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Abstract
The goal of this master thesis is to research current ways of fast synchronization of new nodes
in blockchain networks, considering different consenses. Then to compare these solutions,
design feasible solution and then implement the new fast synchronisation for blockchain
network Fantom Opera. The solution is based on an idea where new node in network
doesn’t connect to P2P network, but directly connects to one of the nodes and downloads
just the necessary data to be synchronized with rest of network as fast as possible.

Abstrakt
Cílem této diplomové práce je prozkoumat aktuální způsoby rychlé synchronizace nových
uzlů v rámci jednotlivých blockchain sítí dle závislostí na jednotlivých konsenzech, porov-
nat jednotlivá řešení mezi sebou, navrhnout možné řešení a naimplementovat novou rychlou
synchronizaci pro blockchainovou síť Fantom Opera. Řešení spočívá v tom, že nově připo-
jený uzel se místo do P2P sítě přímo připojí k existujícímu nodu a stáhne si od něj potřebná
data pro co nejrychlejší synchronizování se zbytkem sítě.

Keywords
blockchain, synchronization, Fantom, Opera, Lachesis, Ethereum, PoS, Proof of Stake,
encryption

Klíčová slova
blockchain, synchronizace, Fantom, Opera, Lachesis, Ethereum, PoS, Proof of Stake, šifrování

Reference
MLEJNEK, Matěj. Fast-Sync of New Nodes in the Fantom Opera Platform. Brno, 2022.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Martin Perešíni



Rozšířený abstrakt
Tato práce se zabývá způsoby sychronizace nových blockchainových uzlů do sítě. Nejprve
jsem provedl analýzu existujících způsobů synchronizací na různých blockchainových plat-
formách. Z nabraných poznatků jsem vytvořil řešení pro síť Fantom Opera. Opera (go-
opera) je postavená na Ethereové Geth (go-ethereum) implementaci rovněž napsané v jazyku
Golang a importuje z jejího repozitáře stále velkou část kódu. Hlavním rozdílem těchto
dvou sítí je skutečnost, že Fantomová využívá Lachesis koncenzus, neboli způsob toho jak
se o nových transakcí rozhoduje, zda budou zpracovány a potvrzeny je rozdílný. Lachesis
je DAG, Proof of Stake a mezi jednotlivými uzly v síti se přeposílají události. Narozdíl
Ethereum je Proof of Work a přeposílají se v něm transakces.

Moje první idea byla přenášet data přes P2P a inspirovat se implementací snapsync z
Etherea, toto řešení ovšem bylo bohužel koncem minulého roku z velké části dokončeno1.
Moje řešení se zaměřuje na synchronizaci nového uzlu tak, že místo toho, aby přenášela
data z klasické P2P komunikace, tak se k síti nový server dosynchronizuje přes hostu-
jící server. Pokud by se použil přímý přenos zdrojových dat například pomocí nástroje
rsync, tak bohužel nastane problém v tom že zdrojový server musí být pozastaven. Jelikož
rsync prochází data v zdrojovém adresáři sekvenčně přímo z disku a při změně za průběhu
přenosu by přenášená data v různých bodech databáze na sebe nenavazovala a takovýto
nekonzistentní stav není možné opravit. Data jsem se rozhodl přenést iterací databáze po
jednotlivých záznamech a za pomocí snapshotu - ten zajistí konzistenci díky jeho vlast-
nosti, že přenáší skutečný stav databáze přímo v době vytvoření onoho snapshotu. Díky
tomu, že nové záznamy mají vyšší sekvenční číslo zápisu, je vytvoření tohoto snapshotu
jako jednoduché zarážky prakticky instantní. Snapshot je vždy poznamenáván na konci
epochy. Díky tomu není potřeba v databázi mít události z aktuálně prováděné epochy, toto
je vlastnost DAG sítí, kde nové eventy jsou odkazovány na hlavní chain, který se skládá ze
zvolených kandidátů (Atropos), a tyto data nejsou uložený přímo v databázi, ale v databázi
konkrétního probíhajícího stavu epochy.

Průběh přenosu probíhá tak, že hostující server si průběžně kontroluje konec epochy a
jakmile je epocha ukončena, tak si drží v paměti její snapshot (vždy jen ten poslední). Mezi
klientem a serverem se posílají data pomocí webového socketu ve strukturách. Nejprve při
navazování spojení je potřeba získat veřejný klíč ze serveru, klient se proto pokusí spojit
a zašle vyzývací zprávu (náhodné číslo) ze serveru k němu dostane odpověď - podpis, ze
kterého získá veřejný sepc256k1 klíč. Následně se pouze oznámí požadovaná metoda (sta-
hování dat ze snapshot) a přibližná celková velikost databáze. Následně se začnou rozesílat
data z databáze klíč po klíči, po balíčcích, kde je vždy několik klíčů a hodnot, ke kterým
jsou vždy dopočítány hashe a podpisy serveru tak, aby byla zajištěna pravost vkládaných
záznamů. Tyto balíčky dat jsou zakódovány pomocí RLP knihovny pro převod struktury do
bytového pole, následně jsou tyto sekvence zkomprimovány pomocí lz4 komprese a následně
pak jen pro rozlišení jsou komprimovaná data znovu složená do segmentů přes RLP tak,
aby klientská strana věděla, kdy má čtená data začít dekomprimovat.

Na klientovi se jednotlivé úseky komprimovaných dat přečtou pomocí RLP, dekom-
primují se a uloží se do databáze. Server při takovémto zasílání dat při obdobné konfiguraci
není vytížen a největší limit přenosu je zápis do databáze na klientovi, proto server nemá
problém udržet krok s nově příchozími block v blockchainu a neopožduje se. Klientovi
na konci přenosu stačí jen dohnat všechny nové blocky od momentu vytvoření snapshotu
posílaných dat.

1https://github.com/uprendis/go-opera/tree/feature/snapsync-with-ldb-snapshot

https://github.com/uprendis/go-opera/tree/feature/snapsync-with-ldb-snapshot


Výsledek je oproti klasickému rsync přibližně 3,5 krát pomalejší při velikosti 800GB,
ale jak již bylo zmíněno, tak dostupnost zdrojového serveru není skoro vůbec omezena. Při
testování funkčnosti rychlosti pebble databáze, jsem zjistil že je potřeba nahradit nejnovější
verzí. Ve staré verzi je totiž chyba, kde při hodně objemném zápisu nebyl správně prováděn
compact databáze. Pokud nebyl compact volán vůbec trvala synchronizace pro 787 GB
přes 36 hodin a 44 minut - 0.358 GB/min. Tuto rychlost jsem vylepšil ručním volání
compactu každých 5mil. záznamů s databází. Pro databázi o velikosti 832 GB doba trvání
synchronizace byla 9 hodin a 21 minut, tudíž 1,48 GB/min, jen se zde čtvrtinu ze zápisu
na disk ovšem čekalo na to než se provede compact. Rozhodl jsem se proto otestovat novou
verzi a zjistil jsem že je již chyba opravená a časově jsem se dostal na 2GB/min. I když
největší čekání spočívá v zápisu do databáze rozhodl jsem se vyzkoušet lz4 kompresi. Ta
dobu synchronizace nijak nezpomalila, ale snížila celkový počet přenesených dat o 50 %.

Hlavním důvodem proč je mé kopírování o tolik pomalejší je fakt, že čím větší databáze
tím pomalejší zápis dat - při velikosti databáze 85GB byla celková rychlost přenosu
5GB/s, ale při zápisu 800GB byla celková rychlost přenosu 2GB/s. Další proč je přímé
kopírování databáze oproti mému řešení rychlejší je ten, že jak pebble, tak leveldb databáze
uložené hodnoty komprimují. Databáze dle měření měla velikost jen 62 % skutečných dat.
Dalším důvodem je nutná průběžná reorganizace a promazávání již mergovaných záznamů.
Výhoda mé implementace spočívá v menším zatížení zdrojového serveru. Rozdíl oproti
snapsync synchronizaci je zásadní v tom, že mé řešení data stahuje z jednoho serveru. Co
se bezpečnosti hashování a podpisů týče, je třeba ovšem spoléhat na bezpečnost zdrojového
serveru. Snapsync s žádnou historií je pro většinu uživatelů nejrychlejší způsob zapojení se
do sítě. Pokud ovšem uživatel hodlá transakce na blockchainu vytěžovat a s daty pracovat,
například RPC uzel, je pro některé úlohy nezbytné historii buď mít celou a nebo alespoň do
nějakého určitého data. Alternativní možností by bylo stažení snapshotu (toto je homon-
imum - jedná se o vyexportovaný soubor k synchronizaci bez nutnosti použití sítě). Zde
ovšem nastává totožný problém vkládání do databáze jako v mém řešení a navíc je potřeba
data prvně stahovat a snapshot si buďto od dostatečně důvěryhodného zdroje stahovat a
nebo si ho vytvářet. Synchronizace z co nejnovějšího snapshotu je žádoucí, jelikož ze starého
snapshotu by znovu mohlo trvat dlouhou dobu se dosynchronizovat k aktuálnímu vrcholku
blockchainu.

Na konec bych zde dodal jen to, že moje implementace není nejrychlejší, ale přidává další
možnost zabezpečeného a ověřitelného přenosu dat, který by neměl být napadnutelný. Bo-
hužel s rostoucím počtem záznamů do databáze, klesá zápisová rychlost. Všechny přenosu
mimo rsync jsou tímto zpomalením postihnuty. Co se správosti stažených dat týče, tak
aby si uživatel byl opravdu 100 % jistý, že má pravý head blockchainu je potřeba, aby si
spustil přepočet všech transakcí od počátku sítě. Což při velikosti sítě 2 TB zabere přes 1
měsíc.
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Chapter 1

Introduction

In light of global inflation, where governments are printing more money and devalue their
own currency, the demand for blockchains crypto currencies as the method of payment rises.
Blockchains can be used as Distributed ledger system working as alternative to regular fiat
currencies. The goal is to create decentralized means of transferring money, where new
money can’t be printed, so that people can trust that their funds will hold onto their value.
Since the first blockchain, the Bitcoin, the number of blockchains and variety of different
consenses has increased a lot. Along with a simple token transfers new possibilities of
various uses have emerged. Blockchain has audibility, non-immutable truth, verification of,
not only financial transfers, but also of certifying the validity of items in our world, NTFs,
elections, loans, auctions and so much more.

Alongside Bitcoin, the broadly used, innovative blockchain networks are Ethereum,
Solana, Cardano, Avalanche, Fantom, Binance smart chain, Polygon and others. Different
technologies have often different positives and negatives, some of which can be improved on,
but some, due to the architecture, are hard or impossible to fix. The goal of this Master’s
Thesis is to improve the Fantom Opera blockchain synchronization of new node.

Thesis structure
In the following chapter of this thesis you can read about blockchain technologies and their
basic principles such as Proof of Work, Proof of Stake families of consenses, the important
concepts and their definitions to help the reader understand what blockchains are. In third
chapter I focus on Fantom Opera network and it’s specifics. As go-opera implementation
is based on go-ethereum (geth) implementation, many things are taken over and are not
changed at all, but other, such as the consensus - how nodes decide on new transaction
execution (inclusion), is based on Lachesis rather than mining Proof of Work concept in
Ethereum or Bitcoin. In the forth chapter, I analyse various methods currently available for
synchronization of new node in various blockchains and I introduce my designed solution
on how new node in Fantom Opera could be synchronized compared to currently available
means of synchronization. In the fifth part, I describe my implementation-specific details,
my process of implementation and my thought process and reasons for choosing the way to
implement the important segments in code. The sixth chapter is about Experiments and
efficiency evaluation of how fast and secure the final designed solution is as well as possible
future improvements. The last chapter is my conclusion of how usefull the result is.

2



Chapter 2

Blockchain

In Public ledger system, where, in general, transactions are put into blocks, which are linked
together and creating link. This link of blocks is where the name blockchain comes from.
These networks are meant to be public, secure and immutable chains of data that because
it is linked together and each information is computed using the data from the previous
segment. The main purpose of creating blockchains at first was as usage of decentralized
financial systems. In recent years there has been a boom of new means of transferring
assets in distributed systems. New implementations of various usages of smart contracts
have also helped blockchains (that implement them) to gain on the popularity that it has
today. Smart contracts in short are functions computed in virtual machine on each node
and give every access to this virtual distributed computer, which can be used to store and
compute data securely and immutably.

2.1 Distributed ledger technologies
Most blockchains can be classified as Distributed ledger technologies - DLT, where the
system is used as a means of recording transactions of various assets - each blockchain
typically has it’s own token which is used as a currency. Keeping track of transactions is
important so everyone knows who has how many assets. The important properties of these
systems are authority, decentralisation, and audibility.

In contrast to the Centralised ledgers in blockchains, there ideally are decentralised
consensus nodes, which helps to keep network security and protects against perpetrator’s
malicious attacks. In centralized systems, the authority is relayed by entrusting some third
party to have control over your assets - this is big concern for many people - so blockchains
as we know them today were developed. The problem of plain ledger without any security
mechanisms is that anyone would be able to modify data. Therefore, cryptographic mech-
anisms had to be introduced. One of the obstacles for registering transfers is verification
if the owner of the asset is the one agreeing with the transfer. Simple signature of order
isn’t secure because there could be replay (double spending) attacks, therefore mechanism
as nonce numbering transaction order was introduced 2.3. Various security improvements
led to the creation of Bitcoin blockchains - which focuses on all these problems as well as
keeping anonymity (or at least pseudonymity). Read more in section Bitcoin 2.6.

3



2.2 Blockchain properties

Decentralisation

Decentralization is an important property of blockchains. The decentralized network is
ideally 100% available, censorship resistant, immutable and, by design, transparent. Nodes
communicating via P2P communication can be spread out all over the world. Unfortu-
nately, because of the fact that many users use the same hosting services (AWS, IBM), the
blockchains aren’t often as decentralized as they claim to be.

Authority

There can be DLT design to work under someone’s authority, but generally the blockchains
are demanded to be without authority. When one entity in network holds majority of
consensus power and the network is more centralized, the data could be tinkered with.

Audibility and Transparency

Since Blocks are computed by hash of their parent, there was a chain of events that had
to have happened. By computing in chain, you can go up to a desired point from genesis
or back from the current head to desired block in time. All account states at that time are
immutable and anyone can get this history.

Anonymity

Anonymity is in fact only pseodoanonymity. Each individual account has it’s own address
generated with a private key so their identity is not revealed by any other identifier, but this
anonymity level depends on transactions done by that user - for example sending money
to or from crypto currency markets, which know identity the user who is transferring the
money to be exchanged from a classic bank account.

Permission

• Permissionless - the network is publicly available and anyone can join the P2P
network, listen to data and emit new transactions.

• Permissioned - new node has to be confirmed by authority to join the network.

• Semi-permissionless - joining node needs to be confirmed from one of the nodes
already in network.

Scalability

For blockchain systems to be usable in practical applications it has to be robust and able
to scale processed transactions per second (TPS) as the networks grows. Networks based
on Directed Acyclic Graphs (DAG) have generally way higher TPS. Another option that is
used a lot are multi level blockchains/side chains, where the state of network is validated
with higher level only once in a while, therefore lowering the amount of data needing to be
confirmed in one blockchain.

4



Finality and Immutability

Network finality of transactions can vary a lot - varying from a few seconds to minutes. The
blocks in blockchains, as they are created from block before, have their finality increased
by the increasing depth of block in the chain. The block could be thrown out of network if
some other part of the network computes longer chain. The transaction from the original
block might not have been included in any of the computed blocks in the other branch.
When finality for block is reached, the transactions in it are considered to be irreversible.

Blockchain trilemma

Scalability, security and decentralization are considered to be blockchain trilemma since it
gets significantly harder to uphold all three at the same time. Some consenses are better
balanced than others, but there is still huge room for improvement as even the most popular
networks today often have the transactions limit per second set very low since the network
could get congested. Because of this, the price of each transaction often ranges from few
cents to tens euros. An attempt to solve one of the three aspects will lead to sacrifice in
the other two shown in Fig. 2.1. [8]

Figure 2.1: Blockchain Trilemma [8]

2.3 Blockchain principles
This section describes terminology and components used in blockchains. Even though
blockchain is complex, it can be divided into smaller parts. This part contains useful
information for the following chapters.

Stack model

For a breakdown of how blockchains are structured, see Stack Model in Figure 2.2. The
model consists of 4 main layers: Application Layer, Replicated (Global) State Machine
Layer, Consensus Layer, and the last layer is for Data and Network Organization.

5



Figure 2.2: Stack Model [5]

Application Layer

The application layer provides interfaces that end users interact with. For example, Dis-
tributed Applications, cryptocurrencies, and other functionalities or services. It can be
divided into two groups. Higher-Level Applications - In this group fall various appli-
cations designed for user interaction which are more complex in this category: escrows,
auctions, e-voting, direct trading, notaries, reputation systems and general applications
for blockchains. Ecosystem - this group is for common functionalities such as wallets
management, exchanges, secure time-stamping, and oracles. [22, 5]

Replicated State Maschine Layer

In this layer, Distributed Virtual computer is defining how Smart Contracts are Executed
in Distributed Virtual Machines. Additionally, there is RSM - replicated state machine
that deals with interpretations of transactions. [22, 5]

6



Consensus Layer

The consensus layer is defining how consensus in given blockchain is reached. For example,
it helps with logic of ordering of transactions, rewards for validating blocks, and revealing
cheaters. For a more detailed description of how consenses work and what they do see,
section 2.4. [5]

Network layer

Network layer is on the lowest level of this model and it consists of network services, storage,
encoding, data protection and representation, discovery of new nodes, addressing, routing,
DNS and comunication with peer nodes. [5]

Block

A block consists of transaction data, timestamp, signature, nonce - depending on consensus
type, the data in them can vary. A new block is linked by containing hash of the previous
block that came immediately before it. Depending on the network, one block is usually a
few seconds or minutes long.

Figure 2.3: Chain of blocks [24]

Epoch

An epoch in general is a time period, which consists of blocks that were issued in it’s
duration. Epochs can contain data such as list of validators for the next epoch (often in
proof of stake consenses).

Transaction fees

In bitcoin, the fees are set as fixed-reward for including your transaction from the transac-
tion pool in computation of the next block, but fees in Ethereum or similar networks are
computed based on gas, where the user specifies how much he is willing to pay for each
gas unit and what the limit of gas to be used is. For example, simply sending assets from
one address to another can cost very little compared to invoking some smart contract func-
tion. The estimated gas limit is calculated to the user via RPC and is based on operations
predefined costs in Ethereum virtual machine - or alike.

Transaction price is determined by price of gas and it’s amount used. If the price for
gas is over-paid, then the transaction will be solved sooner, because miners are going to

7



prioritize to compute transactions, which results in higher reward. Overpaying leads to
avoidable costs. On the other hand, if you underpay with gas, the transaction will take
longer to compute. The amount of gas used differs on parameters such as storage and cost
of computation. Different functions have a different price. For example, an easy lookup
function can have a way higher price if data is cached or not. For estimating gas price and
units of gas Oracle is used. For example, a transaction can have a limit of 21 000 units
of gas as well as specification of how much the user is willing to pay for each each unit of
gas. [23]

EVM

Ethereum Virtual Machine - EVM created for Ethereum enables executable transactions in
blockchains. EVM instruction set for code execution in distributed systems, this provides
decentralized processing of transactions with transparent processes. This distributed system
is secure, because data is stored directly in blockchain. EVM is stack based with random
access memory and persistent storage. Instructions in EVM have assigned number of gas
required for the specific operation so when code is run user has to specify how much gas
is he willing to use. This gas mechanism is used to pay processing time as well as to
avoid infinite loops by kicking out programs, which use up all their gas. Because it is
decentralized it doesn’t have disadvantages of centralized systems, where is a single point
of failure, censorship of clients and less them 100% availability.[4]

Smart contracts

On top of basic interface of just transferring assets, the network can implement an extended
set of functions. For example, when used on voting or any other specific usecase for a given
network - these networks are generally built on consenses and are faster - for example,
creditcard payments can be done with preset list of functions. The biggest drawback is that
when a network wants to support new functionality, most nodes in the network (depending
on consensus) have to be running an updated version of software. This process is generally
very slow and it’s hard to keep track of everything because there might be some party
requesting functionality, but majority of network might consider this functionality not as
relevant and might not be incentivised to add it to it’s codebase. Because of this fact, the
drive of generally any code running code in virtual machine got into the foreground. Smart
contracts are originating in Ethereum EVM, where each node is computing the state of
variables in it’s local storage (except for specialized low requirement nodes). These smart
contracts have interface so others can access it. Smart contract has various uses, such
as implementation of fungible and non-fungible tokens, auctions, wallets, loans and many
more. As an example, I would like to mention multi-signature contracts they are used to
hold funds and interact with other contracts, creating a middle man between the set of
users and the interacting contract, which, depending on set policies, demand at least some
number of owners approving on that transaction. This prevents a smaller portion of shady
users from withdrawing all the funds from shared accounts into their private accounts.

The two most used programming languages for smart contracts are Solidity and Vyper.
Solidity is a high-level, object-oriented, statically typed programming language with very
easy to orient C++ / JavaScript like syntax. Vyper is python-alike language, which doesn’t
have as many features as Solidity but it’s main purpose is to be easier to audit. As a new
contract is deployed onto the network, it has it’s specific address towards which implemented
methods can be called. Each function can have modifiers; these modifiers can be used to
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establish if the caller of function is eligible for calling this method and meets all necessary
requirements. For example, only the deployer of the contract can be set to mint new tokens
in NFT contract and so on. Methods are called via ABI in which conversion of the function
identifier and parameters are converted to binary code. [7, 1]

Smart contract address

The deployed contract on the network gets it’s own specific address computed from the
owner’s public key and his nonce to it. When the contract is being deployed on multiple
blockchains at once, and the owner keeps the same nonces, then the contracts will have
same address.

ERC standards

ERC - Ethereum Request for Comments is an extension of an EIP - Ethereum im-
provement proposals - defining standards on Ethereum platform. ERCs are application-
level standards and conventions are used to define bounds on proper usage of smart contracts
on how they have to behave. They are used, for example, for token standards (ERC-20,
ERC-223, ERC-721, ERC-777), name registries (ERC-137), URI schemes (ERC-681), li-
brary/package formats EIP190 and wallet formats (EIP-85). When it comes to tokens, they
can be distinguished into two main categories depending on what they represent - either
Fungible (FT ) or Non-Fungible tokens (NFT ). Fungible tokens are representing something
which is of some type indistinguishable from others such as currencies. On the other hand,
Non-fungible tokens represent something unique. The following standards describe func-
tionality of token handling and their transferring API interfaces. [17] Creation of new tokens
is called minting - the data, for example, image hash, has it’s representation registered into
the blockchain. NFT - non-funguble token representation - the data of the item (image)
itself is not uploaded to the blockchain, but there is some link there such as a link for IPFS
- InterPlanetary File System.

• ERC-20 - Contracts deployed with this standard represent one type of token (for
each new type there has to be a new contract).

• ERC-721 - Nowadays, one of the most frequently used non-fungible token standards.
One contract consists of a collection of distinct token IDs.

• ERC-1155 - An improvement of ERC-721 tokens as it can be used to create fungible
and non-fungible token types. These types can be added to an existing smart contract
so there is no need for creating a new smart contract. Each token ID has link to
metadata which specifies token type.

• ERC-2981 - Was created as guidance for royalties solution for ERC-721 and ERC-
1155. The main objective is to enforce that the trading contract obey royalties set by
tokens.

MPT - Merkle Particia Tree

MPT is used for membership proofs see Figure 2.4. Every single node in tree data struc-
ture contains hash of nodes bellow. It can be used to efficiently verify that some specific
transaction was in a block, not by recomputing the whole tree, but just the path to the
main root. Leaf node contains data. None leaf node contains hash of children.[25]
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Figure 2.4: MPT tree in Ethereum. [25]

Nonce

There are (at least) two different usages of nonce. One type is one of the block’s attribute
values, where nonce here can be used as complementary value for a block to have specific
hash, for example, in bitcoin. The second usage is to effectively counter each transaction
for a specific address, then nonce is implemented via the Lamport rule. This is useful as
prevention of the replay attacks since each transaction of the account is bound to have
different hash because the nonce has increased after the transaction was completed.

Interfaces

Through the following interfacing you can send data trough blockchains, but also listen
to and query for data in it. Methods in Smart contracts are called ABI - Application
binary interface, which is essentially just a stream of bytes converted from method name
and calling arguments.

• RPC - Remote Procedure Call is interface that is used to communicate with the
blockchain network from outside of the node. It is often operated on a regular node
in the network. You can, for example, use graphql in standard http request or by
web3 opening websocket, which can be additionally used for data subscriptions.

DAG

DAG - Directed Acyclic Graph is another option on how blockchains can be linked together.
Transactions are not grouped one by one and processed as blocks, but are computed indi-
vidually. There is often some sort of mainchain towards which other transactions confirm
to - hence better scalability can be achieved. Blocks in DAG typed networks can still exist,
but they are used as headers for setting time boundaries in blockchain and carry addi-
tional confirmations(list of validators, reconfirmations, gas used). These types of network
generally have lower fees associated with costs of transactions because they typically use
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either small scaled PoW for each event (IOTA), or PoS(Lachesis, Avalanche) for reaching
consensus.

Lamport rule

The Lamport rule is an algorithmic logical clock which determines the order of events
in distributed systems. This algorithm is based on counters, where each node has its
own counter (usually multiple counters for different types of messages). Each process has
counters which increment with every new created event by one and with newly received
events from other processes - so the order of each event can be distinguished due to causality.
We have to consider what it takes for the clock in each system to be correct. We can’t
base our clock on physical time, because that would require keeping a timestamp of every
event and our decision on when events occurred has to be based on actual order. The most
important condition is that if one event occurred before another event, then it has to be
computed before that event. [10]

Attacks

Double spending

The double spending attack is linked to a finality in blockchain. As finality is reached,
the chance for double spending is negated. It works by attempting to creating forks in the
chain so that the funds can be seen as transferred, thus resulting in contract execution.
Then this action gets reverted because the other fork won - the longer chain was computed
quicker. For example, when bridging assets from one blockchain to another, there have to
be bigger delays and additional waiting time, making sure that finality is truly reached.

51% Attack

51% Attack often requires huge computational power to overwrite confirmed transactions.
Since transactions get confirmed based on finality of the network as no block is confirmed
on 100%, then its finality gets exponentially harder to be overwritten.

DoS Attack

Denial of service attacks have different forms. A successful DoS attack on a consensus
node will be resulting in lower network consensus power, therefore preventing nodes from
being rewarded. In PoS systems Validator nodes never intentionally reveal whether you are
communicating directly with them. Their private key for signing transactions is, of course,
different to the P2P key that is used for sending events to peers. By network analysis in
smaller scaled networks, it would be possible to find out if the node you are communicating
with is a validator. If more than 1/3 of all validator’s power is lost in BFT network, then
it would be at a halt. [5]

2.4 Consensus mechanisms
In simple terms, consensuses can be seen as the agreement protocol between nodes in a P2P
network. Distributing and processing network data in a way that the consensus is reached
when consensus nodes agree on the correct state of the network. The first of two main
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consensus families of consensuses mechanisms are Proof of Work - PoW, where consensus
is reached thanks to consumption of some resource mostly using computational power 2.4.
The second type of reaching consensus is Proof of Stake - PoS, which is based on nodes
having different consensus power depending on their staked asset value. See 2.4.

Consenses in blockchain are used to achieve agreement between nodes. Consensus is a
way nodes come to agreement about new transactions. There are various types of consenses
based on various things like computational power, staking value for validating, proof of
history, proof of place and many others. Generally, whenever a node helps the network
reach consensus about something, then there is some reward associated with the help. This
helps the decentralisation of the network.

Nodes which help a network reach consensus are called consensus nodes, then, in Proof
of Work type of networks, they are called miners and, in Proof of State networks, they
are called validators. As they help with new blocks being emitted and confirmed, they are
getting rewards for the new block not only from the network itself, but also often from fees
payed by users. The higher-paid the transaction, the faster it is going to to be picked up
from the transaction pool and it will finish faster.

Proof of Work

Proof of work, as mentioned in the previous section, is based on computational power.
There are also other variants in this family using other types of resources, for example,
proof of storage.

In Bitcoin, there is Nakamoto’s consensus based on hard computational problem. Every
new block has nonce added to it so that the resulting hash will lead with zero bits. The
amount of work needed to be done to find hash with a bigger amount of leading zeroes is
exponential. Each node has its local chains with confirmed prefixes, but the newest blocks
don’t have to be confirmed yet - delayed finality. There can be two blocks emitted at same
time and then there is race in which one that is ahead will be computed further. The
other fork is then discarded. PoW, by its design, has to be hard to compute or expensive
on resources so it is hard for malicious actors to join in on computation and try to tinker
with the network’s finality - because of this there is the reason why Bitcoin and other PoW
networks often wait a bit longer for finality to be confirmed. To regulate the rate of new
blocks being generated, the difficulty of the computational hashing is updated every 2016
blocks.[2, 11] The Bitcoin network, with its miners, consume in electricity consumption
together more than many smaller counties. This ecological fact for these PoW networks is
a reason that they are slowly in decline as more and more people are pushing for more and
more sustainable means of power consumption. The electricity used for bitcoin mining rigs
is often not from renewable sources, but from sources that are harmful for the environment.
The amount of CO2 emissions by bitcoin in year 2021 is estimated to have killed about
19,000 people. [20]

Proof of Stake

Proof of Stake is consensus family, where consensus nodes are called validators who have to
put in their own funds as collateral and then, depending on total percentage of their share,
they get according amount of voting power and can vote on newly emitted events. Voting
is basically computation of transaction result and verifying that the transaction can be
completed without violating network state. If a validator behaves maliciously, their funds
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can be slashed to zero and they can be removed from the list of validating nodes. As new
blocks are emitted, validators that contributed with their signatures are rewarded with fees.

Stacking

Stacking is when client not running his own node entrusts some validator with his assets
in the PoS network. This mechanism of stacking, where people who don’t want to run
their own validating nodes help to contribute to network security by letting people choose
whether to and where to delegate their funds. Then the selected validator gets to increase
their validating power by stacking an amount of clients.

Nakamoto consensus

This consensus is reached based on computed hash function from newly included transac-
tions in new block. The computation is based on finding number which in addition to the
block information will result in hash in some specific form. When consensus block (miner)
computes hash for new block he sends out his findings to his peers and is in result rewarded
for contributing to emitting this block. This method is very slow and as there is limit of
how many transactions can be computed at once so price for transaction included in new
block can get high. Miners are rewarded with this fees as well as rewards of emitting new
block implemented in Bitcoin code this reward is halved every 210000 blocks by reducing
this rewards the total number of bitcoin is increasing smaller and smaller amount, by the
year 2024 the emitting of new blocks will depend on transaction fees alone as the smallest
bitcoin unit will be reached and no more bitcoins won’t be mined into circulation [21].

Lachesis aBFT

Lachesis aBFT is P2P consensus used in Fantom Opera. In contrast to other consenses
Lachesis distributes events between users rather than states themselves. Each transaction
can be composed of different number of events. These events are stored in DAG - direct
acyclic graph. Input of each node are Events, which as they move trough network are
signed off by the validators. The signing mechanism is based on Proof of stake. Once
more then 2/3 of network total stake agrees on event (signs it) it is considered correct and
consensus about that event is reached. Therefore there isn’t block as we know it from PoW
(being confirmed as a whole object together), but the transactions themselves are only
afterwards bundled up into blocks for checksum of network state. In the implementation
of the consensus itself the events are being continuously ordered and output is the final
order of events (the output of consensus is also list of cheating validators. Ordering is
deterministic implemented by lamport rule 2.3 - so each node comes up with same solution.
At the end of each block epochs can be also sealed. Epochs in Lachesis are important
bounds for Atropos calculations. There are two implementations of Lachesis - one of which
is go-lachesis1 written in Golang, this version is also used in go-opera. The other is
jlachesis written in java 2, which seems to be abandoned. There was an experiment with
creating network on Lachesis protocol with hardcoded set of transactions reaching 30,000
transactions per second.

1https://github.com/Fantom-foundation/go-lachesis
2https://github.com/Fantom-foundation/jlachesis
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2.5 Node types
Depending on the specific blockchain options and user preference he can choose between
different types of which node he wants to run. Sorting is either based on the type of job
it has - validator/miner node or just ordinary node for getting statistics from history and
listening to current events happening on blockchain and scanning for information. Another
sorting is by the amount of information the node stores and listens to. Figure 2.5 represents
how different types of nodes interact with blockchain.

Figure 2.5: Involved parties with their interactions and hierarchy. [5]

They can be sorted by amount of information they are holding. Since not every node
needs to have full history of every transaction. Most of the nodes just want fast access to
be able to send transactions to the blockchain directly.

• Lightweight node - In contrast with regular ethereum nodes they store just head
of the blockchain. Usually used on devices with low computing power.

• Archive node - storing all data and states.

• Full node - storing whole state MPT in Ethereum

• Pruned node - similarly is light node storing just recent data up to some point.

2.6 Blockchain networks

Bitcoin

Bitcoin is decentralized P2P network, that was first proposed in year 2008 by Satoshi
Nakamoto. This blockchain system adapts cyptographic mechanism, that enable anony-
mous peers to complete their transactions. It uses Nakamoto consensus described in section
2.4. Bitcoin miners get together in pool, which is coordinating their computational power.
As mining pools introduced and block mining difficulty keeps getting harder - it is prac-
tically impossible to mine block with smaller computational power - first confirmed block
taking years to occur. [21]
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Ethereum

Ethereum is distributed blockchain allowing smart contract execution. Smart contracts is
program, which when deployed is running and computing it’s code on nodes in network
in EVM - Ethereum Virtual Machine. Two mostly most widely used implementations
connecting to Ethereum protocol are Geth - go-ethereum written in Golang and Parity
- parity-ethereum written in Rust 3. The concensus in Ethereum is based on Proof of
Work. [1] Ethereum is currently second network in total capital value and because of the
many innovative features it is used as template for many other networks. Ethereum is
decentralized and anyone can join the network and become miner. In order to mine new
block node has to find nonce that corresponds with transaction data into specific hash. [15]

Ethereum 2

Aims to be more scalable then Ethereum and public testnet is already running. Uses
sharding of network to help with scaling. Synchronization between shards is done trough
beacon. Currently troughput of network is . but we will have to see how this will work in
mainnet with way more shards. As long as transaction is just in between bounds of shard
it is very quick, but beacon’s bandwidth is going to be bottleneck for a lot of transactions
(which need to access data from other shards).

Cardano

Cardano is as well Ethereum blockchain with Smart Contracts ability. It ss project which
aims to formally verify implementation of Ourboros family consensus protocols. Cardano’s
consensusOutrobos uses Proof of Stake mechanisms is focusing on scaling transactions. [6]

Layer 2 blockchains and sidechains

In layer 1 blockchains such as Ethereum, Cardano, Fantom all transactions are computed
on network itself, which is limiting because there is limited amount of transactions that can
be computed per second. Layer 2 blockchains offer the ability to compute the transactions
and then periodically confirm their state with first layer, thanks to this mechanism they
can be more scalable and therefore can also have lower the transaction fees. Concurrently
with blockchain processing transactions offloading transactions from mainchain, get sum
of results and then periodicaly process/verify it on mainchannel. For example Hydra for
cardano, Plasma for Ethereum

3https://github.com/openethereum/parity-ethereum
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Chapter 3

Fantom Opera

This chapter describes what Fantom Opera is. Fantom is one of the first widely used DAGs.
In this network transactions are sent in form of events by Lachesis protocol, which ensures
that they are valid. Lachesis provides fast, leaderless, asynchronous, permissionless , quick
finality, cheap transactions and also fast. Various decentralized application be built onto
it, but also since Opera uses Ethereum Virtual Machine for smart contracts, the code from
Ethereum can be portable without any problems. [3]

Opera
Opera is Fantom’s mainnet network name it is running since december 2019. The first block
in blockchain is called genesis, from this block onward events, transactions, contracts, val-
idators constantly change the state of header block of the Fantom network. Currently there
is only one implementation for Opera1 in Golang, where Opera is built of top of Ethereum
Geth but with with Lachesis consensus2.4. For datastorage it uses leveldb database for fast
key-value writes and searches.

Networking

When new node is synchronizing to the network it loads list of bootnodes in configuration
file, which client asks for IP addresses to connect to. So they don’t necessarily have to be
running nodes on that address. Then when node starts communicating with another nodes
they keep peer connection between each other. In future when node needs to connect it
looks in history of connected nodes(peers) and tries to connect to them.

Event blocks are being sent trough gossiping emission speed is based on amount of
traffic in the network.

Blocks

Blocks in lachesis are not just bundles of transactions. One block also consists of all of the
intertwined events in DAG and since in next block events from previous blocks are needed
as well. So you can’t just take one block and start computing viz. fast sync.

1https://github.com/Fantom-foundation/go-opera

16

https://github.com/Fantom-foundation/go-opera


type Block struct {
Time Timestamp
Atropos hash.Event
Events hash.Events
Txs []common.Hash
InternalTxs []common.Hash
SkippedTxs []uint32
GasUsed uint64
Root hash.Hash

Listing 3.1: Block structure

Transaction pool

Transaction pool - Tx Pool waiting queue base on every node for new transactions emission.
Based on the amount of gas price, the priority of transactions is defined and when validating
node takes transactions from the pool in batch new block is created. [14]

Epochs

Difference with general purpose of epochs described in 2.3. DAG structure of events rep-
resents single event structure. DAG is separated into sub-DAGs - which are considered
epochs. Epoch creates is bounds in for blocks in time. Epoch is extended block, that has
additional information such as list of validators.

Epoch ends after on of three conditions is satisfied:

• number blocks exceeds MaxEpochBlocks

• time of MaxEpochDuration is reached

• block in which cheater was revealed ends

DAG

DAG model is integrated un Lachesis protocol. It enables high speed stream of asynchronous
data. The data stored in DAG are events, where Lachesis concensus helps with their
ordering, this asynchronous ordering with logical time ordering is used instead of classical
chain in blockchains. DAG in Opera is StakeDag aiming for consensus in Proof of Stake
network by DAG-based trustless system. Validators have higher score of trust and usual
users have low score of trust. The Asynchronous approach of BFT system boardcasts events
to be voted on. Each validator votes for these transactions to be signed as 2/3 of network
agrees concensus is reached. [14, 13]
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Figure 3.1: An overview of ONLAY framework[12]

• Layering Layering assigns every block in OPERA chain a number with usage of
Lamport rule so that every edge only points from old to new layers.

• Root - Root is an event block is called a root if it is the first generated event block
of a node, or it can reach by more than 2/3 of other roots.

• Root graph - Root graph is containing roots as vertices and their reachability between
roots as edges.

• Clotho - A Clotho is a root node in DAG structure satisfying that it is known by
more than 2/3 nodes and more than 2/3 nodes know that information.

• Atropos - Atroposes are used to keep main line of DAG they are selected Clotho
by voting and they have consensus time. This helps with ordering (=finality) of
the blocks in network. Starting new epoch there is no reference to the events in dag
before, but as the epoch carries on including new blocks there are backward references
in DAG, which helps to scale up the network. [12]

Snapshots

Nodes which have enabled this feature are creating it’s own snapshot of data, which is
automatically updated with new data. This storage consists of keys in flat storage so
whenever contract specific address is being searched the lookup time is significantly smaller.

This feature was created in Ethereum - last year there was possible exploit - when smart
contract code was accessing the non cached data, then it took few seconds to access it and
there wasn’t any bigger gas penalty. A bigger penalty for accessing non cached data was
added. So still when data to a key is being searched and there is flat storage it returns data
for lower amount of gas.

Storage

Data for Opera stored in levelDB. The structure of files in filesystem:

• /chaindata/genesis - database used when loading data from genesis file

• /chaindata/gossip - database with events
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• /chaindata/gossip-X - data for specific epochState

• /chaindata/lachesis - concensus database

• /chaindata/lachesis-X - data for specific epochState

• go-opera - private key for P2P communications and list of bootnodes

• keystore - private key for used for signing transactions

• opera.ipc - inter-process communication

Gossip database structure

Data stored in database is compressed and stored in file system in structure shown in
previous section. Data is stored by prefixes of legth of one or two characters decoded by
hex so 16 bits. In Table 3.1 you can see amounts of data and data their data distribution in
mainDB gossip database. Database size was 1520.3GB (1520378895738 Byte bytes).
The fact various types of data are going to have different sizes of keys and values, therefore
database usage can be more overloaded as multiple amount of small writes or reads in
database can lead to decrease in total write/read limits.
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Prefix Node count (Byte)
_ gossip.Store.Version 1
Ds gossip.Store.BlockEpochState 24057
e gossip.Store.Events 322195847864
b gossip.Store.Blocks 8423290404
g genesis 44
gi gossip.Store.Genesis.GenesisBlockIndex 1
gg gossip.Store.Genesis.GenesisHash 0
lk gossip.Store.HighestLamport 1
V gossip.Store.NetworkVersion 10
B gossip.Store.BlockHashes 1597837650
! gossip.Store.LlrState 20
@ gossip.Store.LlrBlockResults 53098116
# gossip.Store.LlrEpochResults 243201
$ gossip.Store.LlrBlockVotes 148011005
% gossip.Store.LlrBlockVotesIndex 75114408
∧ gossip.Store.LlrEpochVotes 8944642
& gossip.Store.LlrEpochVoteIndex 328650
* gossip.Store.LlrLastBlockVotes 469
( gossip.Store.LlrLastEpochVote 561
S gossip.Store.SfcAPI 3406873
M evmstore.Store.Evm 471335184406
r evmstore.Store.Receipts 163024427797
x evmstore.Store.TxPositions 20584921251
X evmstore.Store.Txs 3489287017
L evmstore.Store.EvmLogs 529030636788
l HighestLamport 6
h BlockEpochStateHistory 408058966
P EpochBlocks 231530

Table 3.1: Each prefix with different amount of data

3.1 Code structure
Structure of Opera processes when processing new events from network is visualized in
Figure 3.2.
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Figure 3.2: Opera structure

• P2P Service (implemented in gossip.handler) handles peers connections and received
messages

• Received events are queued to DAG processor’s checker and orderedInserter workers

• checker validates events in LightCheck and in parallel in HeavyCheck (heavy_check.go)

• orderedInserter receives validated events, release invalid and push valid events into
the Ordering Buffer

• The Ordering Buffer returns a list of parent events, which are required yet - the DAG
processor announce them to the DAG Fetcher
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• The DAG Fetcher requests the missing events from P2P peers

• The Ordering Buffers calls Process callback on completed events, which (in gos-
sip.handler) broadcast them to peers and calls Event callback (in c_event_callbacks)
processEvent.

• Event callback checks the epoch, process LLR votes, saves the event and sends it into
the DAG indexer/aBFT Orderer.

• aBFT Events Orderer finds the atropos of added events and construct an ethereum-
like block by calling Block callbacks BeginBlock/ApplyEvent/EndBlock.

• The EndBlock callback starts the block processing in EVM processor. It seals the
epoch before, if appropriate, and generates internal transactions which awards the
epoch validators.

• The transactions processing is done in a standalone blockProcTasks worker thread.

Lachesis base

Lachesis package

• The Lachesis package defines an interface of the consensus implementation2

• Input of consensus are events (dag.Event) received from various nodes. Each node
receives and emits events. Validators are used to sign events

• Output of consensus are blocks of events in final order and list of cheating validators

• lachesis.Consensus - input interface for consensus implementations

• lachesis.Consensus - input interface for consensus implementations

• Build(dag.MutableEvent) is used by validators to set consensus fields (frame) of new
events

• Process(dag.Event) is used to include received events into processing - parents needs
to precede their children

• lachesis.ConsensusCallbacks - interface for output callback (of blocks) from the con-
sensus

• BeginBlock / ApplyEvent / EndBlock - used by consensus implementations to output
constructed blocks and their events

• lachesis.Cheaters - output type - cheating validators list
2https://github.com/Fantom-foundation/go-lachesis
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aBFT package

• aBFT = Asynchronous Byzantine Fault Tolerance contains implementations of inter-
faces from the Lachesis package

• abft.Orderer - Processes events to reach finality on their order, does not detect fork-
s/cheaters.

• Calls ApplyAtropos callback to report new decided frame (frameId+atropos hash)

• Calls EpochDBLoaded callback to report start of an epoch (on an epoch sealing or
on start)

• abft.Lachesis - wraps Orderer, adds:

1. Setting events as confirmed
2. Forks/cheaters detection (needs to read dagIndex for it)
3. Calls Consensus-Callbacks to output constructed blocks
4. abft.IndexedLachesis - wraps Lachesis, writes built/processed events into dagIn-

dex, currently used in tests only

• lachesis.ConsensusCallbacks - interface for output callback (of blocks) from the con-
sensus

• BeginBlock / ApplyEvent / EndBlock - used by consensus implementations to output
constructed blocks and their events

• lachesis.Cheaters - output type - cheating validators list

dag package

• dag = Directed Acyclic Graph defines interfaces for Events - basic building unit of
the DAG

• dag.Event

• ID consists of: = epoch + lamport + counter on validator

1. epoch
2. lamport
3. counter on validator

• Lamport = maximum of parents lamports + 1

• Creator = the validator emitting the event

• Parents = list of parent events

• SelfParent = parent event from the same validator

• Seq = self-parent seq + 1 (0 if it is the first event of the validator)

• Frame = set by abf.Orderer.Build()

• Epoch
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VecMT package (vector clock with median time calculation)

VecFC package (vector forkless cause)

Kvdb package (key-value database)

• kvdb.Store = interface for writable key-value store

• Interfaces:

1. Has/Get - reading
2. Put/Delete - writing
3. NewBatch - batch writing (primitive transaction)
4. NewIterator - iterate data by key prefix
5. Stat - get stat property (impl specific, like “leveldb.alivesnaps” for number of

alive snapshosts)
6. Compact - flatten the store in key-range (deleted/overridden data are discarded)
7. Close

• leveldb.Database - kvdb.Store implementation using leveldb from go-ethereum

• table.Table - wraps kvdb.Store, adds key-prefix to create nested Store - implements
kvdb.Store

• NewTable(prefix) creates table nested in the table (prefixes are appended)

• table.MigrateTables - method for “table” structs initialization - used in data-specific
stores bellow

• Initialize structure fields to table.Table instances.

• Argument 1: pointer to structure to be initialized (with “table:” annotation defining
the prefix)

• Argument 2: the underlying kvdb.Store

• abft.Store - store for aBFT (not an implementation of kvdb.Store - data-specific
methods instead)

• table/epochTable sub-structs are initialized using table.MigrateTables() to sub-tables
of mainDB

• epochTable.Roots - Roots specific store methods:

1. Key - concatenation of frameId + validatorId + eventId, no value
2. AddRoot(selfParentFrameId, event) - puts into the table
3. GetFrameRoots(frameId) - iterates with prefix filtering the frameId

• epochTable.ConfimedEvent - maps event hash to id of frame on which was the event
confirmed

• epochTable.VectorIndex - subtable for vecengine.Engine subtables (dagIndex data)
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• table.EpochState - one constant key “e”, the epoch state (epoch id + validators) in
RLP

• table.LastDecidedState - one constant key “d”, RLP encoded value

• vecengine.Engine

1. table.EventBranch - maps event id to branch id (1 validator has 1..N branches)
2. table.BranchesInfo - constant “c” to BranchesInfo struct in RLP:

– BranchIDLastSeq - maps branch id to highest event Seq in the branch
– BranchIDCreatorIdxs - maps branch id to validator id
– BranchIDByCreators - validator id to list of branch ids

3. vecfc.Index - dagIndex - engine/index to detect forkless-cause condition
4. table.HighestBeforeSeq - maps event id to vector of lowest events (seq) which

observes the event
5. table.LowestAfterSeq - maps event id to to vector of highest events (seq+isForkDetected)

which observes the event

Snapshot

• Opera stores state of accounts (balances, contracts data) in MPT (Merkle-Patricia
tree), which is necessary to generate hash of the block state. The snapshots can be
enabled as flat-storage cache to accelerate access to state data. When snapshots are
enabled, a new snapshot is created for every new block (in StateDB.Commit)

• There are two types of snapshots:

1. diskLayer - the base
2. diffLayer - collection of modifications made to a state on the top of the other

snapshot

• The Cap operation flattens all layers under a given level into the bottom one

Key-value database

• All Opera data is stored into a few key-value databases. If it is not set to use “in-
memory” database, it use leveldb to store data in “chaindata” subdirectories

• Connections into both are provided by [integration.DBProducer]

• This producer is wrapped by [flushable.SyncedPool], which ensures:

1. Writing dirty flag (into FlushIDKey) before flushing and its clearing after the
flush

2. Keeping the databases opened in the pool (opened on first OpenDB call)
3. When the engine starts [integration.MakeEngine], it checks if some database is

dirty (flushID is not written) - if it is, all DBs should be dropped
4. The flush is done: (for gdb=gossip db) [gossip.Store.Commit]
5. On new epoch [c_event_callbacks.processEvent]
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6. On gossip.Service stop
7. By ticker when cfg.MaxNonFlushedPeriod is exceeded [gossip.Store.Init]
8. After genesis application [integration.applyGenesis]

LevelDB options

• Following LevelDB options can be significant for the database performance:

• CompactionTableSize - size of new table files

• CompactionTotalSize - maximum total size of all tables in one layer, when exceeded,
the compact operation starts to merge the layer into the higher layer

KVDB prefixes structure

• Following databases can be found in the “chaindata” directory.

Tag Namespace Note
_ gossip.Store.Version (“id” - string)
D gossip.Store.BlockEpochState (“s” - BlockState, EpochState )
e gossip.Store.Events (eventID - inter.EventPayload)
b gossip.Store.Blocks (blockID - inter.Block)
g gossip.Store.Genesis (“i” - blockID)
l gossip.Store.HighestLamport (“k” - lamportUint32)
V gossip.Store.NetworkVersion (“v” - networkV, “m” =- missedV)
B gossip.Store.BlockHashes (eventID - blockID)
S gossip.Store.SfcAPI

SR sfcapi.Store.GasPowerRefund
S1 sfcapi.Store.Validators (epoch+stakerID - sfcapi.SfcStaker)
S2 sfcapi.Store.Stakers (stakerID - sfcapi.SfcStaker)
S3 sfcapi.Store.Delegations (deleg+staker - sfcapi.SfcDelegation)
S6 sfcapi.Store.DelegationOldRewards (delegator+stakerID - amountInt)
S7 sfcapi.Store.StakerOldRewards
S8 sfcapi.Store.StakerDelegationsOldRewards (stakerID - amountInt)
r evmstore.Store.Receipts (blockID - []ReceiptForStorage)
x evmstore.Store.TxPositions (txHash - blockID,eventID)
X evmstore.Store.Txs (txHash - types.Transaction)
L evmstore.Store.EvmLogs
Lt topicsdb.Index.Topic
Lr topicsdb.Index.Logrec
M evmstore.Store.Evm (EvmKvdbTable)

Table 3.2: Caption gossip mainDB (OperaStore) (gdb)

Tag Namespace Note
c abft.Store.LastDecidedState
e abft.Store.EpochState

Table 3.3: Caption mainDB lachesis (LachesisStore/cdb=consensus db)
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Tag Namespace Note
Z gossip.asyncStore.Peers

Table 3.4: Caption asyncDB gossip-async (gdb)

Tag Namespace Note
c genesisstore.Store.Rules (“c” => opera.Rules)
b genesisstore.Store.Blocks (blockId => genesis.Block)
a genesisstore.Store.EvmAccounts (address => Balance,Code,Nonce,SelfDestruct)
s genesisstore.Store.EvmStorage (address+keyHash => valueHash)
M genesisstore.Store.RawEvmItems (keyBytes => valueBytes)
d genesisstore.Store.Delegations (address+validatorId => genesis.Delegation)
m genesisstore.Store.Metadata (“m” => genesisstore.Metadata)

Table 3.5: Caption genesisDB genesis

Tag Namespace Note
t gossip.epochStore.LastEvents (“” => (validatorId+eventHash)*)
H gossip.epochStore.Heads (“” => eventId*)
v gossip.epochStore.DagIndex (vecDb) (for subtables bellow only)

vT vecmt.Index.HighestBeforeTime (eventId => time)
vS vecfc.Index.HighestBeforeSeq (eventId => seq)
vs vecfc.Index.LowestAfterSeq (eventId => seq)
vb vecengine.EventBranch (eventId => branchId)
vB vecengine.BranchesInfo (“c” => vecengine.BranchesInfo)
r abft.Store.Roots (frameId + validatorId + eventId => “”)
C abft.Store.ConfirmedEvent (eventId => frameId where confirmed)

Table 3.6: Caption epochDB gossip-epochId

3.2 Network performance bottlenecks
Table 3.7 shows processing time of new blocks in Parity implementation. Opera has exactly
same problem since the way data is stored is identical. Opera is currently at 38 million
blocks as amount of data in database rises the disk I/O operations take more time. This
problem is further described in Experiments. 6.[1]
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Blocks (M) DB
0 – 1 261
1 – 2 1026
2 – 3 4719
3 – 4 4630
4 – 5 28617
5 – 6 54754
6 – 7 61769
7 – 8 72958

Table 3.7: Block processing time of DB (s).[1]

EVM -> FVM

Fantom virtual mashine would be way faster currently limit in EVM is set to 20 transactions
per second and uses stack database - level db is being used (key value storage). FTM could
start working with registries, but there would be new problems as concerns for security.
EVM still in use so it is slow, will be replaced in future by FVM - fantom virtual machine.

Disk IO

Current disk write speeds are about 200 MB/s, while read speeds average at 300 MB/s
with peaks at 800MB/s.

3.3 New node synchronization options
In this chapter I go trough currently available methods of synchronization in Fantom Opera
network.

Synchronization from genesis

When opera is first run it is required to select genesis file. Depending on which genesis file
is selected that network will be created. Next time opera is run it already has genesis data
generated so it doesn’t have to recreate it and continues from local highest head. When new
node wants to connect to network and synchronize it has in configuration list of bootnodes.
These bootnodes is list of entry nodes provided by the Fantom Foundation. Client adds
bootnodes as peers and P2P communication is established. From its peers client appends
his list of peers by active peers connected to his peers and so on.

Snapshot

This solution is based on implicitly trusting the datasource. Hosting server zips whole
database. Data can be downloaded to new server in zip file for Fantom there is list available
at ultimatenodes 3. This is going to be the fastest solution as it fully utilizes network and disk
and doesn’t require any further processing power then unzipping into directory. Snapshots
need to be updated regularly so if user wants to download database with most recent state

3https://ftmbootstraps.ultimatenodes.io/
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it isn’t out of sync for long time and new node doesn’t have to compute huge number of
passed blocks.

Regenesis

Synchronized server can create new genesis file, that has state of MPT archived and doesn’t
need previous events. There is same problem as with snapshots disadvantage of having to
create newer and newer genesis files because synchronizing from older one would require
catching up to head.
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Chapter 4

Fast synchronization design

Catching up to head from genesis takes a lot of time. Fast sync is most non-DAG networks
is easy because you only have to download newest block from network and you are quickly
caught up up to head. But in DAG networks it gets trickier, because there isn’t block as
it own. So rather than downloading specific block you have to download set of events that
will be needed catching up to head and possibly in future computations

4.1 Synchronization in other networks
On top of mentioned synchronization processes already available in Fantom Opera described
in previous chapter 3.3 there are other ways of other blockchains. But not all are possible
to be implemented in Opera due to the different network designs.

Non-Interactive Proofs of PoW

Non-Interactive Proofs of Proof of work (NIPoPoWs) are used for decentralized consensus
protocols based on Proof of Work mining, where nodes are required to download data
linearly from their current head. This concept enables synchronizing nodes to get the
information of reached PoW consensus without sending all the information about it. Unlike
traditional blockchain only generated Superblocks are sent. These superblocks are only
logarithmically-sized proofs of blocks in specific time period. Since they are non-interactive
they require only single message between prover and the verifier of the transactions. Clients
synchronize with network quickly even if they remained offline for very large period of time.
They are very useful in sidechains and lightweight clients, but not usable in DAG networks
- since there would have to be important parent events in every node anyway. [9]

30



Figure 4.1: Confirmation by NIPoPoWs Superblocks between clients only every few blocks
2

Full sync

Full sync is consider to be the most secure way of synchronization. It is the simplest
solution, but the one that takes longest time. It is to let node synchronize by protocol itself
from the genesis. Node downloads all events and computes them to receive full MPT tree
with valid data. This method of classic synchronization is also used for nodes that were
lagging and are trying to catch up. original way of propagating data to new nodes as if the
node was lagging and trying to catch up. All transactions since beginning (or genesis) are
being executed to catch up with the head. [16]

4.1.1 Fast sync

Fast sync is based on relying on Proof of Work mechanism. Not all transactions are ex-
ecuted, but only subset 64 blocks is downloaded. Tinkering with this many blocks would
be computationally so expensive, so that this method is considered secore for construction
of state root. By having state root, which node trusts it can download state trie directly
(balances of account, states of contracts) because it can be confirmed by the HEAD state
root. [16]

Warpsync

Every 5,000 blocks node takes snapshot of the current state. This snapshot can be then
distributed to new nodes. Any node that synchronizes can download each individual chunk
from any server that implements warpsync. Unfortunatelly where is no mechanism of how
to verify transafer date in download progress - node has to finish download to start checking
if all chunks arrived correctly. [19]

Snapsync

Snap sync is protocol to download data almost retrieved almost in real time. Synchronized
nodes keep dynamic snapshots of recent states available for peers. Peers joing to the network
download ranges of indexes with this data these ranges can be sumchecked by MPT as they
are recieved. This prevents attacks for injecting poisoned records into database - compared
to warp sync, where sumcheck can only be down afterwards. Snapshot in servers consists of

2Adopted from https://nipopows.com/images/hierarchical-ledger.png
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only necessary data in flat storage, there it can be iterated trough in 7 minutes. Meanwhile
iterating trough whole database on Ethereum can take up to 9,5 hours. [18]

4.2 Solutions overview
• NIPoPoWs - is designed for PoW

• full sync - downloads blocks and computes them one by one the to reach current
state.

• fast sync - downloads all tree nodes from MPT tree

• warp sync - Used for useful data (accounts, storage slots), can be verified only after
synchronization process (not during), so if any data gets corrupted by an attacker
whole process has to be started over. Requires generated snapshot on hosting nodes
before the download process.

• snap sync - user gets data depending on type of snapshot. Segments of data are
being verified troughout the process by MPT hash check. Snapshot on hosting nodes
is being generated in running node.

Comparisment

Comparisment of different blockchain’s synchronization times. In Table 4.1 you can see
how different concenses and their times of synchronization, size and TPS compare. The
time of synchronization depends on the amount of data being synchronized. Out of this
list the lightnode in Geth implemented by snap sync stands out as takes only 15 minutes
to be have verified state. (Note solana is more centralized.)

Blockchains stats TTPS Synchronization time storage bandwidth
Bitcoin full node (core) 7 7 days 350GB 5,5 GB day

Ethereum light node (geth) 30 15 minutes 500MB 25 MBit/s
Ethereum full node (geth) 30 3-4 days 500GB 25 MBit/s

Ethereum archive node (geth) 30 20-30 days 6TB 25 MBit/s
Fantom DAG 300 000 8 days 2.5TB 1250 MBit/s

Solana (2 day history) DAG 65 000 1 hour 1,5TB 300 MBit/s
Avalanche DAG 20000+ 3 days 200GB 30 MBit/s

Cardano 1000 6 hours 30GB 10 MBit/s
Ethereum 2.0 L2 100 000 - - -

Table 4.1: Comparison of different blockchains synchronization speed

4.3 Picking new fast synchronization solution
First of all I needed to choose the way of synchronization and what amount of data should
be synchronized.
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Initially Proposed Design

New node asks peers not for events one by one, but using idea from to skip block com-
putation. First of all it is important to get current list of validators, so we will trust the
signatures of current blockchain state. This list could be recovered from ordinary P2P com-
munication without adding another P2P communication interface. Client server will ask for
data for each Epoch one by one since genesis file. It has to explicitly trust validator public
keys that are written there. Every new epoch is signed by keys of previous validators and
contains list of validators for following epoch. Once node catches up to last finished epoch
we have list of currently valid validator public keys. Then events and state data (aBFT tree
indexes from gossip db) in MPT need to be downloaded. The result would be node which
is as big as an offline pruned node with all required data for further block computations.

Data needed for synchronization:
• BlockState - actualized after each block.

• EpochState - actualized every new epoch ( 5-10 mins on mainnet)

• EpochEvents(E) - list of events(DAG vertices) in epoch + indexes of aBFT algoritm

• EVM’s MPTs - EVM’storage
At the start of epoch should (E) be empty. Therefore it makes most sense to synchronize
database in exact point, where this list of events is empty.

Selecting from existing designs

Choosing mentioned in chapter 3.3 there is an option of snapsync, which was implemented
and published to testnet at the time of me working on my original solution (described in
5.1). Then there are methods of synchronization by simply downloading prepared files by
other users. The main problem is creation of these snapshots of database takes at hours
aswel as prunning if the snapshot is meant to contain just recent data. Since most users
don’t need nor want historical data of blockchain I presumed these two options for them
are covering most usecases. Then I looked how synchronization is taking place in company
managing multiple servers. Since these servers are all considered secure in bounds of just
few people having access to them. The synchronization process is considered safe when
data of one server is transfered to new server. This is especially useful as the server will
contain exactly the amount of history needed for usage (for example 1 month old data
should be stored on all servers so they are easy to access etc.). Hence copying of these data
by tools such as rsync 3 is optimal option. The biggest drawback of copying data directly
from one server to another is that the hosting node has to be stopped. Even tho rsync is
7GB/min fast the downtime of server could have negative affect of service availability. For
example if network would have 10 nodes and new 5 nodes for different service needed to be
synchronized quickly then fastest way would be to stop 5 running servers and transfer data
to each individual server. This would lower the service capacity.

4.4 Selected solution
My selected solution is to synchronize data from server without stopping the server itself
and directly copy data from it. Since server isn’t stopped it can maintain pace with network

3https://linux.die.net/man/1/rsync
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and won’t fall behind from current head. It is obvious that synchronization this way is going
to be slower than rsync since processing power as well as disk IO is being used for computing
new blocks in meantime. Also I have to keep in mind that with increasing size of database
the write speeds are going to be slower.

Communication interface

Communication interface on figure 4.2 displays how two nodes will be sending and receiving
data from one another. There will only be one hosting server connected to a client.

Figure 4.2: Comunication

• Challenge - Random number sent by client

• ChallengeAck - Signed value of Challenge

• SendCommand(GET) - command starting initializing download

• EstimatedSize - estimated size of database

• Data - contents of gossip database

• Finish - notification of end of a stream
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Client

Client will connect to hosting server on given port. After establishing connection and
receiving public key the data transfer will be done by pipelinning workload into three
threads:

• ReadBundle - downloading bundles one by one and putting them into buffer for
Hashing thread

• Hashing - reads data from previous thread and computes their hash and confirms it
fits the given signature and correct server public key.

• DbWrite - Receives list of items from Hashing thread that were in bundles, which
hashes and signatures were confirmed. Writes them as they arrive into database.

Figure 4.3: Client Data Pipelining

Server

Analogically to client. Server will wait on connection from client then sending him his
public P2P key used used for transferred data verification. The process is also done by
pipelining workload, but I decided to only use two threads. Data won’t be avaiblale as fast
as client reading them, but this should be enough because client will get stack inserting
data into database:

• DbRead - Iterator reads data (Items) from database, groups them into bundled
packages, to which hash and signatures are assigned.
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• SendBundle - sends prepared bundles to client

Figure 4.4: Server Data Pipelining
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Chapter 5

Implementation

In this chapter I describe my implementation of fast synchronization in Fantom Opera
network based on my designed solution described in previous chapter 4.4. First I describe
what versions I build my solution on, then I go deeper into how I implemented communi-
cation protocol. After that I describe what else needed to be fixed to have clean state of
database. Based on analysis of Code structure in 3.1 I understood that to run node I will
need to have valid gossip database. In Lachesis database I will only need to have matching
dbFlushId, epoch and validator list. Because proposed synchronization is based on state
at end of epoch I don’t need block event states, since they are only needed for currently
ongoing epoch (and are blank at start of new epoch). The data in database is stored in
RLP encoding, but since I’m transferring them in 1 to 1 ratio it I don’t have to decode
them.

5.1 Opera versions
I have implemented my solution in two Opera forks. I didn’t fork directly from official
repository1. There are many forks of go-opera, but I only found two with interesting
features related to purpose of this thesis so I chose them.

Egor Lysenko’s fork

- this version was particularly interesting to me, because as I was designing my solution
version I found out that there is already version with snapsync taken over from Ethereum.
Even tho this version is so far only available for testnet it doesn’t make difference, when
different amount of traffic and database size was taken into the consideration. Hence I used
this version not only for doing experiments on my leveldb database, but also for comparison
of how well his implementation performs. The specific version I picked is forked at commit
a491dc96fcef52557fd438d95843b5c1304badad available on his github2.

Honza Kalina’s fork

The second version I picked is from my colleagues Honza Kalina. His version runs on
mainnet. Has perk of having fixed issues such as dirty bit correction and has introduced

1https://github.com/Fantom-foundation/go-opera
2https://github.com/uprendis/go-opera/tree/feature/customizable-genesis-file
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pebble database that I’m going to compare with Leveldb. The version I forked from his
github3 is from commit 36fcc55a71219a7bfa1578ee902c6e531e04547b.

5.2 Establisment of connection
As described in previous chapter in selected solution 4.4 portrayed in Figure 4.2, there is
going to be key exchange from server to client before the sending of data begins. Client node
generates random Challenge, server will sign it and return it in ChallengeAck. Public key
is retrieved by crypto.Ecrecover(*hash, *signature) function in Golang crypto library
implementation. This recovered key is written to program output right at the start so
it is possible to double confirm that the server client is communicating with is in fact
really the selected entity. Next step is for client to send request to get data. In the
implementation there is simply “get” message sent to the server. Server responds with
database size estimate read from selected datadir in /chaindata/gossip subdirectory.
Then the progress of data transfer begins.

Data lifecycle
The data transferring package in my implementation is called Bundle - it is package of
multiple items compounded together. When data length of items surpasses the as they reach
minimal recommended size - RECOMMENDED_MIN_BUNDLE_SIZE, then hash and signature are
computed to it and bundle is sent. Bundle consists of:

• Finished (bool) - flag determining that stream has successfully finished.

• Hash ([]byte) - Keccak256Hash of data.

• Signature ([]byte) - hash is signed by secp256k1 - EDCSA private key used in P2P
communications

• Data ([]Item) - item is structure composed just by Key (][byte) and Value ([]byte)

On each composed bundle RLP encoding4 is used. Is used to efficiently encode and decode
between any data structure and []byte. This stream of bytes is then put into lz4 com-
pression and RLP encoding again. This last RLP enconing at the server side is important
so the client side knows how long is the incoming compressed message. Data is sent by
TCP socket to the client side. Client is using RLP decode on incoming bytes as they arrive
and tries to decode structure. The first structure for every bundle it decodes is []byte
containing compressed data. Lz4 decompression is called and []byte containing encoded
by RLP is retreived. After RLP decoding. Data is hashed and by Signature the hash is
verified. The last step is to put data into database. See Figure 5.1 for data path at client
side and Figure 5.2 for server side.

Figure 5.1: Client: data being processed from network to the database
3https://github.com/hkalina/go-opera/commits/pebble-v1.1.0-rc.5
4https://eth.wiki/fundamentals/rlp
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Figure 5.2: Server: data being processed from database to the network

5.3 Hosting server
Hosting server is implemented in direct_sync/sync_server.go. As Opera is launched
new thread is started for handling client requests. Client is started by function
InitServer(gossipPath string, key *ecdsa.PrivateKey) with parameters for readding
estimated size of database and secp256k1 - private key
used for signing onto hashes and challenges. As server is running and new epochs are com-
puted reference to gossip.SnapshotOfLastEpoch is kept. I implemented this snapshotting
in a way that whenever block is being committed, there is check if it isn’t considered to be
end of epoch. If it is the previous snapshot gets overwritten. But client can’t download
data from server without snapshot - so client might need to wait few minutes for new epoch
to start. I also implemented basic mechanism of keeping track of how many clients are
connected. This isn’t fully viable since I ended up enabling only one specific port for this
tool. As it isn’t expected to be used for multiple servers at once. The following Algorithm
1 describes how bundles are being sent.

Algorithm 1 Server side sending bundles
1: function dbread(sendingQueue)
2: while 𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟.ℎ𝑎𝑠𝑁𝑒𝑥𝑡() ̸= 𝑛𝑖𝑙 do
3: 𝑖𝑡𝑒𝑚← 𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟.𝑛𝑒𝑥𝑡() ◁ Reading data from database
4: 𝑎𝑝𝑝𝑒𝑛𝑑(𝐵𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠, 𝐼𝑡𝑒𝑚) ◁ Grouping into bundles
5: if 𝐵𝑢𝑛𝑑𝑙𝑒.𝑠𝑖𝑧𝑒 ≥ 𝑅𝐸𝐶𝑂𝑀𝑀𝐸𝑁𝐷𝐸𝐷_𝑀𝐼𝑁_𝐵𝑈𝑁𝐷𝐿𝐸_𝑆𝐼𝑍𝐸 then
6: 𝑏𝑢𝑛𝑑𝑙𝑒.ℎ𝑎𝑠ℎ← ℎ𝑎𝑠ℎ(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠) ◁ inserting hash
7: 𝑏𝑢𝑛𝑑𝑙𝑒.𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒← 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠) ◁ inserting signature
8: 𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒← 𝑏𝑢𝑛𝑑𝑙𝑒 ◁ bundle to sendingservice thread
9: if 𝐵𝑢𝑛𝑑𝑙𝑒.𝑠𝑖𝑧𝑒 > 0 then ◁ Send last items

10: 𝑏𝑢𝑛𝑑𝑙𝑒.ℎ𝑎𝑠ℎ← ℎ𝑎𝑠ℎ(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠)
11: 𝑏𝑢𝑛𝑑𝑙𝑒.𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒← 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠)
12: 𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒← 𝑏𝑢𝑛𝑑𝑙𝑒

13: close(sendingQueue)
14: function sendingservice(sendingQueue)
15: while 𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒.𝑖𝑠𝑂𝑝𝑒𝑛() = 𝑇𝑟𝑢𝑒 do
16: 𝑏𝑢𝑛𝑑𝑙𝑒← 𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒
17: 𝑠𝑜𝑐𝑘𝑒𝑡← 𝑏𝑢𝑛𝑑𝑙𝑒 ◁ Send bundles to client

5.4 Client server
Client implementation starts in cmd/opera/launcher/launcher.go. First of all the chain-
data dir with gossip database are prepared. Data synchronization from server is in
direct_sync/sync_client.go file. When connection is established client receives public
key of server and uses this key to confirm data it is downloading for detailed description
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about connection read 5.2 section. When data download in client is finished the process
continues by creating Lachesis database. Lachesis needs to contain epoch number and list
of current Validators. The last thing that needed to be done was to insert same FlushIDKey
into both databases with value of current time. This process is visualized in Alg. 2 and 3

Algorithm 2 Client side receiving bundles
1: function ReadBundle(hashingQueue)
2: while (𝑏𝑢𝑛𝑑𝑙𝑒← 𝑠𝑜𝑐𝑘𝑒𝑡) ̸= 𝑛𝑖𝑙 do ◁ Reading bundles from socket
3: ℎ𝑎𝑠ℎ𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒← 𝑏𝑢𝑛𝑑𝑙𝑒 ◁ Send to hashing thread
4: 𝑐𝑙𝑜𝑠𝑒(ℎ𝑎𝑠ℎ𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒)

5: function hashing(hashingQueue, writeQueue)
6: while ℎ𝑎𝑠ℎ𝑖𝑛𝑔𝑄𝑢𝑒𝑢𝑒.𝑖𝑠𝑂𝑝𝑒𝑛() = 𝑇𝑟𝑢𝑒 do
7: ℎ𝑎𝑠ℎ← ℎ𝑎𝑠ℎ(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠) ◁ Calculate hash
8: 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ← 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠, ℎ𝑎𝑠ℎ) ◁ Calculate publicKey
9: if ℎ𝑎𝑠ℎ = 𝑏𝑢𝑛𝑑𝑙𝑒.𝐻𝑎𝑠ℎ & 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 = 𝑏𝑢𝑛𝑑𝑙𝑒.𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 & 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 =

𝑝𝑟𝑒𝑠ℎ𝑎𝑟𝑒𝑑𝐾𝑒𝑦 then ◁ Verify data
10: 𝐷𝑏𝑊𝑟𝑖𝑡𝑒← 𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠 ◁ Send to writting thread
11: 𝑐𝑙𝑜𝑠𝑒(𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒)

12: function DbWrite(writeQueue)
13: while 𝑤𝑟𝑖𝑡𝑒𝑄𝑢𝑒𝑢𝑒.𝑖𝑠𝑂𝑝𝑒𝑛() = 𝑇𝑟𝑢𝑒 do
14: 𝑑𝑏← 𝑏𝑢𝑛𝑑𝑙𝑒.𝐼𝑡𝑒𝑚𝑠 ◁ Insert into database

Algorithm 3 Database correction
1: function correctDatabase(gossip, lachesis)
2: 𝑔𝑜𝑠𝑠𝑖𝑝.𝐹 𝑙𝑢𝑠ℎ𝐼𝐷𝐾𝑒𝑦 ← 𝑡𝑖𝑚𝑒.𝑁𝑜𝑤() ◁ Insert new flushIdKey
3: 𝑙𝑎𝑐ℎ𝑒𝑠𝑖𝑠.𝑒𝑝𝑜𝑐ℎ← 𝑔𝑜𝑠𝑠𝑖𝑝.𝑒𝑝𝑜𝑐ℎ CommentUpdate epoch
4: 𝑙𝑎𝑐ℎ𝑒𝑠𝑖𝑠.𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠← 𝑔𝑜𝑠𝑠𝑖𝑝.𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠 ◁ Update list of validators
5: 𝑙𝑎𝑐ℎ𝑒𝑠𝑖𝑠.𝐹 𝑙𝑢𝑠ℎ𝐼𝐷𝐾𝑒𝑦 ← 𝑔𝑜𝑠𝑠𝑖𝑝.𝐹 𝑙𝑢𝑠ℎ𝐼𝐷𝐾𝑒𝑦 ◁ Setting same flushIdKey
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Chapter 6

Experiments

For gathering the following metrics I used Prometheus 1 tool built into go-opera in combi-
nation with Grafana2 to visualize the collected data. To each experiment running modified
version of opera I enlisted linked branch with versions of code the experiment ran. Testing
was composed on two servers with exactly same configuration 6.1.

processor AMD’s Ryzen™ 9 5950X on Zen 3 architecture, 16 cores, 32 threads
memory 128GB DDR4 ECC RAM
storage 2x 3.84 TB NVMe SSD Datacenter Edition (unspecified manufacturer)

ZFS RAID 0 (Striping) on data folder
network 1 GBit/s guaranteed bandwidth

Table 6.1: Specifications of both servers running experiments.

Time of block processing
Block processing time depends on current server load as well as the difficulty of the pro-
cessed block. In Figure 6.2 I portrayed how block processing on server is delayed when
synchronization is enabled. In the first part of the image you can see server takes only
few milliseconds to process new blocks. The first part of the image server actually isn’t
synchronized to head and is catching up only right after it synchronized it starts the direct
sync server hosting and client connected and synchronization began. Even tho time rises
dramatically server still keeps on with head. To compare in Fig. 6.1 you can see how much
is server delayed when RPC server processing 100 requests per second is running on it.
Even tho server is synchronized the processing of block takes a lot more time, but still it
isn’t a problem. Yellow line is color taken from metric chain/execution and the green line
stands for values in chain/inserts. From this graph we can see that even two processing
time fluctuates database is more or less keeping up with newly incoming and processed
blocks.

1https://prometheus.io/docs/guides/go-application/
2https://grafana.com/products/enterprise/
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Figure 6.1: Block processing time as node is under load of RPC requests

Figure 6.2: Block processing time when direct sync is launched

We can expect that in database with size of 800 GB the block processing time in the best
case scenario - when there isn’t any other job taking up disk or processor time. The speed
of block importing trough P2P network is about 2000 blocks per minute. To compare with
the speed of new blocks being emitted at 10 transactions per second (TPS), then there are
about 2500 blocks an hour generate. The number of new blocks fluctuates a lot sometimes
on mainnet it can be as get as low as few hundreds of new block in hour. But if there aren’t
many transactions in chain the final catching up process could in ideal conditions matter
of few tens minutes for synchronization of one day data.
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Performance measurements
In this section I compare different synchronization types as well as different metrics, which
play role in synchronization time. For initial data I prepared data of 750GB pebble db
(pruned history), synchronized leveldb by snapsync 85 GB synchronized with full mpt
state 3 and prepared snapshot state4.

Test Database Time Speed
Full synchronization from genesis pebble ~8 days 2870672 blocks/day
Full synchronization from genesis leveldb ~12 days 5235422 blocks/day

snapsync (testnet-6226-pruned-mpt.g) leveldb 17 mins 0.6 GB/min
snapsync (testnet-6226-full-mpt.g) leveldb 41 mins 2.859 GB/min

snapshot - - network limit

Table 6.2: Comparison of how synchronization times

• genesis pebble - it took 10.5 minutes to decode genesis.

• genesis leveldb - it took 5 minutes to decode genesis.

• testnet-6226-pruned-mpt.g - 2.99 GB genesis file downloaded in 30 seconds then
synchronization itself took 16.5 mins and size of database in filesystem was 10GB.

• testnet-6226-full-mpt.g - 71.23 GB downloaded in 11 mins with 30 min it too
to synchronize database 85GB. synchronized downloading the whole MPT occurs at
snapshots after synchronization the head was 3 hours and 10 minutes old.

• snapshot - database compressed into zip

Bottlenecks
In Figures 6.3 and 6.4 you can see how bottlenecks during the transfer look like.

3https://github.com/Fantom-foundation/lachesis_launch/blob/feature/add-snapsync-
instruction/docs/genesis-files.md

4https://docs.fantom.foundation/node/snapshot-download
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Figure 6.3: Server side bottlenecks

Figure 6.4: Client side bottlenecks

Pebble db fix
Pebble DB was at first really slow the process of data transferring for 750GB took over
36 hours. The problem was old in pebble version. At the end of progress on download
I was measuring the statistics of database by command mainDB.Stat(”metrics“)5. I
found out that the old version did compact on it’s own 35012 times and data in compact
queue had size of 1.5 TB. the number of compacts was almost 10 times bigger 3051881
and the compact queue had 232 GB size. I tried to fix this on my own by explicitly
calling compact every 5 MB - the time of transfer dropped from 36 hours to 9,5h hours.
But upgrading the pebble version (from v0.0.0-20220314154659-f9d4a33d7897 to new
veresion at v0.0.0-20220517003944-e567fec84c6e)and letting it do compact on its own
was even more efficient and the final time got to 7 hours.

RLP encoding
I had to checked, whether the RLP encoding isn’t increasing the data size too much. The
increased size of all data items was increased.

actualKeyValueData = 43,073,229,795
rlpEncodedData = 44,013,463,068

5https://github.com/cockroachdb/pebble/blob/master/metrics.go

44

https://github.com/cockroachdb/pebble/blob/master/metrics.go


Lz4 compression
The decompression with Lz4 worked really well. The total Amount of data was transfered
was reduced from 1484.1GB GB to 751.2GB (in database with size of 850.1GB). See Figure
6.5 for the graph of how well the compression was doing during the process.

Figure 6.5: Visualization of transferred information compared to lz4 compressed size

My implementations results
In Table 6.3 you can see how well each of my branches performed.

Branch DB size time
leveldb-direct-sync-buffer-1-compression 88GB 20min

pebble-direct-sync-old-pebble 779GB 36h44min
pebble-direct-sync-old-pebble-compact 822GB 9h21min

pebble-direct-sync-buffer-100-compression-batch 897GB 7h14min
pebble-direct-sync-buffer-1 838GB 7h

pebble-direct-sync-buffer-1-compression 850GB 6h58min

Table 6.3: Block processing time of DB (s).

6.1 Efficiency evaluation and further improvements
The data stored in pebble as well as leveldb ended up being way more compressed then
I anticipated. The measured data in database stored in database with 759 GB disk size
had keys and values with total amount of 1372.26GB. I managed to lower the amount
of traffic bandwidth required introducing compression, which ended up being about 50%
efficient. Unfortunately from data I found out that server is big chunk of time slowing down
whole process of synchronization. The read speed from database falls when data read from
database is read in smaller sizes. But there is also time when process is waiting on client to
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write data into database. The write speed at client is not able to be improved a lot. I tried
different methods of increasing the process from creating batch writes, to increasing buffers
for more efficient pipe lining, but the process of synchronization peaked at 2,8GB/min with
database of size round 800GB. Writing speed is increasing as the size of database increases.
In comparison when database had 86 GB the my solution was 4,2 GB/min fast, which
when compared to rsync speed at 7GB/min is more acceptable. As a further improvement
I would like to mention the possibility of downloading state from multiple servers at once.
This implementation would require more sophisticated mechanism of retrieving data from
server and would need to be thoroughly verified, since the data on multiple servers are not
identical. I didn’t end up having enough time for testing leveldb as first iterations of pebble
took me around over 30 hours run time until I fixed the version bug. But the comparisment
between speed of leveldb and pebble ended up being comparable in smaller scaled writes
- but in bigger writes I presume that leveldb would be doing much worse as the speed of
block processing since genesis was almost twice as long.

6.2 Security summary
State of synchronized blockchain can be verified by stopping it and recalculating every
transaction from genesis. This takes over 1 month with 2 TB of data. So when we down-
load any foreign data we might have incorrect header. To include transactions in history
is practically impossible since there are continuous check sums in MPT, but if attacker
includes malicious transactions in history, recalculates fork to current head the fork could
be mistaken for the original since node doesn’t know what to compare it with. Of course
then bootnodes and peer nodes available to attacked server would have to be faked running
on the same fork with wrong data.

My solution is based on client implicitly trusting server when downloading data, prefer-
ably having pre-shared public P2P key of the server. When program is launched and
downloading starts public key is retrieved from the given challenge and client can verify it.

By using this key all hashes of bundles of items are signed and the signatures are
attached to bundles as well. Client side before every write to database makes sure the
signature corresponds the hash of received files. Therefore received data can’t be exchange
during the process. The transfer could be disrupted by sending incorrect data to client or
by DoS attack on hosting opera node, draining all it’s resources. So extra attention has to
be payed on settings of the firewall rules. But the final result of synchronization should be
same as the data of the server at the time of snapshot creation.
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Chapter 7

Conclusion

The goal of this thesis was to get familiar with the existing methods of synchronization
of new nodes into existing blockchain protocols, mainly in the Fantom-Opera. Then, by
studying current state of node synchronization, I have realized that there isn’t any decently
fast solution as in other networks. While working on this thesis. I have learned a lot about
their different approaches and synchronization processes. Synchronization in Fantom-Opera
wasn’t improved on for a long time because the number of people wanting to run nodes
was still pretty small and there wasn’t a big demand for it. However, about year ago,
Fantom was on a rise and the amount of running nodes rose. Since Fantom is a DAG PoS
based blockchain, the data structure is bit more complicated to synchronize than PoW like
Bitcoin/Ethereum with the need for only a few newest blocks to have a valid state.

I implemented my designed solution and experimented with different modifications to
improve it. The final selected solution consists of client and server - data is directly trans-
ferred, with hashing and signature verification, so data tinkering by an attacker should be
impossible. You can see these results in the chapter Experiments 6. My solution is slower
than rsync as expected to be in the best case scenario possible. The final solution’s speed,
unfortunately, isn’t as good as I hoped for. The main factor is that the increasing size of the
database gradually increases write time of the client - so when the synchronized database
is only in 10-50 GB transfer speed, it is only a few percent slower than rsync, but when
the database is at 800 GB, the average transfer speed decreases and is at about 30% of
the hypothetical transfer speed. I didn’t expect writing to the database to get this slow.
Another interesting finding was that the RLP encoding of data with headers increased the
given size only by few percent, while with pebble/leveldb the compression rate of about
50% of the size of the data on the disk compared to the actual size of items. This rise of
additionally needed bandwidth was mitigated by using lz4 compressing that halved the size
of data needed to be transferred. However, there was a bottleneck at the server side as well.
There were segments of data, which were sent faster by the server, that writing sped and
vice versa actually about 50% of the transfer time. This was caused by various data sizes
at the different prefixes. Since iterator goes through the database by prefix that, if it starts
sending prefix with smaller values, then the data processing and loading speed decreases.
As I worked, I still kept in mind that the hosting server shouldn’t experience too much of
a load. I succeeded with a given configuration of servers by confirming that I’m unable to
slow down the hosting server for it to start lagging. This was confirmed by looking at the
current block and processing time of new blocks, while a client was downloading data.
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Appendix A

Contents of the included storage
media

• \README.txt - instructions

• \go-opera-leveldb.diff - changes to leveldb version

• \go-opera-pebble.diff - changes to pebble version

• \go-opera-leveldb - direct sync in version forked from Egor Lysenko repository 1

• \go-opera-pebble - direct sync in version forked from Honza Kalina repository 2

• \Thesis - latex source code and images for this thesis

• \thesis.pdf - thesis text in pdf format

1https://github.com/uprendis/go-opera/commit/138befdd262aa584ce7a71871110dbafd10dbc6a
2https://github.com/hkalina/go-opera/commit/c644bee01a4d7dd1f775f1bc7ad65e90d2830b5f
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Appendix B

Manual

For loading go-opera with direct sync to your device you can use attached CD disk or
preferably u can download the newest version from my github1. You will need two nodes
running side by side. On your server node start Opera with datadir which has path to
Opera data, but you will also need to add flag directsyncserver. Note that if you don’t
have server with data you can choose between available options of synchronization 3.3.

./opera --directsyncserver --datadir ~/.opera/mainnet

On client node side you have to set directsyncclient with value of hosting server address.

./opera --directsyncclient=8.8.8.8. --datadir ~/.opera/mainnet

Once client is connected it will print out public key of server node and check snapshot for
download is ready. If snapshot is ready then download starts and once it finishes it client
node automatically launches computes new block in blockchain.

1https://github.com/matejmlejnek/go-opera/tree/pebble-v1.1.0-rc.5-fixdirty-direct-sync-
buffer-1-compression
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