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Abstract
In this work we deal with regular model checking which is a technique for analyzing pro-
grams whose state space can be infinite due to dealing with, e.g. unbounded queues,
parameters, dynamically linked data structures, recursive procedures, or strings. The goal
of this work was to implement improvements to the existing prototype tool ASMA im-
plementing regular model checking over the Microsoft Automata library. We analysed the
source code of ASMA and reran analyses of all available benchmark programs. We identified
some bottlenecks and have tackled several of them. In particular, we integrated a library
containing additional reduction algorithms into ASMA, created several new versions of the
reverse concatenation operation, which tuned out to be very costly in the benchmarks, im-
proved the command line interface of ASMA, and implemented some other optimizations
for ASMA. The computation time was reduced by 90 % when analysing bigger programs.

Abstrakt
V této práci se zabýváme regulárním model checkingem, což je technika pro analýzu pro-
gramů, jejíchž stavový prostor může být nekonečný v důsledku práce například s neome-
zenými frontami, parametry, dynamicky propojenými datovými strukturami, rekurzivní-
mi procedurami nebo řetězci. Cílem této práce bylo implementovat vylepšení stávajícího
prototypu nástroje ASMA implementujícího regulárním model checking nad knihovnou Au-
tomata of Microsoftu. Provedli jsme analýzu zdrojového kódu nástroje ASMA a zopakovaly
analýzy všech dostupných srovnávacích programů. Identifikovali jsme některá úzká místa
a několik z nich jsme vyřešili. Zejména jsme integrovali knihovnu obsahující další redukční
algoritmy do nástroje ASMA, vytvořili několik nových verzí operace reverzní konkatenace,
která se v benchmarcích ukázala jako velmi nákladná, vylepšili rozhraní příkazového řádku
ASMA a implementovali některé další optimalizace. Výpočetní čas se při analýze větších
programů snížil o 90 %.

Keywords
regular model checking, RMC, abstract regular model checking, ARMC, finite automata,
transducers, symbolic finite automata, AutomataDotNet, ASMA, VeriFIT, reverse concate-
nation
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Rozšířený abstrakt
Jak zajistit vysokou spolehlivost programu? Běžným způsobem, jak ověřit, že program
neselže, je jeho testování. Tato metoda ale nemůže prokázat 100 % spolehlivost testo-
vaného softwaru. Způsob, jak vytvořit vysoce spolehlivý software, spočívá v použití metod
formální verifikace a analýzy, které jsou schopny spolehlivě odhalit chyby a zajistit tak
vysokou spolehlivost programu.

Obtížnou výzvou ve formální analýze je práce s nekonečně stavovými systémy. Regulární
model checking (RMC) je technika pro analýzu takových systémů, kde nekonečně stavový
prostor může vzniknout např. v důsledku práce s neomezenými frontami, parametry,
dynamicky propojenými datovými strukturami, rekurzivními procedurami nebo řetězci.
Poslední zmíněná vlastnost je pro tuto práci zvláště zajímavá. Programy manipulující
s řetězci si zaslouží zvláštní pozornost např. kvůli nebezpečí Cross-site scripting útoků
(XSS). Tyto útoky umožňují útočníkům vložit skripty do webových stránek používaných
jinými uživateli.

Přestože je RMC poměrně účinný, neexistuje žádná vhodná implementace RMC, která
by obsahovala všechny nejmodernější výsledky z oblasti automatů. Navíc nemáme k dis-
pozici žádnou knihovnu pro práci s konečnými automaty (FA), která by poskytovala imple-
mentaci řetězcových operací, používaných v programech pracujících s řetězci nad FA, která
je potřebná pro implementaci RMC na takových programech. Máme pouze jeden prototyp
takové knihovny, kterým je nástroj ASMA implementovaný Michalem Kotounem v rámci
jeho diplomové práce [7].

V současné době existující přístupy, jak analyzovat programy s řetězci (jiné než přístup
nástroje ASMA založený na RMC), buď vyžadují spolupráci s uživateli při vytváření ně-
jakých verifikačních podmínek, invariantů apod. nebo jsou nepřesné. Zejména jsou nepřesné
buď ve smyslu hlášení falešných chyb, nebo jsou nastaveny tak, aby hlásily méně, což může
vést k vynechání skutečných chyb. Můžeme tedy použít přístup, který vyžaduje nezaned-
batelnou lidskou pomoc, nebo nepřesnou plně automatickou statickou analýzu, a nebo zvolit
něco uprostřed, což může být právě RMC.

Obecným cílem této práce je vylepšit nástroj ASMA. Konkrétněji bylo prvním cílem se
seznámit s danou oblastí, pochopit pokročilé algoritmy pracující s automaty a seznámit
se s nástrojem ASMA, který využívá knihovnu Microsoft Automata, vyvinutou Margusem
Veanesem. Druhým cílem bylo identifikovat slabá místa nástroje ASMA a následně navr-
hnout a implementovat zlepšení s důrazem na správnost implementace, její efektivitu a udržo-
vatelnost.

V rámci plnění našich cílů jsme postupovali následovně: analyzovali jsme zdrojový kód
nástroje ASMA a provedli analýzu všech dostupných příkladů programů, na nichž byla
ASMA původně testována. Pomocí profilovacího nástroje jsme zanalyzovali hlavní úzká
místa při běhu nástroje ASMA na všech příkladech. Ukázalo se, že hlavními částmi zpo-
malujícími nástroj ASMA byly reverzní konkatenace vytvářející obrovské množství epsi-
lonových přechodů a redukční algoritmy zabírající příliš mnoho prostředků a času na výpočet.

Naší reakcí na zmíněnou neefektivitu redukčních algoritmů v ASMA byla integrace kni-
hovny AutomatonSimulation od Juraje Síče do nástroje ASMA. Tato knihovna obsahuje
metody pro výpočet simulací a pro redukci automatů pomocí těchto simulací. Tyto si-



mulační redukce nám umožňují pracovat s nedeterministickými automaty bez nutnosti je
čas od času determinizovat. Tento krok si vyžádal určité změny v architektuře ASMA,
které nám umožňují volit mezi různými redukčními algoritmy. Po integraci jsme museli
také aktualizovat systém logování a příkazy v AsmaCLI. Výsledkem je, že si uživatel nyní
může libovolně zvolit, která redukce má být použita jak během běhu ARMC (pro všechny
počítané automaty), tak na daném automatu v AsmaCLI. Přidali jsme také možnost, aby si
uživatelé mohli po každém kroku analýzy prohlédnout náhled automatů bez náročné práce.

Naším dalším krokem bylo porovnání běhu analýzy všech příkladů se všemi dostupnými
redukcemi. To vedlo k vytvoření vlastního testovacího příkazu v prostředí ASMA, který
spustí analýzu pro všechny zadané programy se všemi zadanými typy redukcí. Výsledné
porovnání redukčních algoritmů nám bohužel ukázalo, že tyto nové redukční algoritmy jsou
pro všechny analyzované příklady příliš pomalé. Mohou však mít potenciál do budoucna.
Provedli jsme ale také několik drobných optimalizací, jako je přidání dodatečného ukládání
výsledků do mezi-paměti v kritických částech a odstranění zbytečných částí kódu nebo
použití redukcí na vhodných místech. Tyto optimalizace pak měly poměrně výrazný vliv
na rychlost analýzy programů, a to i při použití staršího přístupu založeného na deter-
minizaci a minimalizaci.

Posledním a nejdůležitějším výsledkem této práce je vytvoření optimalizované operace
reverzní konkatenace. Vytvořili jsme čtyři prototypy s postupně rostoucím vývojem. Celko-
vě jsme zkrátili dobu běhu o více než 90 % u analýzy programů, u nichž se vyskytují větší
automaty.

Zbytek práce je strukturován následovně: V kapitole 2 uvedeme základní pojmy automatů
a převodníků, které jsou nezbytné pro pochopení ARMC. Kapitola 3 obsahuje informace
o nástroji ASMA a popis našich kroků při jeho analýze. V kapitole 4 jsme navrhli některá
vylepšení a v kapitole 5 jsme popsali pokrok ve vývoji nástroje ASMA. Na konci této práce
je v kapitole 6 uveden závěr s možnými budoucími kroky pro další rozvoj ASMA.
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Chapter 1

Introduction

How to ensure high reliability of a program? A common way to check that a program will
not crash is to test it. However, this method cannot fully prove absence of bugs in tested
software. The way to create highly reliable software is to use formal verification and analy-
sis methods that are capable of reliably detecting errors and thus ensure the high reliability
of the program.

However, a hard challenge in formal analysis is dealing with infinite-state systems. Regular
model checking (RMC) is a technique for analyzing such systems where the infinite-state
space can arise due to dealing with, e.g. unbounded queues, parameters, dynamically linked
data structures, recursive procedures, or strings. The last-mentioned feature is of particu-
lar interest for this work, because it concentrates on programs handling strings. Programs
manipulating with strings deserve special attention, e.g., because of the danger of attacks
with Cross-site scripting (XSS). These attacks allow attackers to inject scripts into web
pages used by other users.

Although RMC is quite powerful, there is no proper implementation of RMC that would
contain all state-of-the-art results from the area of automata. Moreover, we do not have
any solid finite automata (FA) library that would provide an implementation of string ope-
rations, used in string programs, over FA, which is needed for implementing RMC on such
programs. We have only one prototype of such a library, which is the ASMA tool imple-
mented by Michal Kotoun for his master thesis [7].

Currently existing approaches how to analyze programs with strings (other than the RMC-
-based approach of ASMA) are either requiring cooperation with users to create some verifi-
cation conditions, invariants, etc. or they are inaccurate. In particular, they are inaccurate
either in the sense of reporting false errors or they are set to report less which can result
in skipping real errors. So, we can use an approach that requires a non-negligible human
help, perform inaccurate fully automatic static analysis, or go for something in the middle
which can hopefully be RMC.

The general aim of this work is to improve the ASMA tool. More concretely the first goal
of this work was to learn about the area, to understand algorithms working with automata,
and to get acquainted with the ASMA tool, which uses the Microsoft Automata library,
developed by Margus Veanes. The second goal was to identify weaknesses of ASMA and
then propose and implement improvements, with a stress on the correctness of the imple-
mentation, its efficiency, and maintainability.
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As part of the fulfillment of our goals, we proceeded as follows: we analysed the source code
of ASMA and ran analyses of all available program examples. Using a profiling tool, we
analysed major bottlenecks in the run of ASMA on all examples. It turned out, that the
major parts slowing the ASMA tool were the reverse concatenation creating an enormous
number of epsilon transitions, and reduction algorithms taking too many resources and
time to compute.

Responding to the mentioned inefficiency of the reduction algorithms in ASMA, one of the
results of this work is the integration of the AutomatonSimulation library from Juraj Síč into
the ASMA tool. This library contains methods for computing simulations for reducing au-
tomata using these simulations. These simulations allow us to work with non-deterministic
automata. The introduction of the simulation reductions required some changes in the
architecture of ASMA, which allow us to choose between these algorithms and the classical
approach based on determinization and minimisation as well as using bisimulation-based
reductions present already in ASMA. After the integration, we had to upgrade the logging
system and AsmaCLI commands. The result is that the user can now freely choose which
reduction should be used both during an ARMC run (for all counted automata) as well as
on a given automaton in the AsmaCLI. We also added the possibility for users to preview
automata after each step of the analysis without hard work.

Our next step was to benchmark all examples with all available reductions. This led to cre-
ating a custom testing command within the ASMA environment which can run the analysis
for all given programs with all specified reduction types. Unfortunately, the resulting com-
parison of the reduction algorithms showed us that these new reduction algorithms were
too slow for all examples we analyzed. However, they may have potential in the future. We
have also performed some minor optimizations such as adding some extra caching of results
in critical parts and removal of useless parts of the code or using reductions in proper places.
These optimizations had quite a significant impact on the speed of the program analysis
even when using the classical approach based on determinization and minimisation.

The last and the most important result of this work is the creation of an optimized reverse
concatenation operation. We created four prototypes with gradually improving efficiency.
Altogether, we reduced the running time by over 90 % for analysis of programs where bigger
automata take their place.

The rest of the thesis is structured as follows: In Chapter 2 we will introduce the basic
concepts of automata and transducers which are necessary for understanding the abstract
regular model checking. Chapter 3 contains information about the ASMA tool and a de-
scription of our steps during its analysis. We propose our improvements of ASMA in
Chapter 4 and we described progress in the development of the ASMA tool in Chapter 5.
At the end of this thesis there is a conclusion with future steps in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we introduce the basics of both classical FAs as well as SAs and FTs. This
chapter is based on [8, 5, 7, 9, 10].

2.1 Alphabets, Strings, and Languages
An alphabet Σ is a finite, nonempty set of elements, which are called symbols. An example
of an alphabet containing symbols 𝑎, 𝑏, 𝑐, 𝑑 is Σ = {𝑎, 𝑏, 𝑐, 𝑑}.

𝜖 is an empty string over Σ, 𝜖 /∈ Σ , which contains no symbols. For 𝑎 ∈ Σ and 𝑥, 𝑦 ∈ Σ*,
we define (𝑎𝑥).𝑦 = 𝑎(𝑥.𝑦), and we set (𝜖.𝑥 = 𝑥.𝜖 = 𝑥) for any 𝑥 ∈ Σ*. If 𝑥 is a string over
Σ and 𝑠 ∈ Σ, then 𝑥𝑠 is a string over Σ. The length of a string x denoted as |𝑥| is 0 for 𝑥 = 𝜖
or 𝑥 = 𝑎𝑥′ for some 𝑎 ∈ Σ ∧ 𝑥′ ∈ Σ* and |𝑥| = 1 + |𝑥′|. The power of a string 𝑥 is denoted
as 𝑥𝑖 where 𝑖 is the power number. If 𝑖 = 0, then 𝑥0 = 𝜖, else 𝑥𝑖 = 𝑥𝑥𝑖−1. The reverse
string 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥) is defined such that 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝜖) = 𝜖, and 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑠1 ... 𝑠𝑛) = 𝑠𝑛 ... 𝑠1
where 𝑠1 ... 𝑠𝑛 ∈ Σ, 𝑛 ≥ 1.

Let Σ* denote the language of all strings over Σ and Σ+ the language of all non-empty strings
over Σ. (Σ+ = Σ*−{𝜖}) Then every subset 𝐿 ⊆ Σ* is a language over Σ. A finite language
contains a finite number of strings, otherwise it is infinite. Special languages include 𝐿1 = ⊘
(the finite empty language) and 𝐿2 = {𝜖} (the finite language containing empty string.)
Let 𝐿3, 𝐿4 be languages over Σ. Their concatenation is 𝐿3.𝐿4 = {𝑥𝑦|𝑥 ∈ 𝐿3, 𝑦 ∈ 𝐿4}, and
their difference is 𝐿3 ∖ 𝐿4 = {𝑥|𝑥 ∈ 𝐿3, 𝑥 /∈ 𝐿4}.

2.2 Regular Expressions (REs)
Regular expressions over Σ and the languages they denote are defined as follows:

• ⊘ is an RE denoting 𝐿 = ⊘,

• 𝜖 is an RE denoting 𝐿 = {𝜖},

• 𝑎, 𝑎 ∈ Σ is an RE denoting 𝐿 = {𝑎}.

• Let 𝑒1 and 𝑒2 be regular expressions denoting 𝐿1 and 𝐿2, then:

∘ (𝑒1.𝑒2) is an RE denoting 𝐿 = 𝐿1𝐿2,
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∘ (𝑒1 + 𝑒2) is an RE denoting 𝐿 = 𝐿1 ∪ 𝐿2,

∘ (𝑒+1 ) is an RE denoting 𝐿 = 𝐿+
1 ,

∘ (𝑒*1) is an RE denoting 𝐿 = 𝐿*
1.

∘ There in no other way how an RE can be defined.

An example of the RE can be (𝑎.𝑏*)++ 𝑐. For example contains, for example, these strings:
𝑎, 𝑎𝑏𝑏𝑏, 𝑎𝑏𝑎𝑏, 𝑐.

2.3 Finite Automata (FAs)
We use FAs as another way to represent regular languages. An FA is a 5-tuple 𝑀 =
(𝑄,Σ, 𝑅, 𝑠, 𝐹 ) where:

• 𝑄 is a finite set of states,

• Σ is an input alphabet,

• 𝑅 is a finite set of rules of the form: 𝑝𝑎→ 𝑞, where 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ,

• 𝑠 ∈ 𝑄 is an initial state,

• 𝐹 ⊆ 𝑄 is a set of final states.

• We can replace the set of rules R by a transition function 𝛿 : 𝑄× Σ → 2𝑄.

The below notions are used in following text.

A state is non-terminating if there is no possibility to accept anything starting from it using
any sequence of rules ∈ 𝑅, and a state is called inaccessible if we cannot get from 𝑠 into it
using any sequence of rules ∈ 𝑅.

The language of an FA is defined as 𝐿(𝑀) = {𝑤 ∈ Σ* | ∃𝑞𝑓 ∈ 𝐹 : 𝑠
𝑤−→ 𝑞𝑓}, 𝑤 are strings

accepted by 𝑀 . The forward state language is defined as 𝐿(𝑀, 𝑞) = {𝑤 ∈ Σ* | ∃𝑞𝑓 ∈ 𝐹 :

𝑞
𝑤−→ 𝑞𝑓} where 𝑞 ∈ 𝑄. The backward state language is ⃗𝐿(𝑀, 𝑞) = {𝑤 ∈ Σ* | 𝑠 𝑤−→ 𝑞}

where 𝑞 ∈ 𝑄. Two states 𝑝, 𝑞 ∈ 𝑄 are indistinguishable if they have the same forward state
languages.

2.3.1 Types of FAs

We call an FA 𝜖-free if the following holds: ∀(𝑝𝑎→ 𝑞) ∈ 𝑅: 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ. A deterministic
FA (DFA) is then an 𝜖-free FA where ∀𝑞 ∈ 𝑄, ∀𝑎 ∈ Σ there is at most one transition. A DFA
is complete if the following holds: ∀𝑞 ∈ 𝑄,∀𝑎 ∈ Σ exists at least one rule 𝑝𝑎 → 𝑞 ∈ 𝑅,
𝑞 ∈ 𝑄 We can get a complete DFA from a DFA by adding one non-terminating state 𝑝𝑡𝑟𝑎𝑝
with a ”self loop on the whole Σ“ (∀𝑎 ∈ Σ: 𝑝𝑡𝑟𝑎𝑝𝑎 → 𝑝𝑡𝑟𝑎𝑝). If a complete DFA has no
inaccessible state and has at most one non-terminating state, it is called a well-specified
FA (WSFA). If a WSFA does not contain any indistinguishable states, we call it a minimal
FA. A non-deterministic FA (NFA) is an FA which is not a DFA.

An example of a DFA is shown in Figure 2.3a, and an example of an NFA is shown in
Figure 2.1.
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Figure 2.1: An example of an NFA accepting the language given by the RE: 𝑎.((𝑏+.𝑐) +
(𝑑.(𝑒+ 𝑓)))
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Figure 2.2: An example of a DFA accepting the language of same RE as the NFA in
Figure 2.1

2.3.2 Effective Boolean Algebras

This definition of an effective Boolean algebra (EBA) is taken from the article [10].

An effective Boolean algebra A has components (D,Ψ, [[_]],⊥,⊤,∨,∧,¬) where D is a uni-
verse of underlying domain elements. Ψ is a set of unary predicates closed under the
Boolean connectives ∨,∧ : Ψ×Ψ → Ψ and ¬ : Ψ → Ψ; and ⊥,⊤ ∈ Ψ are the false and true
predicates. Values of the algebra are sets of domain elements, and the denotation function
[[_]] : Ψ → 2D satisfies that [[⊥]] = ∅, [[⊤]] = D, and for all 𝜙,𝜓 ∈ Ψ, [[𝜙 ∨ 𝜓]] = [[𝜙]] ∪ [[𝜓]],
[[𝜙 ∧ 𝜓]] = [[𝜙]] ∩ [[𝜓]], and [[¬𝜙]] = D ∖ [[𝜙]]. For 𝜙 ∈ Ψ, we write Sat(𝜙) when [[𝜙]] ̸= ∅,
and we say that 𝜙 is satisfiable. We require that Sat as well as ∨, ∧, and ¬ are computable
as a part of the definition of an effective Boolean algebra. We write 𝑥 |= 𝜙 for 𝑥 ∈ [[𝜙]]
and we use A as a subscript of a component when it is not clear from the context, e.g.,
[[_]]A : ΨA → 2DA .
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2.3.3 Symbolic Automata (SAs)

One of the drawbacks of FAs is that they do not scale well for large alphabets. Symbolic
automata allow us to replace individual characters with sets of characters so we are able
to group a large number of transitions into one. These transitions have to have the same
target and source state.

Effective Boolean algebras provide a basis for defining symbolic automata.

An SA is a 5-tuple 𝑀 = (𝑄,𝐴, 𝛿, 𝑠, 𝐹 ) where:

• 𝑄 is a finite set of states,

• 𝐴 is an EBA such that:

∘ 𝐷𝑜𝑚𝑎𝑖𝑛𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐴) = Σ𝐴 is an input symbol alphabet,

∘ 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝐴) = Ψ𝐴 is a guard alphabet,

∘ [[...]]𝐴 = Ψ𝐴 → 2Σ𝐴 ,

• 𝛿 is a function 𝛿 : 𝑄×Ψ𝜖 → 2𝑄,

• 𝑠 ∈ 𝑄 is an initial state,

• 𝐹 ⊆ 𝑄 is a set of final states.

𝑞0start
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e
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k

(a) An example of a DFA accepting the lan-
guage of the RE:
([𝑎− 𝑐].[𝑔 − 𝑖].𝑘)*.[𝑑− 𝑓 ]

𝑞0start

𝑞1

𝑞2

𝑞3

[a-c]
[d-f]

[g-i]

k

(b) An example of an SA accepting the lan-
guage of same RE as the DFA in Figure 2.3a

Figure 2.3: An SA example

2.4 Finite State Transducers (FTs)
An FT describes a binary relation between strings of two languages. It is a form of au-
tomaton with one input and one output tape.

Let 𝑤 ∈ Σ* be a string then the FT 𝑇 can translate this string into other strings. This
translation is the relation which 𝑇 represents.

An FT is a 6-tuple 𝑇 = (𝑄,Σ,Ω, 𝛿, 𝑠, 𝐹 ) where:

• 𝑄 is a finite set of states,

• Σ is an input alphabet,
8



• Ω is an output alphabet,

• 𝛿 is a transition relation such that 𝛿 ⊆ 𝑄× (Σ ∪ {𝜖})× (Ω ∪ {𝜖})×𝑄,

• 𝑠 ∈ 𝑄 is an initial state,

• 𝐹 ⊆ 𝑄 is a set of final states.
An 𝜖-move is a transition in 𝛿 which does not read nor write a symbol.

An example of an FT is shown in Figure 2.4

A deterministic transducer (DFT) is an 𝜖-free FT where ∀𝑞 ∈ 𝑄, ∀𝑎 ∈ Σ, ∀𝑏 ∈ Ω ∪ {𝜖}
there is at most one transition. A non-deterministic FT (NFT) is an FT which is not a DFT.

𝑞0start 𝑞1

𝑞3

𝑞4

𝑞5𝑞6
a/i

b/j

d/l

c/k

e/m

Figure 2.4: A DFT translating the language of the RE 𝑎.((𝑏.𝑐) + (𝑑.𝑒)) into the language
of the RE 𝑖.((𝑗.𝑘) + (𝑙.𝑚))

2.5 Automata Reverse Concatenation
We are using an automata reverse concatenation in the ASMA tool for the backward run
during program analysis. Firstly we are creating a concatenation of the prefix and suffix
automata, then we come back with this concatenation (target automaton), which can be
modified. The purpose of this automata reverse concatenation operation is to find two
automata representing our new prefix and suffix for continuing in the program analysis.

An automata concatenation is an operation that, for given FAs 𝐴1, 𝐴2, produces an FA 𝐴
such that 𝐿(𝐴) = 𝐿(𝐴1).𝐿(𝐴2). Note that the operation is defined as non-deterministic
since we do not require it to return any particular 𝐴. We just require the property that
𝐿(𝐴) = 𝐿(𝐴1).𝐿(𝐴2) holds.

An automata reverse concatenation is the reverse operation of automata concatenation.
This operation has tree inputs: a prefix automaton (P), a suffix automaton (S), and a
target automaton (T) and produces two automata, namely, a reverted prefix (RP) and a
reverted suffix (RS). RP and RS are the smallest sets such that, the following holds:

1. Both the reverted prefix and reverted suffix must be subsets of the original prefix and
suffix.

2. Some prefixes and suffixes can be missing, but anytime some prefix p and suffix s
are such that, their concatenation is in the target, the prefix p and suffix s must be
present.
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1. 𝐿(𝑅𝑃 ) ⊆ 𝐿(𝑃 ) ∧ 𝐿(𝑅𝑆) ⊆ 𝐿(𝑆)

2. ∀𝑝 ∈ 𝐿(𝑃 ), ∀𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 ∈ 𝐿(𝑇 ) ⇒ 𝑝 ∈ 𝐿(𝑅𝑃 ) ∧ 𝑠 ∈ 𝐿(𝑅𝑆)

From this definition, we can create conditions for result automata correctness testing. Lets
modify second part:
¬¬(∀𝑝 ∈ 𝐿(𝑃 ), ∀𝑠 ∈ 𝐿(𝑆) : ¬(𝑝.𝑠 ∈ 𝐿(𝑇 )) ∨ (𝑝 ∈ 𝐿(𝑅𝑃 ) ∧ 𝑠 ∈ 𝐿(𝑅𝑆)))

¬(∃𝑝 ∈ 𝐿(𝑃 ), ∃𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 ∈ 𝐿(𝑇 ) ∧ (𝑝 /∈ 𝐿(𝑅𝑃 ) ∨ 𝑠 /∈ 𝐿(𝑅𝑆)))

¬(∃𝑝 ∈ 𝐿(𝑃 ), ∃𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 ∈ 𝐿(𝑇 ) ∧ 𝑝 /∈ 𝐿(𝑅𝑃 ))
∧¬(∃𝑝 ∈ 𝐿(𝑃 ), ∃𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 ∈ 𝐿(𝑇 ) ∧ 𝑠 /∈ 𝐿(𝑅𝑆))

¬(∃𝑝 ∈ (𝐿(𝑃 ) ∖ 𝐿(𝑅𝑃 )),∃𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 ∈ 𝐿(𝑇 ))
∧¬(∃𝑝 ∈ 𝐿(𝑃 ), ∃𝑠 ∈ (𝐿(𝑆) ∖ 𝐿(𝑅𝑆)) : 𝑝.𝑠 ∈ 𝐿(𝑇 ))

∀𝑝 ∈ (𝐿(𝑃 ) ∖ 𝐿(𝑅𝑃 )), ∀𝑠 ∈ 𝐿(𝑆) : 𝑝.𝑠 /∈ 𝐿(𝑇 )
∧∀𝑝 ∈ 𝐿(𝑃 ),∀𝑠 ∈ (𝐿(𝑆) ∖ 𝐿(𝑅𝑆)) : 𝑝.𝑠 /∈ 𝐿(𝑇 )

(𝐿(𝑃 ) ∖ 𝐿(𝑅𝑃 )).𝐿(𝑆) ∩ 𝐿(𝑇 ) = ⊘ ∧ 𝐿(𝑃 ).(𝐿(𝑆) ∖ 𝐿(𝑅𝑆)) ∩ 𝐿(𝑇 ) = ⊘

So result automata are not correct if one of following conditions holds:

1. The reverted prefix is not subset of the prefix.

2. The reverted suffix is not subset of the suffix.

3. The intersection of the target and the concatenation of the prefix without reverted
prefix with the suffix is not empty.

4. The intersection of the target and the concatenation of the prefix with the suffix
without reverted suffix is not empty.

1. ¬𝐿(𝑅𝑃 ) ⊆ 𝐿(𝑃 )

2. ¬𝐿(𝑅𝑆) ⊆ 𝐿(𝑆)

3. (𝐿(𝑃 ) ∖ 𝐿(𝑅𝑃 )).𝐿(𝑆) ∩ 𝐿(𝑇 ) ̸= ⊘

4. 𝐿(𝑃 ).(𝐿(𝑆) ∖ 𝐿(𝑅𝑆)) ∩ 𝐿(𝑇 ) ̸= ⊘

2.6 (Abstract) Regular Model Checking
Model checking (MC) is a technique for verifying whether a finite-state model of a system
meets a given specification. The problem is that these days we need to deal with infinity
which can be caused, e.g. by some abstract data types or by recursive procedures. One
way how to verify infinite-state systems is to use Regular model checking (RMC). Regular
model checking is a successful symbolic verification method using FAs to deal with infinity.

One type of RMC is Abstract regular model checking (ARMC) which can analyze more
systems than regular model checking because it uses abstraction for acceleration which
reduces the problem of an explosion that can occur while analyzing infinite-state systems.
We also use abstraction to ensure termination of reachability computation. For abstraction,
there are various techniques. ASMA tool uses so-called predicate abstraction, which is based
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on collapsing states. These techniques are described in more detail in the thesis written by
Michal Kotoun [7].

To check the system, we need the set of initial states, something to represent transitions
such as transducer or specializes transitions implemented as automata operations, and
something representing all bad states. Let’s have a simple token passing protocol. This
protocol has the alphabet: Σ = {𝑁,𝑇}, the set of initial states (in RE): 𝑇.𝑁*, bad states
(in RE): ((𝑇 + 𝑁)*.𝑇.𝑁*.𝑇.(𝑇 + 𝑁)*) + 𝑁*. This RE says that we can not have system
without any token, and that we can not have more than one token in the system regardless
of their position. And we also need the transducer representing token shifting described
in Figure 2.5b. Now we can check this protocol by applying the transducer to its set of
initial states, abstracting it, and then checking the intersection with bad states. In the
next step, we apply the transducer to the new set of states and repeat until the next set of
abstracted states is not different from the previous and has no intersection with bad states.
In our example we get Figure 2.5c after the first iteration each next iteration is equal to
Figure 2.5d.
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(a) An initialization state of a token-passing
protocol
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(b) A DFT of a token-passing protocol
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(c) The DFT from Figure 2.5b applied on
initialization state from Figure 2.5a
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(d) The DFT from Figure 2.5b applied on ini-
tialization state from Figure 2.5a more times
and minimized
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(e) Bad states of a token-passing protocol

Figure 2.5: An example of a token-passing protocol inspired by article [4]
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Chapter 3

ASMA and Its Analysis

In this chapter, we will cover the basics of the ASMA tool and its usage. This chapter is
based on [7].

3.1 ASMA
The ASMA tool is software written in the C# programming language. It implements ana-
lysis of programs with strings based on ARMC. ASMA stands for Automata for String
Manipulation analysis. This tool was implemented by Michal Kotoun on top of the Au-
tomata library [1] written by Margus Veanes for Microsoft.

The source code of the ASMA project is written in C#8 and is compatible with .NET Stan-
dard 2.0, .NET 4.7.2, and .NET Core 3.0 or higher. Repositories containing this ASMA
project1 as well as a modified fork of the Automata library2 are on the private VeriFIT
Github repository.

There are three main sub-projects of the ASMA tool: AsmaLib, AsmaSymExec, and Asma-
CLI.

AsmaLib extends the functionality of the Automata library with general-use functionality
for working with symbolic finite automata and restricted symbolic finite transducers in
(A)RMC. The AsmaLib project allows ASMA to have implementations of algorithms for
ARMC-based program analysis, e.g. abstraction. More details can be found in the thesis
written by Michal Kotoun [7].

In the ASMA symbolic execution project (AsmaSymExe) there are sets of operations for
forward and backward runs of program analysis that allow us to analyze programs ma-
nipulating with strings using Counter-example guided abstraction refinement which is well
described in the thesis [7]. AsmaSymExec also contains a parser for the intermediate code
of programs and their representation.

The AsmaCLI project implements the command-line interface (CLI) of the ASMA tool. It
contains many commands, e.g., for constructing symbolic finite automata or loading them
from a file, constructing an intersection of two SFAs, printing them, or running the whole
analysis. In the ASMA CLI, there is also the possibility to run the command ”interactive“

1Viz https://github.com/VeriFIT/ASMA
2Viz https://github.com/VeriFIT/Automata
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switching AsmaCLI into the interactive mode which means that the user can type multiple
ASMA commands without the need to run the CLI for typing each new command. This
mode has the possibility of turning on stepping for the analysis of programs. There is
a manual listing of AsmaCLI statements in Appendix A.

3.2 Analysis of ASMA
One of our goals was to identify weaknesses of the ASMA tool through experiments as well
as studying its code. We should have focused on the way how various special operations on
symbolic automata are implemented and on the used automata reduction methods.

3.2.1 Analysis of the Source Code

At first glance, there were some shortcomings in the AsmaCLI. We wanted to see automata
after each step of the analysis and after each command in an interactive mode which meant
typing another command to save these automata into files and then open these files in the
Visual Studio Code3 or in the Visual Studio4. There was no switch to turn on automatic
saving or previewing of automata in the AsmaCLI.

We were also missing some option to work with non-deterministic automata because the
automata reduction was always done by determinization and minimization.

At this point, we saw some opportunities to improve the ASMA tool by adding a parameter
to the analysis that would allow one to save and preview automata during analysis and by
adding further reduction algorithms that would allow the ASMA tool to work with non-
deterministic automata. This also mean giving an option to users to choose between those
reduction algorithms directly from the AsmaCLI.

3.2.2 Experiments and Profiling

After the analysis of the ASMA source code, we moved into playing with the tool and
trying to understand its possibilities. The first thing we did was simply run some analyses
on examples mentioned in the master thesis written by Michal Kotoun. The following list
of program examples (translated intermediate code from php by Michal Kotoun for com-
paring the ASMA tool to the Stranger tool5) was found and became our testing data set
for future bench-marking: stranger-01-sanit, stranger-11-vuln, stranger-12-sanit,
stranger-21-vuln, stranger-22-sanit, stranger-31-vuln, stranger-32-vuln, stran-
ger-33-vuln, stranger-34-sanit, stranger-35-vABS, stranger-35-vuln, stranger-
-36-vuln, stranger-41-vuln, stranger-42-sanit.

We were able to successfully run an analysis of each of these programs so we started with
profiling. The main problems were the reverse concatenation opetarion (described in Sec-
tion 2.5) and automata reductions which took a significant amount of time and computer
resources. An important part of the profiling output is in Table 5.4, where almost 80 % of
all resources are used by the reverse concatenation operation.

3Viz https://code.visualstudio.com
4Viz https://visualstudio.microsoft.com
5Viz https://vlab.cs.ucsb.edu/stranger/
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All analyses of examples and experiments were run with the same conditions on a PC with
Windows 10, AMD Ryzen 5 3600, 48 GB RAM, GTX 1080, and an SSD disk.

After detecting the main bottlenecks, we tried to find their cause. The cause of the main bot-
tleneck was the ASMA’s original reverse concatenation operation which was implemented
by Michal Kotoun to replace transitions with epsilons instead of creating new epsilon-free
automata. (This original implementation is described in Subsection 4.2.1.) Moreover, the
automata reduction was fixed to automata determinization and minimization. ASMA was
also calling these reductions on not optimal places and had some not optimal heuristics
slowing this tool for these reductions.

ASMA tool allows one to save automata in any part or analysis into a file with format .dot
or .dgml. These data can be graphically represented in both Visual Studio (.dgml format)
or Visual Studio Code with the extension Graphviz Interactive Preview186 (.dot format).
This extension can do a quick re-rendering of automata stored in a .dot file in addition
to Visual Studio. Because of this Visual Studio Code was chosen for live visualization of
automata created during ASMA tool analysis.

Using this tool we were able to visualize and confirm that reverse concatenation operation
is only replacing transitions with epsilons. Figure 3.1 is a screenshot of a visualization of a
simple reverse concatenation operation in Visual Studio Code.

6Viz https://github.com/tintinweb/vscode-interactive-graphviz
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Figure 3.1: An example of automata after the original reverse concatenation operation. In the screenshot there are shown five automata:
prefix, suffix, target, reverted prefix and reverted suffix after the first occurred computation of the reverse concatenation operation in
an analysis of stranger-12-sanit program. We can notice how the original reverse concatenation operation implementation creates
𝜖-transitions on the created reverted automata.



Chapter 4

Proposed Improvements

In this chapter, we will move from the analysis of the ASMA tool to all proposed improve-
ments and describe them.

4.1 Reduction Algorithms
First of all, we wanted to add more types of reduction algorithms to allow one to run ana-
lysis with non-deterministic automata. We could do both: implement new algorithms or
search for some existing ones. Fortunately, we managed to find an existing library with
implementations of simulation reductions developed by Juraj Síč for his bachelor thesis [9].
This SymbolicSimulation library is available at a bitbucket repository1.

Our first improvement was thus an integration of this library into the ASMA tool. The
benefits consist in a possibility for user to freely choose which reduction algorithm should be
used both during an ARMC run (for all counted automata) as well as on a given automaton
in the AsmaCLI. Each reduction such as bisimulation and simulation are computed in a dif-
ferent way and can produce different results. There is an example of these two reductions
in Figure 4.1. The figure illustrates that each type of reduction can indeed reduce automata
differently.

Due to our work, ASMA now offers not only the original reductions (Determinization
+ Minimization, Bisimulation) but also (Local simulation, Local simulation
optimized, Simulation no count no opt, Simulation no count, Global simu-
lation) that we added and that are defined in the thesis written by Juraj Síč [9].

So there are in the ASMA tool three new algorithms for computing simulation preorder on
SFAs. First one, algorithm Global simulation, which is based on global mintermization.
Second one, algorithm Simulation no count which do not use mintermization but only
the capabilities of symbolic automata and its optimized version. The last one, algorithm
Local simulation which is a modification of algorithm Simulation no count that uses
local mintermization and its optimized version. This description was taken from the thesis
written by Juraj Síč [9].

There is also a possibility to improve reductions even more in this tool. The next future
work on ASMA can be an implementation of combined reduction algorithms which are

1Viz https://bitbucket.org/jsic/symbolicsimulation/src/master/
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Figure 4.1: An example of automata after bisimulation and simulation reduction of au-
tomaton from Figure 4.1a.

described in [2] and [6]. The next huge potential lies in antichain based inclusion checking.
There is more info about them in [3] and [6].

4.2 Reverse Concatenation Operation
After new algorithms for automata reduction were added, tested, and evaluated, we wanted
to create a new implementation of the reverse concatenation operation which would not
create epsilon transitions. The original version is described in Subsection 4.2.1. Because we
have not found any implementations of this operation that we could use for our inspiration,
we proposed several gradually improving versions ourselves. They are more optimized for
ASMA and are described below.

To be sure that the new approaches are working properly, we proposed self-tests for their
testing and comparing the results with the original implementation.

This operation as well as self-tests are described in Subsection 2.5.

4.2.1 The Original Implementation

The original implementation written by Michal Kotoun for his thesis [7] is much simpler
than our approaches. Algorithm 1 describes this approach. On the first line, there is
a creation of a parser for the reverted prefix which is a concatenation of a prefix identity
transducer and a suffix epsilon transducer. The second line is the same for the reverted
suffix but it is a concatenation of a prefix epsilon transducer and a suffix identity transducer.
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Algorithm 1: An algorithm of the reverse concatenation operation original implementation
Input: Prefix NFA (P), Suffix NFA (S). Target NFA (T)
Output: Reverted Prefix NFA (RP), Reverted Suffix NFA (RS)

1 Pparser := P.MakeIdentityTransducer().Concat(S.MakeEpsilonTransducer())
2 Sparser := P.MakeEpsilonTransducer().Concat(S.MakeIdentityTransducer())
3 RP := Pparser.ApplyOn(T)
4 RS := Sparser.ApplyOn(T)
5 return (RP.RemoveEpsilons(), RS.RemoveEpsilons())

These two parsers are then applied on the target for reverted automata creation (lines 3, 4).
On the last line are the reverted automata stripped of epsilon transitions and returned.

An example how the original version of the reverse concatenation operation creates 𝜖-tran-
sitions can be seen in Figure 3.1

4.2.2 The First New Approach

Our first approach is creating reverted automata without 𝜖-transitions and dead states.
This approach performs only one simultaneous forward run in the prefix NFA concatenated
with suffix NFA and the target NFA which is similar to a depth-first algorithm. This one
forward run is shown in Figure 4.2. Each visited state is extended with a structure for
storing all data we need to create reverted automata.

1 1

1

Prefix NFA Suffix NFA

Target NFA

Figure 4.2: The illustration of all runs in automata by our first approach. The symbol 1
in the red circle illustrates the single simultaneous forward run through the automata. In
later figures, more lines of this kind will appear.

In this first approach, we firstly define many auxiliary variables, structures, arrays, and
dictionaries for storing data about paths in automata, moves, and states such as state id,
information if a state or some path leads to the end or if the state is final and data repre-
senting paths of loops. To explain what a loop stands for, we present Figure 4.3 with some
loops. Each move has a source state, a target state, and label. The source state and the
target state are synchronized states in the prefix or suffix and target automata.

We present our top-level pseudo-code of Algorithm 2 describing our approach of the reverse
concatenation operation.

In Algorithm 2, we initiate a forward run with the initial state in the prefix and the target
NFAs on the first line. On the second line, there is a check if we were here before. If no
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Figure 4.3: An example of loops in an automaton. There are loops outgoing from states q0
(q0 - q0), q1 (q1 - q4 - q1), and q3 (q3 - q7 - q8 - q2 - q3).

Algorithm 2: The first proposed version of the reverse concatenation operation.
Input: Prefix NFA (P), Suffix NFA (S). Target NFA (T)
Output: Reverted Prefix NFA (RP), Reverted Suffix NFA (RS)
// Perform a depth-first simultaneous forward run through P implicitly concatenated

with S and T.
1 foreach state in run do
2 if state is not noted then
3 Store info about sate and move
4 else if loop detected then
5 Store path of the loop
6 if state is final or leading to the end then
7 Save info about current path

8 foreach loop in detected loops do
9 if init. state of loop will be in RP or RS then

10 Save info about the loop path

11 Create initial state for RS
12 Construct RP from stored data
13 Construct RS from stored data
14 return (RP, RS)

(line 3), we store info about this state (noting state means storing an info about it into
auxiliary variables), the move into this state and we also check if this state is final (final in
the suffix and the target.) If yes or if is leading to the end, we copy the missing part of the
current path into auxiliary variables for the future reverted automata generation and store
info that each state in the current path leads to the end. Line 5 says that, if we were in
this state before, we are storing all info about this new loop, which is all states and moves
in the whole path of the loop.

On lines 6 and 7, there is a check if the state in the forward run is final. If yes, we store
info about it into auxiliary variables (that it is a final state), and once again, we copy the
missing part of the current path into auxiliary variables for the future reverted automata
generation which is on lines 12, 13 and store info that each state in the current path leads
to the end.

After the forward run, we need to process detected loops. So on lines 8, 9, and 10, we
check if any state of the loop will be generate in the reverted automata generation, for each
loop. If yes, we copy the loop path into auxiliary variables for the future reverted automata
generation.
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On line 11, there is a creation of the reverted suffix initial state. This implementation
of the reverse concatenation operation can create many potentially initial states for the
reverted suffix. We have to have only one, so we copy all moves from each potentially
initial suffix state into one new state. This new state will be the initial one. We also
remove all potentially initial states which are not the target of any transition for any state
in the reverted suffix. This process is described in more details in Subsection 11 but without
removing dead states.

Lines 11 and 12 generate the reverted prefix and reverted suffix. We have to provide from
the auxiliary variables an initial state, array of final states, and moves in the automaton to
generate each reverted automaton. This automaton generation is done by the Automata
library. These generated automatons are returned on line 14.

We reached quite some speedup after implementing the first approach as shown in Table 4.1
see in particular columns: R.C. Old and R.C. 1, but the profiler showed us that this
operation is still really expensive in the context of our benchmarks. The main cause is
storing all data about each state and move which is less effective than making multiple
runs through the automata.

4.2.3 The Second Approach

So we decided to continue improving this implementation and the result was a new pro-
posed approach described in Algorithm 3 which is based on multiple forward and backward
runs in automata. These forward and backward runs are shown in Figure 4.4. As in the
first approach, we firstly define auxiliary variables, arrays, and hash-sets. The hash-set is
something like an array in C# language but it is much more efficient.

Prefix NFA

4

1

Suffix NFA

3

2

4

1

3

2

Target NFA

Figure 4.4: An illustration of the second proposed approach to reverse concatenation. The
numbers in circles represent the different phases of the approach. Number 1 represents
a simultaneous forward run in the prefix and the target NFAs, 2 represents a simultaneous
backward run in the suffix and the target NFAs, 3 represents a simultaneous forward run
in the suffix and the target NFAs, and 4 represents a simultaneous backward run in the
prefix and the target NFAs.

In Algorithm 3, we firstly perform a simultaneous forward run in the prefix and the target
NFAs on line 1 and a simultaneous backward run in the suffix and the target NFAs on line
2. In the first run, there is only one initial state, but in the second run, there can be plenty
of final states in both automata: in the suffix and the target. So we initiate a backward
run from combinations of all final states in the suffix and the target. In those two runs, we
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Algorithm 3: The second proposed version of the reverse concatenation operation.
Input: Prefix NFA (P), Suffix NFA (S). Target NFA (T)
Output: Reverted Prefix NFA (RP), Reverted Suffix NFA (RS)

1 Perform simultaneous forward run in P and T
2 Perform simultaneous backward run in S and T
3 Get connection states between P and S
4 Perform simultaneous forward run in S and T
5 Perform simultaneous backward run in P and T
6 Create initial state for RS
7 Construct RP from stored data
8 Construct RS from stored data
9 return (RP, RS)

only store states we went through, all final states in the first run and all initial states in
the second run. On line 3, we create transition states which are intersection of those initial
and final states. A state is a transition state if the target state is the same in the suffix
initial state as in the prefix final state.

From these transition states, we perform a simultaneous forward run in the suffix and the
target on line 4 and a simultaneous backward run in the prefix and the target on line 5.
These runs are limited only to go through states we already went through in previous runs.
This will eliminate all dead states and ensure that all states we are going through in these
two runs will be in reverted automata. So we are saving every move and state during these
two runs for the reverted automata generation. The rest is the same as in Algorithm 2.

Unfortunately, the second approach was more than twice slower as the original one according
to Table 4.1. The primary reason for this is the second run, performing the backward run
from the combinations of target final and suffix final states. If we have to initiate that run
from each such a state, it can be really resource-consuming.

4.2.4 The Third Approach

After learning from the mistake in the previous approach, we created another proposed ver-
sion of the approach to handle the reverse concatenation operation. This version is shown
in Algorithm 4 and it is almost the same as the previous Algorithm 3. The main difference
is the order of runs. These runs are shown in Figure 4.5.

Algorithm 4: The third proposed version of the reverse concatenation operation.
Input: Prefix NFA (P), Suffix NFA (S). Target NFA (T)
Output: Reverted Prefix NFA (RP), Reverted Suffix NFA (RS)

1 Perform simultaneous forward run in P and T
2 Perform simultaneous forward run in S and T
3 Perform simultaneous backward run in S and T
4 Perform simultaneous backward run in P and T
5 Create initial state for RS
6 Construct RP from stored data
7 Construct RS from stored data
8 return (RP, RS)
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Figure 4.5: An illustration of the third proposed approach to reverse concatenation. The
numbers in circles represent the different phases of the approach. Number 1 represents
a simultaneous forward run in the prefix and the target NFAs, 2 represents a simultaneous
forward run in the suffix and the target NFAs, 3 represents a simultaneous backward run
in the suffix and the target NFAs, and 4 represents a simultaneous backward run in the
prefix and the target NFAs.

In Algorithm 4, we firstly perform a simultaneous forward run in the prefix and the target
on the first line and a simultaneous run in the suffix and the target on the second line. We
need to remember only all states we went through as in Algorithm 3. The major change
is that we know now which final states in the suffix and the target will be in the reverted
suffix automaton. The next step is to perform further two runs as in Algorithm 3 with the
same purpose. These runs are a simultaneous backward run in the suffix and the target on
line 3 and a simultaneous backward run in the prefix and the target on line 4. The rest is
the same as in Algorithm 2 and in Algorithm 3.

The third version is more than twice faster than the original one and much faster than the
first approach.

4.2.5 The Fourth Approach

We, however, attempted to improve the last approach even more. Our last version of the re-
verse concatenation operation is faster than all previously mentioned approaches and about
75 % faster than the original one on some examples. The comparison is in Table 4.1.

The main difference in this new version compared to the others is that we do not aim
at creating the reverted automata without dead states as can be seen in Algorithm 5 de-
scribed in following paragraphs. Dead states are removed later by Automata library during
the reverted automata generation. This leads to simple runs in automata shown in Figure
4.6 not showing the effect of the later presented heuristics. The third version was creat-
ing something we called ”forks“. There is an example of one fork in the Figure 4.7. It is
simply an automaton with multiple identical paths creating bigger automaton (in our data
sets, created automata are three times or six times bigger.) The cause of this problem are
multiple similar independent paths in the target. This problem was solved in our fourth
approach. The difference can be seen in Table 4.2 in reverted suffix columns for the third
and fourth versions of our approaches.

In Algorithm 5, we first apply some heuristics which can find both reverted automata with-
out the need of performing any simultaneous run in them. (Find a reverted automaton

22



1 2

1 2

Prefix NFA Suffix NFA

Target NFA

Figure 4.6: An illustration of the fourth proposed approach to reverse concatenation. The
numbers in circles represent the different phases of the approach. Number 1 represents
a simultaneous forward run in the prefix and the target NFAs, and 2 represents a simulta-
neous forward run in the suffix and the target NFAs.
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Figure 4.7: An example a fork automaton.

means to construct it.) On the first and second line, we are trying to find reverted au-
tomata. If we find both of them, we are returning them on line 4. Both heuristics are
focused on automata with only one path in them.

If we did not find the reverted prefix, we have to perform one simultaneous forward run in
the prefix and the target on line 6. In this run, we are storing info about each state and
move for the reverted prefix generation. If we did not find the suffix, we have to perform
one simultaneous forward run in the suffix and the target on line 8 and we are again storing
all that data.

At this moment we have all data we need to create the initial state for the reverted suffix on
line 9 and construct reverted automata on lines 10 and 12 if needed. During this construc-
tion, we simply ask the Automata library to remove dead states. The dead states removal
using this library is much more effective than we achieved in our previous approaches.

We will now provide a detailed description of our most complex version of the reverse con-
catenation operation. The next subsections have similar names as lines in our top-level
Algorithm 5 for easier orientation.

Try to Find Reverted Prefix

First of all, we are trying to find both reverted automata without the need of performing
any simultaneous run in them. To do that in Algorithm 6, we are first checking if the prefix
automaton has only one state which is also the final state, and no moves (as in Figure 4.9a)
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Algorithm 5: The fourth proposed version of the reverse concatenation operation.
Input: Prefix NFA (P), Suffix NFA (S). Target NFA (T)
Output: Reverted Prefix NFA (RP), Reverted Suffix NFA (RS)

1 Try to solve RP
2 Try to solve RS
3 if prefixFound ∧ suffixFound then
4 return (RP, RS)
5 if !prefixFound then
6 Perform simultaneous forward run in P and T
7 if !suffixFound then
8 Perform simultaneous forward run in S and T
9 Create initial state for RS

10 Construct RS from stored data and remove dead states
11 if !prefixFound then
12 Construct RP from stored data and remove dead states
13 return (RP, RS)

Table 4.1: A comparison of the original version and all newly proposed optimisations of
the reverse concatenation operation implementation on all stranger examples. Values are
the average time of 10 runs of the whole analysis in [ms]. Algorithms: the original version
(R.C. Old), the first prototype (R.C. 1), the second prototype (R.C. 2), the third prototype
(R.C. 3), the fourth prototype (R.C. 4).

stranger R.C. Old R.C. 1 R.C. 2 R.C. 3 R.C. 4
01-sanit 1 1 1 1 1
11-vuln 28 28 26 26 18
12-sanit 67 57 53 57 66
21-vuln 178 77 169 155 158
22-sanit 544 1,752 1,223 336 1,489
31-vuln 8,030 4,685 14,363 4,407 2,773
32-vuln 25,298 16,619 87,006 8,027 7,724
33-vuln 3,994 4,593 9,878 2,131 1,687
34-sanit 470 433 310 547 1,047
35-vABS 24,079 15,540 63,018 9,262 6,477
35-vuln 42,821 25,638 120,569 13,616 8,654
36-vuln 19,913 21,139 22,263 18,662 18,466
41-vuln 37 37 37 37 39
42-sanit 28 32 28 28 30
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Table 4.2: Statistics of automata attributes during a run of ARMC on one selected example
stranger-35-vuln.asmasym using the different proposed heuristics for the reverse concate-
nation operation. Each line represents the state of automata immediately after the reverse
concatenation operation is completed. Each data cell consists of: | number of states /
number of transitions / count of final states |

prefix suffix target rev. prefix RC3 rev. suffix RC4 rev. suffix
381 / 870 / 1 18 / 17 / 1 3,603 / 15,031 / 6 8,670 / 30,946 / 6 103 / 102 / 6 18 / 17 / 1
208 / 452 / 1 174 / 418 / 1 3,501 / 14,608 / 6 3,943 / 14,562 / 24 4,533 / 15,354 / 6 4,533 / 15,354 / 6
208 / 452 / 1 1 / 0 / 1 341 / 1,005 / 3 483 / 1,334 / 3 1 / 0 / 1 1 / 0 / 1

47 / 46 / 1 162 / 406 / 1 341 / 1,005 / 3 47 / 46 / 1 437 / 1288 / 3 437 / 1,288 / 3
1 / 0 / 1 47 / 46 / 1 47 / 46 / 1 1 / 0 / 1 47 / 46 / 1 47 / 46 / 1

150 / 394 / 1 13 / 12 / 1 295 / 959 / 3 401 / 1,252 / 3 37 / 36 / 3 13 / 12 / 1
137 / 381 / 1 14 / 13 / 1 259 / 839 / 3 332 / 1,075 / 3 40 / 39 / 3 14 / 13 / 1
122 / 366 / 1 16 / 15 / 1 220 / 709 / 3 261 / 887 / 3 46 / 45 / 3 16 / 15 / 1
107 / 351 / 1 16 / 15 / 1 175 / 559 / 3 184 / 675 / 3 46 / 45 / 3 16 / 15 / 1
96 / 285 / 56 12 / 11 / 1 130 / 409 / 3 120 / 399 / 80 35 / 35 / 3 12 / 11 / 1
41 / 40 / 1 56 / 245 / 56 96 / 239 / 56 41 / 40 / 1 57 / 201 / 57 57 / 201 / 57
26 / 25 / 1 16 / 15 / 1 41 / 40 / 1 26 / 25 / 1 16 / 15 / 1 16 / 15 / 1
22 / 21 / 1 5 / 4 / 1 26 / 25 / 1 22 / 21 / 1 5 / 4 / 1 5 / 4 / 1

159 / 403 / 1 16 / 15 / 1 278 / 824 / 3 337 / 1,027 / 3 46 / 45 / 3 16 / 15 / 1
132 / 376 / 1 28 / 27 / 1 233 / 674 / 3 226 / 781 / 3 82 / 81 / 3 28 / 27 / 1
122 / 311 / 56 11 / 10 / 1 152 / 404 / 3 142 / 381 / 76 31 / 30 / 3 11 / 10 / 1

67 / 66 / 1 56 / 245 / 56 122 / 265 / 56 67 / 66 / 1 57 / 201 / 57 57 / 201 / 57
49 / 48 / 1 19 / 18 / 1 67 / 66 / 1 49 / 48 / 1 19 / 18 / 1 19 / 18 / 1
33 / 32 / 1 17 / 16 / 1 49 / 48 / 1 33 / 32 / 1 17 / 16 / 1 17 / 16 / 1
26 / 25 / 1 8 / 7 / 1 33 / 32 / 1 26 / 25 / 1 8 / 7 / 1 8 / 7 / 1
22 / 21 / 1 5 / 4 / 1 26 / 25 / 1 22 / 21 / 1 5 / 4 / 1 5 / 4 / 1

381 / 870 / 1 18 / 17 / 1 3,603 / 15,031 / 6 8,670 / 30,946 / 6 103 / 102 / 6 18 / 17 / 1
208 / 452 / 1 174 / 418 / 1 3,501 / 14,608 / 6 3,943 / 14,562 / 24 4,533 / 15,354 / 6 4,533 / 15,354 / 6
208 / 452 / 1 1 / 0 / 1 341 / 1,005 / 3 483 / 1,334 / 3 1 / 0 / 1 1 / 0 / 1

47 / 46 / 1 162 / 406 / 1 341 / 1,005 / 3 47 / 46 / 1 437 / 1,288 / 3 437 / 1,288 / 3
1 / 0 / 1 47 / 46 / 1 47 / 46 / 1 1 / 0 / 1 47 / 46 / 1 47 / 46 / 1

150 / 394 / 1 13 / 12 / 1 295 / 959 / 3 401 / 1,252 / 3 37 / 36 / 3 13 / 12 / 1
137 / 381 / 1 14 / 13 / 1 259 / 839 / 3 332 / 1,075 / 3 40 / 39 / 3 14 / 13 / 1
122 / 366 / 1 16 / 15 / 1 220 / 709 / 3 261 / 887 / 3 46 / 45 / 3 16 / 15 / 1
107 / 351 / 1 16 / 15 / 1 175 / 559 / 3 184 / 675 / 3 46 / 45 / 3 16 / 15 / 1
96 / 285 / 56 12 / 11 / 1 130 / 409 / 3 120 / 399 / 80 35 / 35 / 3 12 / 11 / 1
41 / 40 / 1 56 / 245 / 56 96 / 239 / 56 41 / 40 / 1 57 / 201 / 57 57 / 201 / 57
26 / 25 / 1 16 / 15 / 1 41 / 40 / 1 26 / 25 / 1 16 / 15 / 1 16 / 15 / 1
22 / 21 / 1 5 / 4 / 1 26 / 25 / 1 22 / 21 / 1 5 / 4 / 1 5 / 4 / 1

159 / 403 / 1 16 / 15 / 1 278 / 824 / 3 337 / 1,027 / 3 46 / 45 / 3 16 / 15 / 1
132 / 376 / 1 28 / 27 / 1 233 / 674 / 3 226 / 781 / 3 82 / 81 / 3 28 / 27 / 1
122 / 311 / 56 11 / 10 / 1 152 / 404 / 3 142 / 381 / 76 31 / 30 / 3 11 / 10 / 1

67 / 66 / 1 56 / 245 / 56 122 / 265 / 56 67 / 66 / 1 57 / 201 / 57 57 / 201 / 57
49 / 48 / 1 19 / 18 / 1 67 / 66 / 1 49 / 48 / 1 19 / 18 / 1 19 / 18 / 1
33 / 32 / 1 17 / 16 / 1 49 / 48 / 1 33 / 32 / 1 17 / 16 / 1 17 / 16 / 1
26 / 25 / 1 8 / 7 / 1 33 / 32 / 1 26 / 25 / 1 8 / 7 / 1 8 / 7 / 1
22 / 21 / 1 5 / 4 / 1 26 / 25 / 1 22 / 21 / 1 5 / 4 / 1 5 / 4 / 1
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(this is done on the first line.) If yes, this state will be also initial for the suffix in the target
and the reverted prefix will be a copy of the prefix. We remember it on lines 2, and 3 and
mark the reverted prefix as found.

Algorithm 6: Try to find the reverted prefix
// We are using global variables from Algorithm 5

1 if P.StateCnt == 1 ∧ P.MoveCnt == 0 then
2 PstatesFwFinal.Add((T.InitialState, P.InitialState))
3 RP = P; prefixFound = true
4 else if P.StateCnt == P.MoveCnt + 1 ∧ P.FinalStatesCnt == 1 then
5 var Pstate = P.InitialState; var Tstate = T.InitialState
6 for int i = 0; i < P.MoveCnt; ++i do
7 var Pmove = P.GetMoveFrom(Pstate)
8 var Tmove = T.GetMoveFrom(Tstate)
9 if not AreEquivalent(Tmove.Label, Pmove.Label) then

10 failure = true; break
11 else
12 Pstate = Pmove.Tstate
13 Tstate = Tmove.Tstate

14 if not failure then
15 PstatesFwFinal.Add((Tstate, Pstate))
16 RP = P; prefixFound = true

If not, we check if it is an automaton with only one final state where each state is at most
a target of one move and a source of one move (as in Figure 4.9b) on line 4. If yes, we set
up auxiliary variables as the initial state in the prefix and the target on line 5. Because we
are working with 𝜖-free FAs with no dead states in this operation, we can do a for cycle on
line 6 to perform a forward simultaneous run in the prefix and the target. Lines 7, and 8
are getting moves from the actual state and on line 9 there is an evaluation of transitions
between the prefix and target moves. If there is no intersection of labels of these two moves,
we set a failure flag which ends this heuristics with no result. If there is any intersection of
these two moves, we move to the next state. If there was no failure in the whole forward
run, we do the same on lines 15, and 16 as on lines 2, and 3.

We created an example for easier understanding of this algorithm. If we apply Algorithm 6
on automata in Figure 4.8, we get the state 𝑡3𝑝3 and store it as a potentially final state in
the prefix and the reverted prefix will be created as automaton in Figure 4.8b. (To save
space, the format 𝑡3𝑝3 instead of (𝑡3, 𝑝3) will be used in text and figures.) The potentially
final state in the prefix is a state which is final in the prefix and we have to confirm that
there is any continuing way from it in the simultaneous run in the suffix with the target.

Try to Find Reverted Suffix

To try to find the reverted suffix, we have to do almost the same as in previous Algo-
rithm 6 but instead of the forward run, we are performing a simultaneous backward run
in the suffix and the target. If the suffix is only one state automaton with no move as in
Figure 4.9a, we have to remember all target final states as reverted suffix partially initial
states on line 2, and the reverted suffix is constructed as a copy of the suffix and is marked
as found in Algorithm 7. (Both the suffix and the target automaton are without dead
states.) Partially initial state is a state, which is initial state in the suffix synchronised
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(a) An example of a target automaton
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(b) An example of a prefix automaton

Figure 4.8: An example of the prefix and the target automata for applying Algorithm 6 on
them.

𝑞0start

(a) An example of one-state
automaton

𝑞0start 𝑞1 𝑞2 𝑞3 𝑞4
a b c d

(b) An example of a long DFA with only one final state

Figure 4.9: Examples of automata we are trying to detect in our last approach of the reverse
concatenation operation.

with a state in the target. There is a possibility of multiple occurs of these states so we call
them partially initial states which are later merged into one initial state using Algorithm 11.

Algorithm 7: Try to find the reverted suffix
// We are using global variables from Algorithm 5

1 if S.StateCnt == 1 ∧ S.MoveCnt == 0 then
2 foreach var TfinalState in T.GetFinalStates() do
3 TstatesSuffixInit.Add(TfinalState)
4 RS = S; suffixFound = true
5 else if S.StateCnt == S.MoveCnt + 1 ∧ S.FinalStatesCnt == 1 then
6 var SstatesToCheck, SstatesToCheckNext
7 foreach TfinalState in T.GetFinalStates() do
8 var Sstate = S.FinalState; var Tstate = TfinalState
9 SstatesToCheck = { (Tstate, Sstate) }

10 for int i = 0; i < SMoveCnt; ++i do
11 while SstatesToCheck.Any() do
12 (Tstate, Sstate) = SstatesToCheck.Pop()
13 var Smove = S.GetMoveTo(Sstate)
14 var Tmoves = T.GetMovesTo(Tstate)
15 foreach var Tmove in Tmoves do
16 if Algebra.AreEquivalent(Tmove.Label, Smove.Label) then
17 SstatesToCheckNext.Add((Tmove.SrcState, Smove.SrcState))

18 SstatesToCheck = SstatesToCheckNext
19 SstatesToCheckNext = { }
20 foreach (var state, _) in SstatesToCheck do
21 TstatesSuffixInit.Add(state)

22 if TstatesSuffixInit.Any() then
23 RS = S; suffixFound = true
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If the suffix is an automaton with only one final state where each state is at most a target
of one move and a source of one move as in Figure 4.9b, we are initiating a backward run
from all target states, and that one suffix final state on lines 7, 10. There are auxiliary
variables for the actual state and a stack for states meant to be check during this run on
lines 8 and 9. While there is any state to check in auxiliary stack (lines 11, 12) we are
trying to get all moves that have not an empty intersection of labels of the suffix and the
target move (line 16). Each such state is pushed into the second auxiliary stack to check in
the next iteration (line 17). After the whole while cycle, we move states from the second
auxiliary stack into the primary one to check in the following iteration (lines 18, 19).

After the final iteration of each part of the backward run (from each target final state), we
mark all states in the auxiliary stack as suffix partially initial states (lines 20, 21). And on
the two last lines, we check if our backward run was successful, if yes, the reverted suffix is
construct as a copy of the suffix and is marked as found.

If we apply Algorithm 7 on automata in Figure 4.10, we get states 𝑡2𝑠0 and 𝑡7𝑠0 as suffix
partially initial states, and the reverted suffix will be construct as a copy of the automaton
in Figure 4.10a.

𝑠0start 𝑠1 𝑠2 𝑠3
c d e

(a) An example of the suffix automaton

𝑡0start

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑡6 𝑡7 𝑡8 𝑡9 𝑡10

𝑡11 𝑡12

a

b c d e

a b c d e

d

e

(b) An example of the target automaton

Figure 4.10: An example of the suffix and target automata for applying Algorithm 7 on
them.

Perform a Simultaneous Forward Run in the prefix and the target

If we did not find the reverted prefix, we have to perform a simultaneous forward run in the
prefix and the target, so we use the couple consisting of the prefix and target initial states
in Algorithm 8 and store it as to check on the first two lines. Then we set the reverted prefix
initial state on line 3 and store it into the auxiliary array (line 4). We also have to check if
this state is final in the prefix. If yes and we did not find a part of the reverted suffix yet,
we will add this state into the array representing all synchronized states in the prefix and
the target which are final in the prefix (later called potentially final reverted prefix states,
because we to confirm if we can generate them into the reverted prefix automaton by doing
a run in the suffix and the target from this state to the suffix and the target final state)
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(lines 5, 6, 7). If we found the reverted suffix in Algorithm 7 and it is the final state, we
have to check, if it is the target state in in any suffix partially initial state on line 8. If yes,
we found a part of the reverted suffix and we are storing this state as one of the reverted
prefix final states.

Algorithm 8: Perform a simultaneous forward run in the P and T
// We are using global variables from Algorithm 5

1 var initialPTstate = (P.InitialState, T.InitialState)
2 var PstatesFwToCheck = { initialPTstate }
3 RP.InitState = nextPstateId++
4 PstoredStates[initialPTstate] = RP.InitState
5 if P.IsFinalState(initialPTstate.Pstate) then
6 if !suffixFound then
7 PstatesFwFinal.Add(initialPTstate)
8 else if TstatesSuffixInit.Contains(T.InitialState) then
9 RP.FinalStates.Add(RP.InitState);

10 while PstatesFwToCheck.Any() do
11 var actualState = PstatesFwToCheck.Pop()
12 int actualStateId = PstoredStates[actualState]
13 var psblStates = GetAllPossibleMovesFromState(actualState)
14 foreach psblState in psblStates do
15 var nextState = (psblState.Tstate, psblState.Pstate)
16 if !PstoredStates.TryGetValue(nextState, out var nextStateId) then
17 PstoredStates[nextState] = nextPstateId++
18 PstatesFwToCheck.Add(nextState)
19 if P.IsFinalState(nextState.Pstate) then
20 if !suffixFound then
21 PstatesFwFinal.Add(nextState)
22 else if TstatesSuffixInit.Contains(nextState.Tstate) then
23 RP.FinalStates.Add(nextStateId)
24 RP.Moves.Add((actualStateId, nextStateId, psblState.GuardAnd))

After resolving the initial state, we move on to checking all states to check in this run on
line 10. These steps will perform the simultaneous forward run in the prefix and the target.
On line 11, we get a state to check, we retrieve its stored information (line 12) and call
a function to get all possible states to move from this state on line 13. The last-mentioned
function is Algorithm 9

Then in the for loop on line 14, we, for each possible state, set it as a next state (line 15)
and try to get its stored information on line 16. If we did not get its information, we were
not storing this state before, so we have to store it (line 17) and set it as a next state to
check later in next iterations. If the next state is final in the prefix which we are checking
on line 19, we have to do the same as on lines 6-9. We also have to store the reverted prefix
move from the actual state into the possible state and note the label of this move (line 24).

If we apply Algorithm 8 on automata in Figures 4.11a and 4.11b, we receive the automaton
in Figure 4.11c as the reverted prefix automaton. We also get two prefix potentially final
states which are: 𝑡2𝑝2 and 𝑡3𝑝3. Our new reverted prefix has a dead state 𝑡6𝑝3 which will
be removed using the automata library.
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(c) An example of the reverted prefix au-
tomaton after applying Algorithm 8 on au-
tomata from Figures 4.11a and 4.11b

Figure 4.11: An example of automata for the simultaneous run in the prefix and the target

Get All Possible Moves From a State

For each simultaneous forward run, we need to know what are our possibilities to move from
some state. This GetAllPossibleMovesFromState(...) function returns all possible next
states. As input, we have to provide the state from which we want to move. It can be
either the target and prefix or the target and suffix. The output from this function is a list
of all possible moves from a given state in a simultaneous forward run in the target and the
(prefix or suffix). Each possible move contains a couple of two moves: move in the target,
move in the prefix or suffix, and the intersection of their labels.

So on the second line in Algorithm 9, we create our output array then we get a list of all
moves from the given target state. We also get another list of all moves from the given
prefix or suffix state. For each combination of these two lists (lines 3, 4) if there is any
intersection of their labels (lines 5, 6), we store the move in the target, move in the prefix
or suffix, and that intersection of their labels as one item into our output array (line 7)
which is returned on the end of this function.

In Figure 4.12 there are two parts of automata. The first part is the prefix or suffix automa-
ton part (Figure 4.12a) and the second one is a part of the target automaton (Figure 4.12b).
If we use states 𝑞1 and 𝑡1 from these automata as an input for Algorithm 9, we get two
items returned as possible moves from the state 𝑡1𝑞1.

Both items are tuples of two moves and one label: (move in the target; move in the prefix
or suffix; intersection of their labels). One of them is ((𝑞1; 𝑑; 𝑞4); (𝑡1; 𝑑; 𝑡3); 𝑑) and the
second one is ((𝑞1; 𝑒, 𝑔; 𝑞1); (𝑡1; 𝑒; 𝑡1); 𝑒).
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Algorithm 9: Get all possible moves from a state
Input: Id of a state in the target (Tstate) and id of a state in the prefix (Pstate) or in the suffix

(Sstate)
Output: List of all possible moves. Each possible move contains a set of two moves: move in the

target, move in the prefix of suffix, and the intersection of their labels.
1 Function GetAllPossibleMovesFromState(Tstate, Pstate or Sstate):
2 Stack allPossibleMoves
3 foreach var Tmove in T.GetMovesFrom(Tstate) do
4 foreach var move in (P or S).GetMovesFrom(Pstate or Sstate) do
5 var guardAnd = MakeAnd(move.Label, Tmove.Label)
6 if Algebra.IsSatisfiable(guardAnd) then

// if the intersection of two labels is not empty
7 allPossibleMoves.Push((Tmove, move, guardAnd))

8 return allPossibleMoves
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(a) A part of the prefix or suffix automaton
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e
(b) A part of the target automaton

Figure 4.12: Examples of parts of the target and the (prefix or suffix) automata for Algo-
rithm 9 demonstration.

Perform a Simultaneous Forward Run in the suffix and the target

A simultaneous forward run in the suffix and the target is similar to the simultaneous for-
ward run in the prefix and the target but it is somewhat more complicated because we
added branches into Algorithm 10. There is an info about a branch added into the info
about each state we are storing. This allows us to detect all partially initial states of the
reverted suffix automaton.

A branch is a sequence of states and transitions, following each other in the automaton,
starting and ending with a state. Branches are generated from the initial states of a simul-
taneous run in the suffix and the target. Whenever there more transitions from one state
in the automaton, the current branch is terminated and we create as many new branches
as there are outgoing transitions from the current state. Branch generation is terminated
when it is not possible to continue the path, or when we encounter a state that is already
in a branch.

In Algorithm 10, we perform the same for each stored reverted prefix potentially final state.
We had to note these states before either in Algorithm 6 by solving the reverted prefix or
in Algorithm 8. For each potential prefix final state (line 2), we create a transition into the
suffix so we are taking the target state from each potentially prefix final state. This target
state is combined with an initial suffix state in order to create a potential reverted suffix
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Algorithm 10: Perform a simultaneous forward run in the S and T
// We are using global variables from Algorithm 5

1 var SstatesFwToCheck, branchesLeadingToEnd
2 foreach (TinitState, PfinalState) in PstatesFwFinal do
3 initialSstate = (TinitState, S.InitialState)
4 SstatesFwToCheck.Add(initialSstate)
5 if SstoredStates.TryGetValue(initialSstate, out var info) then
6 if branchesLeadingToEnd.Contains(info.branch) ∧ !prefixFound then
7 RP.FinalStates.Add(PstoredStates[(TinitState, PfinalState)])
8 RS.InitialStates.Add(info.id)
9 continue

10 info.id = nextSstateId++; info.branch = nextBranchId++
11 RS.InitialStates.Add(info.id); branchesInActualPath = {info.branch}
12 SstoredStates[initialSstate] = info; bool branchLeadingToEnd = false
13 SstatesFwToCheck.Add(initialSstate)
14 if S.IsFinalState(S.InitialState) ∧ T.IsFinalState(TinitState) then
15 RS.FinalStates.Add(info.id)
16 branchLeadingToEnd = true
17 while SstatesFwToCheck.Any() do
18 var actualState = SstatesFwToCheck.Pop()
19 (info.id, info.branch) = SstoredStates[actualState]
20 if info.branch != branchesInActualPath.Peek() then
21 branchesInActualPath.Push(info.branch)
22 var psblStates = GetAllPossibleMovesFromState(actualState)
23 if psblStates.Cnt == 0 then
24 branchesInActualPath.Pop()
25 foreach psblState in psblStates do
26 var nextState = (psblState.State.Tstate, psblState.State.Sstate)
27 if !SstoredStates.TryGetValue(nextState, out var nInfo) then
28 nInfo.id = nextSstateId++
29 nInfo.branch = psblStates.Cnt == 1 ? info.branch : nextBranchId++
30 SstoredStates[nextState] = nInfo
31 SstatesFwToCheck.Add(nextState)
32 else if branchesLeadingToEnd.Contains(nInfo.branch) then
33 branchLeadingToEnd = true
34 foreach branch in branchesInActualPath do
35 branchesLeadingToEnd.Add(branch)

36 if S.IsFinalState(psblState.Sstate) ∧ T.IsFinalState(psblState.Tstate) then
37 RS.FinalStates.Add(nInfo.id)
38 foreach branch in branchesInActualPath do
39 branchesLeadingToEnd.Add(branch)
40 branchLeadingToEnd = true
41 RS.Moves.Add(info.id, nInfo.id, psblState.GuardAnd)

42 if branchLeadingToEnd ∧ !prefixFound then
43 RP.FinalStates.Add(PstoredStates[(TinitState, PfinalState)])
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(a) An example of a target automaton
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(b) An example of a suffix automaton

𝑡1𝑠0start 𝑡2𝑠1 𝑡3𝑠2 𝑡4𝑠3

𝑡5𝑠2 𝑡11𝑠3

𝑡7𝑠1𝑡6𝑠0start 𝑡8𝑠2 𝑡9𝑠3

c d e

d

e

e

c d e

(c) An example of the reverted suffix automaton after applying Algorithm 10 on automata from
Figures 4.13a and 4.13b
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(d) An example of created branches in the reverted suffix automaton from Figure 4.13c.

Figure 4.13: An example of automata for the simultaneous run in the suffix and the target
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initial state on line 3. This state is marked as to check on line 4. If we already visited this
state (checked on line 5), we mark this state as the initial state for later reverted suffix
automaton generation on line 8. If this state also leads to the end (detected by branch
which has to be in the auxiliary array containing all branches leading to the end defined on
the first line as empty array) and we do not have the reverted prefix found by Algorithm 6,
we store the potential prefix final state, used to generate actual partially initial suffix state,
for the reverted prefix automaton generation as the final state. We also have to skip to the
next prefix potentially final state if we were in this state before (line 9).

If we are in this state for the first time, we create an info for this state containing a new
branch info (line 10). We store this state as the reverted suffix initial state and set up its
branch into an array containing all branches in the current path (line 11). We store info
about this initial state (the state and the branch) and we set an auxiliary variable saying,
that any path from this initial state leads to the end, to false on line 12. This initial state
is added to the array with states to check on line 13. We also have to check if it is a final
state in the target and the suffix. If yes, we store this state as the final reverted suffix state
and we are marking that the actual suffix initial state leads to the end (lines 14, 15, 16).

While there are some states in the array with states to check, we pop the last state into the
actual state auxiliary variable (line 18). We retrieve its info on line 19. If the the branch
from retrieved info is not in the array of branches in the current path, we push it into that
array (lines 20, 21). We get all possible states to move from the actual state on line 22
using our function described in Algorithm 9. If there is no such state in returned array, we
remove the last branch from the array with branches in the current path (lines 23, 24).

For each possible state (line 25), we mark this state as a next state and check if this next
state was already stored before (line 27). If no, we create a info for this state as well as
a branch info. Branch is the same as the last branch in the current path if there is only
one possible state or a new branch is created (lines 28, 29). If this next state was already
stored before, we check if there is the next state branch in the array of branches leading to
the end on line 32. If yes then this suffix initial state is marked as leading to the end in
line 33 and we copy all branches in the current path into that array with branches leading
to the end (lines 34, 35).

If this next state is final in the target as well as final in the suffix, we store this suffix final
state on line 37 and do the same as on lines 33–35. Finally, if we found any reverted suffix
final state in this iteration, we store the potential prefix final state used to generate the
actual partially initial suffix state for the reverted prefix generation as the final state (final
two lines).

If we apply Algorithm 10 on automata in Figures 4.13a and 4.13b, we receive the automaton
in Figure 4.13c as the reverted suffix automaton. While this automaton generation, we
created several branches shown in Figure 4.13d. This automaton has two initial states
which have to be later replaced with only one.

Create the Initial State for the Reverted Suffix

While performing the simultaneous forward run in the suffix and the target there is a pos-
sibility that we get multiple initial states for the reverted suffix. Our Algorithm 11 can
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create one initial state from them. We already mentioned this process in Subsection 4.2.2
but this version does not delete dead states because, in our last approach, we are letting
the Automata library do this work for us.

Algorithm 11: Create the initial state for the RS
// We are using global variables from Algorithm 5

1 var suffixInitStateIsFinal = false
2 var newInitState = nextPstateId++;
3 foreach state in S.InitialStates do
4 if state is final then
5 suffixInitStateIsFinal = true
6 clone all outgoing moves from state into newInitState
7 if suffixInitStateIsFinal then
8 RP.FinalStates.Add(newInitState)

On the first two lines in Algorithm 11, we set an auxiliary variable informing if the initial
state should be also a final state to false and set the initial state id. Then for each partially
initial state (line 3), we clone all its outgoing moves into our new initial state on line 6
and check if this state is final (line 4). If it is final, then on line 5, the auxiliary variable,
informing if the initial state should be also a final state, is set to true. After this cycle, we
are checking this auxiliary variable, and based on its value, our new initial noted state as
a final reverted suffix state.

For easier understanding of Algorithm 11, if we take two parts of automaton in Figures 4.14a
and 4.14b as an input. The result automaton will look like the automaton in Figure 4.14c.
We only need to remove the dead state 𝑞0 from it.
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(c) An example of the result automaton after ap-
plying Algorithm 11 on parts of an automaton
from Figures 4.14a and 4.14b

Figure 4.14: An example of automata for Algorithm 11 demonstration
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4.3 Optimizations
As mentioned before, we detected some parts of code which we marked as bottlenecks using
the Visual Studio 2022 profiler. These parts of code were in the class AnalysisOperations
and were trying to reduce automata with a special approach, however, more effective was
replacing them with a selected reduction. We also analyse other methods and detected, e.g.
ineffective epsilon removal in the AnalysisOperations class and replaced it with a selected
reduction as well.

After the implementation of the third approach of the reverse concatenation operation, we
tried to analyze other shortcomings. We managed to propose some improvements in the
Programanalysis class in the method InspectWhetherCoveredByOther. We proposed to
ignore all states that were already covered by some other states and to add caching of
results into this method described in Subsection 5.2.2.

There were also some places in our third and fourth reverse concatenation operation ap-
proach to optimize. We proposed to add one more cache into these approaches and a heuris-
tic that detects if the concatenation of the prefix and suffix is equal to the target. If yes,
the prefix is equal to the reverted prefix as well as the suffix to the reverted suffix. Both
optimizations are described in Subsection 5.2.1.

36



Chapter 5

Implementation and Experiments

In this chapter, we provide interesting implementation level details of the ASMA improve-
ments we proposed in Chapter 4.

5.1 Symbolic Simulation Library
As discussed in Section 4.1, we integrated the AutomatonSimulation library written by
Juraj Síč into the ASMA tool. We are now going to describe the process of integration of
this library.

5.1.1 Integration of the Symbolic Simulation Library

Fortunately, all simulation algorithms created in this library were built on the same Au-
tomata library that ASMA uses. We simply took the file AutomatonSimulation.cs and
placed this file into our version of Automata library. In this file, there is the AutomatonSimu-
lationExtension class containing all those simulations we wrote about.

To be able to call them from ASMA, we had to create some kind of interface for simple
usage. We added the source code file AutomatonSimulationExtension.cs which extends
the AutomatonSimulationExtension class with an enum containing all reductions names
and a method ReduceSizeBy(automaton, enum_of_method).

Unfortunately, there was not any support in the ASMA tool allowing us to simply add any
new reduction algorithm. In many code locations, there were hardcoded determinization
and minimization. We had to create our own ITAW ITAWWithCustomReduction interface,
wrapper, class, and factory for custom reductions (more information in the thesis [7].) Me-
thods in this class are wrapping automata and can call any reductions on them from the
AutomatonSimulationExtensions class. The result is that each new reduction algorithm
has its new method in this class described in the new interface.

Each important method was calling Wrap(...) method and and then a logging method.
By adding other important methods (our reductions), we created a lot of duplicate code,
so we created the method WrapAndLog(...) to improve the logging system and to remove
duplicities.
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Previous steps allow us only to manually select a reduction type in the source code. We
wanted to allow to user to choose which one to use. So we created a new command
ReduceSizeBy which is able to reduce automata by any given reduction type.

5.1.2 Custom Testing Commands

We needed to have a possibility to test all reduction algorithms on some data sets (examples)
and determine which of them is the best one for our benchmarks. So two new testing com-
mands were created. One for testing only one program using a selected reduction algorithm
AnalyseCounters2 and another one AnalyseCounters3 which can test more programs and
returns formatted information about each reduction algorithm such as duration, sizes in
different stages, and counts of called operations with their names. To ensure objective re-
sults, the second command can also do more runs of each program and the evaluation of
the first run can be skipped.

5.1.3 Comparing Reduction Algorithm

After the implementation of commands from Subsection 5.1.2, we were able to compare all
reduction algorithms. We ran this command 10 plus one time (the first run at the beginning
of each run sequence was skipped for better results) on all available data sets. We had to
run some computations only once because of their long computation time but they are not
interesting for us (they are marked with * in the table with results.) The obtained results
are showed in Table 5.1.

Unfortunately, the results show that all new reduction algorithms are usually much slower
than the original combination of determinization and minimization. Only in some cases,
the new reductions were faster. The reasons for this somewhat disappointing conclusion
deserve some further study, which one is, however, beyond the scope of this work.

5.1.4 Optimization Based on Reductions

We found some useless parts of the code and also some bottlenecks during testing and
profiling. This leads to a quite faster implementation by rewriting some codes.

It was mainly in the AnalysisOperations class in methods Assert, Replace, and Re-
strictAndCheckVariable. In these methods there were some parts of the code reducing
automata with heuristics. However, a problems was that some of the heuristics built into
the code by its original author were slowing the whole analysis according to our benchmark.
We found, that more effective was replacing them with a selected reduction.

In the AnalysisOperations class in the method Concat and in the PredicateAbstraction
class in the method Refine, we added our reduction method which sped up the computa-
tion. We present the results in Table 5.2 created using commands from Subsection 5.1.2.
This table contains durations of all data sets with and without optimizations.

5.2 Other Improvements
During our analysis of the ASMA tool and later when proposing its improvements, we
mentioned some other optimizations which are described in this section.
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Table 5.1: A comparision of all the integrated reduction algorithms on all data sets. Values
are the average time of 10 runs of the whole analysis in [ms]. Algorithms: determinize
and minimize (D+M), reduce size by local simulation optimizied (LSO), local
simulation (LS), simulation no count (SNC), simulation no count no opt (SNCO),
bisimulation (B). Reduce size by global simulation was skipped because it was the
slowest and was not able to reduce some automatons in an acceptable time. Names were
taken from the thesis [9] and modified.
* Values are data from only one run.

stranger D+M LSO LS SNC SNCO B
01-sanit 2 2 2 2 2 1
11-vuln 46 61 32 26 31 58
12-sanit 79 47 65 59 42 72
21-vuln 153 74 72 152 151 171
22-sanit 1,591 414 1,699 390 392 2,062
31-vuln 20,903 124,596 110,157 64,371 128,858 –
32-vuln 57,557 * 347,698 * 330,338 * 173,450 * 342,584 –
33-vuln 8,193 61,713 55 864 33,834 61,047 * 152,825
34-sanit 1,094 1,545 395 816 1,577 632
35-vABS 59,692 * 536,024 * 531,379 * 232,561 * 485,033 –
35-vuln 80,346 – – – – –
36-vuln 30,505 * 463,522 * 4,240,726 * 222,220 * 440,287 * 83,948
41-vuln 46 394 331 236 390 54
42-sanit 32 455 410 590 1,221 5,827

5.2.1 Caching in the Reverse Concatenation Operation

After the implementation of the third approach of the reverse concatenation operation, we
tried to analyze it with the Visual Studio 2022 profiler. The result showed an unpleasant
fact, namely that the majority of resources are taken by the operation MakeAnd in the
Automata library. This operation is called recursively and has its own result caching inside
it. Unfortunately, usage of this cache starts to be very expensive after a while. For this
reason, we have introduced caching in our reverse concatenation operation.

The problem is the MakeAnd operation, which, in the current implementation, interacts
with the BDD algebra. One possible solution is to try how the analysis of examples would
perform if we replace this BDD algebra with another one, for example, if we start working
with intervals. We have decided to leave this possibility as future work due to it would
require a lot of changes in the code. We have decided to go the way of creating a new
method of the same name MakeAnd, for easy caching of results of the Automata MakeAnd
operation, inside our implementation of the reverse concatenation operation. We also tried
to remove this cache in the Automata library and let only our new cache. Results were
even 3 times slower according to Table 5.3.

We also tried to optimize this reverse concatenation operation (third and fourth version)
even more by creating some heuristic that should detect if the concatenation of the prefix
and the suffix is equal to the target. If yes, the prefix is equal to the reverted prefix as
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Table 5.2: The final comparison of the impact of our whole work on the speed of the ASMA
tool. Values are the average time of 10 runs of the whole analysis in [ms]. Explanation:
the original implementation of the ASMA tool (Old), after adding all proposed optimiza-
tion without caching (Opt.), the third reverse concatenation prototype with all proposed
optimization without caching (R.C. 3), the third reverse concatenation prototype with all
proposed optimization and caching (3+Cch), the fourth reverse concatenation prototype
with all proposed optimization without caching (R.C. 4), the fourth reverse concatenation
prototype with all proposed optimization and caching (4+Cch).

stranger Old Opt. R.C. 3 3+Cch R.C. 4 4+Cch
01-sanit 2 1 1 1 1 1
11-vuln 34 28 26 24 18 15
12-sanit 50 67 57 51 66 61
21-vuln 139 178 155 50 158 50
22-sanit 555 544 336 265 1,489 247
31-vuln 14,840 8,030 4,407 3,057 2,773 2,724
32-vuln 47,926 25,298 8,027 7,028 7,724 4,934
33-vuln 7,683 3,994 2,131 1,312 1,687 1,254
34-sanit 1,414 470 547 91 1,047 146
35-vABS 63,493 24,079 9,262 5,712 6,477 4 829
35-vuln 80,324 42,821 13,616 9,800 8,654 7,241
36-vuln 27,160 19,913 18,662 15,613 18,466 15,170
41-vuln 37 37 37 37 39 39
42-sanit 28 28 28 27 30 28

well as the suffix to the reverted suffix. Unfortunately, this seems to be taking a bit more
time to compute than the amount of saved time is. Table 5.3 contains the results of the
benchmark with this optimization.

5.2.2 Caching in the Program Analysis Class

During profiling in Subsection 5.2.1, we also detected one more possibility of caching. It
was in the ProgramAnalysis class in the method InspectWhetherCoveredByOther. Here
we added a new cache right before calling the method which is checking for differences in
automata.

Another optimization we purposed in this method was ignoring all states that were al-
ready covered by some other states and adding cache into this method before starting the
comparison. Unfortunately, this approach was not faster. All these optimizations were
benchmarked and the results are in Tables 5.2 and 5.3.

5.2.3 Automatic Display of the DGML

As we mentioned, we wanted to add the possibility for the user to view the result automata
after calling an operation from the AsmaCLI during the interactive mode without having to
write unnecessary additional commands. So we added the ”show“ flag to the ”Interactive“
command, which switches the AsmaCLI to the interactive mode. In other words, the user
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Table 5.3: Impact of individual optimizations on analysis of all Stranger examples. Valu-
es are the average time of 10 runs of the whole analysis in [ms]. Explanation: without
any optimization (no o), only with optimized locations of calling reductions (only o), with
caching of results in the ProgramAnalysis class (1c), with optimized locations of calling
reductions and caching of results in the ProgramAnalysis class (o+1c), with cache in the
reverse concatenation operation (mk), with optimized locations of calling reductions and
caching of results in the ProgramAnalysis class and cache in the reverse concatenation
operation (o1cmk), only the heuristic trying to concatenate the prefix with the suffix and
compare it to the target (p+s=t), with optimized locations of calling reductions and caching
of results in the ProgramAnalysis class and cache in the reverse concatenation operation
class but without caching in the Automata library (1cmk-a). We used the third version of
the reverse concatenation operation in all program analyses for creating this table.

stranger no o only o 1c o+1c mk o1cmk p+s=t 1cmk-a
01-sanit 1 1 1 1 1 1 1 1
11-vuln 27 24 24 24 27 24 28 32
12-sanit 109 98 51 51 109 52 63 141
21-vuln 72 82 50 51 71 52 164 207
22-sanit 499 532 249 245 495 248 1,230 869
31-vuln 5,381 3,952 2,800 2,889 5,258 2,683 5,030 9,341
32-vuln 8,158 11,463 7,086 6,835 7,741 6,746 9,955 25,902
33-vuln 2,136 1,508 1,220 1,229 2,096 1,192 2,605 4,139
34-sanit 1,253 998 166 214 1,248 172 1,264 722
35-vABS 6,407 9,235 6,220 5,991 6,022 5,937 8,774 23,339
35-vuln 10,619 14,461 9,208 9,234 10,081 8,768 11,888 30,014
36-vuln 17,772 16,581 15,655 15,509 17,686 15,652 17,701 61,922
41-vuln 38 36 38 38 39 38 38 100
42-sanit 29 27 29 29 30 29 29 106

can write one command after another without having to call the executable and because
of this flag, all result automata will be shown in Visual Studio. To do that, we simply
save result automata into a .dgml file (Directed Graph Markup Language) and open it
automatically in Visual Studio.

There is a series of commands in Figure 5.1 which produces an output in Visual Studio and
there is a screenshot of this output in Figure 5.2.

5.3 Final Experimental Evaluation
To be sure that our improvements were not creating other bottlenecks, we initiated the last
profiling. As we expected, reductions are still the most significant operations. However,
the reverse concatenation operation has improved considerably. We present our findings in
two tables: Table 5.4 containing data from the first profiling on the original version of the
ASMA tool and Table 5.5 with the latest profiler data of the actual version. In the results
presented in the tables, the results presenting the units seams more interesting. Altogether,
we reduced the running by over 90 % for analysis of programs where bigger automata take
their place according to Table 5.6.
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C:\foo\bar\ASMA>AsmaTool.exe -s interactive -show
Stepping is enabled -- some actions might expect you to press any key to continue
Enter command:
$ print-dgml C:\foo\bar\MyAutomaton.json
Enter command:
$ determinize C:\foo\bar\MyAutomaton.json
Enter command:
$ minimize ?

Figure 5.1: A series of three commands for the AsmaCLI which is set into the interactive
mode with the ”show“ option. The tool will show us the result automata in Visual Stu-
dio after each operation now. The first command simply loads MyAutomaton automaton
and stores it into the file with the .dgml format. The second command determinise this
automaton. And the last command minimizes the result of the previous operation.

Figure 5.2: The output of the commands from Figure 5.1 in Visual Studio 2022
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Table 5.4: A part of the profiling output on the original version. The command used:
analyse-counters C:\foo\bar\stranger-35-vuln.asmasym.txt. Total CPU [unit, %]
gives the samples while executing a function and functions called by this function. The
profiler was set to perform 8190 samples per second.

Function Name Total CPU [unit, %]
_ + ProgramAnalysis.Loop() 636,261 (91,22 %)
__ + CustomCodeProgramAnalysis.ExecuteContextMethod(...) 600,430 (86,08 %)
___ + CustomCode.ConcatNode.ExecuteOn(...) 556,992 (79,85 %)
____ + Backward.Concat(...) 556,918 (79,84 %)
_____ - Asma.TAW<T>.RemoveEpsilons() 358,959 (51,46 %)
_____ + BackwardRun.RestrictAndCheckVariable(...) 186,369 (26,72 %)
______ - Asma.TAW<T>.Determinize() 138,655 (19,88 %)
______ - Asma.TAW<T>.Minimize() 25,994 ( 3,73 %)
______ - Asma.TAW<T>.Intersection(...) 21,483 ( 3,08 %)
[...] [...]
_____ - Asma.TTW<T, T>.ApplyOn(...) 11,231 ( 1,61 %)
_____ - Asma.TTW<T, T>.Concat(...) 179 ( 0,03 %)
[...] [...]
___ - CustomCode.AssertNode.ExecuteOn(...) 39,433 ( 5,65 %)
___ - CustomCode.ReplaceNode.ExecuteOn(...) 3,725 ( 0,53 %)
[...] [...]
__ - ProgramAnalysis.CheckIsCoveredByOther(...) 35,707 ( 5,12 %)

Table 5.5: A part of the profiling output on the latest version of the ASMA
tool using all improvements proposed. The command used: analyse-counters3
C:\foo\bar\stranger-35-vuln.asmasym.txt. Total CPU [unit, %] gives the samples
while executing a function and functions called by this function. The profiler was set to
perform 8190 samples per second.

Function Name Total CPU [unit, %]
_ + ProgramAnalysis.Loop() 76,181 (87,33 %)
__ + CustomCodeProgramAnalysis.ExecuteContextMethod(...) 67,285 (77,14 %)
___ + CustomCode.ConcatNode.ExecuteOn(...) 42,314 (48,51 %)
____ + Backward.Concat(...) 42,213 (48,39 %)
_____ - Asma.TAWWithCustomReduction<T>.ReduceSize() 23,992 (27,50 %)
_____ - BackwardRun.RestrictAndCheckVariable(...) 13,287 (15,23 %)
_____ - Asma.TAWBase<T>.ReverseConcat4(...) 4,621 ( 5,30 %)
_____ - Asma.TAWBase<T>.RemoveEpsilons() 287 ( 0,33 %)
[...] [...]
____ + Forward.Concat(...) 95 ( 0,11 %)
_____ - Asma.TAWBase<T>.Concat(...) 84 ( 0,10 %)
[...] [...]
___ + CustomCode.AssertNode.ExecuteOn(...) 19,347 (22,18 %)
____ - Forward.Assert(...) 19,343 (22,17 %)
[...] [...]
___ - CustomCode.ReplaceNode.ExecuteOn(...) 5,383 ( 6,17 %)
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Table 5.6: The impact of adding optimizations, caches, and last version of the reverse
concatenation operation into the ASMA tool. Values are the average time of 10 runs of the
whole analysis in [ms]. Explanation: the original implementation of the ASMA tool (Old),
the new implementation of the ASMA tool using all improvements proposed (New), and
the speedup calculated as 100 * (1−𝑁𝑒𝑤/𝑂𝑙𝑑) rounded to the nearest whole number.

stranger Old New Speedup
01-sanit 2 1 50 %
11-vuln 34 15 56 %
12-sanit 50 61 -22 %
21-vuln 139 50 64 %
22-sanit 555 247 55 %
31-vuln 14,840 2,724 82 %
32-vuln 47,926 4,934 90 %
33-vuln 7,683 1,254 84 %
34-sanit 1,414 146 90 %
35-vABS 63,493 4,829 92 %
35-vuln 80,324 7,241 91 %
36-vuln 27,160 15,170 44 %
41-vuln 37 39 -5 %
42-sanit 28 28 0 %
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Chapter 6

Conclusion

The goal of this thesis was to identify weaknesses of the ASMA tool and then propose
and implement improvements, with a stress on the correctness of the implementation, its
efficiency, and maintainability.

To fulfill our goals, we analyzed the source code of ASMA and ran all benchmarks avai-
lable with it. Using a profiling tool, we analysed major bottlenecks and identified all major
weaknesses of the ASMA tool.

New improvements for the ASMA tool are the integration of the AutomatonSimulation
library from Juraj Síč, which required upgrades in the architecture of the ASMA tool
allowing ASMA to use algorithms from this library, a possibility for a user to preview
automata automatically while using the command-line interface in the interactive mode,
four new versions of the reverse concatenation operation and significant optimizations such
as caching of results on multiple locations or usage of reductions on optimal places.

To achieve high correctness of our new implementations, we created an extensive set of
self-tests for a different proposed implementations of the reverse concatenation operation.
Altogether, we reduced the running time by over 90 % for analysis of programs where bigger
automata take their place.

Future steps of improving the ASMA tool could be the implementation of combined redu-
ction as suggested in in Section 4.1 or support of antichains mentioned in Section 4.1. The
following steps could be advanced refactoring and also finding out if it would be worth to
try to convert the calculations in this tool from BDDs to intervals. This is described in
more detail in Subsection 5.2.1.
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Appendix A

Manual to the ASMA Command
Line Interface

C:\foo\bar\ASMA>AsmaTool.exe --help
You can use variables to speed-up your work with the tool and to avoid repretetive serialization and
deserialization of automatons between commands. A variable name is prefixed with prefix ’?’.
You can use variables or filenames (the extension .json is optional) as source/target
automaton/transducer of any command. All command result are stored into implicit variable "?".
Usage: AsmaTool [command] [options]
Options:

-?|-h|--help Show help information
-s|--enable-interactive-stepping EnableInteractiveStepping

Commands:
analyse Analyses a program by checking & reporting assertions failures

on all possible execution paths.
analyse-counters Analyses a program by checking & reporting assertions failures

on all possible execution paths. Also prints various counters
for automaton operations.

analyse-counters2 Analyses more programs by checking & reporting assertions
failures on all possible execution paths. Also prints various
counters for automaton operations.

analyse-counters3 Analyses more programs with all size reductions by checking &
reporting assertions failures on all possible execution paths.
Also prints various counters for automaton operations.

apply Applies the transducer onto the automaton
batch Executes a batch of commands
complement
concat
copy Loads automaton or transducer and stores it again (good for use

with variables)
determinize
difference
help Prints global help
interactive Starts an interactive shell
intersect
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make-epsilon-transducer Creates a transducer with epsilon updates for the automaton --
the update-expression algebra only of epsilon and identity

make-identity-transducer Creates a transducer with identity updates for the automaton --
the update-expression algebra only of epsilon and identity

make-total
minimize
print-dgml Prints the automaton as DGML
print-dot Prints the automaton as DOT
reduce-size-by Reduction by selected. Possible selections: 0:

DeterminizeAndMinimize, 1: LocalSimulation, 2:
LocalSimulationOptimizied, 3: SimulationNoCountNoOpt, 4:
SimulationNoCount, 5: GlobalSimulation, 6: Bisimulation

reduce-size-by-bisimulation Reduction by bisimulation.
reduce-size-by-local-simulation Reduction by LocalSimulation.
regex-to-char-set-automaton Creates an automaton from regex with CharSetSolver
remove-dead
remove-epsilons
remove-unreachable
remove-unreachable-and-dead
replace-all Language-based replacement -- all occurences matching Pattern

are swapped with the Replacement
show-dgml Prints the automaton as DGML and shows it in your default OS

program
show-dot Prints the automaton as DOT, renders into SVG, and shows it in

your default OS program
string-to-char-set-automaton Creates an automaton from string literal with CharSetSolver
test Provides various tests for automaton and comparisons of

automata
transducer-domain Creates the automaton representing domain of the transducer
transducer-image Creates the automaton representing image of the transducer
union

Run ’AsmaTool [command] -?|-h|--help’ for more information about a command.

48


	Introduction
	Preliminaries
	Alphabets, Strings, and Languages
	Regular Expressions (REs)
	Finite Automata (FAs)
	Types of FAs
	Effective Boolean Algebras
	Symbolic Automata (SAs)

	Finite State Transducers (FTs)
	Automata Reverse Concatenation
	(Abstract) Regular Model Checking

	ASMA and Its Analysis
	ASMA
	Analysis of ASMA
	Analysis of the Source Code
	Experiments and Profiling


	Proposed Improvements
	Reduction Algorithms
	Reverse Concatenation Operation
	The Original Implementation
	The First New Approach
	The Second Approach
	The Third Approach
	The Fourth Approach

	Optimizations

	Implementation and Experiments
	Symbolic Simulation Library
	Integration of the Symbolic Simulation Library
	Custom Testing Commands
	Comparing Reduction Algorithm
	Optimization Based on Reductions

	Other Improvements
	Caching in the Reverse Concatenation Operation
	Caching in the Program Analysis Class
	Automatic Display of the DGML

	Final Experimental Evaluation

	Conclusion
	Bibliography
	Manual to the ASMA Command Line Interface

