𝑒𝑠 = 𝑇𝑟𝑢𝑒 then
23 add (︀𝑞1, 𝑞2⌋︀ to 𝑄
24 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
25 add (︀𝑞1, 𝑞2⌋︀ to 𝐹

26 forall 𝑎 ∈ Σ do
27 forall 𝑞′1 ∈ 𝛿1(𝑞1, 𝑎), 𝑞′2 ∈ 𝛿2(𝑞2, 𝑎) do
28 if (︀𝑞′1, 𝑞′2⌋︀ ∉ 𝑠𝑜𝑙𝑣𝑒𝑑 and (︀𝑞′1, 𝑞′2⌋︀ ∉𝑊 then
29 add (︀𝑞′1, 𝑞′2⌋︀ to 𝑊

30 add (︀𝑞′1, 𝑞′2⌋︀ to 𝛿((︀𝑞1, 𝑞2⌋︀, 𝑎)

Algorithm 11: Product construction using both length abstraction and Parikh image compu-
tation and all their optimizations.
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Appendix B

Contents of the Included Storage
Media

The following list shows the contents of the included storage media. Listed are only the
folders on the highest levels in the folder hierarchy.

• optifa/: The main folder with reference implementation of state language abstrac-
tions and all related files.

– docs/: The LaTeX source files for this paper.
– results/: The results gained by our experiments.
– src/: The implementation of our optimizations and scripts to run them.
– basicDFAs/: Example finite automata in Timbuk format used in this paper.

• Symboliclib: Implementation of the external library Symboliclib with our modifica-
tions included.
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Appendix C

Reference Implementation Manual

Our reference implementation was tested on GNU/Linux (kernel 5.15.37-1-lts), but it should
run on any Unix-like system, possibly even on other operating systems. In order for the ref-
erence implementation to work, you need the following programs: Python 3.101 or higher,
Python library Symboliclib with our modifications and additions2 and Z3 solver API for
Python: Z3Py from Z3 solver repository3. Further, to run comparison tests of our opti-
mizations, a command-line benchmarking tool hyperfine4. The accepted finite automata
file format is Timbuk5.

Each program can be run with --help flag to show a quick help message explaining
how to run the program.

Run tests for all our state language abstractions for a specific category (directory with
finite automata) or all categories in a directory (for all subdirectories) with run_tests.py
as follows:
./run_tests.py -r <root_directory> -n <experiments_number_per_category> -o <output_file>

You can run tests for all our state language abstractions for a specific combination of
finite automata with run_tests.py as follows:
./run_tests.py --single -a <finite_automaton_A> -b <finite_automaton_B> -o <output_file>

Separate optimizations can be run with their respective scripts:

• length abstraction with resolve_satisfiability_length_abstraction.py, and

• Parikh image abstraction with resolve_satisfiability_parikh_image.py.

Combined optimization algorithm using both length and Parikh image abstractions can be
run with resolve_satisfiability_combined.py.

Each program offers various flags and required or optional arguments to adjust the run
according to our requirements: Whether to construct a full product or just test emptiness of
the intersection, which abstraction-specific optimizations to enable, where to store results,
etc.

Automata with transitions replaced by minterms can be generated with get_minterms.py.

1https://www.python.org/
2https://codeberg.org/Adda/symboliclib/; Remember to add Symboliclib to Python path.
3https://github.com/Z3Prover/z3; Remember to add Z3Py API to Python path.
4https://github.com/sharkdp/hyperfine
5https://gitlab.inria.fr/regular-pv/timbuk/timbuk/-/wikis/Specification-File-Format
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