
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

PLATFORM FOR BIOLOGICAL SEQUENCE
ANALYSIS USING MACHINE LEARNING
PLATFORMA PRO ANALÝZU BIOLOGICKÝCH SEKVENCÍ S VYUŽITÍM STROJOVÉHO UČENÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DÁVID LACKO
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ MARTÍNEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačových systémů (UPSY) Akademický rok 2021/2022

 Zadání bakalářské práce

Student: Lacko Dávid
Program: Informační technologie
Název: Platforma pro analýzu biologických sekvencí s využitím strojového učení
 Platform for Biological Sequence Analysis Using Machine Learning
Kategorie: Bioinformatika
Zadání:

1. Study the basic principles of machine learning.
2. Learn about the field of protein engineering and the tasks to which machine learning has

been successfully applied.
3. Analyze these tasks, identify the common parts, and design a flexible platform for solving

them.
4. Implement the proposed platform and validate its functionality on selected examples from the

field of protein engineering.
5. Evaluate the results obtained and discuss the future work.

Literatura:
According to instructions of the supervisor.

Pro udělení zápočtu za první semestr je požadováno:
Fulfilment of items 1 to 3 of the assignment.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Martínek Tomáš, Ing., Ph.D.
Vedoucí ústavu: Sekanina Lukáš, prof. Ing., Ph.D.
Datum zadání: 1. listopadu 2021
Datum odevzdání: 11. května 2022
Datum schválení: 29. října 2021

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/25037/2021/xlacko09 Strana 1 z 1

Abstract
Machine learning has many active areas and one of them is protein characterisation since
experimental annotation is usually costly and time-consuming, and many datasets suitable
for training predictors are currently being published. One of the recent methods, called
innov’SAR, combines the Fourier transform with partial linear regression and has been
used in several protein engineering applications. However, the code for the method is
not freely available and the method itself was not statistically verified. The goal of this
thesis is to address these limitations, implement and extend the method using Python
language in an easy-to-use platform that allows training and testing of the models. The
extensions include parallelization, Spearman scoring function and aligned sequence input.
The statistical significance testing is also performed to verify the impact of the found
dependencies between input sequences and properties of the proteins. The method proved to
be statistically significant with strong dependencies found between inputs and outputs. Two
newly collected halalkane dehalogenase datasets were used to train models and they have
cross validation scores of 𝑄2 = 0.54 and 𝑄2 = 0.77 with almost double the improvement
over the baseline models. Created models allow filtering of large sequence databases and
scanning for potential improvements in the protein properties.

Abstrakt
Strojové učenie má veľa aktívnych odvetví a jedným z nich je charakterizácia proteínov
pretože experimentálne získavanie charakteristík je drahé a časovo náročné, a taktiež preto,
že každoročne sú publikované mnohé sady údajov vhodné na trénovanie takýchto predik-
torov. Jedna z nedávno vyvinutých metód, nazývaná innov’SAR, ktorá bola použitá už
v niekoľkých aplikáciách proteínového inžinierstva, kombinuje Fourierovu transformáciu
z čiastočnou lineárnou regresiou. Avšak, jej implementácia nie je voľne dostupná a samotná
metóda nebola štatisticky overená. Cieľom tejto práce je adresovať tieto nedostatky, imple-
mentovať túto metódu v jazyku Python, rozšíriť ju a zahrnúť do ľahko použiteľnej platformy,
ktorá umožní trénovanie a testovanie modelov. Taktiež bolo vykonané testovanie štatistickej
významnosti za účelom overenia dopadu nájdených závislostí medzi sekvenciami a vlast-
nosťami proteínov. Metóda sa osvedčila ako štatisticky významná so silnými závislosťami
nájdenými medzi vstupmi a výstupmi. Novo zozbierané dátové sady haloalkán dehalo-
genáz sa použili na vytvorenie modelov s validačným skóre 𝑄2 = 0.54 a 𝑄2 = 0.77, čo
je takmer dvojnásobné zlepšenie oproti základným modelom. Tieto modely majú poten-
ciál na filtrovanie väčších databáz sekvencií a vyhľadávanie proteínov s potenciálne lepšími
vlastnosťami.

Keywords
machine learning, protein engineering, bioinformatics, PLS, haloalkane dehalogenases

Kľúčové slová
strojové učenie, proteínové inžinierstvo, bioinformatika, PLS, haloalkán dehalogenázy

Reference
LACKO, Dávid. Platform for Biological Sequence
Analysis Using Machine Learning. Brno, 2022. Bachelor’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Tomáš Martínek, Ph.D.

Rozšírený abstrakt
Proteíny sú základným stavebným blokom živích organizmov. Zabezpečujú rôzne funkcie

naprieč celým spektrom živočíchov, rastlín a húb ako napríklad katalyzovanie chemických
reakcií v podobe enzýmov, manipulácia DNA, tvorba stien a výstuže buniek, transport
látok a iné. Sú tvorené reťazcom amino kyselín rôznych dĺžok od niekoľko desiatok až
po niekoľko desiatok tisíc. Proteíny majú štruktúru na úrovni aminokyselín, ale aj v 3D
priestore a niekedy aj medzi sebou. Je viacero vlastností proteínov, ktoré sa študujú a je
snaha ich vylepšiť, napríklad tepelná, či chemická stabilita, enzymatická aktivita a iné.
Proteínové inžinierstvo sa zaoberá štúdiom známych proteínov a ich vlastností a snaží sa
vylepšovať existujúce alebo hľadať úplne nové proteíny, ktoré by spĺňali určité vlastnosti
vzhľadom na využitie.

V súčasnosti sa v najväčšej databáze proteínových sekvencií nachádza viac ako 250
miliónov sekvencií, avšak len malý zlomok z nich je anotovaný, či preskúmaný. Rýchlosť,
ktorou toto množstvo sekvencií narastá je veľmi neúmerné tomu, ako rýchlo sa skúma
funkcia, či vlastnosti týchto proteínov. Preto je potrebné vyvíjať nové a aplikovať existujúce
nástroje zamerané na strojové učenie, ktoré by umožnili rýchlo analyzovať a kategorizovať
tieto sekvencie. Jeden z týchto nástrojov je napríklad AlphaFold vyvinutý spoločnosťou
DeepMind, ktorý je založený na hlbokých neurónových sieťach a umožňuje predpovedať 3D
štruktúru zo sekvencií proteínov, čo je jedna z najťažších oblastí proteínového inžinierstva.

Avšak na predpoveď iných vlastností proteínov nemusí byť potrebné až tak komplexné
riešenie, čo ukázali aj vedci zo spoločnosti Peaccel, ktorý predstavili metódu innov’SAR.
Táto metóda využíva Fourierovu transformáciu a informácie z AAindex databázy na vytvore-
nie modelu založeného na metóde čiastočných minimálnych štvorcov. Tieto modely sa dajú
natrénovať na akúkoľvek numerickú vlastnosť proteínov a ako vstupné dáta stačia sekvencie
aminokyselín. Základom je zakódovanie sekvencie pomocou určitej vlastnosti z databázy
AAindex a následnou aplikáciou fourierovej transformácie na túto numerickú sekvenciu pre
získanie vstupných dát pre metódu strojového učenia. V tomto prípade bola zvolená metóda
čiastočných minimálnych štvorcov – partial least squares (PLS). Dôvodom je jej jednodu-
chosť a rýchlosť, ale aj schopnosť pracovať so sadami dát, ktoré majú viacej parametrov
na prvok ako samotných prvkov. Pre použitie PLS musia byť sady dát reprezentované ako
matice o rozmeroch 𝑚 × 𝑛 a teda platí, že 𝑚 môže byť väčšie ako 𝑛. Toto jej umožňuje
pracovať s malými sadami dát a zároveň obsiahnuť dostatok informácii v parametroch pre
natrénovanie silného modelu.

Predmetom tejto práce je vytvorenie platformy postavenej práve na metóde innov’SAR,
ktorá umožní vytvorenie modelu, jeho ohodnotenie a použitie na predpoveď hodnoty vlast-
ností iných proteínov. Táto práca nielen implementuje innov’SAR, ale ju aj rozširuje o par-
alelizmus, caching a hodnotiacu funkciu založenú na spearmanovej korelácii. Samotná plat-
forma je implementovaná v jazyku Python s použitím viacerých knižníc. Užívateľ s finálnou
platformou interaguje pomocou príkazového riadku, kde zadá požadovanú funkcionalitu,
teda trénovanie, testovanie alebo predpoveď a potrebné dátové súbory. Výstup platformy
je zase vo forme súboru modelu alebo výpisu dát do príkazového riadku, ktorý sa jednodu-
cho dá presmerovať do súboru.

Súčasťou práce je aj testovanie výslednej platformy na dvoch rôznych sadách dát, čo
zahŕňa trénovanie modelu a hodnotenie modelu pomocou testovacej sady pre obe hodnoti-
ace funkcie – 𝑄2 aj spearmanovu koreláciu. Výsledky ukazujú, že pre tieto konkrétne sady
dát predpoveď nie je úplne presná, avšak vytvorené modely sa dajú použiť na filtrovanie
objemných databáz pre výber sekvencií s očakávanými hodnotami skúmanej vlastnosti.
Každá sada dát je zameraná na iný typ vlastnosti, jedna sa zaoberá katalytickou aktivi-

tou enzýmov a druhá tepelnou stabilitou pri zahrievaní. Obe sady sa taktiež líšia v type
sekvencií, pričom jedna sada reprezentuje sekvencie, ktoré sa líšia v dĺžke aj pozíciách amino
kyselín a vyžaduje zarovnanie. Druhá sada obsahuje iba mutácie nad jednou sekvenciou
a predmetom skúmania je teda efekt týchto mutácií na hodnotu tepelnej stability.

Pre otestovanie štatistickej významnosti metódy innov’SAR boli zvolené dva prístupy,
kde každý hodnotí iný aspekt závislostí, ktoré táto metóda hľadá. Toto testovanie sa
vykonáva za účelom zistenia, či nezmyselné dáta, ktoré však kopírujú štatistické vlast-
nosti reálnych dát sú schopné dosiahnuť rovnaké skóre modelu ako reálne dáta. Výsledkom
je teda informácia, či model naozaj zachytáva relácie medzi vstupmi a výstupmi, alebo
akékoľvek dáta sú schopné dosiahnuť vysoké skóre. Prvý test založený na permutácii výs-
tupov poukazuje na to, či tieto výstupy naozaj závisia na vstupoch, teda či vstupy obsahujú
informáciu diskriminujúcu inú hodnotu výstupu. Druhý test bol založený na vytvorení
štatistických modelov z existujúcej sady dát a následnej generácií náhodných vstupných
sekvencií, ktoré však kopírovali štatistické rozloženie reálnych dát. Oba tieto testy ukázali,
že metóda je štatisticky významná, a že akokoľvek preusporiadané dáta produkujú modely
s menším skóre.

Platform for Biological Sequence
Analysis Using Machine Learning

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Tomáš Martínek, Ph.D. The supplementary information was
provided by Stanislav Mazurenko, Ph.D. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Dávid Lacko
May 9, 2022

Acknowledgements
I would like to thank my external scientific supervisor Stanislav Mazurenko for patience
and immense support throughout this thesis and while I was getting myself familiar with
the field of bioinformatics and protein engineering. Thanks goes also to the whole team of
Loschmidt laboratories for their help and warm welcome to the T-Team. Computational
resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA CZ LM2018140)
supported by the Ministry of Education, Youth and Sports of the Czech Republic.

Contents

1 Introduction 2

2 Summary of the current state 4
2.1 Proteins . 4

2.1.1 Protein engineering . 6
2.2 Machine learning . 7

2.2.1 AAindex . 9
2.3 Partial least squares – PLS . 9
2.4 Fourier transform . 10

3 Related work 12
3.1 Innov’SAR method . 13

4 Algorithms and implementation 16
4.1 Partial least squares – PLS . 17
4.2 Scoring functions . 17
4.3 Workflow . 19
4.4 Implementation details . 21
4.5 Complexity estimates . 23
4.6 Parallelization . 23
4.7 MetaCentrum . 24

5 Testing 29
5.1 Benchmark datasets . 29
5.2 Independent testing . 30

5.2.1 Baseline . 31
5.2.2 Model performance on the mutational dataset 31
5.2.3 Model performance on the family dataset 33

5.3 Statistical significance testing . 34
5.3.1 Permutation testing . 35
5.3.2 Monte Carlo simulations – Random sampling 36

6 Conclusion 39

Bibliography 40

A Contents of the included storage media 43

B File formats 44

1

Chapter 1

Introduction

There are more than 250 million sequences in the UniProt [25] database, which is the
largest and most commonly used database for protein sequences. However, only a small
fraction of these proteins are annotated. Knowing the protein structure can usually help
predict its function, but current databases (e.g. RCSB1) of protein structures cover only
a minor fraction of those sequences. Thus, there is an urgent need to produce sequence-
based predictors of protein characteristics, such as protein function or stability, especially
for a specific protein family.

Multiple machine learning methods have been adapted or invented for the fields of bioin-
formatics and protein engineering. They range from simple statistical methods to advanced
multi-layer neural networks, depending on the amount of data available for training. For
instance, the deep neural network AlphaFold has recently demonstrated tremendous po-
tential in predicting protein structures based on the available dataset of around 180 000
experimental structures deposited in the database. For the prediction of protein function,
activity, or effects of mutations, typical datasets are much smaller and often contain dozens
to hundreds of data points. This has motivated the development of simpler linear predictors,
which are less likely to overfit such small datasets but might still provide useful guidance
in navigating the vast available protein sequence space. One of these methods is called an
innovative sequence activity relationship or innov’SAR. It was developed, published, and
patented by the Peaccel company based in Paris, and it is a proprietary method. It uses the
Fourier transform as the main novelty, which despite being linear, allows mixing together
signals coming from different parts of the protein sequence. However, since the method is
proprietary, the code is not available. Moreover, the method was not verified in terms of
statistical significance and used only one scoring function.

The goal of this thesis is to address these limitations and design a platform for protein
prediction tasks based on the innov’SAR method. This platform aims to provide users
with an environment to create models for predicting various protein properties without
the need for protein structure. Since it is expensive and time-consuming to obtain the
3D structure of proteins and is sometimes even not possible with current technologies,
numerous machine learning approaches have been created and published to predict the
protein structure. However, these are still not 100% precise, and using the output of such
predictors for feature generation in other predictive approaches can further propagate the
uncertainty and errors and decrease the final precision. Thus, the goal of the platform is
also to create a functional predictor without the need for any kind of structural information.

1https://www.rcsb.org/

2

https://www.rcsb.org/

This platform has also been verified in terms of performance and statistical significance on
two newly collected haloalkane dehalogenase datasets for training and testing. To do this,
permutation testing and random sampling were executed to verify different hypotheses and
evaluate the performance of the predictor on the independent subsets of these two datasets.

Structure of the thesis. Chapter 2 offers a brief introduction to the field of protein
engineering and machine learning. In chapter 3, an overview of the state-of-the-art machine
learning methods for protein engineering can be found, as well as highlights of their prob-
lems. Chapter 4 provides a detailed description of the design and implementation. The
platform and algorithm testing and its results are provided in chapter 5, including model
strength tests, as well as method robustness testing. The final chapter summarizes the
results and offers some perspectives for future extensions.

3

Chapter 2

Summary of the current state

2.1 Proteins
Proteins are the universal building blocks of life. They facilitate many functions within
living organisms, such as catalyzing reactions as enzymes, manipulating and repairing DNA,
providing structural support to cells, transporting molecules, acting as a defense mechanism
against foreign bodies, signaling, or muscle movement [2]. From a chemical point of view,
proteins are macromolecules that comprise long chains of amino acids. These chains must
also be specifically structured in the 3D space to be able to perform their function. Thus,
there are multiple protein representations, from a string of letters representing amino acids
to a set of 3D atom coordinates.

Amino acids are chemical compounds that consist of amino and carboxylate functional
groups, along with side chains specific to each amino acid. Their chemical structure allows
them to join together into a chain. In living organisms, proteins are encoded in DNA.
In cells, DNA consists of genes that encode the amino acid sequences and are used as
templates for mRNA, and proteins are produced by joining the required amino acids into
a chain based on mRNA and then folding this chain in a specific 3D structure. The processes
through which DNA is interpreted and proteins are synthesized are called transcription and
translation. There are more than 500 different amino acids, however, only 20 of them appear
in the genetic code and thus primarily constitute different proteins. Each of these amino
acids has a letter code assigned to it (Table 2.1) to represent protein sequences as strings of

Amino acid letter Amino acid letter Amino acid letter
Alanine A Glycine G Proline P
Arginine R Histidine H Serine S

Asparagine N Isoleucine I Threonine T
Aspartate D Leucine L Tryptophan W
Cysteine C Lysine K Tyrosine Y

Glutamine Q Methionine M Valine V
Glutamate E Phenylalanine F

Table 2.1: The most common amino acids occurring in proteins and the corresponding
one-letter notation typically used in the field of protein engineering to represent protein
sequences.

4

Figure 2.1: Example of secondary protein structure – 𝛼-helix and 𝛽-sheet. (Taken from [8])

letters, which is representation of the primary structure and is the most widely used protein
representation.

During protein folding, individual side chains of amino acids form local structures stabi-
lized by hydrogen bonds, the most common examples being the 𝛼-helix, 𝛽-sheet and turns,
all of which form the secondary structure (see Figure 2.1). The tertiary structure of a pro-
tein is the placement of individual residues in the 3D space, which represents the overall
shape of the macromolecule. The correct function of the protein is greatly impacted by this
structure. For instance, a protein in a denatured state still typically has the same primary
and partially secondary structure, but it usually loses its function. The denatured state of
a protein is defined as a state when the protein loses its native fold due to some external
circumstances such as change in acidity, temperature, pressure, or other factors.

Proteins are widely used throughout the industry, such as in chemical, medical, pharma-
ceutical, and biotechnological fields. Humans are indirectly taking advantage of proteins,
mostly enzymes, e.g. by using cells that produce them. The most prominent use is the
production of alcohol and dough with yeast, which has been around for millennia. One of
the earliest out-of-cell usages of proteins was in the 1960s as an additive to detergents for
home and industry use. Another example of industry usage of proteins is for improving
stability of lubricants for machines. In the medical field, insulin, a hormone responsible for
the absorption of sugar from the blood, is used in its pure form. Another example is the
penicillin acylase antibiotic [9]. Some enzymes are used for biosensing of different substrates
or degradation, such as PET plastic degradation [17].

All proteins bind to other molecules, generally called ligands. These can be other
proteins, simple inorganic or more complex organic molecules. Enzymes are proteins that
not only bind to other ligands, but also speed up reactions by lowering the energy barrier
required for the reaction. In this process, the enzymes themselves typically do not change
and thus act as catalysts. They allow cells and organisms to control chemical processes,
produce essential chemicals, and thus sustain themselves. The ligands that the enzymes
bind to are called substrates, and after the chemical reaction occurs, the resulting compound
is called a product.

Proteins have different properties that affect their function and usability outside their
natural environment – a cell. All proteins are characterized in terms of thermal stability,

5

which is usually expressed in terms of melting temperature. This temperature is defined
in temperature scanning experiments, in which the temperature of a sample is gradually
increased, and the fractions of folded and unfolded protein molecules are calculated. The
melting temperature is then defined as the temperature at which the concentration of
denatured and folded proteins is the same. In other words, it is the temperature at which
half of the initial protein sample is denatured. This property is important for the industrial
and laboratory use of proteins because the working temperatures of machines and processes
can be higher than those in nature. Furthermore, proteins are exposed to more destabilizing
factors when used outside of their natural environments. For example, some enzymes can
be used as biosensors in chemical or pharmaceutical production, which might require higher
temperature tolerances for the enzyme or higher pH resistance. Moreover, higher thermal
stability is usually associated with longer storage times.

Another property that is interesting in enzymes is their activity, or how well or fast
they facilitate certain reactions. Some enzymes might have high activity, but only catalyze
a particular reaction, others might be slower, but catalyze multiple different reactions. In
this case, the requirements on the enzyme depend on the process in which it is used.

In protein engineering, the goal is to modify the protein sequence to improve or change
these properties in such a way that the protein would satisfy the requirements for industrial
or chemical use. The goal is also to provide tools to facilitate these improvements and make
it easier to customize proteins for different uses.

Haloalkane Dehalogenases

These proteins are enzymes that catalyze chemical reactions in which the halogen in a halide
molecule is replaced by a hydroxyl group derived from water. Halides are often toxic and
pose a risk to the environment, and they do not degrade naturally and stay in the soil
for a long time. For example, one of such pollutants is 𝛽-hexachlorocyclohexane (𝛽-HCH),
which was used extensively as a pesticide in the past and is associated with Parkinson’s
and Alzheimer’s disease [3]. Although it is now forbidden, traces of it can still be found in
the soil and water. Haloalkane dehalogenases can be used as biosensors for such pollutants.
They can also be used for bioremediation, e.g. to degrade the pollutants or clean up warfare
agents.

2.1.1 Protein engineering

Currently, in protein engineering, the most common strategy to create the desired protein
is to take a naturally existing protein that has the required functionality and change its
structure to improve a certain property. A large group of methods for protein engineering
is rational design, which usually includes taking 3D structures of given enzymes, then
analyzing catalytic or tunnel residues, and suggesting means to alter a specific catalytic
activity [21]. An alternative group of approaches is directed evolution, in which mutagenesis
is used to create a diverse random library of enzyme variants, which is then screened for
a specific catalytic activity, and the successful candidates are used as templates for the
next iteration. While the directed evolution has been proven efficient [13], it is usually an
expensive and time-consuming method that requires special laboratory equipment. In either
group of methods, the change in structure is typically made in the amino acid sequence by
substituting, removing, or inserting one or several amino acids. The substitutions are often
also called mutations, the original protein template is called wild type if it occurs in the
nature, and the resulting protein is called a mutant or variant.

6

Despite the major success of these two groups of strategies to date, it is very common
that with improving one property, other properties change too. For example, improving
enzyme activity might lead to lowering the melting temperature. Therefore, improving
or altering the desired properties without compromising other important features of the
protein is one of the biggest challenges in this field.

Another challenge when designing mutants comes with the number of possible combi-
nations of amino acids. Usually, the protein sequences are hundreds of amino acids long.
Then, considering that a sequence is, for example, about 300 amino acids long and in each
position there can be 20 different amino acids, there are 20300 = 2 * 10390 different mutants
which is more than the atoms in the observable universe. Thus, it is not possible to explore
all the mutants exhaustively and the need for more directed exploration is needed.

This problem arises also from the fact that experimentally exploring even a few dozen
mutants might take several weeks and is associated with significant challenges, e.g. when
something goes wrong during the experiment, it needs to be restarted. And while the
laboratory experiments are necessary to confirm that the designed protein has indeed the
targeted properties, they could be at the end of in silico (computational) design process,
which may help select only a subset of the most viable mutants for laboratory testing.

The computational tools for such tasks include various modelling environments, molec-
ular dynamics simulations, or statistical methods based on large databases. Many such
tools can achieve high precision, but they usually need to be manually targeted to a specific
protein or protein family and require manual configuration and tuning. Thus, they cannot
change the field dramatically when it comes to, e.g., annotating more than 250 million
sequences that are available in databases. Lately, the focus has turned to machine learning
approaches. This is due to the fact that machine learning seems to thrive in other fields of
computer science and provides good performance and precision. It has also already been
applied in protein engineering and has demonstrated a great potential in assisting in various
protein engineering tasks [18].

2.2 Machine learning
Machine learning (ML) [24] is a field of computer science that includes algorithms for
identification of patterns in data. The applications of machine learning are more and more
common in everyday life, e.g. for spam filtering, customized web searching, image and
speech recognition, and others. It also shows huge potential for processing and analyzing
the results of wet lab experiments. Usually, these algorithms are trained on a sample of
data that is called training data or training dataset. Machine learning encompasses many
approaches and areas, but the dimensionality reduction and supervised learning are at the
core of this project, and so they are explained in more details below.

In supervised learning, the algorithm is presented with input data, called features, and
output data, called labels. The goal of the algorithm is to make predictions of labels using
the features, based on the examples it is provided during learning. The idea is similar to
how humans learn basic things, e.g. when children see a car for the first time and the
parents tell them what that object is called, they are able to distinguish this object later
on, even if it is not exactly the same color or shape. Here, the input features represent the
image of the car, and the input labels represent the name of the object – a car. With enough
data, the algorithm should be able to learn the connections (if there are any) between the
features and the labels, and when presented with data that do not have the labels, it should
be able to deduce the labels based on the learned correlations.

7

There are two types of labels and information that they can represent. The first one is
categorization where the labels represent a category to which the input features correspond.
An example of this kind of labels is the type of an object in an image, where a model can
be created, e.g., to distinguish cars in a particular image. The second type of labels has
the form of continuous variable. An example can be an estimation of the distance between
some object in the picture and the camera. The problems that can be described by the first
type of labels are called classification problems and problems with the second type of labels
are called regression problems. The problems being solved in this project belong mostly
to the regression category. The result of supervised regression algorithms are models that
were trained on the training data to be able to predict labels for the new data similar to
the training data. The goal is to create a model that is able to estimate labels with high
confidence.

In contrast to supervised learning, in which the data is usually labeled, the dimensional-
ity reduction is an unsupervised technique used for extracting the most valuable information
for a set of data while also using the least possible number of values, and in a way it is
similar to compression. The usual input for dimensionality reduction is a matrix of features,
and the output is a vector or a smaller matrix.

Principal component analysis – PCA [4] [16] is one of the simplest dimensionality
reduction techniques. PCA is defined as an orthogonal linear transformation that trans-
forms the data to a new coordinate system. Its main goal is to reduce the number of features
and eliminate the linear correlation between them by producing new independent features.
This is achieved by finding new base vectors that best capture the variation in the original
feature set but are orthogonal to each other, and then projecting original features to the
new orthogonal basis made from these vectors, thus creating new independent features.

PCA can be seen as an iterative process, whereby for each component 𝑘 (except the
first one) new data matrix 𝑋𝑘 is computed by subtracting data contained in the previous
components 𝑤𝑘 from the original data 𝑋:

𝑋𝑘 = 𝑋 −
𝑘−1∑︁
𝑠=1

𝑋𝑤𝑠𝑤
𝑇
𝑠 . (2.1)

Then the eigenvector 𝑤𝑘 corresponding to the largest eigenvalue of the covariance matrix
𝑋𝑇

𝑘 𝑋𝑘 is computed for the data matrix 𝑋𝑘 according to the following equation:

𝑤𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑤 ̸=0

{︂
𝑤𝑇𝑋𝑇

𝑘 𝑋𝑘𝑤

𝑤𝑇𝑤

}︂
(2.2)

Ideally, when the original feature set is correlated, just a subset of all orthogonal vectors
is needed to explain most of the data variation in the original feature set. And while some
details are lost, the decrease of original dimensionality is more valuable. One of the common
strategies to find the eigenvectors is to use Singular Value Decomposition.

Dataset size problem

In machine learning, especially deep learning, datasets in the size of multiple thousand
entries are often required to produce a high-quality predictor. Some notable examples of
such models include AlphaFold, which was trained on 29000 datapoints to predict protein
structures, or DEEPre for predicting EC (Enzyme Commision) number, trained on more
than 20000 entries. However, in many applications in the field of protein engineering, it is

8

time-consuming and expensive to obtain such large amounts of data. It may take several
weeks to produce a mutant, and then even more time to measure the property. Moreover,
even when there are large datasets available, they usually consist of heterogeneous data,
and, for example, stability predictors trained on larger datasets often have poor results for
a particular protein. There are modern experimental methods that can significantly reduce
the time for measurements, such as microfluidics [27], but the time required for synthesis
of the mutant is still quite long. Therefore, machine learning methods that can work with
small datasets (size in tens or hundreds of entries) are required to make use of the available
data. These methods are usually more simple, such as linear regression, and the emphasis
during the development of such tools is typically placed on designing appropriate features
and good data representation, e.g. by embedding or encoding.

Proteins can be represented in many ways: as an amino acid sequence, secondary struc-
ture sequence, or coordinates of atoms in 3D structure. Some of these representations have
numerical values naturally (coordinates), but others are character sequences, and they need
to be transformed to some kind of numerical values. One of the simplest ways of repre-
senting the amino acid sequence is one-hot encoding where each position is substituted
by a vector of size 20 of 1s or 0s, and each position in this vector represents a different
amino acid, the 1 is on the position in the vector that corresponds to the amino acid found
in the particular position in the sequence. However, this encoding results in quite sparse
representation, i.e. many entries being zeros. Another way to represent the sequence is to
pick some chemical characteristic that can be measured for an amino acid and translate
the letters of amino acids into numbers using this characteristic. However, there are many
of these chemical characteristics to choose from (see subsection 2.2.1). Regardless of the
selected representation, in most cases, the resulting feature vector is much larger than the
number of labeled datapoints, and a careful selection of algorithms is required to handle
such imbalanced representations.

2.2.1 AAindex

The AAindex1 is a database of amino acid properties. It contains 566 properties at the
time of writing. Many of these properties are redundant. Each entry has a table of all
amino acids and a numerical value of the given property for the particular amino acid. The
entries also have a unique identifier, description, list of similar properties, and authors who
contributed the entry.

Using the AAindex, the amino acid sequence can be translated into a numerical sequence
of some property. This translation is used in the pipeline to transform the sequences into
numerical representations that can be used in the analysis.

2.3 Partial least squares – PLS
Partial least squares is one of the linear regression techniques that can be easily used
with these representations. It finds relations between two matrices 𝑋 (features) and 𝑌
(labels) by projecting the features and labels to a new space. PLS creates a multivariate
linear prediction model further referred to as model or predictor. Its main advantage is that
it works well even when the number of features exceeds the number of datapoints, and thus
it is widely used in chemometrics and bioinformatics. It also works well with noisy data

1https://www.genome.jp/aaindex/

9

https://www.genome.jp/aaindex/

and data that is collinear [28]. Some examples of use for PLS are predicting diesel blend
properties [12] or analyzing stream of wood particles for cellulose, lignin and glucan [14].
However, the disadvantage is that each input feature contributes separately to the output
label and this poses a problem when it is used with the sequence representations, because
there usually is some behavior that comes from the amino acid vicinity in 3D space, but
in the PLS, this would not be taken into account. A partial solution might be to produce
features for combinations of 2, 3, or generally 𝐾 neighboring amino acids, which would
solve this problem for amino acids that are next to each other in the sequence, but will
have limited effects for the interactions in 3D space between amino acids that are not next
to each other in the sequence.

Often, while designing a predictor, signal processing functions can be used on the exist-
ing data to offer a different point of view and account for such cross-talks between different
features. For example, these cross-talks might be solved by using the spectra representa-
tions by applying the Fourier transform. The idea behind using the Fourier transform is to
capture the structural dependencies between the amino acids that might arise from their
spatial vicinity in the 3D structure without the need for 3D structure data. It also might
allow for more complex combinations of individual mutation effects than a simple linear
combination because some mutations might interfere with each other, and their effect on
the protein might overlap or even multiply, which is well represented by different frequency
signal interference.

2.4 Fourier transform
The Fourier transform is a mathematical operation that translates the original function
𝑓(𝑥) or signal into its frequency spectrum 𝑓(𝑠):

𝑓(𝑠) =

∫︁ ∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑠𝑑𝑥, ∀𝑠 ∈ R (2.3)

The result of such a transformation is a complex-valued function of frequency. The magni-
tude of the function value for a given frequency is the amplitude of the given frequency in the
original signal. The angle of the same complex value is the phase offset. The requirements
on the transformation and input signal are Dirichlet conditions.

For discrete signals, such as values measured by laboratory equipment, the Discrete
Fourier transform (DFT) is used. This variation of the Fourier transform does not produce
a continuous spectrum function, but rather a vector of finite length:

𝑋[𝑘] =
1

𝑁

𝑁−1∑︁
𝑗=0

𝑥[𝑗]𝑒−𝑖𝑗𝑘2𝜋/𝑁 , 𝑘 = 0, . . . , 𝑁 − 1. (2.4)

Here, 𝑋 is the spectrum vector, 𝑥 is the input signal, and 𝑁 is its length. The variable 𝑘
indexes the relative frequencies of the spectrum, and 𝑖 is the imaginary unit of a complex
number. The length of 𝑋 is the same as 𝑁 , but in the case of real-valued input signal, only
half of 𝑋 is considered, because the values in the other half mirror the first half. The Fourier
transform is widely used in signal processing, informatics, bioinformatics, chemometrics,
etc. [6]. For example, it is used in image compression, image processing, voice compression
in telephony, and much more. An example of how it is used in this platform and in the
innov’SAR method can be seen in Figure 2.2.

10

MSEIGTGFPFDPHY
VEVLGERMHYVDV

NPTSSYLW...

Amino acid sequence

1.32;0.86;1.01;0.423; 0.594;...

Numerical encoding
of the sequence Protein spectrum

Fourier
transform

AAindex
property

Figure 2.2: Encoding of the protein sequence - the sequence is encoded using a property
from the AAindex and then the Fourier transform is used to convert the numerical sequence
to a spectrum.

11

Chapter 3

Related work

In protein engineering, some typical tasks for the use of machine learning include predicting
protein structure or catalytic activity. Predicting protein function from protein sequence
is another challenge in this field, because the number of proteins that have only a known
sequence, but an unknown function is huge. Protein solubility poses yet another problem,
especially for the structural biology or pharmaceutical industry, where it is crucial to dis-
tribute a protein in solution for experiments or medication. Another example is directed
protein evolution where the effect of individual mutations is studied and multiple-point
mutants are designed by combining the explored mutations to achieve better properties.

Some notable examples of using classical Machine Learning algorithms in protein en-
gineering is predicting enzyme specificity profiles, which capture how well given enzyme
interacts with different substrates. In [29], the authors used the K-nearest Neighbours and
Decision Tree algorithms for glycosyltransferase activity prediction. Although promising,
this method used some manual adjustment and 3D structures for more precise prediction.
Another recent approach [23] predicts the activity and substrate specificity of OleA en-
zymes. The authors used a range of methods, namely the Random Forest, Elastic Net, and
Multivariate Adaptive Regression. Again, some structural features were used to create the
predictor. Yet another method [22] includes using large neural networks and self-supervised
learning on very large publicly accessible protein data sets. Although they showed some
promise, these methods were applied to a specific group of enzymes, and their generaliz-
ability to other enzymatic families is an open question. In addition, they rely on structural
information, which is not available in many cases, especially when using enzyme mining
techniques in protein sequence databases, such as the recently published EnzymeMiner1

[10].
Another recent ML approach in protein engineering for creating protein predictors with-

out using structural data is using natural language processing (NLP) neural network ar-
chitectures and workflows and adapting them for amino acid sequences. This method is
deduced from the similarities between natural human languages and DNA and amino acid
sequences because amino acid sequences can be seen as sentences. It expresses the protein
as a sequence of words, each amino acid representing a single word or a letter. This se-
quence is interpreted in the cells, and proteins are synthesized based on the encoding of
amino acid sequences in the DNA and the RNA. The research of machine learning in the
field of protein engineering mimics the evolution of natural language processing. It started
with Singular Vector Machines (SVMs) and Hidden Markov Models (HMMs). Then it

1https://loschmidt.chemi.muni.cz/enzymeminer/

12

https://loschmidt.chemi.muni.cz/enzymeminer/

continued with convolutional neural networks, recurrent neural networks like Long-Short
term memory (LSTM). Each step presented an improvement over the previous method and
offered new possibilities. In particular, with LSTMs it was possible to capture long-term
dependencies. With the latest success of AlphaFold [15], Google released the architecture
called Transformer [26], which is based on attention mechanisms.

Although these methods provide better accuracy, they are much more complex and
require large datasets for training, which is often not the case in many protein engineering
applications, especially those targeting a particular family of enzymes. Training times are
also much higher [7] – in the range of days with the high performance computing option.
Thus, despite the success of deep learning in protein engineering, simpler machine learning
algorithms are still being developed. One of the recent examples is the innov’SAR method,
which is covered in the next section.

3.1 Innov’SAR method
Innovative Sequence Activity Relationship or innov’SAR method allows creating prediction
models only from sequences of proteins and amino acid properties and does not require
any structural information [6]. For the prediction, it uses the partial least squares (PLS)
method, which provides speed and is resistant to overfitting, making it suitable for small
datasets. This framework is also quite general and can be used to predict various labels
such as the catalytic activity, thermal stability, or other properties of protein mutants.

The method proceeds as follows. It first encodes the protein sequence as a numerical
sequence of certain property from the AAindex database, further called index representa-
tion. Then the Fourier transform is performed on the index representation and the spectra
representation is obtained. Next, the PLS model is trained using the spectra representa-
tion and label values, and a predictor or model is obtained. Finally, the previous steps are
repeated for each AAindex, searching for the indices that produce models with the best
scores. The entire process is visualized in Figure 3.1.

The idea behind using the Fourier transform is that changing a single amino acid in the
protein sequence can greatly impact protein properties, such as the catalytic activity, and
the spectrum produced by Fourier transform has similar behavior. In reality, the properties
of a protein can be impacted by amino acids that are distant in the sequence by the effect of
cross-talk, caused either by their spatial vicinity in the 3D structure or by molecular forces
distributed along the structure. These interactions cannot be captured by a simple linear
regression only from the index representation, but with the spectra representation it might
be possible. This is due to the fact that without the spectra representation the change
in the numerical sequence is minimal and localized, although the change in the predicted
property can be substantial. However, the spectra representation of a certain sequence can
greatly vary, meaning the frequency spectrum changes considerably, by changing just one
value in the sequence. This ultimately represents the real-life behavior of enzymes, where
single point mutations on certain places can dramatically affect the catalytic activity. The
authors showed that this representation by Fourier transform can substantially improve the
prediction model, and this claim was supported by applications on different datasets [5].

Another challenge innov’SAR addresses is the process of choosing the best indices from
the AAindex, that is, the properties of amino acids that will help predict the property
of interest the best. In the original innov’SAR paper [6], a combinatorial approach was
chosen. First, the model for each property from AAindex is trained. For each model,
scoring functions are calculated, and the model with the best score is selected. The whole

13

Figure 3.1: Process of the innov’SAR method - the spectra and the measured values are the
input to the PLS which creates a model capable of predicting property for the sequences
that were not in the training set. (Taken from [6])

process is repeated iteratively, each time adding new AAindex property to the previously
chosen ones while improving the model score, i.e. in each iteration, the properties that had
the best scores in the previous iterations are combined with each one of the not yet used
AAindices. This process can be repeated any number of times, and in the original paper
the authors stated that they carried out the combination of up to three indices or their
spectral representations.

Despite great promise, the original innov’SAR method has several limitations. The
major drawback is that the implementation of the method is proprietary and not available to
the scientific community. However, the authors published the innov’SAR method publicly
and described it in great detail, which motivated the reimplementation of this method
in this project. The second limitation is that all of the experiments conducted in the
original publications were performed on mutant datasets. However, theoretically, it is
possible to apply the innov’SAR method to aligned sequences of different proteins, e.g. those
sharing similarities in the sequences. The third limitation of the method was the large times
required to train the model. In the original paper, the authors did not explore any means
of parallelization. However, some parts of the training process can be easily parallelized to
improve performance and training times. Finally, the authors did not explore other scoring
functions than the cross validation score – 𝑄2. However, predicting exact labels based
on small datasets seems to pose a significant challenge. And in many protein engineering
tasks, e.g. the enzyme discovery problem, scientists are often more interested in ranking
the protein candidates rather than predicting the exact values. This is due to the fact that
the selected enzyme variants will still need to be validated experimentally. Therefore, the

14

goal of this project was to address those limitations and test the improved method on two
new datasets, which is covered in more detail in the next two chapters.

15

Chapter 4

Algorithms and implementation

The major goal of this project is to implement the innov’SAR method and build
a tool for using this method for custom data analysis and model creation. The
innov’SAR method is also extended by a prediction of aligned sequences of related
proteins, and means to preprocess the data by Principal Component Analysis. It also offers
a possibility to create an archive containing all necessary files for MetaCentrum training.
The original innov’SAR method was published on the case study of mutants. Moreover, the
model was trained on mutants with few mutations and applied to mutants generated with
these mutations. The novelty presented in this work is to use multiple sequence alignment
with this method and to train the model with multiple-point mutants to see if the model
is able to capture mixed mutations.

Furthermore, the original publication did not consider any computational optimizations
for the algorithm, although there is a possibility for parallelization of the training process.
Parallelization is applied in this platform to speed up the training process.
Caching is also utilized to add ability to resume the training and to provide quick results
for already trained models.

The next addition to the platform is the possibility to choose between two scoring
functions – 𝑄2 and the Spearman correlation coefficient. The original paper used
only 𝑄2, which scores how precise the predictions are with respect to the exact values.
However, the Spearman correlation coefficient measures correctness of the label ranking and
can, therefore, be used to score whether the predicted protein is expected to have a better or
worse property than other evaluated proteins. This information might be useful for mass-
selecting proteins for further lab experiments or more computationally heavy predictions.

Since PLS was mainly developed for real values, the complex Fourier transformed spectra
needs to be converted to the real numbers. We tried multiple representations of complex
numbers by real values, e.g. combining amplitudes and phase shifts, amplitudes multiplied
by phase shifts, changing the sign of the amplitudes by the sign of phase shift. Ultimately,
the best performance was gained by using only the amplitudes.

The innov’SAR paper provided more complex sequence encoding, where the protein
spectra were combined with the index encoding in each step. This allowed both types
of information to be explored during the training. However, during the implementation
of this platform, we run some experiments to test this approach, and it proved to not
improve the final model, if not degrade it. All the experiments point to the conclusion
that the spectra encoding has more valuable information for the predictions. During the
AAindex combination process of the innov’SAR method, not only the spectra encodings
but also the index encodings were included in the property selection for each step. The

16

combination process never selected the index encoding and always preferred the spectra
representation. Thus, we decided to not include the index encoding in the final platform to
increase performance and training times at the cost of a possible decrease in precision in
some cases.

The next section provides details on Partial least squares method and algorithm used
for its computation and section 4.2 provides insights into the scoring functions used to
score the PLS models and how the scores differ. In section 4.3 the general workflow of
this platform is explained, and in section 4.4 details on implementation and challenges
encountered during implementation are mentioned. Finally, in section 4.5, the general
complexity of the algorithm and the time required for training are evaluated.

4.1 Partial least squares – PLS
The NIPALS algorithm is used for PLS regression, with one hyperparameter – the number
of components. The following equations capture how outer relations are computed, which
is similar to Principal Component Analysis. If 𝑋 denotes an 𝑛×𝑚 matrix of features and
𝑌 is an 𝑛× 𝑝 matrix of labels, PLS computes the following representation:

𝑋 = 𝑇𝑃 𝑇 + 𝐸 (4.1)

𝑌 = 𝑈𝑄𝑇 + 𝐹 (4.2)

where 𝑇 and 𝑈 are projections of 𝑋 and 𝑌 , 𝑃 and 𝑄 are orthogonal loading matrices, and
𝐸 and 𝐹 are error terms. When computing the PLS, the goal is to maximize the covariance
between 𝑇 and 𝑈 . To capture the dependencies between 𝑋 and 𝑌 , the following equation
is used.

𝑌 = 𝑇𝐵𝑄𝑇 + 𝐹 (4.3)

Where 𝐵 is the matrix of sensitivities, and the goal is to minimize a norm of 𝐹 . In this
work the PLS method from the scikit-learn1 library was used, precisely the PLSRegression
class.

4.2 Scoring functions
A scoring function provides a numerical score for a model or predictor. It usually penalizes
the discrepancy between the predicted and true values. It can be used either to report the
strength of a model or a method so that different methods can be objectively compared,
or, as in this case, to select the best model from a set of possible candidates.

Coefficient of determination – 𝑅2

For model evaluation, the 𝑅2 score or coefficient of determination is often used in Machine
learning to describe the fitness of the model.

𝑅2 = 1−
∑︀

𝑖 (𝑦𝑖 − 𝑦𝑖)
2∑︀

𝑖 (𝑦𝑖 − 𝑦)2
(4.4)

1https://scikit-learn.org/1.0/modules/generated/sklearn.cross_decomposition.PLSRegression.html

17

https://scikit-learn.org/1.0/modules/generated/sklearn.cross_decomposition.PLSRegression.html

𝑦𝑖 = the i-th actual measured value
𝑦𝑖 = the predicted value
𝑦 = average of the measured values

The coefficient takes values no greater than one, with one being the exact prediction,
zero indicating the performance similar to that of a constant predictor (i.e. the predictor
that ignores the features and simply returns the average label of the training set), and
negative value representing the performance worse than that of the constant predictor.
The implementation for this coefficient function is used from the scikit-learn library –
sklearn.metrics.r2_score.

Cross validation score – 𝑄2

However, more important metric is the 𝑄2 score or cross validation score, which is specific
to the PLS algorithm. This score is computed similarly to the 𝑅2 score, except that the
predicted values are not taken from the training set, but from the leave-one-out cross
validation. This means that in each iteration, one datapoint is taken from the training set,
and the rest are used to train a PLS model. The model is then applied to the datapoint
that was left out to calculate the predicted label marked 𝑦𝑖. This process is repeated for
each entry in the dataset. Finally, the same equation as for the 𝑅2 is used (Equation 4.4).
Although this score is useful for tuning the parameters and experimenting with different
dataset splits, it is not a good independent score of the final model, because the whole
training set is not used to calculate this score. The best way to independently test and
score the created model is to have an independent test set.

Spearman correlation - 𝜌

The Spearman correlation coefficient is a statistical measure of the monotonicity of the
relationship between two variables:

𝜌 =
𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋) × 𝜎𝑅(𝑌)
, (4.5)

where 𝑋 and 𝑌 are two variables, 𝑐𝑜𝑣(·) is a function that computes the covariance of the
variables, 𝑅(·) is a function that returns the rank for the provided variable, and 𝜎 is the
standard deviation. The rank is computed by sorting the variable values and indexing them
from the smallest to the highest. The Spearman correlation coefficient is thus equal to the
Pearson correlation coefficient between the ranks of the two variables [19]. It takes values
from the interval [−1.0, 1.0], indicating how close the ranks follow the same order (the value
of 1.0) or the inverse order (the value of -1.0). The difference between the Spearman and
Pearson correlation coefficients is that the latter is more strict and measures how well the
relationship between two variables fits a simple linear function. The Spearman correlation
coefficient is more lenient in terms of the shape of the function, scores the monotonicity of
the relationship, and is not sensitive to the shape of the particular function, as can be seen
in Figure 4.1.

18

Figure 4.1: Comparison of the Spearman coefficient and the Pearson coefficient on similar
data. As can be seen on the graphs the function that is more similar to a simple linear
function has higher Pearson coefficient, but the Spearman coefficient stays the same, as
both functions are increasing.

4.3 Workflow
The tool contains multiple levels, as can be seen in Figure 4.2. These levels represent the
separate actions the user can take. The individual levels are explained in more detail in
Figure 4.2b.

In order to create a model, the user has to provide training data to the tool. The
users decide on the split for the input dataset into the training and testing sets for model
validation themselves. This is left at the users’ discretion since various tasks will imply dif-
ferent train/test splits. The tool accepts two input data formats: aligned protein sequences
(family) or mutational data (mutants).

The first family type requires datapoints in the form of a multiple sequence alignment.
This format is used for family datasets where sequences can differ in many positions or
sequence lengths. However, it is important to align these sequences first before the training.
The alignment is left to the user and is not in the scope of this platform, as there are many
algorithms for aligning multiple sequences, and many parameters can be fine-tuned. There
are also many tools to achieve this task, even available online for free2. The user should
check whether the alignment looks reasonable and is without unnecessary gaps or other
common errors. However, it is not crucial for the performance of the model to have the
best possible alignment. More important is that it does not contain long gaps. For the
correct testing, it is advised to align the training sequences separately and later co-align
the test sequences to them. This workflow reflects the typical use case where the predicted
sequences have to be co-aligned to the training sequences before the prediction because
they are not known during the training of the model. The tool accepts a csv file with
a predefined format (see Appendix B) as input of the sequences and the necessary data.

For the mutants type, the input file format is different. Two input files must be sub-
mitted to the tool. The first is the amino acid sequence of the template protein in a plain
text file. The second file must contain a list of mutations in the csv file format in which the
first column contains the mutation name, and the second column contains the list of muta-

2https://mafft.cbrc.jp/alignment/server/add.html

19

https://mafft.cbrc.jp/alignment/server/add.html

tions separated by a semicolon (the full format can be seen in Table B.2). The individual
mutation has the following format:

𝑋𝑛𝑛𝑛𝑌 ;

where X is the source amino acid, nnn is the position within the template protein sequence,
and Y is the mutating amino acid. This essentially means that the amino acid X gets
replaced by amino-acid Y at the position nnn. If X cannot be found at the nnn position,
an error is reported. The mutation file must also contain the labels for individual mutations.
The fourth column is optional, but recommended, when the same mutation appears more
than once within the file. This column is used to aggregate the same mutants and average
the labels. Its primary purpose is to specify a measurement method for the particular
label value. Basically, the combination of mutations column and this column should form
a unique key for each measurement.

If there are multiple output labels, the user must reduce the labels to a single value, e.g.
by selecting a specific column or keeping only the first component after using the Principal
component analysis (PCA). Using the pca command and providing the input file, the tool
performs PCA and outputs the results in a file where each result is in a new line.

The last parameter necessary for the model training is the scoring function that will be
optimized. There are two options:

• 𝑄2 – Leave-one-out cross validation score

• 𝜌 – Spearman correlation coefficient

The 𝑄2 scoring should be used when the precision of the predicted values is important,
but it should be noted that the model can achieve lower scores of 𝑅2 depending on the
dataset. The Spearman correlation coefficient can achieve higher final prediction scores
(final Spearman correlation coefficient), but the output labels should not be considered as
precise output values, but rather as an indication whether the input sequence is expected to
have higher or lower label value than other proteins in the set. When using the Spearman
coefficient, the results of the predictor can be used for ranking the sequences with unknown
properties for further lab testing or more computationally intensive simulations. Thus, it
can also be seen as a comparator mode. By default, the 𝑄2 score is used, but it can be
changed by providing a command line argument.

After providing all the necessary input data, model training begins. The overall training
time can take quite a long time, depending on the size of the input dataset. If the size is up
to hundred data points, the training should take around ten minutes on a standard desktop
computer. The output from the training is a model in a custom format file that is later
provided to the tool for testing and prediction. The calculations are performed in parallel
whenever possible (see section 4.6).

After the training, the model is validated, its performance checked, and the model score
is calculated. For this reason, the tool provides a testing command - test. Here, two input
files are required: the model that was trained in the previous level and the test set file. The
format of the test set file differs depending on the type of model that was trained, similarly
to the training input files: it must contain co-aligned sequences in the case of a family-type
model, but otherwise the formats are the same as for the training set. Testing is a fast
operation, and the results are usually available within a few seconds. On the basis of the
results, the user could decide to further tune some parameters or redistribute the training
and testing sets for better results.

20

If the validation of the model is satisfactory, the user can continue with predictions for
new sequences, or the model can be distributed to other users. In order to predict a label
for new sequences, the model file and the file with the new sequences must be provided.
In the case of the family-type model, it is important to co-align the new sequences to the
training set. It is worth noting that the co-aligning process, which aligns new sequences
to an existing alignment, might shorten the input sequence if it is longer than the aligned
training sequences. The prediction operation itself is also fast, and the results are available
within a few seconds. During the interpretation of the results, users should be careful: the
exact labels may be inaccurate when the model was optimized for ranking, which is the case
when using the Spearman correlation coefficient. In this case, the value simply indicates
whether the sequence is expected to have better or worse score than the other sequences.

4.4 Implementation details
The implementation of the method and the platform is done in Python language with the
use of numpy (v1.22), scikit-learn [20] (v1.0.2) and pymol aaindex libraries. To download
and access the AAindex database, we used the PyMOL library called aaindex3, which
downloads the database from the Web and provides a dictionary object in the Python
code. The code of the platform is separated into multiple modules based on functionality
and uses object-oriented programming.

The platform is designed with a command-line user interface with multiple modes of
operation and optional arguments. For processing the arguments, the Python argparse
library is used, especially its subparser capabilities. There are multiple subcommands –
train, test, predict, pca, each facilitating a different level in the workflow.

In all the subcommands, either input or output files are needed. All files provided by
the user must be in the csv format with the colon as the separator. The only file that
has a custom format is the model file, which is produced after the training. It is a binary
encoded object using the Python library pickle which allows exporting Python objects to
files. Each type of input (family, mutants) have their own input file formats as mentioned in
section 4.3. These input files are parsed and converted into Python objects for computation.

In the case of training, the instance of the InnovSAR class must be created and provided
with the training data and settings. When initializing, the training sequence encodings
and spectra are created for each AAindex entry and saved to a local dictionary with the
AAindex ID as the key. This leads to shortening the execution time as they do not have
to be computed every time they are required. Then the training starts, and it consists
of multiple steps. In each step, a combination process starts and the base (the AAindices
selected in the previous steps) is combined with one of the indices from the pool which
contains not yet selected AAindices, this process explores all the possible combinations
of the base with items from the pool. A model is trained on the spectra created from
these combined AAindices and its score is saved. After trying all the combinations, the
combination that created the best score is selected as the base for the next step and the
process can be repeated. At the beginning the base is empty.

The the pool is divided between available processes and the model scoring is done
in parallel. The number of simultaneous processes (computations) can be specified using
a command line argument, and the default value is 8.

3https://github.com/Pymol-Scripts/Pymol-script-repo

21

https://github.com/Pymol-Scripts/Pymol-script-repo

Since the platform implements caching for the computation steps, first a check is pre-
formed whether such cache files exist. If they do exist, they are used instead of running
the computation for the training step. Usually there are three training steps, and each of
these steps also represents a caching point. The number of training steps can be adjusted
by a command line argument. The step must successfully finish in order to create a cache
file, thus when the training process is stopped in the middle of the step, there is no caching
for that particular step.

Finally, after the training is finished, the model is created and saved as a file using the
pickle.dump function. This file does not contain the model created by the PLS algorithm,
but rather contains the data necessary to recreate the model. This has two reasons, first
one being the file size and second access to the training data during testing. Usually,
the datasets that should be used with this platform are not very large and only protein
sequences are required, which do not occupy a lot of space. If the matrices obtained by
training a model using PLS were saved, they would occupy more space because one side of
them is always 1.5𝑥 the length of the sequence and the other size depends on the number
of components (on average 7), but there is multiple of these matrices. In some cases it
is possible that these matrices would occupy less space than the raw sequences, but it is
less likely, especially when saving floating point numbers requires more bytes than simple
characters. Thus, in the model file, the training sequences and labels are saved as well as
the training parameters. The PLS matrices are not explicitly saved, but the PLS model
can be easily recreated from the training data. Retraining does not pose a problem since
the PLS is quite simple and fast algorithm, and the retraining is performed within seconds.

The testing part of the software is much simpler. It parses the test set input file, creates
a PLS predictor from the model file, and predicts the values for the test set. All the metrics
are computed, and a graph is shown to the user, depicting real values on the x-axis and
predicted values on the y-axis. This type of graph allows for simple depiction and evaluation
of prediction accuracy, where the diagonal marks a hypothetical ideal predictor.

Code structure

There are multiple classes implemented that comprise the platform, as can be seen in
Figure 4.3. The input data are represented by the classes derived from the Dataset abstract
class. These classes can parse and process the input files based on what the user selected
in the command-line arguments. The Dataset class must contain a list of sequences and
their labels, and additionally the MutationalDataset contains the base sequence to which
the mutations are applied.

To execute the training, the InnovSAR class instance needs to be created, and all the
necessary settings should be set. Otherwise they will have the default values. Most impor-
tantly, the dataset attribute must have an assigned value of the Dataset class instance.
Running the compute() method starts the training, and the final model is returned by this
method as the Model class instance.

Within the InnovSAR class, there are multiple private methods, but two require more
explanation. The first one is _combinations_of_aaindices(), and this method imple-
ments the parallelization and caching by writing and loading the cache files. If no such
file exists, the parallel computation is run with InnovSAR.process_num processes. This
function is called recursively for each step of the computation, and the number of these
steps can be set by InnovSAR.depth. The number of steps determines how many AAindex-
encoded spectra will be joined together for the final model. The user can also choose

22

to explore more models with n_best performing AAindices by setting InnovSAR.n_best.
The recursion allows a tree-like exploration of the model space, by not only selecting one
best AAindex model in one step, but selecting 𝑛𝑏𝑒𝑠𝑡 models and exploring more combi-
nations (see Figure 4.4). The second private function _compute_for_all_aaindices() is
executed by each subprocess spawned in the _combinations_of_aaindices() function.
It creates PLS models for each assigned AAindex and computes their scoring functions.
The PLSToolset class implements all the functions that work with PLS, such as q2 and
predict. The PLSToolset.pls_and_q2_component_search() also performs a hyperpa-
rameter search for the optimal number of PLS components. This function returns the
PLSResult instance which is used in the InnovSAR._compute_for_all_aaindices().

4.5 Complexity estimates
By the description of the innov’SAR method and considering the fact that it uses a combi-
natorial approach, the training times for the method can be significant. To put it simply,
first, for each AAindex, the method iterates over the training sequences, calculating their
individual spectra. Then multiple processes start fitting PLS models for each AAindex
encoding and calculating their scores, resulting in

𝑁 = 𝑠 *𝑀 * 𝑐 * (𝑛+ 1) (4.6)
where, 𝑁 is the number of models trained, 𝑠 is number of steps, 𝑀 is the number of
AAindex entries, 𝑐 is the number of PLS components that is being explored, and 𝑛 is the
training dataset size. The number of steps is the final number of AAindices that will be
joined together. Since the PLS has one hyperparameter – number of components – that
needs to be tuned during training and in order to do this, a cross validation is computed
for each model with different number of components.

As an example of exact values, the family dataset with 24 entries will be used. First,
the spectra database is build, that makes it 24 * 566 = 13584 different spectra and thus
that many Fourier transforms. Then, the innov’SAR method fits a model for each AAindex
entry, and for every one of the computed models a scoring function with leave-one-out
cross validation is calculated. By substituting values into Equation 4.6 the number of PLS
fittings per training is 3*566*10* (24+1) = 424500, if we explore 10 different components
and join up to 3 AAindices. This is quite significant number of models, and it means that
for each AAindex entry 10 * (24 + 1) = 250 different PLS models need to be fit. The +1
represents the model with none of the sequences left out.

As the number of the input features increases, the training times for PLS also increase
as well as the number of PLS fittings. Putting all this together means that one full run
of this method on a personal machine with 2.4GHz 4-core 8-thread CPU takes about 8-15
minutes for the family dataset. This does not pose a problem when training just one model,
however to perform the statistical validation it was necessary to execute several hundreds of
such trainings. In order to compute such large amounts of models more power and time is
required than a typical desktop computer can provide, thus services of MetaCentrum were
used.

4.6 Parallelization
Although the innov’SAR method does not allow for a complete parallelism, it is possible to
do some parts in parallel. At certain points, all the results from the parallel computations

23

need to be collected, and based on the results, the next iteration of the parallel computations
can be launched. The disadvantage of using Python as the main implementation language
is the need to create new processes rather than threads to do these parallel computations,
since Python does not allow to run multiple threads at the same time in the same process.
Thus, to achieve true parallelism separate processes are required which creates a bigger
memory and process management footprint.

Parallelization is used in each step to calculate models for each AAindex. The number of
separate processes can be specified as an argument. Based on the number of processes, the
AAindices are divided between these processes and each process performs the PLS training
and the leave-one-out validation for the assigned list of AAindices. The implementation
is based on the futures and promises, where each process provides a future with the best
result of all the assigned indices. The main process waits for the futures, combines all the
best results together, and selects the indices with the highest score.

With the custom parallelization, a problem has been revealed when using the numpy
library, which already utilizes its own multi-threading to some extent. However, the Python
does not have true parallel multi-threading due to its interpreted nature: the interpreter can
execute only one thread at a time. This is also the reason why multi-processing is used on
the platform, and each process has its own Python interpreter. It is important to note that
the numpy library uses external implementations of linear algebra and other algorithms from
libraries implemented in C. These libraries internally use true thread parallelism for certain
operations. When the internal parallelization of mathematical libraries took place, the
physical processor cores were loaded to 100%, but almost 80% was used by the operating
system for management. This caused unnecessarily long training times. To solve this
problem the internal parallelization of the libraries needed to be turned off and only the
custom parallelization is used. Since the numpy uses C libraries of different implementations
that can differ from system to system, it is necessary to disable the library multi-threading
by setting the option for maximum number of threads to one.

4.7 MetaCentrum
MetaCentrum is a project of the CESNET department that handles the operation and
coordination of the distributed computing and data storage infrastructure in the Czech
Republic. There are many academic and research institutions involved in MetaCentrum,
and they are able to share computational power using this service. The services are provided
free of charge for students of most universities in Czech Republic, however registration is
required to be given access to the system.

In order to compute certain machine learning models in a reasonable amount of time,
it is necessary to use more computational power and resources than the personal machine
is able to provide. MetaCentrum is used in this project to perform testing of statistical
significance and it also might be beneficial for the users to run more extensive trainings of
the innov’SAR method using the MetaCentrum .

MetaCentrum is a distributed computational network with many nodes across Czech
Republic, but from the user’s point of view, it has uniform access [1]. The user first needs
to log in using SSH to a frontend server, which does not serve as computational node, but
rather for users to log in and schedule their computations.

The computations are scheduled using a bash script and the information needed for
scheduling is the script that should be run at the destination node, number of CPU cores,
memory and estimated time of running. The scheduler is a service within the system then

24

schedules and assigns different tasks to the nodes across the network to compute. For
a better performance, the script that is invoked by the scheduler copies the necessary data
to the current node and then runs the program itself. After the computation, it copies
the obtained results to the user’s home directory or another network storage because the
persistence of the node memory is not guaranteed.

There are some time and power restrictions based on the user account level. For example,
more publications acknowledging the usage of MetaCentrum can give the user access to more
CPU time.

At the time of writing, MetaCentrum contains 30 894 CPUs and 531 GPU cards. In disk
arrays there is 15 771 𝑇𝑖𝐵 of space in total and hierarchical storage contains different types
of storage with total capacity of 17 843 𝑇𝑖𝐵 for long term storage with slower access times.
MetaCentrum consists of 53 physical machines These are logically divided into 767 virtual
machines. The whole infrastructure is geographically distributed around Czech Republic
and divided between 14 institutions.

25

Training

Testing

Prediction

Principal
component
analysis

(a) General overview of the pipeline. The principal component analysis can be used to reduce the
labels to one real value. The training process includes the innov’SAR method with parallelization.
The testing provides means to validate the model by providing different scores and a graph of
predicted values vs. measured values. Prediction step is the final one and allows predicting unlabeled
data. (The dotted line represents an optional step.)

User provides
training data

Build database of
AAindex encodings innov'SAR algorithm Create model and

export it to a file

Training

1)

User provides
model file and
testing dataset

Recreate model from
the file

Apply the model to
the testing data

Calculate all scores
and show graph

Testing

2)

User provides
model file and
sequences for

prediction

Recreate model from
the file

Apply the model to
the input sequences Print predicted values

Prediction

3)

(b) Details of the individual pipeline parts. 1) describes the training step where the user provides
training data and the result is a model file; 2) the testing requires test set and the model file created
in training and provides statistics and graph; 3) should be the final step where the user provides
sequences with unknown property values that are estimated by the model and printed for the user.

Figure 4.2: Workflow graph. In (a) a general overview is depicted and in (b) more detailed
steps for each level are explained.

26

Dataset

sequences: list

labels: list

verify_protein_sequence()

export_to_file()

FamilyDataset

parse_from_input_file()

MutationalDataset

base_sequence: str

mutations: list

add_mutant()

Model

dataset

selected_indices: list

value_function

components

to_file()

from_file()

load_testset()

load_predict_sequences()

PLSToolset

dataset: list

labels: list

settings

value_function

q2()

predict()

pls_and_q2()

pls_and_q2_component_search()

ValueFunction

Q2

SPEARMAN

PLSResult

r2: float

q2: float

spearman: float

components: int

_value_function

get_score()

InnovSARResult

pls_result

indices: list

InnovSAR

fft_couples: bool

encoded_sequences: dict

dataset

n_best: int

upper_component_cap: int

bottom_component_cap: int

process_num: int

depth: int

build_encodings()

_compute_for_all_aaindices()

_combinations_of_aaindices()

compute() -> Model

Figure 4.3: Simplified class diagram of the implementation. Most of the functionality is
implemented in the InnovSAR class, where the innov’SAR method is implemented and in
PLSToolset the 𝑄2 computation and PLS component optimization is implemented.

27

Step 1

Step 2

Step 3

...

n_best=3n_best=1

Figure 4.4: Effect of n_best property. The individual nodes symbolize different AAindex
entries that are explored in depth-first manner. The number of combinations increases
exponentially.

28

Chapter 5

Testing

The implemented platform has been used to create predictors for two different datasets.
The datasets used for testing were selected based on the ongoing research in one of the
protein engineering labs and consist of newly collected and recently published data for
the haloalkane dehalogenase enzymatic family. The chapter is organised as follows. In
section 5.1, the datasets are introduced and the challenges when using these datasets are
explained. Section 5.2 presents the results of independent testing of the models using the
test sets as well as the comparison with the baseline performance. Next, section 5.3 explains
how the statistical testing was performed to evaluate the robustness of the method.

5.1 Benchmark datasets
The datasets on which the pipeline was tested were split into training and test sets to verify
the strength of the predictors. The experimental data also contains a lot of noise, which
decreases the precision of the final predictors. Both datasets were measured experimentally
in the lab for the family of haloalkane dehalogenases.

Family dataset

This dataset contains 32 individual proteins with sequences of different haloalkane dehalo-
genases that differ in length and have less than 60% similarity. The size of this dataset
is usually considered low for sophisticated machine learning methods, which is a common
problem in protein engineering and is also the reason why the PLS algorithm might be use-
ful. All of these proteins are haloalkane dehalogenases, and the property that was measured
is their activity towards a set of halogenated compounds. The sequences were previously
obtained using state-of-the-art enzyme mining tool EnzymeMiner1 [11]. The activity was
measured towards 24 different substrates using a recently published microfluidic platform.
The PCA was applied to transform the multidimensional enzyme activity profile to a sin-
gle value for each enzyme, representing its average activity towards the whole group of
substrates (total activity).

Mutational dataset

This dataset consists of 130 different mutations of the haloalkane dehalogenase DhaA
(Uniprot ID: P0A3G2). The format of the data is similar to that used in the original

1https://loschmidt.chemi.muni.cz/enzymeminer/

29

https://loschmidt.chemi.muni.cz/enzymeminer/

Figure 5.1: Family dataset - total activity values, which were obtained as first component in
Principal Component Analysis. The original data was collected on a microfluidic platform
for a set of halogenated substrates. A high positive value indicates high activity and negative
values represent low-activity enzymes.

publication of the innov’SAR method. The property that was measured is the thermal
stability in the form of the melting temperature. The data has been collected over the span
of several years. Some of the mutants (3) had invalid mutations and had to be excluded
from the dataset. Multiple measurements for the same mutant using the same or different
methods were sometimes reported, and these needed to be unified to a single value. The
unification was done by averaging the different temperatures, and using the average as the
target label. However, this technique introduces inconsistent noise since some proteins were
measured with up to three different methods and some only with one. Moreover, differ-
ent methods might also introduce shifted measurements where some method might report
higher melting temperatures than other. Thus, the analysis of the temperatures from dif-
ferent methods was performed to see if such inconsistencies exist. The average deviation
between the methods was almost 0, so no conclusions or corrections of existing results could
be made to minimize the error.

5.2 Independent testing
For an objective evaluation of the created model, another dataset, separate from the training
dataset is required, called the test set. A typical workflow of machine learning is to train
the predictor on a training set and then test the trained predictor on the data that the
algorithm has not seen before to simulate real use. The test set is usually a portion of the
available data that was not used during the training, and it serves for the verification of
the predictive strength. For the test set, the real measured values are compared with the
values predicted by the model, and the scoring function evaluates how well the obtained
data fits the expected values. The 𝑅2 score or Spearman coefficient (based on the training

30

parameters) of this dataset is the final score that evaluates the predictive power of the
model.

5.2.1 Baseline

The goal of this project was also to verify the claims that the authors made about the
performance and improvement of the innov’SAR method. To verify their claims, multiple
baseline models were created to be compared to the models from the innov’SAR method.

All baseline models used the PLS algorithm. The first baseline model was simple re-
gression on the feature vector consisting only of 20 values, each counting the frequency of
a particular amino acid in the sequence. The second baseline model used the one-hot encod-
ing of the sequence. Each position in the sequence was extended to a vector of 20. In this
vector, each position contained either one or zero and represented a different amino acid.
There is always a single one based on which type of amino acid is on the given position,
and all other positions in the vector are zeros. The third baseline model is more complex.
Every AAindex entry was used to encode a sequence, and all of these numerical sequences
were joined together to form a feature vector. The final fourth model uses the Fourier
transform similar to the innov’SAR method but does not perform any AAindex selection.
It again uses the whole AAindex similar to the third baseline model, the difference being
that each numerical sequence is first processed using the Fourier transform, and then they
are all joined together to form a feature vector.

The baseline results can be seen in the Table 5.1. The first baseline model has the worst
performance as the score was negative even for the training. All the remaining baseline
models showed promising positive scores on the training data but performed poorly on
the independent test data, with the negative scoring implying the performance worse that
that of a constant predictor. This points to the conclusion that the models are not precise
at predicting values included in their training sets, and cannot be trusted at all for the
sequences not included in the training sets.

Baseline model performance Training score Test score
Frequency model -0.589 -143.95

Simple one-hot encoding 0.287 -79.46
AAindex 0.332 -98.43

AAindex + Fourier Transform 0.334 -90.6

Table 5.1: Baseline model 𝑄2 scores for the family dataset.

5.2.2 Model performance on the mutational dataset

Independent testing for this dataset is relatively straightforward since the mutations from
the test set are applied to the wild-type sequence, and then the model is used to predict the
thermal stability values. The important discovery is that by redistributing the sequences
between the training set and the test set, the model scores vary greatly. Multiple such
redistributions were made as can be seen in the Table 5.2. The first redistribution named
M1 is based on time when the data was obtained. In the training set, there are mutants that
were explored from the beginning of the experiment and in the test set there are mutants
that were created at the end, taking into account information gathered throughout the

31

experiment. The second redistribution M2 is based on the number of mutations, where the
mutants with smaller number of mutations are in the training set and mutants with more
mutations are in the test set, such that the ratio of dataset sizes is 7:3. Redistribution
M3 follows a different idea, where the test set contains only mutants that have mutations
already observed in the training set but in different combinations. The ratio in this case is
not traditional with approximately 6:4 split between training set and test set because only
that many variants were required in the trainig set to cover the mutations in the test set.
The scores vary greatly ranging from negative to positive numbers close to 1.0. There might
be multiple reasons for this behaviour, the first one being that the information required for
the label estimation is better included in the well performing redistributions. The second
reason might be that the data in the training set does not represent well the data in the
test set. M3 redistribution was suppose to show similar use as in the original innov’SAR
paper where the test set contained only mutations from the training set, however in the
case of M3 the average number of mutations per variant is 4, whereas in the original paper
it was 1.

The properties that were selected from the AAindex are listed in Table 5.3 for the 𝑄2

model and in Table 5.7 for Spearman correlation model. For the 𝑄2 model the property that
contributed the most information contains hydrophobicity coefficient for M1, preference for
parallel beta-strands for M2 and normalised frequency of turn for M3. How the model
trained on M2 performed on the test set can be seen in Figure 5.2, where a clear linear
trend can be seen that suggest that the model captured the correlations well. In the case
of Spearman coefficient model, for M1 the property represented normalised frequency of
chain reversal, for M2 the normalised frequency of extended structure and for M3 surface
composition of amino acids in nuclear proteins.

Redistribution Training set Test set Training set Test set
𝑄2 𝑅2 𝜌 𝜌

M1 0.769 -5.820 0.859 0.699
M2 0.536 0.004 0.696 0.592
M3 0.762 -0.08 0.895 0.393

Table 5.2: Scores of different dataset redistributions for both scoring functions. The redis-
tribution M1 is based on the time the data was collected. The latest data was used for
testing set and the rest for training. M2 is based on the number of mutations. The variants
with fewer mutations are in the training set, and the ones with more mutations are in the
test set.

Redistribution AAindex entries selected based on 𝑄2 scoring function
M1 WILM950101, MAXF760102, NAKH900110
M2 LIFS790102, QIAN880102, RACS770101
M3 PALJ810105, BUNA790103, GEIM800103

Table 5.3: Selected AAindex entries for 𝑄2 as the scoring function.

32

Redistribution AAindex entries selected based on 𝜌 scoring function
M1 TANS770104, FINA910103, CHOP780213
M2 TANS770103, ROBB760105, CHAM830102
M3 FUKS010104, KUMS000103, AURR980120

Table 5.4: Selected AAindex entries for 𝜌 – Spearman correlation as the scoring function.

Figure 5.2: Graph produced by the tool while testing the 𝑄2 model of mutational dataset
M1.

5.2.3 Model performance on the family dataset

In this case, the process is more complicated since the input to the predictor is an aligned
sequence. For the training data, the alignment was done using the multiple sequence
alignment of the whole training set. However, to align the test set and any other sequences
to use with the model, the co-alignment of the new sequence to the original sequences
from the training set is necessary. The co-alignment process, however, introduces some
constraints on the data that can be used with this type of model. First, the maximum
length of the sequence is constrained to the length of the aligned training sequences, but
for a good fit, it should be even shorter to account for the gaps in the alignment. Second,
the co-alignment process might result in some amino acids being excluded form the data,
and then it is necessary for the user to consider whether the remaining subsequence is still
representative of the initial protein sequence.

Multiple data splits were made with different properties in mind. The first one (F1) is
a random redistribution. F2 was created by evenly distributing the total activity between
training set and test set, such that the test set has 6 datapoints and F3 was very similar
with test set having 8 datapoints.

The results can be seen in Table 5.5. All the redistributions perform poorly for the 𝑄2

scoring function, with the M1 even having negative test score. But the Spearman correlation

33

Redistribution Training set Test set Training set Test set
𝑄2 𝑅2 𝜌 𝜌

F1 0.59 -158.87 0.94 0.76
F2 0.37 0.16 0.61 0.77
F3 0.65 0.51 0.88 0.64

Table 5.5: Model scores for the family dataset redistributions for models trained using both
scoring functions. F1 dataset is randomly redistributed and F2 and F3 are based on even
representation of label values between training set and test set with different ratios (26:6
and 24:8).

Redistribution AAindex entries selected based on 𝑄2 scoring function
F1 GEOR030103, RICJ880109, LEVM780102
F2 FUKS010108, WILM950102, ARGP820103
F3 VINM940104

Table 5.6: AAindex entries selected for the redistributions trained using 𝑄2 as the scoring
function for the family dataset.

performs well in all the cases for the training set and for the test set and it shows great
promise in ranking other sequences or mutations.

The indices that were selected for the 𝑄2 (see Table 5.6) and have the most contribu-
tion to the prediction describe Linker propensity in the case of F1 and interior composition
of amino acids in nuclear proteins for F2. For F3 dataset the result is more interesting
because even though up to three AAindices were combined, model created with only one
of them performed better than the three together. The property that it represents is nor-
malized flexibility parameters for each residue surrounded by two rigid neighbours. Indices
selected for Spearman coefficient (see Table 5.7) describe normalized frequency of beta
sheets, transfer free energy, and flexibility parameter for one rigid neighbour for F1, F2 and
F3 respectively.

5.3 Statistical significance testing
The innov’SAR method uses a combinatorial approach to maximize the scoring function.
However, this might bring an unintentional bias, since thousands of models are being trained
in rather random environment, and the best ones are selected. Thus, we performed the
testing of statistical significance to verify that the results obtained using this combinatorial
approach did not appear randomly, and there was an actual relationship between the labels
and the features.

There are two groups of statistical testing methods with their own strengths and weak-
nesses. The first group is based on resampling techniques such as permutation or boot-
strapping. Here, the goal of testing is to check whether the model, in fact, captures the
codependency of labels and features, or whether random reshuffling can yield similar results.
However, it assumes that the dataset at hand approximates the underlying distribution of
the data, which might not be the case with small datasets. The second group of meth-

34

Redistribution AAindex entries selected based on 𝜌 scoring function
F1 PALJ810111, CHOP780211, BUNA790103
F2 SIMZ760101, CHOP780205, WILM950104
F3 KARP850102, OOBM770104, RACS820111

Table 5.7: Selected AAindex entries for 𝜌 – Spearman correlation as the scoring function
for the family dataset.

Figure 5.3: Graph produced by the tool while testing the 𝑄2 model for family dataset F3.

ods is based on Monte Carlo simulations, where the underlying distribution of the data is
approximated, and then synthetic datasets are sampled from the approximate distribution.

To compute the validation within a reasonable amount of time the services of Metacen-
trum were used. The job for computation was submitted for 16 cores and 10GB of memory,
from which only 500MB were used. The wall time for running of 500 models was from 14
to 18 hours. Multiple of these simulation runs were performed, each of roughly 500 models.

5.3.1 Permutation testing

In permutation testing, the goal is to test the statistical significance of the score that was
obtained for the training data. This is done by shuffling the labels between the entries
and retraining using the innov’SAR method many times. The process is illustrated in the
Figure 5.4. The goal is to check whether the performance of the model is compromised by
the random reshuffling of the labels. The results then show whether the particular value of
𝑄2 or any other scoring function was due to correctly identified relationship between labels
and corresponding sequence features or it was simply by chance.

The permutation testing was run at least 500 times. The results can be seen in the
Figure 5.5, and they show good statistical significance of the method, due to most of the
points lying left and under the red lines, which mark the model trained on the original
data.

35

Figure 5.4: Graph showing the process of permutation testing.

Figure 5.5: The dependency between two different scoring functions for the permutation
testing. The red lines indicate the scores of the model for the original data. To verify the
statistical significance of the model, most or ideally all other scores should be lower than
those of the original model. In this case there are some points (2.6% of all points) above the
red line, which means that some models have better scores than the original one, but most
of them have lower scores, which means that the original model is statistically significant.

5.3.2 Monte Carlo simulations – Random sampling

The random sampling method is more complicated than the permutation testing. Here,
a simple statistical model for each variable and label in the training set is build, and

36

a sample from the resulting independent distributions is drawn multiple times. The method,
therefore, generates its own sequences and corresponding labels. An independent discreet
distribution model was chosen for each position in the sequence based on the frequency
of each amino acid. These models were then used to sample synthetic sequences that
statistically represent the training set as is illustrated in Figure 5.6. For the process of
generating labels, the normal distribution model is fitted to the training set labels and used
to generate the new artificial labels.

Figure 5.6: Graph showing the process of random sampling. First, for each position in
the sequence an even distribution model is fitted and then for the labels an exponential
distribution model is fitted. Finally, artificial sequences and labels are build using these
models and the innov’SAR method is run repeatedly, while measuring scores.

The results can be seen in Figure 5.7, where, again, most of the results are located
below and on the left of the original model, suggesting that the method has good statistical
significance.

37

Figure 5.7: The dependency between two different scoring functions for the random sam-
pling method. The red lines indicate the scores of the model for the original data. To
verify the statistical significance of the model, most or ideally all other scores should be
lower than those of the original model. In this case, there are only three points (0.6% of
all points) to the right of the red line that represents models with better Spearman scores,
but all other models have lower scores, which means that the performance on the original
dataset is unlikely to be by chance.

38

Chapter 6

Conclusion

The innov’SAR algorithm was implemented and included in an easy-to-use platform suitable
for creating a variety of models of protein properties. The models are based solely on
protein sequences, not requiring any structural information, which is sometimes hard or
even impossible to obtain. This allows the platform to be applied to almost all known
protein sequences and protein families. The platform is not bound to any particular protein
property, and the user is able to create models for any real-valued features, such as the
enzyme activity, thermal stability, solubility, etc.

Apart from the implementation of the innov’SAR method, the possible application was
extended to protein families or proteins that have similar primary structures. The testing
and prediction is also provided as a part of the platform to easily verify and score the
created models. Performance improvement of the algorithm was also introduced in terms
of caching and parallelization. The model created by the platform is portable and contains
all the information required for testing and prediction.

It is important to keep in mind that the PLS algorithm creates a linear model, which
can lead to severe data underfitting in cases where linear dependencies cannot be found.
This is the price for hard-to-overfit algorithm, only sequence-based input data, and the
possibility to train on small datasets.

To further improve the platform in the future, a graphical interface can be created
for easier interaction and data analysis. Improvement in the algorithm can be done by
using not only protein spectra, but also general protein embeddings provided by the neural
networks pre-trained on large sequence databases, which have already proven to capture
a great amount of important information from sequences. In terms of real-world testing, the
models that were produced during testing can be used on new sequence libraries to select
a few best performing candidates for experimental validation. These will be synthesized
and measured in the lab to see if the models have really captured the dependencies and
can be applied to unknown proteins. The future work can also include the integration with
other tools to improve existing pipelines and support for multiple standardized input file
formats, such as alignments and FASTA files.

An interesting discovery was that the independent testing scores might be negative even
if the 𝑄2 scores are relatively high, which points to a conclusion that such models cannot be
trusted. However, in the original innov’SAR publication the only scores that are provided
are the 𝑄2 scores without any independent testing scores.

39

Bibliography

[1] Beginners guide – MetaCentrum. February 2022. [Online; accessed 25. Apr. 2022].
Available at: https://wiki.metacentrum.cz/wiki/Beginners_guide.

[2] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. et al. Molecular
Biology of the Cell. New York, NY, USA: Garland Science, 2002. ISBN
978-0-8153-3218. Available at: https://www.ncbi.nlm.nih.gov/books/NBK21054.

[3] Anderson, P. Pesticide Exposure Linked to Parkinson’s, Alzheimer’s Disease.
Medscape. Medscape. january 2014. Available at:
https://www.medscape.com/viewarticle/706374.

[4] Brems, M. A One-Stop Shop for Principal Component Analysis - Towards Data
Science. Medium. Towards Data Science. Dec 2019. Available at:
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-
analysis-5582fb7e0a9c.

[5] Cadet, F., Fontaine, N., Li, G., Sanchis, J., Ng Fuk Chong, M. et al. A
machine learning approach for reliable prediction of amino acid interactions and its
application in the directed evolution of enantioselective enzymes. Sci. Rep. Nature
Publishing Group. Nov 2018, vol. 8, no. 16757, p. 1–15. DOI:
10.1038/s41598-018-35033-y. ISSN 2045-2322.

[6] Cadet, F., Fontaine, N., Vetrivel, I., Chong, M. N. F., Savriama, O. et al.
Application of fourier transform and proteochemometrics principles to protein
engineering. BMC Bioinf. BioMed Central. Dec 2018, vol. 19, no. 1, p. 1–11. DOI:
10.1186/s12859-018-2407-8. ISSN 1471-2105.

[7] Ferruz, N. and Höcker, B. Towards Controllable Protein design with Conditional
Transformers. ArXiv. january 2022. DOI: 10.48550/arXiv.2201.07338.

[8] Hasic, H., Buza, E. and Akagic, A. A hybrid method for prediction of protein
secondary structure based on multiple artificial neural networks. In: 2017 40th
International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). 2017, p. 1195–1200. DOI:
10.23919/MIPRO.2017.7973605.

[9] Heckmann, C. M. and Paradisi, F. Looking Back: A Short History of the
Discovery of Enzymes and How They Became Powerful Chemical Tools.
ChemCatChem. John Wiley & Sons, Ltd. december 2020, vol. 12, no. 24,
p. 6082–6102. DOI: 10.1002/cctc.202001107. ISSN 1867-3880.

40

https://wiki.metacentrum.cz/wiki/Beginners_guide
https://www.ncbi.nlm.nih.gov/books/NBK21054
https://www.medscape.com/viewarticle/706374
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

[10] Hon, J., Borko, S., Stourac, J., Prokop, Z., Zendulka, J. et al. EnzymeMiner:
automated mining of soluble enzymes with diverse structures, catalytic properties
and stabilities. Nucleic Acids Res. Oxford Academic. july 2020, vol. 48, W1,
p. W104–W109. DOI: 10.1093/nar/gkaa372. ISSN 0305-1048.

[11] Hon, J., Borko, S., Stourac, J., Prokop, Z., Zendulka, J. et al. EnzymeMiner:
automated mining of soluble enzymes with diverse structures, catalytic properties
and stabilities. Nucleic Acids Res. Oxford Academic. Jul 2020, vol. 48, W1,
p. W104–W109. DOI: 10.1093/nar/gkaa372. ISSN 0305-1048.

[12] Inan, T. Y., Al Hajji, A. and Koseoglu, O. R. Chemometrics-Based Analytical
Method Using FTIR Spectroscopic Data To Predict Diesel and Diesel/Diesel Blend
Properties. Energy Fuels. American Chemical Society. july 2016, vol. 30, no. 7,
p. 5525–5536. DOI: 10.1021/acs.energyfuels.6b00731. ISSN 0887-0624.

[13] Jones, C. Another Nobel Prize for Catalysis: Frances Arnold in 2018. ACS Catal.
American Chemical Society. november 2018, vol. 8, no. 11, p. 10913. DOI:
10.1021/acscatal.8b04266.

[14] Jones, R. W., Meglen, R. R., Hames, B. R. and McClelland, J. F. Chemical
Analysis of Wood Chips in Motion Using Thermal-Emission Mid-Infrared
Spectroscopy with Projection to Latent Structures Regression. Anal. Chem.
American Chemical Society. january 2002, vol. 74, no. 2, p. 453–457. DOI:
10.1021/ac0106445. ISSN 0003-2700.

[15] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M. et al. Highly
accurate protein structure prediction with AlphaFold. Nature. Nature Publishing
Group. august 2021, vol. 596, no. 7873, p. 583–589. DOI:
10.1038/s41586-021-03819-2. ISSN 1476-4687.

[16] Lever, J., Krzywinski, M. and Altman, N. Principal component analysis. Nat.
Methods. Nature Publishing Group. Jun 2017, vol. 14, no. 7, p. 641–642. DOI:
10.1038/nmeth.4346. ISSN 1548-7105.

[17] Lu, H., Diaz, D. J., Czarnecki, N. J., Zhu, C., Kim, W. et al. Machine
learning-aided engineering of hydrolases for PET depolymerization. Nature. Nature
Publishing Group. april 2022, vol. 604, no. 7907, p. 662–667. DOI:
10.1038/s41586-022-04599-z. ISSN 1476-4687.

[18] Mazurenko, S., Prokop, Z. and Damborsky, J. Machine Learning in Enzyme
Engineering. ACS Catal. American Chemical Society. january 2020, vol. 10, no. 2,
p. 1210–1223. DOI: 10.1021/acscatal.9b04321.

[19] Myers, J. and Well, A. Research Design and Statistical Analysis. Lawrence
Erlbaum Associates, 2003. 503 p. Research Design and Statistical Analysis. ISBN
9780805840377.

[20] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B. et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011, vol. 12, p. 2825–2830.

41

[21] Planas Iglesias, J., Marques, S. M., Pinto, G. P., Musil, M., Stourac, J.
et al. Computational design of enzymes for biotechnological applications. Biotechnol.
Adv. Elsevier. march 2021, vol. 47, p. 107696. DOI:
10.1016/j.biotechadv.2021.107696. ISSN 0734-9750.

[22] Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X. et al. Evaluating
Protein Transfer Learning with TAPE. ArXiv. Jun 2019.

[23] Robinson, S. L., Smith, M. D., Richman, J. E., Aukema, K. G. and Wackett,
L. P. Machine learning-based prediction of activity and substrate specificity for OleA
enzymes in the thiolase superfamily. Synth. Biol. Oxford Academic. Jan 2020, vol. 5,
no. 1. DOI: 10.1093/synbio/ysaa004. ISSN 2397-7000.

[24] Samuel, A. L. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development. 1959, vol. 3, no. 3, p. 210–229. DOI:
10.1147/rd.33.0210.

[25] The UniProt Consortium. UniProt: the universal protein knowledgebase.
Nucleic Acids Res. Oxford Academic. january 2017, vol. 45, D1, p. D158–D169. DOI:
10.1093/nar/gkw1099. ISSN 0305-1048.

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
Is All You Need. ArXiv. june 2017. DOI: 10.48550/arXiv.1706.03762.

[27] Weng, L. and Spoonamore, J. E. Droplet Microfluidics-Enabled High-Throughput
Screening for Protein Engineering. Micromachines. 2019, vol. 10, no. 11. DOI:
10.3390/mi10110734. ISSN 2072-666X.

[28] Wold, S., Sjöström, M. and Eriksson, L. PLS-regression: a basic tool of
chemometrics. Chemom. Intell. Lab. Syst. Elsevier. Oct 2001, vol. 58, no. 2,
p. 109–130. DOI: 10.1016/S0169-7439(01)00155-1. ISSN 0169-7439.

[29] Yang, M., Fehl, C., Lees, K. V., Lim, E.-K., Offen, W. A. et al. Functional and
informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol.
Nature Publishing Group. Dec 2018, vol. 14, no. 12, p. 1109–1117. DOI:
10.1038/s41589-018-0154-9. ISSN 1552-4469.

42

Appendix A

Contents of the included storage
media

/
tool/.......................Platform implementation

src/.....................Source code files
tool.py Main script for executing the platform

requirements.txt.......List of python dependencies that can be used with pip
tool

README.md...............User documentation for installing dependencies and
tool use

data/.......................Used datasets and redistributions in subfolders
models/ Model files created from the datasets
thesis_latex/..............LATEX source files for this thesis
thesis.pdf.................This thesis in PDF format

43

Appendix B

File formats

All the files are in the csv format where the columns are separated by a colon.

Sequence name Protein sequence Label value
DthA ———MATDRGLEISSAFPFE... -0.2735666958450363
DthB ———MAYDSSQLISAEFPFK... -0.07102124804808232
DchA ————MAVFDEISSDFPFE... -0.1482152816186778

...

Table B.1: File format of the family input file.

Mutant name List of mutations Label value Method
100 I136L;V184E;V197E 51.5 CD
100 I136L;V184E;V197E 48.5 DSC
101 E20S;F80R;A155P 56.9 CD
...

Table B.2: File format of the mutants input file. The last column Method is optional.

44

	Introduction
	Summary of the current state
	Proteins
	Protein engineering

	Machine learning
	AAindex

	Partial least squares – PLS
	Fourier transform

	Related work
	Innov'SAR method

	Algorithms and implementation
	Partial least squares – PLS
	Scoring functions
	Workflow
	Implementation details
	Complexity estimates
	Parallelization
	MetaCentrum

	Testing
	Benchmark datasets
	Independent testing
	Baseline
	Model performance on the mutational dataset
	Model performance on the family dataset

	Statistical significance testing
	Permutation testing
	Monte Carlo simulations – Random sampling

	Conclusion
	Bibliography
	Contents of the included storage media
	File formats

