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Abstract
This thesis deals with the topic of multi-object multi-sensor tracking. A conventional track-
oriented multiple hypothesis tracking (TOMHT) pipeline is implemented in C++ program-
ming language and an implementable interface is designed, enabling to easily extend the
core algorithm with arbitrary sensors and measured target attributes, making the system
multimodal, i.e. applicable in heterogeneous systems of sensors. A novel algorithm for
solving combinatorial optimization arising in TOMHT is proposed. Finally, few example
implementations of the interface are provided and the system is evaluated in simulated and
real-world scenarios.

Abstrakt
Tato práce se zabývá tématem multi-objektového multi-senzorového sledování. V pro-
gramovacím jazyce C++ je implementován konvenční řetězec pro track-oriented multiple
hypothesis tracking (TOMHT) a je navrženo implementovatelné rozhraní, které umožňuje
snadno rozšířit základní algoritmus o libovolné senzory a měřené cílové atributy, čímž se sys-
tém stává multimodálním, tj. použitelným v heterogenních systémech senzorů. Je navržen
nový algoritmus pro řešení kombinatorické optimalizace vznikající v TOMHT. Nakonec je
poskytnuto několik příkladů implementace rozhraní a systém je vyhodnocen v simulovaných
a reálných scénářích.
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Chapter 1

Introduction

In the area of intelligent systems, the (multiple) object tracking is a well known but non-
trivial task. The goal of object tracking system is to maintain the identity of physical target
throughout the time, while its location is a subject to change. Also, in general, the tracker
is not given any prior information about the number of targets in the scene, which is usually
a function of time anyway, thus it is responsible for determining this as well. Although the
target detection is a standalone task, it is sometimes viewed as a part of the tracking system.
However, the core component of the tracker is an algorithm, which is able to solve the data
association problem, arising from the task of object tracking. This data association problem
has often a combinatorial character, since in general case of multiple targets in the scene,
globally optimal solutions are strongly preferred. Beyond the essential properties such as
position and velocity, determination of other attributes of the target object sometimes takes
the place (e.g. class of the object). While the fundamental theory as well as the first software
solutions dates back to the early years of the second half of 20th century, there seems to be
a recent ascend of the multi-object tracking applications. Beyond the classical applications
such as military (e.g. missile defense), scientific (e.g. tracking the atmospheric phenomena),
medical imaging (e.g. movement of proliferating cells), more ordinary applications are on
the rise, such as face tracking or augmented reality. An interesting modern application of
multi-object tracking in particular, is e.g. realtime traffic analysis1, in which tracking of
traffic objects using advanced sensors such as digital cameras or radars, instead of a simple
induction coil in the road, can significantly help with adaptive traffic control.

In the following chapters, I provide an overview of basic theoretical background, meth-
ods, algorithms, and finally I propose a new multimodal system for multi-object tracking
designed to be a general template rather than a specific implementation. The thesis is
structured as follows. In chapter 2, general theory and a slightly more involved introduc-
tion to the object tracking task is given. The traditional approaches and methods are
described, which even though being developed decades ago, have no newer alternatives that
could be considered undoubtedly better and the fundamental theory in the area could be
labeled as “mature”. In chapter 3, I describe some examples of sensors that are usually
used to provide an information about the outer world to the tracking system, including not
only physical sensors but the preprocessing software as well. Because the modern object
tracking is highly involved in the area of computer vision and many tracking algorithms
focusing on the image data have been developed, chapter 4 will present some of those vi-
sual trackers. In chapter 5, I discuss the motivation, inspiration, overall design, and an

1https://datafromsky.com
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implementable interface of the proposed multimodal multi-sensor tracking system. The im-
plementable interface is designed to enable extending the core tracking engine for arbitrary
input sensors and measured attributes, by implementing all the necessary operations and
probabilistic equations. The tracking engine solves the data association problem following
the theory in chapter 2, is fixed but configurable, and provides explicit mathematical guar-
antees about the solutions given that the input data and all the statistics associated with
them are correct. In chapter 6, I describe in more detail the algorithm I’ve constructed
for solving the combinatorial optimization. An algorithm builds on the previous work in
various areas, but can be considered a novel approach in the area of multi-object tracking.
Then, few particular implementations of the interface that I’ve programmed are described.
Finally, in chapter 7, an evaluation of the tracking system is given. First, the system is
evaluated in simulations, which provide an idealistic scenario when the probabilistic models
are known exactly and the only source of error should be the uncertainty inherent to the
observations. I show that with an increasing size of the temporal context in which mul-
tiple hypotheses are considered (MHT paradigm, see chapter 2), and with an increasing
number of sensors, the overall performance of the tracker grows consistently. Then, it is
shown that the single-sensor implementation of the proposed system exhibits a state-of-the-
art performance in the realm of realtime pedestrian tracking on the real-world data from
MOT Challenge 2020 benchmark2. Finally, I do show a multi-camera implementation em-
ploying appearance embeddings from a neural network, tracking through up to 4 cameras
simultaneously on example videos from a road junction monitoring system. Although I was
not provided with the ground-truth, I’ve implemented a visualization application, where
the trajectories are projected from the physical plane back to the image plane of selected
camera, and a visual evaluation is possible.

2https://motchallenge.net/data/MOT20/
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Chapter 2

Basics of Object Tracking

In this chapter, I provide a more detailed introduction into the object tracking in general.
It is focused on the tracking in general, therefore details about the sensing and detection
are omitted. Discussion about this is provided in chapter 3. Here, I will refer to the output
of the two steps universally as an observation. These observations may be collected in
different ways w.r.t. time, they may be measured in a regular intervals, or they may occur
irregularly. I will follow the terminology from the literature [15], where the term “scan” is
usually used for the set of observations present concurrently at some point in time. The
object tracking task can be further divided into the narrow single object tracking (SOT) and
the general multiple object tracking (MOT). Although it seems that there is an inclusive
relationship between the two, it is incorrect. It is possible to decompose the MOT problem
into multiple instances of SOT, but the global optimality of MOT is lost this way. Another
drawback is that while the solutions for SOT can be quite robust (especially in visual
trackers described in chapter 4), it is typically because all the computational resources
are allocated for tracking only single object, instead of tens or hundreds in case of MOT.
Therefore, the realtime performance is out of the reach for many such approaches. In the
rest of this chapter, I will focus on a more general and more challenging MOT problem.

2.1 Conventional Pipeline
At every measurement scan from the sensor(s), each input observation is considered for in-
clusion in existing tracks, for initiation of the new track, or as a false alarm. The candidate
observations for the true target are usually selected within its validation gate. This gate
is a region in some measurement space (e.g. 3D position) around the expected true target
location, within which the observations of it are admissible. Thus, it is chosen such that
the probability of observing the true target outside this region is sufficiently low. This step
may, given an accurate model, highly reduce the overall computational requirements of the
system. After the candidate observations are assembled for each hypothesis, a data associa-
tion conflicts are likely to occur and has to be solved. Closer look at those conflicts and their
solutions as an essential part of a tracking system is provided in section 2.3. After the con-
flict situations are resolved (this solution may be deferred, as is described in section 2.4) by
finding the best (ideally global) assignment, the track maintenance takes the place. In this
step, new tracks are initiated from the unassigned observations, previously initiated targets
may be confirmed, and targets which are likely to be not present anymore are deleted. It is
a good practice to mark newly initiated tracks as tentative and confirm them after there is
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enough evidence that those are actually targets and not just false alarms. A naive but good
approach is to confirm a new target identity after 𝑁 consecutive updates. Same goes for
the deletion by choosing a proper time-to-live value. In specific applications however, the
number of targets may be fixed and apriori known (e.g. tracking of football players). After
the maintenance step, the filtering and prediction steps follow. Those two steps can highly
improve the tracking accuracy and can be crucial in order to overcome missing observations
and/or low measurement frequency. More detailed description of models used for this step
is provided in section 2.2. The conventional tracking system operation described above can
be summarized in the following steps [9], visualized in the figure 2.1.

Gating Computations

Observation-to-Track
Association

Track Maintenance
(Initiation, Confirmation,

Deletion)

Filtering and Prediction

Input Observations

Figure 2.1: Conventional MOT pipeline

2.2 Motion Filtering and Prediction
In order to provide a good prediction about the expected future true target location, a model
for filtering and prediction has to be employed. The filtering step in can be described
as an informed update of the target location estimate based on its current probability
density function and the observation which is assigned to it. This probability density
typically expresses the likelihood of the observation 𝑧 coming from the given target, which
when maximized, leads to the well-known maximum likelihood estimate (MLE). In practice,
the function used is always just an approximation of the true probability density, due to
theoretical and computational reasons often a very simplistic one. While the filtration step
in this context means a posterior update to the target probability density, the prediction
step on the other hand can be seen as a prior update. The simplest prediction assuming
no model (e.g. random walk) can be used, but in practical tracking scenarios the objects
usually do not move in a Brownian motion style, but rather follow trajectories which could
be predicted more accurately by more informed motion model. Design of the filtration and
prediction model has a huge impact on the performance of the tracking system as a whole
and is typically used in gating computations as well.

2.2.1 Kalman Filters

One of the best-known predictor-corrector models in the area of control theory, tracking,
navigation, etc., is a Kalman filter [44]. The Kalman filter is an optimal Bayesian state
estimator for linear discrete dynamical systems given the premise of Gaussian errors (for
both predictions and measurements). Thanks to this simplification, the optimal estimates
can be obtained by a recursive application of closed form linear algebra equations. The
filtering and prediction for each target-measurement assignment is performed in two steps,
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however both are a closed form equations and thus could be merged together. The prediction
step can be expressed by the equations (2.1, 2.2), where 𝑥𝑘 and 𝑃𝑘 are target location mean
and probability density covariance respectively (𝑥̂𝑘 and 𝑃𝑘 denote the optimal posterior
estimates), 𝐹𝑘 is a transition model and 𝑄𝑘 is a process noise covariance (representing
unknown changes beyond the transition model), all at scan 𝑘:

𝑥𝑘 = 𝐹𝑘 · 𝑥̂𝑘−1 (2.1)
𝑃𝑘 = 𝐹𝑘 · 𝑃𝑘−1 · 𝐹T

𝑘 +𝑄𝑘 (2.2)

In the filtering (or correction) step, the optimal posterior estimate given the observation
is computed, maximizing the joint probability of that observation and the predicted target
location statistics. It is efficiently done following the equations (2.3, 2.4, 2.5, 2.6), where
𝑆𝑘 is the innovation covariance (expressing the likelihood of the observations), 𝐾𝑘 is called
Kalman gain, 𝑧𝑘 is the measurement, 𝐻𝑘 maps the state 𝑥𝑘 into the measurement space,
and 𝑅𝑘 is the measurement noise (the error of the sensor), all at scan 𝑘:

𝑆𝑘 = 𝐻𝑘 · 𝑃𝑘 ·𝐻T
𝑘 +𝑅𝑘 (2.3)

𝐾𝑘 = 𝑃𝑘 ·𝐻T
𝑘 · 𝑆−1

𝑘 (2.4)
𝑥̂𝑘 = 𝑥𝑘 +𝐾𝑘 · (𝑧𝑘 −𝐻𝑘 · 𝑥𝑘) (2.5)
𝑃𝑘 = (𝐼 −𝐾𝑘 ·𝐻𝑘) · 𝑃𝑘 (2.6)

From those equations it can be noticed that the Kalman gain defines, loosely speaking,
how strongly the predicted internal state should be updated based on the observation. The
transition and measurement matrices are constructed according to the chosen motion and
observation models. In the context of object tracking, the linear constant velocity model is
usually a good approximation, but it may be quite problematic when targets do undergo
strong maneuvers. One dimensional constant velocity model is defined by (2.7), where 𝑝 is
a position, 𝑡 is time, and 𝑝̇ is position derivative w.r.t. time (velocity):

𝑥 =

[︂
𝑝
𝑝̇

]︂
, 𝐹 =

[︂
1 ∆𝑡
0 1

]︂
, 𝐻 =

[︀
1 0

]︀
(2.7)

A huge practical issue with the Kalman filter is that it is truly optimal only when all the
assumptions hold and the covariances are known exactly. While the measurement noise can
be often derived from the sensor specification, the process noise is frequently set in a trial-
and-error manner and finding a proper setting for a given application is time and resource
consuming. There has been some work done on methods for automatic estimation of those
covariances. For example, in [57] an autocovariance least-squares method which solves
the problem using a convex optimization has been proposed, having a solid mathematical
foundation, but being restricted to covariances constant w.r.t. time. In [1], the adaptive
approach has been introduced, where the covariances are estimated recursively by running
an exponential average of measurement innovations and residuals, i.e. how do observations
deviate from the predictions and how from filtered estimates, respectively. They’ve shown
good results on dynamic state of synchronous machines estimation, but I’ve found their
approach to be prone to divergence in object tracking scenarios due to potentially high
hysteresis. In [3], a Bayesian approach has been proposed, where the distributions of
both the state and parameters (the covariances) are calculated and the family of those
parameter-dependent Kalman filters is referred to as a Field Kalman Filter (FKF). There
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are also adaptive approaches, where the covariances are set dynamically based on the motion
model. One popular example is a random acceleration model [65], where the process noise
covariance 𝑄𝑘 is estimated using the assumption of a random acceleration of the target
object with variance 𝜎𝑎. Thus, the acceleration occurs randomly during each discrete step,
which leads to a linear change in velocity and quadratic change in position (due to the
integration) during this step. In a one dimensional case, this yields the expression (2.8) for
𝑄𝑘:

𝑄𝑘 = 𝜎2𝑎 ·

⎡⎣1
2∆𝑡2

∆𝑡

⎤⎦ · [︁1
2∆𝑡2 ∆𝑡

]︁
= 𝜎2𝑎 ·

⎡⎣1
4∆𝑡4 1

2∆𝑡3

1
2∆𝑡3 ∆𝑡2

⎤⎦ (2.8)

It is a common technique to condition the value of 𝜎𝑎 on some heuristic, e.g. velocity
of the object. Again, this can suffer from hysteresis. Despite those (and more) methods
being available, the optimal decision of the Kalman filter covariances is still a challenging
problem. However, because of the algebraic nature of the Kalman filter equation(s), it is
not necessary to know their values - the ratio of the covariances is sufficient to define the
result. Therefore, one can just experiment with his believes about this ratio rather than
trying to find out the exact values, if the actual probability density function values are not
required later on.

The linearity condition can be limiting, as many dynamical systems are non-linear. If
Gaussian errors premise is still reasonable, the Kalman filter can be easily extended by
the 1st order Taylor expansion around the current state estimate, i.e. local linearization.
This extension is known under the abbreviation EKF [22]. Although the transition and
measurement mappings 𝑓 and ℎ cannot be performed by matrix multiplication anymore, the
equations for 𝑥𝑘, 𝑃𝑘 and 𝐾𝑘 are preserved and the Jacobian matrices of partial derivatives
of 𝑓 and ℎ are used as 𝐹 and 𝐻 matrices. More precisely, the following matrices has to
be computed and evaluated (2.9), where 𝑛 is a hidden state dimensionality and 𝑚 is a
measurement dimensionality:

𝐹𝑘 =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛

... . . . ...

𝜕𝑓𝑛
𝜕𝑥1

· · · 𝜕𝑓𝑛
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦ , 𝐻𝑘 =

⎡⎢⎢⎢⎢⎢⎣
𝜕ℎ1
𝜕𝑥1

· · · 𝜕ℎ1
𝜕𝑥𝑛

... . . . ...

𝜕ℎ𝑚
𝜕𝑥1

· · · 𝜕ℎ𝑚
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦ (2.9)

Another way of extending the Kalman filter, even for a non-Gaussian uncertainty statis-
tics, is known as unscented Kalman filter [41] (UKF). In this approach, no linearization is
required. The basic idea is to use a set of 𝜎-points, for which the sample mean and sample
covariance are equal to 𝑥𝑘 and 𝑃𝑘, respectively. These points can then be transformed with
a non-linear mapping and the statistics can be re-estimated. It is important to note that
even though the distribution does not have to be Gaussian, the mean and the covariance
have to be sufficient statistics for it in order to achieve good estimates. This method differs
from the Monte-Carlo type methods in the way that the 𝜎-points are not drawn randomly,
but according to a deterministic algorithm. The UKF outperforms EKF in highly non-linear
systems, but for the cost of increased computational complexity.

2.2.2 Particle Filters

Particle filters [32] are a nonlinear and non-Gaussian alternative to Kalman filtering (and
a generalization of the UKF). The particle filters are especially popular in SLAM (simulta-
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neous localization and mapping) problems and robotics [55], and have found their way into
the single object tracking as well, but they are not very used in multiple object tracking,
mostly due to their huge computational complexity. Despite this drawback, particle filters
are a powerful concept with considerable potential for object tracking. The general idea
behind the particle filters is to use 𝑁 random realizations called particles, to approximate
an arbitrary probability distribution. As 𝑁 →∞, the approximation is theoretically exact.
The prediction step is performed for each particle denoted by 𝑖 = {1, . . . , 𝑁} according to
the (possibly non-linear) transition function (2.10), where 𝑤𝑖,𝑘 is a sample drawn from the
process noise probability density function:

𝑥−𝑖,𝑘+1 = 𝑓𝑘

(︁
𝑥+𝑖,𝑘, 𝑤𝑖,𝑘

)︁
(2.10)

Then, in the filtering step, the discrete probability mass function 𝑞 (2.11) is evaluated
for all the particles, where 𝑧𝑘 is an observation from the scan 𝑘:

𝑞𝑖 =
𝑝
(︁
𝑧𝑘 |𝑥−𝑖,𝑘

)︁
∑︀𝑁

𝑗=1 𝑝
(︁
𝑧𝑘 |𝑥−𝑗,𝑘

)︁ (2.11)

The posterior particles 𝑥+𝑖,𝑘 are obtained by resampling the prior particles according to
𝑞, i.e. their importance. A successful application of the particle filter for SOT in video
sequences can be found for example in [54].

2.2.3 Recurrent Neural Networks

A different approach to the filtering and prediction step is a recurrent neural network [20],
which employs machine learning and learns to perform both filtering and prediction jointly.
There is a strong parallel between recurrent neural networks and the Bayesian filters such
as Kalman or particle filter, because they both recursively estimate a hidden state ℎ𝑘, and
an output state 𝑦𝑘 based on their input 𝑥𝑘 at the current discrete time 𝑘 (may be scan in
the case of object tracking). The key difference is that while the Bayesian filters do require
an explicit model (usually designed by engineers), and they require explicit probability
density functions for both prediction (prior) and filtering (posterior), the neural networks
do not. They instead require a dataset of training data (the larger, the better) consisting
of pairs of ground-truth locations and corresponding (noisy) observations. The recurrent
neural network parameters are then optimized by the gradient descent method (or some
improved version of it) in order to minimize a regression loss function, which is usually the
mean squared error of the residuals.

In [33], the direct comparison of Kalman filter and LSTM based recurrent neural network
has shown a superior performance of the LSTM both on a toy example and the main goal,
which was facial landmarks localization and tracking. Despite this and other papers showing
great results for the neural network based time series filters, it is not true that they can
replace the Bayesian filters. Those two are a distinct approaches, both having their strong
and their weak sides. The main downside of a recurrent neural network is that is it a black
box. It is just a sequence of linear transformations interleaved with non-linearities, which
are optimized to minimize the error on the training data. But there are usually a very
few theoretical justifications and guarantees (if any) behind their architectures. The lack of
interpretability makes them prone to unexpected behavior on situations not captured in the
training set and also to be computationally inefficient due to possibly redundant parameters.
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On the other hand, the Bayesian models have a very strong mathematical foundation and
are directly interpretable. I suppose that a conjunction of those two paradigms may be an
interesting future direction.

2.2.4 Interacting Multiple Model

Models mentioned above have one disadvantage - a single transition function for prediction.
In object tracking (especially for ground targets), the complex and hardly predictable ma-
neuvers do occur, and thus it is very complex (if even possible) to construct a transition
function capable of accurately modeling all the possible patterns of motion. Interacting
multiple models or IMM [29, 9] is an interesting way to tackle this challenge. Even in such
scenarios, a simple motion model such as constant velocity Kalman filter (CEKF) may be
an efficient approximation of the true dynamics during some interval in time, however, at
some point a rapid maneuver may occur (object takes a sharp turn, decelerates too fast,
etc.), which can lead to poor performance or even divergence of the filter. IMM solves this
problem by running multiple filters in parallel, each designed and fine-tuned for a different
motion pattern, e.g. a triplet of a constant velocity, constant acceleration and constant-
speed turn models. Each model has its probability of being “the correct one”, which is
expressed by the probability vector 𝜇. Each model is first updated using the standard
Kalman equations (section 2.2.1). Then, the mixed state for 𝑗-th model is computed by
equations (2.12, 2.13, 2.14), where 𝜋𝑖,𝑗 is the prior probability of the transition from state
𝑖 to state 𝑗, all at scan 𝑘:

𝜇𝑖,𝑗𝑘 =
1

𝑐
· 𝜋𝑖,𝑗 · 𝜇̂𝑖𝑘−1 (2.12)

𝑥̂0𝑗𝑘 =
𝑁∑︁
𝑖=1

𝜇𝑖,𝑗𝑘 · 𝑥̂
𝑖
𝑘 (2.13)

𝑃 0𝑗
𝑘 =

𝑁∑︁
𝑖=1

𝜇𝑖,𝑗𝑘 ·
[︂
𝑃 𝑖
𝑘 +

(︁
𝑥̂𝑖𝑘 − 𝑥̂

0𝑗
𝑘

)︁
·
(︁
𝑥̂𝑖𝑘 − 𝑥̂

0𝑗
𝑘

)︁T]︂
(2.14)

The posterior models probabilities 𝜇̂𝑖𝑘 are then updated and plugged into the equa-
tions (2.13, 2.14) instead of term 𝜇𝑖,𝑗𝑘 (omitting the superscript 0𝑗), to compute the com-
bined state of the IMM as a whole. Values of 𝜇̂𝑖𝑘 are updated simply to be proportional to
the likelihoods of the observation 𝑧𝑘 given individual models, which can be written by the
equation (2.15), where 𝑆0𝑖

𝑘 is the innovation covariance, as is expressed in equation (2.3)
from section 2.2.1, but using the mixed states 𝑥0𝑖𝑘 and 𝑃 0𝑖

𝑘 :

𝜇̂𝑖𝑘 =
1

𝑐
𝒩
(︀
𝑧𝑘 |𝑥0𝑖𝑘 , 𝑆0𝑖

𝑘

)︀
(2.15)

2.3 Data Association
The most important part of any multi-object tracking algorithm is the data association
step. In this step, the measured observations at scan 𝑘 are assigned to the (possibly new)
targets, or discarded as false alarms. Also, observations for a confirmed existing target can
be missing due to the sensor or detector failure, or due to the occlusion. Observations are
also subject to measurement error. A tracking system is expected to perform the (near)
optimal decisions, given such fuzzy information about the outer world. Therefore, it should
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guarantee that, given perfect statistical models of all the uncertainties, the most likely
solution is chosen. The problem is not very hard, when for every target, there is only
one observation within its validation gate, or when there is only single target. When the
observation falls into the validation gate of more than one target, or when there is more
than one observation within the validation gate of a single target, the problem complexity
increases dramatically. Mentioned situations are illustrated in the figure 2.2, where the red
dots represent observations and circles illustrate the validation gates.

t2 t1

g2

g1

(a) One observation vs. many tracks

t2 t1

g2

g1

(b) Many observations vs. one track

Figure 2.2: Data association problems illustration

In order to find the optimal data association, given the probabilistic models, a simpli-
fying assumptions are further made. More precisely, the common premise along traditional
tracking algorithms is that single observations can not origin from more than one target,
where a false alarm is usually viewed, for better theoretical consistency, as a special target
as well. Often, even more strict assumption is made, that there is at most one observation
per target (e.g. GNN in section 2.3.1).

2.3.1 Global Nearest Neighbors

Given a scoring metric (e.g. appearance similarity, geometric affinity, or statistics from the
motion filter), the problem can be stated as a linear assignment problem. This approach
is traditionally called global nearest neighbors (GNN). The linear assignment problem is
a classical combinatorial optimization problem. The goal is to find the set of edges in a
biparite graph with weighted edges, such that the sum of all the weights is being minimized.
The two disjoint sets of the biparite graph are in this case the set of 𝑁 targets present during
the scan 𝑘− 1, and the set of 𝑀 observations from the scan 𝑘. Weights are the association
scores and if those scores are negative log-likelihoods of the respective assignments, then the
sum minimization is in fact maximization of the joint probability of the assignments, i.e.
maximum likelihood estimate. The linear assignment problem happens to be a special case
of the max-flow problem, which can be solved by Ford-Fulkerson algorithm [25]. Although
the max-flow problem is NP-hard, a Kuhn-Munkres algorithm [47], sometimes referred to as
a Hungarian algorithm, has been derived and mathematically shown to solve the problem in
𝑂
(︀
𝑛3
)︀

time complexity using 𝑁 ×𝑀 matrix representation 𝐺 of the biparite graph. From
the implementation point of view, the algorithm is relatively simple. It can be summarized
in 4 steps (denoting 𝑖-th row as 𝐺𝑖,* and 𝑗-th column as 𝐺*,𝑗):

1. For 1 ≤ 𝑖 ≤ 𝑁 , subtract min (𝐺𝑖,*) from 𝐺𝑖,*

2. For 1 ≤ 𝑗 ≤𝑀 , subtract min (𝐺*,𝑗) from 𝐺*,𝑗

3. Try to cover all zeros with min (𝑁,𝑀) lines, return solution if successful
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4. Create additional zeros and goto step 3

Steps 1 and 2 are pretty straight forward. In step 3, the covering procedure can be done
by any greedy method. In step 4, creating additional zeros is done by finding the smallest
coefficient not covered by lines in step 3, and subtracting this value from all uncovered
coefficients. Also, it is added to those coefficients, which are covered twice (lines intersect).
If successful, unique combinations of zero coefficients covering min (𝑁,𝑀) rows and columns
represent the optimal assignment (there can be more equivalent solutions, but not really in
real world situations). Sometimes, other algorithms such as auction algorithm [6], are used
instead.

2.3.2 Joint Probabilistic Data Association

In case of GNN, one can notice that what happens is that the hypothesis that maximizes
the probability of the scan is obtained. However, due to the imperfections in the scoring
metric and as well as the inherent uncertainty in the problem itself, such solution might be
wrong. Other alternative hypotheses should be considered also. In [26], this was addressed
in solving a challenging passive sonar tracking with multiple sensors and targets, in which
targets were not fully observable from a single sensor and there was very high clutter in
the sensors. They have developed the joint probabilistic data association (JPDA) algo-
rithm, which started a whole new paradigm in MOT. The basic idea originates from [4],
where a probabilistic data association has been proposed for SOT. Instead of assigning the
most probable single observation to the target, all observations within its gate are used
to compute an expected observation. The innovation for the filtering step (e.g. Kalman
filter) is aggregated from the measurements 𝑧𝑖,𝑘 within the target validation gate by the
equation (2.16), where 𝛽𝑖 is the probability that the measurement 𝑧𝑖,𝑘 is the correct one (𝛽0
is the probability of missing observation), and 𝑦𝑘 is the predicted prior state:

𝑑𝑘 =
𝑁∑︁
𝑖=1

𝛽𝑖 (𝑧𝑖,𝑘 − 𝑦𝑘) (2.16)

In SOT, for any observation association, the only alternative hypothesis is that all the
other observations are false alarms. In MOT, there can be more alternative hypotheses.
JPDA modifies the basic idea for MOT, by considering all the feasible joint events and
computing the 𝛽𝑖 values as marginal probabilities. The event is feasible if and only if no
more than one observation originates from one target. The probabilistic nature of the
JPDA makes it relatively reasonable to relax the second constraint, i.e. one observation
originates from at most one target. The joint probability for every feasible event can be
evaluated. In [26], the Gaussian distribution was used for the measurement noise. For
false alarms and target births, Poisson distribution in time and uniform distribution in
space were used. However, an arbitrary distributions may be used as well, building on the
same core idea. The value of 𝛽𝑗𝑖 , where 𝑗 denotes the target object, is computed using the
equations (2.17, 2.18), where Ω is the set of all feasible events and 𝜓𝑖,𝑗 (𝜔) returns 1 if the
observation 𝑖 is assigned to the target 𝑗 in 𝜔, otherwise returns 0:

𝛽𝑗𝑖 =
∑︁
𝜔∈Ω

𝑃 (𝜔)𝜓𝑖,𝑗 (𝜔) (2.17)

𝛽𝑗0 = 1−
𝑁∑︁
𝑖=1

𝛽𝑗𝑖 (2.18)
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Despite being a successful method for tracking and has a reasonable theoretical back-
ground, JPDA can suffer from coalescence of objects, i.e. targets that are very close together
for an extended period of time tend to merge together, which is undesired.

2.4 Multiple Hypothesis Tracking
In GNN method (section 2.3.1), the most likely hypothesis is expanded at each scan. The
weak point of this paradigm is that in many situations, it is very uncertain if the most
likely hypothesis given only the past and the present information, is actually correct. In
those difficult to solve scenarios, the tracking system is prone to make wrong decision,
and because it has expanded only one hypothesis, unfortunately the incorrect one, it is
not able to recover from that mistake. In JPDA method (section 2.3.2), this problem is
partially addressed, but only indirectly, in the sense that the information from alternative
hypotheses in the past is indirectly propagated by the current state of the motion filter.
In multiple hypothesis tracking (MHT) paradigm, the solution to the data association step
in the conventional pipeline is deferred as much as possible. All the possible hypotheses
are expanded concurrently and the most likely one is chosen when it is required, e.g. to
provide the user with the results. Therefore, the MHT truly and directly solves the stated
problem. From a theoretical perspective, this formulation yields the exact Bayesian solution
to the tracking problem. From a practical perspective, however, it is not so ideal, due
to the “exponential explosion” of the space of possible hypotheses, which makes MHT
computationally intractable without intensive pruning of the unlikely hypotheses.

2.4.1 Reid’s Algorithm

The first algorithmic approach for multiple hypothesis multi-object tracking with variable
number of targets, the Reid’s algorithm, was proposed in [60]. Algorithm generates a set of
data-association hypotheses for all possible origins of every measurement, thus being now
called “measurement oriented”. The hypothesis generation process can be illustrated by a
tree, e.g. figure 2.3, where each level represents one measurement and there are two targets
which can be assigned to the measurements, denoted by 1 and 2. Nodes 0 represent false
alarms and nodes 3, 4, and 5 represent new identities initiated from the measurements.

0 1 2 3

0 2 4 0 4 0 2 4

0 2 5 0 5 0 2 5

0 2 4

0 2 5 0 5 0 2 5 0 5 0 5 0 2 5 0 5 0 2 5

Figure 2.3: Hypothesis tree example

In [60], this tree was represented as a matrix in the computer (one row = one hypothesis),
and subroutines for hypothesis reduction and clustering were described. As can be seen
from the example above, where each leaf node corresponds to a single hypothesis (the path
to the root is the actual hypothesis), the tree grows exponentially and makes the MHT
extremely computationally and spatially demanding for larger problems.. The hypothesis
reduction is done by pruning the tree, removing the unlikely hypotheses. Also, hypotheses
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can be combined when they are similar, which means that the estimates of locations of
all targets has to be sufficiently close, e.g. in terms of mean and covariance. Also, the
number of tentative targets must be the same. For further reduction, a method using the
𝑘-best assignments Murty’s algorithm [56] to find top 𝑘 hypothesis was proposed in [17].
The Murty’s algorithm is an efficient method for finding 𝑘 best solutions to the linear
assignment problem. It is based on the set theoretical analysis of the set of all feasible
global assignments in the biparite graph. First, the optimal solution 𝑎 (1) ∈ 𝐴 is found
(e.g. using Kuhn-Munkres algorithm from section 2.3.1). Then, using the terminology
from [17], a node 𝑁 is defined as a non-empty subset of 𝐴 such that some cells in the
cost matrix 𝐺 are enforced to be contained and some are excluded from each assignment
in 𝑁 . In order to induce a (𝑘 + 1)-th assignment, given 𝑘-th one, the current node (𝐴 for
𝑘 = 1) is “partitioned” by its minimum assignment into list of nodes, solving at most 𝑛− 1
linear assignment subproblems of sizes 2, 3, . . . , 𝑛, where 𝑛 is the size of the current node.
Partitioning nodes are carefully constructed in such way, that they are mutually disjoint,
none of them contains 𝑎(𝑘), and their union with 𝑎(𝑘) results in the partitioned node.
This way, 𝑘-best hypotheses can be find in an decreasing order based on their likelihood.
The hypotheses can also be clustered. The observation is associated with a cluster if it
falls within the validation gate of any target in that cluster. A new cluster is formed for
observations which are not associated with any of the present clusters. Clusters are thus the
collections of tracks that are (transitively) linked by common observations, and effectively
make the large problem more manageable.

Very important contribution of [60] is the recursive probabilistic formula, evaluating the
probability of the hypothesis up to the scan 𝑘. As usual, for the process and measurement
noise, Gaussian statistics were used, and for the detection probability, Bernoulli process was
a natural decision. However, for false alarms and target births, both temporal distribution
(i.e. the probability of the given number of occurrences in the scan) and spatial distribution
(i.e. the probability density of occurring at the given location) are required to properly eval-
uate the hypothesis. After pedantic combinatorial analysis, it has been shown that when
Poisson process is plugged in for the temporal distribution, the hypothesis-dependent facto-
rial terms cancel out. Also, when uniform density is plugged in for the spatial distribution,
the dependence on the measurement volume is also eliminated. After simplifying all the
constant terms into normalizing constant 𝑐, the equation becomes (2.19), where 𝑃𝑘 is the
probability of the given hypothesis, 𝑃𝐷 is the probability of detection given the prior target
presence, 𝜆𝑓 and 𝜆𝑏 are Poisson parameters for false alarms and target births, respectively,
and 𝑁𝜏 , 𝑁𝑑, 𝑁𝑓 , 𝑁𝑏 are number of prior targets, number of successful observation-to-track
associations, number of false alarms, and number of new targets, respectively, all at scan 𝑘
(omitting 𝑘 subscript for brevity):

𝑃𝑘 =
1

𝑐
𝑃𝑁𝑑
𝐷 (1− 𝑃𝐷)𝑁𝜏−𝑁𝑑 𝜆

𝑁𝑓

𝑓 𝜆𝑁𝑏
𝑏

(︃
𝑁𝑑∏︁
𝑖=1

𝒩 (𝑧𝑖 |𝑥𝑖, 𝑆𝑖)

)︃
𝑃𝑘−1 (2.19)

The Gaussian distribution can be of course replaced by any other probabilistic model.
It can be also noticed that although the uniform and Poisson distributions were used in
the original paper, the equation can be further generalized such that both 𝜆𝑓 and 𝜆𝑏 can
be functions of space and time, combining spatial and temporal density together, but one
should be careful about the interpretation of the parameters in this case, because the
temporal distribution must remain Poisson, in order to keep the term 𝑒−𝜆 absorbed in 𝑐 as
a constant. This enables to build less ignorant priors than the uniform distribution, when
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possible. Sometimes, target death probability is modeled explicitly in equation as well.
More generalized form and rigorous justification on why the formula is actually correct
from the Bayesian point of view, is provided in [16].

2.4.2 Track-Oriented Approach

Even when propagating only the 𝑘 best hypotheses, and effective application of pruning and
merging, the number of hypotheses can still grow significantly for large number of targets.
An alternative approach is thus to discard global hypotheses from the previous scan and
propagate only track hypotheses, on which extensive pruning should be also applied. The
hypotheses are reassembled on each scan in order to provide the user with the best one.
The track score is maintained for each track, computed by the recursive equation (2.20),
borrowing the notation from equation (2.19):

𝐿𝑘 = 𝐿𝑘−1 + ∆𝐿𝑘 (2.20)

∆𝐿𝑘 =

{︃
ln (1− 𝑃𝐷) no update
ln (𝑃𝐷 · 𝑝 (𝑧 | 𝜃))− ln (𝜆𝑓 ) update 𝜃 by 𝑧

(2.21)

Logarithms are used in order to compress the numerical range, as the recursive products
may become extremely large or small quite fast. The main trick of the track-oriented MHT
is in multiplying the equation (2.19) by 𝜆𝑓 powered to 𝑁𝑑 + 𝑁𝑓 + 𝑁𝑏, which is constant
over all global hypotheses at scan 𝑘, hence the 𝑃𝑘 in equation (2.19) can be factorized into
track scores defined above. The following equation (2.22) holds true as a consequence:

ln (𝑃𝑘) = ln
(︁
𝜆
𝑁𝑑+𝑁𝑓+𝑁𝑏

𝑓

)︁
+

𝑁𝜏∑︁
𝑖=1

𝐿𝑖
𝑘 = 𝐶 +

𝑁𝜏∑︁
𝑖=1

𝐿𝑖
𝑘 (2.22)

The track score 𝐿𝑘 is actually a log-likelihood ratio of hypothesis that an observation is
assigned to the track against the alternative hypothesis that an observation is a false alarm,
hence the numerical value itself can be used for track confirmation or deletion on its own.
The sequential probability ratio test (SPRT) [67] can be employed for this task in a more
statistically rigorous way, by thresholding the log-likelihood ratio score based on chosen 𝛼
and 𝛽 for type 1 and type 2 errors, respectively. Also, the (pseudo) physical dimension is
cancelled - the track score is dimensionless. This makes it possible to numerically compare
two track scores with different number of observation associations.

When implementing track-oriented MHT, it is convenient to maintain a track tree data
structure, called also “family” in the literature [10]. This tree structure explicitly represents
different possible track hypotheses for a single target, which means that all the leaves of
the tree represent mutually incompatible hypotheses (only one can be “the correct one”).
Track trees are build incrementally, on expanding different possible decisions about the
observation-to-target associations, and the information provided by them makes the prun-
ing, clustering and other hypothesis management operations very efficient. An example of
the track tree structure, or better said, track forest in a general case, is demonstrated in
the figure 2.4, where leaf nodes (small boxes) represent track scores for the corresponding
track hypotheses, i.e. leaf-to-root paths. Empty nodes represent missing observations and
the optimal global solution, maximizing the 𝑃𝑘 (2.22), is indicated by the green color.

Beyond naive pruning techniques, such as deleting track hypotheses with scores less
then some threshold, it is necessary to employ more advanced pruning methods in order
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Figure 2.4: Track tree structure example

to prevent the exponential explosion of the trees. Instead of expanding 𝑘-best global hy-
potheses, as it is done for measurement oriented approach (section 2.4.1), a technique called
𝑛-scan pruning is performed. Here, the increasing complexity is handled by using a moving
scan window (of fixed or adaptive depth), and the decision is made for all the nodes created
𝑛-scans in the past. An illustrative example is provided in the figure 2.5, where 𝑛 = 2, i.e.
decision is made at the root in this case.

z00

z11z10

z21 z22z22

T1

8 6 5 1 0

z00

z10

z22

T1

8 6

Figure 2.5: 𝑛-scan pruning on example from figure 2.4

Because tracks, which are incompatible, i.e. sharing tree or observation, cannot be to-
gether in the global hypothesis, it is non-trivial to reconstruct the optimal global hypothesis
from track trees. In the illustrative example above (figure 2.4), finding the optimal assign-
ment was relatively simple and could be even done in a brute-force manner. However, as
the size of the problem increases (especially in MOT), more efficient methods are required.
The problem itself is, unfortunately, NP-hard. Therefore, approximate algorithms has to
be used in order to infer the optimal assignment. One such algorithm, which is a relatively
classical one in the field, is generalized S-D assignment algorithm [19]. Here, the problem
is stated as a linear integer program, where the the optimized criterion is (2.23), where
𝜌 (𝑖1, 𝑖2, . . . , 𝑖𝑆) is an indicator variable, which is 1 when track hypothesis is in the solution,
and 0 otherwise, and 𝑐 (𝑖1, 𝑖2, . . . , 𝑖𝑆) is the negative track score:

min
𝜌(𝑖1,𝑖2,...,𝑖𝑆)

𝑛1∑︁
𝑖1=1

𝑛2∑︁
𝑖2=1

· · ·
𝑛𝑆∑︁

𝑖𝑆=1

𝑐 (𝑖1, 𝑖2, . . . , 𝑖𝑆) · 𝜌 (𝑖1, 𝑖2, . . . , 𝑖𝑆) (2.23)
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Constraints are enforced in 𝜌 (𝑖1, 𝑖2, . . . , 𝑖𝑆). The main virtue of [19] is using a method
known as Lagrangian relaxation in order to approximate the solution iteratively, in poly-
nomial time. For all undecided associations, except the least recent one (i.e. scans at
𝑘, 𝑘 − 1, . . . , 𝑘 − 𝑛 + 2), a vector of Lagrangian multipliers (may be called adders in the
log-domain) is used to relax the constraints at each level. On the least recent scan, the
classical linear assignment problem is solved exactly, using the upper bound scores resulting
from constraint relaxation. Then, the constraints are enforced on the way back to the most
recent scan, by sequentially solving (𝑛− 1) linear assignment problems, one at each level,
as if it was a single hypothesis GNN approach (section 2.3.1). The key difference is, that
the Lagrange multipliers change the cost matrices at each level in order to softly enforce the
hard constraints. The procedure is repeated iteratively, updating the Lagrange multipliers
based on the so-called subgradient, which is a measure of the constraint violation. For
example, for 3 observations at scan 𝑘, when the 1st one is assigned to 2 targets, the 2nd
one is assigned to 1 target, and the 3rd one is not assigned at all, during the relaxation
phase, the subgradient vector will be (−1, 0, 1). The algorithm is, however, not guaran-
teed to converge, and the only guarantee is that the solution will be feasible (no constraint
violations).

Another and more modern alternative is to reduce the problem to a maximum weight
independent set problem (MWISP) on a graph [66]. Independent set (IS) on a graph is a
set of nodes, in which no two nodes are connected by an edge. MWIS is an IS on a graph
with weighted nodes, such that the sum of the weights in the IS is maximized. It can also
be viewed as a maximum aposteriori (MAP) assignment in a pairwise Markov random field
(MRF), which is in fact equivalent to the MWIS in the corresponding graph. The main
reason for this reduction is that MWISP is a classical combinatorial optimization problem,
and thus much more focus and research has been invested into search for efficient and high
quality approximations of this NP-hard task. Finding optimal solution for the tracking
problem instance presented in the figure 2.4 is equivalent to finding MWIS in the graph
presented in the figure 2.6.
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Figure 2.6: Example from figure 2.4 as a pairwise MRF

Experiments in [10] support the advantage of track-oriented MHT over measurement-
oriented MHT, in terms of computational and spatial efficiency, while theoretically main-
taining all the necessary information for near optimal deferred data association.
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Chapter 3

Sensors

In chapter 2, I’ve described general tracking paradigms and algorithms, but the process
of collecting the actual observations was abstracted out, mostly because it is often tightly
bound to a particular application. However, the hardware and algorithms used for sensing
and object detection, representing a connection of the tracking algorithms to the outer
world, have extremely high impact on the overall abilities of the tracking system as a whole.
In this chapter, examples of sensors commonly used in practice are briefly described.

3.1 Vision Sensors
Visual perception is often intuitively considered to be the most information rich mean of
observation. Vision sensors, such as human visual system or digital camera with artificial
intelligence based image processing, are able to perceive a very complex structural infor-
mation about the world around them. Based on the image data, various properties within
the environment, including geometrical, temporal, or physical, such as surface texture and
color, can be inferred. While there are many physical properties that are hard or even
impossible to be observed by the sight (e.g. sound), and specialized sensors designed to
measure some quantities more directly (e.g. radar) can have much higher precision, the
overall generality and usual availability of the visual sensors makes them very desirable.
Especially in object tracking applications, visual sensors such as digital cameras, thermal
(IR) cameras, or medical imaging devices, are often the inputs for the tracking system.

3.1.1 Image Capturing

The first step in the process of machine vision is to capture the physical light and convert
it to discrete electrical signal. The result is a digital image. It can be viewed as a matrix of
quantized light intensities at different positions within the image plane. These intensities
may be scalars in a grayscale case, or vectors in case of a color image, where usually three
spectral ranges are being measured as separate color channels, but the number of these color
channels is generally unbounded. The conventional technologies are CCD (charge-coupled
device) and CMOS (complementary metal oxide semiconductor) sensors1, which both use
the photovoltaic effect to convert the energy of a photon into an electrical charge, which is
then converted into a digital signal with analog-digital (AD) converter.

1https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-
camera-sensors-for-machine-vision-applications

18

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications


3.1.2 Object Detection

When a digital image is captured, it is no more than a 2D signal with no explicit abstract
meaning. In order to understand the semantic content of an image data and detect the
object(s) of interest, the computer vision algorithms have to be employed. In the algorithms
from chapter 4, this step is sometimes partially solved by the tracking algorithm itself,
however, in general, the object detector can be viewed as a part of the vision sensor rather
than of the tracking algorithm.

Because the topic of object detection in computer vision might deserve its own the-
sis, I will just briefly review the history and the technology used today for this problem.
From its very beginning, the object detection was highly involved in the machine learn-
ing. The most successful early approaches include traditional classifiers, such as support
vector machines [18], where the histograms of oriented spatial intensity gradients (HoG)
of the candidate image patches were extracted and used as a features for classification,
which was very successful in e.g. pedestrian detection. Another classical early approach is
known as Haar cascade [48], where a hierarchical cascade of AdaBoost classifiers is used
to efficiently search the image space with a sliding window. Together with the Haar fea-
tures, efficiently evaluated using the concept of the integral image, Haar cascade detector
is still extensively used today in devices, where the computational resources are limited.
Today, the increased computational power and exploitation of the GP-GPU (and dedicated
TPUs) parallelism enabled the use of deep convolutional neural networks [20], which led to
great improvements in object detection, because robustness against appearance variability
in such networks increases with an increasing depth (mostly due to an increasing size of the
receptive field).

One of the first deep learning based object detectors, region-based convolutional neural
network (R-CNN), was proposed in [31]. The selective search algorithm is used to find
the most promising candidate patches, then these are cropped, resized to a fixed size, and
classified with a standard CNN classifier one by one. Soon after, fast R-CNN [30] was imple-
mented, where the shared convolutional feature maps are computed only once for the whole
image and then, the candidate patches cropped from these feature maps are transformed
into a fixed length vectors using a differentiable region-of-interest (RoI) pooling. Faster
R-CNN [61] speeds up the detection even more by discarding the selective search part and
training the neural network to generate the region proposals as well. Unfortunately, for all
the R-CNN-type detectors, realtime performance is almost impossible to achieve even on
the high-end hardware.

The breakthrough in the object detection occurred with the advent of single shot detec-
tors, namely YOLO (you only look once) [59] and SSD (single-shot multibox detector) [49].
In YOLO, an image is divided into 𝑆 × 𝑆 grid and for each cell, class probabilities are
predicted together with a bounding box in the form (𝑥, 𝑦, 𝑤, ℎ, 𝑐), where 𝑐 is the confidence
(intersection over union with any ground-truth box). Finally, non-maximum suppression is
applied to filter out unlikely predictions. Although the intrinsic architecture of the CNN
itself used in YOLO is secondary with respect to the core idea, in newer versions, special-
ized architectures were successfully developed in order to maximize the inference speed (e.g.
YOLOv4 [11]). SSD algorithm works in a similar manner and both approaches are con-
sidered a standard for the realtime object detection nowadays, as they enable realtime
processing even on today’s mid-range hardware, such as NVIDIA GTX 1060 graphics card.

19



3.2 Emitting Sensors
Image capturing devices described in section 3.1.1 passively receive the light, which is
either emitted or reflected from the surfaces of objects in the scene. On the other hand,
by purposely emitting and receiving the radiation of a specific wavelength and power, not
only the ability to sense becomes independent on the external light sources, but because
the radiation generation process is in the control of the device, more specific and precise
information can be obtained.

3.2.1 Radar

Radar (radio detection and ranging) [64] is an antenna based sensing device, which uses a
low frequency bands of radiation (from 0.3 to 100 GHz). Usually, a computer-controlled
antenna or an array of antennas is used to transmit and subsequently receive the reflected
radio waves in a desired direction. When the radio wave reflects from an object of interest,
it also changes its frequency relative, based on the mutual velocity of the object and the
radar device. Because the frequency of radio waves is so low, Doppler effect can be exploited
to measure this relative velocity directly with high precision. The equation for Doppler
frequency shift [64] can be reformulated into expressing this velocity 𝑣 of the observed
object, given the transmission wavelength 𝜆, angle between the antenna direction and the
target object movement direction 𝜃, and the measured frequency shift 𝑓𝑑 (3.1):

𝑓𝑑 =
2𝑣 cos (𝜃)

𝜆
⇔ 𝑣 =

𝜆𝑓𝑑
2 cos (𝜃)

(3.1)

Because 𝜃 is generally unknown, only the radial velocity component (i.e. cos (𝜃) = 1)
can be measured directly using the radar. However, when an object is moving perpendic-
ular to the antenna direction, even with known 𝜃, the velocity cannot be determined at
all. To spatially locate the object, frequency modulated waves with periodically linearly
varying frequency are used. Because the modulation parameters are known, the distance
of the reflecting object can be determined using the frequency shift, assuming the object
is stationary. It is possible to measure both speed and location at the same time combin-
ing the techniques mentioned above. Radiation can also be emitted periodically in pulses,
which is preferred for object detection on long distances (e.g. airport radar).

3.2.2 Lidar

For radar (section 3.2.1), the measurements of velocity are very accurate, but the location
is estimated more roughly. The reason is a trade-off between the amount of uncertainty in
the frequency domain and the amount of uncertainty in the time domain. In order to have
accurate estimate of location in both time and space, high frequency waves have to be used.
Lidar (light detection and ranging) [53] presents this kind of high frequency counterpart
to a radar, emitting and receiving radiation in frequency bands usually ranging from the
infrared, throughout the visible spectrum, and up to the ultraviolet frequency band. Laser
beams are emitted towards an area of interest, effectively scanning the distances from
the lidar at the reflecting surfaces. A point cloud approximating the surface mesh of the
surrounding environment is created and has to be further processed.

Lidar can be useful for measuring exact distances and can provide depth information
for images captured by a digital camera, when the relative positions of the two devices
are known (e.g. autonomous vehicles). However, although there have been some relatively
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successful attempts in the recent years, detecting objects in a point cloud is not an easy task.
For example, in the current state-of-the art VoxelNet [70] neural network architecture, the
problem is solved similarly as in YOLO from section 3.1.2 for 2D image detection. The space
is subdivided into equally spaced voxels and per-voxel point-wise features are aggregated
using a fully connected neural network. Then, series of 3D convolution blocks are applied to
predict the class probabilities for each voxel, as well as one block of transposed convolutions
in order to predict the 3D bounding boxes. While the results are not nearly as good as for
2D image detection, they are still quite impressing given the complexity of the task.

3.3 Collaborative Localization
In some cases, object tracking may be supported by collaboration of the tracked objects.
Onboard odometry sensors and positioning systems (GPS) can provide useful and reliable
information to the tracking system.

3.3.1 V2X - Vehicle to Everything

Vehicle-to-everything, known as V2X [39], is a general communication standard com-
posed of multiple more specific systems, such as V2V (vehicle-to-vehicle), V2I (vehicle-to-
infrastructure), or V2P (vehicle-to-pedestrian). V2X standard provides more information
to navigation systems, allowing them to make more informed decision, and increases safety
by collecting information from the peer vehicles and other traffic entities. One of poten-
tial uses of V2X standard is in realtime traffic analysis, where the collaborating vehicles
can provide their onboard information to the tracking system using V2X communication,
potentially improving the tracking confidence.
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Chapter 4

Visual Trackers

Because of the great potential and extensive use of image capturing sensors in many ap-
plications (as mentioned in chapter 3), there is a lot of different algorithms specialized for
tracking in the video sequences, and the visual tracking has long been studied in the area
of computer vision. These visual trackers basically search for a visual pattern(s) in order
to locate the target object. Changes in target appearance due to changes in pose, lighting
or shape make the problem of visual tracking challenging. In a multi-target environment,
an instance of such tracker has to be created for each target. While this is not usually
an issue from a robustness point of view, the computational complexity is unacceptable
for most realtime MOT applications (with very few exceptions such as MOSSE tracker in
section 4.3.1). Nevertheless, although those algorithms as they are, have low applicability
in realtime MOT, they present an important part in the topic of object tracking, and also
provide a possible source of inspiration in implementing a multimodal multi-object tracking
system.

4.1 Miscellaneous Algorithms
In this section, representative examples of miscellaneous visual tracking algorithms that do
not share any significant common trait are provided.

4.1.1 Template Matching

A simple approach to visual pattern tracking is a traditional computer vision algorithm
called template matching. Applied to object tracking task, the template is a prior target
appearance snapshot. Then, for each input video frame, this template is being moved over
the search region (possibly the whole image), and at each position the element-wise signal
similarity metric is calculated between the template and the input frame. This metric is
usually either cross-correlation, or a sum of absolute differences. The result is a similarity
map, where the location of the maxima represents the most likely relative position of the
target. This template can be taken from the most recent frame in which the target has
been successfully found, or it may be the first occurrence of the target. In the latter case,
template matching will likely fail if the target object undergoes deformations. For rigid
transformations however, well-known Merlin-Fourier transform may be used. Although
template matching in its base form is not very robust, many template adaptation methods
were developed, and greatly improved its robustness for specific tracking tasks [45, 69].
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4.1.2 Mean Shift

The mean shift is a well-known mathematical method for estimating the mode location
of an arbitrary, but unknown probability density function, given only the data sample
generated from it. The intuitive idea behind the method is that the density of the sampled
points increases towards the mode. The more formal description of the method is slightly
more complex, however, the application to object tracking is very straight forward. The
target is defined by a window of a fixed size. Visual features of the target are extracted
and the probability image is computed from the next input frame based on those features.
These features are usually a hue histogram and the probability is evaluated using histogram
backprojection. Then, the mean location within the current target window based on the
probability image is computed. This can be more clearly expressed by the equation (4.1),
where 𝜇 is the computed mean location of the target window 𝑊 , and 𝑃 (𝑥) is the probability
image pixel value at the position 𝑥:

𝜇 =

∑︀
𝑥∈𝑊 𝑥𝑃 (𝑥)∑︀
𝑥∈𝑊 𝑃 (𝑥)

(4.1)

The window is shifted towards 𝜇, and the process is repeated iteratively until the con-
vergence. When the change from previous 𝜇 is less than some threshold (e.g. 1 pixel), the
algorithm terminates. In [13], an extension to this idea, called CamShift, was proposed for
human face tracking, where the size and orientation of the target window are adapted using
the probability image moments. The extra computations are negligible and algorithm is
relatively robust to rigid and even non-rigid deformations of the target object.

4.1.3 Optical Flow

One of the most fundamental concepts in computer vision the optical flow. The core idea of
the optical flow is that the color intensity 𝐼 of an object remains constant given sufficiently
small change in time, while the position may be subject to change due to the object and/or
camera motion. This can be mathematically expressed by the equation (4.2), where 𝑣𝑥
and 𝑣𝑦 are the respective velocities of the target object relative to the image plane, and 𝑡
denotes time:

𝜕𝐼

𝜕𝑥
𝑣𝑥 +

𝜕𝐼

𝜕𝑦
𝑣𝑦 +

𝜕𝐼

𝜕𝑡
= 0 (4.2)

In this basic formulation, the optical flow may be used to track brightness patterns, but
can be generalized for other visual representations (e.g. census transform [34]). However,
the equation is underdetermined because it has two unknowns. The optical flow determi-
nation is a challenging problem in computer vision, and while many algorithms have been
developed, it is still a relatively actual topic. Optical flow can be divided into two cate-
gories - dense and sparse. For dense optical flow, a vector field assigning velocity to each
pixel is computed. A common approach is Farnebäck’s algorithm [23]), but also newer,
convolutional neural network based algorithms, have shown quite impressing results [24].
For the sparse optical flow, velocity vectors have to be found only at some provided key-
points (should be corner-like) and the standard way to go in this case is Lucas-Kanade
algorithm [50, 63].

Both dense and sparse optical flow can be very useful for object tracking, but the
sparse one is preferred because it is computationally cheaper. In [42], a whole object
tracking algorithm with the ability to detect its own failure based on the sparse optical
flow was proposed - known as the median flow tracker. Given a target window, grid of
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points is created. Those points are then tracked with optical flow. Then, they are tracked
backward in order to evaluate consistency of the solution - error is the distance between the
backtracked points and their prior locations, and median of these errors is found. Worst
50% of points are discarded as outliers. Finally, the box displacement is estimated using
remaining points by finding the median of changes for each spatial dimension. The scale
change is computed in a similar manner, but this time using the distance ratios between
the pairs of points.

4.2 Tracking with Machine Learning
The machine learning has found its applications in a wide range of areas, with computer
vision being one of the most successful ones. Following this trend, a whole class of trackers
based on machine learning has emerged and turned out to be a promising approach in terms
of robustness. In this section, I will mention few interesting examples of such tracking
algorithms.

4.2.1 Multiple Instance Learning

While the attempts to use the machine learning algorithms to learn the appearance of the
target date almost back to the beginnings of the visual tracking, such supervised learning
is more challenging than usual due to the possibly inaccurate estimations of the target
locations, causing drifts and failures. Poor quality of the training data impairs the ability
of the classifier to separate the positive example from the negative ones (randomly selected
patches far from the target location). On the other hand, using multiple patches with
slightly perturbed positions around the predicted target location, all labeled as positive,
confuses the classifier completely. The multiple instance learning (MIL) tracker [2] is an
interesting solution to this problem.

In multiple instance learning, the main idea of the MIL tracker, learning the target
appearance is based on the consideration, that, while the individual labels of the candidate
patches located around the predicted target location are unknown, at least one of them
actually contains the target object to such extent that it can be considered as positive.
Thus, rather than assigning labels to the individual samples 𝑥𝑖, the whole bag of samples
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is assigned a single label. This way, the classification algorithm has the
freedom to choose which candidates are good enough, instead of being misled by assigning
positive labels to all the candidates, possibly creating contradictory training samples. The
learning algorithm used in [2] is called gradient boosting [27], which is a classical machine
learning algorithm, where multiple weak classifiers (usually decision trees) are trained and
then combined into the final strong classifier. More precisely, in gradient boosting algorithm,
a differentiable loss ℒ has to be defined and then, the classifiers are trained one by one,
each to predict the derivative of ℒ w.r.t. to the output of the previous classifier. The first
classifiers output is just a constant, such that the derivative of ℒ w.r.t. it is zero, i.e. it
minimizes ℒ. Also, the contribution of every classifier is weighted by a learning rate 𝜂,
which lies between 0 and 1 in order to prevent the overfitting. This way, the model is
trained in an online manner using the log-likelihood loss, where the likelihood of a label 𝑦
given the bag of samples 𝑋 is estimated by the equation (4.3), also called noisy OR, which
implements the idea that if at least one 𝑥𝑖 has high probability, the whole bag 𝑋 will also
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have high probability:
𝑝 (𝑦 |𝑋) = 1−

∏︁
𝑖

(1− 𝑝 (𝑦 |𝑥𝑖)) (4.3)

Despite using very simple appearance and motion models, the well known Haar wavelet
features and a simple spatial distance threshold, the MIL tracker outperformed most of the
visual trackers at the time. On the other side, it is poor at detecting its own failure.

4.2.2 Tracking-Learning-Detection

A different approach using the machine learning was proposed in [43] as tracking-learning-
detection (TLD). This algorithm is focused on the long-term tracking, trying to solve the
problem of temporal invisibility of the target. Many frame-to-frame trackers fail, when
occlusions happen, and the re-identification is crucial to overcome such situations. As
name suggests, there are two main components in the TLD algorithm - the tracker and
the detector. The tracker is able to track in a classical frame-to-frame style, assuming
small motions between the frames. The detector is able to search the whole frame and
find the target object without any prior spatial knowledge. However, it has to be trained
accordingly to the object of interest in order to perform well. The training is done with
the support of two experts - the P-expert and the N-expert. The P-expert is basically a
frame-to-frame tracker, and if the detector labels the predicted location as negative, it is
added as a positive example to the training set. The N-expert assumes, that an object
cannot be at multiple locations at the same time. Thus, all patches that do not overlap
with the maximally confident patch according to the detector, are added as a negative
examples to the training set. In the original paper, scanning window grid and the nearest
neighbors classifier with relative normalized cross-correlation patch similarity metric were
used, however, the essential idea could be generalized for different model as well. The final
object state is assembled from both tracker and detector outputs - if none of them succeed,
the object is declared invisible.

4.2.3 Deep Regression Networks

In recent years, the use of deep neural networks in computer vision has recorded a significant
increase, and the area of visual tracking is not an exception. Although training those
models in an online manner is almost impossible, if the processing speed is taken into
account, such models are able to learn semantically rich and generic features offline. These
can then be used to track previously unseen objects with a surprisingly good accuracy.
In particular, one of the pioneering trackers in this path is GOTURN [36] (generic object
tracking using regression networks). The architecture of this deep convolutional neural
network [20] is the following. An image of the target from the previous frame and the current
frame cropped by the search window are both fed into the series of convolutional layers
with shared parameters. These layers capture a high-level features. Then the outputs are
concatenated and fed into four fully connected layers in order to regress the final bounding
box (𝑥, 𝑦, 𝑤, ℎ). Although this architecture may seem kind of uninformed in the sense that
all the computation including the final bounding box regression is offloaded to the “black-
box” neural network, the results are somewhat surprisingly good, especially given the fact
that the neural network model is not fine-tuned online. Another but not so surprising
observation is, that the performance of GOTURN increases with the size of the training
dataset. The network architecture was mostly taken from [38], including hyperparameters,
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and trained using the standard stochastic gradient descent algorithm. In order to motivate
the network to prefer smaller changes, authors also augmented the training data by small
perturbations in position and size, drawn from Laplace distribution (according to their
empirical observations of the usual inter-frame displacements). The reported speed of
GOTURN algorithm is approximately 100 FPS for a single object tracking on NVIDIA
GTX 680 graphics card, thanks to the absence of online learning.

4.3 Correlation Filters
This section is devoted to the correlation filters, a very successful class of visual trackers,
known for their great trade-off between speed and robustness.

4.3.1 MOSSE Correlation Filters

In the pioneering paper [12], the idea of an adaptive correlation filter being optimized to
the target appearance using minimum output sum of squared errors (MOSSE) criterion was
proposed. In the original paper, authors reported a processing speed of up to 669 frames-
per-second on a 2.4 GHz 2 core processor, while achieving state-of-the-art robustness at the
time, which made this tracker one of the few visual trackers applicable for realtime multi-
object tracking. Basic idea is similar to template matching mentioned in section 4.1.1.
The key difference is that the cross-correlation is computed in the Fourier domain, and the
template is adapted as a filter in Fourier domain as well. The cross-correlation in the Fourier
domain is just an element-wise multiplication (cross-correlation theorem), and therefore, the
upper bound for the computational complexity is that of computing the Fourier transform,
which can be done by efficient algorithms [14] in 𝑂 (𝑃 log𝑃 ) time, where 𝑃 is the number of
pixels in the search window. The property resulting from the cross-correlation theorem also
enables efficient and simple learning of the correlation filter. The optimal filter is found by
minimizing the sum of squared errors against the expected output - a well-defined peak at
the true target location. The closed form solution for an optimal filter 𝐻* given 𝑁 target
images is calculated by the equation (4.4), where 𝐹𝑖 is the search window spectrum for
the frame 𝑖, 𝐺𝑖 is the corresponding expected peak spectrum, and * denotes the complex
conjugate operator:

𝐻* =

∑︀𝑁
𝑖=1𝐺𝑖 ⊙ 𝐹 *

𝑖∑︀𝑁
𝑖=1 𝐹𝑖 ⊙ 𝐹 *

𝑖

(4.4)

The formula above gives the same weight to all samples, and therefore is not robust to
large changes in scale, rotation, or non-rigid deformations. Therefore, the final algorithm
proposed for a robust visual tracking calculates running exponential average, parameterized
by a learning rate 𝜂, instead of the sums. This increases the robustness against target defor-
mations dramatically. Failure is detected by peak-to-sidelobe-ratio (PSR), which indicates
how strong the cross-correlation peak is.

4.3.2 Kernelized Correlation Filters

An alternative interpretation of the idea in [12] is that it is actually a linear regression
classifier applied to each possible translation of the target window, efficiently exploiting the
Fourier property of the cross-correlation, because the cross-correlation can be viewed as
a dot-product at each possible translation, if one flattens the image patches into vectors.
The idea proposed in [37] builds on top of this observation and the tremendous training
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and inference efficiency of the MOSSE correlation filters, and presents a mathematical
foundation for an extension to MOSSE, called kernelized correlation filter, where non-
linear kernels may be used in order to perform a non-linear regression, which can have more
discriminative power than the linear one. The main contribution of [37] is the exploitation
of the classical kernel trick, heavily used in the support vector machine classifiers [18].
The basic idea is that the dot product of two vectors, non-linearly expanded into higher
dimensional feature space, can be computed without actually instantiating them in that
space. The kernelized filters increase classification capabilities in the same way the non-
linear regression classifiers do, while maintaining the speed of linear correlation filter. The
mathematical derivations and formulas are quite comprehensive, but the basic idea is similar
to that in equation (4.4).

4.3.3 CSR-DCF Tracker

Today, the most complex and best performing correlation filters based tracker, is channel
and spatial reliability discriminative correlation filter tracker, known as the CSRT [52].
Since [12], many extensions to the original algorithm were developed. Alternatively to [37],
where the filter learning and inference equations were modified directly, the usage of more
abstract feature spaces explicitly, while using the original MOSSE equations, became pop-
ular. Ranging from traditional visual features, such as histograms of oriented gradients
(HoG), color names, or even deep neural network generated features, this simple extension
to the algorithm has brought a dramatic increase in robustness, but for a possibly significant
computational penalty. The idea was pushed even further, by using more feature channels
at once and linearly combining the results efficiently in the Fourier domain as well, thanks
to the superposition property of the Fourier transform. Nonetheless, due to different nu-
meric scales of various feature spaces, and also their different discriminative power, using
channel specific coefficients in weighted sum projecting this information into the final filter
response may lead to better results.

The CSRT provides a robust method for finding these coefficients, called reliability
weights. Even with a very simple features (grayscale, HoG, and color names), implemen-
tation in [52] achieved a state-of-the-art tracking performance. Another important point
of CSRT is the spatial reliability map, which helps to prevent learning the background
during the optimization step, which is one of the main problems of correlation filters. The
color model for the foreground and background, originally proposed as HSV histograms,
is build and incrementally updated over time. The color model is backprojected into the
target window and also a spatial prior is constructed. Then, using conditional probabilities
(Bayes rule), a Markov random field optimization from [21] is applied in order to mini-
mize the noise in the final posterior probability image, which is then thresholded to obtain
the segmentation mask. Filter learning, however, cannot be done using the closed form
MOSSE equations anymore. Using Lagrange multipliers, an iterative procedure was de-
signed. While being simple from the implementation perspective, it significantly increases
the computational complexity of the algorithm. CSRT therefore owes to its robustness and
is not applicable for realtime MOT on a common computer hardware.
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Chapter 5

Proposed Tracking System

In this chapter, I discuss the main motivation and inspiration behind the proposed multi-
modal system for multi-object tracking in realtime. I also provide an overall overview of its
design, especially its implementable interface (section 5.2).

5.1 Motivation
As the name suggests, the essential goal of the system is to simultaneously track multiple
targets in some volume/area. The number of targets is apriori unknown, thus the sys-
tem has to be able to determine this number as well. However, the attribute “multimodal”
might not have such definite interpretation. Multimodal1 is a general term that can be used
in many contexts, but it can be literally understood as “many ways of doing something”.
This is exactly the essential principle behind the MOT system proposed in this thesis. The
tracking system, which is not limited to a specific sensor, object detector, etc., in order to
track objects, but a tracker, that is able to fuse data from different sensors, at different
locations, and potentially measuring different properties, i.e. a heterogeneous system of sen-
sors. Various combinations of sensors, statistical and physical models, high-level semantic
features extracted from raw measurements, all with one system, being easily extensible, but
at the same time, providing explicit mathematical guarantees about the fixed (but config-
urable) core algorithm. Therefore, one can focus merely on the models, that provide the
core algorithm with the observations, all the required statistical properties associated with
them, and also, a predictive model. A uniform interface is designed (section 5.2), which
when properly implemented, is all that is needed to incorporate a given input device, into
the tracking system. I’ve designed this interface trying to give as much flexibility to the
user, as possible, making it possible and relatively easy to implement almost anything, that
one could imagine in order to improve the tracking performance in a particular application.

One might naturally ask: “but doesn’t this already exist somewhere?”. The unfortunate
truth is, at least to my best knowledge, that the prevalence of such flexible systems in the
software landscape is quite limited. Trackers today are mostly implemented in an applica-
tion specific manner. Nevertheless, there are few exceptions. Probably the most mature
project, inclined in this direction, is a Matlab toolbox2 for sensor fusion and tracking, which
also supports C code generation. It provides a large variety of useful tools and algorithms
for multi-object tracking and sensor fusion development for surveillance and autonomous

1https://www.dictionary.com/browse/multimodal
2https://www.mathworks.com/help/fusion/index.html?s_tid=CRUX_lftnav
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systems. For example, a track-oriented MHT described in section 2.4.2 is implemented,
using the classical S-D assignment algorithm [19]. After generating C code, it can be used
out of the box, e.g. for tracking from radar data. But again, I did not find it as flexible, as I
would like to, and also, generating C code from Matlab has its own limitations. Therefore,
I’ve decided to implement the proposed MOT system from the ground up, in the C++
programming language, having the highest degree of flexibility possible, including being
able to experiment with more modern algorithms for solving the combinatorial optimiza-
tion problems, that arise in observation-to-track-association process (section 2.3 and 2.4).
I’ve decided to use the track-oriented MHT paradigm, because it is considered the most
general approach and has a unique ability to “recover” from errors potentially made in the
past (at least theoretically). Although this ability is strongly reduced by the computational
limitations of the current computer hardware, with high quality semantically rich features,
such as visual affinity, or long term motion trends, a deferred decision-making based on the
future data might solve highly ambiguous situations, in which a single-hypothesis tracker
would make a mistake with high probability. Finally, by simply setting the size of a scan
window to 1, the multiple-hypothesis pipeline is downgraded into the single-hypothesis one.

5.2 Programmable Interface
In this section, I will present the proposed interface in detail. But first, it may be interesting
to mention the main source of conceptual inspiration for the design which was, maybe quite
surprisingly, a successful standard API from a different, but not completely unrelated area
of computer graphics, OpenGL3. In modern OpenGL, a general rendering pipeline is used,
with well-defined stages, where only some of them, called shaders, are programmable via
dedicated GLSL programming language. The programmer doesn’t have to be concerned
with essential tasks, such as assembling the geometry, frustum clipping, calling routines
for triangle rasterization, etc. For example, in vertex shader, so-called vertex attributes
are defined by the programmer, and are used in whatever way the programmer likes to, in
order to achieve the desired results. In the system I’ve developed in this thesis, analogous
approach is used, but for multi-object tracking.

5.2.1 Observations, Attributes and Attribute Model

Following the terminology, that I’ve used in chapter 2, let’s denote the collection of ob-
servations from one sensor at some sample point in time a “scan”. An observation is a
collection of attributes, which are obtained by given input sensor. Observation is under-
stood as an implementable interface, but similarly to GLSL vertex shader specification,
where gl_Position is predefined, because it doesn’t make any sense for a vertex of ren-
dered 3D model to have no position, the observation class has this one attribute also present
as compulsory, in its base class. It doesn’t make any sense to track object position with-
out measuring at least its position (possibly indirectly, of course). Then, for each specific
sensor, specializations of attributes, which are provided by that particular device, such as
visual descriptor of an image patch in which the object was detected, a direct velocity mea-
surement from radar, or simply a detection confidence. Per observation measurement error
statistics can be propagated as attributes as well.

In order to use those attributes to perform the task of object tracking, a model en-
capsulating the state of a tracked object has to be defined. I call this an attribute model.

3https://www.opengl.org/
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For example, if one decides to use a Kalman filter for motion filtering and prediction (sec-
tion 2.2) based on the position attribute, the attribute model will be simply a state of
the Kalman filter, i.e. a mean vector 𝑥 and a covariance matrix 𝑃 . Of course, the pro-
grammer has to implement it (which obviously doesn’t take too much work in this case).
What the attribute model should be, and how it should be implemented, is merely on the
programmer, which makes it very flexible, both from functionality and from computational
efficiency perspective. However, the interface requires programmer to implement possibly
non-trivial and, in fact, crucial method, being able to evaluate 𝑝 (𝑧 | 𝜃) term of the current
track score increment ∆𝐿, defined in equation (2.21), where 𝜃 are precisely the parameters
of an attribute model (𝑥 and 𝑃 in the case of Kalman filter). More detailed explanation is
given in the comprehensive overview of the system interface in section 5.2.3.

5.2.2 Sensor Models and Predictive Model

For each sensor device, an implementation of a sensor model interface is required. Sensor
model basically initializes and updates the attribute model instances with observations
from the given sensor. Those observations must inherit from the base observation class,
when it is necessary to extend the attribute set beyond the position attribute. I would
recommend as a good practice to strongly tie such specialization to the sensor model (e.gȧs
inner class). The sensor model also implements methods to evaluate the prior-to-update
terms from the tracking equation (2.19), i.e. prior detection probability given the presence
of the target, prior spatio-temporal target birth density, and prior spatio-temporal false
alarm density. However, the generalized tracking equation that is actually used, along with
detailed description, is provided in section 5.2.3. The sensor model has also the capability of
determining the validation gates as well, based on the target state (attribute model), which
is contained in the update method itself. The rationale for joining those two steps is that in
the conventional pipeline (figure 2.1), the updates (observation-to-track-associations) follow
the gating computations immediately, and usually some values computed in the gating step
are the very same values that are required later in the update step. Therefore, instead
of speculating about caching, the user programmer is completely free to implement both
routines in one method as efficiently, as he can do. For example, when using a Kalman
filter, Mahalanobis distance from the innovation distribution 𝑆, defined in equation (2.4),
might be used for gating. It would be quite unfortunate to recompute 𝑆−1 in the update
step again, instead of reusing the already calculated value.

For the motion prediction step, which is considered (and according to my experience
really is) crucial for object tracking in general, a prediction model is required. This model is
also connected to the attribute model, in the sense that it predicts the future positions based
on the current state (e.g. 𝑥 and 𝑃 for a Kalman filter). Finally, because the prediction
model is a fully implementable interface, as well as the attribute model is, there are no
bounds on which attribute values could be predicted and which not. User is completely
free to predict anything.

5.2.3 Detailed Overview

After introducing the motivation, basic constructs, ideas and rationales, this final section
offers a detailed, but very clear overview of the proposed interface. The already outlined
basic pipeline of the proposed tracking system is illustrated in the diagram 5.1. Orange
boxes denote the implementable parts of the system (interface), and the blue circle in the
middle is fixed, but configurable tracking engine, which is, as mentioned before, a “white
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box” system, i.e. it is known how it works inside, what premises it is based on, and has
explicit mathematical guarantees about its outputs when the assumption of validity of the
implemented models (orange boxes) is satisfied.

Camera Model 1 Radar Model 1 Sensor Model X...

Predictive ModelTracking
Engine

Best
Hypothesis

World

Digital Camera 1 Physical Sensor XRadar 1 ...

Measure Data / Detect Objects

Attribute Model

Figure 5.1: Illustration of the proposed system design

Before introducing a complete class diagram of the proposed implementable interface,
it is necessary to recall the tracking equation (2.19) from [60]. Following its generalization
from [16], the spatial probability density function doesn’t have to be uniform. Therefore,
terms 𝜆𝑓 and 𝜆𝑏 have to be explicitly multiplied by the corresponding spatial probabil-
ity density functions 𝑝𝑓 (𝑧𝑖) and 𝑝𝑏 (𝑧𝑖), which should be properly normalized according
to the tracking volume/area. However, I do argue, as I’ve already briefly mentioned in
section 2.4.1, that both 𝑝𝑓 (𝑧𝑖) and 𝑝𝑏 (𝑧𝑖) could be absorbed into 𝜆𝑓 and 𝜆𝑏 terms, which
reliefs the programmer from any constraints about them at all, except the one that they
should preferably lead to the best tracking performance possible. Justification about the
theoretical correctness is simply that for any continuous function 𝜆 (𝑧), there clearly exists
a “true” 𝜆′ and a “true” properly normalized spatial probability density 𝑝 (𝑧), such that
𝜆 (𝑧) = 𝜆′𝑝 (𝑧). Nevertheless, interpreting the true rate 𝜆′ also as a function of space is
problematic. From an engineering point of view, however, it doesn’t seem too important
anyway. Thus, the tracking equation on which the proposed MHT tracker is based on be-
comes (5.1), using similar notation as in equation (2.19), but with the difference that 𝑆𝜏 ,
𝑆𝑑, 𝑆𝑓 , 𝑆𝑏 are not counts, but the respective sets (𝑧 denotes observation, 𝜃 denotes state of
a given target), and 𝑆𝜏 ∖ 𝑆𝑑 is an abbreviation for {𝜃 ∈ 𝑆𝜏 | *, 𝜃 /∈ 𝑆𝑑}:

𝑃𝑘 =
1

𝑐

⎡⎣ ∏︁
𝜃∈𝑆𝜏∖𝑆𝑑

(1− 𝑃𝐷 (𝜃))
∏︁
𝑧∈𝑆𝑏

𝜆𝑏 (𝑧)
∏︁
𝑧∈𝑆𝑓

𝜆𝑓 (𝑧)
∏︁

𝑧,𝜃∈𝑆𝑑

𝑃𝐷 (𝑧) 𝑝 (𝑧 | 𝜃)

⎤⎦𝑃𝑘−1 (5.1)
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Finally, after using the trick explained in section 2.4.2 and applying logarithms for
numerical stability, formula used for track score increment ∆𝐿 becomes (5.2):

∆𝐿 =

⎧⎪⎨⎪⎩
ln (1− 𝑃𝐷 (𝜃)) missing observation
ln (𝑃𝐷 (𝑧))− ln (𝜆𝑓 (𝑧)) + ln (𝑝 (𝑧 | 𝜃)) update 𝜃 by 𝑧
ln (𝑃𝐷 (𝑧))− ln (𝜆𝑓 (𝑧)) + ln (𝑝 (𝑧 | 𝜃)) + ln (𝜆𝑏 (𝑧)) initialize 𝜃 by 𝑧

(5.2)

More details about the actual implementation can be found in chapter 6. However,
equation (5.2) is required to be known by the user, because he is responsible for evaluating
all the terms by implementing the respective models. Now I will connect equation (5.2)
with the provided class diagram 5.2.

<<Interface>>

SensorModel

+ initialize (AttributeModel, Observation): void

+ update (AttributeModel, Observation): bool

+ detectionProba (AttributeModel): float

+ detectionProba (Position): float

+ targetBirthLogDensity (Position): float

+ falseAlarmLogDensity (Position): float
+ cache (AttributeModel): UpdateCache

<<Interface>>

PredictiveModel

+ predict (AttributeModel): void

<<Interface>>

AttributeModel

+ logLikelihood (): float

+ clone (): AttributeModel

+ position (): Position

<<Interface>>

Factory

+ create (): AttributeModel

UpdateCache

Observation

- position: Position

+ Observation (Position)
+ position (): Position


Position

+ coords: float [Dim]

Figure 5.2: Class diagram of the implementable interface

I’ll start with the most complex class, which is SensorModel. Method initialize
is supposed to properly initialize an AttributeModel with the observation, from which a
new target has been internally created. Thus, the method should evaluate ln (𝑝 (𝑧 | 𝜃)) term
in (5.2) in when initializing an AttributeModel instance. For example, in case of a Kalman
filter, this can be the log-probability density of the measurement noise 𝑅 (determined by
the SensorModel) at 0. Method update is supposed to properly update the state of an
AttributeModel with the observation associated to it. Thus, the method has to evaluate
ln (𝑝 (𝑧 | 𝜃)) term in (5.2) for given AttributeModel. As I’ve mentioned in section 5.2.2, it
is actually a union of both gating and update step, therefore the method returns a Boolean
value. It should return the value of false, if the observation falls out of the validation gate.
Method detectionProba should return the prior probability of detecting a target in state
𝜃, i.e. 𝑃𝐷 (𝜃) term in (5.2). It is overloaded for both Position and AttributeModel as an
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argument. The reason for the Position overload is that it is very reasonable to condition
the value only on the attribute of position, while conditioning it on some other attributes
might be disputable. However, the AttributeModel overload is kept in order to maintain
the generality. An important use case is that an AttributeModel might internally use a
different coordinate frame than the sensor device. This is especially the case in a multi-
sensor environment. On missing observation, when the value of ln (1− 𝑃𝐷 (𝜃)) is required,
passing the predicted position is ambiguous, since the SensorModel doesn’t know if it is
in the aggregated coordinate frame (e.g. UTM coordinates), or in the sensor coordinate
frame (e.g. pixel coordinates in an image). The methods targetBirthLogDensity and
falseAlarmLogDensity both take a Position as an input and should return, as their
names suggest, ln (𝜆𝑏 (𝑧)) and ln (𝜆𝑓 (𝑧)) terms in (5.2), respectively. Finally, the method
cache can be used to store any precomputed values for update per each AttributeModel
instance. AttributeModel is, as was said in section 5.2.1, understood as a container for
the state. Particular implementation has to be known by all instances of SensorModel, in
order to properly update it. Methods clone and position are quite self-describing, but
method logLikelihood deserves a few words. Although it should be clear that this method
represents ln (𝑝 (𝑧 | 𝜃)) term in (5.2), in fact it can be also ln (𝑝 (𝜃 | 𝑧)), and the decision is
up to the user. The reason why this is valid comes from the Bayes rule and a handy use of
dummy tracks and observations. As was mentioned in chapter 2, for consistency, a dummy
track representing “exogenous observations” (i.e. new target or false alarm) and a dummy
observation representing “missing detection” can be introduced. In this uniform simplified
notation, 𝑃𝑘 from equation (5.1) can be expressed using equation (5.3), where 𝑧, 𝜃 denotes
all the observation-to-track associations, including the dummy ones:

𝑃𝑘

𝑃𝑘−1
∝
∏︁
𝑧,𝜃

𝑃 (𝑧 | 𝜃) =
∏︁
𝑧,𝜃

𝑃 (𝜃 | 𝑧)𝑃 (𝑧)

𝑃 (𝜃)
=
∏︁
𝑧,𝜃

𝑃 (𝑧)

𝑃 (𝜃)

∏︁
𝑧,𝜃

𝑃 (𝜃 | 𝑧) (5.3)

From equation (5.3), it is evident that transforming the probabilities in equation (5.1)
from 𝑃 (𝑧 | 𝜃) to 𝑃 (𝜃 | 𝑧) and vice versa is simply a multiplication by a constant, because
the joint probabilities of all the states 𝜃 and observations 𝑧 at scan 𝑘 are constant. Another
source of ambiguity is, how this quantity should be incorporated into the final value of
ln (𝑝 (𝑧 | 𝜃)) term in (5.2). In case of a motion filter, a probability density is preferred, since
it is put against the 𝜆𝑓 hypothesis, which makes the final score numerically interpretable
in the way it was described in section 2.4.2. However, when extending the model beyond
a simple motion filtering, special care is necessary. For example, when a logistic regression
classifier is used to predict the probability of 𝑃 (𝜃 | 𝑧) based on some higher level feature,
such as object color, simple addition of ln (𝑃 (𝜃 | 𝑧)), while being mathematically correct,
can change the track score numerical interpretation significantly as it is always negative.
Therefore, I recommend to divide the estimated probability by some baseline value, e.g.
the one that gives the best classification accuracy in the case of logistic regression example.
Then the score increases when the hard decision of the model would be to accept the
hypothesis. It is also mathematically correct, following the argument about equation (2.22).
Factory is an inner class of AttributeModel and has a purpose of creating instances of a
particular implementation of AttributeModel. For PredictiveModel, a singleton method
predict has to be implemented in order to predict the future state of an AttributeModel
instance based on its current state. For example, in case of a Kalman filter, it is simply
an application of the prediction equations (2.1, 2.2). In context of section 5.2.1, I assume
Position, Observation and UpdateCache to be sufficiently self-describing.
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Chapter 6

Implementation

In chapter 5, I’ve described the overall design of the implemented tracking system. Motiva-
tion, core ideas, chosen paradigm (TOMHT), class diagram of the implementable interface
(figure 5.2), and also tracking equation (5.1, 5.2) used in the tracking engine were provided
and explained. In this chapter, I describe the implementation details of the tracking engine
part (blue circle in figure 5.1). As I’ve already mentioned, I chose the C++ programming
language as a language of implementation. For prototyping during the development, data
analysis, and preprocessing data for the tracker, I’ve used Python programming language,
since Python has a very mature ecosystem of machine learning and data science frameworks
implementing well-known models and algorithms, and in contrast to C++, the interface is
much simpler and requires less work. Thus, for the sake of time, and because the data
preprocessing step is not a part of the tracking system proposed in this thesis, I didn’t
bother with a dull work of rewriting machine learning models from Python frameworks into
the C++ ones. For the tracking engine itself, together with the implementable interface,
the C++14 standard template library was completely sufficient. For implementing motion
filters, I’ve used a lightweight linear algebra library Eigen1, which is known for its great
performance, enabling many compile time optimizations thanks to an extensive use of the
C++ metaprogramming. Finally, for basic image processing, I’ve used OpenCV2 (version
3.4) library. For data analysis in Python, I’ve used NumPy3, SciPy4, and Matplotlib5.
For machine (deep) learning in Python, in order to run pre-trained neural networks that
I’ve used for high-level image processing, I’ve used frameworks in which particular models
were originally written, i.e. PyTorch6, Caffe, and TensorFlow7. For simulations, I’ve used a
Python framework called Stone Soup’s8. However, the main part of the system, the track-
ing engine, is implemented in pure C++ (2014 standard). Throughout this chapter, I will
describe the data structures and algorithms used in the tracking engine, as well as some im-
plementation specific details. Finally, in section 6.2, I’ll provide example implementations
of the implementable interface, described in section 5.2.

1https://eigen.tuxfamily.org
2https://opencv.org
3https://numpy.org
4https://scipy.org
5https://matplotlib.org/
6https://pytorch.org
6https://caffe.berkeleyvision.org
7https://www.tensorflow.org
8https://stonesoup.readthedocs.io/en/v0.1b9/
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6.1 Tracking Engine
Tracking engine basically implements and extends the track-oriented MHT approach (sec-
tion 2.4.2). In the main class, named TrackingEngine, the tracking itself is performed by
two methods - predict and update. Tracker internally uses a discrete time and every call
to predict is understood as a “tick”. While the real world interpretation of the internal
discrete timer of the tracker engine is merely up to the user, it usually makes only sense to
understand the tick as a fixed interval in continuous real time axis. Conventional motion
models, such as Kalman filter, may, without special care, become mathematically incorrect
otherwise. The update method is called for each scan at given time 𝑘. However, if there
are no data scans at time 𝑘, predict can be called again without any worries.

One of the most important goals of the implemented tracking system is the ability to
aggregate data from multiple sensors. Although the MHT paradigm is implicitly accepted
as applicable for a multi-sensor environment in the literature [10, 9], I consider it important
to discuss explicitly, how exactly this should work, since I don’t find it self-evident enough.
First, I’ll say how it is done from the view of the user programmer. When the number of
sensors is more than one, hence there may be more than one data scan available at some
time 𝑘, update method is simply called once for each scan. Moreover, the order in which
those updates are performed (e.g. 1, 2, 3 vs. 3, 2, 1) doesn’t matter. Now I’ll explain
why this is correct. Internally, the hypothesis tree can be build almost in the same way,
as if the scans arrived consecutively in time. The only modification, that is necessary to
make it mathematically correct, is simply to add ∆𝐿 = ln (1− 𝑃𝐷 (𝜃)) per each previously
processed scan at the current time 𝑘. This goes directly from equation (5.2) and the whole
aforementioned statement for is illustrated by figure 6.1 for a 3-sensor system example,
where for simplicity, only one prior target is considered, and only one observation per scan
is received. Observations have now triplet subscript 𝑘𝑗𝑖, where 𝑘 is for time, 𝑗 is for sensor
and 𝑖 is for observation within the scan 𝑘𝑗. New target initiated from observation 𝑧000 is
omitted in order to save the space, because new targets from 𝑧010 and 𝑧020 are sufficient for
the illustration purposes.

z000

z010

z020 z020

z010

z020 z020

k + 1

z010

z020 z020

T1

T2 T3

Figure 6.1: Sensor fusion hypothesis trees in 3-sensor system for one time “tick”

Also, in a multi-sensor environment, even more “aggressive” hypothesis pruning may
be required in order to keep the computational complexity tracktable. However, it should
be clear that there is yet something missing, in order to make this work, since it there are
many permutations in which the actual updates of the actual attribute models could be
executed. Therefore, it is desired, that individual models used to represent the state of the
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target 𝜃, exhibit a statistical independence across the successive updates. In other words,
for a sequence of observations 𝑧1, 𝑧2, . . . , 𝑧𝑘−𝑛+1, a prior state 𝜃𝑘−𝑛, and a current state 𝜃𝑘,
the following factorization (6.1) must be valid:

𝑃 (𝜃𝑘 | 𝑧1, 𝑧2, . . . , 𝑧𝑘−𝑛+1, 𝜃𝑘−𝑛) =

𝑘−𝑛+1∏︁
𝑖=1

𝑃 (𝜃𝑘 | 𝑧𝑖, 𝜃𝑘−𝑛) (6.1)

Luckily, this property is exhibited by standard models such as Kalman filter. Even if in
some model an auto-correlation occurs, it is unlikely to be significant. Expanding hypothesis
for every possible permutation would lead to even greater possibility space explosion and
almost certainly would not bring any practical improvement. An overall operation scheme
for the methods predict and update can be seen in the diagram 6.2.

Push Scan to Scan Window

Compute Statistics for Scan

Update Existing Targets

Create New Targets

Compute Leaf Scores

Score Thresholding

Solve Data Association Problem

Now := Now + 1

N-Scan Pruning

Predict Existing Targets

update (scan) predict ()

Figure 6.2: Operation pipelines of update and predict

For update, a moving scan window of size defined by user is maintained and each new
data scan is “pushed” into is as the most-recent one and when the size is exceeded, the
least-recent one is “popped”. Thus, the moving scan window is basically a simple FIFO
(first-in-first-out) structure. Before the updates, per-observation statistics described in
section 5.2 and obtained by interface (diagram 5.2), are precomputed. Any values used
for updates are precomputed and stored in UpdateCache instances per target hypothesis as
well, when this is implemented by the user. Then, every prior target is updated based on the
update method of the respective SensorModel instance. From observations, which are not
associated with any target (or the associations are unlikely enough), new target hypotheses
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are created, similarly by the method initialize. While it is again, not explicitly mentioned
in the literature, I find it important to note that the track score 𝐿 should be bounded by
the scan window. Everything before the least-recent scan is considered as “closed”, because
definite decisions have been made. Due to a recursive nature of the track score, as written
in equation (5.2), it is convenient to just keep adding ∆𝐿𝑘 indefinitely, hoping that the use
of logarithms will “curb” the numerical range. But an aforementioned fact, that there are
no alternative global hypotheses before the least-recent scan, could serve as an argument,
why I recognize this to be incorrect to do. Because there is only one global hypothesis
prior to the scan window, all global hypotheses within the scan window have, according
to equation (5.1), probability 𝑃𝑘 · 𝑃0, where 𝑃0 is the probability of the singleton global
hypothesis prior to the scan window. When implementing the system, I’ve also empirically
found that this way, tracker was prune to becoming highly unstable. Therefore, I’ve assumed
that it is truly necessary to sum the ∆𝐿𝑘 values solely within the moving scan window.
In order to preserve the convenience of the recursive formula (5.2), every target in my
implementation holds a floating point value, which I called a “root bias”, and this value is
simply subtracted from the leaf value of 𝐿𝑘. This value, denote it as 𝛽, is precisely defined
as 𝛽 = 𝐿𝑘−𝑛−1, where 𝑘 − 𝑛 denotes the least-recent scan.

After computing track scores, thresholding follows. Here, track hypotheses with scores
below the user specified threshold are simply deleted. Finally, a data association problem is
solved, which is discussed in more detail in section 6.1.2. Pipeline for the predict method
in diagram 6.2 is fairly simple. Increment the internal discrete timer, perform the 𝑛-scan
pruning routine (if scan window is full), and for each track hypothesis, call the predict
method of PredictiveModel instance (diagram 5.2) associated with the tracker. The 𝑛-
scan pruning operation is done only in the predict method because I’ve decided to move
the scan window only in the time domain, as I consider it more natural. To summarize it
all, I provide an illustrative example of a C++ client code for a 2-sensor system (figure 6.3).

TrackingEngine tracker(settings);
tracker.setAttributeModelFactory(factory);
tracker.addSensor("sensor1", sensorModel1);
tracker.addSensor("sensor2", sensorModel2);
tracker.setPredictor(predictor);

while (1) { // main-loop
tracker.predict();
std::shared_ptr<const Scan> scan1 = receive1(tracker.now());
std::shared_ptr<const Scan> scan2 = receive2(tracker.now());
tracker.update(scan1);
tracker.update(scan2);
// process the results here

}

Figure 6.3: Example of a client code in C++
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6.1.1 Track Tree Data Structure

In the pioneering Reid’s paper [60], the tree of global hypotheses was stored as a matrix,
where each row represented one global hypothesis. For track-oriented MHT, a similar
approach could be made. However, given the dynamic nature of the intensively pruned track
trees, and the (at least spatial) inefficiency of storing the whole path back to the root for
each leaf as a matrix row, “direct” implementation of the tree structure in a computer is to
be considered. By this direct implementation, I mean a general tree structure implemented
using e.g. raw memory pointers in C/C++. The only reasonable argument against using
such data structure may be the problem of data locality. In matrix implementation, which
normally simply an 2D array, data is located in a continuous block of memory. Traversals
can leverage huge performance gains from efficiently utilizing the processor cache. However,
on modifications, the entire structure has to be copied, which can become very costly. On
the other hand, a direct implementation using dynamically allocated nodes and memory
pointers to them, can suffer from inefficient utilization of the processor cache, due to data
non-locality. Nevertheless, the memory pooling techniques may help significantly. After
fair consideration, I’ve preferred the direct implementation, as I’ve found it to be encoding
the structural relationships between the nodes much better.

When programming trees using nodes and their pointers to link them appropriately, it
is very clear how to do so for binary trees. Same goes for their generalizations, i.e. 𝑛-ary
trees. However, when a general tree has to be implemented, there is a variable number of
children nodes, and therefore, children cannot be records in the node structure anymore. A
dynamic data structure to store the children must be implemented. A naive way to do so
is to use a dynamic array of node pointers. This is, however, not the best way to go. The
most efficient way how to store the children nodes is to use a linked list instead. This is the
variation which I’ve implemented. Each node stores a pointer to the parent, a pointer to
the first child in the list of its children, and a pointer to its sibling. An illustrative example
is given in the figure 6.4, where oriented edges (arrows) in the image on the right represent
the memory pointers, and edges with a flat end represent nullptr.

(a) General tree example

DATA

DATA DATA DATA

DATA DATA

(b) Corresponding structure in the computer

Figure 6.4: General tree implementation

To be able to perform all the required tasks, only three algorithms operating on the track
tree structure are required. First, a traversal algorithm has to be implemented. Thanks to
the design of the structure (figure 6.4), it is not only possible to perform the depth-first-
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search (DFS) traversal through the tree in a non-recursive manner, but it is possible to do
so without any auxiliary stack structure. This makes the deletion operations (e.g. in 𝑛-scan
pruning), as well as collecting the leaves, very efficient. The second algorithm is the detach
operation, which simply splits the tree at the given node, removing the node from the list
of children of its parent, and setting its parent pointer to nullptr. Finally, the third one is
a non-default constructor, which takes a parent node pointer as an argument, and properly
“splices” the newly created node with the parent tree. The mentioned algorithms are just
a dull work with pointers, where a high level of mental concentration of the programmer
is occasionally required, but essentially, all three are more or less trivial. Hence, I will skip
the details about the exact form of those algorithms.

As I’ve mentioned earlier, the root bias 𝛽, which I’ve defined in equation (??), is main-
tained for each tree. Also, except formal attributes, such as root pointer and an integer
representing the identity of a target, two buffers are used for leave nodes, in order to speed
up the tracker in a multi-sensor scenario. Although after 𝑛-scan pruning, the changes in
the track tree are generally unpredictable, and the leaves have to be reassembled using
DFS traversal, expanding new hypotheses as well as simple pruning, in which only single
leaf hypothesis is deleted at a time, the changes are tracktable. By keeping the leaves in a
buffer between the individual predict calls, it is possible to avoid traversing the whole tree
in order to collect its current leaves. Adding and removing pointers from a buffer, which
I’ve implemented as a dynamic array, has a constant time complexity, as the removal can
be done by swapping the removed value with the last element and just shrinking the array,
which is nothing more than decrementing the value of the variable storing its size.

Finally, the node data in the tree is defined as a record of time tick 𝑘, at which it
was created, an instance of an AttributeModel class, double precision floating point score
value 𝐿𝑘, hypothesis as an enumerator, and an AssociationSet structure. Hypothesis
enumerator is currently one of { Observation, Prediction, MissingObservation }, but
could be easily extended for more advanced hypotheses. What is important in particular,
is the mentioned AssociationSet attribute. It is basically a set of node pointers, that
are associated with a common observation 𝑧, which makes them incompatible with each
other and this information is used to construct the data association problem discussed in
section 6.1.2. Although for general sets, data structures such as hash table or red-black
binary tree are preferred thanks to their favourable asymptotic complexity of search and
insertion operations, I’ve found that for my problem, where the expected sizes of sets are
small, i.e. much less than a hundred usually, a dynamic array with naive sequential search
performs the best.

6.1.2 Solving Data Association

Finally, hard decisions have to be made at some point, not only to provide the user with the
definite result, but to incrementally reduce the space of possible hypotheses. For this pur-
pose, a data association problem must be formally stated. As I’ve described in section 2.3,
this problem can be stated as a combinatorial optimization. Precisely for TOMHT, there
are two standard formulations, as explained in section 2.4.2. The first, more traditional one,
is a direct optimization throughout the individual scans within the moving window, using
the Lagrangian relaxation technique [19]. The second, more modern approach, and the one
which I chose, is the reduction of the problem to the maximum weight independent set
problem (MWISP), which is actually searching for a maximum aposteriori (MAP) assign-
ment in a pairwise Markov random field (MRF) representing the posterior distribution over

39



the possible global hypotheses, factorized by the given collection of track trees, according to
equations (5.1, 5.2). This dual representation is illustrated by figures 2.4 and 2.6. Because
I do not assume the graphical models such as MRF to be a common knowledge, hence I’ll
provide a brief explanation for the sake of clarity of the rest of this section. More details
can be found in the literature [8]. A pairwise Markov random field is a graphical representa-
tion of any probability distribution, that can be factorized into the following pattern (6.2),
where Φ is called an edge potential and 𝑥1, 𝑥2, 𝑥3, . . . denote all the nodes:

ln (𝑃 (𝑥1, 𝑥2, 𝑥3, . . . )) = 𝐶 + [Φ (𝑥1, 𝑥2) + Φ (𝑥1, 𝑥3) + Φ (𝑥2, 𝑥3) + . . . ] (6.2)

Variable nodes sharing an edge are conditionally dependent, since they share a common
factor. In case of the probability distribution from track trees, a corresponding pairwise
MRF is constructed in the following way. Leaf nodes from all trees, representing individual
track hypotheses, are understood as Bernoulli distributed random variables, i.e. taking
values either 0 or 1, depending on whether the given track hypothesis is in the global one or
not. Nodes corresponding to those hypotheses, which are incompatible (sharing the same
tree or a common observation), are connected by an edge. To encode the constraints, the
edge potentials are defined as (6.3):

Φ (𝑢, 𝑣)

{︃
−∞ if 𝑢 = 1 ∧ 𝑣 = 1

0 otherwise
(6.3)

To incorporate the track scores, an extra variable is defined for each node in the MRF,
and is connected to it via an edge with potential defined as the respective track score 𝐿 .
It is evident, that those new variables can be made implicit with the notion of the node
potential Φ (𝑢), and doesn’t have to be explicitly present in the corresponding graph.

To approximately infer the MAP assignment in the MRF, algorithm known as belief-
propagation [8], or more precisely its version called max-product, can be utilized. Algorithm
is proven to find the exact MAP assignment in polynomial time, when the MRF graph has
a tree topology. Otherwise, it is not even guaranteed to converge. However, in practice,
it often converges and the results are near-optimal. Inspired by this observation, it was
proposed for TOMHT in [66]. Unfortunately, I’ve found that the lack of convergence guar-
antees is not only potentially dangerous, but in graphs constructed from complex tracking
scenarios, it almost never converged. Inspired by the basic idea of a decentralized mes-
sage passing algorithm, I’ve implemented the cavity expansion algorithm [28], which is
sometimes referred to as “repaired belief-propagation”. Inspired by the (back then) recent
work in statistical physics, a notion of cavity, or bonus, was used. In [28], general decision
networks with random weights were analyzed. A set of agents taking decisions from some
categorical distribution (nodes), set of edges defining the interactions (i.e. statistical depen-
dence) between the agents, and of course node and edge potentials Φ were used to define
such general decision networks. Then, instead of trying to compute the optimal solution
directly, a cavity 𝐵 is approximated instead. In this context, 𝐵 is defined for each variable
node 𝑢 and an action 𝑎 by equation (6.4), where 𝑥1, 𝑥2, . . . denote all the other nodes:

𝐵 (𝑢, 𝑎) =
∑︁

𝑥1,𝑥2,...

ln (𝑃 (𝑢 = 𝑎, 𝑥1, 𝑥2, . . . ))−
∑︁

𝑥1,𝑥2,...

ln (𝑃 (𝑢 = 0, 𝑥1, 𝑥2, . . . )) (6.4)

After analyzing the computational tree of the max-product, and exhaustive mathe-
matical derivations, a final recursive algorithm was constructed and proven to be always
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converging, since the computational tree is finite. Algorithm finds the exact solution, when
the recursion depth is unlimited, but the computational complexity is then exponential,
as the problem is NP-hard. Moreover, it degrades to max-product when MRF is a tree.
The main virtue of [28] is that they proved that when a given decision network exhibits a
so-called correlation decay, the contribution of other nodes to the value of 𝐵 is decreasing
exponentially with the number of edges along the mutual path. Therefore, by setting a
maximum recursion depth, e.g. 3, a good approximation of 𝐵 can be obtained in poly-
nomial time. It was proven with a comprehensive analysis that for potentials in MWISP
network (and few other classical problems) distributed by normal, exponential, and also
uniform probability density functions, the property of correlation decay holds true. For
MWISP on the constructed MRF, the pseudocode provided in [28] can be simplified into
the final pseudocode 1, which I’ve implemented in C++. Here, 𝐺 ∖ {𝑢} is an abbreviation
for removing a node 𝑢 from graph 𝐺 completely, with all the edges in which it was con-
tained. I’ve implemented the graph as an adjacency list structure and all modifications of
it are done using a vector of integers, and by incrementing or decrementing a coefficient at
a corresponding index a node is either removed from, or returned to 𝐺. When testing my
implementation on randomly generated graphs, I’ve found that maximum recursion depth
𝑟 = 3 gives a good tradeoff between the speed and quality.

function cavity_expansion(𝑢, 𝑟,𝐺):
if 𝑟 = 0 then

return 0
end
𝐺𝑠𝑢𝑏 := 𝐺 ∖ {𝑢}
𝐵 := Φ (𝐺, 𝑢)
forall 𝑣 ∈ neighbors (𝐺, 𝑢) do

𝐵𝑠𝑢𝑏 := cavity_expansion(𝑣, 𝑟 − 1, 𝐺𝑠𝑢𝑏)
𝐵 := 𝐵 −max (0, 𝐵𝑠𝑢𝑏)
𝐺𝑠𝑢𝑏 := 𝐺𝑠𝑢𝑏 ∖ {𝑣}

end
return 𝐵

Algorithm 1: CE algorithm for MWISP

Because the solution is not exact when 𝑟 is fixed, the cavity 𝐵 (𝑢, 1) is not guaranteed
to be > 0 when 𝑢 is in the MWIS, and < 0 when it is not. Therefore, I’ve created a simple
algorithm to reconstruct the near-optimal feasible solution based on the fact, that even if
the cavity is not greater than zero when 𝑢 is in the MWIS, it is still greater than the cavity
of any 𝑣, that is not in the MWIS. The algorithm is defined in the pseudocode 2.

After I’ve implemented the final algorithm 2 and successfully used it to solve the data
association problem arising in TOMHT, I’ve realized that the cavity expansion 1 (CE)
part could be significantly improved in terms of computational complexity, exploiting the
information that is contained in the track tree structure itself, hence is freely available as
a side effect of its existence. This information is the tree membership of the individual
leaf nodes. This information is not being exploited directly be the classical S-D assignment
algorithm [19], neither in the MWISP formulation, solved for example by the CE. An
alternative type of graphical model which is similar to but more explicit than MRF is known
as factor graph [8]. In this model, the factors are expressed explicitly, and the factorization
of the given distribution becomes (6.5), using a similar notation as in equation (6.2), but
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function reconstruct(𝐺, 𝑟):
𝐵 := empty map
forall 𝑢 ∈ nodes (𝐺) do

𝐵 [𝑢] := cavity_expansion(𝑢, 𝑟,𝐺);
end
𝐴 := ∅
while ¬ empty (𝐵) do

𝑢 := arg min (𝐵)
delete 𝐵 [𝑢]
𝐴 := 𝐴 ∪ {𝑢}

end
return 𝐴

Algorithm 2: Find MAP in pairwise MRF

𝑓 (. . . ) now represents the factor potentials explicitly:

ln (𝑃 (𝑥1, 𝑥2, 𝑥3, . . . )) = 𝐶 +
𝑁∑︁
𝑖=1

𝑓𝑖 (𝑥1, 𝑥2, 𝑥3, . . . ) (6.5)

Most efficient representation of any Markov random field (including the pairwise one)
as a factor graph, is one where the individual factors correspond to the cliques of the
minimum clique cover (MCC) of a particular MRF. But since finding this MCC is known
to be NP-hard as well, it doesn’t seem very helpful. However, track trees are themselves an
explicit cliques. Instead of interconnecting all the leaves of a tree with each other, forming(︀
𝑛2 − 𝑛

)︀
/2 edges, a single factor representing the tree membership can be defined instead.

Even though track trees are obviously not guaranteed in any way to be a part of the MCC
of the underlying graph, they are often large. Beyond the theoretical reasoning, I’ve also
found this to be a significant speed-up in practice (up to 2×). An illustration of the different
representations of the same probability distribution is shown in the figure 6.5.

= =

Figure 6.5: Trial representation - track tree, pairwise MRF and factor graph

After modifying the original CE algorithm for MWISP, based on the given observation,
I’ve also empirically verified the implementation by comparing the outputs to the ones from
the original CE, successfully. Finally, the CE algorithm, improved for the TOMHT problem
is provided in the pseudocode 3. The implementation in C++ is in its nature similar to that
of the pseudocode 1. The only difference is that the cliques resulting from tree membership
are represented explicitly as lists of nodes, thus the adjacency list contains only inter-tree
incompatibilities, and each node has a pointer to the clique of which it is member of.
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function cavity_expansion(𝑢, 𝑟,𝐺):
if 𝑟 = 0 then

return 0
end
𝜇 := 0
forall 𝑣 ∈ clique (𝐺, 𝑢) do

𝐺𝑠𝑢𝑏 := 𝐺 ∖ clique (𝐺, 𝑣)
𝐵𝑠𝑢𝑏 := cavity_expansion(𝑣, 𝑟 − 1, 𝐺𝑠𝑢𝑏)
𝜇 := max (𝜇,𝐵𝑠𝑢𝑏)

end
𝐵 := Φ (𝐺, 𝑢)− 𝜇
𝐺𝑠𝑢𝑏 := 𝐺 ∖ ({𝑢} ∪ clique (𝐺, 𝑢))
forall 𝑣 ∈ neighbors (𝐺, 𝑢) ∖ clique (𝐺, 𝑢) do

𝐵𝑠𝑢𝑏 := cavity_expansion(𝑣, 𝑟 − 1, 𝐺𝑠𝑢𝑏)
𝐵 := 𝐵 −max (0, 𝐵𝑠𝑢𝑏)
𝐺𝑠𝑢𝑏 := 𝐺𝑠𝑢𝑏 ∖ {𝑣}

end
return 𝐵

Algorithm 3: Modified CE algorithm

In TOMHT algorithms, the size of a moving scan window used for the 𝑛-scan pruning
routine is usually very small due to an exponential growth of the possibility space [10].
For example, the usual sizes used in radar tracking range from 3 to 5. Although such
small windows are still helpful and often sufficient, in some scenarios, especially when
strong inter-object occlusions happen, much larger windows may be required to solve an
ambiguities that were hard to solve by a simple motion filter, but could be solved by
some long-term features, such as appearance descriptor or a frequentist statistical model of
some attribute. In order to maintain larger scan windows, able to contain even hypotheses
older than a second (e.g. > 25 in case of a sensor with 25 Hz frequency), I’ve had to
employ another pruning strategy. Initially I was thinking about some hierarchical approach,
similar to the 𝑛-scan pruning in its nature, however, I was not able to construct any
reasonable algorithm of that kind. I’ve finally reached for an inspiration in traditional
Murty’s 𝑘-best algorithm [56], being successfully used in the hypothesis-oriented MHT [17].
I’ve briefly described the original algorithm in section 2.4.1 as a way of obtaining the 𝑘-
best solutions to the classical linear assignment problem, in an increasing order of cost. I
realized that the set theoretical conclusions about the set of all feasible solutions of a given
problem instance could be generalized to a much harder MWISP as well. After carefully
modifying the original idea from [56] for my tracking problem, the final pseudocode 4 can
be written, with a helper function for the so-called node partitioning. I’ve also verified the
implementation empirically, against the brute-force method on randomly generated graphs.
I call the resulting pruning method the 𝑛-best pruning. First, user-defined number of best
global hypotheses 𝑛 is obtained using the algorithm from pseudocode 4. Then, the leaves
in the corresponding track trees, which are not present in any of those solutions, are simply
deleted. This way, the computational complexity is strongly bounded as the maximum
number of leaves of each tree is guaranteed not to exceed the user-defined value of 𝑛.

The CE algorithm used as a backbone for the combinatorial optimization problem of
finding the best global hypothesis (or a set of 𝑛-best ones) of observation-to-track associa-
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tions within the moving scan window has, beyond the mathematical guarantees about its
convergence and the quality of the result, a very attractive property of being completely
decentralized. This means that while in traditional approaches, a parallelization of the com-
putations was inherently dependent on the clustering procedure, here the clustering step can
even be removed. Therefore, although I’ve initially implemented this step, I’ve removed it
in the final implementation as a possible source of unnecessary overhead. Maybe it could be
a configurable part as well, because while an absence of this decomposition doesn’t change
the best global hypothesis, a list of the 𝑛-best hypotheses is potentially affected. I’ll leave
that for a possible future work. An important side note about the algorithms 1, 3, 2 and 4,
proposed in this section, is that none of them works properly for negative weights. There-
fore, it is crucial to transpose the weights adequately in such cases. However, this property
becomes very obvious after understanding how the proposed algorithms work.

function partition(𝐺,𝐿,𝐴, 𝑟):
𝐿 := 𝐿 ∖𝐴
𝑉 := ∅
forall 𝑢 ∈ 𝐴 do

𝑁 := 𝑉
forall 𝑣 ∈ 𝑉 do

𝑁 := 𝑁 ∪ neighbors (𝑣)
end
𝐺𝑠𝑢𝑏 := 𝐺 ∖ (𝑁 ∪ {𝑢})
𝐴𝑠𝑢𝑏 := reconstruct(𝐺𝑠𝑢𝑏, 𝑟)
𝐿 := 𝐿 ∪ {𝑉 ∪𝐴𝑠𝑢𝑏}
𝑉 := 𝑉 ∪ {𝑢}

end
return 𝐿

function kbest_assignments(𝐺, 𝑘, 𝑟):
𝑆 := ∅
𝐴 := reconstruct(𝐺, 𝑟)
𝐿 := {𝐴}
for 𝑖← 1 to 𝑘 do

𝐿 := partition(𝐺,𝐿,𝐴, 𝑟)
if 𝐿 = ∅ then

break
end
𝐴 := arg max

(︀
𝑋 ∈ 𝐿 :

∑︀
𝑢∈𝑋 Φ (𝑢)

)︀
𝑆 := 𝑆 ∪ {𝐴}

end
return 𝑆

Algorithm 4: Find 𝑘-best solutions

6.2 Example Implementations
In the rest of this chapter, I provide the example implementations of the implementable
interface (diagram 5.2).
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6.2.1 Linear Motion Predictor

First, I’ve implemented the AttributeModel interface as a wrapper for 𝑥 and 𝑃 of a sim-
ple Kalman filter for 2D position prediction and filtering, named AttributeModelBasic.
Following this, I’ve implemented the PredictiveModel interface to perform a prediction
step of the Kalman filter, named LinearPredictor. Model uses equations (2.1, 2.2) and a
constant velocity model, as written in equation (2.7), but augmented for the extra dimen-
sion. LinearPredictor can be initialized directly by setting the process noise variances for
position and velocity, using the random acceleration assumption, written in equation (2.8),
or both. I’ve found that even though random acceleration model as a means of dynamic
covariance adaptation suffers from hysteresis and introduces extra non-trivial parameters
for tuning, a fixed one provides quite reasonable approximation of the underlying dynamics,
taking into account a correlation between the position and its derivative. Also, it comes
with only single parameter 𝜎𝑎, instead of the two for position and velocity variances, or
even the whole 4 × 4 matrix 𝑄. AttributeModelBasic serves as a base class for all the
other implementations of the AttributeModel, while LinearPredictor is the only imple-
mentation of PredictiveModel, used in combination with all the other implementations of
the proposed interface.

6.2.2 Simple Camera Model and IoU

As the first implementation of the SensorModel interface, I’ve created a SimpleCamera
class, where the detection probability, the target birth log-density, as well as the false alarm
log-density, all used in equation (5.2), are just constant and provided by the user in the
constructor. For updating the AttributeModelBasic instances, i.e. Kalman filtering step,
equations (2.3, 2.4, 2.5, 2.6) are used and the measurement noise standard deviation as well
as the prior velocity standard deviation are required in the constructor. The observation
log-likelihood used in equation (5.2) is computed simply directly in the log-domain, by the
equation (6.6), where 𝑑 = 𝑧 −𝐻 · 𝑥 is the innovation:

ln (𝑝 (𝑧 | 𝜃)) = −1

2

[︁
𝑑T · 𝑆−1 · 𝑑+ ln (det𝑆) + 2 ln (2𝜋)

]︁
(6.6)

By implementing the UpdateCache inner interface class of the AttributeModel, values
which do not depend on the input observations 𝑧, i.e. 𝐻 · 𝑥, 𝑆−1,𝐾, 𝑃 and the normalizer
part of equation (6.6), are precomputed for each target hypothesis before the updates, which
eliminates redundant computations in cases when more than one observation falls within
the validation gate. The validation gate is implemented as thresholding the Mahalanobis
distance term in (6.6) with the 95-percentile location of 𝜒2-distribution with 2 degrees of
freedom. When observations with distance greater than this threshold are discarded, there
is only 5% probability that a mistake was made, given the current filter state 𝑥 and 𝑃 .

In recent work focussed on realtime MOT in video sequences, e.g. SORT [7], tracking
using the bounding boxes retrieved from visual object detectors, such as those described in
section 3.1.2, is a well established approach, because those boxes provide useful information
about the object size and partially about it shape as well. In [7], a bounding box param-
eterization using center, area and aspect ratio, is filtered with the standard Kalman filter.
While this might seem a little bit “hacky” from a theoretical view, as the area and especially
the aspect ratio obviously do not follow the assumptions made by the standard Kalman
filter, in practice the filtering works quite well for pedestrian tracking. The problem is
with the statistical interpretation, because although the filtering capability of the Kalman
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filter depends solely on the ratio of the covariances (as I’ve mentioned in section 2.2.1), the
actual distributions represented by 𝑥 and 𝑃 can be incorrect. Therefore, for evaluating the
possible observation-to-track associations, the intersection-over-union (IoU) metric is used.
This metric can be defined by equation (6.7), where 𝐴 and 𝐵 are axis-aligned bounding
boxes and 𝐴 ∩ 𝐵 is again an axis-aligned bounding box and can be easily obtained using
max and min operators:

IoU (𝐴,𝐵) =
area (𝐴 ∩𝐵)

area (𝐴) + area (𝐵)− area (𝐴 ∩𝐵)
(6.7)

In SORT-like-trackers [7], single hypothesis paradigm is employed and the optimal as-
signment is found using the classical Kuhn-Munkres algorithm [47] on the cost matrix
build from IoU scores between all the possible pairs of predicted boxes and detection boxes
(observations). Gating is done by thresholding with a user defined value. The statistical
interpretation of the aforementioned procedure is that the optimal assignment is actually
a MLE of the respective joint distribution, where the IoU scores are distributed according
to the exponential distribution. Because the rate parameter 𝜆 performs only scaling, it is
actually assuming the family of all the possible exponential distributions. Because this is
an uninformed assumption and the thresholding parameter is usually chosen with an “eye
of an expert” rather than based on some data analysis, I’ve decided to build the model
extending the SimpleCamera and AttributeModelBasic classes with the IoU metric in a
more rigorous way. I’ve analyzed the MOT Challenge9 public dataset, on which I’ve later
performed few evaluations, discussed in chapter 7. However, in the analysis, I’ve tried to
find an auto-distribution of the IoU metric as well as some baseline distribution. By auto-
distribution in this context I mean a distribution of IoU between the detection at time 𝑘
and the previous detection at time 𝑘−∆, translated according to the inertial from a motion
filter. The “lag” factor ∆ was set to 10 and the inertial was computed based on the simplest
motion filter possible - a difference between position at 𝑘 −∆ and 𝑘 − 2∆. This way, the
estimate should be an upper bound and should work well with any motion filter which is
at least as good as the simple difference based one. For the baseline distribution, i.e. al-
ternative hypothesis 𝐻1, I chose a distribution over IoU with randomly selected detections
with IoU > 0. After plotting the results, a clear separation is visible and also, the IoU
auto-distribution, representing 𝑝 (𝑧 | 𝜃) in equation (5.2), is not exponential but actually a
Γ-distribution. After obtaining the MLE, the estimated Γ-distribution fits almost perfectly
the observed data. Results are shown in the figure 6.6. The final equation for updating
the track score 𝐿 based on the IoU is (6.8), where 𝛼, 𝛽,∆ are estimated parameters of the
Γ-distribution, and 𝑝 (𝐻1) represents the baseline IoU distribution:

ln (𝑝 (𝑧 | 𝜃)) = ln (1− IoU + ∆) (𝛼− 1)− 𝛽 (1− IoU + ∆)− ln (𝑝 (𝐻1)) (6.8)

Based on the figure (6.6), IoU threshold 1/2 was chosen. It is good to mention, that
while the results from figure 6.6 are correct given the data, one cannot truly assign close to
zero likelihood to the event of IoU = 1, since it is actually possible due to rounding errors,
even though never seen in the analyzed dataset. Therefore, if IoU is greater than the mode
location of the estimated Γ-distribution, the resulting log-likelihood ratio score is clipped to
be strictly non-negative, preventing the score decrements caused by prior likelihood being
close to zero. Also, the empirical baseline distribution happens to be zero for IoU > 1/2
as well, which obviously cannot be assumed. Therefore, I’ve set the 𝑝 (𝐻1) to be 5% of the
mode density of the estimated Γ-distribution to reflect the prior uncertainty.

9https://motchallenge.net/
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Figure 6.6: IoU distributions - baseline (blue), auto (red), and Γ fit for auto (green)

6.2.3 Multi-Camera Model and Appearance Embeddings

Finally, I’ve implemented a system capable of multi-object tracking in a multi-sensor envi-
ronment. Again, the whole implementation is as simple as just implementing the respective
interfaces, since the tracking engine proposed in chapter 5 is basically a library and can be
used for any system of sensors. Because the only suitable real-world data for multi-sensor
tracking I was able to acquire was from a multi-camera road junction monitoring system (re-
sults are discussed later in chapter 7), my implementation is just a homogeneous system,
despite the name of this thesis. Creating a heterogeneous one is, however, in principle the
same, except the necessity to implement the models for other types of sensors capable to
map the observations to some common aggregate space and vice versa.

In this implementation, I’ve decided to geo-register the cameras as they are static, with
only small motions caused e.g. by wind. The geo-registration was done by manually an-
notating appropriate points with respective world geodetic system (WGS84) coordinates
(which can be found by online tool such as Google Earth10). Then, because the tracking
area is sufficiently flat, a simplified model known as planar homography can be employed.
First, the WGS84 coordinates are converted to universal transverse mercator (UTM) coor-
dinate system, which locally approximates the earth surface by small planar facets resulting
from a cylindrical projection of the geoid11. For this task, I’ve used a C++ implementa-
tion12 available online. One potentially significant reason for preferring the geo-registration
approach to creating a common aggregate space, as well as any other approach mapping the
measurement space to the physical space (or its subspace in case of the planar homography

10https://earth.google.com/web
11mathematical approximation of the planet Earth
12https://github.com/ethz-asl/fw_qgc
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from UTM) rather than some arbitrary one, is the invariance of the motion model param-
eters to the sensor location, pose and resolution. Also, this makes the simple models such
as constant velocity model with random acceleration assumption (section 2.2.1) to perform
much better, because the projection to the measurement space of a particular sensor, as a
one of the main sources of the motion non-linearity, is removed.

The first step is again, implementing the SensorModel interface. For all the other
specializations of multi-camera systems, potentially using higher level features, I’ve cre-
ated the MultiCamera class. For motion prediction, simple LinearPredictor described
in section 6.2.2 is used. However, the motion filtering step must be done using an ex-
tended Kalman filter, because of the non-linear projection from process space (UTM) to
the measurement space (screen coordinates). While it is absolutely possible to use a linear
mapping and just preprocess the input positions by transforming them to UTM before-
hand, I’ve found this to be an extremely rough method and setting the measurement noise
covariance matrix 𝑅 to some fixed value in metres is very problematic, as it is non-trivial
to map a (partially) known error covariance in the image plane to the real-world. It seems
that the best way to do so is actually to project the real-world position to the image plane
coordinates using the homography and then just use this homography locally linearized
around the current estimate to compute the Kalman gain 𝐾. The innovation covariance
𝑆 then reflects the non-linear effects of the perspective. Before I’ll dive into the particular
implementation of EKF for this task, it is important (and later useful) to write the projec-
tion equation of the well-known pinhole camera model (6.9), where 𝐾 and 𝑀 are known as
intrinsic and extrinsic camera matrix, respectively:⎡⎣𝑥′𝑦′

𝑧′

⎤⎦ = 𝐾 ·𝑀 ·

⎡⎢⎢⎣
𝑥
𝑦
𝑧
1

⎤⎥⎥⎦ =

⎡⎣𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎦ ·
⎡⎣𝑅11 𝑅12 𝑅13 𝑡𝑥
𝑅21 𝑅22 𝑅23 𝑡𝑦
𝑅31 𝑅32 𝑅33 𝑡𝑧

⎤⎦ ·
⎡⎢⎢⎣
𝑥
𝑦
𝑧
1

⎤⎥⎥⎦ (6.9)

The non-linear effects of perspective occur after dividing the result by 𝑧′. However, in
case of the UTM plane, the aforementioned planar homography directly follows from the
equation (6.9), when 𝑧 in real-world 3D coordinate space is set to 0. The planar homogra-
phy can thus be a full-rank matrix of shape 3× 3, which makes the whole projection very
tractable since the inverse projection can be found analytically. Planar homography has 8
degrees of freedom, hence can be found exactly from 4 point pairs using direct linear trans-
formation (DLT), which basically “unrolls” the corresponding individual projections into
single system of 8 linear equations. This can be solved by standard methods. Also, the more
point pairs available, the better, as the criterion of minimum of the squared residuals can be
optimized. For finding the homography matrix 𝑃 , I’ve used the OpenCV implementation.
Now, after writing the linear projection followed by so-called “perspective divide” opera-
tion in order to get the final screen position in the form

[︀
𝑥 𝑧 1

]︀
, a system of non-linear

equations can be written. As mentioned in section 2.2.1, the EKF requires Jacobians of
the non-linear mappings evaluated at the current filter estimate 𝑥. After a certain amount
of mathematical analysis, partial derivatives for the Jacobian of ℎ (𝑥) can be evaluated at
𝑥 using equations (6.10, 6.11, 6.12, 6.13):

𝜕ℎ1/𝜕𝑥1 = 𝛼 [(𝑃11𝑃32 − 𝑃12𝑃31)𝑥2 + (𝑃11𝑃33 − 𝑃13𝑃31)] (6.10)
𝜕ℎ1/𝜕𝑥2 = 𝛼 [(𝑃12𝑃31 − 𝑃11𝑃32)𝑥1 + (𝑃12𝑃33 − 𝑃13𝑃32)] (6.11)
𝜕ℎ2/𝜕𝑥1 = 𝛼 [(𝑃21𝑃32 − 𝑃22𝑃31)𝑥2 + (𝑃21𝑃33 − 𝑃23𝑃31)] (6.12)
𝜕ℎ2/𝜕𝑥2 = 𝛼 [(𝑃22𝑃31 − 𝑃21𝑃32)𝑥1 + (𝑃22𝑃33 − 𝑃23𝑃32)] (6.13)
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The coefficient 𝛼 is shared between the equations above because it is a result of the
perspective division, and is simply (6.14):

𝛼 = (𝑃31𝑥1 + 𝑃32𝑥2 + 𝑃33)
−2 (6.14)

To clarify the mathematical notation used in the equations above, it has to be explicitly
stated that the Kalman filter state

[︀
𝑥1 𝑥2 𝑥3 𝑥4

]︀
in the context of equations (6.10,

6.11, 6.12, 6.13) is equivalent to
[︀
𝑥 𝑦 𝑣𝑥 𝑣𝑦

]︀
in the context of pinhole camera model

equation (6.9), where 𝑣𝑥 and 𝑣𝑦 are the respective velocities. When implementing this in
C++, it is good to note that most of the computations defined in equations (6.10, 6.11,
6.12, 6.13) can be pre-computed.

Another usage of the planar homography is to determine, if it is even possible to see
the target object from a given camera, i.e. if it falls within its frustum13. When it doesn’t,
the detectionProba method of SensorModel instance should return 0, instead of absurdly
penalizing the track hypothesis score. A naive approach would be to just project the
predicted position in UTM to image plane and check, if it is within the image boundaries.
But there is a catch. Because the planar homography has one degree of freedom less than
the number of coefficients in the solution matrix 𝑃 , all matrices in the form 𝛾𝑃 represent
the same homography. When an object is behind the camera, its position will be projected
within the image boundaries after the perspective divide. Therefore, I’ve implemented a
decomposition of the homography matrix 𝑃 in order to overcome this problem. As a bonus
feature, physical 3D position of the camera is obtained, which may be exploited by some
more advanced implementations. The decomposition is fairly simple and follows directly
from equation (6.9). The rotation matrix 𝑅 can be reconstructed using equations (6.15,
6.16), where 𝑃𝑖 denotes 𝑖-th column of the homography matrix 𝑃 :

𝑟1 =
𝐾−1 · 𝑃1

||𝐾−1 · 𝑃1||
, 𝑟2 =

𝐾−1 · 𝑃2

||𝐾−1 · 𝑃2||
(6.15)

𝑅 =
[︀
𝑟1 𝑟2 (𝑟1 × 𝑟2)

]︀
(6.16)

The aforementioned issue that all matrices in the form 𝛾𝑃 represent the same trans-
formation, is partially solved. Now, 𝛾 is either 1 or −1. However, to be able to tell if the
object is behind the camera or not, the sign of 𝛾 must be known exactly. To find it, a
linear system 𝑅 |𝑇 has to be solved, where 𝑇 is the translation vector from equation (6.9)
and in this case, it is equal to properly normalized 3-rd column of 𝑃 . By properly I mean
according to the denominators in equation (6.15), which should both be the same, yet there
may be some small rounding error. The solution is an absolute real-world 3D position of
the camera, except that the 𝑧 coordinate may be negative. Assuming that all cameras are
above the ground, the sign of 𝛾 is now the sign of the 𝑧 coordinate. Of course, a similar
procedure could be done if it was assumed, that all cameras are under the ground, no mat-
ter how absurd it may sound. It is necessary to mention, that the pinhole camera model is
not correct for physical cameras based on optical lens, since those lenses introduce radial
and tangential distortions. Those distortions are usually modeled using up to 14 coefficient,
which have to be obtained by calibrating the camera. I’ve used the algorithms implemented
in OpenCV to obtain the undistorted images, in order to make the pinhole camera model
and geo-registration applicable.

Although using the detection boxes centers as positions when tracking in video sequences
is a common practice and works well for single camera, when trying to track in an aggregate

133D region which is visible on the screen
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space from multiple cameras bound by planar homography, large errors (in units of meters)
do occur. This is because the planar homography projects the world plane (UTM in this
case) to the image plane and vice versa, assuming the object center being at 𝑧 = 0, which
is obviously not correct, especially for taller objects. An illustration of this problem is
provided in figure 6.7.

Image
Plane

Object
Position

Detection
Center

Figure 6.7: Ground position problem with planar homography

It is a highly non-trivial to reconstruct the 3D structure of an object based on its 2D
projection in an image plane, and generally requires some kind of “visual intelligence”. To
make this example implementation work, I’ve used a deep convolutional neural network
trained for the task of vehicle center ground position prediction. Because this task is worth
of a half of a Masters’s thesis itself, I’ve used an existing, already trained model written
in the Caffe framework. The model I’ve used is proprietary, however, I was allowed to
run the inference on my data. The network was trained on a synthetic dataset obtained
from Grand Theft Auto V computer game using ScriptHook plugin14. The prediction is
done by first resizing the detection patch using a “letterbox” transform with side length of
224 pixels. Then this input image is passed to the standard ResNet-18 [35] architecture
front-end, and finally, the terminal fully connected layers perform binary classification per
pixel (corresponds to 16×16 pixel grid in the input image). The pixel with the highest logit
score is chosen as the center ground position. Also, a real numbered ∆ vector is predicted
as well, in order to refine the position rounded due to the pooling operations.

In relatively recent works on video tracking, an extensive usage of image descriptors
inferred by deep learning models, often called “embeddings” in this context, has harvested
a significant success, e.g. in [68]. When the spatio-temporal information, or the way in
which it is modeled, is not reliable enough, exploiting rich visual information can increase
the stability of the tracking algorithms and reduce the number of identity switches. There-
fore, I’ve implemented also the MultiCameraAppearance class, which inherits from the
MultiCamera class described above, and extends it with an appearance embedding model.
The backend neural network I’ve used is from [46], trained on a proprietary dataset. While
having again the standard ResNet-18 [35] architecture front-end, the training procedure
described in [46] differs from the conventional approach, when the optimization is done
based on some contrastive loss function, e.g. the well-known triplet-margin loss. Here, a
large model with 512-dimensional embeddings is trained in a standard way first. Then,
a new model with highly reduced dimensionality compared to the large one (512 to 64)
is trained based on the large model and the so-called relaxed contrastive loss, which is
described in [46] in more detail. Because the Euclidean distance was minimized during

14https://github.com/crosire/scripthookvdotnet
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the training, I’ve had to find a probabilistic expression which would enable to incorporate
it to the tracking score equation (5.2). First, the tracker was run on videos from multi-
camera road junction monitoring system, described in chapter 7, without the appearance
embeddings. However, the appearance embeddings were collected from tracks, and for each
target, a mean normalized appearance vector was computed. Empirical distributions of the
squared Euclidean distances are shown in figure 6.8, where the red one can be interpreted as
“positives”, i.e. distances of embeddings from the mean embedding of the respective target,
and the blue one can be interpreted as “negatives”, i.e. distances of embeddings from the
mean embeddings of other targets. Using the Bayes rule, a conditional probability 𝑃 (𝜃 | 𝑧)
can be computed from the estimated distributions, which can then be directly used in for-
mula (5.2). In order to analytically approximate the distribution I’ve empirically found,
a second order polynomial in the logit space was used. The empirical distribution (red)
as well as the final regression (green) are shown in figure 6.9. Final formula used by the
MultiCameraAppearance class is (6.17, 6.18), where 𝜇 is mean embedding of the target,
maintained via exponential moving average (EMA), and 𝑎, 𝑏, 𝑐 are estimated from the data:

𝑃 (𝜃 | 𝑧) = − ln
(︀
1 + exp

(︀
−𝑎𝐿4

2 − 𝑏𝐿2
2 − 𝑐

)︀)︀
+ ln (1/2) (6.17)

𝐿2
2 = (𝜇− 𝑧)T · (𝜇− 𝑧) (6.18)

Mean embeddings 𝜇 are stored as 64-dimensional vectors of 32-bit floats in the respective
instances of AttributeModelAppearance, which inherits from AttributeModelBasic.
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Figure 6.8: Appearance embeddings distance distributions
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Figure 6.9: Conditional probability 𝑃 (𝜃 | 𝑧) used in appearance based track scoring
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Chapter 7

Evaluation

In this chapter, I provide a brief evaluation of the implemented system(s).

7.1 Simulation
First, I’ve tested the implementation on simulated 2D MOT scenarios. The main advantage
of using a simulated dataset is that the statistical parameters are known exactly, as well
as the ground-truth trajectories. This is an idealistic situation, when the only sources of
error should be either the real statistical limitations resulting from the uncertainty inherent
to the observations, or the imperfections of the core tracking algorithm itself, i.e. the one
which solves the combinatorial optimizations that arise in MOT. In my case, this is the
TrackingEngine class with all its components. The evaluation of the tracking performance,
especially in MOT, is a hard problem itself and is still an open debate, how to compress this
fairly complex information into a single scalar value, which will in return accurately reflect
how “good” the tracker is. One of the traditional metrics for evaluating the performance
of multi-object trackers is known as optimal subpattern assignment (OSPA) [62]. This
metric operates on the finite sets of tracks and known ground-truths and evaluates two
error components - localization and cardinality error. Localization error reflects how bad
the tracker is in estimating the position of the truth target. Cardinality error on the other
hand, accounts for the target misses and false targets. However, in a relatively recent
work, generalized OSPA [58] was proposed, and I’ve decided to use it instead, since it was
presented as a better indicator than the original OSPA, while being based on similar ideas.
Detailed mathematical content of [58] is slightly comprehensive, but the GOSPA formula,
simplified by plugging in the parameters which I’ve used, can be written as an optimization
problem (7.1), where 𝑋 is the set of truths, 𝑌 is the set of tracks (output from the tracker),
Γ is the set of all possible track-to-truth assignments, and 𝑑 (. . . ) is an Euclidean distance:

min
𝛾∈Γ

⎡⎣∑︁
𝑖,𝑗∈𝛾

𝑑 (𝑥𝑖, 𝑦𝑖) +
1

2
(|𝑋|+ |𝑌 | − 2|𝛾|)

⎤⎦ (7.1)

As I’ve mentioned in the beginning of chapter 6, I’ve used a Python framework named
Stone Soup’s for simulation generation and evaluation. Because there is no reason, why the
tracker would perform worse than any other naive implementation of the standard single
hypothesis MOT pipeline in such simulated scenarios with perfect information, I’ll omit any
comparisons here. In order to ground the performance of the proposed system, I provide
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comparison with SORT tracker [7] on a real-world dataset in section 7.2.1. What I was
interested in here, however, is how an increasing depth of the track-trees, i.e. the temporal
context in which the decisions are deferred, and an increasing number of sensors impact
the final GOSPA distances relative to the naive single-sensor single-hypothesis case. I’ve
performed the following simulations. In all scenarios, the size of the tracking volume was
set to 1000 × 1000 units, time duration was set to 400 steps, measurement noise variance
was set to 1, variance 𝜎2𝑎 for the random acceleration model, as defined in equation (2.8),
and the prior velocity variance, were both set to 0.09, false alarm rate was set to 0.0001
and death probability was set to 0.01. Then, the simulated ground-truths were generated
from the Cartesian product of the following two sets of parameter values for birth rate 𝜆𝑏
and detection probability 𝑃𝐷 (i.e. 12 simulated ground-truths):

∙ 𝜆𝑏 ∈ {0.5, 1.0, 2.0}

∙ 𝑃𝐷 ∈ {0.6, 0.7, 0.8, 0.9}

On these ground-truth simulations, tracker was run with various settings. From all 12
ground-truths, 4 sets of detections were simulated based on the 𝑃𝐷 parameter. Then, the
tracking was performed using only one sensor, two of them, three, and finally all four. Also,
the size of the tracking window (in the time domain) was progressively increased from 1
up to 10. In all settings, the maximum number of hypotheses per-target was capped to
20. Based on the death probability it can be noticed, that the average numbers of targets
concurrently present in the scene for different values of 𝜆𝑏 ∈ {0.5, 1.0, 2.0} are {50, 100, 200}.

After running all the experiments described above, I’ve plotted the respective GOSPA
distances as a function of temporal context size (horizontal axis) and a number of sensors
(vertical axis). To visualize the numerical values of the GOSPA distances, a color bar
ranging from dark blue (higher GOSPA, worse performance) to bright yellow (lower GOSPA,
better performance) is used. The results are shown in figure 7.1, but only those for 𝑃𝐷 ∈
{0.8, 0.9} are provided, because lower detection probabilities led to very poor performance
in general and the GOSPA distances were very noisy. On the other hand, when 𝑃𝐷 ≥ 0.8,
it seems that there is a consistent trend of increasing performance with increasing both
the temporal context size and the number of sensors. This trend was expected and seems
to be stronger, when 𝜆𝑏 is higher, which was also expected. Low target birth rate doesn’t
introduce as many data association conflicts as the high one does. Therefore, even a single-
hypothesis single-sensor tracker performs very well and there is almost zero added value
in using more sensors or building deeper hypothesis trees. Also, a substantial decrease
in tracks-to-targets ratio (TTR) with increasing temporal context size can be noticed in
figure 7.2, where TTR is marginalized over all experiments. This indicates a reduction in
track fragmentation when the hard decisions are deferred for longer and more candidate
hypotheses are expanded.
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(a) 𝜆𝑏 = 0.5, 𝑃𝐷 = 0.8
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(b) 𝜆𝑏 = 0.5, 𝑃𝐷 = 0.9
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(c) 𝜆𝑏 = 1.0, 𝑃𝐷 = 0.8
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(d) 𝜆𝑏 = 1.0, 𝑃𝐷 = 0.9
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(e) 𝜆𝑏 = 2.0, 𝑃𝐷 = 0.8
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(f) 𝜆𝑏 = 2.0, 𝑃𝐷 = 0.9

Figure 7.1: GOSPA scores from the simulations
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Figure 7.2: Decreasing tracks-to-targets ratio
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7.2 Real-World Scenarios

7.2.1 MOT Challenge 2020

In order to measure the real-world performance of the implemented system, I’ve evalu-
ated it on the MOT Challenge 2020 dataset1 for single camera pedestrian tracking. I
will refer to this benchmark shortly as MOT20. I’ve compared the performance with the
SORT [7] tracking algorithm, which is still considered a state-of-the-art for realtime MOT
in video sequences. I’ve used the set of public object detections available, preventing the
bias which may result from using better/worse object detector. Together with MOT20, a
Python script for evaluation [40] with various metrics is provided with the most informa-
tive ones being multiple object tracking accuracy (MOTA) [5], higher order tracking accu-
racy (HOTA) [51], and a well-known F1 score for identification, which is simply a harmonic
mean between the precision and recall of target identification. All the mentioned metrics
require track-to-target assignments, which are found using the IoU metric. Before run-
ning the tracker, noise covariance parameters 𝑅 and 𝜎2𝑎 of the Kalman filter had to be set.
Since the proposed system doesn’t rely on the IoU and other domain specific heuristics,
proper values for those parameters are required in order to maximize the performance. I’ve
analyzed the ground-truth trajectories in the training split and estimated the random ac-
celeration variance 𝜎2𝑎 by numerically computing the second derivative of position for both
𝑥 and 𝑦 axis and evaluating the second moment of the resulting sample of values. Then,
I’ve estimated the measurement error by computing the second moment of the Euclidean
distances between the ground-truth boxes and their respective nearset raw detection boxes.
I’ve also tried an alternative approach based on the equation (7.2) from [1], using notation
from section 2.2.1, with 𝜖𝑘 being the residual from filtering step:

𝑅𝑘 = 𝐸
[︁
𝜖𝑘𝜖

T
𝑘

]︁
+𝐻𝑘 · 𝑃𝑘 ·𝐻T

𝑘 (7.2)

I’ve initially set the 𝑅 to be diagonal matrix representing high (likely suboptimal)
variance. Then, I’ve run the tracking algorithm few times and interestingly enough, the
matrix (after orthogonalizing it with eigenvalues) converged to the one found by directly
comparing ground-truths with raw detections, which indicates that the random acceleration
parameter 𝜎2𝑎 was probably well estimated as well. Other parameters, such as 𝑃𝐷, 𝜆𝑏 or
𝜆𝑓 , were either estimated directly from the dateset (e.g. in case of 𝜆𝑏, this is fairly trivial),
or set to some reasonable value by hand. Scan window depth, or as I’ve called it rather
in section 7.1, temporal context, was set to 25 frames (i.e. one second on MOT20 videos),
and the maximum number of hypotheses per target was capped to 10. Finally, I’ve run
two implementations of the tracker on MOT20 benchmark, the simple one tracking solely
based on the position, and the one augmented with IoU model, as described in section 6.2.2.
Results are shown in table 7.1. The frames-pre-second (FPS) values were measured on an
Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz machine using only single processor core. All
metrics present in the table (except FPS) can be interpreted as different types of tracking
accuracy, therefore the higher, the better. From table 7.1, a quite interesting observation
can be made, that the IoU model definitely does not significantly improve the overall
performance, contrary to what I’ve expected. It even seems that it performs slightly worse,
since in both HOTA and IDF1, the simple position based tracker wins by a small margin.
However, if the ratios between 3-rd and 2-nd row, i.e. ∼ 1.024,∼ 1.000 and ∼ 0.991 are

1https://motchallenge.net/data/MOT20/
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Tracker MOTA HOTA IDF1 FPS

SORT 45.794 32.420 34.058 31.900

Proposed (position) 54.484 38.771 42.034 427.068

Proposed (position + IoU) 55.795 38.765 41.653 346.741

Table 7.1: Evaluation on MOT Challenge 2020

multiplied together, the overall improvement is ∼ 1.015, which at least is slightly greater
than one. On the other hand, because of the extra computations in the IoU model, the
position only tracking is clearly faster in terms of FPS. I do provide an FPS value for the
SORT tracker as well, but it must be mentioned that it is extremely unfair comparison, since
I’ve used the original research implementation, which is unfortunately written in Python.
Despite using Numpy, which is written in C, a pure C/C++ implementation of SORT
algorithm would probably be the fastest one. Nevertheless, both implementations of the
proposed tracking system win in terms of tracking accuracy by a significant margin. At the
same time, I do believe that with an exhaustive fine-tuning, the SORT tracker is capable of
achieving similar performance on the MOT20 benchmark. What it is almost certainly not
capable of, is to generalize into being a multimodal multi-sensor tracker, easily extensible
for various types of input data and tracking scenarios.

7.2.2 Multi-Camera Road Junction Monitoring System

Finally, in order to see the real-world performance of the proposed multimodal multi-
object tracking system in full deployment, I’ve tested the second implementation of the
system, i.e. the multi-camera model with appearance embeddings described in section 6.2.3,
on few videos from up to 4 cameras covering a road junction. As I’ve mentioned, the
visual embedding model was “calibrated” on this scene. Because the embedding vectors are
normalized, I believe the estimated distributions are quite general, yet there may be some
variability in case of extremely different lighting conditions. For the motion model, however,
the LinearPredictor class (see section 6.2.1) implementing simple constant velocity model
with random acceleration assumption is a very rough approximation of the true dynamics
of the objects of interest (mostly vehicles in this case), so the parameters should be set
appropriately for the target scene. Because I didn’t have any ground-truth data, in contrast
to section 7.2.1, I’ve had to set the 𝜎2𝑎 by hand to some reasonable value reflecting the
expected acceleration of an average vehicle. For 𝑅, similar approach as in section 7.2.1 using
equation (7.2) was performed, but in this case, the normalization by detection bounding
box size was employed. The reason is that the images are resized to a fixed size using a
“letterbox” transform (i.e. based on the major box dimension) for ground position prediction
using a neural network. It is obvious, that the prediction error should grow linearly with
the scale of an object. However, I do provide a 2D histogram of empirical distribution of
estimated

√
det𝑅 (without normalization) and the major box dimension (i.e. object scale)

in figure 7.3. A positive linear correlation is visible.
After setting all the necessary parameters, I’ve evaluated the tracker by visual inspec-

tion, since I was not provided with any ground-truth data and manually annotating the
scene would be too time-consuming for me alone. However, I’ve created a demo applica-
tion, where the trajectories are projected from the UTM physical space back to a chosen
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Figure 7.3: 2D histogram of object size and
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“master” camera, and visualized using pseudo-randomly generated colors per each target
identity. Although the evaluation lacks an objective numerical metric, a visual inspection
is often the best way to evaluate the tracking performance since it doesn’t compress the
complex information into few numbers, and the most undesired failures such as identity
switches, track fragmentation, etc., can be almost always captured by a human (except
for extremely crowded scenes). For object detection, YOLOv52 neural network architec-
ture (essentially the same as described in section 3.1.2) trained on a proprietary dataset
aimed for traffic objects detection with 93.29 % mean average precision (mAP) was used.
The tracking algorithm operates on frequency of hundreds and occasionally even thousands
FPS, even for 4 cameras and 1s temporal context on an Intel(R) Core(TM) i7-8750H CPU
@ 2.20GHz machine. However, the models necessary to obtain the input data do require a
modern GPU to achieve realtime processing end-to-end. All three data preprocessing mod-
els, i.e. detector, ground position predictor, and appearance embedding extractor, run in
realtime on an NVIDIA GTX 1060 GPU separately, but to implement a realtime tracking
system in end-to-end manner, more computationally capable GPU or a dedicated acceler-
ator hardware is required. Nevertheless, the tracking algorithm itself doesn’t seem to be a
computational bottleneck in general.

2https://github.com/ultralytics/yolov5
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(a) Camera 1

(b) Camera 2

(c) Camera 3

Figure 7.4: Example tracking visualization from 3 cameras at the same time
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Chapter 8

Conclusion

In this thesis, I’ve designed and implemented a general extendable tracker, with fixed con-
figurable tracking engine and an implementable interface, enabling user programmer to
extend it for any system of sensors and set of measured attributes. I’ve implemented few
basic specializations of the system and evaluated them both on simulated and real-world
data. For the multi-sensor part, I’ve implemented only a homogeneous system of multiple
digital cameras, but the overall design makes it possible to easily implement any system
of sensors, including the heterogeneous ones. Therefore, I do argue that the implemented
system deserves the name “multimodal”, despite the lack of existing real-world special-
ization combining multiple kinds of sensors together. This may be a subject for possible
future work. Also, because of the overall complexity of the task, I didn’t have the time
to implement some more advanced motion filters, e.g. IMM described in section 2.2.4. I
believe that using motion filters which model the target maneuvers more reasonably than
the random acceleration assumption does, might bring significant improvements in tracking
performance for real-world scenarios. Also, I strongly suggest, that using a hierarchical ap-
proach in high frequency sensors, such as digital cameras, might bring large improvements
as well. More precisely, by hierarchical approach in this context I mean for example the
following. Instead of tracking with TOMHT using very deep scan window in order to cap-
ture sufficient temporal context, a single-sensor single-hypothesis “pre-tracking” could be
performed. Then, the observations may be aggregated within some short temporal window
from multiple positions belonging to the same trajectory, preferably augmented by velocity
or even higher order position derivatives. Then, TOMHT on much lower frequency (e.g. 4
Hz) could be run on those aggregate observations, maintaining larger temporal context us-
ing smaller scan window. This can be viewed as “relaxed” tracklet level fusion, because the
target identity labels are removed. Also, the motion derivatives, which are almost impos-
sible to obtain from static observations (without using computer vision related techniques
such as optical flow, see chapter 4), can be very helpful in building the validation gates for
prior targets. I believe this approach could bring an order of magnitude improvement in
tracking quality and speed, but unfortunately, I was not able to implement and test it out
within the scope of this thesis due to the lack time. The tracking engine itself (without the
particular implementations) is written in pure C++ programming language and together
with basic implementations such as Kalman filter, it is easily capable of realtime processing
even in challenging crowded scenes and/or when processing data from multiple sensors.
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Appendix A

Contents of the included storage
media

∙ demo_video.mp4 – demonstration video

∙ example_data/ – example synchronized geo-registered videos from 4 cameras

∙ masters_thesis_src/ – source code for the text of this thesis

∙ scripts/ – Python scripts for data analysis, preprocessing, and simulations

∙ tracker/ – tracking engine, interface and example implementations written in C++

∙ tracker_apps/ – demonstration tracking applications
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