
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLICATION OF REINFORCEMENT LEARNING IN
AUTONOMOUS DRIVING
APLIKACE POSILOVANÉHO UČENÍ V ŘÍZENÍ AUTONOMNÍHO VOZIDLA

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DAVID VOSOL
AUTOR PRÁCE

SUPERVISOR Doc. Ing. VLADIMÍR JANOUŠEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav inteligentních systémů (UITS) Akademický rok 2021/2022

 Zadání diplomové práce

Student: Vosol David, Bc.
Program: Informační technologie a umělá inteligence
Specializace: Strojové učení
Název: Aplikace posilovaného učení v řízení autonomního vozidla
 Application of Reinforcement Learning in Autonomous Driving
Kategorie: Umělá inteligence
Zadání:

1. Prostudujte problematiku posilovaného učení. Seznamte se s dostupným softwarem pro
aplikace posilovaného učení a se simulátory prostředí. Porovnejte state-of-the-art algoritmy
a dostupné nástroje z hlediska aplikovatelnosti pro realizaci autonomní řízení vozidla.

2. Navrhněte systém pro autonomní řízení vozidla s využitím posilovaného učení. Soustřeďte
se na schopnost co nejrychleji projet trať bez kolizí ovládáním brzdy, plynu, řazení a volantu,
na základě informací z kamery a jiných senzorů. Uvažujte různé architektury řídicího
systému, např. lokální učení a/nebo řízení vs. využití cloudových služeb pro učení a/nebo
řízení.

3. Navržené řešení a jeho varianty realizujte s využitím vhodně vybraných prostředků z bodu 1.
Pro experimenty a strojové učení využijte vhodně vybraný simulátor prostředí, např.
TORCS.

4. Vhodným způsobem demonstrujte funkci vytvořeného systému. Vyhodnoťte dosažené
výsledky a vytvořte plakát shrnující tuto práci.

Literatura:
Sutton, R. S.; Barto, A. G.: Reinforcement Learning: An Introduction, Second edition, The
MIT Press, 2018. ISBN 978-0262039246
Russell, S.: Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, 2020. ISBN
978-0134610993
Loiacono, D.; Cardamone, L.; Lanzi, P. L.: Simulated Car Racing Championship: Competition
Software Manual, arXiv:1304.1672, 2013.
Weng, L.: Policy Gradient Algorithms, Lil'Log, 2018. URL: https://lilianweng.github.io/lil-
log/2018/04/08/policy-gradient-algorithms.html

Při obhajobě semestrální části projektu je požadováno:
První 2 body zadání.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Janoušek Vladimír, doc. Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2021
Datum odevzdání: 18. května 2022
Datum schválení: 3. listopadu 2021

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/25127/2021/xvosol00 Strana 1 z 1

Abstract
This thesis is focused on the topic of reinforcement learning applied to a task of autonomous
vehicle driving. First, the necessary fundamental theory is presented, including the state-
of-the-art actor-critic methods. From them the Proximal policy optimization algorithm
is chosen for the application to the mentioned task. For the same purpose, the racing
simulator TORCS is used. Our goal is to learn a reinforcement learning agent in a simulated
environment with the focus on a future real-world application to an RC scaled model car.
To achieve this, we simulate the conditions of remote learning and control in the cloud. For
that, simulation of network packet loss, noisy sensory and actuator data is done. We also
experiment with the least number of vehicle’s sensors required for the agent to successfully
learn the task. Experiments regarding the vehicle’s camera output are also carried out.
Different system architectures are proposed, among others also with the aim to minimize
hardware requirements. Finally, we explore the generalization properties of a learned agent
in an unknown environment.

Abstrakt
Tato práce se zabývá problematikou posilovaného učení aplikovaného na úlohu autonom-
ního řízení vozidla. Nejprve je probrána nezbytná teorie posilovaného učení, která je za-
končena představením nejmodernějších aktor-kritik metod. Z nich je vybrána metoda Prox-
imal Policy Optimization, která je následně aplikována na tuto úlohu. Pro tento účel je
také zvolen závodní simulátor TORCS. Naším cílem je naučit v simulovaném prostředí
agenta autonomně řídit, s ohledem na jeho budoucí aplikaci v reálném prostředí v podobě
zmenšeného RC modelu vozidla. Za tímto účelem jsou simulovány podmínky vzdáleného
učení a ovládání vozidla v cloudu a to v podobě simulace ztráty paketů s daty od senzorů a
aktuátorů nebo simulace zašuměných dat. Také jsou provedeny experimenty s cílem zjistit
nejmenší počet senzorů, se kterým je agent schopen se úlohu naučit. Dále je experimen-
továno s využitím výstupu kamery vozidla. Jsou představeny různé návrhy architektur
systému, mimo jiné i se zaměřením na co nejnižší hardwarové požadavky. Na závěr jsou
prozkoumány vlastnosti naučeného agenta z pohledu generalizace v neznámém prostředí.

Keywords
reinforcement learning, policy gradients, actor-critic, autonomous driving, TORCS, neural
networks, proximal policy optimization, PPO

Klíčová slova
posilované učení, gradientní strategie, aktor-kritik, autonomní řízení vozidla, TORCS, neu-
ronové sítě, optimalizace blízké strategie, PPO

Reference
VOSOL, David. Application of reinforcement learning in autonomous driving. Brno, 2022.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Doc. Ing. Vladimír Janoušek, Ph.D.

Rozšířený abstrakt
Tato práce se zabývá problematikou posilovaného učení aplikovaného na úlohu autonomního
řízení vozidla. V první části práce je nejprve uvedena nezbytná terminologie posilovaného
učení a následně probrány základní principy a algoritmy. Od Markovova rozhodovacího pro-
cesu, který je základem všech algoritmů posilovaného učení, přes tzv. Value-based metody,
kdy zjišťujeme kvalitu jednotlivých stavů ve kterých se agent nachází, případně hodnotíme i
akce, které agent v daném stavu provedl. Mezi tyto přístupy patří Monte-Carlo, Temporální
diference a Dynamické programování. Od těchto metod se poté přesouváme k Policy-based
metodám, tedy metodám, které optimalizují přímo agentovu strategii. V tomto přístupu se
zaměřujeme na vysvětlení algoritmů Stochastic Policy Gradients, Monte Carlo Policy Gra-
dients (REINFORCE) a varianty využívající tzv. baseline a advantage funkce. Následně
také popisujeme využití neuronových sítí v policy-based algoritmech.

Na závěr specifikujeme metody zvané Aktor-kritik, tedy spojení Value-based a Policy-
based metod. Mezi tyto metody patří i algoritmus Proximal policy optimization (PPO),
který v praktické části také využíváme na úloze autonomního řízení vozidla.

Následně je čtenáři přiblížena problematika autonomního řízení a dostupný simulátor
TORCS (The Open Racing Car Simulator). Ten je využíván i pro experimentální část.
Jsou představeny dostupné senzory a aktuátory, výběr tratí a navrženy odměnové funkce.
Následně je specifikován systém pro samotné autonomní řízení a jsou představeny jeho různé
architektury. Jako první je představena tzv. Regular architecture, ve které agent využívá
pouze základních senzorů vozidla, které pak slouží jako vstup pro neuronové sítě Aktor-
kritik. Výstupem jsou pak parametry Normálního rozdělení pravděpodobnosti, tedy střední
hodnota a rozptyl. Z tohoto rozložení se poté vzorkuje agentova akce. Těmito akcemi
jsou zatáčení, plyn a brzda. V této architektuře jsou následně zkoušeny různé topologie
neuronové sítě, hyperparametry algoritmu PPO (batch-size, learning rate, aj.), parametry
samotného simulátoru (délka epizody, hodnoty odměn a pokut, odměnové funkce, počty a
typy senzorů, aj.). To vše s cílem co nejlépe naučit agenta projet danou trať. Jako vyhod-
nocovací metriky sbíráme údaje o průměrné rychlosti, ujeté vzdálenosti, celkové hodnotě
odměn, nebo také počet nárazů vozidla a hodnotu agentovy entropie. Následně je agent
také testován na nových, pro agenta dosud neznámých tratích, s cílem ověřit jeho schopnost
generalizovat.

Dále je představena tzv ConvNet architecture, ve které agent využívá také výstupu
z kamery. Experimenty jsou rozděleny na dvě části, v první agent využívá pouze výs-
tupu z kamery a druhé, kdy agent využívá jak výstupu z kamery, tak také základních
senzorů. Zde jsou zkoušeny různé architektury konvoluční neuronové sítě, pro zpracování
výstupu z kamery. Jako výstup takové sítě je poté tzv. “Features vector”, který je následně
konkatenován k vektoru dat ze senzorů. Tento nově vzniklý vektor je potom vstupem do
sítě aktor-kritik.

Jako poslední je představena tzv. Hybrid architecture, ve které reagujeme na empiricky
získané poznatky, kdy agent není schopen se naučit úlohu autonomního řízení pouze na zák-
ladě výstupu z kamery. To ani v případě využití úprav kamerového snímku pro zachycení
dynamiky vozidla. Mezi těmito úpravami je například odečtení aktuálního a předchozího
snímku, nebo jejich spojení. V tomto novém přístupu tedy nejprve naučíme agenta na kla-
sických senzorech. Takto naučeným agentem poté vygenerujeme dataset ve formě: výstup
z kamery – hodnoty senzorů. Tímto datasetem následně naučíme konvoluční neuronovou
síť v klasickém přístupu učení s učitelem předpovídat hodnoty senzorů na základě výstupu
z kamery. Tímto způsobem se nám úspěšně podařilo naučit agenta autonomně řídit.

Následně byly provedeny experimenty s cílem simulovat podmínky reálného světa. V našem
případě simulace ztráty paketů při architektuře systému, kdy výpočet a učení agenta
probíhá v cloudu a s agentem je komunikováno pouze bezdrátově prostřednictvím síťového
protokolu UDP. Tato architektura je pojmenována jako Cloud architecture. Kromě ztráty
paketů je také simulováno zašumění dat a to jak sensorických ve směru (agent – cloud), tak
dat pro aktuátory (cloud – agent).

Všechny tyto snahy jsou prováděny s cílem co nejlépe připravit agenta posilovaného
učení v simulovaném prostředí, za použití minimálních hardwarových požadavků tak, aby
byla možná budoucí aplikace takového agenta v reálném prostředí v podobě zmenšeného
RC závodního modelu auta. Na základě experimnetů jsme zjistili, že je agent schopen
autonomního řízení vozidla pouze pomocí kamery a také pouze za použití jediného senzoru,
který představuje jednoduchý LIDAR senzor. Také se chová stabilně při simulaci vnějších
vlivů a dokáže poměrně úspěšně generalizovat v nových prostředích. Takový agent by měl
poté být s co nejmenším dodatečným úsilím schopen autonomně řídit reálný RC model na
reálné trati. Vzniklý systém by se poté v budoucnu mohl zúčastnit například mezinárodní
univerzitní soutěže pro autonomní řízení RC modelů, soutěže NXP Cup.

Application of reinforcement learning in autonomous
driving

Declaration
I hereby declare that this Masters’s thesis was prepared as an original work by the author
under the supervision of Mr. Doc. Ing. Vladimír Janoušek Ph.D. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
David Vosol

May 15, 2022

Acknowledgements
I would like to thank my supervisor Mr. Doc. Ing. Vladimír Janoušek Ph.D., my family
and also my girlfriend who has supported me throughout the making process of this work.

Contents

1 Introduction 3

2 Reinforcement learning 5
2.1 Introduction . 5
2.2 Theory . 8

2.2.1 Markov Process . 8
2.2.2 Markov Decision Process . 12

2.3 Value-based methods . 14
2.3.1 Dynamic Programming . 15
2.3.2 Monte Carlo methods . 16
2.3.3 Temporal Difference methods . 16
2.3.4 Value-based methods and Function approximators 18

2.4 Policy-based methods . 20
2.4.1 Stochastic Policy Gradient methods 20
2.4.2 Monte-Carlo Policy Gradient (REINFORCE) 21
2.4.3 Actor-Critic Policy Gradient methods 22
2.4.4 Trust-Region methods . 24

3 Autonomous driving and system design 33
3.1 Autonomous driving . 33
3.2 Simulation environment . 34

3.2.1 TORCS . 35
3.2.2 Sensors and Actuators . 39
3.2.3 Reward shaping . 43
3.2.4 Performance metrics . 45
3.2.5 The Algorithm . 46

3.3 Implementation details . 47
3.3.1 Algorithm implementation . 47
3.3.2 Neural network architectures . 49
3.3.3 Cloud architecture . 55

4 Experiments and results 57
4.1 Computational Hardware . 57
4.2 Subject of experiments . 57
4.3 Experiments . 58

4.3.1 Hyperparameters . 59
4.3.2 Differences in performance . 62
4.3.3 Initialization and Instability . 65

1

4.3.4 Comparison of network sizes . 67
4.3.5 Reward functions . 70
4.3.6 Number of sensors required . 72
4.3.7 Cloud architecture . 74
4.3.8 Example of perfect training and inability to learn 76
4.3.9 Generalization . 79
4.3.10 Hybrid architecture . 81

4.4 Summary and further outlook . 82

5 Conclusions 84

Bibliography 85

A Installation and run of the program 89

2

Chapter 1

Introduction

With the technological advances in recent decades such as chip miniaturization, improve-
ments in sensor technology and most importantly rapid progress in artificial intelligence,
it is estimated that by the year 2035 the first fully autonomous vehicles will be offered to
the public. Modern Machine learning has played a major role in recent improvements in
autonomous driving systems. Especially due to the increased reliability of the vehicle’s per-
ception and prediction within its environment. Nowadays, an autonomous vehicle is able
to recognize traffic lights and signs and behave in accordance with them, follow road lanes,
automatically park and unpark itself. Some technological companies already offer partial
autonomous driving systems, e.g. Waymo founded by Google or Tesla automotive company.

The field of Machine learning also includes algorithms and methods in which an agent
is trying to achieve a set goal by interacting with an environment. The agent can receive
either a reward or penalty for its actions, which depend on a given environment. Such
methods are called Reinforcement learning. They have received a great deal of attention
in academic research over the past years. It is mainly due to the rapid advances in ar-
tificial neural networks, or in short Deep learning, which modern Reinforcement learning
algorithms heavily utilize.

This thesis is concerned with the application of such a Reinforcement learning algorithm
on the task of autonomous vehicle driving. For this purpose, the simulation environment
TORCS has been chosen. The Open Racing Car Simulator enables the agent to observe
through vehicle’s sensors and camera output its environment and by actuators such as steer-
ing, acceleration and braking allows the agent to interact with the environment. The agent
must learn a reward-based mapping between the sensor inputs and the vehicle dynamics.
This mapping will then represent agent’s behavioral strategy, called policy. When such a
policy is learned, it then serves as vehicle’s decision making brain and allows it to drive
autonomously without further need of external help.

This thesis sets the goal to not only build a Reinforcement learning agent that can
operate a vehicle in a simulation environment, but has the ambition in future work, to
apply such a learned agent to a real world scaled RC model car. For that, simulation of
different hardware architectures, noisy sensory and actuator data or network packet loss
will be introduced. Also, the focus on minimal hardware requirements will be important,
as the on-board embedded system is typically of low performance. The other architectural
approach is controlling the vehicle wirelessly by a cloud service.

3

For the Artificial Intelligence part, the Proximal Policy Optimization (PPO) will be
used, which is an on-policy, model-free, actor-critic method, also currently considered as
the state-of-the-art Reinforcement Learning algorithm. The algorithm will operate on con-
tinuous domain, both for states and actions. Necessary improvements of the PPO will be
done, in order to be able to operate on the task of autonomous driving. We also propose
multiple architectures of the PPO agent and three reward functions, as the TORCS en-
vironment does not specify them directly. Our goal is also to obtain an agent with high
performing policy in terms of proposed performance metrics, but at the same time encour-
age its generalization property in new, unknown environments.

Detailed experiments will be carried out for the comparison of different combinations
of approaches and settings mentioned above as well as the thorough interpretation of its
results.

The structure of the thesis will follow this order. In the 1st Chapter, the introduction
and goals are set. In the 2nd Chapter, the theoretical foundations and detailed description
of PPO algorithm are stated. In the 3rd Chapter, the design of autonomous driving system
and its variants are introduced, followed by the experiments and test results in Chapter 4.
Finally, in Chapter 5, the conclusion and outlook for the future research work is drawn.

4

Chapter 2

Reinforcement learning

The goal of this chapter is to provide a thorough introduction to the theoretical foundations
of Reinforcement learning. Section 2.1 first provides an intuitive introduction to the topic
and terminology, Section 2.2 describes and formalizes the problem of Reinforcement learning
with Markov theory in detail. The definitions and derivations from Section 2.2 form the
basis for the description of the algorithms of Reinforcement learning in Section 2.3 and
Section 2.4 All algorithms relevant for the practical part of this thesis are presented and
explained there. Section 2.3 deals with value-based algorithms. These create the basis for
understanding the policy-based and actor-critic algorithms presented in Section 2.4. Policy-
based algorithms have the nice property of being applicable in continuous action spaces -
for actions with real valued output. Thus, they are also useful for autonomous driving.

2.1 Introduction
Thinking about the nature of learning, a first intuitive idea of an approach to learning may
be learning through interaction with our environment. A toddler learns to grasp objects or
look around at loud noises without being explicitly taught to do so by an adult. Instead,
the toddler associates the actions taken with the reactions of the environment, learns which
consequences follow from which actions, and which actions to perform to achieve a particular
goal. Reinforcement learning (RL) is the algorithmic modeling of this interactive learning.
An agent is located within an environment and selects actions within it. As a result,
the agent receives a positive, neutral or negative reward from the environment as well as
feedback about the new state of the environment. The agent’s goal is to select actions that
maximize the sum of rewards in the long-term. Formally, the interaction between agent
and environment in RL can be described as follows: At a discrete time-step 𝑡 ∈ N , an agent
receives a representation of the state of the environment 𝑆𝑡, which describes the current
state of the environment. Based on information from 𝑆𝑡, the agent selects an action 𝐴𝑡 to
change the state of the environment it is in. The environment subsequently generates a
reward 𝑅𝑡+1 ∈ R for the agent’s action for the next time-step 𝑡 + 1, describes its changed
state 𝑆𝑡+1 and returns these two pieces of information to the agent. The dynamics by which
the environment generates reward and state are determined by a transition model of the
environment. The agent’s goal is to learn a policy for selecting actions that maximize the
sum of individual rewards over 𝑇 time-steps.[42] [40] [46]

The loop of this agent-environment interaction can be described as a sequence of states,
actions, and rewards that they are associated with and is generatively written in the form:

5

(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, ...) (2.1)

This sequence provides exactly the information that an RL agent can use to learn a
policy. How the agent implements this algorithmically is explained in Section 2.3 and
Section 2.4.

Such a sequence can be finite if the environment has a terminating state, i.e., a state that
has only itself as a subsequent state, with a reward of zero. An example of a finite sequence
of states, actions, and rewards is, for instance, the player-game machine interaction. A
state-action-reward sequence can also be infinite, for example in a space-probe interaction.
In the context of the present work, a finite sequence is generated by interaction of a vehicle
with its environment, such as the driving route and the presence of other vehicles. In
contrast to supervised learning, RL does not require annotated example data, but the
data results from the interaction between agent and environment. RL also differs from
unsupervised learning, since the goal is to maximize the sum of rewards and not to discover
structures in the data. [42] [20]

Figure 2.1: The main reinforcement learning interaction loop, Source: [42]

In addition to a representation of the interaction scheme of agent and environment,
a consideration of the internal processes in agent and environment is also necessary, in
order to be able to describe RL algorithmically in a thorough way. In particular, the
functioning of an agent is considered, since it is the entity that has to develop a policy
within an environment to maximize the sum of rewards. The dynamics of the environment
are mostly considered as given and thus are not changeable. An RL agent algorithm can use
one or more of the following functions to find a policy that maximizes the sum of rewards:
a state-value function, a policy function, or an agent-internal model of the transition model
of the environment. These agent’s functions are computed from the data of one or more
sequences of interactions, for example as the one described above. A state-value function
describes how good it is for an agent to be in a certain state within the environment. While
an immediate high reward may seem desirable for the agent in the short term, it is usually
better for the agent to abandon it and instead look for a high long-term reward, from which
he will strive much more in the long-run. [40] [42]

The long-term expected reward of a state is expressed by the state-value function. An
agent can thus implicitly select those actions that lead to states for which the state-value
function assumes a high value. Agents that exclusively use a state-value function are called
value-based. In addition to state-value functions, there are action-value functions, which
are defined similarly and will become important in subsection 2.2.2

6

A policy function describes which action an agent should perform in a certain state. An
agent can have different policy functions in different interaction sequences, i.e. it can follow
different strategies. The optimal policy function is such a policy-function that is more
profitable in the long-term than all others. The goal of all agents is to find this optimal
policy function for all states. In contrast to a state-value function, the policy function
does not describe the quality of a state, but which action should be executed in a state.
Value-based agents can implicitly infer a policy, but do not explicitly compute it. Agents
that explicitly compute a policy function are called policy-based. Whereas agents that
compute a policy function and a state-value function at the same time are called Actor-
critic methods. An internal model of the environment transition model can be computed by
an agent to predict how the environment will behave when the agent performs a particular
action in a particular state. The agent can use this internal model of the environment to
predict future states and future rewards. RL agents that use such an internal model are
called model-based. An insight into model-based RL agents is given by Sutton and Barto
in Reinforcement Learning - An Introduction [42] and in David Silver’s lectures [40], or
Sergey Levine’s course on Reinforcement Learning [22], because in this thesis we are mostly
focused on the model-free approach.

Figure 2.2: Classification of Reinforcement Learning algorithms, Source: [40]

A classification of RL agents into categories, based on these different computable ap-
proaches, can thus be made. Such a classification is shown above in Figure 2.2. According to
it, the RL agents can be categorized based on the type of approach which take to solutions
to sequential decision problems, where an agent must pursue a goal over many time-steps.
The algorithms presented in subsection 2.3.1 are planning algorithms, which are model-
based, thus they know the transition model from the beginning. If the transition model is
not known, RL agents can be used to learn the return maximizing policy. In both cases,
the environment can be modeled mathematically using Markov decision process (MDP).

The above computable components of an RL agent can be defined on an MDP and
computed by algorithms. In subsection 2.3.2 and subsection 2.3.3, algorithms for value-
based RL agents are presented, and in section 2.4 , algorithms for policy-based and actor-
critic agents are discussed.

7

2.2 Theory
For the description of an environment of an agent, within an RL framework, the Markov
theory can be used. Based on it, further algorithms can be derived, having the main objec-
tive of maximizing the sum of rewards from every single time-step individually. In order to
be able to model such an environment as a Markov decision process, the environment has
to be fully observable and number of actions and states have to be finite.

From the interaction scheme of agent and environment presented in section 2.1 it can
be seen that a formal model must be able to represent states, rewards and actions. For this
purpose, subsection 2.2.1 first shows how Markov processes can represent the states of an
environment, later we introduce the rewards and returns. Lastly, we present the Markov
decision processes, which can represent states, rewards, and actions. [40] [42]

2.2.1 Markov Process

Markov process (MP) can be used to formally describe the states of an environment. They
also describe the dynamics with which the environment determines the state transitions. In
such a Markov process, an agent can only observe the changing states of the environment
and thus has no influence on the state of the environment. Markov processes are character-
ized by two properties. First, state transitions are not deterministic, i.e. they are influenced
by randomness. Therefore, states are modeled as realizations of random variables, defined
below. Second, the current state of the environment is enough for the selection of the future
state, so that all previous states should not be considered. [20] [34]

Random variable and Probability function

The first property of Markov process states that each concrete state of an environment
is the realization of a discrete random variable. Thus, a set 𝑉 contains all states of an
environment. A discrete random variable 𝑋 is then able to assume, some state with a
certain probability P(𝑋 = 𝑥) where 𝑥 ∈ 𝑉 . A state can be understood as a realization of a
random experiment, which with a certain probability the environment assumes. This can
be then written in terms of Probability function. [34]

P(𝑋 = 𝑋(𝜔)) = P(𝑋 = 𝑥) (2.2)

The repeated successive execution of a random experiment can be represented as a
sequence of random variables. Such a sequence is then called a stochastic process, since
each member of the sequence is a random variable 𝑋𝑡(𝜔) where 𝑡 ∈ N and 𝜔 is the elementary
outcome of all the possible outcomes Ω. An example of such a stochastic process can be
sequence: 𝑋𝑡(𝜔), 𝑋𝑡+1(𝜔), ..𝑋𝑛(𝜔), where a single term can be shortened to 𝑋𝑡.

Stochastic process

A stochastic process is defined as a collection of random variables defined on a common
probability space.

Often in stochastic processes the probability that the environment assumes a certain
state depends on the realized states of previous random variables. For example, if the
weather forecast is assumed to be a stochastic process, then the yesterday’s weather may
still have an influence on tomorrow’s weather. To represent this causality complicates the
modeling of stochastic processes, so that with definition of Markov property the dependence

8

of future states is assumed only on the current state. This is the second important property
of Markov process. [40]

Markov property

Definition of Markov property uses conditional probability formalism and can be formulated
as, ”The future is independent of the past, given the present.“ The stochastic process has
Markov property if and only if for all 𝑡 ∈ 𝑁 holds: P(𝑋𝑡+1|𝑋𝑡) = P(𝑋𝑡+1|𝑋1, ..𝑋𝑡).

The Markov property has some advantages in practical RL such as the uniqueness and
distinctiveness of states and also can be used to exactly formulate the probability of a state
transition, which is defined as: [20] [40]

𝒫(𝑥′|𝑥) = P(𝑋𝑡+1 = 𝑥′|𝑋𝑡 = 𝑥) (2.3)

Given |𝑉 | = 𝑛 possible subsequent states, a state 𝑥 ∈ 𝑉 also has 𝑛 transition probabili-
ties. Thus, if an environment in RL has 𝑛 states, the environment can map the probability
of transition from 𝑥 to 𝑥′ by an entry in a square 𝑛× 𝑛 matrix. Together with the model-
ing of states as a realization of random variables, the definition of Markov process can be
expressed.

The Markov process is a stochastic process with Markov property and is described as
tuple (𝒮,𝒫) for which holds:

• 𝒮 = 𝑠1, 𝑠2, ..𝑠𝑛 is a finite set of states

• 𝒫 is an 𝑛× 𝑛 transition matrix with probability values ⟨0; 1⟩

The elements of 𝒫 are defined as: 𝒫(𝑖|𝑗) = P(𝑆𝑡+1 = 𝑠𝑖|𝑆𝑡 = 𝑠𝑗) where 𝑖, 𝑗 ∈ (0, 𝑁)

Single element of the matrix then represents the probability with which the random
variable 𝑆𝑡+1 assumes the state 𝑠′, if 𝑆𝑡 = 𝑠 is given. Each row of the transition matrix
then gives for a state, a probability function over all subsequent states. On a Figure 2.3
bellow an example of terminating Markov process can be seen. [34] [7] [17]

Figure 2.3: Markov process example, on the edges are transition probabilities, nodes rep-
resent states, starting in state 𝑠0.

An agent in a Markov process, can observe the sequence of states. This sequence in RL
is then called an episode or later in the thesis a trajectory. Because of the probabilities used
in Markov processes, they are not always the same. Thus, for the Markov process from an

9

example on Figure 2.3, these finite sequences of states could be observed by an agent, if we
assume that the state 𝑠0 was initial. Episode 0: (𝑠0, 𝑠1, 𝑠2, 𝑠4), Episode 1: (𝑠0, 𝑠1, 𝑠3, 𝑠5, 𝑠7),
and so on.

The episodes shown here as examples only contain the states. In the context of au-
tonomous driving, a completed lap on a race track could be considered as an episode,
where the visited states can be expressed by the sensory data observed by the agent’s vehi-
cle. Now for the complete description of an environment within RL framework, the actions
and rewards need to be defined.

Rewards

Rewards can be defined as an extension to Markov process. This is then called Markov
reward process (MRP) and is defined below. The main objective of an RL agent is to
maximize the sum of rewards from each time-step. In the example of Markov process on
Figure 2.3, the agent can observe different episodes, but has no tools to determine how
good or bad an episode actually was. When the sum of rewards is high, then the episode
can be considered as a good one. This sum is then called the return. With returns, we
are now able to exactly measure this quantity of ”goodness“. It even becomes possible to
measure how good or bad a single state is, by calculating a state-value function. In the next
subsection, this function will then be extended by actions, so that an agent can actively
transition to good states in order to maximize the return.

Markov reward process is a tuple (𝒮,𝒫,ℛ, 𝛾). The set of states 𝒮 and transition matrix
𝒫 are similar to those in Markov process.

• ℛ : 𝒮 → R is a reward function, where for state 𝑠 the expected reward as: ℛ(𝑠) =
E (𝑅𝑡+1 | 𝑆𝑡 = 𝑠) is defined.

• 𝛾 ∈ (0; 1) discount factor parameter

The reward function specifies how much reward an agent expects from the environment
for a given state. The reward function is based on an expectation because the concrete
reward values are for a probabilistic state transitions. Accordingly, scalar reward values
would be added to the edges in Figure 2.3 for MRP. The sum of rewards weighted by
probabilities then corresponds to ℛ(𝑠). So, if an agent is in a state 𝑠 at time 𝑡, the agent
receives reward 𝑅𝑡+1 at time 𝑡 + 1, when it transitions to a subsequent state 𝑠′. Rewards
of an episode can then be described as a sequence (𝑅1, 𝑅2, ..𝑅𝑡). The sum of this sequence
is called the return and will be defined now. [40] [42] [17] [46]

Expected Return

The return 𝐺𝑡 is the sum of discounted rewards obtained in a single episode by an agent.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + .. =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (2.4)

The calculation also includes the discount factor 𝛾. As the return is an infinite series,
the discount factor is in an interval ⟨0, 1⟩, then the following can occur. If it is equal to one,
then the value of the series goes to infinity. Only in the case of always terminating episodes
the agent can calculate the return. If it is below one, then the return has a finite value, so
the agent can determine how good or how bad an episode was. Not only is the discount

10

factor useful mathematically, but it is also useful for tuning of an agent for the benefits of
rewards. If early rewards in an episode are more important than later ones, then it should
correspond to a value close to zero. If the rewards express monetary gains, then it is this
case, because early rewards earn additional interest. In contrast, the closer it is to one, the
more important later rewards are. For example, for the PPO agent to be evaluated, 𝛾 has
the value 0.99.

The return can be used to determine the sum of the discounted rewards of an episode.
The state-value function according to definition below, can be used to determine how high
the expected long-term return is, starting from a certain state. Due to the probabilities of
state transitions, the episodes that always start with a particular state does not need to be
always the same. Therefore, the expected return of a particular state is the expected value
of the conditional density function over the probabilities of the returns for a state. The
return 𝐺𝑡 can thus be treated mathematically as a continuous random variable. [40] [42]
[20]

State-value function

If an agent knows from the state-value function what the long-term expected return of each
state of an environment is, then it can infer which state it should transition to, in order to
maximize the return of an episode. In this case, the agent has to move to the state that has
the highest long-term expected return. But in an MRP, there are no actions using which
an agent could transition to different states. For that we need to define actions, which is
done in the MDP introduction.

If the agent observes a sequence of states and rewards, it can remember the subsequent
rewards for each state, calculate the return of an episode from them, and thus iteratively
adjust the probabilities for the higher occurrence of a return over several episodes. If
the number of episodes goes to infinity, the estimated probabilities converge to the true
probabilities and the long-term expected return of a state is found. Intuitively, the more
episodes and consequent returns an agent observes, the better it can estimate how good a
state is. This estimative way of determining the state-value function, or the action-value
function are going to be introduced in the next subsection. We will also show how the
state-value function can be determined by a recursive iterative approach. This iterative
approach originates from Bellman’s equation and the long-term return must satisfy it.
From this equation, an iterative calculation rule can be derived for finding that long-term
reward of a state. To derive Bellman’s equation, a few derivations are necessary. According
to definition of state-value function: [42] [20]

𝑣(𝑠) =E[𝐺𝑡|𝑆𝑡 = 𝑠]

=E[𝑅𝑡+1 + 𝛾𝐺𝑡|𝑆𝑡 = 𝑠]

=E[𝑅𝑡+1 + 𝛾𝑣
(︀
𝑆𝑡+1 = 𝑠′

)︀
| 𝑆𝑡 = 𝑠]

=ℛ(𝑠) + 𝛾
∑︁
𝑠′∈𝒮
𝒫(𝑠′|𝑠)𝑣

(︀
𝑠′
)︀ (2.5)

Finally from that can be derived equation written below. The last derivation expresses
that the long-term expected return of a state depends only on the immediate reward and
the long-term expected return of the subsequent state.

To arrive at the equation, the definitions of state-value function and the explanation,
that the expected value of 𝑣(𝑆𝑡+1 = 𝑠′) is the average of all 𝑣(𝑠′) weighted by transition
probabilities, can be used. If the equation is further extended to include actions, the most

11

important equation in all of Reinforcement learning emerges: the Bellman equation. It
expresses that if an agent wants to know the long-term expected return from a state, it
only needs to add together the reward of the state and the long-term expected return of
the next state. [17] [46]

2.2.2 Markov Decision Process

Unlike Markov process or Markov reward process, an agent in Markov decision process
(MDP) has the possibility to take control over the state transitions of the environment
through actions. In an MDP, an agent can co-decide which state the environment should
transition to next. The goal of an agent is to transition to states using actions so that the
return is maximized according to definition of Expected return. [40]

The Markov decision process is Markov reward process with actions. It is an tuple
(𝒮,𝒜,𝒫,ℛ, 𝛾) defined as:

• 𝒮 = 𝑠1, 𝑠2, .., 𝑠𝑛 a finite set of states

• 𝒜 = 𝑎1, 𝑎2, .., 𝑎𝑚 a finite set of actions

• 𝒫 is an 𝑚×𝑚× 𝑛 transition matrix where an element:
𝒫(𝑠′|𝑠, 𝑎) = P (𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎) gives the probability of the state transition
from 𝑠 to 𝑠′ when action 𝑎 is chosen

• ℛ : 𝒮 ×𝒜 → R is a reward function, where for state 𝑠, action 𝑎, the expected reward
ℛ(𝑠, 𝑎) = E[𝑅𝑡+1 | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] is defined.

• 𝛾 ∈ (0; 1) discount factor parameter

How an agent determines which action it performs at a time-step in a state is described
by the policy function. This policy function specifies which action an agent performs and
can be deterministic or stochastic. First, the stochastic case is considered in definition
below. [40] [20] [42] [17] [46]

Stochastic Policy function:

𝜋(𝑎|𝑠) = P(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) (2.6)

Accordingly, the entire behavior of an agent, which describes with which probabilities
which actions are executed in which states, can be described by an |𝒮| × |𝒜| matrix. Each
entry of the matrix is a policy function 𝜋(𝑎𝑖|𝑠𝑗) and 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 . This matrix is then
called a policy 𝜋. [40] [42]

Sum over all possible actions in a given state must be equal to one. The entries of the
matrix are unchanged across all time-steps of an episode. This means that the underlying
policy of different episodes can be different, but does not change during an episode. For this
reason, the state-value function from definition 2.5 must be adapted for MDPs, since only
the long-term expected return, starting from a state, should be determined with respect to
a behavior of the agent described by a policy. [40]

12

State-value function:
𝑣𝜋(𝑠) =E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝒫(𝑠′, 𝑟|𝑠, 𝑎)[ℛ+ 𝛾𝑣𝜋(𝑠′)] (2.7)

The definition 2.7 states, that only the rewards of episodes that were based on the
same policy of the agent may be included in the expected value, which contrasts with the
definition 2.5. The 𝑣𝜋(𝑠) also satisfies the Bellman’s equation. [40]

Action-value function:

𝑞𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] (2.8)

If an agent has a policy 𝜋, is in a state 𝑠 at time-step 𝑡, and performs action 𝑎, the
action-value function 𝑞𝜋(𝑠, 𝑎) represents the expected long-term return for this state and
action under the current policy. Thus, the action-value functions can be described as a
table, where each entry describes how profitable it is in the long-term for the agent to
perform a particular action in a particular state. In contrast, the state-value function can
be defined as 1D vector, where each element describes the long-term return of a state. The
relationship of state-value function and action-value function can consequently be defined
as:

𝑣𝜋(𝑠) = max
𝑎

𝑞𝜋(𝑠, 𝑎) (2.9)

The table of action-value functions is also called Q-Table. A policy and the action-value
functions of an agent can both be represented by |𝒮| × |𝒜| matrix. Implementations of RL
algorithms then mostly use only the matrix of action-value functions and infer the policy
from them. The goal of an agent is to maximize the return. In the above context, this
means to find a policy that yields as much return as possible. For this, we first note what
it means for one policy to be better than another. Let 𝜋 and 𝜋′ be two different stochastic
policies. Then 𝜋′ is called better or equal to 𝜋 exactly if 𝑣′𝜋(𝑠) ≥ 𝑣𝜋(𝑠) holds for all states.
It can be shown that there is always at least one policy that is better or equal to all other
policies. This policy is then called the optimal policy 𝜋*. If an agent uses the optimal
policy, then for all states and actions the agent will use the optimal state-value function
and the optimal action-value function: [40] [42] [29] [17]

𝑣*(𝑠) = max
𝜋

𝑣𝜋(𝑠) and 𝑞*(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) (2.10)

Conversely, if the optimal action-value function is found, the optimal policy can be
derived. The optimal policy function 𝜋*(𝑎|𝑠) always has a selection probability of 1 for
such an action for which 𝑞*(𝑠, 𝑎) is maximal for a given state. [40] [42]

𝜋*(𝑎 | 𝑠) = 1 : if 𝑎 = arg max
𝑎

𝑞*(𝑠, 𝑎), else 0 (2.11)

It also follows that the optimal policy is deterministic, meaning for the same state the
optimal policy function always selects exactly the same action. In contrast, Definition 2.6
allows for stochastic behavior of the policy. The transition from stochastic to deterministic
policy is explained by the greedy selection of actions in the last equation. As will be
shown in the following sections, all RL algorithms presented here use a stochastic policy,
since it allows exploration of the state space. Policies of value-based algorithms tend to

13

be nearly deterministic. Policies of policy-based algorithms can remain stochastic if the
optimal policy is stochastic too. Both classes of algorithms have in common that they
attempt to determine 𝜋*, because an MDP is said to be solved if such a policy is found. In
each case, the path to determining an agent’s optimal policy in an environment is done by
an iterative procedure in which the agent repeatedly tries a policy, learns from failure, and
derives a new, improved policy. [40] [42] [22] [17]

Bellman’s optimality equation

Just like the state-value functions, the optimal state-value function 𝑣*(𝑠) must also satisfy
Bellman’s equation. It was already said that from Bellman’s equation iterative computa-
tional rule, the long-term expected return of each state can be derived. Since it is now also
required that an agent can include actions into its behavior, the state-value function for
MRP is extended to include actions. For this, Equation 2.9 first states that the optimal
state-value function of a state under a policy is equal to the value of the return-maximizing
action of the action-value function for a fixed state. [42] [40] Formally, this means:

𝑣*(𝑠) = max
𝑎∈𝒜

𝑞𝜋*(𝑠, 𝑎)

= max
𝑎

E[𝑅𝑡+1 + 𝛾𝑣*(𝑆𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎)]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣*(𝑠
′)]

(2.12)

This equation derives the recursive relation to the subsequent state, so that the reference
to the optimal policy can be omitted. The last derivation is called Bellman’s optimality
equation for 𝑣*(𝑠). Similarly, for action-value function can be derived too. Unlike above,
here, the relation to rewards and the expected return is immediate: [42]

𝑞*(𝑠, 𝑎) =E[𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞*(𝑆𝑡+1, 𝑎
′|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎)]

=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾 max
𝑎′

𝑞*(𝑠
′, 𝑎′)]

(2.13)

Backup diagrams are great for intuitive derivation of the optimality equations. They
are presented in detail in Sutton and Barto[42] and Silver [40]. In the following sections,
RL algorithms will be presented and derived, based on the definitions presented in this
subsection. They are able now to compute the optimal policy 𝜋*, which translates to
obtaining the maximal return during the interaction with the environment.

2.3 Value-based methods
In this section, agent algorithms are presented that first iteratively compute the state-value
functions or the action-value functions of the states and actions, respectively, in order to
derive continuously improving policies from them. Therefore, these algorithms are called
value-based. Subsection 2.3.1 deals with planning algorithms where transition probabilities
and reward function must be known. Subsection 2.3.2 presents algorithms that are used
in MDPs with finite episodes. Subsection 2.3.3 explains algorithms for MDPs with infinite
episodes. Subsection 2.3.4 shows how function approximators, such as neural networks,
can be used instead of state-action look-up matrices. Finally, thoughts on the value-based
algorithms are presented.

14

2.3.1 Dynamic Programming

If the transition probabilities and the reward function of an MDP environment are known,
then an agent can compute an optimal policy using dynamic programming (DP). Dynamic
programming is a class of planning algorithms that consists of the evaluation of a given
policy (policy evaluation) and the subsequent improvement of the policy (policy improve-
ment). The goal of these two steps is to infer 𝑣*(𝑠) or 𝑞*(𝑠, 𝑎) for all the states and actions
in a procedure called Generalized Policy Iteration. Subsequently, using these to infer the
optimal policy. For the algorithms presented in here and in subsection related to MC meth-
ods, we will assume the simplest case of the procedure, which is characterized by always
determining the state-value or the action-value function in the Policy Evaluation step be-
fore computing a new, improved policy in the Policy Improvement step. Other variants of
the Generalized Policy Iteration procedure only approximate the state-value or action-value
function and can thus compute the optimal policy faster. In the policy evaluation step, DP
first computes the state-value function for every state and under current policy. This is
iterated until convergence to 𝑣𝑘(𝑠) ≈ 𝑣𝜋(𝑠) with: [40] [42] [22].

𝑣𝑘+1(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(︀
ℛ(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝒮
𝒫(𝑠′|𝑠, 𝑎)𝑣𝑘(𝑠′)

)︀
(2.14)

for all states. This equation is the analogous equation to Bellman’s optimality equation
for 𝑣*(𝑠) in iteration form. [40] [42] Once 𝑣𝜋(𝑠) is found for a given policy the action-value
function can be determined.

𝑞𝜋(𝑠, 𝑎) = E𝜋(𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎) = ℛ(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝒮
𝒫(𝑠′|𝑠, 𝑎)𝑣𝜋(𝑠′) (2.15)

This equation is then the Bellman’s equation for 𝑞𝜋(𝑠, 𝑎) and can be used in the Pol-
icy Improvement step to create a new policy. It should also be ensured that the new,
deterministic policy is better or equal to the old policy, when for all states applies: [42] [40]

𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋(𝑠) (2.16)

This means that choosing action 𝑎′ = 𝜋′(𝑠) in state 𝑠 under policy 𝜋 produces a better
result than action 𝑎 = 𝜋(𝑠). Next, 𝑞𝜋′(𝑠, 𝑎) is computed for the new policy 𝜋′ in the Policy
Evaluation step and improved with 𝜋′(𝑠) = arg max𝑎 𝑞𝜋′(𝑠, 𝑎). If Policy Evaluation and
Policy Improvement steps are executed enough times and no more improvement of the old
policy over the new policy is found, then optimal 𝑞* and 𝜋* are found. [40] [22] [42]

Well-known algorithms in DP which implement this Generalized Policy Iteration are the
Policy Iteration algorithm and its special case the Value Iteration algorithm. They use the
equations Bellman’s equations for 𝑣*(𝑠) and 𝑞*(𝑠, 𝑎) and a variant of the Generalized Policy
Iteration method, where 𝑣𝜋(𝑠) does not have to be determined. The iteration in the Policy
Evaluation step is immediately followed by the Policy Improvement step. An obstacle for
the practical application of these algorithms is the frequent lack of knowledge about the
environment dynamics. As the agent does not know all the states of the environment
already. It has to gradually explore the environment in order to know its surroundings as it
is not known right from the beginning. This issue is addressed in the following subsections.
[40] [42] [20]

15

2.3.2 Monte Carlo methods

Unlike DP, Monte Carlo (MC) methods can be used if the transition probabilities and the
reward function of the environment are unknown. With MC methods, an agent can infer the
optimal policy 𝜋* from the optimal action-value function 𝑞*(𝑠, 𝑎) estimated by experience.
Just like algorithms in DP, MC methods use the iterative procedure Generalized Policy Iter-
ation to incrementally infer 𝜋*. For this, first a finite trajectory (𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, .., 𝑅𝑛, 𝑆𝑛)
is generated. The actions are then determined and selected by a stochastic policy 𝜋(𝑎|𝑠),
whose evolution is explained below, and the states and rewards come from the unknown
environmental dynamics. From this episode, 𝐺𝑡 is then computed for all state-action pairs
reached. This is followed by the policy evaluation step: [42] [40]

𝑞𝑘+1(𝑠, 𝑎) = 𝑞𝑘(𝑠, 𝑎) + 𝛼(𝐺𝑡 − 𝑞𝑘(𝑠, 𝑎)) (2.17)

Where, 𝛼 ∈ (0; 1) is a learning rate and the return 𝐺𝑡 gives the sum of discounted
rewards starting from action 𝑎 in state 𝑠. Consequently, the term 𝐺𝑡− 𝑞𝑘(𝑠, 𝑎) corrects the
value of 𝑞𝑘+1(𝑠, 𝑎) in the direction of the target 𝐺𝑡.

The index 𝑘 ∈ N0 then gives the current episode and in the limiting case applies again
𝑞𝑘(𝑠, 𝑎) = 𝑞𝜋(𝑠, 𝑎). Since MC methods do not require knowledge of the environment dynam-
ics, a policy for episode generation in MC methods should be non-deterministic, otherwise
it is not guaranteed that all states and actions are explored. With a stochastic policy,
actions can be randomly selected and such a policy is therefore used by MC methods for
exploration. This approach is called the 𝜖-greedy approach for exploring all states and ac-
tions in an MDP. Accordingly, a new policy 𝜋′ is explored by MC methods with: [22] [40]
[42]

𝜋′(𝑎 | 𝑆𝑡) =

{︃
𝜀
|𝒜| + 1− 𝜀 if 𝑎 = 𝐴*

𝜀
|𝒜| if 𝑎 ̸= 𝐴* (2.18)

where 𝐴* = arg max𝑎 𝑞𝜋(𝑆𝑡, 𝑎). The problem of exploring all states and actions in an
unknown MDP is a major problem in RL and is referred to as the exploration vs exploitation
dilemma. Also, in the case of applying the 𝜖-greedy approach to exploration, a greedy policy
improvement theorem ensures that the new policy is better than the old one. The process
of adjusting action-value values in the Policy Evaluation step and determining a new policy
in the Policy Improvement of 𝜋* step are referred to as training the RL agent. Equation
2.17 shows that MC methods use the reward 𝐺𝑡 of an episode. This can only be calculated
if the episode is already terminated. Consequently, this means that MC methods can only
be used in environments with finite, i.e. always terminating episodes. [42] [40] [17] [46]

2.3.3 Temporal Difference methods

Temporal difference (TD) methods, unlike MC methods, can also be used in environments
with infinite episodes. The mechanism that makes this possible is called bootstrapping,
determines 𝑣𝑘+1(𝑠) or 𝑞𝑘+1(𝑠, 𝑎) from the immediate reward plus 𝑣𝑘(𝑠′) or 𝑞𝑘(𝑠′, 𝑎′), respec-
tively, and is already applied in a similar way in DP through Bellman’s equations. Unlike
algorithms of DP, however, TD methods do not depend on the environment dynamics 𝒫
and ℛ. Like DP and MC methods, TD methods also use the iterative Generalized Policy
Iteration procedure to determine the optimal policy. The policy evaluation step differs in
TD methods from MC methods, but the policy improvement step is the same for both
with the 𝜖-greedy approach. The difference between TD methods and MC methods in the

16

evaluation step can be most easily illustrated by the iterative calculation of the state-value
function of a policy with the following equation: [40] [42] [22]

𝑣𝑡+1(𝑠) = 𝑣𝑡(𝑠) + 𝛼(𝑅𝑡+1 + 𝛾𝑣𝑡(𝑠
′)− 𝑣𝑡(𝑠)) (2.19)

where the term (𝑅𝑡+1 + 𝛾𝑣𝑡(𝑠
′)− 𝑣𝑡(𝑠)) is called TD-error and

the term 𝐺
(1)
𝑡 = 𝑅𝑡+1 + 𝛾𝑣𝑡(𝑠

′) is called TD-target.

This equation illustrates the difference between TD and MC methods. TD methods
only have to wait until the next time-step before adjusting 𝑣𝑡+1(𝑠), whereas MC methods
usually have to wait until the end of the episode, for the computation of 𝐺𝑡. Therefore, the
index 𝑡 now corresponds to the time-step. More generally, the TD target can be expressed
as the 𝑛-step return, formulated as: [42]

𝐺
(𝑛)
𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ..𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑣(𝑆𝑡+𝑛 = 𝑠(𝑛))

(2.20)

where for limiting case of 𝑛 nearing infinity, the TD methods become MC methods. TD
methods that use 𝐺

(1)
𝑡 are called TD(0). There are methods, where the specific number of

steps 𝑛 in 𝐺
(𝑛)
𝑡 do not have to be specified. These methods are called TD(𝜆), we will not

discuss its concept here, just for now. Later, when we will be discussing the PPO algorithm,
this concept will be used for definition of Generalized Advantage Estimation (GAE), one
of the major aspects of PPO. We can mention, that the concept is known as exponentially
weighed average.

Figure 2.4: Here in graphics we can see the difference between MC and TD methods (𝑛-step
TD prediction), Source: [42]

The TD methods use the action-value function for the evaluation step and iteratively
determine 𝑞𝜋(𝑠, 𝑎). A TD method that implements this practically is called SARSA and
adjusts the action-value function in the evaluation step for a state, action pair at each
time-step of the episode as:

17

𝑞𝑡+1(𝑠, 𝑎) = 𝑞𝑡(𝑠, 𝑎) + 𝛼(𝑅𝑡+1 + 𝛾𝑞𝑡(𝑠
′, 𝑎′)− 𝑞𝑡(𝑠, 𝑎)) (2.21)

[42] The name SARSA comes from the generated sequence of transitions: (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′).
This sequence is generated by the environment dynamics and the current 𝜖-greedy policy.
Once 𝑞𝑡+1(𝑠, 𝑎) is computed, the new policy 𝜋′ is determined at time-step 𝑡 + 1. These
iterations are repeated until optimal action-value and optimal policy functions are found.
This calculation of action-value finds application in the SARSA(0) algorithm. Analogous
to TD(𝜆) there are also SARSA(𝜆) methods. [42]

SARSA is referred to as an on-policy algorithm, because it evaluates and improves the
same policy that is used to select the next action. In contrast, there are off-policy algorithms
that evaluate and improve one policy, but use a different policy for selecting the next action.
One of the reasons can be an introduction of a new version of an agent with policy 𝜋, which
wants to learn or even improve the behavior from an old agent with good performing policy
𝜇. But still, they can be the very same policy. As an example an off-policy TD algorithm
can be considered the Q-learning.[29] Consider we have a policy 𝜇(𝑎|𝑠) that determines the
actual actions 𝑎 and 𝑎′. Then we have second policy 𝜋(𝑎*|𝑠) which is used to compute the
TD target. Then, in the evaluation step, at each time-step of the episode, the action-value
function can be calculated as: [40] [42]

𝑞𝑡+1(𝑠, 𝑎) = 𝑞𝑡(𝑠, 𝑎) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎*

𝑞𝑡(𝑠
′, 𝑎*)− 𝑞𝑡(𝑠, 𝑎)) (2.22)

[40] In Q-learning in contrast to SARSA, the action maximizing action 𝑎* of all action-
value functions at a fixed 𝑠′ is always chosen when adjusting the action-value function for a
(𝑠, 𝑎), regardless of which action 𝑎* of policy 𝜋 was chosen. As in the SARSA algorithm, in
Q-learning the computation of 𝑞𝑡+1(𝑠, 𝑎) is followed by the policy improvement step with
the 𝜖-greedy approach with respect to 𝜋 and optionally 𝜇 as well. [40] [17] [46]

2.3.4 Value-based methods and Function approximators

The Monte Carlo and Temporal difference algorithms already described are referred to as
Tabular Methods, since the central building block is the |𝒮| × |𝒜| matrix of the action-
value returns. However, if the number of states or actions becomes very large, this matrix
becomes also very large. An example of this is an agent for the autonomous guidance of a
vehicle, which can determine the state of the surrounding environment by a camera output.
Then, each pixel of the camera image represents three states in the RGB space. In addition
to the high memory requirements of such a matrix, it will be nearly impossible for an agent
with MC or TD methods, to evaluate all states in order to derive a policy. [20]

Approximate Solution Methods emerge as a solution approach to the problems of Tabu-
lar Methods, which are both more memory efficient and can generalize. Such Approximate
Solution Methods use parametrizable function approximators such as decision trees, re-
gression methods, or neural networks, instead of a matrix, to determine the action-value
returns. If neural networks with hidden layers are used as function approximators, the
resulting algorithms are classified as Deep Reinforcement Learning (DRL). Unlike Tabular
Methods, Approximate Solution Methods use parametrized function approximators: [42]
[29]

𝑣(𝑠,𝑤) ≈ 𝑣𝜋(𝑠) or 𝑞(𝑠, 𝑎,𝑤) ≈ 𝑞𝜋(𝑠, 𝑎), where 𝑤 ∈ R𝑑, 𝑑 ∈ N (2.23)

18

The vector 𝑤 then represents the weight vectors of the neural network. If a loss function
𝐸(𝑤) is defined over this weight vector, then in the iterative Stochastic gradient descent
(SGD) procedure, the weight vector can be updated, as long as the error continuously de-
creases i.e. until: (s, a, 𝑤) ≈ 𝑞𝜋(𝑠, 𝑎)

As a loss function here the Mean square error (MSE) can be used, which is typically used
in regression optimization problems. Thereby 𝑇 is the set of training data from which the
target variable 𝑦 is taken. However, unlike in classical supervised learning, no information
is available about the target variable, here 𝑦 = 𝑞𝜋(𝑠, 𝑎), so the target is assumed to be
the loss function. Thus, if function approximators are applied to MC methods and SGD is
assumed as the optimization algorithm, the loss function for one-step SARSA is defined as:
[34] [42] [11] [22]

𝑀𝑆𝐸 =
(𝑅𝑡+1 + 𝛾𝑞(𝑠′, 𝑎′,𝑤)− 𝑞(𝑠, 𝑎,𝑤))2

2
(2.24)

The following rule is used to adjust the weights for one-step SARSA:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼(𝑅𝑡+1 + 𝛾𝑞(𝑠′, 𝑎′,𝑤)− 𝑞(𝑠, 𝑎,𝑤))∇𝑞(𝑠, 𝑎,𝑤) (2.25)

The update is done in a way that each vector’s component that is responsible for a part
of the error, should be updated accordingly. A high share on the error exists if the slope of
the error with respect to the particular component is large. The weights are adjusted until
the difference between two subsequent updates is less than some defined 𝜖 value (typically
small number). Then we can say that 𝑞* is found, from which the optimal policy can be
derived. Often also early-stopping is being used in practical deep learning instead of 𝜖.

So now that the vectors of state-action values are not a look-up table anymore, they
can be written as follows and are therefore approximated by the neural network.

�̂� =

⎛⎜⎝𝑞(𝑠, 𝑎1,𝑤)
...

𝑞(𝑠, 𝑎𝑛,𝑤)

⎞⎟⎠ (2.26)

Also in the policy improvement step, the 𝜖-greedy approach for the action selection can
be applied. [11][40] [6] [17] [46] [29]

Thoughts on value-based methods

All algorithms already presented are based on the Generalized Policy Iteration and thus are
easy to understand and implement in the same way. The disadvantage of this simplicity
is that they must first compute an action-value function in order to infer an improved
policy, without it, it is not possible. The main goal of an RL algorithm is to determine the
optimal policy so that an agent can maximize the return. Therefore, an agent is primarily
interested in policies and state-value functions and action-value functions are only a means
to obtain it. If an 𝜖-greedy approach is applied to the vector �̂� above, the computational
costs to calculate an improved policy can increase very heavily for a very large number of
actions. Also, to find the action with the largest long-term expected return, all elements
of the vector would have to be iterated. In the extreme case, the action space can be even
continuous. Thus, the algorithms already presented do not show an efficient solution to
this problem.

19

Next issue is, due to the vanishing coefficient in the 𝜖-greedy approach, the initially
stochastic policies tend towards deterministic ones, i.e. 𝜋(𝑎|𝑠) is always either 1 or 0. This
is a problem at environments, which are not fully observable. The value-based algorithms
then cannot be used at all. In these cases, a stochastic policy would fit the problem more,
since it always includes randomness in its policy. [42] [40] [22] [34]

2.4 Policy-based methods
Policy-based algorithms parametrize the policy directly, similar to the parametrization of
state-value and action-value functions in subsection 2.3.4. This section deals with algo-
rithms and methods that learn a parametrized policy. In subsection 2.4.1, stochastic policy
gradient methods are introduced and explained. Building on this, subsequent subsections
introduce various stochastic policy-gradient algorithms. Subsection 2.4.3 explains the idea
behind actor-critic methods and subsection 2.4.4 explains the trust-region methods and the
one policy gradient algorithm (PPO) that is used in Chapter 4.

2.4.1 Stochastic Policy Gradient methods

All algorithms which use a parametrized policy are called Policy gradient methods. We can
introduce the parameter vector 𝜃 ∈ R𝑑, 𝑑 ∈ N of a policy. Then, extending Definition 2.6,
we can derive a formula as:

𝜋(𝑎|𝑠,𝜃) = P(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠,𝜃𝑡 = 𝜃)

is the probability that action 𝑎 is executed in state 𝑠 with parameters 𝜃 at time-step 𝑡
of 𝜋𝜃. If a performance measure 𝐽(𝜃) is introduced on the parameter vector, then it can be
formulated that policy gradient methods, using the gradient ascent procedure, can evaluate
the parameter vector iteratively with: [40] [22] [42]

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽
(︀
𝜃𝑡
)︀

(2.27)

The derivation of a loss function of performance measure for policy gradient methods not
as easy as in the case of value-based methods. For this, similar to the distinction between
MC methods and TD methods, we need to differentiate between finite and infinite episodes.
For both cases, the theorem on policy gradients shows how to compute the ∇𝐽(𝜃). [40] [42]

In the case of finite episodes, we can say that: the goodness of the parameter vector
is measured by the return of the first state of the episode. The policy gradient for finite
episodes can be then formulated as: [42]

∇𝑣𝜋𝜃
(𝑠) = ∇

(︃∑︁
𝑎

𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

)︃
=
∑︁
𝑎

(∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎) + 𝜋(𝑎 | 𝑠,𝜃)∇𝑞𝜋𝜃

(𝑠, 𝑎))

(2.28)

...

=
∑︁
𝑠

∞∑︁
𝑘=0

P (𝑠0 → 𝑠, 𝑘, 𝜋𝜃)
∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎) (2.29)

20

where P (𝑠→ 𝑠′, 𝑘, 𝜋𝜃) is the probability of a state transition from 𝑠 to 𝑠′ in 𝑘 steps
under policy 𝜋(𝑎 | 𝑠,𝜃). This probability thus serves as a weighting of the gradient of the
return. Moreover, if 𝜂(𝑠) =

∑︀∞
𝑘=0 P (𝑠→ 𝑠′, 𝑘, 𝜋𝜃) is defined, it can be further written:

∇𝐽(𝜃) = ∇𝑣𝜋𝜃
(𝑠)

=
∑︁
𝑠

𝜂(𝑠)
∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

=
∑︁
𝑠′

𝜂(𝑠′)
∑︁
𝑠

𝜂(𝑠)∑︀
𝑠′ 𝜂(𝑠′)

∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

=
∑︁
𝑠′

𝜂(𝑠′)
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

= E𝜋

(︃∑︁
𝑎

𝑞𝜋𝜃
(𝑠, 𝑎)∇𝜋(𝑎 | 𝑠,𝜃)

)︃

(2.30)

(Proof of Policy Gradients theorem - for episodic case)[42]

The equation describes that the gradient of 𝐽(𝜃) is proportional to the probability sum
of the

∑︀
𝑠 𝜇(𝑠), which indicates the probability that the agent is in state 𝑠, multiplied by

the sum weighted gradients of the probabilities for the selection of actions. The
∑︀

𝑠 𝜂(𝑠) is
the proportionality constant.

Practically, it provides the insight, that when the agent is in a state, it should move in
the direction of weights that represent the largest increase in the probability of selecting an
action in that state, weighted by the expected return for that state and action. [42] [22]

In the case of infinite episodes, the performance measure 𝐽(𝜃) is the average reward per
time-step. The gradient ∇𝐽(𝜃) can then be determined by the policy gradients for infinite
episodes theorem:

∇𝐽(𝜃) =
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎 | 𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎) (2.31)

and thus the calculations of a gradient for infinite case corresponds to the one of episodic
case. [42] [40]

2.4.2 Monte-Carlo Policy Gradient (REINFORCE)

The Monte-Carlo Policy Gradient algorithm is a purely policy-based algorithm. Similarly
to the classical MC methods, it uses the return of complete finite episodes for the parameter
adjustments. The algorithm is called REINFORCE. In an Algorithm 1 we show a pseudo-
code for it. Here, the return is gradually expanded with each time-step, unlike in MC
methods. [34]

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝛾𝑡𝐺𝑡∇ ln𝜋
(︀
𝑎 | 𝑠,𝜃𝑡

)︀
This weight adjustment ensures that the weight vector 𝜃𝑡 is adjusted with the product of

return 𝐺𝑡 and the gradient vector ∇ ln𝜋(𝑎 | 𝑠,𝜃), which indicates the largest increase in the
probability of selecting action 𝑎 in state 𝑠. So the return 𝐺𝑡 serves here as a scaling factor

21

of the gradient. The higher the return, the greater should be the probability of selecting
an action 𝑎 in state 𝑠 by policy 𝜋𝜃. [42] [22]

Algorithm 1: Monte-Carlo Policy Gradient - REINFORCE
Input: differentiable policy 𝜋(𝑎 | 𝑠,𝜃)
Output: policy parameters 𝜃
Initialize policy parameter 𝜃 ∈ R𝑑′

while True do
Generate an episode 𝑠0, 𝑎0, 𝑟1, ..𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 using policy 𝜋𝜃
foreach time-step t=0, .. ,T-1 do

𝐺𝑡 ← return from step 𝑡
𝜃𝑡+1 ← 𝜃𝑡 + 𝛼𝛾𝑡𝐺𝑡∇ ln𝜋

(︀
𝑎 | 𝑠,𝜃𝑡

)︀
end

end
The algorithm uses as optimization the stochastic gradient ascent, since the weights are

adjusted at each time-step. For the gradient ∇ ln𝜋
(︀
𝑎 | 𝑠,𝜃𝑡

)︀
, depending on whether the

environment is discrete or continuous action space, the policy parametrizations explained
in previous subsection can be used. The disadvantage of this algorithm is the high variance
of the returns between time-steps and the associated ”slowness“ of the learning process.
The reason for the variance is the unadaptive and loose formulation of the scaling factor.
[20] [42]

2.4.3 Actor-Critic Policy Gradient methods

The long-term expected return for an action in a state, 𝑞𝜋𝜃
(𝑠, 𝑎), visible in the proof of Policy

Gradients, is a scaling factor for the largest increase in the probability of selecting such a
given action in a given state. In the previous subsection, the scaling factor is the return 𝐺𝑡.
In order to improve the slowness of learning and the high variance of the REINFORCE, the
theorem on policy gradients is extended to include a baseline 𝑏(𝑠) that acts individually for
each state, thus acts adaptively on the scaling factor. It can be written as: [42] [22] [41]

∇𝐽(𝜃) ∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

(𝑞𝜋𝜃
(𝑠, 𝑎)− 𝑏(𝑠))∇𝜋(𝑎 | 𝑠,𝜃) (2.32)

If the baseline is zero for all the states, the initial equation 2.30 is again obtained. For
example, a vector of constants could be also used as a baseline. If a function approximator
with bootstrapping is used as a baseline, such as TD(0) or SARSA(0), the concept of
Actor-Critic methods can be formulated. Here, the Critic computes the scaling factor and
the actor adjusts the policy parameter 𝜃. For the Actor network, the weight adjustment
formula is then as follows: [40] [22]

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑞𝜋𝜃
(𝑠, 𝑎)− 𝑏(𝑠))

∇𝜋 (𝑎 | 𝑠,𝜃𝑡)

𝜋 (𝑎 | 𝑠,𝜃𝑡)

= 𝜃𝑡 + 𝛼
(︀
𝑅𝑡+1 + 𝑞

(︀
𝑠′, 𝑎′,w𝑡

)︀
− 𝑞 (𝑠, 𝑎,w𝑡)

)︀ ∇𝜋 (𝑎 | 𝑠,𝜃𝑡)

𝜋 (𝑎 | 𝑠,𝜃𝑡)

(2.33)

where

∇𝜋 (𝑎 | 𝑠,𝜃𝑡)

𝜋 (𝑎 | 𝑠,𝜃𝑡)
= ∇ ln𝜋 (𝑎 | 𝑠,𝜃𝑡)

22

In equation above, the target 𝑅𝑡+1 + 𝑞
(︀
𝑠′, 𝑎′,w𝑡

)︀
is assumed as a scaling factor and the

baseline 𝑞
(︀
𝑠, 𝑎,w𝑡

)︀
tries to counteract the strongly fluctuating target values. The Critic

thus provides the scaling factor to the Actor. The Algorithm 2 shows the pseudo-code for
such an Actor-Critic algorithm. [42]

Algorithm 2: Actor-Critic (one-step)
Input: differentiable policy parametrization 𝜋(𝑎 | 𝑠,𝜃)
Input: differentiable action-value parametrization 𝑞(𝑠, 𝑎,w)
Output: policy parameter 𝜃 and action-value weights
Initialize policy parameter 𝜃 ∈ R𝑑′ and action-value weights w ∈ R𝑑

while True do
Observe state from environment
Sample action from 𝜋(𝑎 | 𝑠,𝜃)
foreach time-step t=0, .. ,T-1 do

Take action 𝑎, observe 𝑠′ and 𝑟 from environment
Sample next action 𝑎′ from 𝜋(𝑎′ | 𝑠′,𝜃𝑡)
𝛿𝑡 ← 𝑟𝑡 + 𝛾𝑞 (𝑠′, 𝑎′,w𝑡)− 𝑞 (𝑠, 𝑎,w𝑡)
𝜃𝑡+1 ← 𝜃𝑡 + 𝛼𝛿𝑡∇ ln𝜋 (𝑎 | 𝑠,𝜃𝑡)
w𝑡+1 ← w𝑡 + 𝛽𝛿𝑡∇𝑞 (𝑠, 𝑎,w𝑡)
𝑎← 𝑎′; 𝑠← 𝑠′

end
end
Just like 𝑛-step TD methods, there are also 𝑛-step Actor-Critic algorithms, which are

fundamentally explained and detailed in [42] Sutton and Barto and [22] Levine.
To further reduce the variance instead of the action-value function, an Advantage func-

tion can be used. The Advantage function then indicates whether and by how much action
in state is better or worse compared to all other possible actions in that state. If advantage
for a given action is greater than one, that action is on average better than all other actions.
The Advantage function can be then calculated by a function approximator with: [22] [28]
[17] [46] [40]

𝑎𝜋𝜃
(𝑠, 𝑎) = 𝑞𝜋𝜃

(𝑠, 𝑎,𝜒)− 𝑣𝜋𝜃
(𝑠,w)

= 𝑅𝑡+1 + 𝛾𝑣
(︀
𝑠′,w

)︀
− 𝑣(𝑠,w)

(2.34)

Then, if we plug it into the equations for the policy gradient and the weight adjustment,
we obtain:

∇𝐽(𝜃) = E𝜋𝜃
(∇ ln𝜋(𝑎 | 𝑠,𝜃)𝑎𝜋𝜃

(𝑠, 𝑎))
𝜃𝑡+1 = 𝜃𝑡 + 𝛼

(︀
𝑅𝑡+1 + 𝛾𝑣

(︀
𝑠′,w𝑡

)︀
− 𝑣

(︀
𝑠,w𝑡

)︀)︀
∇ ln𝜋

(︀
𝑎 | 𝑠,𝜃𝑡

)︀
(2.35)

This algorithm is then called Advantage Actor-Critic (A2C) and has overall much better
performance than original Actor-Critic with a baseline. [22] [28]

Continuous Action-space

Policy Gradient methods can be used in environments with discrete as well as with contin-
uous action space. Value-based methods have the disadvantage that they can only be used

23

in environments with discrete action space. Whether a given policy gradient method can
be used on discrete or continuous action space is determined by the policy parametrization.
In the case of a discrete action space, a numerical value ℎ(𝑠, 𝑎,𝜃) ∈ R can be computed
foreach state-action pair. The computation of these values can be done, for example, via a
neural network, similar to equation 2.26. An exponential Softmax distribution: [42] [22]

𝜋(𝑎 | 𝑠,𝜃) =
exp(ℎ(𝑠, 𝑎,𝜃))∑︀
𝑏 exp(ℎ(𝑠, 𝑏,𝜃))

(2.36)

can then specify the probability with which an action should be selected. In the case of
a large or even continuous action space, instead of evaluating individual actions, parameters
of distribution functions such as the Normal distribution are computed. The parameters of
the Normal distribution are the mean 𝜇 ∈ R and the variance 𝜎2 > 0.

The Normal distribution is defined on R, as it is a continuous action space. Mean and
variance, can then be parametrized and thus approximated with: [34]

𝜋(𝑎 | 𝑠,𝜃) =
1

𝜎(𝑠,𝜃)
√

2𝜋
exp

(︂
−(𝑎− 𝜇(𝑠,𝜃))2

2𝜎(𝑠,𝜃)2

)︂
(2.37)

From the last equation it can be seen that the policy-parameter vector can be described
by 𝜃 = (𝜃𝜇,𝜃𝜎). Its parameters can be then computed by one neural network. This allows
the implementation of continuous actions for stochastic policies. [42] [40] [20]

2.4.4 Trust-Region methods

All the policy gradient methods mentioned so far use the approach of optimizing the ob-
jective function such as an MSE, by minimizing the loss and updating the weights vector
in an iterative way via Stochastic gradient descent. This should continuously lead to a
learned, well performing model. The gradient descent optimizes via first order derivatives,
this approach can be called a line search. It follows the direction of the highest gradient
with fix-sized step.

The other approach, which optimizes second order derivatives is called a trust-region.
Instead of going in a line step improvements, in a trusted regions it first defines a re-
gion where it is safe to be, in terms of the value of the gradient and the local optimal point
within the region is found. This way it better approximates the function’s optimal solution.

In supervised learning, if the SGD during an optimization steps too far in the direction
of the biggest gradient, it does not matter that much, because it has lot of sample data,
waiting to be evaluated. Thus, fixing the optimization solution during next steps, step-
ping back in the opposite direction. In RL, if the optimization ”over-steps“ and misses the
optimal value, poor policy is obtained. This eventually leads to a very poor results from
which the RL algorithm is usually unable to recover. Considering this, the trust-region
methods are in general much more stable and potentially yielding higher returns. There is
a trade-off for the much higher stability property, which will be discussed later. [22] [36] [32]

24

Figure 2.5: Line search vs Trust regions, Source: [6]

The general RL objective is already a pretty complex function, thus a use of some less
complex function is viable. The trust-region works in a way, where it calculates first the
region where it can trust the less complex function, which has similar value solutions within
some region as the original objective. This way, it sets the region boundaries, where the
trust-region method is looking for the next optimal gradient value. This setup then forms
a constrained optimization problem, where it optimizes an objective with respect to the
trust-region boundary.

The second order approximation of a function can be done, for example by a Taylor
polynomials in quadratic form, then the subject of optimization would look something like:

𝑓(𝑥) ≈ 𝑓(𝑥) = 𝑓(c) +∇𝑓(𝑐)𝑇 (𝑥− 𝑐) +
1

2!
(𝑥− 𝑐)𝑇𝐻(𝑐)(𝑥− 𝑐) (2.38)

where the 𝑓 is the Taylor polynomial to be approximated to the 𝑓 , 𝑐 is a point where it
approximates, and 𝐻 is a Hessian matrix.

Usually, the trust-region can be a hyper-sphere, constrained as follows:

||𝑥− 𝑐||2 ≤ 𝛿 (2.39)

where 𝛿 is the maximal boundary of the trust-region.

In order to find the optimal gradient value within the trust-region, the objective func-
tion has to have a Hessian matrix inside, consisting of second order partial derivatives.
This would already be a hard problem for some small optimization problem. If we consider
neural network, consisting of thousands of parameters, it is obvious that such a calculation
of the second order derivatives is pretty computationally expensive.

25

Nevertheless, finding of the trust-region and the complete optimization process can be
formalized in an Algorithm 3 as:

Algorithm 3: Generic Algorithm of Trust-region method
Initialize 𝛿, 𝑥*0, 𝑛 = 0
while not converged do

n ← 𝑛 + 1
Solve x*

𝑛 = argmin𝑥 𝑓(𝑥) subject to ||𝑥− 𝑥*𝑛−1||2 ≤ 𝛿

if 𝑓 (𝑥*𝑛) ≈ 𝑓 (𝑥*𝑛) then
Increase 𝛿

end
else

Decrease 𝛿
end

end
This idea of second order optimization is a well-known mathematical problem, as well

as the method of trust-regions. Though, in the field of RL it is a completely new idea.
The algorithm that we will discuss in a subsequent subsection, the Trust-Region Policy
Optimization (TRPO), uses exactly this novel approach. [36] [20]

Trust-Region Policy Optimization

There are some limitations in Policy gradients that the Trust-region policy optimization ad-
dresses. They are data inefficient as they only use collected trajectories once and then they
need to collect new ones, for later policy updates. This also induces high variance, because
with bad estimates, bad policy is generated, which consequently generates bad trajectories,
resulting in the whole policy not being stable. In order to achieve stable updates, the 𝜃
parameters of the policy network must be updated directly, using the previously learned
policy 𝜋𝑜𝑙𝑑. Therefore new policy will not be ”too far away“ with its estimates from the old
policy, thus will update only within the trusted region.

This idea of policies not far from each other comes from an Importance sampling [42],
This approach is also sometimes called the Surrogate loss, this is the case in the original
TRPO article as well. [36]

𝐸𝑥∼𝑝[𝑓(𝑥)] =

∫︁
𝑓(𝑥)𝑝(𝑥)𝑑𝑥

=

∫︁
𝑓(𝑥)

𝑝(𝑥)

𝑞(𝑥)
𝑞(𝑥)𝑑𝑥

= 𝐸𝑥∼𝑞

[︂
𝑓(𝑥)

𝑝(𝑥)

𝑞(𝑥)

]︂ (2.40)

If we have two distributions 𝑝(𝑥) and 𝑞(𝑥) and we want to calculate the expectation of
the function 𝑓(𝑥) by following the function 𝑓(𝑥). In this case 𝑞(𝑥) is the old policy and
𝑝(𝑥) is the new policy. The new trajectory is sampled from the 𝑝(𝑥) but since due to the
learning process it is noisy, so we use the old policy 𝑞(𝑥) to estimate the total reward. Then
two cases are possible 𝑝(𝑥)

𝑞(𝑥) > 1, meaning there is high variance, so the current policy is
far from the old policy. Second, 𝑝(𝑥)

𝑞(𝑥) < 1 means, there is low variance, thus updating new
policy by utilizing the previously learned policy induces control of the variance. [22] [6]

26

The gradient of the objective function is only accurate close to the current policy. So
the new policy should not be too different from the old one. This can be considered as an
optimization problem within a constraint of a trusted region.

For that the Kullback-Leibler (KL) [34] divergence can be used. KL divergence can
assign a value of a distance when comparing two distributions, i.e. it measures how much
are two distributions different.

𝐷𝐾𝐿(𝑃‖𝑄) =
∑︁
𝑥

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)
(2.41)

which subsequently in terms of policy distributions translates to:

𝐷𝐾𝐿

(︀
𝜋′||𝜋

)︀
[𝑠] =

∑︁
𝑎∈𝒜

𝜋′(𝑎 | 𝑠) log
𝜋′(𝑎 | 𝑠)
𝜋(𝑎 | 𝑠)

(2.42)

It also encourages exploration of the new policy. Since if the probability for action in
an old policy is low, you can assign higher probability in new policy, without increasing
the divergence. The objective function with KL penalty as a constrain of TRPO algorithm
then can be defined as follows:

max
𝜃

E𝑡

[︂
𝜋𝜃 (a𝑡 | s𝑡)

𝜋𝜃old (a𝑡 | s𝑡)
𝐴𝜋𝜃 old (s𝑡,a𝑡)

]︂
subject to E𝑡 [𝐾𝐿 (𝜋𝜃old (· | s)‖𝜋𝜃 (a𝑡 | s𝑡))] ≤ 𝛿

(2.43)

Note, that for the calculation of KL divergence, the Hessian vector product (using
conjugate gradient) of second order derivatives is necessary. To understand this topic fully,
good mathematical background is necessary. Therefore, further information about the
complete calculation and proof can be found in the TRPO article [36]. A drawback of this
approach is the high computational complexity due to the optimization of natural gradient,
i.e. gradient under constraint. For that, standard gradient descent optimization methods
like Stochastic gradient descent cannot be used. Even though, the TRPO does not directly
calculate the Hessian but rather approximates its values, it is still a very difficult algorithm
to fully understand to, or even to implement it properly. The main contribution of the
TRPO is the clever application of techniques from different science areas into the field of
RL. [6][20][32][36]

For completeness, here in a pseudo-code the Algorithm 4 is presented in the same way
as in the TRPO article:

Algorithm 4: Trust-region policy optimization
for iteration=1,2... do

Run policy 𝜋𝜃𝑜𝑙𝑑 in environment for T time-steps;
Compute advantage estimates 𝐴1, ..., 𝐴𝑇 ;
Compute policy gradient 𝑔;
Use conjugate gradient to approximate 𝐹−1𝑔 (Hessian vector product);
Do line search on Surrogate loss and KL constraint;

end
These drawbacks of TRPO are addressed by another trust-region method called Proxi-

mal policy optimization. It is also the algorithm that is used during the experiments in this
work.

27

Proximal Policy Optimization

PPO is an Actor-critic On-policy algorithm which simplifies the TRPO, but behaves in the
same way. Published in 2017 and since then it is considered as a state-of-the-art Policy
gradient algorithm for RL.

PPO has three main goals to achieve. First is to make the code cleaner and less math
dependent. Second is to reduce the computational complexity, thus making the learning
process faster. Last one, is to use fewer hyperparameters, so the complexity related to
finding the correct values of hyperparameters is reduced as well.

PPO consists of two different versions. The first one uses similar approach as the TRPO,
it is trying to address the constrained optimization problem, so that it can be computed
using standard gradient optimizers, such as an Stochastic Gradient Descend. It still uses
the computationally expensive KL divergence, but introduces new technique, the adaptive
KL-penalty. This allows to adaptively change the influence of the KL by creating a penalty
for it. [38] [6] [22] [20]

Unconstrained optimization using KL-Penalty: This is the objective function to
be optimized, it is almost the same as the TRPO objective, but now unconstrained:

maximize
𝜃

Ê𝑡

[︂
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
𝐴𝑡 − 𝛽KL [𝜋𝜃old (· | 𝑠𝑡) , 𝜋𝜃 (· | 𝑠𝑡)]

]︂
(2.44)

In the PPO it is called the 𝐿𝐾𝐿𝑃𝐸𝑁 and it uses the adaptive 𝛽 parameter to increase
or decrease the influence of KL divergence.

𝐿𝐾𝐿𝑃𝐸𝑁 (𝜃) = Ê𝑡

[︂
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
𝐴𝑡 − 𝛽KL [𝜋𝜃old (· | 𝑠𝑡) , 𝜋𝜃 (· | 𝑠𝑡)]

]︂
(2.45)

This way it deals with the constrained optimization from TRPO, it is a common trick
in the field of optimization, and is done most of the time by using Lagrandian Duals. The
𝛽 acts as a scaling factor and in PPO is also adaptive, since it is already a complex task
to decide on an exact correct value of the 𝛽. It works as follows. If KL is too small, its
boundaries can be released a little, thus 𝛽 is reduced. Oppositely, if KL is too large, the
penalty should be increased for the following trajectories, thus 𝛽 is increased. It follows
this:

Compute 𝑑 = Ê𝑡 [KL [𝜋𝜃old (· | 𝑠𝑡) , 𝜋𝜃 (· | 𝑠𝑡)]]
If 𝑑 < 𝑑targ /1.5, then: 𝛽 ← 𝛽/2

If 𝑑 > 𝑑targ × 1.5, then: 𝛽 ← 𝛽 × 2

(2.46)

where 𝑑𝑡𝑎𝑟𝑔 is the target KL distance that was initially set and the 𝑑 is the current KL
distance.

Clipped Surrogate Objective: The downside of the KL-Penalty approach is, that it
still needs the computationally expensive calculation of the KL. To address this issue, second
version of the PPO is proposed. The Surrogate objective denoted as 𝐿𝐶𝑃𝐼 (Conservative
policy improvement). Next we can call 𝑟𝑡(𝜃) the ratio between new and old policy, concept
known from the Policy Gradient proof in 2.4.1, which results in:

28

𝑟𝑡(𝜃) =
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
(2.47)

Then we can write the 𝐿𝐶𝑃𝐼 objective as:

𝐿𝐶𝑃𝐼(𝜃) = Ê𝑡

[︂
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
𝐴𝑡

]︂
= Ê𝑡

[︁
𝑟𝑡(𝜃)𝐴𝑡

]︁
(2.48)

If we then plug it into the final objective function 𝐿𝐶𝐿𝐼𝑃 (𝜃) we get:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ê𝑡

[︁
min

(︁
𝑟𝑡(𝜃)𝐴𝑡, clip (𝑟𝑡(𝜃), 1− 𝜖, 1 + 𝜖)𝐴𝑡

)︁]︁
(2.49)

What it does is, that it is clipping the policy update if the ratio between new and old
policy gets too far from each other. It substitutes the function of KL divergence from the
first objective, but without the computational expenses that go with it. Here it uses simple
𝑚𝑖𝑛 and 𝑐𝑙𝑖𝑝 operators. It restricts the ratio not to go under 1 − 𝜖 and above 1 + 𝜖, if
the two policy distributions are getting too far from each other. This clipping function is
further visualised on a Figure 2.6.

Figure 2.6: Clipping of PPO - typically 𝜖 = 0.2, 𝐴 is the advantage function, Source: [38]

Figure shows the clipping of positive advantage (left), and clipping if the advantage is
negative (right). We can see that 𝐿𝐶𝐿𝐼𝑃 is a lower bound on 𝐿𝐶𝑃𝐼 , with a penalty for having
too large of a policy update. So it makes our policy really pessimistic, about the future
update, being really conservative about updating too much. Rather than mathematical
reasons like at TRPO, this PPO’s objective 𝐿𝐶𝐿𝐼𝑃 is empirically chosen, with the focus on
the most similar behavior as the KL divergence of two policy ratios (Surrogate function).
It was shown that it has similar or better performance than the PPO with KL-penalty.

More intuition behind it is, that if 𝐴 > 0, we want to update just a little bit, so that
the action happens more often. Similarly, when 𝐴 < 0 we want to decrease the possibility
of that action just a bit. When we look at the right most region of the graph, the ratio 𝑟
is high, so the last policy update made that action a lot more probable, but at the same
time the advantage is negative, so this last policy update is worsening our policy, therefore
we want to ”undo“ the last update, proportionally to how bad the action was in the first
place. We want to move in the opposite direction of the gradient step. This is also the only
region where the original ”unclipped“ 𝑟𝑡(𝜃)𝐴𝑡 has a lower value than the clipped objective

29

and thus gets returned by the 𝑚𝑖𝑛 operator.

Then the full objective function that will be implemented is defined as follows:

𝐿𝐶𝐿𝐼𝑃+𝑉 𝐹+𝑆
𝑡 (𝜃) = Ê𝑡

[︀
𝐿𝐶𝐿𝐼𝑃
𝑡 (𝜃)− 𝑐1𝐿

𝑉 𝐹
𝑡 (𝜃) + 𝑐2𝐿

𝑆
𝑡 [𝜋𝜃] (𝑠𝑡)

]︀
(2.50)

Where the 𝐿𝐶𝐿𝐼𝑃
𝑡 (𝜃) is our newly created clipping objective, the 𝐿𝑉 𝐹

𝑡 (𝜃) is the squared
error loss for the critic and the 𝐿𝑆

𝑡 (𝜃) is entropy bonus that ensures sufficient exploration
of the policy. Maximizing its entropy, forces the policy to wide spread across the possible
actions, resulting in the most unpredictable outcome, i.e. it drives the policy to be more
random at the beginning, until the other parts of the main objective take over and start
dominating the resulting policy update.

This forms the final objective which is used by the second version of the algorithm.
The 𝑐1 and 𝑐2 are hyperparameters that restrict the influence of its respective terms. In
the original implementation its values are set as: 𝑐1 = 0.99 and 𝑐2 = 0.001, which were
empirically measured for best performing results. [38] [32]

The loss function for the critic is defined as:

𝐿𝑉 𝐹
𝑡 (𝜃) =

(︁
𝑉𝜃 (𝑠𝑡)− 𝑉 targ

𝑡

)︁2
(2.51)

where the 𝑉 targ
𝑡 is the target value and 𝑉𝜃 (𝑠𝑡) is the value function generated by the

network.
The Algorithm 5 for PPO with Clipped objective can then in a simplified pseudo-code

be defined as [22]:
Algorithm 5: PPO with Clipped Objective

Input: initial policy parameters 𝜃0, clipping threshold 𝜖
for k=0,1,2... do

Collect set of partial trajectories 𝒟𝑘 on policy 𝜋𝑘 = 𝜋 (𝜃𝑘)
Estimate advantages 𝐴𝜋𝑘

𝑡 using advantage estimation algorithm (GAE)
Compute policy update

𝜃𝑘+1 = arg max
𝜃
ℒ𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃)

by taking 𝐾 steps of minibatch SGD (via Adam), where

ℒ𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃) = E
𝜏∼𝜋𝑘

[︃
𝑇∑︁
𝑡=0

[︁
min

(︁
𝑟𝑡(𝜃)𝐴𝜋𝑘

𝑡 , clip (𝑟𝑡(𝜃), 1− 𝜖, 1 + 𝜖)𝐴𝜋𝑘
𝑡

)︁]︁]︃
end

GAE:

If we take a closer look at the advantage estimation used within PPO algorithm 5, it uses
the principals of TD-𝜆 returns. This approach is called the Generalized Advantage Estima-
tion (GAE). It tries to solve the bias-variance trade-off when using an approximation of a
value function, as could be seen in Actor-Critic algorithms discussed earlier. [6] [22] [37] [38]

If we take the advantage estimate from Equation 2.34:

30

𝐴(𝑠, 𝑎) = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡) (2.52)

this can be considered as a 1-step advantage estimate. If we expand this to more steps,
consequently we get:

𝐴
(1)
𝑡 := 𝛿𝑉𝑡 = −𝑉 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

𝐴
(2)
𝑡 := 𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 = −𝑉 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑉 (𝑠𝑡+2)

𝐴
(3)
𝑡 := 𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 + 𝛾2𝛿𝑉𝑡+2 = −𝑉 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑉 (𝑠𝑡+3)

(2.53)

Finally, if we further rewrite this in the context of 𝑛-step advantage estimate, we get:

𝐴
(𝑛)
𝑡 :=

𝑛−1∑︁
𝑙=0

𝛾𝑙𝛿𝑉𝑡+𝑙 = −𝑉 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + · · ·+ 𝛾𝑛−1𝑟𝑡+𝑛−1 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛) (2.54)

This reduces the bias, since it less depends on the estimate of a value function, but
at the same time it increases variance, as now we rely completely on the extra 𝑛-step
expected return estimates summed together. For example other policy gradient algorithm,
A3C uses 5-step estimate for its advantage. The GAE does not want to explicitly set an
exact number of the steps, so a nice workaround is to use the technique form 𝜆-returns and
eligibility traces. The solution is then exponential average across all the steps.[37]

The equation for GAE using exponentially-weighted average is then defined as follows:

𝐴
GAE(𝛾,𝜆)
𝑡 :=(1− 𝜆)

(︁
𝐴

(1)
𝑡 + 𝜆𝐴

(2)
𝑡 + 𝜆2𝐴

(3)
𝑡 + . . .

)︁
=(1− 𝜆)

(︀
𝛿𝑉𝑡 + 𝜆

(︀
𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1

)︀
+ 𝜆2

(︀
𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 + 𝛾2𝛿𝑉𝑡+2

)︀
+ . . .

)︀
=(1− 𝜆)

(︀
𝛿𝑉𝑡
(︀
1 + 𝜆 + 𝜆2 + . . .

)︀
+ 𝛾𝛿𝑉𝑡+1

(︀
𝜆 + 𝜆2 + 𝜆3 + . . .

)︀
=

∞∑︁
𝑙=0

(𝛾𝜆)𝑙𝛿𝑉𝑡+𝑙

(2.55)

The series can be rewritten into a single sum. Now 𝜆 is the exponential discount factor
that controls the bias-variance trade-off. Note, that if 𝜆 = 0, we are left with the TD
advantage estimate (high bias, low variance) and if 𝜆 = 1, this is the equivalent of 𝑛-step
estimate for the extended advantage estimation (low bias, high variance). The optimal
value chosen for PPO is then 𝜆 = 0.95.

In the case of PPO, only a segment of length 𝑇 time-steps of an episode is used for
GAE estimation, which should be always 𝑇 << 𝑇𝑒𝑝𝑖𝑠𝑜𝑑𝑒. Then the advantage estimate can
be written as:

𝐴𝑡 = −𝑉 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + · · ·+ 𝛾𝑇−𝑡+1𝑟𝑇−1 + 𝛾𝑇−𝑡𝑉 (𝑠𝑇) (2.56)

31

Other Policy Gradient methods

As a side note we can also mention other state-of-the-art algorithms and concepts used
within the RL domain. The algrithms are for example A3C, DDPG and SAC. By the way,
before we commited to the PPO algorithm in this thesis, we were really considering the
use of SAC. As it is more efficient in terms of data samples and connects the on-policy
actor-critic and off-policy approach.

Asynchronous Advantage Actor-Critic (A3C), is a policy gradient method with a special
focus on the learning running in parallel. In A3C, the critics learn the value function while
multiple actors are trained in parallel and are synchronized by global parameters once in a
while. Thus the A3C should work well in a parallel setup. [20] [47]

Deep Deterministic Policy Gradients (DDPG), is a model-free off-policy actor-critic al-
gorithm, combining DPG with DQN. The DQN stabilizes the learning of Q-function by
experience replay buffer and the frozen target network. DDPG works in continuous space
due to the actor-critic framework while a deterministic policy is being learned. For better
exploration of the policy, a noise is added to it. The DDPG does also do soft updates
(“conservative policy iteration”) on the parameters of both actor and critic networks, in a
way that the target network is constrained to change slowly whereas in DQN the target
network is kept frozen for a period of time. [22] [47] [23]

Soft actor critic (SAC) - is an off-policy actor-critic model which incorporates the en-
tropy measure of the policy into the reward to encourage exploration and ensure stability.
Then the policy should act as randomly as possible while being able to get trained suc-
cessfully. It uses separate policy and value function networks for the actor-critic setup. It
also adds off-policy property by being able to reuse previously collected data, just like the
experience replay buffer in DDPG. This supports the efficiency of the algorithm. In its
objective function there are two objective one is the maximization of expected return and
the second one is the maximization of entropy. [20] [47]

Great review of other Policy Gradient methods can be found at Lilian Weng Blog [47].

32

Chapter 3

Autonomous driving and system
design

The aim of this chapter is to describe the various experiments that are attempting to solve
the task of autonomous driving in a simulation environment TORCS. These experiments are
then evaluated and analyzed in Chapter 4 with respect to achieve the objectives described
in Chapter 1. The specifics of the experiments as well as the variants of it and the design of
the whole system, are discussed in more detail in this chapter too. Initially, the description
of autonomous driving task is presented first, following the requirements of a reinforcement
learning agent and the description of simulation environment are outlined. After that, the
experiment setup is introduced.

3.1 Autonomous driving
The theme context of this work is autonomous driving. This means that an RL agent
is developed in order to autonomously drive a vehicle within a simulation environment.
That is why it is necessary to first introduce how autonomous driving is understood by
international taxonomy standards. In 2014, The Society of Automotive Engineers (SAE)
[4] created a six-level classification standard of vehicle automation. This was done in order
to estimate possible legal consequences for vehicles with high degree of autonomy. This
classification includes not only the lateral and longitudinal guidance of a vehicle, but also
other aspects of driving such as parking, pedestrian-vehicle interaction, or driving in urban
traffic. All of these conditions are present only in the fifth, highest level. The lower the
level the least of these conditions are fulfilled. The range begins at level zero, meaning ”No
automation“ and ends with level five, meaning ”Full Automation“. The detailed description
of the levels is listed below.

• Level 0 - The human driver does all the driving. No assistance is provided.

• Level 1 - An advanced driver assistance system (ADAS) on the vehicle can sometimes
assist the human driver with either steering or braking/accelerating, but not both
simultaneously.

• Level 2 - An advanced driver assistance system (ADAS) on the vehicle can itself
actually control both steering and braking/accelerating simultaneously under some
circumstances. The human driver must continue to pay full attention (“monitor the
driving environment”) at all times and perform the rest of the driving task.

33

• Level 3 - An automated driving system (ADS) on the vehicle can itself perform all
aspects of the driving task under some circumstances. In those circumstances, the
human driver must be ready to take back control at any time when the ADS requests
the human driver to do so. In all other circumstances, the human driver performs the
driving task.

• Level 4 - An automated driving system (ADS) on the vehicle can itself perform all
driving tasks and monitor the driving environment – essentially, do all the driving –
in certain circumstances. The human need not pay attention in those circumstances.

• Level 5 - An automated driving system (ADS) on the vehicle can do all the driving
in all circumstances. The human occupants are just passengers and need never be
involved in driving.

The other available taxonomy standards include The U.S. National Highway Traffic
Safety Administration NHTSA [1], Federal Highway Research Institute in Germany BASt
[2], and Verband der Automobilindustrie VDA. [19] The difference between them is visible
only in the last two levels of Full automation, differing in terms of full automation during
high-risk situations. In the SAE, in the fourth level, the vehicle encountering a high-risk
situation is required to safely come to a stop in a secure place, typically a road shoulder,
while in the fifth level the vehicle does not need any interference by the human driver and
can operate fully on its own under any conditions. In comparison in the BASt classification
the fifth level is missing, therefore the fourth level is considered the highest. Though, that
does not mean the vehicle is driverless, the classification just does not take into account
the possibility of no driver. [2] [1]

The vehicle controls which are to be operated by the RL agent in this work consist of
lateral and longitudinal guidance on the road. In order to succeed the task, the RL agent
will have to learn the acceleration, braking and steering control of the vehicle independently.
If we want to compare it to the classifications above, it can be done to only a limited extent,
as the official standards take into account all the different tasks. Of course the ideal goal
would be to meat the requirements for the level five of SAE classification, at least in terms
of the lateral and longitudinal guidance of a vehicle. The reasons for only focusing on
the vehicle guidance are mainly because our initial goal is to prepare an agent for an RC
model car application, secondly most of the freely available simulation environments only
offer vehicle guidance as well. Also available literature is mostly focused on similar task.
[10][16][43] This leads to the specification of the simulation environment that will be used
in our experiments and will be discussed in the next subsection. [45][13][21]

3.2 Simulation environment
The reasons that the available literature focuses mostly on a simulation instead of the real-
world vehicle and environment is quite simple. It is due to the reward function, which plays
a crucial role in the learning process of the RL agent. The agent needs to fail a lot in order to
learn some useful policy. That would mean that the real-world vehicle would encounter a lot
of damage during the training process, possibly destroying itself without learning anything.
More common way of doing things is to first learn the agent in a synthetic environment
and later, when the RL agent is trained, just fine-tune it in the real-world environment.

If we think again about the reward function, it is much easier to manually define a
reward function for the longitudinal and lateral guidance than for all the other aspects of

34

real driving behavior on public roads, including parking, pedestrian-vehicle interactions and
the traffic signs and signals. Nonetheless these limitations do not represent a reduction in
a complexity and usability of RL agents as such. After what was stated above, the racing
simulators meet these requirements quite well. Also in the literature the use of racing
simulators as the environment is mostly used.

3.2.1 TORCS

The one, very popular lightweight racing simulator used in the machine learning research
is The Open Racing Car Simulator (TORCS). It is free, open-source racing game and thus
will be used in this work as well. The use of TORCS is also convenient for the reasons
of future application of the learned agent in real-world environment. Particularly to the
scaled RC model car, which will then possibly be capable of racing on a custom track. [48]
[25]

To mention some alternatives to the TORCS simulator, there is also simulator called
CARLA - which simulates the real urban traffic conditions, but the requirements for com-
puting performance are very high. The same applies for other urban traffic simulators,
which in addition are not even freely available e.g. Nvidia Drive Sim. As next, we will
describe the TORCS environment in a more detail.

TORCS is modular, discrete-time simulator which simulates the aspects of vehicle dy-
namics, kinematics, fluid and thermo-dynamics. It also features different driving modes.
One of them is called ”Practice mode“ and will be used throughout the experimental part
of this thesis. It is basically the solo-driving mode without any opponent. The other mode
is the ”Quick race“ mode. Differing in the addition of opponents. These opponent vehicles
are operated internally be the TORCS game mechanics. The main focus will be on the
solo-drive mode, where the RL agent will learn the longitudinal and lateral guidance of the
vehicle on a given track. The mode including opponents is omitted, as our goal is not to
learn an agent how to compete with opponents but mainly how it succeeds in the driving
task in general.[48] [26] [33]

Figure 3.1: TORCS in game screenshots, Source: [48]

The TORCS environment includes about 40 race tracks, which are divided into three
categories. The interesting one for us is the first category, Race Tracks. These consist
of real and artificial asphalted race tracks, which correspond the most to the real-world
conditions. The other category is Dirt tracks, which are mostly curvy and short in length

35

and simulate the off-road driving experience. The last one can be described as oval-shaped
circuits, they are asphalted as well, but due to its topology, they are not interesting for
our experiments. The agent would possibly quite easily learn to race such a trivial shaped
track with just one type of curve. Thus the tracks selected for our experiments all belong
into the first category.

There were eight tracks selected, that will be participating in the experiments, the
decision takes into account the difficulty of each of the tracks, consisting of number of
curves, its radius, the total length of the track and the maximal speed that the racing
vehicle can achieve during the race on such a track. The tracks with its short description
can be seen in a list 3.2.1 below.

• E-road - 3260m, width 15m - high speed track, combination of curves and straights

• E-Track-2 - 5380m, width 12m - lot of curves with one straight

• E-Track-4 - 7041m, width 15m - high speed long track with few curves

• Forza - 5784m, width 11m - very fast and smooth circuit, real-world track in Monza

The main track used for most of the training experiments is the E-Road and E-Track-2
track, which have the perfect balance between its length, number and type of curves and
the overall composition of these elements, helping the agent to learn a versatile driving
style, that can be later benchmarked on the rest of the tracks. Tracks that were used also
for testing but are not depicted on a Figure 3.2 are E-Track 3, Michigan - which is an oval
shaped track, G-Track-2 and G-Track-3.

The car chosen for our experiments is called within the simulator as car7-trb1, which
is a default racing sport car. As most of the cars have similar parameters in terms of top
speed, weight or aerodynamics, the selection of the type of car is not significant and therefore
will not be studied in our experiments. Though, the initial idea was to use different cars
throughout the learning process, thus inducing the robustness of agent’s policy, making it
more usable in terms of generalization, when moved into real-world conditions.

Figure 3.2: The TORCS tracks chosen for the experiments. From left to right: E-Road,
E-Track 2, E-Track 4, Forza, Source: [48]

Now we should introduce the usability for experiments of the TORCS environment. Due
to the fact that TORCS was first developed as a regular game, its internal architecture al-
lows the potential RL or any other machine learning agent to access its internal information
about the state of the simulation. These can be the exact position of the car, its velocity,
the information about the track itself or about each opponent’s vehicle. This would not
only compromise the results of such experiments but would not in any way simulate the
real-world conditions.

36

Since there used to be quite popular TORCS Championship, where machine learning
researchers used to compete with its agents, there had to be created different architecture of
the simulator, in order to achieve truly equal conditions for all the competing teams. This
is typically done by client-server architecture, which was done also in this case by Loiacono
et al.[25] The TORCS environment acts as a server and each agent then communicates
with the environment as a client. The communication is based on UDP protocol. The
vehicle within the TORCS environment is located on the server side and the RL agent on
the client’s side is sending the control commands to the vehicle controller. In return the
vehicle is sending its sensory data about the perceived environment back to the client. This
sensory data is being send by the server every 20ms. Then the client has 10ms to send a
packet consisting of the control commands back. This strict separation of the simulation
environment and the agent’s implementation allows for the use of different programming
language or computing architecture of the client, as the UDP interface is uniform across
different platforms and languages. [48] [25] [24] [10]

The client-server architecture can be seen on a Figure 3.3 below.

Figure 3.3: TORCS Server architecture from Championship manual [25]

One such a client available online is the SnakeOil client, which is a lightweight program
written in Python by C. Edwards [9]. It allows the UDP communication with the TORCS
server environment and through it a control and basic settings of the simulation can be
set. It first opens a UDP socket and then the server side is started. Even though this
abstraction can be seen as enough, there is another layer available between the client and
the RL agent, which will also be used in this work. It is the GymTorcs [8] environment,
which allows us to use the standardized OpenAI Gym environment, which is used all over
machine learning research. This allows us to further focus just on the implementation of
the RL agent and do not bother with the complications related to the setup of the TORCS
environment and all its caveats related to the communication.

There were of course many adjustments done to the SnakeOil client and also to the
GymTorcs framework to function correctly and in alignment with our needs for many
specific experiments. One of them is the functionality of the camera and its use with other
sensors, which is not officially supported by the TORCS. Other can be the different way
of sending the sensory data to the client due to different learning approaches used or the

37

simulation of the communication failures or the sensor/actuator noisy data, that mimic the
real-life conditions related to one of the objectives of this work, that is train and prepare
the RL agent in a simulated environment with the focus to simulate multiple possible
conditions, so the agent could be without huge modifications deployed into the real-world
scenario.

OpenAI Gym and PyTorch

If we step back and focus on the OpenAI, in 2016 the company released an open-source
Python library called Gym. It unifies the research simulation environments for RL agents.
It had the goal of simplifying and unifying the agent’s interaction, as well as it allowed
broader public to use and test the same environments as the research community. Most
importantly, it brought to the field some sort of standardization for the benchmarking of RL
agents and the structure of simulation environments in general. This allows the researches
to compare different RL agents on similar tasks, without worrying about the environment’s
implementation differences. An alternative to the OpenAI Gym can be the locomotion
simulation environment Mujoco, which features different n-legged robots and humanoids.
Coincidentally in 2021 the OpenAI bought the Mujoco simulator and according to the
company, it plans to make it freely available as part of the OpenAI Gym library. [31]

Some well-known tasks in Gym can be mentioned, such as the Cart-Pole environment
by Sutton and Barto, Mountain-Car, Lunar Lander or Atari Games. If we recall the Gym-
Torcs environment, it is not natively included in the Gym, but similar environment had
been created, which follows the basic structure of Gym environment, which can be seen
in Algorithm 6 below. The implementation of GymTorcs is located in gym_torcs.py file
within the thesis implementation source files. It starts the SnakeOil client, which opens a
connection to the TORCS server. The GymTorcs interaction with the environment is then
standard, just like interaction with any other Gym environment and its game’s implemen-
tation.

As had been mentioned earlier, for the implementation of our RL agent - algorithm
PPO, the use of function approximators will be in the form of neural networks. Since our
SnakeOil and GymTorcs subprograms are implemented in Python, our RL agent will be
implemented in this language as well. Therefore there is a need for search of a specialized
Deep Learning library available also for this language. The available options are Keras,
TensorFlow, Theano, Caffee, PyTorch and surely many others. The selection came to the
last one mentioned, the PyTorch library. Released by AI Research at Facebook in 2016.
The reasons behind the selection of PyTorch are mainly, some previous personal experi-
ences with this framework, also it is the only machine learning framework that we had been
presented during our study at FIT. According to the GitHub statistics, the currently most
used machine learning library for that purpose. Also in the research community, PyTorch is
by many considered as the current standard go-to library for the field of machine learning
research and business sphere. For example the car manufacturer Tesla uses for its FSD

38

Autopilot software PyTorch as well.

Algorithm 6: OpenAI Gym standard environment pseudo-code
Initialize an environment by gym.make()
for episode=1,2...N do

Observe initial state from env.reset()
while True do

Select action from policy
Get next state, reward, done from env.step(action)
if done then

break
end
Assign to current state the next state

end
end
[31]
As we can see from the pseudo-code above the most important function of the envi-

ronment is the env.step(), which takes the agents action as an argument, makes a step
within the environment and then returns the next observed state, reward related with this
transition and boolean value whether the episode has ended or not. The rest of the code
is a simple cycle, iterating over the number of episodes and while loop within an episode,
representing the individual time-steps. The next section focuses on the next state values,
which are in our TORCS environment represented by the sensory values observed by the
vehicle within the simulation environment. The next subject discussed are the possible ac-
tion values represented by vehicle’s build-in actuators. The section 3.2.3 then writes about
the reward function and the related topic of reward shaping. [8]

3.2.2 Sensors and Actuators

The information about the current state of the environment is in the form of sensory data,
captured by vehicle’s sensors within the TORCS server. Therefore it is the only way for
the agent to know what is in the simulation happening around him. For the task of lateral
and longitudinal guidance it is necessary to consider the type and amount of sensors which
will be used and thus would be enough for the agent to learn well-performing policy. It is
actually a frequent subject of research in autonomous driving. It also depends on the level
of autonomy targeted. [35] [26] [33]

One of the well performing sensor is the LIDAR. Based on the reflection intensity of
a laser beam it scans the environment and after post-processing the point-cloud can be
created, representing the detailed 3D scan of the environment. One of the downsides of this
sensor is its extremely high cost. Another very helpful sensor is radar, it operates on similar
principles as LIDAR, but with sound waves. Its advantage is, that it is in comparison with
the LIDAR much cheaper and smaller sensor. Last of the important sensors is the camera,
this sensor is probably the cheapest one and thus, heavily used in the industry. Also the
advances in supervised learning, enabled camera sensors to get relatively smart and can be
used to describe the surroundings in a form of complex vector spaces. For example the Tesla
company says, that the future of self-driving cars is in the solitary use of camera sensors.
Also they are strictly against LIDAR technology, as due to its high cost, such vehicles using

39

it will never be mass produced. [44]

According to research from University of Michigan [35], which compared the LIDAR,
radar, camera sensor technology for different tasks of autonomous driving, e.g. object recog-
nition and classification, it says that in an effort of achieving Level 5 of SAE classification
for autonomous driving, all mentioned sensors have to work in combination with vehicle-
to-vehicle communication, and only then they would be able to succeed in all required
tasks.

The RL is an end-to-end approach for autonomous driving, so no further division into
layers for specific tasks, as can be seen in other approaches. The RL agent receives all
sensory data necessary and then through trial and error, continuously learns a policy. Thus,
implicitly learning the effect of lane lines during driving, the presence of other vehicles,
detection of obstacles, etc.

For our use in this thesis the selection of sensors had been considered in regards with the
reality. For example the distFromStart, representing the distance measured from the start
line to the vehicle position on the track, is not the most realistic type of a sensor that can
be found in real-world autonomous vehicles. With this in mind, in the Table 3.1 below are
showed all the sensors that are available in the TORCS environment. The ones highlighted
are sensors that were selected for the use in our experiments. One important information
about the vision sensor, representing the front camera input. As this is not an official
sensor in terms of the TORCS environment [25], the simulator does not allow usage of other
sensors, when vision sensor is enabled. This limitation had been successfully bypassed in
the code, so in the experiments we were able to experiment with different approaches in
terms of selected sensors, including the combination of camera and regular sensors, as well
as the comparison of solo regular sensors or solo camera output.

We also investigated the minimal required set of regular sensors, with which the agent
was still able to learn a successful policy. We were also experimenting with different camera
output, so that the agent would not only have the information about its position, position
of the lane lines but also have some information about its motion and velocity, which is
crucial when learning only from camera sensory data. But this will be in more detail
reviewed further in this thesis.

To further divide selected sensors, the ones describing the state of the vehicle can be
speed sensors, RPM and WheelSpinVel. The ones describing the state of the environment
can be considered as track sensor, opponent sensor or focus. The track and focus sensor
can be then considered as a low-resolution LIDAR sensors. The position of the vehicle via
GPS is not used in this work as the TORCS architecture does not provide this type of
information. We should also mention, that some of these sensors will be used for creation
of the reward function, which will be discussed later in this chapter.

40

Name Range Description

angle [-𝜋, 𝜋](𝑟𝑎𝑑)
Angle between the car direction and the direction

of the track axis.
curLapTime [0, ∞](𝑠) Time elapsed during current lap.

damage [0, ∞](𝑝𝑡𝑠)
Current damage of the car (the higher is the

value, the higher is the damage).

distFromStart [0, ∞](𝑚)
Distance of the car from the start line along the

track line.

distRaced [0, ∞](𝑚)
Distance covered by the car from the beginning

of the race.

focus [0, 200] (m)

Vector with 5 values, each representing the
distance from the vehicle to the lane boundary

within 200 m. Unlike the track sensor, the focus
sensor observes a range of only 5 degrees. However,

the agent can once a second ask for specific
field of view, thus it is the subject of learning.

fuel [0, ∞](𝑙) Current fuel level.

gear {-1,0,1..6} Current gear: -1 for reverse, 0 for neutral,
and 1 to 6 for regular gear.

lastLapTime [0, ∞](𝑠) Time to complete the last lap.

opponents [0, 200] (m)
Vector with 36 values, each representing the distance
to the nearest opponent, within 200 m. The sensor

covers the entire area around the vehicle.
racePos {1,2,..N} Position in the race w.r.t. other vehicles.

rpm [0,∞](𝑟𝑝𝑚) Number of rotation per minute by the vehicle engine.

speedX (-∞,∞)(𝑘𝑚/ℎ)
Speed of the vehicle along the longitudinal axis

of the vehicle.

speedY (-∞,∞)(𝑘𝑚/ℎ)
Speed of the vehicle along the lateral axis

of the vehicle.

speedZ (-∞,∞)(𝑘𝑚/ℎ)
Speed of the vehicle along the Z axis

of the vehicle.

track [0, 200] (m)

Vector of 19 values, each representing the distance
from the vehicle to the lane boundary, within 200 m.

An are of 180 degrees in front of the vehicle is
scanned with a resolution of 10 degrees.

trackPos (-∞,∞)
Distance between the vehicle position and the

center of the lane. Zero if vehicle is in the center
-1 is the left lane line, 1 the right lane line.

wheelSpinVel [0, ∞](𝑟𝑎𝑑/𝑠)
Vector with 4 values, each representing the

radial speed of a wheel.

z [-∞,∞](𝑚)
Distance of the car mass center from the surface

of the track along the Z axis.

vision (0, 255)

Tensor of dimension 64x64x3,
representing RGB pixel input from a camera.

NOTE that vision can be enabled only by forbidding
sensory data from every other sensor mentioned.

Table 3.1: Table with sensors available in the TORCS environment [25]

41

In the Figure 3.4 below it can be seen the vehicle’s perception of the environment and
its position via some of the sensors, especially the angle, track and focus sensor. This
is the set of sensors with which the experiments were initially started and then empirically
were lowered to a minimal possible functioning set.

Figure 3.4: Visualisation of the officially available ”vision“ sensors in the TORCS environ-
ment

So as for the agent to learn autonomous driving, the lateral and longitudinal guidance
has to be controlled via vehicle’s actuators. In the table 3.2 below we can find information
about all actuators provided by the TORCS environment. Again, the ones highlighted, are
the ones that were chosen for the application during our experimental part of this thesis.
The remaining sensors, if not controlled by the agent are then automatically controlled by
the TORCS. The reasons for not using the clutch and gearing is quite simple. Modern cars,
especially those that would in the future be fully autonomous are usually already right now
electric, therefore no need for manual transmission. The next reason is in regards to this
thesis, that is the RC model for which we are trying to learn our agent, is using regular
electric DC motor, thus it would make no sense to train our agent also with the clutch and
gearing actuators enabled. This should not make this task any more trivial, it is still a hard
problem to solve, as all the actuators used have continuous action space, i.e. combination
of their possible values is almost infinite.

42

Name Range Description
accel [0,1] Virtual gas pedal (0 means no gas, 1 full gas).
brake [0,1] Virtual brake pedal (0 means no brake, 1 full brake).
clutch [0,1] Virtual clutch pedal (0 means no clutch, 1 full clutch).
gear -1,0,1,..,6 Gear value.

steering [-1,1] Steering value: -1 and +1 means respectively full right and
left, which corresponds to an angle of 0.366519 rad.

focus [-90,90] Focus direction in degrees.

meta 0,1 This is meta-control command: 0 do nothing, 1 ask
competition server to restart the race.

Table 3.2: Table of possible actuator values, highlighted ones were selected for the experi-
ments

3.2.3 Reward shaping

Reward shaping is an important discipline within the field of RL. It is not unusual that
the environment does not include explicitly defined reward function, thus it is up to the
researcher to carefully design it on its own. This is the case with TORCS environment as
well. From the Algorithm 6 describing the Gym environment procedure, it can be seen
that the env.step() takes an action as an argument and in return returns the new state
of the environment and the reward obtained from this transition. The new state represents
a vector of sensor values, meaning each element of a vector is from a single sensor. Thus it
suggests, that we could map some specific sensory values directly to the reward function.
For example the position of a vehicle to stay within the road. So the trackPos sensor giving
us the info how far from the lane line the car is, should stay within defined boundaries.
Once exceeding it, the agent obtains a negative reward. In a similar way, the other sensors
can be mapped with the reward.

It is important to mention that the reward shaping is an intensive research topic, as
the relation with a reward obtained is directly influencing the performance of the agents
policy. If a reward is too high, then the agent will next time most likely use the same action
in a given state. If the reward is too low, then the agent will probably choose a different
action next time visiting the state. This is typical across all RL algorithms, thus it is very
important to define a good reward function.

In this section we will propose three reward function designs plus so-called terminal
conditions for an agent, which determine the end of an episode. For example when the
agent’s vehicle crashes, or goes in a wrong direction, this action will lead to a high negative
reward, thus will terminate the agent’s episode. These terminal conditions are defined in
a Table 3.3 below. All reward functions defined in this section will then be empirically
evaluated, measured in terms of performance metrics and comprehensively discussed.

If an agent learns a good policy and none of the terminal conditions occur, then the
termination of an episode will happen after 1600 time-steps or less, depending on the type
of experiment. These values were empirically measured. A well trained agent, for most of
the tracks, was able to drive 3 continuous laps before an end of the episode.

43

Event Reward Terminal
collision -100 yes
out of track -70 yes
stopped moving -1 no
driving backward -80 yes
progress too small -10 no

Table 3.3: The proposed terminal conditions and their penalty values, where some of them
also end an episode.

During the early experiments, it was found that in order for the agent to explore the
environment as much as possible, especially during the initial episodes, it was better that not
all the terminal conditions mentioned should lead to an end of the episode. Otherwise the
results were quite poor and the agent’s episode was on average only a few time-steps long.
That meant the agent only knew the beginning of the track, thus was prone to overfitting
on that part. Later when it discovered further parts of the track, it was unable to overcome
such an overfitting, which resulted in a poor policy, incapable of further learning.

Now we will propose the first continuous reward function used during our experiments,
this one is based on Wang et. al. [45] and [10] It is defined as:

ℛ1 = SpeedX× cos(𝜙)− SpeedX× sin(𝜙)− SpeedX× TrackPos (3.1)
It is defined by considering the maximization of longitudinal velocity SpeedX× 𝑐𝑜𝑠(𝜙),

minimization of lateral velocity SpeedX × 𝑠𝑖𝑛(𝜙) and to maintain the agent in the center
of the track. Thus any movement in the lateral direction is then considered as undesirable
and has a negative effect on the reward. This is also supported by the third term of the
reward function, the TrackPos sensor. The first two terms of the equation can be easily
derived by using trigonometry, where the direction of the vehicle and the direction of the
road are two sides of a right-angled triangle. This is also the most used reward function
during our experiments. [24] [17] [33]

cos(𝜙) =
Longitude
SpeedX

Longitude = cos(𝜙) SpeedX

and subsequently:

sin(𝜙) =
Latitude
SpeedX

Latitude = sin(𝜙) SpeedX

(3.2)

The second reward function mentioned is from [13]. The value of the TrackPos sensor
is used as well, but this time it is subtracted from the angle 𝑐𝑜𝑠(𝜙) and then the result is
weighed by the SpeedX sensor value.

ℛ2 = SpeedX×(cos(𝜙)− TrackPos) (3.3)
There is also third reward function proposed, but it is only used in experiments com-

paring the overall capability of the agent to learn a successful policy with each reward
functions. That is, measuring the effect of the reward function on the learning process of
an agent. It is defined as follows: [13]

44

ℛ3 = SpeedX
(︂

cos𝜙− 1

1 + 𝑒−4(|TrackPos|−0.5𝑟𝑤)

)︂
(3.4)

It is a smooth reward, penalizing lateral distance with a sigmoid function. Where the
𝑟𝑤 term is the road width. [13]

It is obvious that these reward functions have direct influence on the lateral and longi-
tudinal guidance of a vehicle, but the terminal conditions specified in Table 3.3 are of the
same importance. Especially the amount of penalty with which the agent is ”awarded“. If
any of them is too low, the agent would not stop doing such actions, contrary if the value
is too high, the agent would not learn a good policy, as its overall reward would be high
negative value, suggesting the whole episode was bad. Also the termination of an episode
of each terminal condition had to be empirically studied, so the agent would explore the
environment enough and was not cut off too early. This happened especially with the

”progress too small“ penalty.

3.2.4 Performance metrics

When we take a look at the RL algorithm’s learning process, it is supposed that the policy
continuously improves over a period of several episodes, with respect to the return value. It
is expected that during the first phase of the learning process, the policy won’t be good and
the agent will have problems with controls of the vehicle and would mostly only explore the
environment. Later, after enough exploration is done, the agent continuously adjusts its
internal parameters, shifting into the exploitation phase. During that period it improves its
policy, lowering the entropy for its actions, thus making noticeable progress. This process
continues until it possibly reaches a high return yielding policy, in terms of the driving
capabilities of the agent.

In order to find a suitable performance metrics for checking the quality of an RL agent,
learning the task of autonomous driving, or more specifically the lateral and longitudinal
guidance of a vehicle, literature was studied for the most common ones. Here are the three
most common metrics listed: [24] [17] [33]

• Total return achieved by the agent controlled vehicle per episode.

• Distance reached by the agent controlled vehicle per episode.

• Average speed of the agent controlled vehicle per episode.

In the literature also the performance of a human driver is sometimes considered and
compared with the result of the RL agent. This comparison might be interesting to see, but
due to the settings of the experiments it is not really the main objective of investigation.

It is easy to deduce that these metrics will improve over the time, as the agent’s policy
gets better and better, and explores the state space more and more. Depending on the
setup of specific experiments, the training period will be between 600 to 3000 episodes in
length. These were empirically measured and mostly manually stopped after reviewing the
results, as due to the behavior specifics of the RL optimization it would not be correct to
use approaches from supervised learning in the form of early-stopping. The early-stopping
method is used to finish the training before the agent seems to be over-fitted, so typically

45

when some metric, usually accuracy reaches a specific level. The RL optimization is usually
oscillating within a range of values, so no strict limit for a metric should be used, as the
same performance level is usually reached later again.

In order to be able to evaluate the metrics properly, another condition has to be met.
We need to propose a type of reference frame within which we can compare two learned
agents. Two agents can have the same total return, but this does not mean that they
behave the same or that they are of the same quality. One can be able to successfully and
repeatedly drive to the half of the track in a high speed and without any collision, whereas
the other one can for example for the first time finish a whole lap, but in a slow speed or
with many accidents. For these reasons the agent will have the necessary condition to at
least once finish a complete lap of the racing track. This would then serve as a reference
frame for further interpretation of an agent’s learned and measured performance.

One other metric suitable for the PPO algorithm can also be the entropy of its policy. A
policy has a maximal entropy when all policies are equally likely and minimal when one of
the action’s probability of the policy is dominant. So entropy metric is used as an index of

”healthy“ training, where the entropy should be continuously getting towards lower values.
When the entropy is getting higher values, we can deduce that the learning is not advancing
at all, but is actually worsening, suggesting we should stop the experiment and discard its
results. When entropy converges to a certain value and does not improve further, we can
consider the training as finished, as the agent would most probably not improve any more.

Also for the agent to be confidently considered as learned, it also means that the agent
is able to correctly generalize.

The agent’s learning will be performed completely on a single track, mainly E-road and
E-Track 2. For the testing, the performance will be measured on a different, for the agent yet
unknown track. If it is able to correctly generalize, it should immediately get high returns
for the unknown track. In other case, it means that the agent should be kept learning for
a longer period of time or that it was over-fitted. This problem of generalization of RL
agents is also an active area of research. Some techniques from supervised learning can be
used, such as batch normalization or usage of dropout layers within the neural networks.
The performance metrics used for the testing, will be the same as those used during the
learning period.

Luckily, in most of the experiments the agent was not over-fitted for one track, thus the
use of techniques preventing from over-fitting were not necessary.

3.2.5 The Algorithm

The algorithm primarily used in this thesis is the Proximal Policy Optimization (PPO)
2.4.4. Since its policy has an output in continuous action space domain, it is well suited for
the vehicle’s actuators, that are defined over real-valued intervals. We will use them in its
original unchanged form, as it was proposed in the paper. [25] The PPO version with the
clipped objective will be used, in order to avoid calculations of the KL-divergence, which
requires lot of performance for its calculation and thus it is not in our interest to use it
with a relatively low performing hardware, which is also representing the vehicle’s on-board
integrated microprocessor. [38]

The algorithm will use multiple neural networks, depending on the type of experiment.
When dealing with only sensory data, there will be two networks design used, one repre-
senting the policy and outputting the means and variances for actions and the second one
used for outputting the state-value for a given state. When the camera output will be used

46

there will be as well a separate convolutional network extracting features from a vehicle’s
view image. These features will be then concatenated with the other sensory data and
would be fed into the two regular networks for state-value and policy.

One other variant will be also tried, that is to collect a pairs camera output - sensory
data for a given state and in this way create a dataset. The agent for such collection will be
an already trained one, ensuring that the dataset would consist of samples from a complete
race track. Then a separate convolutional network would be trained as a regular neural
network in supervised learning, outputting sensory data for a given camera image. This
trained network would then serve as a ”simulator“ of regular sensors and therefore would
be used as a substitute of them. This sensory output would then be an input into the
regular two networks mentioned in the beginning of this paragraph. In this way, if training
is successful, we could get rid off completely of the sensors, thus relying solely on the camera
output.

That would be especially useful for the RC model, where there would not be a need for
other real sensors to be installed, but the camera. Although it would be a real surprise if
this last mentioned setup would work. Mainly because a learned agent would not struggle in
the initial state of learning, so no weird turns, slow speeds or unpredictable behavior would
be contained within the dataset. Maybe if we plug this learned convolutional network into
an already enough trained agent, trained by only sensory data, then this problem might not
be present. So the complete agent would be firstly trained on sensory data, which would
then be replaced by ”camera output to sensory data“ network, and then fine-tuned. This
approach would then might work.

3.3 Implementation details
In this section we will discuss the implementation details and provide more information
about the technical aspects of experiments and what is used for the collection of exper-
iment’s results and how they will be compared. We will also dive more into the neural
networks architecture and the whole data pipeline from the environment to results.

3.3.1 Algorithm implementation

As a first thing we have tried to implement the PPO algorithm all by our-self. These efforts
were not long after abandoned. It was not possible to implement the algorithm in order to
work even in the slightest form. After that, we have encountered several implementations
available online and from those, three good ones were chosen. After an extensive experi-
mentation where some of them did not even work at a basic tasks from OpenAI Gym, so
the simplest one working was chosen. That could now be declared as our baseline imple-
mentation. Surely, it did not meet our requirements in terms of quality of results at basic
OpenAI Gym environment tasks, nor the ”readiness“ for our experiments with TORCS
environment, but at least it worked - meaning the agent was getting better during the
learning sessions. Such an implementation was then hugely changed and improved.

One of the main changes was the support for not equally long episodes, which does not
seem as much, but it is crucial for our task. As the agent while driving can crash at the first
corner and the waiting till the end of an episode would be meaningless, but also would waste
our computational resources. The only requirement for the length of an episode is, that it
has to be bigger than our batch size. Which for most of the experiments was empirically

47

discovered and set to 32. It is due to the style of training of the neural network. This will
be also elaborated more later in the text.

The next quite important improvement was the possibility to use both numerical values
from sensors and also the images from vehicle’s camera, both separately and at the same
time. Not forgetting to mention the possibility of using the convolutional neural network
for generation of sensory data.

Also the possibility of pre-training or fine-tuning a model from previous runs. The
implementation is fully customizable through a configuration file, where all the hyper-
parameters of PPO algorithm, the neural networks, as well as the type of experiment,
architectures, including the settings of TORCS environment can be easily set before each
experiment. Also from each run multiple metrics and information about the run are saved,
including the source code at that stage of time and models of an agent at different phases
of the training session. This is done by an open-source platform called MLflow [27]. Which
can then also be used for comparison of individual runs, based on hyper-parameters or
specific metrics and can be viewed through a web browser.

MLflow

The MLFlow platform runs on a localhost, where it creates a server which serves as the
machine learning tool for gathering experiment’s data as well as the tool for management
and comparison of the different experiments. The MLflow also enables the user to watch
all the statistics and metrics of an experiment run in real-time, as it plots new data every
10 seconds. This is especially useful when some of the runs are going poorly in terms of
performance, so the user is able to easily see and analyze the data and eventually finish
the experiment prematurely. This saves a lot of time during the experimental phase of the
project. MLflow also allows for addition of description of each experiment, so the user can
comment with specific insights that he encountered during the run. This then helps during
the evaluation part, as remembering hundreds of runs is not in a human capabilities.

The MLflow offers three main methods that take care about the collection of data from
an experiment.

mlflow.log_param() logs a single key-value param in the currently active run
mlflow.log_metric() logs a single key-value metric
mlflow.log_artifact() logs a local file or directory as an artifact

The names of the methods are quite a self-explanatory, but in short we can mention their
use in this work. With the mlflow.log_param(), we were collecting typically before the
experiment had started, all the hyper-parameters or other special values, that had an impor-
tance and were fixed-values, totalling around 36 values. With the mlflow.log_metric(),
we were collecting all the changeable values, such as the metrics: rewards, returns, average
speed, distance raced, entropy, neural network loss and more. Totally around 22 metrics
were tracked during each experiment. Lastly with the mlflow.log_artifact() method,
we were collecting the source code of each run, this was especially helpful during the initial
testing of the functionality of the algorithm and the whole experiment pipeline. Also the
configuration file was saved this way, because not all parameters were saved directly. Also
the neural network’s models were periodically saved by it.

48

Figure 3.5: Mlflow - screenshot of the web application user interface/ Left: overview of
available finished and running experiments. Right: detail of a comparison of multiple
experiments on a return metric

Lastly, within the Mlflow UI, the graphs can be easily viewed and compared across the
runs and more importantly, these can be then saved in a form of an image, thus removing
the need of usage of third-party graph plotting library, e.g. matplotlib for Python. But if
needed, all the collected metrics are saved in an csv file, thus it can be used for further
processing or serve as an input into some other plotting tool or custom code.

3.3.2 Neural network architectures

In the subsection 3.2.5, we have already briefly introduced the neural network setup, which
we will further discuss here.

As it was mentioned in subsection 2.3.4, modern Deep RL algorithm uses as the func-
tion approximator a neural network. Here we should introduce the architectures of our
networks used in this thesis. The PPO algorithm is an actor-critic method, where each of
the components needs a neural network, the actor for outputting the mean and variance
for a Normal distribution of agent’s actions and the critic for outputting the estimated
state-value function value.

Regular Architecture (sensors)

In the chapter discussing experiments we will briefly show results of experiments targeting
the depth and number of neurons within these two networks. When working architecture
was found, it was kept unmodified for the rest of the experiments. Such an architecture is
visualized on a Figure 3.6. This is also the setup where the input vector is only consisting
of sensory data, more specifically in this case the track sensor and speedX, the speed in
forward direction. In the experiments this architecture will be refereed to as the Regular
Architecture setup. The networks have two hidden fully-connected layers, these are simple
networks, which use as an activation the ReLU, only difference is the last layer of Actor
network, where in order to ensure correct interval of the actions, the hyperbolic-tangent
activation is used. The intentions behind the use of such a small networks is mainly the
speed of processing and the fact that these network work only over numerical values, few
inputs from sensors and only two outputs for actions, the architecture does not have to
be anything more complicated. Empirically the 512 neurons within the hidden layers were
working great with low processing times, so there was no need for changing it to even bigger
architectures. On the contrary, smaller networks (64, 128 and 256 neurons in hidden layers)

49

worked sometimes even better than bigger ones. The other options that were tried was just
1 hidden layer. It was shown that these sizes are not enough for the agent to learn a good
policy.

Figure 3.6: 5 The architecture of the Actor-Critic network, which uses sensory data as an
input.

ConvNet Architecture (sensors + camera)

As a next architecture, we will also use the camera output, that is, we will need some
convolutional layers inside our network topology. This architecture will be later refereed
as ConvNet Architecture. It consists of convolutional layers, as well as pooling layers, for
decreasing the image resolution. As an output from the convolutional network will be 1D
features vector that will be concatenated with regular sensory data and then would be fed
into the Actor-Critic networks. The architecture of these networks will be the same as in
case of the Regular Architecture setup. In a more detail the architecture can be seen on a
Figure 3.7.

There was as well experimented with different number and types of layers, but these
experiments were not as comprehensive as in the case of Actor-Critic networks. It is because
this thesis is mainly about Reinforcement Learning and the PPO state-of-the-art algorithm
and its performance and possible applications, and not that much about convolutional
neural networks and finding of its perfectly working topology. There are other papers
focused solely on that topic. We experimented with 7 possible CNN architectures, but
when a functioning one was found, it was kept for the rest of the experiments.

This is also supported by the fact, that the limitations of the TORCS environment,
allow for the input image to be maximally 64x64x3, which is a relatively small size in
comparison with modern CNN’s capabilities, which can operate on a much higher input
image resolutions. Where the amount of data calls for a careful and more sophisticated
design of the network’s architecture. The presented CNN architecture takes the input
image and continuously lowers the image resolution, so that it can learn specific features
within the image. It goes from 3 input channels, representing the RGB channels into
the final 24 channels, where each of them should learn a specific detail, such as the lane
lines, and the position of the vehicle itself. Then these feature maps are squeezed into
fully-connected layers, which should dense the knowledge from an image, resulting in an

50

feature vector output, that is then concatenated with the normalized sensor vector from
the TORCS environment. This resulting vector is then fed into the Actor-Critic networks.

Figure 3.7: Scheme of the CNN features vector creation, concatenated with sensor vector,
which is then fed to the Actor-Critic network architecture

The version of architecture, where only camera output is used, that is without the
sensory data from the TORCS was also tried, but this approach seemed as a dead end. It
was not possible to train such a network enough, so that the agent would have any significant
progress. After few experiments, this approach was abandoned and was substituted by this
combined architecture, where sensors and camera image work together as an input for the
PPO agent.

Input image

During the experiments only with camera sensor, few adjustments were tried, in hope of
achieving some better results. The idea behind these adjustments was the agent’s inability
to recognize a vehicle’s motion from a single image. That is, same camera output can be
produced by a vehicle driving at high speed, but also by a vehicle being completely stopped
and without movement. The lack of such information in the agent’s input should play a
great role in its resulting poor performance. For that matter, three different adjustments
of the input image for ConvNet networks were proposed. These ideas are based on a paper
[18].

First one, simply concatenates a camera output from a previous state, that is, we are
saving previous state image into a buffer. This image is then concatenated to the current
one. This way the ConvNet gets the necessary information about the motion of a vehicle.

Although, the network gets twice as much data as in the case of a single image input,
these data are mostly the same. Meaning, great part of these two images is the same, as
the vehicle does not travel great distance between two states, so that the image difference
would be great as well. This leads to some level of redundancy in the network’s input.

The other approach tries to deal with this issue, but not all the way. We propose
an absolute difference image input. That is, image from current state is subtracted from
the previous state’s image. This subtraction is then put into absolute value, so every
pixel is bounded in the interval ⟨0; 255⟩ (before normalization). This approach reduces the
redundancy of the data, but also removes great portion of the information that can be
squeezed out of it by the ConvNet network. It also does not change the input dimension,
as the input stays at 64× 64× 3, as a regular camera output image. [14]

51

To address this, third and last adjustment is proposed, and can be easily deduced by
the two already mentioned adjustments. That is, merging together those two ideas. To
a standard camera output, we concatenate an absolute difference image (current state -
previous state). This way the network gets the standard data from the regular image, but
also the information about vehicle’s motion from the absolute difference image. Although
the input resolution grows in size (64×128×3) by this, the amount of data in the absolute
difference image is mostly none. As most of the same image features are canceled out, and
only the difference caused by the vehicle’s motion is kept.

With these three proposed adjustments was experimented as well, and the results will
be discussed in more depth in the next chapter.

Figure 3.8: Example of the regular camera images of dimension 64x64x3 pixels

If we get back to the different network architectures, the last one that will be mentioned
here, tries to focus on the problem of the agent’s inability to solely rely on the camera image
data as well, but from a different perspective than the manipulation of the input image.
The architecture and setup is a bit more complicated that the two previous architectures,
but has the most promising results in terms of real-world application.

Hybrid architecture (camera to sensors)

The problem that we are trying to solve by this setup is, that the sensory data, mainly
the track sensor is just too specific and too much relies on the TORCS environment. The
goal of this setup is, that only the camera output will be enough for the agent to learn
a good policy. The real camera sensors are cheap and easy to operate in the real-world
environment, whereas specific sensors will be not only more expensive, but also quite hard
to install in the same manner as they are in the TORCS. Meaning the 19-values long track
sensor as the agent’s low-res LIDAR/radar sensor, in the field of view of -45 deg to 45 deg,
is much more complicated to recreate on the RC model. Whereas install one camera sensor
to a correct position on the car is much easier.

If we consider the facts, that the agent could not learn just from the image data, but
was quite easily learned from sensory data, then the idea of merging these two approaches
arises. This Hybrid architecture, as we will be calling it, is trying to achieve just that.
We will now introduce this architecture’s setup. Few diagrams will be needed for better
understanding of the attempted setup.

52

Figure 3.9 shows how a regular agent is learned through only sensory data. From the di-
mensions of objects coming from TORCS environment, we can easily deduce, that 3x64x64
object is the camera output and the 1x20 object is the sensor vector, both depicted in a
blue color. The camera output is not used in this learning setup. The process was already
described in Regular Architecture, so we just summarize it quickly here. TORCS environ-
ment outputs the state, consisting from sensory and camera data, the sensory data are
normalized and are fed into the Actor-Critic networks, which produce state-value estima-
tion and mean and variance for agent’s actions. These trajectory data go after each episode
to the PPO algorithm which in an iterative process continuously learns an agent. It does
it in a way that it samples actions which maximize the agent’s expected returns. Every
single sampled action goes back to the TORCS environment, resulting in the agent’s vehicle
moving. When the agent’s policy converges to a certain state, we consider our agent as
learned.

Figure 3.9: Phase one - the learning process of the agent, using only the sensory data.
Complete standard interaction loop, used in big portion of the experiments

This learned agent is then used in a different setup, where we collect a dataset - sensory
vector and camera output pairs. Since the agent is learned, it should have no problem of
achieving great distances on the track, resulting in a few complete laps driven on the track.
This way we collect a dataset consisting uniformly of different parts of the track. If we
have used an unlearned agent, or we collected the pairs during training, we would most
likely have a big amount of samples from the first few meters of the track and only a small
percentage would be from later parts of the track. Which is not optimal. This approach
was tried and empirically was found that the agent could learn how to drive in the first
small part of the track, but was unable to understand the rest of the track. The mentioned
approach of using already learned agent fixes the problem.

When a dataset of satisfactory length is collected, we can start a second phase of this
Hybrid architecture setup. A separate convolutional neural network will be trained in
a supervised-learning manner. We will feed the camera output into the CNN and as a
ground truth will serve the sensory data from the pairs, collected before. The CNN will
produce prediction of the very same sensory data. This is quite a standard task for the
supervised learning. As the loss function was used the Mean Square Error metric, Adam as
the optimizer and learning rate of 0.001. This setup is also pretty standard as well. This
whole supervised learning process is depicted on a Figure 3.10 below. It includes also the

53

dataset collection from the trained agent and as an output of the process the trained CNN
model is showed.

Figure 3.10: Phase two - the dataset collection and CNN learning process

Here on a next Figure 3.11 the details of the CNN used is shown. It is the same network
architecture as in the ConvNet architecture setup. The only difference is the dimension of
the output vector, where in the ConvNet setup, the network outputs a features vector
of 120 floating-point numbers. Here, the vector consists of 20 normalized floating point
numbers, representing the sensory values. One other architecture was tried as well, but the
performance was quite similar. So this Figure serves rather for illustration purposes, as the
architecture of the network for supervised-learning is not that important in the context of
this thesis. That is also why the description of this phase is not as detailed as one might
anticipate.

Figure 3.11: Detail of the CNN architecture for the supervised-learning task (prediction of
sensors from a camera image)

In the last phase of this Hybrid architecture, we will use the learned CNN model and
the learned agent. They will work together in the process of autonomous driving task
within TORCS environment. The setup is now quite easy to understand. The TORCS
environment provides a state as usual, consisting of camera output and sensory data. The
sensory data are not used - which is also our goal in this approach. The camera output is fed
into the trained CNN model, which should output the predicted sensory values. It has the
same dimensions as the trained agent needs and was initially trained on. The agent takes
this predicted sensory data and it should output correct action, in order to achieve high
returns. This action is then again fed into the TORCS. This also finishes the interaction
loop. The Figure 3.12 shows the last phase complete loop of the processing.

54

Figure 3.12: Phase 3 - complete loop of trained CNN model and trained agent model

This agent can potentially be trained for a short period of time, in order to get used to
the new sensory data - as they will not be 100% the same as the sensory data outputted
from the TORCS environment itself. We can also help the agent with this. There are
two approaches that were tried in order to successfully transfer the agent from real sensors
to the predicted ones by the CNN. First one, the agent during the first phase, would be
learned on a sensory data, which were artificially changed. The use of Gaussian noise can
be mentioned as an example. The other approach is, that the image output, during the
dataset collection phase could be altered as well. The use of Gaussian blur can be used.
These two approaches should ensure, that both the CNN model and the agent should be
able to better generalize. Thus both models won’t be affected as much by slight differences
in the training and validation data. The validation data in this case the sensory data
generated by the setup depicted on the Figure 3.12. This also represents the final agent,
ready for evaluation, experiments and for testing its ability to correctly generalize on yet
unknown race tracks.

With this we finish the description of neural network architectures used throughout the
thesis. Last thing remaining for the introduction is the Cloud architecture, which is more
likely an abstract term and describes the simulation of communication and artificial noise
applied to the sensory and action data.

3.3.3 Cloud architecture

The Cloud architecture will be part of the experiments, where our main goal is to simulate
real-world conditions, where the learning is happening on separate hardware from where the
vehicle control hardware is located. Precisely, the RC model only receives the commands
for its control of movement, but the learning and processing happens on the server, or in
the cloud. These two entities then communicate wirelessly via the UDP network protocol.

These real-world conditions then consist of network packet loss, communication delay,
and noisy sensory and action data. In this approach, no additional network architectures
are introduced; the only difference is in the data preparation. The data then serve as the
input for our agent (state), or input for the TORCS environment (action). Although three
approaches are mentioned, only two of them were actually done. The one that was not is
the communication delay.

Unfortunately, the TORCS environment works with discrete time and the agent has a
20ms window for the control commands to be sent. During that window, as the time of

55

simulation is discrete, the environment is not acting but is waiting for the agent’s control
commands. When the agent misses the window, next discrete step is performed. Thus
any delay greater than the length of a window acts as a sort of packet loss, which we do
differently, and any delay smaller than the window, results in TORCS environment not
noticing any delay at all. This is why the communication delay was not implemented and
therefore was not experimented with. Instead it belongs to the category of packet loss,
which we have done.

Network packet loss

To simulate the network packet loss, the standard Normal distribution is used, which rep-
resents the natural randomness of such an event occurring. It can be arbitrarily set, but
for most of the experiments this value was set to 5% of the distribution’s value interval.
So in other words if the random value sampled from Gaussian distribution with mean 0
and variance 1 is less than lower 5-percentile boundary, the event is triggered. In this case
the packet is lost. The lower 5-percentile boundary is in standard Normal distribution at
around −1.64. As it has been described above, the TORCS has the timeout for agent’s
response, as it is discrete time simulation, we ”zero“ the data within the packet. This data
then carry no information, but for the continuity of the optimization they are still being
send to the other side. This is done in both directions. From an ”agent to TORCS“ in
packet carrying action values, and for direction ”TORCS to agent“ in packet containing
sensory data - the perceived state. In the case of multiple sensors or camera output, the
complete data information is zeroed. [39]

Sensory noise

In the case of sensory noise, almost the same applies as in the packet loss case. Although
there are notable differences. Again the standard Normal distribution is used for the event
occurrence. The range is the same, 5% of the distribution’s value interval. When this is
satisfied, then there is a 50% probability for each of the sensors to be affected by the noise.
This also applies to the camera output, which is considered as a single sensor. Then, if any
sensor has to be affected by the noise, a noise value is sampled from a Normal distribution
with a 0 mean and a 0.1 variance. Since all the sensory data are normalized, the maximal
noise value can be up to 10% of the sensor’s maximal resolution value. In the case of the
camera image, for each of the pixels, a different noise value is generated and added.[15]
We also did experiments with the 10% probability, to see and compare the differences in
influence on the agent’s performance.

This sums up the implementation details, or more precisely the details about the ex-
perimental setup that was created and focused on.

56

Chapter 4

Experiments and results

In this chapter we will first mention the hardware that was used for the experiments,
next we will briefly remind the different subjects of experiments. This will be followed by
experiments itself and its results will be presented.

4.1 Computational Hardware
All experiments had been done on a laptop machine. The operating system used is a Linux
Ubuntu 18.04 distribution, working on a Linux kernel 4.15.0-175-generic. The machine
runs on Intel Core i5-8250U which is a 4 core, 8 threads processor with peak frequency
at 3.4GHz and is constructed by 14nm technology. Released in 2017. Its performance
is for: Integer Math: 21,201 MOps/sec and for Floating Point Math: 13,018 MOps/sec
[12]. Although the laptop contains a graphics card as well, the NVIDIA GeForce MX150
has in total 384 CUDA Cores, but empirically was shown that the GPU performance is
lower than using the processor itself. CUDA Cores are specifically designed for the use in
Machine Learning, the hardware is specialized in matrix operations, dot product and cross
product mainly. The PyTorch library is CUDA-ready, meaning that in a matter if one
line of code, the programmer can move any variable into the GPU memory, where it can
be further processed by the GPU CUDA cores itself. Since the experiments regarding the
performance and speed of matrix calculations showed that the CPU is faster, for the whole
experimental phase, the main processing unit was the CPU. [30]

Due to the TORCS simulator limitations, it was not possible to train the agent on a
cloud computing service or elsewhere in the cluster. This limitation played its role, espe-
cially during the experiments involving camera output. We tried to tackle the obstructions
immediately from the start by not designing huge CNN architectures that required a lot of
processing power. We focused on smaller architectures, so we were able to train on such a
low-performing hardware, that without a doubt, a 5-year old laptop truly is. Due to the
great number of different experiments, we made the decision that no experiment should be
longer than 14 hours. The median length is around 7 hours for CNN related experiments
and around 4 hours for regular network experiments.

4.2 Subject of experiments
In the Chapter 3, we have already mentioned multiple subjects of experiments and how
they would specifically look like. In this section we will briefly remind them.

57

As a first set of experiments we focused on the setting of the PPO algorithm hyper-
parameters such as the learn rate, mini-batch size, optimal length of an agent’s episode,
number of update iterations and so on.

Next we mentioned the differences in performance in multiple runs of the same experi-
ment and subsequently the issue that we have encountered during experiments containing
camera output and which are directly related to the TORCS implementation limitations.

Then we have discussed the importance of a good initialization of the agent and the
eventual instability of the optimization process, especially related to the experiments with
ConvNet architecture.

Next we compared the different sizes of neural networks used for the actor-critic and how
the affect the agent’s performance. Then we shortly discussed the two most used network
architectures.

For the next set of experiments we reviewed the reward functions and how they affect
an agent’s driving style.

Then we discovered the minimal set of vehicle’s sensors that are necessary in order to
be able to successfully train an agent, and also discussed the effect of different sensors on
the agent’s performance.

As next experiment, we used the Cloud architecture in order to simulate the real world
conditions such as the packet loss and noisy sensory data, which can occur during the
wireless communication between the vehicle and processing hardware in the cloud. These
experiments should also show us the stability of PPO and improve the generalization prop-
erties of the agent.

Next we have showed an example of perfectly trained agent and presented how such
results look like, and also presented an opposite example of the agent that was unable to
learn any successful policy. The inability is then related to experiments with agent relying
only on camera output or camera output and some additional sensors.

Then we showed results of multiple agents regarding the generalization properties and
we talked about the correct time to stop the optimization to prevent overfitting.

As a last set of experiments, we focused on the Hybrid architecture, which is an approach
that we have proposed in this work and which reacts to the reality, that the agent is not able
to learn from only raw camera output. Instead it is able to generate its artificial sensory
data which then uses for as the description of the state within the TORCS environment.

4.3 Experiments
In this section we will introduce the results of all the experiments that had been done, we
also discuss the issues that occurred during the execution of experiments and we provide
deeper understanding why we chose different methods and why we tested various entities
more extensively than others. We first begin with the hyperparameter related experiments.

For every experiment the four performance metrics will be depicted. The main metric
is the returns value, which is sum of the expected return for a given state across whole
episode. The rewards is sum of the rewards across whole episode and average speed and
distance raced are obvious. At all four metrics, higher the value, the better.

Little sidenote to the plots showed throughout this section. Usually the values on an
x-axis mean number of agent’s steps within the environment. On the y-axis, for the returns
and rewards these values are unit-less, in case of average speed it is kilometers per hour
and for distance raced it is meters. At some of the plots, the x-axis is different, and it is

58

the relative time - so it also captures the differences in the time elapsed for each episode.
Later episodes tend to be longer in time than initial ones and this scale allows us to see it.

4.3.1 Hyperparameters

As the example of experiments related to the optimal PPO hyperparameters finding process,
the learning rate related results will be showed. Then we shortly discuss the other hyper-
parameters such as PPO Update, batch size, episode length and we finish with standard
deviation.

Learn rate

Based on the experiments, the learning rate chosen and used for the rest of the experiments
is 0.0001. Although the learning process takes more time than for the other higher learning
rates, we can clearly see that with a lower learning rate the optimization is much more stable,
without unexpected drops in performance and with steady continuous improvements. It
also makes more sense, as RL algorithms in general are susceptible to ”over-step“ the ideal
policy value, and also with a really small step a bit further than is optimal in the policy
search space, it can result in a completely differently acting policy, which is most of the times
much worse. Although PPO’s objective function tries to counteract this, by ”undoing“ the
previously made bad decisions, but it is not enough in the case of higher learning rates.
This can be also seen on the plots, where we can see a sudden drops in performances for
learning rates 0.0003 (orange) and 0.0005 (green).

Contrary, the learning rate 0.0002 acts during most of the optimization process pretty
poorly, suggesting the policy is ”over-stepping“ too, but continuously, thus not achieving
good results. This behavior can be also explained by bad initialization of the networks
weights or other initialization variables. This will be showed on a next experiment, how
initialization is often quite important for the agent’s learning process. We will see multiple
runs of the same experiment setup, most of the time with similar results, but some of them
will perform very poorly.

From the entropy graph, we can see that the highest learning rate has also the steepest
slope, so the policy quickly converges to a certain certainty of its actions, but that includes
the unpredictable behavior in terms of performance. Empirically, at entropy around -1.6
is the agent’s best performance for a given track, but we usually stopped around -0.3, as
it has showed that best performance on a training track implies a subtle overfitting of the
agent, thus performing poorly on other tracks. The entropy decrease of learning rate 0.0001
is the slowest, but continuous and mostly we can be pretty sure, that there are not going
to be any significant drops in performance during the training.

59

Figure 4.1: Experiment 1 - Finding of optimal learning rate value

If we focus on other hyperparameters regarding PPO algorithm or the optimization
setup, we also experimented with few others. Mostly the hyperparameters related purely
to PPO were set to the same values as they were mentioned in the PPO article [38].

PPO Update

For example the PPO Updates is a parameter that specifies how many updates of the actor-
critic networks are performed at one PPO iteration. Higher values than 20 caused the agent
to almost no training at all, whereas lower values caused the optimization to be too slow.
The 20 updates per iteration was a sweet spot. The agent is still able to train well, but
the training is not that time-consuming. One other reason is, that the PPO is an online
algorithm, meaning it is directly learning from the agent’s current episode trajectory. So in
general it is not very sample efficient algorithm. But we can at least help it in this way and
increase the number of PPO Updates. In the paper the value is set from 3 to 15 updates,

60

depending on the specific learning task. Although we run the agent within a simulation,
we still should not ”waste“ agent’s episode trajectories too extensively.

Batch size

Next focus of the experiments was the mini-batch size. In the paper, they use between 64
to 4096 samples within a single batch. Due to the implementation of our PPO algorithm
and due to the nature of the TORCS environment, we were limited in terms of the variable
mini-batch size. The size 32 was empirically chosen, based on the speed of the update
but also because of the necessary minimal length of an episode. Too small and the update
would take too much time, too high and the minimal length of the episode would have to
be increased as well. If we imagine that the agent crashes after few time-steps, especially
during the initial learning, the episode could not have been terminated and the agent would
have to stay in the simulation until the time-steps reach the minimal episode length, while
being crashed and not doing anything useful. Then the mini-batch samples would be full
of useless data, where the agent does not move, resulting in almost no learning progress, or
even degradation of achieved policy performance.

Episode length

Last hyperparameter we focused on, is the maximal episode length. Again, empirically was
set to 1600 time-steps. The reasoning behind this value is, that the agent is able to explore
the environment for longer, which is really helpful during the first quarter of the learning
period. That is the phase where the agent is able drive, but is driving at a low speed.
The higher episode length then supports the exploration of the environment, so the agent
can get further on the track, thus discovering new, yet unknown profile of the track (new
curves, straights, etc). Experiments were done with 350, 768 and 1280 time-steps, which
were all too low. Contrary, the 2000 was already too high, as the optimization took too
much time, and the issue of sparse reward was taking an effect. If we consider that at most
of the tracks, the 350 time-steps were for a pretty well trained agent enough to circle one
full lap. On average 1600 time-steps allow the trained agent to drive 3 full laps. The agent
usually reaches the maximal episode length right from the start and then at last third of
the optimization period, when it is already trained quite well, but is polishing its skills.
E.g. tries higher speeds, perfects the turning into the curves, etc, as a result increasing its
total distance raced and lowering the lap time.

Standard deviation

To also support the exploration of the environment the standard deviation of the action’s
probability distribution was set to 0.1, so the agent tries little different actions each time
when it appears at the same state. This shows also in the evaluation test of the agent,
that no two runs are the same. This is different than with the deterministic RL algorithms,
which always use the same action, every time they appear at a given state.

In the table below we can find listed hyperparameters with its values, which, once were
found, were used throughout the rest of the experiments 4.1.

61

Critic Discount 0.5 Learn Rate 0.0001
Entropy Beta 0.001 Mini-Batch Size 32
Epsilon 0.2 PPO Updates 20
GAE Lambda 0.95 Episode Steps 1600
Gamma 0.99 Std. dev. action 0.1

Table 4.1: Table of default PPO hyper-parameter values

4.3.2 Differences in performance

The next experiment is just for illustration. It is not exactly an experiment, but it is worth
mentioning, that the role of good initialization is sometimes crucial for the agent. On a
Figure 4.2 we can see 7 runs of the identical experiment. Although the differences are not
that great, they can still be seen. Especially the run nn4, which has the worst results.
Considering that at the same stage of optimization two different runs with same initial
conditions can differ in more than 4km in driven distance, or one can have almost double
the return, it is significant. So during the experiments it was to us to decide whether each
run should be kept running or if it was better to terminate it prematurely. Also the spread
of all the runs is quite large.

On other note, it can be noticed certain similarities between some of the graphs. Es-
pecially between the distance raced and the total reward. From that we can assume that
main part of the agent’s high reward is the distance that the agent traveled. On the other
hand, if we compare the average speed and returns achieved by the agent, they are also
similar. This behavior repeats in other experiments as well. Here it is just nicely shown,
on multiple runs at the same time. We can deduce that the overall reward is dependent
on the distance, whereas the quality of every state is mostly based on the vehicle’s current
velocity in that state.

Little side note, just for reference we have showed also the plot of agent’s lap time. The
times are not in simulation time, but in real-time. They consist also of the time taken for
the machine to run the code, but the time is without the PPO update, only the episode
simulation. As the computation time is the same for every run, and the version of the code
was the same, we can state that the measured time and the lap time, can be interchanged
and used for rough measurement of each agent’s performance.

These runs were based on the ConvNet architecture, so that the agent uses the sensors,
in this case speed, track and the camera output, which are together concatenated into
one feature vector which is the fed into the actor-critic network. The camera output is the
version with one single image, without further adjustments. As we can see, although the
results are not that amazing, they can still be considered as good.

ConvNet architecture issue

There were huge amount of experiments done in the similar manner, meaning with the
ConvNet architecture. The unfortunate is, that all these experiments could not be used
for this thesis. There was found an issue in the late stage of experiments, regarding the
camera output. The TORCS simulator does not include the camera sensor as the ”official“
sensor, based on the TORCS Manual [25]. Although the implementation consisted of such
a sensor, its usage was very limited. We made it possible to use it in cooperation with the
official sensors, as opposing the base TORCS implementation, where the user could choose
either he wants to use sensors or the camera sensor.

62

The unfortunate is, that in order to speed up the experiments, we increased the TORCS
simulation speed, from 4x to 100x. We continuously tried higher speeds 8, 16, 32 and then
we have reached the 100x speed-up. Everything seemed normal so we continued in all the
experiments. Although it had been tried and tested before in low speeds, that the camera
output works well. The images from it were multiple times saved and reviewed. But this
all happened at low simulation speeds. The problem was, that once the simulation speed
reached e.g. 8x the normal speed, the simulation window with the vehicle’s view froze.
During that time it was assumed that the laptop, where the experiments were done, simply
does not have the performance for the simulation to show continuous simulation picture and
also that the 100x speed is just too fast for the TORCS to visualize it properly. Plus all the
sensors were working properly and the agents during experiments were learning successfully.
In fact the camera was outputting only the picture that could be seen in the simulation
window. So when the window froze, as well the camera output for the agent’s convolutional
networks froze. Meaning, the network was getting as the input during the whole simulation
period the same image. So the agent was basically learning just from the working sensors
and the camera data were only useless data, that it had received every time-step throughout
each episode and subsequently each experiment which used the camera output.

63

Figure 4.2: Experiment 2 - Initialization, 7 runs of the same experiment (with ConvNet
architecture issue)

This was found during the preparation of the last architecture’s experiments, where
we tried to learn separate convolutional neural network to predict sensor values from the
camera image. The architecture is referred as Hybrid architecture in the theory section
3.3.2. As we have trained the network from a collected dataset on the Google Colab, for
faster learning, the dataset was inspected. Only then we were able to recognize this issue,
so good amount of the previous experiments had to be scrapped, including the experiments
showed in this section on Figure 4.2, which is discussing the initialization and differences
in same setup experiment runs.

It is important to note, that although the PPO had most of the input data with zero
information value, it was still able to learn the agent quite well. We can consider the camera
data as a great noise experiment, considering that the features vector which was in these
experiments created by the convolutional neural network, was of length 120 floats and the
useful sensory data were only 20 floats. That is 85% of the input data for the actor-critic

64

network. This also shows the power of the PPO algorithm, that is able to learn from such a
noisy input. Although experiments, which were done in regards to the input/output noise
conditions but were done on purpose, are discussed later, when we experiment with the
Cloud architecture.

4.3.3 Initialization and Instability

This experiment continues with the ConvNet models, discussed above, but this time we
use the camera image adjustment in a form of absolute image difference. The Figure 4.3
then shows the impact of a really bad initialization. It is even more severe than in the last
mentioned experiment. Here we can clearly see, that sometimes the agent just picks up
a poor behavior right from the start, possibly caused by the poor initialization and poor
selection of actions in the initial phase of the learning. For the comparison the blue and
red runs, which behave quite well, had no real struggle to continuously obtain better and
better policy, even though the red run had the Cloud architecture - which we can consider
as a type of additional obstacles for the agent.

Which is the simulation of packet loss and sensory noise both for sensors and for the
camera image. So technically it should learn slower and possibly achieve poorer policy
in general, though with better generalization properties. The orange and green run, both
show what bad initialization does to the agent’s performance, but in a slightly different
way. The green run just started with poor policy but eventually started to get better and if
the optimization lasted longer, it might recovered completely. Whereas the orange run, just
picked up poor policy right from the start, with no clear signs of improvement. It appears
that it achieved some local optima and was unable to recover from it. In these cases it is
better for us to prematurely terminate such a run and start over. Visually, such runs most
of the time behave in a way that right from the start of an episode agents start turning and
go immediately to the area outside of the road and crash to the barrier or do not move at
all, usually use only the break actuator.

65

Figure 4.3: Experiment 3 - initialization and instability during optimization

It was also shown that usually a good agent starts with a medium slow speed, and in a
few initial episodes continues in a forward direction, exploring the most of the track ahead
of him. Usually runs, that start very slow, do not move forward at all, tend to take longer
and sometimes are not able to achieve such results, as the medium speed runs. They usually
tend to learn the forward motion, but then turn and go outside of the track, and that is
the most they can pick up during the learning.

The other topic is the instability of an agent. That is the behavior when the agent picks
up a good policy, or is on its way to achieve a good policy, continuously is improving its
results, but unexpectedly its performance drops a lot. That can be seen on a Figure 4.4.
This run, started just normally, already picking a good habits, thus getting higher returns,
but at around 2.5k return and 50k time-steps its performance dropped dramatically to way
below zero return value. This agent at that stage of training visually behaves, just like the
orange or green one from Figure 4.3. That is the agent is unable to even drive forward, and
if it does, it goes straight to the barrier outside of the track. The difference is, that this
time, the agent had already picked up some good behavior in its policy, but is temporarily
unable to use it. It was not discovered why this happens, but this behavior was already
seen during other experiments. Usually such an agent recovers from this drop in a matter of
multiple episodes, in this example we can see that it took the agent around 25k time-steps,
which is a lot of episodes, to recover from it, but it did it successfully. Then the agent
is in a matter of one episode, when it managed to somehow pick up the already learned
behavior, able to drive through the track and not crashing in a first few time-steps. As a
result it immediately achieves the same returns as it have before the drop of performance.

66

Figure 4.4: Experiment 4 - instability during optimization (ConvNet architecture)

This behavior happened mostly during the ConvNet architecture experiments, so it can
be related to the camera output issue already discussed. It is possible that suddenly the
camera output had changed, meaning the agent was not ready for it, thus good part of its
input data got changed and it took some time to adjust to that change of input data. That
is one of the possible explanations of such a behavior. Also we can see at this particular
run, that the same happened just around the 300k time-step. Although that time the
agent was not able to recover from such a drop. This also happened multiple times, usually
when the agent got to its highest peak performance and stayed there for a while. Then
immediately lost all of its achieved performance. This behavior was more probable at agents
with bigger networks architectures and for example agents with 128 neurons in its hidden
layers did not suffer from such a behavior. So one explanation can be, when the agent
gets well trained, and cannot anymore increase its performance in a way that it achieves
higher returns, drives more distance or has higher average speed, it just starts exploring
other possible ”improvements“ of its behavior, which result in a sudden drop to below zero
returns performance. That is the probable explanation of such a behavior. So in order to
avoid these, we periodically saved the agent’s model, thus when such a drop happened, we
could take the last well-behaving model of an agent from the saved models. Usually, when
we tried and continued to train such a saved model, the almost same drop happened again,
sometimes it was sooner, sometimes later, compared to the original run, but the drop was
still present. Also these agents are often not very good in terms of generalization, they tend
to perform well on the track that they were trained on, but usually are not that great on
other tracks. In comparison with other models that did quite well on the training track, but
far from perfect, usually performed much better on new yet unknown tracks, thus better
generalized.

4.3.4 Comparison of network sizes

As a next experiment we have tried to focus on the optimal size of neural networks used for
the actor-critic. Our goal was to find a size and topology of the networks that work best
for the task of autonomous driving. As the actor-critic networks require as an input only
numerical values from the sensors, or in case of ConvNet architecture, also the features
vector extracted from the camera output, all the networks are of the feed-forward type,
consisting only of linear layers. As an activation function they use the ReLu activation for
the hidden layers. For the output layer, depending on the network, they use hyperbolic

67

tangent for the actor network, as it outputs the mean and variance of action probability
distribution and the actions are in the interval ⟨−1, 1⟩, which is the same as the hyperbolic
tangent output. For the critic network, there is no special activation, as the output value
should not be limited by anything.

First experiments were done with network topologies consisting of one hidden layer. We
started with the 32 neurons in hidden layer size and we gradually increased the value to
64, 128, 256 and 512. All these sizes showed to be insufficient and the agent struggled to
learn any good behavior. It took some time to figure this out, that the problem is in the
topology of the network and not within other parts of the system. Visually the agent was
usually able to drive correctly first few tens or low hundreds of meters, but usually failed at
first turn and was unable to pick up the skills required for the correct turning maneuvers.

In the next set of experiments we then increased the number of hidden layers to two.
We then started with slightly higher number of neurons than in the previous case. First
experiments were done with 64 neurons, then again increased in power of two multiples,
such the 128, 256 and 512. This time the agent was finally able to learn some good behavior
and its policy was continuously improving as the training process went onward. On a Figure
4.5 we can see picked examples of such a learning. Again we have done multiple runs of
different topologies and different settings of the experiment, so here we provide just a small
fraction of the results, that are the most representing examples of the common training
features and behavior encountered during the experiments.

As we can see, the differences between the topologies are not that obvious, also the
smaller networks were able to achieve similar results as the bigger networks. Also we can
see the comparison of different set of sensors and their impact on the agent. The runs
named with snrs at the end, denote the use of all possible sensors described in section
3.2.2. On the other hand the runs without it are using only the track sensor. As we can
see the difference is almost non-existing, but we will focus to it more in the subsequent
experiment.

What we have observed though is the tendency of bigger networks to have a slightly
less stable learning process, than the smaller ones, and the sweet spot in terms of size is the
128 neurons version, as it seems it has the most stable learning process and also it takes
obviously less time for such a network to be trained, compared to the 512 neuron network.
But these differences are not of a big concern.

The other difference though occurs during the late phase of the training, after around
200-300k time-steps. At that time the agent is almost always perfectly trained but it tries
to just get better in the driving style, which results in higher average speeds, more distance
raced, etc. But this is also usually the time when the agent gets overfitted for the training
track. During this time it is much more clear that the bigger networks have the ability to
outperform the smaller networks, at least if we compare them by the graph readings. For
example for the experiments at Figure 4.5, we used the e-track-2 track, as we can see,
all of the agents achieved little over 6k in returns, which usually does not improve much
more. It peaks around 7k, sometimes 8k. But the bigger networks, here the 512 neurons
type is able to outperform them by a good margin. For this specific track, it is often able
to achieve returns peaking around 10k, usually little less. But it takes almost twice the
training time, compared to the results depicted here. As the overfitting is not required nor
wanted, we usually did not train the agent any longer than 350k time-steps.

68

Figure 4.5: Experiment 5 - Comparison of network sizes

Comparison of most used network sizes

On a next set of graphs on Figure 4.6 we can see a direct comparison of 512 neuron and
128 neuron version of the network, which we used the most throughout the experiments.
Mostly it was the 512 neurons version, as it turned out that the bigger networks were able
to generalize slightly better than the smaller ones, also they were yielding higher returns
in general. Even though the results on the training tracks were similar. In this example
we have added the graphs of lap times and damage counter. From that we can see a
characteristics typical for all the other experiments. During the initial training, the agents
make a lot of damage per episode, which is understandable, as they are at that phase yet
unable to drive correctly and are just starting to grasp the driving skill. As the training
continues the damage count gets lower and ultimately is none, when the agent acquires the
basic driving skills. In the later phase from time to time the agents cause some additional
damage, meaning they are trying to improve their skills by trying different styles e.g. drive
through a specific turn a little differently in order to drive through it in higher speeds and
in lower times.

In this example we also omitted the smoothing of the distance raced graph, so we can
see the real nature of an RL algorithm, which almost periodically goes from high distances
to almost none - in this case roughly 300 meters. Which is the first turn in the e-track-2
track. This is usual for almost every agent trained, that before a really good episode, where
the agent achieves (learned agent 8-10km in distance), a really low distance is raced, in the
low hundreds of meters.

It may be due to the PPO objective function, which basically erases a previous bad
step in a policy, by the clipping feature for negative advantage, discussed in 2.6. So the
agent picks up a little unwanted behavior within its policy, then acts accordingly poorly.

69

The PPO ”undo’s“ the policy step, which basically corrects the agents behavior, and the
agent is then able to achieve high distances again. This is the probable explanation of such
a behavior of the distance raced performance.

Figure 4.6: Experiment 6 - Small vs big network

4.3.5 Reward functions

If we take a look at the reward functions described in section regarding Reward shaping
3.2.3, there were three proposed. This experiment then represents the performance of an
agent which receives rewards or penalties based on these reward functions. At first sight
we can see on the graphs in Figure 4.7, that the third reward function does not perform
well at all. The agent was not able to learn any good behavior, reaching no distance at
all. This happened both with ConvNet and Regular architecture. The reward function
used the sigmoid function to smoothen the TrackPos sensor role and the track width
as a parameter. This reward function was not expected to work well, but this almost non

70

existing progress of the agent was not anticipated. However, the main focus was to compare
the performance of reward functions 1 and 2. The first one is being the more complex one,
which considers both the forward motion, as well as the ”stay in the center“ policy. It
supports the agent to stay at the center of the track, any deviance decreases the reward
as well as it supports the minimization of speed in lateral direction. This reward function
proved to work well with the agent, and it was able to learn good policies.

There is maybe one side effect to this reward function. That is, when the agent’s vehicle
travels on a straight road, it is not able to simply drive in a direction of the track, instead
of it, it ”zig-zags“ in the middle of the track, trying to correct its direction by little turns
from left to right. That is probably caused by the term decreasing the lateral velocity the
−𝑆𝑝𝑒𝑒𝑑𝑋× 𝑠𝑖𝑛(𝜙) term, which penalizes such a behavior. Other than that, the agent with
reward function 1 works great. Although we must admit, that this type of reward function
in a way decreases agent’s potential to reach fast lap times, as the optimal travel trajectory
on a track is not always in the middle of the road. But in terms of the learning, we can
agree that the more sophisticated reward function, the easier and better the agent learns.

Figure 4.7: Experiment 7 - Comparison of reward functions

As for the reward function 2, it is basically the same as the first one, but it does not
include the −𝑆𝑝𝑒𝑒𝑑𝑋 × 𝑠𝑖𝑛(𝜙) term, but still with the −𝑆𝑝𝑒𝑒𝑑𝑋 × 𝑇𝑟𝑎𝑐𝑘𝑃𝑜𝑠 term, it
penalizes the agent for not being in the center of the track. Although there are differences
in the performance of agents using the reward function 2. Mainly as the ”keep in centre“
policy is not that strict anymore, the agent appears to drive through the curves little
bit more smoothly, as it does not try so hard to stay in the centre. But what is maybe
more important, on the straight parts of the track, the behavior of ”zig-zags“ is almost

71

eliminated. It is still there, but it is almost not perceivable. Also, when the agent prepares
for a subsequent turn, while it is driving through a straight, it does not drive in the centre
of the track. Instead it tends to drive on one side, so that the turn is for the agent easier
to maneuver. Then such a behavior definitely feels more natural and the overall visual
perception of such a driving style feels more race-professional.

Although as the experiments regarding the comparison of reward functions were done
in the later stage of the experimental phase, most of the time we used the reward function
1. In retrospective, it might be feasible to use instead of it the reward function 2, despite
the assumption that more sophisticated means better. It is better for the agent, but for
the ”racing car performance“, we prefer the second one.

Also it might be noticed that on the graph showing distance raced, the red agent, which
uses the reward function 1 - it struggles for some time on the 2km mark, where in reality
is a pretty hard right turn on the track. It suggests that it causes problems for the agent
to drive successfully through this part with the ”stay in the centre“ function term. So
the agent with reward function 2, which does not include this term, struggles with this
part of the track less and is able to faster pick up the correct turning maneuver through
it. This also supports the fact, that it probably chooses better trajectory for that specific
turn, thus does not have to slow as much as the red agent. The returns are though almost
identical, suggesting both reward functions 1 and 2, are similarly able to learn the agent to
successfully drive the vehicle on a given track.

4.3.6 Number of sensors required

These sets of experiments focus on the minimal number of available vehicle’s sensors re-
quired for the agent to learn a successful policy. These experiments were performed in
order to minimize the set of real sensors which will be needed for the real-world RC model
car. As every additional sensor is expensive and its correct mapping into the real world
brings the possibility of inaccuracy and unwanted misbehavior by the vehicle. The lower
the number of necessary sensors to be installed onto the vehicle, the better for the complete
system to function properly. Also we can explore the possibilities of the PPO algorithm in
terms of the amount of input data it needs in order to train a successful policy for the task
of autonomous driving in a racing environment TORCS.

On the Figure 4.8 we can see the results of such experiments. There were done many
more experiments regarding other sensors but they showed that they are not that important
and could be easily removed from the agent’s vehicle. These sensors were the damage, rpm,
wheelSpinVel, trackPos, focus and lateral and Z-axis speed. The trackPos, which is
the sensor measuring the lateral position of the vehicle on the track. If the vehicle is right
in the centre of the lane, the sensor’s value is zero. For left and right lane it is in the interval
⟨−1, 1⟩. The quite surprising was the possibility of removal of such a sensor. The agent
seemed not to struggle at all during the learning without it.

As the most important sensors turned out to be the track sensor, the angle sensor and
the speed in all three dimensions. Based on the experiments we have found that the agent
was able to learn almost identically with these three sensors as with all the sensors at once.
We then continued removing these sensors one by one, to test whether it is possible to find
even smaller set of necessary sensors. As a result, we were able to remove the speed sensors
in one set of experiments, also the angle sensor in other one. This was also quite a surprise
that the agent was able to learn only with one sensor, which is the track sensor. On the
contrary when we removed this specific one, the agent performed very poorly. It makes a

72

perfect sense, as we basically removed its only forward vision. The track sensor serves as a
low-res LIDAR or radar sensor. It covers the frontal aerial field of view ⟨−45 deg,+45 deg⟩
and consists of 19 values. It tells the distance between the vehicle and the boundary of the
road. Without this sensor, the agent only perceives the environment through angle sensor
of the vehicle and its lateral and longitudinal velocity, which is obviously not enough. This
run is depicted on the Figure 4.8 in red color. Also if we compare the purple run, which is
the agent using all available sensors, it shows us, that the agent’s performance is the second
lowest. It might be due to the amount of information provided by the sensors, which could
be just a little too much for the agent to understand. This behavior was noticeable in other
similar experiments.

Figure 4.8: Experiment 8 - Number of sensors required

The fact that just the track sensor is enough is great for the RC model car, as the
total cost of the necessary real-world components is greatly reduced. Also to physically
install just one sensor reduces the possibility of mistakes during the process. This idea is

73

further discussed in the subsequent experiment, where we use the Hybrid Architecture and
we attempt to completely abandon the use of sensors and only rely on the camera output,
but in a different way than one might suspect.

Sensors vs Track sensor

For a completeness we also show a graph of comparison of the all sensors variant and the
only track sensor variant, both in big and small neural network sizes. As we can see on
Figure 4.9 there is almost no difference between the network sizes and the only track sensor
variant works in both of them. Also in general the results (512 neurons exp.) are pretty
identical, this time both of the agents suffered a little from a bad initialization and its
policies performed pretty poorly for the first 50k time-steps. But they were able to recover
from it very well, resulting in a 6k+ returns and 8k+ kilometers around 150k time-steps,
which is still fine. Note that the 64 neurons version denoted snrs include only the: track,
trackPos, speed in 3D and angle. It supports the idea that the ability of the agent to
learn a good policy with different set of sensors is not related or dependent on the size of
the neural network.

Figure 4.9: Experiment 9 - Combination of sensors vs only track sensor (different network
sizes)

4.3.7 Cloud architecture

To further support the effort of successful application of the learned agent into the real-
world we have already proposed and discussed the Cloud architecture. Here we present the
results of the experiments related to it. On a Figure 4.10 we can see results of three runs,
where the pb in its names means probability. It is in reality the percentile of the standard

74

Normal probability distribution with which we defined the occurrence of the packet loss or
the noise in the sensory data. The results are as expected, the agent with the simulation
of events occurring turned off has the best performance, after it the agent with probability
0.05 and subsequently the worse performance has the agent with the highest probability of
0.1. Though, the results of the 0.05 (green) run are great and the agent can be considered
fully trained. This suggests that the PPO algorithm performs well, even if its input or
output data are corrupted and do not represent the real environment state. It can also
be considered that it is in this sense a very stable algorithm and can generalize on the
input. The results of the 0.1 (orange) run are not that important, the experiments with
it were done just for comparison and to show us the potential further possibilities of the
algorithm’s stability. Based on [39], the simulated packet loss is usually in articles related
to networking and its simulation testing set to 5% anyways.

Figure 4.10: Experiment 10 - All Sensors and Cloud architecture, where pb is the probability
of an event occurring (packet loss, noisy data)

These experiments were done with all sensors available to show the real impact of the
Cloud architecture simulation. In comparison the results on the Figure 4.11 were done
only using the track sensor. We can notice the lower performance in general. The most
interesting is probably the performance of the 0.1 probability variant, which suffers from
the Cloud architecture much more than in the version with all sensors. This is because
when the event got triggered and the data were corrupted by noise, it always affected the
only available sensor, the track sensor. It makes sense that the vehicle, with its only

”vision“ not working correctly is not going to be able to drive properly. From the previous
experiment, when the event got triggered, it only affected some of the sensors by the noise,
again based on the probability. But the probability of affecting all the sensors at once was
very unlikely.

75

So the sensory noise probably has greater influence than in the case of the simulated
packet loss (no data at all), which is on one hand unexpected and little disappointing but
on the other it is great, that the agent can probably handle the complete loss of data quite
well.

Figure 4.11: Experiment 11 - Track sensor and Cloud architecture, where pb is the proba-
bility of an event occurring (packet loss, noisy sensor)

These experiments were done on a e-track-2 race track. The neural networks had 512
neurons in its hidden layers and the rest of the hyperparameters were default.

4.3.8 Example of perfect training and inability to learn

Here is an example of a run on e-road track with Regular architecture agent. However, it
had been pre-trained a little, that is why the returns on the Figure 4.12 do not start from
zero but around a 4k mark. This is not important for the purpose why we are showing this
run here. We run it for over 1.5 million time-steps which is way over average training time.
The network used for this experiment was the 128 neuron version. If we have used another
bigger network the results would look a bit different. We have already discussed the issue
bigger networks tend to have, that is the instability in later training phases (300k+), as
the performance unexpectedly crashes down to negative values and the agent is most of the
times unable to recover from it. This is a beautiful example of stability during the training.
Since roughly 100k time-steps it continuously hits the 10km mark, overall performance
peaks at around 500-600k time-step. The 150km/h average speed and the returns passing
10k marks are the highest that we were able to achieve throughout the experimental phase

76

of this thesis. Note that the 10km mark is limited by the 1600 time-steps limit for the
length of one episode.

This learned agent is for sure overfitted for the training track, so it makes it unusable
for later use. We simply wanted to show the maximal performance we were able to achieve.
Though the agent performs great, we can still see the high deviation in distance trav-
eled, reaching 10km mark then dropping down to few hundreds meters. We have already
discussed the possible causes of this behavior.

Figure 4.12: Experiment 12 - Run with a great performance (Regular architecture, 128
neurons)

In contrast and as a different example, we next present experiments targeting the in-
ability of an agent to learn, which relies solely on the camera output. The presented
results which are depicted on a Figure 4.13 are from the experiment regarding the differ-
ent convolutional neural network topologies. There we were finding the ideal arrangement
configuration of the pooling and convolution filter layers as well as the size of the filter’s
kernel and the number of such filters. The best performing architecture was then used for
the Hybrid architecture experiments, which results are presented as a last section of this
chapter and finalize the work done in this thesis.

In this section though, the exact architecture is not important, as we want to only
demonstrate the inability of such an approach to learn the agent properly. The peak
performance is around 900 meters for the green run (architecture 3), and around 2k in
returns. But most of the time the run is heavily below this performance. Note that the 150k
time-steps took around 9 hours of training, as the simulation speed could be mostly around
2x the real-time speed. The simulator issue was also already discussed at the beginning of
this chapter. Although the learning progress is taking place, it is not continuous. Suggesting
the unhealthy training process, where the agent is not getting better as time passes. Making
this approach unusable for later use.

77

Figure 4.13: Experiment 13 - Agent is unable to learn

As a next example of the same issue we can see another experiments regarding the
different image adjustments discussed in section regarding Input image. Again the agent is
trained only from camera output data. The results are presented on a Figure 4.16 on the
left. The diff in the name signifies the use of absolute image difference, the reg signifies the
use of regular image without any adjustment and the numerical value in front of it means
the number of images used. So the 2diff variant represents the input image as regular
image concatenated with absolute image difference image, which subtracts the current and
previous camera image received by the environment.

Again, no significant signs of performance progress, the optimization is unstable and
the agent is not getting better or does not keep its performance.

As for the graph on the right, this experiment represents the multiple runs of the
architecture 4, which is showed also on the previous Figure 4.13. This represents the
architecture that was later used also for the Hybrid architecture setup, where we learned
such a convolutional network topology, on the image-sensors dataset for the prediction of
sensory data.

Here we can see the same lack of performance, but this time most of the runs have
negative reward, which usually suggests that the agent acts randomly, without any sign of
logical behavior.

78

Figure 4.14: Experiment 14 - Agents are unable to learn (ConvNet architecture)

There were also tried approaches which use different sizes of linear layers within the
CNN, as well as different sizes of the output feature vector (60,90,120) - which were con-
catenated to the forward velocity sensory value. That is also the only sensory value that
was always used for all other experiments, as it makes it easier for the code implementation
to work, but mainly that this velocity is usually always known to the vehicle.

Also the ideas from article [18] were tried, such as the propagation of gradients during
the network back-propagation phase, only to the critic network, the already mentioned
camera image adjustments, especially the capture of motion within the image by absolute
image difference method.

Nevertheless, none of the attempts made this setup to work at all. This brought us the
idea to learn a separate convolutional network in a regular supervised learning manner with
the already mentioned (camera output, sensory data) pairs dataset and simply predict the
sensory data from the camera image. Since we know that the agent is able to learn high
return yielding policy by using only the sensors.

4.3.9 Generalization

As it had been already mentioned, the trained agent should be able to generalize on a
different track than it was initially trained on. Here we sampled few agents and collected
their performance results on a number of different tracks, which are presented in Table
4.2 and Table 4.2. The results are showed in terms of distance traveled per episode and
percentage of the track covered by that distance. Since the main metric, the returns are
calculated only when the agent is learning, the distance raced is the second most accurate
metric, which helps us to show the overall performance quality of agent’s policy.

The first table shows the results for two averagely trained agents, one of them being
trained with the Cloud architecture. For comparison, the second one was trained as a
regular agent. The table can also help us to see and decide whether the aspect of simulated
cloud conditions allow the agent to generalize better.

Each agent performed around 20 episodes on each of the tracks and then the highest
result was recorded into the table. The agents were performing in an evaluation mode,
which does not allow the agent to be trained, so it solely relies on the policy trained by the
one track used during the training process.

79

Model / Track Avg Trained - Cloud Avg Trained
Trained on: e-track-2 e-track-2
Sensors: ONLY track sensor ONLY track sensor
e-track-2 9354m, 174% 9978m, 186%
e-road: 9251m, 284% 7086m, 218%
g-track-3 3724m, 131% 2110m, 74%
forza 6107m, 106% 2789m, 48%
e-track-3 3260m, 78% 2166m, 52%
e-track-4 2532m, 36% 2946m, 42%
michigan 2615m, 113% 4348m, 188%
g-track-2 5753m, 181% 6914m, 217%

If we calculate the mean percentage for each of the agents, it shows us, that the agent
trained with the Cloud architecture actually performed a little better than the second one
(138% vs 128%). If it does really mean that it can indeed better generalize is not sure.
There are many aspects that surely influence such results. As an example we can mention
the point in time when the training of the agent was stopped, more concretely how overfitted
or underfitted was for that training track at that time. As there is no precise way to decide
and measure, whether two agents are identically trained. We can stop the training after
the same number of episodes or time-steps,or end the training after they reach the same
traveled distance or achieve the same returns value, but the level of training congruence
will never be accurate.

Nonetheless, if we omit such statements, we can truly deduce that the Cloud architecture
indeed helps the agent to generalize better on new, yet unknown tracks and that our initial
assumptions were correct.

As for the Table 4.2, we present the results for agents trained this time on another track,
the E-road and with a different focus in mind, the size of the neural network. The same
applies here as it was stated above in terms of similarity of the training process. Here, the
smallest network seems to be the best in terms of generalization, which is somehow a little
unexpected behavior, based on the previous experiments and assumptions. Based on the
concrete results though, it achieved at almost every track 100% of the track length or more.
This suggests that it knew well all different types of turning maneuvers and was able to
correctly apply them in unknown environments. As for the versions with 512, 256 - it seems
that it struggled with specific parts of the tracks, as both agents during their 20 episodes
scored the same distance almost every time for a given track. As a result, it did not pick
up the necessary skills needed to successfully drive through the specific part of the track.
As for the 128 neuron variant, we can reason its good performance by the possibility that
its training process was stopped at the right time, when the agent was neither overfitted
nor underfitted.

80

Model / Track Well Trained
512

Well Trained
256

Well Trained
128

CNN Trained
(CAM)

Trained on: e-road e-road e-road e-road

Sensors: ALL sensors ALL sensors ALL sensors track, angle,
speed, cam

e-track-2 9277m, 172% 1452m, 27% 9451m, 176% 291m, 5%
e-road: 9884m, 303% 9881m, 303% 9889m, 303% 1835m, 56%
g-track-3 2188m, 77% 730m, 26% 3235m, 113% 350m, 12%
forza 10929m, 189% 1257m, 22% 11266m, 194% 1870m, 32%
e-track-4 2949m, 42% 11800m, 168% 12258m, 174% 2922m, 41%
michigan 2342m, 101% 4848m, 209% 2196m, 95% 1478m, 64%
g-track-2 9657m, 303% 9660m, 303% 9666m, 303% 1356m, 43%

As for the CNN Trained model, we mentioned its results here, just so it is visible for
comparison and that it was truly unable to successfully learn a good policy. The small
distances achieved are also mainly thanks to the enabled sensors and not the camera output
at all. The camera output was more of a burden, making the agent’s training even more
difficult.

4.3.10 Hybrid architecture

The last experiment of this thesis is related to the Hybrid architecture proposed and dis-
cussed in section 3.3.2. In order to make it work, we had to first collect the dataset, which
consisted of around 100k samples. Then the CNN got trained separately on these data. As
a label for each sample we first tried to include only the track sensor, as it was proven
that it is enough sensory data for the agent to get trained. This, however, did not prove to
be the same case in this scenario. The agent was not able to get further than few meters
on the track, occasionally passing the first turn, which is on the e-track-2 at around 300
meters. This was the maximum the agent was able to accomplish. On other tracks the
results were similarly bad, but usually even much worse. It might be also due to the fact,
that the dataset was roughly a third of the size than for the later experiment, at around
35k samples.

Also the experiment where we have tried to learn a new model from scratch, was not
successful. This could be caused by the fact, that the dataset was captured by a trained
agent, which for example was not almost crashing and typically had different driving style
than a newly started agent has. New agent usually for the first number of episodes does
not have any idea what it is doing, so it crashes a lot and does unpredictable turns. For
these untypical situations there was almost no data in the dataset. So it makes sense that
the agent was not able to get trained by this approach, as the neural network was not
generalizing well for these types of unpredictable situations.

Later, when we have tried to learn a new agent. We captured into the dataset both
trained and untrained agent experience. Around 80% of the dataset was from the trained
agent and the 20% was from the untrained one. Then we have trained a usual agent before
hand. This agent trained on a bigger number of sensors, concretely track, angle, speed,
and trackPos sensors. The same sensors (but speed) were then also captured during the
dataset creation. For the CNN supervised learning task, we used as a loss the MSE (Mean
Square Error) and a custom metric called percDiff. It calculates the cumulative difference
between all unique sensory values as:

81

𝑝𝑒𝑟𝑐𝐷𝑖𝑓𝑓 =
|𝑦 − 𝑦𝑝𝑟𝑒𝑑|
𝑦 + 𝑦𝑝𝑟𝑒𝑑

2

× 100

This is calculated for the batch of size 32 and then a mean from an absolute values
of percDiff is taken. We were able to achieve cumulative sum of 45% for the training
set and 44% for the test set for 21 values, which is about 2% average deviation from the
single sensory value. For the MSE loss, we have achieved the value of 0.0022. The training
was done on a Google Colab service in a Python Notebook, which is also part of the code
submitted with this thesis.

This way we were quite successfully able to produce sensory data from a camera output
image and bypass the fact that the RL agent was not able to learn solely from raw camera
output. The results were much better than in the previous case. The agent was immediately
able to drive greater distances of around 3km, but yet at some points of the track, especially
during a sharp turns, it was not able to properly drive through it. This was probably caused
by the lack of computational performance of our machine. As the agent relies completely on
the camera output and a much more computation is being done during every time-step, the
machine periodically struggled during certain parts of the track. This resulted in a small
lag and window image freeze for a short period of time, which was around 5-8 in-game
frames. This was usually the cause of the short distances of the agent’s vehicle. As when
the screen unfroze, the vehicle was already too far into the turn, and it was too late for any
correction as the reaction time was very limited. This resulted in an agent being unable to
handle the sharp curves, thus crashing into the barrier and the episode has ended.

When this lag happened during a slightly curved turn or on a straight, the agent usually
did not have greater issues of handling the lag event well. It surely helped that the initial
agent was trained with Cloud architecture setup, so that it was used to these types of
incidents (missing data) much more, than a regularly trained agent.

As we were unable to obtain a more powerful machine, we could not test the abilities
of the agent in more depth. Nevertheless, it is still a great result, considering the amount
of problems we have met during the practical part of this thesis.

4.4 Summary and further outlook
For future works, it would be advisable to increase the generalization of the agent, together
with further camera output alternation, where the GANs Generative adversarial networks
could be used to generate a real-world looking image from a simulation environment’s
image. This concept is already employed by the Tesla Company, so it is feasible. Also,
further improvements of the PPO algorithm, mainly the ability to optimize in parallel on
multiple processors to speed-up the learning process, should be considered. These attempts
were done as well, but were later abandoned, as the computational hardware was not able
to handle such tasks sufficiently. Lastly, to concentrate on the physical implementation of
the agent’s vehicle in a real-world.

Initial experiments with the RC model car were done even before the topic for this thesis
was selected, as it was a personal side project of mine. Due to the insufficient knowledge
in the electrical engineering field and the lack of skill in the computer modelling (as lot
of the custom components had to be 3D printed) and mainly the lack of finance for the
additional, necessary, electronic components for further experiments, as they were destroyed
a lot during the process, resulted in a halt of this physical implementation of the project.

82

We then continued working only on the software, more concretely, the machine learning
approach to autonomously drive an RC car. Which is also the topic of the thesis.

But surely, the future goal is to return to the hardware side of the project, now finally
with a working ML software solution for it.

Figure 4.15: Photo taken during the testing of the RC model car, controlled wirelessly via
ESP32 and Raspberry Pi

The idea was to use a micro-controller ESP32 mounted on the car, together with the
necessary sensors and a camera, which will then communicate wirelessly with the computer
over MQTT protocol, where all the processing would be done. The computer would then
send back the commands for the actuators. The computer could be either Raspberry Pi
mounted right on the vehicle (in this case no wireless communication) or communicate with
a more powerful computer (referred as the Cloud) wirelessly. The goal would then be for
the RC vehicle to be able to drive autonomously on a custom track and participate in a
competition, such as the NXP Cup organized by NXP Semiconductors company [5].

Figure 4.16: Example of the competition cars created by university teams [3]

83

Chapter 5

Conclusions

In this thesis, the goals stated in Chapter 1 were successfully accomplished. We were able
to learn an agent in the task of autonomous driving.

As we were unable to train the agent solely from the camera output, and partly with the
proposed ConvNet architecture, where creation of features vector from a camera image was
concatenated with data from other sensors, the novel approach was proposed. The novel
Hybrid architecture reacts to the inability by incorporating convolutional neural network
learned in a classical supervised learning approach on a camera output - sensory data,
dataset pairs. We were able to train such a network to predict sensory data, which then
served as an input to an already trained agent by Regular architecture approach. In this
approach, the agent was learned by regular sensory data, such as the speed, low-res LIDAR
sensor (track) and angle of the vehicle related to the road direction.

We have also found minimal set of sensors required for the agent from which it could
learn a successful policy. It was found that only the track sensor is enough for the agent
to yield high returns. We have also discovered that smaller networks are better in terms
of stability of the optimization process, whereas bigger networks are able to achieve higher
returns. As for the reward function, we empirically found that reward function without a
term penalizing the ”not in the centre“ driving style performed overall better, as the agent
was able to discover more human-like driving style and was not unnecessarily forced to
drive only in the centre of the road.

In terms of generalization, agents with lower performance tended to generalize better,
than agents that could be considered as overfitted for the training track. Also, agents that
were trained on a track with suitable track topology were better at generalization, as they
had the knowledge of diverse sets of curve types.

The use of proposed Cloud architecture and the ability of the agent to perform well
under the simulated real-world conditions, also helped the agent to be more stable and
better prepared for the real use.

All these findings help us in future work, as we plan to apply such a learned agent to the
real-world scaled RC model car. The necessity of only one sensor or the ability to predict
sensory data from a camera image greatly reduce the costs and requirements for physical
sensor components as well as the need for low-performance embedded hardware, as we have
achieved great results by only using small neural network models.

It will be interesting to see, whether these preparatory works of learning the agent in a
simulated environment were worth it and will also work in harsh, outdoor conditions.

84

Bibliography

[1] The U.S. National Highway Traffic Safety Administration: Automated Vehicles for
Safety [online]. 2016 [cit. 2021-10-05]. Available at:
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety.

[2] BASt: Self-driving cars - assisted, automated or autonomous [online]. 2020 [cit.
2021-10-05]. Available at:
https://www.bast.de/DE/Presse/Mitteilungen/2021/06-2021.html.

[3] Embedded FI MUNI [online]. 2021 [cit. 2022-22-04]. Available at:
https://embedded.fi.muni.cz/projects/nxpcup.

[4] SAE International: SAE J3016 - Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor Vehicles [online]. 2021 [cit.
2021-10-05]. Available at: https://www.sae.org/standards/content/j3016_202104/.

[5] NXP Cup [online]. 2022 [cit. 2022-22-04]. Available at: https://nxpcup.nxp.com/.

[6] Abbeel, P. Foundations of Deep RL - YouTube Lecture Series [online]. 2021 [cit.
2021-11-11]. Available at: https://bit.ly/3F5cSfV.

[7] Burget, L. BAYa - Bayesian models for machine learning - VUT FIT [online]. 2020
[cit. 2021-12-10]. Available at:
https://www.fit.vutbr.cz/study/courses/BAYa/public/.cs.

[8] Dossa, R. F. J. GymTorcs: An OpenAI Gym-style wrapper for the Torcs Racing Car
Simulator. 2018.

[9] Edwards, C. X. SnakeOil - Virtual Motor Sports Lubricants (TORCS Client)
[online]. 2015 [cit. 2021-10-08]. Available at: https://xed.ch/p/snakeoil/.

[10] Ganesh, A., Charalel, J., Sarma, M. D. and Xu, N. Deep Reinforcement
Learning for Simulated Autonomous Driving. 2016.

[11] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[12] Intel. Intel i5 8250U - Processor [online]. 2022 [cit. 2022-02-15]. Available at:
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-
i58250u-processor-6m-cache-up-to-3-40-ghz.html.

[13] Jaritz, M., Charette, R. D., Toromanoff, M., Perot, E. and Nashashibi, F.
End-to-End Race Driving with Deep Reinforcement Learning. 2020. Available at:
http://team.inria.fr/rits/drl.

85

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.bast.de/DE/Presse/Mitteilungen/2021/06-2021.html
https://embedded.fi.muni.cz/projects/nxpcup
https://www.sae.org/standards/content/j3016_202104/
https://nxpcup.nxp.com/
https://bit.ly/3F5cSfV
https://www.fit.vutbr.cz/study/courses/BAYa/public/.cs
https://xed.ch/p/snakeoil/
http://www.deeplearningbook.org
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.html
http://team.inria.fr/rits/drl.

[14] Karpathy, A. Deep Reinforcement Learning: Pong from Pixels [online]. 2016 [cit.
2022-01-06]. Available at: http://karpathy.github.io/2016/05/31/rl/.

[15] King, A. A. Modeling the noise: probability basics and the bestiary of distributions
[online]. 2018 [cit. 2022-03-15]. Available at:
https://kinglab.eeb.lsa.umich.edu/480/prob/prob.html.

[16] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A. et al. Deep
Reinforcement Learning for Autonomous Driving: A Survey. february 2020. Available
at: http://arxiv.org/abs/2002.00444.

[17] Koeller, A. Evaluation of reinforcement learning algorithms in the context of
autonomous vehicles [online]. 2019. Available at: https://bit.ly/3yBAmcQ.

[18] Kostrikov, I., Yarats, D. and Fergus, R. Image Augmentation Is All You Need:
Regularizing Deep Reinforcement Learning from Pixels. april 2020. Available at:
http://arxiv.org/abs/2004.13649.

[19] Kuhle, H. Autonomous Driving [online]. 2020 [cit. 2021-10-05]. Available at:
https://www.vda.de/de/themen/digitalisierung/autonomes-fahren.

[20] Lapan, M. Deep Reinforcement Learning Hands-On, Second edition. Packt
Publishing, 2020. ISBN 978-1-83882-699-4.

[21] Lee, D.-H. and Liu, J.-L. End-to-End Multi-Task Deep Learning and Model Based
Control Algorithm for Autonomous Driving. december 2021. Available at:
http://arxiv.org/abs/2112.08967.

[22] Levine, S. CS285 Deep Reinforcement Learning course - UC Berkeley [online]. 2021
[cit. 2021-12-19]. Available at: http://rail.eecs.berkeley.edu/deeprlcourse-fa19/.

[23] Li, Y. Deep Reinforcement Learning: An Overview [online]. 2018 [cit. 2021-12-15].
Available at: https://arxiv.org/pdf/1701.07274.pdf.

[24] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T. et al. Continuous
control with deep reinforcement learning. 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings. september 2015. DOI:
10.48550/arxiv.1509.02971. Available at: https://arxiv.org/abs/1509.02971v6.

[25] Loiacono, D., Cardamone, L. and Lanzi, P. L. Simulated Car Racing
Championship: Competition Software Manual [online]. 2013 [cit. 2021-10-02]. Available
at: https://arxiv.org/abs/1304.1672.

[26] Loiacono, D., Prete, A., Lanzi, P. L. and Cardamone, L. Learning to overtake
in TORCS using simple reinforcement learning. In: IEEE Congress on Evolutionary
Computation. 2010, p. 1–8. DOI: 10.1109/CEC.2010.5586191.

[27] MLflow. MLflow - Open-source tracking platform Documentation [online]. 2022 [cit.
2021-11-01]. Available at: https://mlflow.org/docs/latest/index.html.

[28] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P. et al.
Asynchronous Methods for Deep Reinforcement Learning. february 2016. Available
at: http://arxiv.org/abs/1602.01783.

86

http://karpathy.github.io/2016/05/31/rl/
https://kinglab.eeb.lsa.umich.edu/480/prob/prob.html
http://arxiv.org/abs/2002.00444
https://bit.ly/3yBAmcQ
http://arxiv.org/abs/2004.13649
https://www.vda.de/de/themen/digitalisierung/autonomes-fahren
http://arxiv.org/abs/2112.08967
http://rail.eecs.berkeley.edu/deeprlcourse-fa19/
https://arxiv.org/pdf/1701.07274.pdf
https://arxiv.org/abs/1509.02971v6
https://arxiv.org/abs/1304.1672
https://mlflow.org/docs/latest/index.html
http://arxiv.org/abs/1602.01783

[29] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I. et al.
Playing Atari with Deep Reinforcement Learning. december 2013. Available at:
http://arxiv.org/abs/1312.5602.

[30] NVIDIA. NVIDIA CUDA Zone [online]. 2022 [cit. 2022-02-15]. Available at:
https://developer.nvidia.com/cuda-zone.

[31] OpenAI. OpenAI Gym Environment [online]. 2021 [cit. 2021-11-01]. Available at:
https://gym.openai.com/.

[32] Poupart, P. CS885 Reinforcement Learning course - University of Waterloo [online].
2020 [cit. 2021-12-28]. Available at:
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring20/index.html.

[33] Remonda, A., Krebs, S., Veas, E., Luzhnica, G. and Kern, R. Formula RL: Deep
Reinforcement Learning for Autonomous Racing using Telemetry Data. arXiv. 2021.
DOI: 10.48550/ARXIV.2104.11106. Available at: https://arxiv.org/abs/2104.11106.

[34] Russell, S. Artificial Intelligence: A Modern Approach, 4th Edition. Pearson, 2020.
ISBN 978-0134-61099-3.

[35] Schoettle, B. SENSOR FUSION: A comparison of sensing capabilities of human
drivers and highly automated vehicles sustainable worldwide transportation. 2017.
Available at: http://www.umich.edu/~umtriswt.

[36] Schulman, J., Levine, S., Moritz, P., Jordan, M. I. and Abbeel, P. Trust
Region Policy Optimization. february 2015. Available at:
http://arxiv.org/abs/1502.05477.

[37] Schulman, J., Moritz, P., Levine, S., Jordan, M. I. and Abbeel, P.
High-Dimensional continuous control using Generalized Advantage Estimation. [cit.
2021-12-29]. Available at: https://sites.google.com/site/gaepapersupp.

[38] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O.
Proximal Policy Optimization Algorithms. july 2017. Available at:
http://arxiv.org/abs/1707.06347.

[39] ScienceDirect. Packet Loss Probability - an overview | ScienceDirect Topics
[online]. 2022 [cit. 2022-03-15]. Available at:
https://www.sciencedirect.com/topics/computer-science/packet-loss-probability.

[40] Silver, D. Introduction to Reinforcement Learning with David Silver - DeepMind
[online]. 2015 [cit. 2021-11-15]. Available at: https://deepmind.com/learning-
resources/-introduction-reinforcement-learning-david-silver.

[41] Silver, D., Huang, A., Maddison, C. J. and Guez, A. Mastering the game of Go
with deep neural networks and tree search. january 2016. Available at:
https://www.nature.com/articles/nature16961.

[42] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction, Second
edition. The MIT Press, 2018. ISBN 978-0262-03924-6.

87

http://arxiv.org/abs/1312.5602
https://developer.nvidia.com/cuda-zone
https://gym.openai.com/
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring20/index.html
https://arxiv.org/abs/2104.11106
http://www.umich.edu/~umtriswt
http://arxiv.org/abs/1502.05477
https://sites.google.com/site/gaepapersupp
http://arxiv.org/abs/1707.06347
https://www.sciencedirect.com/topics/computer-science/packet-loss-probability
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://www.nature.com/articles/nature16961

[43] Tampuu, A., Semikin, M., Muhammad, N., Fishman, D. and Matiisen, T. A
Survey of End-to-End Driving: Architectures and Training Methods. march 2020.
Available at: http://arxiv.org/abs/2003.06404.

[44] Tesla. Tesla Autopilot Vision [online]. 2021 [cit. 2021-12-18]. Available at:
https://www.tesla.com/support/transitioning-tesla-vision.

[45] Wang, S., Jia, D. and Weng, X. Deep Reinforcement Learning for Autonomous
Driving. november 2018. Available at: http://arxiv.org/abs/1811.11329.

[46] Weng, L. A (Long) Peek into Reinforcement Learning [online]. 2018 [cit. 2021-10-14].
Available at: https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-
reinforcement-learning.html.

[47] Weng, L. Policy gradient algorithms [online]. 2018 [cit. 2021-10-14]. Available at:
https:
//lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html.

[48] Wymann, B. The Open Racing Car Simulator [online]. 2021 [cit. 2021-09-25].
Available at: http://torcs.sourceforge.net/.

88

http://arxiv.org/abs/2003.06404
https://www.tesla.com/support/transitioning-tesla-vision
http://arxiv.org/abs/1811.11329
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
http://torcs.sourceforge.net/

Appendix A

Installation and run of the program

In the files attached to this thesis, in the root directory a README.txt file is located, where
the complete installation process is described.

For the complete installation, it should be enough to run a shell script install_script.sh.
The installation was tested on a Linux Ubuntu 18.04, other Linux distributions might re-
quire additional steps.

It is necessary to activate the Python environment from root directory by:

source ./venv/bin/activate

To run the program, following command should be entered from the root directory:

python3 run.py -c config.yaml

In the same root directory there is config.yaml file, which contains the configurable
parameters for the experiments, with a description for every parameter.

For the MlFlow server to run, the following command is required to run in separate
terminal instance:

mlflow ui

To access it, enter in an internet browser the localhost address with port 5000:

http://127.0.0.1:5000

Agent models are located in the /checkpoints directory, specific models can be down-
loaded from the MlFlow UI.

Also an example of a trained agent is visible at: https://www.youtube.com/watch?v=
vEEQYFk1Chg

Complete source code of this work is also available at: https://github.com/Vosa23/
master_thesis_final

89

https://www.youtube.com/watch?v=vEEQYFk1Chg
https://www.youtube.com/watch?v=vEEQYFk1Chg
https://github.com/Vosa23/master_thesis_final
https://github.com/Vosa23/master_thesis_final

	Introduction
	Reinforcement learning
	Introduction
	Theory
	Markov Process
	Markov Decision Process

	Value-based methods
	Dynamic Programming
	Monte Carlo methods
	Temporal Difference methods
	Value-based methods and Function approximators

	Policy-based methods
	Stochastic Policy Gradient methods
	Monte-Carlo Policy Gradient (REINFORCE)
	Actor-Critic Policy Gradient methods
	Trust-Region methods

	Autonomous driving and system design
	Autonomous driving
	Simulation environment
	TORCS
	Sensors and Actuators
	Reward shaping
	Performance metrics
	The Algorithm

	Implementation details
	Algorithm implementation
	Neural network architectures
	Cloud architecture

	Experiments and results
	Computational Hardware
	Subject of experiments
	Experiments
	Hyperparameters
	Differences in performance
	Initialization and Instability
	Comparison of network sizes
	Reward functions
	Number of sensors required
	Cloud architecture
	Example of perfect training and inability to learn
	Generalization
	Hybrid architecture

	Summary and further outlook

	Conclusions
	Bibliography
	Installation and run of the program

