
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

A SIMPLE GAME ENGINE
JEDNODUCHÝ HERNÍ ENGINE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL ŠTEFÁČEK
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ STARKA
VEDOUCÍ PRÁCE

BRNO 2022



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Štefáček Michal
Programme: Information Technology
Title: Simple Game Engine
Category: Computer Graphics
Assignment:

1. Study the existing game engines and algorithms needed to create one.
2. Design a simple 2D game engine.
3. Implement this engine.
4. Make a simple game or a demo application using the engine.
5. Make a short demo video.

Recommended literature:
By the supervisor's recommendation.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Starka Tomáš, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: May 3, 2022

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/25176/2021/xstefa25 Page 1/1



Abstract
The usage of game engine greatly accelerates the process of game development. Many free-
to-use game engines have emerged in the last few decades, some of them being open-source.
The main goal of this thesis is to understand the process of developing such software.
Because of its immense scope, the project is primarily oriented towards the creation of 2D
games.

Abstrakt
Použití herního enginu značně urychluje proces vývoje her. Za posledních několik desetiletí
vzniklo množství zdarma použitelných herních enginů, z nichž některé mají volně dostupný
zdrojový kód. Cílem této práce je pochopení procesu vývoje takovéhoto softwaru. Pro
zúžení rozsahu se projekt primárně zaměřuje na vývoj 2D her.

Keywords
game engine, OpenGL, 2D rendering, Java, LWJGL, JNI

Klíčová slova
herní engine, OpenGL, 2D rendering, Java, LWJGL, JNI

Reference
ŠTEFÁČEK, Michal. A simple game engine. Brno, 2022. Bachelor’s thesis. Brno Univer-
sity of Technology, Faculty of Information Technology. Supervisor Ing. Tomáš Starka



Rozšířený abstrakt
Vývoj her je pomalý a náročný proces. Použití herního enginu může dramaticky snižuje čas
potřebný pro tvorbu her po technické stránce. Za posledních několik desetiletí se technologie
herních enginů posunula od malých knihoven obalující API pro 3D vykreslování v ucelená
řešení pro množství platforem. Tato práce se zaměřuje na tématiku vývoje herních enginů
a v rámci výzkumu se návrh a implementaci podobného řešení pokouší.

Herní engine může být dle účelu rozdělen na množství podsystémů, kde každý systém
zastává určitou funkci. Cílem enginů je zajistit spolupráci jednotlivých systémů a správu
jejich životního cyklu.

Byl proveden průzkum dvou existujících řešení — Unity a Godot Engine. Oba enginy
obsahují podporu 2D vykreslování světa a textu, systém přehrávání zvuku, správu zdro-
jových médií a integrované řízení herní smyčky. Tyto jednotlivé prvky byly vybrány jako
základní systémy potřebné pro tvorbu jednoduchých 2D her. Unity i Godot Engine im-
plementují vykreslování ve 2D pomocí ortografické projekce a rendering textu rasterizací
jednotlivých znaků písma do textury — atlasu, odkud jsou následně využívány. U jiných
systémů se oba enginy více rozcházejí. Unity například modeluje jednotlivé prvky scény
pomocí systému entitních komponent (ECS), zatímco Godot reprezentuje prvky jako in-
stance tříd — objekty. Největší nevýhodou Unity je platba licenčních poplatků za určitých
podmínek, Godot Engine je naopak plně zdarma a má otevřený zdrojový kód.

Herní engine byl navržen jako sada na sobě závislých komponent. Pro zjednodušení
řešení se vývoj zaměřuje primárně na platformu stolních počítačů, avšak s vhodným návrhem
a použitím správných technologií by platforma neměla být omezena. Pro 2D vykreslování
jsou využity standardní metody graficky akcelerovaného 3D renderingu s ortografickou pro-
jekcí, zamezujíc vzniku nežádané perspektivy. Navrhovaný engine úmyslně vynechává pod-
poru systému prvků scény a herní smyčky a ponechává implementaci tohoto systému na
vývojářích konkrétních her.

Engine byl implementován v jazyce Java s využitím knihovny LWJGL pro použití
grafického rozhraní OpenGL. Byly implementovány dva systémy pro vykreslování textu —
prvním z nich jsou rastrová písma, druhým písma s využitím technologie distančních polí
načítána pomocí knihovny stb_truetype. Při implementaci byl kladen důraz na modular-
itu výsledného řešení, jednotlivé moduly jsou načítány za běhu aplikace pomocí jazykové
introspekce centrálním správcem modulů. Byly vyvinuty různé typy grafických 2D prvků —
spritů — statické, orientované a animované. Při vykreslování je možné aplikovat různé efekty
pomocí GLSL shaderů. Zvukový podsystém byl implementován na rozhraní OpenAL, s pod-
porou zvuků ve formátu Ogg Vorbis, načítaných knihovnou stb_vorbis. Výstupem ses-
tavení projektu je sada Maven knihoven, dostupná z veřejného repozitáře balíčků.

V rámci vyhodnocení práce byl engine porovnán s dříve prozkoumanými řešeními.
Bylo nalezeno několik nedostatků, jako je absence podpory systému kamer a rozdělení
vykreslování GUI a 2D světa, nedostatečná abstrakce v některých systémech a vyšší náročnost
implementace základních herních prvků, způsobená absencí systému scén. Na druhou
stranu je engine schopen kvalitního a efektivního vykreslování textu s využitím rastrových
fontů či fontů na bázi distančních polí. Některé součásti projektu je nutné modularizovat,
například systém 2D vykreslování.

Následně byla na enginu reimplementována existující hra, původně napsaná v jazyce C
s využitím platformy SDL2. Na základě provedených testů nedošlo k žádnému razantnímu
poklesu výkonu v porovnání s nativní implementací hry. Na platformě Windows byl zaz-
namenán rozdíl ve výkonu renderingu, ale následná měření naznačují, že se jedná o rozdíl
v efektivitě ovladačů rozhraní OpenGL napříč platformami.



Výstupem práce je využitelný herní engine pro tvorbu menších 2D her, několik ukázek
daného enginu a video popisující aktuální stav řešení a obsahující návod pro vytvoření
nového projektu založeném na tomto enginu. Toto řešení může být dále rozšiřováno jako
cíl dalšího výzkumu.



A simple game engine

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by me under
the supervision of Mr. Tomáš Starka. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Michal Štefáček

May 10, 2022

Acknowledgements
I would like to thank my supervisor, Mr. Tomáš Starka for assistance in creation of this
work, as well as the authors of all sources listed. I would also like to thank Lucy for mental
support and proofreading.



Contents

1 Introduction 3

2 Game engines 4
2.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Godot Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Engine subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Resource management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Game loop and scene management . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Font rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Design 12
3.1 Target platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 System abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Resource management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Application lifecycle and game loop . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 2D renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Font renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.1 Bitmap font renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.2 Signed distance field font renderer . . . . . . . . . . . . . . . . . . . 15

3.7 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Implementation 16
4.1 Build system and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Used technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.4 Resource management . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.5 Asset loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.6 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.7 Application lifetime management . . . . . . . . . . . . . . . . . . . . 20

1



4.4.8 2D renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.9 Sprite abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.10 Font renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.11 Audio subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Engine distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Results and metrics 25
5.1 Comparison against existing solutions . . . . . . . . . . . . . . . . . . . . . 25
5.2 Third-party adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Demonstration and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 32

Bibliography 34

Appendices 36
List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Repository structure 38

B Engine usage 40
B.1 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Running demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.3 Publishing libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.4 Linking libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C Attached media 42

2



Chapter 1

Introduction

Game development is a very slow and complicated process. The usage of a game engine
greatly reduces time needed to build such a project. Game engines have evolved over the
years, from simple abstractions over rendering APIs with some utility features to massive
multi-project platforms.

The development of game engines is complicated, even when broken down into smaller
parts. Despite that, many small projects have emerged, some of them becoming successful.
The goal of this thesis is to design and subsequently implement such game engine, while
keeping it simple and using open standards and open-source software components. As
creating a general purpose game engine is way out of scope of this project, only a small
subset of features and platforms was selected.

In chapter 2, this thesis provides a look into existing solutions, as well as the foundation
of systems necessary to create a viable 2D game engine. This includes breaking down such
software into individual components and performing a deep analysis, as there is no need to
reinvent existing industry standards.

Chapter 3 follows up with proposals for solutions of problems and questions formed
during the research. An overall architecture of a game engine is created, with individual
features abstracted as components and modules.

The implementations of solutions proposed are then described in chapter 4. Every
subsystem is developed using a set of available open technologies, as well as an intermediate
infrastructure allowing systems to communicate is created.

Ultimately, in chapter 5, the final product is evaluated against the existing solutions, fol-
lowed by the process of testing the implemented features and comparison to their expected
behaviour.

3



Chapter 2

Game engines

A game engine is a piece of software designed for development of a certain set of games on
a certain set of platforms [4]. Some game engines may be built for a wide range of game
genres and platforms, while the majority is designed for a specific use case.

Some games use a custom engine by choice or due to special requirements, namely Noita1

(figure 2.1) for its cellular automata particle simulations, Don’t Starve2 with its 2.5D unique
art style, or Factorio3 for high-performance factory simulation and mod support. However,
many 2D games use an existing solution to save on development time and costs.

Figure 2.1: A screenshot of the game Noita powered by the Falling Everything4 engine.
Image courtesy of Nolla Games.

1https://noitagame.com
2https://www.klei.com/games/dont-starve
3https://www.factorio.com/
4https://nollagames.com/fallingeverything/

4

https://noitagame.com
https://www.klei.com/games/dont-starve
https://www.factorio.com/
https://nollagames.com/fallingeverything/


2.1 Case studies
As many solutions exist in this field, a selection of them may be analyzed to scout for key
features, standards, and conventions. In particular, game engines designed for 2D game
development should be prioritized, especially the free ones, as they are more likely to be
picked by small game developers.

The game engines mentioned in this section will be referenced throughout the remainder
of this chapter.

2.1.1 Unity

Unity5 is a proprietary general-purpose multi-platform real-time application development
platform created by Unity Technologies, suitable for the development of both 2D and 3D
games. Unity provides an integrated editor, as seen in figure 2.2. Online documentation is
available6.

A vast range of platforms and devices is supported with a large amount of tooling and
support, making Unity the de facto industry standard for small and medium size game
development.

Because Unity is primarily a 3D game engine, some features may be more complicated
to implement compared to a dedicated 2D game engine. While Unity is free for personal
use, a commercial license must be purchased under certain conditions7.

Figure 2.2: A screenshot of a project opened in the Unity Editor, image courtesy of Unity
Technologies.

5Available from https://unity.com/
6Available at https://docs.unity3d.com/Manual/UnityManual.html, retrieved 2022-05-10.
7Based on https://store.unity.com/compare-plans, retrieved 2022-05-10.

5

https://unity.com/
https://docs.unity3d.com/Manual/UnityManual.html
https://store.unity.com/compare-plans


Popular 2D games recently released and based on the Unity engine include Among Us8,
Cuphead9, Enter the Gungeon10, or Hollow Knight11 (figure 2.3).

Figure 2.3: A screenshot of gameplay from the game Hollow Knight based on the Unity
engine, image courtesy of Team Cherry.

2.1.2 Godot Engine

Godot Engine12 is a multi-platform free and open-source game engine. Just like Unity,
Godot comes with an included editor, screenshot of which may be seen in figure 2.4. Online
documentation is available13.

Since Godot Engine is a community-driven project, commercial support is not avail-
able. Combined with a slower development pace, this is a major disadvantage compared to
commercial solutions. On the other hand, no licensing fees are attached.

8https://www.innersloth.com/games/among-us/
9http://cupheadgame.com/

10https://www.dodgeroll.com/gungeon/
11https://hollowknight.jp/
12Available from https://godotengine.org/
13https://docs.godotengine.org/en/stable/

6

https://www.innersloth.com/games/among-us/
http://cupheadgame.com/
https://www.dodgeroll.com/gungeon/
https://hollowknight.jp/
https://godotengine.org/
https://docs.godotengine.org/en/stable/


Figure 2.4: A screenshot of the Godot Engine editor, image courtesy of the Godot Engine
project contributors.

2D games developed on the Godot Engine include Bottomless14 (figure 2.5), Kingdoms
of the Dump15, or ROTA16.

Figure 2.5: A screenshot of the game Bottomless built on the Godot Engine. Image courtesy
of Raffaele Picca.

14https://picster.itch.io/bottomless
15https://kingdomsofthedump.com/
16https://harmonyhoney.itch.io/rota

7

https://picster.itch.io/bottomless
https://kingdomsofthedump.com/
https://harmonyhoney.itch.io/rota


2.2 Engine subsystems
The specific needs of games in the target genre must be taken into account when designing
a game engine. These functions may be categorized into individual subsystems [4]. Building
an infrastructure around them, these systems are then combined into a game engine.

Each system has a certain lifetime and must be initialized and shut down properly [4].
This is usually done by the engine automatically.

2.3 Resource management
A game engine should handle the lifetimes of individual resources on behalf of the game
developer. A resource may be any kind of media used by a game [4] — such as images,
audio clips, fonts, localization definitions, configuration files, or engine-specific structures.

After importing an asset into Unity, it is stored in a database, from which it may be
referenced using a path.

Godot Engine uses Universal Resource Identifier (URI) based path identifiers for indi-
vidual resources. Imported assets are converted to a custom format storing all necessary
metadata.

2.4 Game loop and scene management
A game is essentially a simulation [4]. However, aside from running the simulation, game
engines also have to present the state of the game to the player, as well as receive inputs
and translate them into simulation events.

Modern game engines represent the state of the game as a scene [4], a graph (commonly
a tree) of individual game objects — entities. Some game engines contain a graphical editor
to manage scenes with a real-time preview, as is the case with both Unity and Godot
Engine.

Unity and Godot Engine take different approaches for the representation of scene ob-
jects. Unity implements the entity component system (ECS) design pattern, Godot Engine
represents objects as standard class instances with the use of inheritance. ECS is a compo-
sitional design pattern, where certain properties of game entities are decoupled into smaller
components, separating system logic and data [2].

2.5 Rendering
In 2D games, the most commonly used unit of rendering is a sprite — a quadrilateral, usually
a square or a rectangle, with an assigned bitmap texture [4].

Unity provides a highly abstract and cross-platform renderer, backed by either DirectX,
Metal, OpenGL, or Vulkan; based on the target platform. Shaders are primarily written in
the HLSL programming language.

Godot by default uses a renderer based on OpenGL ES, a cross-platform subset of the
OpenGL rendering API17.

In both Unity and Godot Engine, sprites are a first-class member of the scene hierarchy.
All objects are rendered in 3D, leveraging orthographic projection to avoid perspective
distortion.

17https://www.khronos.org/opengles/

8

https://www.khronos.org/opengles/


2.6 Font rendering
Text is a ubiquitous element in the space of user interfaces. Text can be drawn to the screen
using several approaches. One of them is the rendering of glyphs from a bitmap texture —
an atlas. A glyph is a graphical representation of a single character [10]. However, this
poses several technical difficulties. Glyphs rendered using standard “textured rectangle”
techniques, with the use of texture filtering or without, will only look high-fidelity at certain
resolutions. While this effect may be desired in some cases (e.g. pixel-art games), many
fonts are stored in a vector format.

As rasterization of glyph outlines in real-time or even rendering the glyphs as a mesh
would be unreasonably costly, each glyph is rasterized only once and extensively cached [10].
However, the fact fonts are rasterized for a given size brings back the problem of scaling.
Rasterizing glyphs for each font size used consumes high amounts of memory — especially
for large sizes, where each glyph may be hundreds of pixels in each dimension.

One of the solutions for this issue is the usage of distance field bitmaps to describe the
glyph outlines [3]. A distance field is a field of scalars, describing the minimum distance
to a certain shape [1]. In signed distance fields, given a threshold “on-edge” value, points
sampled inside the shape have a greater distance value than the threshold, while points
outside the shape have a lower value; or vice versa. Leveraging the linear texture filtering
and programmable shader features of modern GPUs, uniform sampling of distance fields
can be achieved with little to no performance costs. Relatively low-resolution bitmaps
may be used to render high-resolution text using much lower resolution glyph textures. A
comparison of the input bitmap and the result is shown in figure 2.6.

(a) Before (b) After

Figure 2.6: A region of a texture atlas containing packed distance fields of glyphs, (a) before
and (b) after applying a threshold filter.

There are several approaches for sampling distance field textures [3], two of the the
most common ones are thresholding and inverse linear interpolation. A visual comparison
of both techniques can be seen in figure 2.7. Defining the edge as a numerical range instead
of a single threshold creates significantly smoother outlines for drawn text.

Given an input sampled grayscale value 𝑦 ∈ ⟨0, 1⟩, the threshold filter outputs an alpha
value 𝑎 as described in formula 2.1a, parametrized by the threshold 𝑇 ∈ ⟨0, 1⟩, offsetting
the edge inside or outside. The inverse linear interpolation (formula 2.1b) filter defines two
parameters instead, 𝑇1 and 𝑇2, where 0 < 𝑇1 < 𝑇2 < 1.

9



𝑎 =

{︃
1 𝑦 ≥ 𝑇

0 else
(2.1a)

𝑎 =

⎧⎪⎨⎪⎩
0 𝑦 < 𝑇1
𝑦−𝑇1

𝑇2−𝑇1
𝑇1 ≤ 𝑦 ≤ 𝑇2

1 𝑦 > 𝑇2

(2.1b)

(a) Naive thresholding (b) Inverse linear interpolation

Figure 2.7: A close-up of two approaches of sampling distance fields.

The size of glyph atlases may further be brought down with the usage of various com-
pression mechanisms, such as rectangle packing of glyphs in the resulting atlas, or storing
multiple sets of glyphs in the atlas by utilizing each color channel as a separate layer.
In this case, rectangle packing is the process of fitting rectangles into a larger rectangle
without any overlap, maximizing the area utilized [14]. One such algorithm utilizes the
skyline bottom-left heuristic. As this algorithm is greedy by nature, it may be used without
rearranging already placed rectangles.

Unity supports fonts in the TrueType and OpenType formats. Imported font assets may
be configured for a certain pixel size, and are internally converted to a texture. Individual
characters are then rendered as textured quadrilaterals.

Godot Engine provides two font asset implementations. The first type, “BitmapFont”, is
an implementation of the BMFont18 bitmap font definition format, essentially pre-generated
texture atlases of glyphs and their metadata. The other type, “DynamicFont”, just like
Unity, relies on the rasterization of vector-based fonts for a given size and the rendering of
textured quadrilaterals.

2.7 Audio
Sound effects and music are an integral part of basically any game. The game queries the
engine to play a certain sound effect or track, while the game engine is expected to handle
the streaming and playback lifetime. Advanced audio engines provide high-quality modifier
effects, audio channel mixing, surround sound, and other features increasing immersivity
[4][11].

Pulse-code modulation (PCM) is the standard method of digital audio encoding [4],
usually with a given sample rate, typically storing the value of each sample in a scalar.
However, audio files are usually not stored in raw PCM, as large amounts of memory

18Available at http://www.angelcode.com/products/bmfont/

10

http://www.angelcode.com/products/bmfont/


and disk space are used. Compression greatly reduces the storage size and streaming
bandwidth required. Lossy compression can be used with little perceptual quality loss,
removing features undetectible by most humans [7].

A trade-off between playback performance and memory consumption has to be consid-
ered. Frequently used small audio files should reside in the system memory uncompressed
to reduce the stress on the CPU.

Both Unity and Godot Engine support the import of audio in standard formats, such
as PCM WAV, Ogg Vorbis, and MP3.

2.8 Summary
In this chapter, two existing well-known game engines have been explored. Based on obser-
vations and available literature, systems necessary for the development of 2D games have
been picked and further researched. Some of the most important components include a
resource manager, a game loop, a renderer, or an audio engine.

11



Chapter 3

Design

This chapter brings insight into individual design choices made during the creation of the
game engine. The game engine of interest will be further referred to as “PlutoEngine”.

3.1 Target platform
A game engine is not limited by the platform it runs on, as long as it can be compiled for said
architecture and all required abstract systems have a proper underlying implementation.
The number of required implementation may grow exponentially with the amount of systems
and platforms supported, therefore only a subset of platforms and systems is selected.

For the above reasons, PlutoEngine is limited to being an exclusively desktop computer
oriented game engine, primarily for 2D games. Combined with the right choice of underlying
implementations, this reduces the number of combinations to one.

3.2 System abstraction
While game engines can be designed bottom-up and scaled up going forwards, this approach
has several considerable trade-offs. Bottom-up design may initially be faster and achieve
a working product in a shorter amount of time, however expanding platform support or
adding new systems may require large amounts of refactoring due to implementation-specific
integrations.

The opposite approach — top-down design — sacrifices early progress and development
time for a more solid structure. The overall architecture is planned out first, breaking
down entire systems into individual subsystems. Extra time has to be dedicated to the
development of the infrastructure to make systems inter-operable.

PlutoEngine takes a hybrid approach, creating a minimal proof of concept first, and
then slowly migrate to a modular architecture of abstract components. The four major
systems discussed in this chapter may be seen in figure 3.1, these systems will be broken
down into smaller components as the PlutoEngine project grows.

12



PlutoEngine

Rendering
subsystem

Application
lifetime manager Audio subsystem Resource

manager

Figure 3.1: The four major systems of the initial iteration of PlutoEngine: application
lifecycle manager, rendering subsystem, audio subsystem, and a resource manager.

3.3 Resource management
A platform-independent resource identifier format has been created, optionally becoming a
Universal Resource Identifier (URI) by prepending the pluto+asl URI scheme. The engine
can intercept these URIs, and normalize them by parsing their path part. Identifiers may
be absolute or relative. Absolute identifiers comprise the owner module’s name, resource
container identifier, and the path of the resource. Relative identifiers only contain the path
component.

Each resource identifier is internally converted to a path based on the native file system
to maintain compatibility with the platform’s standard library functions.

The resource system itself is not discussed here as its design heavily depends on the
underlying platform and available APIs.

3.4 Application lifecycle and game loop
The lifecycle of the entire application, at the highest level of abstraction, can be consolidated
into three main stages: initialization, the main loop, and the unload process [4]. Application
lifecycle management is the highest-level system present in any game engine.

Before initializing all resources, all declared modules and their dependencies are initial-
ized by the module manager. Each module may then request its own resources.

While the application is running, the game engine has to manage all resources without
performance regressions. This includes rendering, audio streaming and input handling.
During the game loop, individual systems are queried to perform routine tasks.
Repeating tasks the engine has to manage each update include :

1. Preparations to draw the next frame

2. Notifying the application of an update

3. Presenting the updated state of the game to the user

4. Clearing the previous states of active systems

5. Notifying all systems of an update

13



6. Checking for possible conditions of exiting the game loop

Once an exit is requested, the engine completes the in-progress update and begins
unloading and freeing all active resources and modules. Once all resources are freed, the
application may safely exit.

The entire lifecycle of an application is described by figure 3.2,

Initialization

Yes

No

Has application 
exit been  

requested?

Prepare next frame Game update
(programmable) Present next frame

Clear previous
system states

Update the state of all
active systems

Unload all systems 
Free resources 
Exit application 

Figure 3.2: A simplified execution flowchart of an application. Primary system lifetime
events are marked as bold.

The scene and game loop management subsystem has been omitted from the initial
design of PlutoEngine, as it is not required for the development of games. Developers are
expected to build a custom solution fit for their game. This trades off development time
for higher flexibility. However, PlutoEngine provides basic tools for the implementation of
a game loop, including a timer for the measurement of frame deltas [4].

3.5 2D renderer
There are various 2D rendering techniques. However, just like other major game engines,
standard GPU-accelerated rasterization rendering techniques are used, applied in two di-
mensions. No depth-testing is used, sprites are assumed to be rendered back-to-front. As
there is no integrated scene management, the ordering of sprite rendering is determined in
an imperative manner by the game developer.

While 3D support is possible with this setup, PlutoEngine will focus exclusively on 2D
rendering until all basic systems are in place.

3.6 Font renderer
A dedicated solution is required for the implementation of the font renderer, since a highly
specialized solution may be necessary for this system to be efficient. All drawn glyphs are
rectangles, and the atlas texture does not change between individual glyph draws, leaving
room for major optimizations. For that reason, the font renderer is considered a separate
system.

14



3.6.1 Bitmap font renderer

There are no special requirements for the bitmap font renderer, as bitmap fonts are usually
used in smaller games or as placeholders. The process of rendering text using a bitmap font
is very analogical to that of drawing sprites. A simple texture can be used as a backing
atlas for glyphs.

3.6.2 Signed distance field font renderer

The inverse linear interpolation sampling technique has been opted for to reduce edge
aliasing [3]. A small bias been introduced, slightly offsetting the thresholds for small sizes
to make small text more legible.

3.7 Audio
As audio playback is a very platform-dependent and low-level function, a third-party solu-
tion providing an abstraction over the various system implementations will be used.

For the sake of terminology, let’s call the data sources providing raw PCM data stream-
ers. Two main streamer types were designed for the most common sound playback use
cases: sound effects and music.

The first streamer type is clip. Audio clips are designed to hold short sound effects
and allow random access and parallel read from an unlimited amount of sources. Due to
their small size and random access requirements, they are stored as raw PCM in the system
memory.

Tracks are longer audio streamers — possibly streamed over a network, decoded from
their compressed format on-demand. They contain an integrated read pointer as only one
track is expected to be streamed at a time. While random access is may be implemented, it
comes at a very high overhead due to decoder seeking. Medium-length tracks can be stored
in their compressed format in the system memory and decoded from memory.

A central audio engine component keeps track of active audio sources, copying data
from their streamers in the game loop. Inactive sources or sources which have finished
playing are automatically closed and all resources are freed.

3.8 Summary
An architecture for a 2D game engine has been designed as a set of components. Solutions
of individual systems — selected in chapter 2 — to be implemented were proposed. This
includes a component system, basic game loop management, a 2D renderer with support
for sprite sheets, two font renderers, and an audio engine.

15



Chapter 4

Implementation

PlutoEngine is developed as a set of Java libraries written in the Java programming lan-
guage with transitive dependencies as seen in figure 4.1. The Java Virtual Machine (further
referred to as “the JVM”) provides a solid foundation for developers to write multi-platform
software without relying on the executing system’s architecture. Each PlutoEngine library
is a Jar (Java archive) file, which can then be added to the classpath of a project, loading
it on the application’s startup.

JOML
(Java OpenGL Math

Library)

PlutoLib

OpenGL, GLFW, 
stb

(native bindings)

OpenAL 
(native bindings)

PlutoRender

PlutoGUI

Libra

PlutoSpritesheetPlutoAudio

PlutoCore

PlutoComponent

PlutoEngine Core Libraries

LWJGL

PlutoDisplay PlutoRuntime

Figure 4.1: A simplified dependency graph of PlutoEngine. Note each dependency is tran-
sitive.

16



Directory Description
buildSrc/ Build scripts and definitions
engine-core/ Core libraries needed for a minimal setup
engine-demo/ Demonstrative applications
engine-ext/ Libraries with optional features
libra/ GUI layout library submodule

Table 4.1: Repository structure layout

4.1 Build system and structure
Gradle has been chosen as the project’s build system for its versatility, as each build script
is written in either Groovy or Kotlin, languages that compile to Java.

An existing Git repository1 on the source control platform GitHub has been used. Note
that some parts of the engine were written before the work on this thesis has begun, notably
some parts of the renderer and display subsystems and utility classes providing resource
management and logging.

Directories for core libraries, demonstrative applications and extension features have
been created, as seen in table 4.1. Each project is contained within a separate directory,
managed by the central Gradle build script. See appendix A for a more in-depth look into
the repository’s structure and authorship.

4.2 Used technologies
The Java ecosystem contains many powerful libraries and projects, such as the IntelliJ
Platform2, licensed under permissive open source licenses. The license of OpenJDK 3, an
open source implementation of the Java platform, allows it to be redistributed with finished
products. The latest stable Java release, version 17, has been chosen for its language features
and performance improvements in the OpenJDK implementation of the Java Development
Kit (JDK) 4.

Many parts of the engine directly rely on the class introspection and reflection features
of the Java language, especially the module loader and the component system.

One of the most popular programming interfaces designed for graphics rendering is
OpenGL [12], allowing programmers to accelerate 3D graphics computation, leveraging
dedicated hardware. OpenGL supports programmable shaders, written in the C-like GLSL
[5] (OpenGL Shading Language) programming language.

OpenGL core profile in version 3.3 presents a decent compromise between modern ren-
dering features and backwards compatibility with older graphics cards. GLSL shaders are
written in version 330 core.

1Available at https://github.com/493msi/plutoengine
2Available from https://github.com/JetBrains/intellij-community
3Available from https://openjdk.java.net/
4https://www.optaplanner.org/blog/2021/09/15/HowMuchFasterIsJava17.html, retrieved 2022-04-27.

17

https://github.com/493msi/plutoengine
https://github.com/JetBrains/intellij-community
https://openjdk.java.net/
https://www.optaplanner.org/blog/2021/09/15/HowMuchFasterIsJava17.html


4.3 Third-party libraries
Configuration and module definition files are loaded using the Jackson library set, which
has a unified API to parse various data file formats like JSON, YAML or CSV5.

By far the most important library — allowing PlutoEngine to use all natives libraries
listed further — is LWJGL6 (Lightweight Java Game Library), well-known for its use in the
game Minecraft. LWJGL contains Java Native Interface bindings and wrappers for native
libraries listed below.

The stb7 public domain library set have been used. Audio files are stored in the Ogg
Vorbis format and decoded using the stb_vorbis library, stb_rect_pack has been used
as an implemention of the skyline bottom-left algorithm, and stb_truetype has been used
for the parsing of the TrueType font format.

GLFW8 has been used to create native windows and the OpenGL context, and handle
window events, such as keyboard and mouse input.

Audio playback is provided by the OpenAL Soft9 open source implementation of the
OpenAL audio API.

While the Java standard library Abstract Window Toolkit and Graphics APIs contain
a font loader and even a font renderer, the usage of the stb_truetype library has deemed
sufficient and convenient for the generation of distance fields.

The majority of linear algebra computations on the CPU are handled by the Java
OpenGL Math Library10 (JOML).

4.4 Implementation details
The subsystems mentioned in the chapter 3 have been developed, notable implementations
of which are listed in this section. Additional systems necessary for application lifetime
management are included.

4.4.1 Subsystems

All individual systems can be retrieved from the global singleton instance of the engine as
components. While making the global instance a thread-local multiton was experimented
with, both GLFW and OpenGL are very sensitive about the threads they run on. Therefore,
the feature of running an instance of the engine on a per-thread basis — while theoretically
possible — was omitted for the time being. However, support for running multiple concur-
rent instances of the engine may prove useful further down the road in the implementation
of a dedicated editor.

4.4.2 Components

The component manager is a data structure modeled around the provider software design
pattern, while also resembling the entity component system (ECS) pattern. Components

5Available from https://github.com/FasterXML/jackson
6Available from https://www.lwjgl.org/
7Available from https://github.com/nothings/stb
8Available from https://github.com/glfw/glfw
9Available from https://openal-soft.org/

10Available from https://github.com/JOML-CI/JOML

18

https://github.com/FasterXML/jackson
https://www.lwjgl.org/
https://github.com/nothings/stb
https://github.com/glfw/glfw
https://openal-soft.org/
https://github.com/JOML-CI/JOML


(providers) can be retrieved by requesting their class or any of its superclasses, walking up
to the abstract base component class in the class hierarchy tree.

Upon adding a component to the manager, it is registered as a provider and mounted,
notifying the component of this event. Components can declare other components as de-
pendencies during mounting.

Due to type erasure of type parameters in Java, components are created and kept track
of using a token object with the same type parameter — a zero argument functor that
creates an instance of said component. This type token can then be used to unmount all
components created by that functor. The component manager also stores reverse references
of components to the tokens that created them, so that removing components by supplying
their instances is also possible.

The component system is fully reusable and may be used as a separate library, as well
as in games running PlutoEngine.

4.4.3 Modules

The module loader is a component managing the lifetime of runtime-loaded modules in a
stack-like manner. The module load and unload order is fully deterministic, modules always
being unloaded in the reverse of the load order.

The component and module systems are orthogonal; in fact, the module loader itself is
a component. While the module loader could have been implemented as a special case of
the component manager, the provider behavior is not required. A separate solution thus
reduces complexity.

It is critical that module dependencies represent a tree with no cycles as any dependency
cycles introduced would have to be manually resolved by the authors of the modules. For-
bidding dependency cycles therefore greatly reduces the complexity of the module system.

4.4.4 Resource management

The JVM uses a well-defined memory model, possibly greatly distinct from the underlying
platform [9]. For raw data transfer with native function calls, Java’s built-in array types
are unfit, as Java uses exclusively big-endian for its integral types.

For the above reasons, the Java standard library provides the Buffer API, low-level
containers for primitive data types [8]. These Buffers’ endianness can be configured to use
the native one. It is very important to distinguish off-heap (further referred to as “direct”)
Buffers from on-heap Buffers as per the JVM specification the garbage collector is free to
relocate objects on the heap, and the heap is not required to be a continuous block of
memory, while native functions require an exact pointer to a continuous sequence of values.

However, direct Buffer allocation using the Java standard library still presents significant
overhead, as all values in a newly created Buffer are set to zero, and the lifetime of Buffers
is managed by the JVM’s garbage collector.

Due to the aforementioned issues, LWJGL provides an explicit memory management
API11, allowing for direct Buffer allocation via stack frames and native memory allocators,
such as malloc from the C standard library, all integrated with the Java platform.

11As explained in https://blog.lwjgl.org/memory-management-in-lwjgl-3/, retrieved 2022-05-04.

19

https://blog.lwjgl.org/memory-management-in-lwjgl-3/


4.4.5 Asset loading

Java’s NIO API allows programmers to create custom file system providers12. In conjunc-
tion with SPI (Service Provider Interface), these providers can then be registered as URI
handlers within the application. Whenever a new NIO Path is created from a URI, a
FileSystem corresponding to the URI’s scheme is resolved and the Path is constructed in
an implementation-dependent manner.

Wrapping around other FileSystem implementations in an abstract way, the module
system can seamlessly provide named resource containers with unified path accessors. Each
module can declare its resource containers in a configuration file in the modules’s root
directory. These resource containers may be of any format, as long as a corresponding
provider is installed, and the engine supports it. By default, support for Zip archives is
included.

Therefore, all I/O methods in PlutoEngine accept NIO Paths, accepting both standard
file system paths and PlutoEngine-specific resource paths.

4.4.6 Display

The display subsystem is primarily a wrapper around the GLFW native library, managing
the lifetime of windows, OpenGL contexts, and user input — keyboard and mouse.

Double-buffering is used by default, meaning two screen buffers are always in flight, one
being rendered to and one being presented13. Screen tearing may be prevented by enabling
vertical synchronization.

4.4.7 Application lifetime management

Individual modules are loaded by mounting the module loader component to the global
component manager and declaring an entry point. The depedency tree is walked recursively,
loading each required module before loading the parent module itself.
The render loop consists mainly of the following routines:

1. Clear the main framebuffer

2. Run a single update of the game loop

3. Swap screen buffers

4. Ensure data buffers are streamed to all audio sources

5. Destroy unneeded objects

6. Poll for possible window and input events

In the final stage of the application’s lifetime, modules and resources are unloaded in
the reverse order of load. This ensures dependency trees are not broken. Once all modules
are unloaded and all components are unmounted, the application can exit.

12Based on the guide available from https://docs.oracle.com/javase/8/docs/technotes/guides/io/
fsp/filesystemprovider.html, retrieved 2022-04-28.

13Based on https://www.glfw.org/docs/latest/quick.html, retrieved 2022-04-29

20

https://docs.oracle.com/javase/8/docs/technotes/guides/io/fsp/filesystemprovider.html
https://docs.oracle.com/javase/8/docs/technotes/guides/io/fsp/filesystemprovider.html
https://www.glfw.org/docs/latest/quick.html


4.4.8 2D renderer

Most features — such as textures, meshes (vertex array objects), shader programs — are thin
wrappers around existing OpenGL concepts, however some parts take advantage of the Java
programming language. Notably, the shader system exploits reflection to automatically
link uniform locations based on their Java field names. Uniform fields may be annotated
to automatically receive the projection matrix, should it change.

Image files are loaded using the ImageIO class from the Java standard library and sub-
sequently flipped vertically, as the BufferedImage class assumes the Y coordinate increases
going downwards, while OpenGL uses the bottom left corner as the origin point for UV
coordinates. The color components are also swizzled using the GL_TEXTURE_SWIZZLE_RGBA
texture parameter, since the BufferedImage is loaded in the 4-byte ABGR color component
format and OpenGL expects the color components in the RGBA order.

The vertices of input meshes are transformed in the vertex shader to the corresponding
clip-space coordinates [6]. The coordinate vector is first matrix-multiplied by the trans-
formation matrix, the view matrix, and ultimately by the projection matrix. Therefore,
given an input vector 𝐴, transformation matrix 𝑀 , view matrix 𝑉 , projection matrix 𝑃 ,
the clip-space coordinates 𝐵 of the vertex can be calculated as seen in formula 4.1.

𝐵 = 𝑃 × 𝑉 ×𝑀 ×𝐴 (4.1)

Because rendering in 2D usually does not require perspective projection, apart from use
cases like parallax scrolling, the view frustum essentially takes shape of a rectangular prism,
as seen in figure 4.2. This means the 𝑤 component of the four-dimensional coordinate vector
stays 1 and perspective divide has no effect [6]. The projection matrix does not change as
long as the clip-space prism is not resized, which can be triggered by resizing the viewport.

Figure 4.2: Orthographic projection volume and normalized device coordinates (NDC).14

For this use-case, the projection matrix can be defined as seen in formula 4.2 [6], where
𝑛 is the distance of the near plane from the camera, 𝑓 is the distance of the far place from
the camera, 𝑙 and 𝑟 are the distances of left and right planes from the camera respectively,
and 𝑡 and 𝑏 are the distances of the top and bottom planes from the camera.

14Figure sourced from https://www.songho.ca/opengl/gl_projectionmatrix.html, retrieved 2022-04-29.

21

https://www.songho.ca/opengl/gl_projectionmatrix.html


𝑃 =

⎡⎢⎢⎢⎣
2

𝑟−𝑙 0 0 − 𝑟+𝑙
𝑟−𝑙

0 2
𝑡−𝑏 0 − 𝑡+𝑏

𝑡−𝑏

0 0 −2
𝑓−𝑛 −𝑓+𝑛

𝑓−𝑛

0 0 0 1

⎤⎥⎥⎥⎦ (4.2)

PlutoEngine by default uses projection parameters to map the window coordinates
directly to the view coordinates — setting the 𝑙 and 𝑡 parameters to 0, the 𝑏 parameter to
the window height, and the 𝑟 parameter to the window width. This modifies the coordinate
system to start in the upper left window corner, the positive 𝑥 axis pointing to the right
and flipping the 𝑦 positive axis to point downwards.

When rendering without the use of a camera view, for example in user interfaces, the
view matrix can safely be omitted entirely, as multiplying the model coordinates by an
identity matrix would have no effect.

4.4.9 Sprite abstraction

Because sprites are extensively used in 2D games, special care must be taken for their
implementation. As a subregion of a texture, sprites may be considered views of their
parent texture. Based on that, sprites may substitute textures and UV coordinates when
communicating with a renderer. Various sprite abstractions have been implemented —
including animated sprites, oriented sprites, placeholder sprites, and sprites with managed
lifetimes.

Framebuffers can be used to dynamically generate sprite sheets at application startup.
By rendering individual sprites to an active framebuffer, the framebuffer’s backing color
attachment texture essentially becomes an atlas. While this solution is rather complicated,
the atlas texture does not have to leave the graphics card’s VRAM at any moment, as the
process of blending the sprite into the sprite sheet is done on the GPU. The sprite sheet is
automatically expanded when running out of space by creating a new texture and rendering
the old texture into the larger one using framebuffer objects.

4.4.10 Font renderer

Metadata for the correct placement of individual glyphs is stored, such as its width, height,
horizontal and vertical offset, and kerning offsets [4]. Some metadata is stored on a font-
wide level, especially the font’s name, ascent, descent, and line gap.

Originally developed as a part of the PlutoGUI module, a module named Libra has
been separated from PlutoEngine to create an abstract API for building complex user
interfaces. Currently, it serves as a base for the font renderer implementations contained
within PlutoGUI.

A third-party library has been used for the process of parsing vector-defined fonts and
distance field bitmap generation. For each character in a predefined set of characters, a
distance field bitmap is generated, which is then blended onto an atlas texture. Rectangle
packing is used to fit as many glyphs into a single atlas as possible.

As space may run out during the generation of a texture atlas and rectangle packing,
a 2D texture array has been opted for. Once the rectangle packer cannot find a valid spot
for a glyph rectangle, a new “page” is created, clearing the packing algorithm’s state and
writing the glyph image to the new texture. This approach is limited only by the maximum
texture array size and hardware limitations.

22



Bitmap fonts are defined in a custom YAML-based configuration format, accompanied
by an image file — the atlas containing all glyphs. TrueType fonts are loaded into a similar
format using third-party libraries and dynamic texture atlas generation. This approach
allows for combining a large part of the font rendering logic, emitting nearly identical
draw commands for both approaches. A different GLSL fragment shader is required for the
thresholding process of signed distance field rendering. The smoothstep GLSL function has
been used for distance field sampling, ensuring smooth edges. This function is essentially
equivalent to the inverse linear interpolation method, with an extra step of the cubic Hermite
interpolation added. The cubic Hermite interpolation for any 𝑥 ∈ ⟨0, 1⟩ may be defined as
3𝑥2 − 2𝑥3 [13].

RGBA textures are used in the bitmap font renderer to allow developers to draw non-
monochrome symbols aside from standard characters. Instead of using each color compo-
nent as a separate page for the distance field font renderer to save video memory, a grayscale
texture has been used for a similar effect.

As performing a large amount of draw calls — several OpenGL API calls per charac-
ter — would significantly slow down the application, optimizations are necessary. Generated
abstract draw calls from the font layout system are stored in an intermediate command
buffer and optimized as seen in figure 4.3. These commands are then parsed and corre-
sponding draw calls are emitted. Draw calls can be combined when rendering many glyphs
using the same atlas. In particular, a mesh can be created on the CPU for the entire drawn
string of text. This dramatically reduces the amount of issued GPU commands.

Figure 4.3: Command optimization process. Since the texture and shader did not change
since the last draw call, these commands can be safely removed.

4.4.11 Audio subsystem

The Ogg Vorbis audio format has been selected for its industry support and having no
licensing fees, as well as being an open standard. stb_vorbis is used to decode the Vorbis
format to interleaved PCM. Interlaved formats store individual audio channel grouped by
sample index in a pre-defined order [4]. While support for optional downmixing15 to mono
audio has been experimented with — using stb_vorbis — the downmixing algorithm used
caused the sound to become audibly distorted.

The audio engine is implemented as two components: an abstraction around a native
audio API, in this case OpenAL; and a manager, a subsystem that monitors the lifetime of
individual audio sources and ensures data is always transferred to their copy buffers.

15The process of transforming audio with a certain number of channels into audio with a lower number
of channels.

23



Just like with the cycle of transferring of images to the screen, the double-buffer strategy
has been used to stream data to OpenAL sources. While one buffer is queued and streamed
from, the second buffer may be written to in the meantime to minimize downtime.

Since the default orthographic projection used in PlutoEngine directly maps the view-
space coordinates to the window coordinates, the movement of only 100 pixels on the screen
translates into 100 units of world-space movement. Since OpenAL by default uses the
reference distance of 1 unit16, this causes the game sound effect volume to drop-off sharply.
While this may be solved with the addition of a view matrix (camera), in order to allow
games to use arbitrary coordinate scales, audio coordinate transform support was added.
The audio engine has a configurable transformation matrix, set to identity by default, that
may be modified to scale the audio coordinate system to desired levels. The OpenAL
distance model may also be configured using the AL_REFERENCE_DISTANCE parameter on a
per-source basis, however this solution was not implemented as its portability is not clear.

4.5 Engine distribution
PlutoEngine is automatically built using the continuous deployment solution GitHub Ac-
tions, a set of Jar file libraries (Maven artifacts) being the output. These artifacts are then
published to a self-hosted Maven repository. The libraries can then be directly added to
the classpath of a project or consumed using a build system, such as Maven or Gradle — see
appendix B. The PlutoCore module contains a convenience entry point for applications to
accelerate prototyping.

4.6 Summary
A game engine has been developed using the Java platform, implementing an OpenGL-
based renderer and an OpenAL-based audio engine. The resulting engine provides a 2D
renderer, two font renderer implementations, an audio engine, and a module-based resource
system. Additional solutions have been implemented to manage the lifetime of individual
subsystems. The project is publicly available and usable as a set of open-source libraries.

16As defined in the OpenAL 1.1 specification: https://www.openal.org/documentation/openal-1.1-
specification.pdf, retrieved 2022-05-07

24

https://www.openal.org/documentation/openal-1.1-specification.pdf
https://www.openal.org/documentation/openal-1.1-specification.pdf


Chapter 5

Results and metrics

PlutoEngine was not developed in a vacuum. Therefore, it is important to evaluate the
resulting implementation, as well as compare it to existing solutions. This section com-
pares the implementation of PlutoEngine to the engines mentioned in chapter 2, and then
evaluates the results of work done so far.

5.1 Comparison against existing solutions
One thing becomes almost instantly apparent: PlutoEngine lacks the distinction between
GUI and world 2D rendering. This may be remedied by adding a new renderer with view
matrix transformation support, combined with a camera subsystem.

The lack of an integrated scene management solution may be seen as both an advantage
and a disadvantage. Leaving the game loop implementation at the discretion of the game
developer enables them to build basically any kind of a 2D game at the cost of initial
infrastructure development overhead. This design choice will have to be reevaluated as
PlutoEngine matures, as it significantly raises the skill floor required to build a small game.

Many parts of PlutoEngine still contain no abstractions whatsoever, game developers
have to rely on underlying graphics API implementations, especially lower-level framebuffer
operations, such as adjusting the blend mode. Ideally, the underlying rendering API would
not be exposed to game developers at all, turning each rendering implementation essentially
module-private.

A lighting system is necessary to create more immersive games. While a lighting system
may be created by the game developer, an integrated solution providing at least a basic
implementation should make PlutoEngine more accessible to beginner developers.

The default font loader and renderer implementations in PlutoEngine allow for high
resolution rendering of text at any size. Combined with various shader techniques and
because texture coordinates are generated for each of the drawn characters (at the quadri-
lateral level), essentially any “paint” effect may be applied to the drawn text without the
use of framebuffers or stencil buffers, as seen in figure 5.1. The fact a single-size atlas may
be used for the rendering of text of any size is a great advantage over bitmap fonts in Unity
and Godot Engine.

Audio support in PlutoEngine is currently very crude and only basic sound effect play-
back is included. Some features can be implemented on the behalf of the game developer,
however some features — like music playback — should be included in the base package.

25



Figure 5.1: A screenshot of text drawn using the distance field-based font renderer, with
a horizontal rainbow gradient applied. Note the shadow is not a shader effect — while
technically possible — merely the same text drawn with a black paint offset on the vertical
axis.

5.2 Third-party adoption
No third-party projects have been developed using PlutoEngine so far as the project is still
in the rapid development stage of software development, being iterated upon constantly.

5.3 Demonstration and testing
A first-party basic space shooter game temporarily named “JSRClone”, licensed under the
open-source MIT License, has been developed to demonstrate the engine’s capabilities. The
game takes advantage of the sprite renderer, both the bitmap font renderer and TrueType
font renderer, and the audio subsystem. As PlutoEngine does not provide a particle system
yet, animations have been implemented as sprites managed by the game.

A short video demonstrating the features of the engine and gameplay of the game has
been created1.

Figure 5.2: A screenshot from the gameplay of JSRClone. Text rendered on the left side
of the screen is drawn with the bitmap font renderer, while the frame-per-second counter
leverages the distance field font renderer.

This game has been previously prototyped in C using the SDL2 library stack, however
it is only used as a reference implementation in this case, being in no way related to
PlutoEngine.

1See appendix C.

26



Special builds of both the original game “SRClone” and the PlutoEngine port JSRClone
have been constructed to measure the frame times (time taken to process one frame) of each
version of the game. It is important to note the implementations of both games are not
identical and each implementation uses a different programming method. While SRClone is
heavily data-oriented and procedural, JSRClone takes an object-oriented approach. Several
shortcuts and compromises have been made while implementing the game logic, possibly
impairing the performance in complex situations. That being said, this benchmark is a
good indicator of any possible performance regressions, which could cause up to orders of
magnitude lower performance.

JSRClone testing has been performed using the Eclipse Temurin2 distribution of the
OpenJDK implementation of the Java platform for both Windows and Linux in ver-
sion 17.0.3+7. Minimal Java runtime images have been created using the jlink command
to remove all unnecessary features. The resulting size of a distribution for a single platform
averages at around 60 MB.

The Windows 10 testing environment uses official proprietary drivers provided by AMD,
while the Arch Linux environment uses the open-source Mesa3 implementation. See ap-
pendix C for the full benchmark suite and software used.

All tests were carried out on a desktop computer with the AMD Ryzen 7 5700G CPU,
32 GB of system memory at 3200 MHz, and the AMD Radeon RX Vega 56 graphics card.
Frame times in an internal pre-allocated array to avoid skewing the resulting data. The
window resolution was always set to 1280 × 720 pixels. A single run of each of the tested
implementations was performed.

The reference benchmark scene (figure 5.3) consists of 500 seconds of standard gameplay.
Roughly 520 – 800 sprites are rendered each frame. A static set of 512 sprites consists of
the stars rendered in the background. The player consists of one sprite, a second one being
dedicated to the ship’s engine trail. Enemy ships approach the player in increasing but
fluctuating numbers and shoot projectiles. A slight variation is present due to the random
nature of enemy spawn rates. The same random seed could be used to fix this issue, however
a different pseudo-random number generator implementation has been used for the SRClone
implementation.

2Available at https://adoptium.net/
3https://mesa3d.org/

27

https://adoptium.net/
https://mesa3d.org/


Figure 5.3: A screenshot from one of the more demanding periods of the benchmark build
of the game JSRClone.

As seen in table 5.1 and figure 5.4, on Windows, SRClone averages approximately
2461 frames per second; JSRClone is closer to 1183 frames per second, while also fluctuating
more in terms of frame times. This may be caused by the Java Virtual Machine (JVM)
garbage collector (GC), differences in process scheduling, audio streaming, or insufficiently
optimized paths of the game logic.

Implementation Frame time (𝑚𝑠) FPS (1/𝑠)
Average Std Dev Average Std Dev

JSRClone Windows 0.862 0.330 1183.01 92.823
SRClone Windows 0.407 0.021 2461.62 87.253
JSRClone Linux 0.406 0.052 2488.89 228.811
SRClone Linux 0.309 0.037 3261.32 257.367

Table 5.1: Average frame times and frames per second (FPS) and their standard deviations
of the aforementioned standardized testing scene implementation runs.

28



0 100 200 300 400 500
time [seconds]

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

fr
am

e
tim

e
[s

ec
on

ds
]

SRClone Windows
JSRClone Windows

Figure 5.4: A comparison of frame times of Windows builds of both the Java version and
C version. The Java build averages at around 0.85 milliseconds per frame, while the native
build is closer to 0.4 milliseconds per frame.

JSRClone in the Linux testing environment (figure 5.5) achieves average frame rate of
2489 frames per second, while the native C version runs at approximately 3261 frames per
second.
On Linux, the frame time gap closes significantly, suggesting one or multiple of the following:

• The SDL2 implementation of the game does not explicitly specify its rendering API
and uses the first available accelerated renderer4.

• The Windows AMD OpenGL driver implementation may have a significantly higher
overhead compared to the open-source Mesa implementation.

• The Linux implementation of the OpenJDK used may be significantly faster.

To research this disparity, the Windows JSRClone build has been run using the Wine5 com-
patibility layer in the Linux testing environment, experiencing much higher performance,
approaching frames per second observed in the Linux build. For this reason, I have con-
cluded that this performance difference is caused by the overhead of the OpenGL driver
implementation of the Windows environment.

4The −1 renderer index has been supplied to the SDL_CreateRenderer initializer function ( https:
//wiki.libsdl.org/SDL_CreateRenderer).

5Version 7.7; available at https://www.winehq.org/.

29

https://wiki.libsdl.org/SDL_CreateRenderer
https://wiki.libsdl.org/SDL_CreateRenderer
https://www.winehq.org/


0 100 200 300 400 500
time [seconds]

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

fr
am

e
tim

e
[s

ec
on

ds
]

SRClone Linux
JSRClone Linux

Figure 5.5: A comparison of frame times of Linux builds of both the Java version and C
version. The Java build averages at around 0.4 milliseconds per frame while the native
build is closer to 0.3 milliseconds per frame.

As seen in figures 5.6 and 5.7, during the first second of run time, the JVM is significantly
slower as it warms up [15] and the just-in-time compiler optimizes hot parts of the code.
However, high throughput is quickly achieved within the first second.

0 1 2 3 4 5
time [seconds]

10−4

10−3

10−2

fr
am

e
tim

e
[s

ec
on

ds
]

SRClone Windows
JSRClone Windows

Figure 5.6: A close-up of startup frame times of Windows builds of both the Java version
and C version.

30



0 1 2 3 4 5
time [seconds]

10−4

10−3

10−2

fr
am

e
tim

e
[s

ec
on

ds
]

SRClone Linux
JSRClone Linux

Figure 5.7: A close-up of startup frame times of Linux builds of both the Java version and
C version.

5.4 Summary
PlutoEngine has been found to provide a solid and versatile base for 2D game development
at the cost developer-friendly features, like a built-in editor or scene management. An
example project — a simple 2D space shooter game — has been created under a permissive
open-source license to promote PlutoEngine and demonstrate its features. This game has
also served as a benchmark for performance testing. No significant slowdowns were observed
compared to the native implementation of the same game.

31



Chapter 6

Conclusion

A modular 2D game engine has been designed based on the observations of existing solu-
tions and available technologies. Such game engine named “PlutoEngine” has then been
implemented in the Java programming langauge using OpenGL as its rendering API —
some features are demonstrated in figure 6.1. The resulting product has then compared to
previously observed game engines. PlutoEngine has been tested by creating a game (fig-
ure 6.2) demonstrating its features, providing comparable runtime performance to that of
native applications with no significant slowdowns. Several design flaws have been identified,
prompting for future work and research.

Figure 6.1: A demonstration of various features of the implemented engine — sprite ren-
dering with recoloring and animations, module system, distance field font rendering, and
bitmap font rendering.

In future the “engine as a library” model will be replaced with a full solution comprising
an editor, an integrated development environment, and build tools. This concepts brings
additional hurdles, being one of the major points of further research.

When using the module subsystem, developers have to explicitly manage the lifetime
of all assets, slowing down development and introducing resource leak possibilities. A
possibility of a low-level module governing the lifetime of assets may be investigated.

32



Figure 6.2: A 2D game developed using the implemented game engine.

PlutoEngine uses exclusively OpenGL as its graphics API and its usage is in no way
abstracted, restricting this engine to platforms supporting OpenGL. While translation lay-
ers are an option, it is desirable to provide a universal abstract rendering frontend with
interchangeable backends.

Currently, linear command buffers are used for the storage of abstract draw commands.
However, for advanced rendering techniques, such as render targets, using acyclic graphs to
model these advanced concepts may allow the optimizer to reorder draw commands allowing
for more merges and therefore less graphics API calls. The concept of using abstract render
commands for world rendering as well may be explored.

33



Bibliography

[1] Frisken, S. F., Perry, R. N., Rockwood, A. P. and Jones, T. R. Adaptively
Sampled Distance Fields: A General Representation of Shape for Computer
Graphics. In: Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques. USA: ACM Press/Addison-Wesley Publishing Co., 2000,
p. 249–254. SIGGRAPH ’00. DOI: 10.1145/344779.344899. ISBN 1581132085.
Available at: https://doi.org/10.1145/344779.344899.

[2] Garcia, F. E. and Almeida Neris, V. P. de. A Data-Driven Entity-Component
Approach to Develop Universally Accessible Games. In: Stephanidis, C.
and Antona, M., ed. Universal Access in Human-Computer Interaction. Universal
Access to Information and Knowledge. Cham: Springer International Publishing,
2014, p. 537–548. ISBN 978-3-319-07440-5.

[3] Green, C. Improved Alpha-Tested Magnification for Vector Textures and Special
Effects. In: ACM SIGGRAPH 2007 Courses. New York, NY, USA: Association for
Computing Machinery, 2007, p. 9–18. SIGGRAPH ’07. DOI:
10.1145/1281500.1281665. ISBN 9781450318235. Available at:
https://doi.org/10.1145/1281500.1281665.

[4] Gregory, J. Game Engine Architecture, Third Edition. 3rd ed. A K Peters/CRC
Press, 2018. ISBN 978-131-5267-845.

[5] Kessenich, J., Baldwin, D. and Rost, R. The OpenGL® Shading Language,
Version 4.60.7 [online]. 2019-07-10 [cit. 2022-04-29]. Available at:
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf.

[6] Lengyel, E. Mathematics for 3D game programming and computer graphics. 3rd ed.
Course Technology, 2012. ISBN 978-143-5458-864.

[7] Marzen, S. E. and DeDeo, S. The evolution of lossy compression. Journal of The
Royal Society Interface. 2017, vol. 14, no. 130, p. 20170166. DOI:
10.1098/rsif.2017.0166. Available at:
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0166.

[8] Oracle Corporation. Java® Platform, Standard Edition & Java Development Kit
Version 17 API Specification [online]. 2021 [cit. 2022-04-29]. Available at:
https://docs.oracle.com/en/java/javase/17/docs/api/index.html.

[9] Oracle Corporation. The Structure of the Java Virtual Machine [online]. 2021
[cit. 2022-04-29]. Available at:
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-2.html.

34

https://doi.org/10.1145/344779.344899
https://doi.org/10.1145/1281500.1281665
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0166
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-2.html


[10] Recker, J. L., Beretta, G. B. and Lin, I.-J. Font rendering on a GPU-based
raster image processor. In: Eschbach, R., Marcu, G. G., Tominaga, S. and Rizzi,
A., ed. Color Imaging XV: Displaying, Processing, Hardcopy, and Applications.
SPIE, 2010, vol. 7528, p. 85 – 99. DOI: 10.1117/12.839486. Available at:
https://doi.org/10.1117/12.839486.

[11] Schissler, C., Nicholls, A. and Mehra, R. Efficient HRTF-based Spatial Audio
for Area and Volumetric Sources. IEEE Transactions on Visualization and Computer
Graphics. 2016, vol. 22, no. 4, p. 1356–1366. DOI: 10.1109/TVCG.2016.2518134.

[12] Segal, M. and Akeley, K. The OpenGL® Graphics System: A Specification
[online]. 2019-10-22 [cit. 2022-04-29]. Available at:
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf.

[13] Spitzbart, A. A Generalization of Hermite’s Interpolation Formula. The American
Mathematical Monthly. Mathematical Association of America. 1960, vol. 67, no. 1,
p. 42–46. ISSN 00029890, 19300972. Available at:
http://www.jstor.org/stable/2308924.

[14] Wei, L., Oon, W.-C., Zhu, W. and Lim, A. A skyline heuristic for the 2D
rectangular packing and strip packing problems. European Journal of Operational
Research. 2011, vol. 215, no. 2, p. 337–346. DOI:
https://doi.org/10.1016/j.ejor.2011.06.022. ISSN 0377-2217. Available at:
https://www.sciencedirect.com/science/article/pii/S0377221711005510.

[15] Westrelin, R. How the JIT compiler boosts Java performance in OpenJDK [online].
2021-06-23 [cit. 2022-04-29]. Available at: https://developers.redhat.com/articles/
2021/06/23/how-jit-compiler-boosts-java-performance-openjdk.

35

https://doi.org/10.1117/12.839486
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
http://www.jstor.org/stable/2308924
https://www.sciencedirect.com/science/article/pii/S0377221711005510
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk


Appendices

36



List of Appendices

A Repository structure 38

B Engine usage 40
B.1 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Running demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.3 Publishing libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.4 Linking libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C Attached media 42

37



Appendix A

Repository structure

The engine codebase is separated into multiple sub-trees based on the purpose of con-
tained projects. engine-core, engine-demo and engine-ext are metaprojects with the
sole purpose of combining build logic of their subprojects.

All code in the repository, with the exception of autogenerated Gradle wrapper files1

and parts of the libra submodule2, is authored by me and I claim ownership of it.
The repository contains third-party media, such as audio tracks, licensed as specified in

the LICENSING_INFO.txt copyright notice in the root directory.
See figure A.1 for a full overview of the repository tree.

1Files within the gradle/wrapper/ directory, the gradle and gradlew.bat executables. Not distributed
with finished products.

2Co-authorship of the Gradle build script, which is not related to the content of this thesis.

38



plutoengine
.github/workflows .................Continuous deployment workflow definitions
buildSrc ...............................Shared build scripts and build variables
engine-core ..................................Core engine systems and libraries

plutoaudio/ ..................................................Audio engine
plutocomponent/ ........................................Component library
plutocore/ ................................Main entry point for applications
plutodisplay/ .................................Display and input subsystem
plutogui/ ........................................ GUI rendering subsystem
plutolib/ .................................................. Shared utilities
plutorender/ ..................................OpenGL renderer subsystem
plutoruntime/ ....................Resource management and module system
plutospritesheet/ ..................... Sprite and sprite sheet management
build.gradle.kts ....................... Shared build logic for core libraries

engine-demo ..................................Sample PlutoEngine applications
basic-application/ .................Basic example PlutoEngine application
jsr-clone/ ....................Example PlutoEngine 2D space shooter game
build.gradle.kts ................Shared build logic for example applications

engine-ext ........................Extension PlutoEngine features and libraries
plutogameobject/ ..............Mapper of integer identifiers to game objects
plutouss2/ .................................Binary data serialization library
build.gradle.kts .......................Shared extension library build logic

gradle/wrapper ...........Gradle-specific wrapper metadata and bootstrap logic
libra ............................................. UI layout library submodule
LICENSE ................................................. Licensing information
LICENSING_INFO.txt ...........................Third-party license information.
README.md ........................Repository information, description and guide
UPDATE_NOTES.md ...........................................Release change list
build.gradle.kts .......................Build logic shared between all projects

Figure A.1: Complete PlutoEngine repository directory tree with short explanations for
each of the files and directories

39



Appendix B

Engine usage

The PlutoEngine build system uses a wrapper script (gradlew) to handle the installation
of Gradle, having a Java Development Kit of version 17 or higher is necessary to compile
and run the project. All further mentioned commands assume running ./gradlew for Unix-
based operating systems and .\gradlew.bat for Windows-based operating systems in place
of ./gradlew.

B.1 Building
The PlutoEngine project and all subprojects can be built running the following:

$ ./gradlew build

B.2 Running demos
Demonstrative applications are located in the engine-demo directory, individual applica-
tions may be run with gradlew :plutoengine-sdk:engine-demo:demoName:run, where
demoName is a valid subproject of :plutoengine-demos. It is important to set the working
directory to the root directory of said demo application to load module assets properly.
For example, the jsr-clone game may be run the following:

$ cd engine-demo/jsr-clone
$ ../../gradlew :plutoengine-demos:jsr-clone:run

B.3 Publishing libraries
Maven build artifacts produced by Gradle may be published to a Maven repository, however
it is necessary to modify the target Maven repositories as specified in the build.gradle.kts
script located in engine-core/ and engine-ext/.
Once the project is configured, building and publishing may be triggered by running:

$ ./gradlew :plutoengine:publish -x test
$ ./gradlew :plutoengine-ext:publish -x test

engineUsage

40



B.4 Linking libraries
In order to make the process of adding PlutoEngine libraries and all their dependencies
to a project easier for developers, PlutoEngine releases are hosted on a publicly accessible
Maven repository.
For example, adding PlutoEngine as a dependency to a Kotlin-based Gradle build script is
done as follows:

repositories {
// ...

maven {
name = "Vega"
url = uri("https://vega.botdiril.com/")

}
}

dependencies {
// ...

implementation("org.plutoengine", "plutocore", "22.2.0.0-alpha.2")
}

41



Appendix C

Attached media

The media attached to this thesis contains the following data:

• benchmark-suite.zip — The full testing kit for performance testing.
Available online from: https://get.assets.tefek.cz/benchmark-suite.zip
SHA-256: e7d77caaf748a46404c86eb69462fdb07962d025997a3ec04915dde33591f96d

• plutoengine.zip — The final implementation of the game engine.
Available online from: https://get.assets.tefek.cz/plutoengine.zip
SHA-256: a0de7e0ca64db0005c42c29dd6c37020ced934f75955e7336d0635f506a3e2bd

• plutoengine-docs/ — The Javadoc for this version of the game engine.

• jsr-clone-final.zip — The final implementation of the testing game.
Available online from: https://get.assets.tefek.cz/jsr-clone-final.zip
SHA-256: 71eada0fbce40706191ebf8e8adea81f3e5852c92f0e509e1261514fbf71dbe0

• thesis-src/ — The LATEX source files of this thesis and all media used.

• xstefa25-bt.pdf — This thesis in the PDF format.

• demo.mp4 — A short video demonstrating the created game.

42

https://get.assets.tefek.cz/benchmark-suite.zip
https://get.assets.tefek.cz/plutoengine.zip
https://get.assets.tefek.cz/jsr-clone-final.zip

	Introduction
	Game engines
	Case studies
	Unity
	Godot Engine

	Engine subsystems
	Resource management
	Game loop and scene management
	Rendering
	Font rendering
	Audio
	Summary

	Design
	Target platform
	System abstraction
	Resource management
	Application lifecycle and game loop
	2D renderer
	Font renderer
	Bitmap font renderer
	Signed distance field font renderer

	Audio
	Summary

	Implementation
	Build system and structure
	Used technologies
	Third-party libraries
	Implementation details
	Subsystems
	Components
	Modules
	Resource management
	Asset loading
	Display
	Application lifetime management
	2D renderer
	Sprite abstraction
	Font renderer
	Audio subsystem

	Engine distribution
	Summary

	Results and metrics
	Comparison against existing solutions
	Third-party adoption
	Demonstration and testing
	Summary

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Repository structure
	Engine usage
	Building
	Running demos
	Publishing libraries
	Linking libraries

	Attached media

