
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SECURITY AND PERFORMANCE ANALYSIS
OF AVALANCHEDISTRIBUTED CONSENSUS
PROTOCOL
ANALÝZA BEZPEČNOSTI A VÝKONU DISTRIBUOVANÉHO KONSEZUÁLNÍHO
PROTOKOLU AVALANCHE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR FILIP SAPÁK
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN PEREŠÍNI
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Sapák Filip
Programme: Information Technology
Title: Security and Performance Analysis of Avalanche Distributed Consensus

Protocol
Category: Security
Assignment:

1. Get familiar with existing categories of distributed consensus protocols, especially DAG-
based protocols. Make a theoretical comparison of these protocols in terms of throughput,
storage, scalability, security, failure tolerance, liveliness, safety, and finality.

2. Analyze DAG-based consensus protocol Avalanche.
3. Study existing simulation frameworks for distributed consensus protocols.
4. Implement simulation of Avalanche protocol and perform a set of experiments to evaluate its

performance, storage overhead, and security.
5. Discuss achieved results and compare them with the information from literature (white-

paper).
Recommended literature:

Homoliak, Ivan, et al. "The security reference architecture for blockchains: Towards
a standardized model for studying vulnerabilities, threats, and defenses." arXiv preprint
arXiv:1910.09775 (2019).
Perešíni, Martin, et al. "DAG-Oriented Protocols PHANTOM and GHOSTDAG under
Incentive Attack via Transaction Selection Strategy." arXiv preprint
arXiv:2109.01102 (2021).
Aoki, Y., Otsuki, K., Kaneko, T., Banno, R. and Shudo, K., 2019. SimBlock: a blockchain
network simulator. arXiv preprint arXiv:1901.09777.
Zhang, Ren, and Bart Preneel. "Lay down the common metrics: Evaluating proof-of-work
consensus protocols' security." 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019.
https://www.avalabs.org/whitepapers

Requirements for the first semester:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Perešíni Martin, Ing.
Consultant: Homoliak Ivan, Ing., Ph.D., UITS FIT VUT
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/25177/2021/xsapak05 Page 1/1

Abstract
In this thesis, we discuss the analysis of the "Proof-of-Stake" (PoS) distributed consensus
protocol Avalanche. We describe blockchain, consensus algorithms and the simulation tools
designed to simulate the blockchain. After getting acquainted with all the necessary facts,
the thesis proceeds with the implementation of a simulator of the consensus algorithm
implemented in the Avalanche protocol, which mimics the functioning of the Avalanche
consensus. Experiments with simulator were conducted with various parameters and helped
us to understand properties of Avalanche.

Abstrakt
V tejto práci sme sa zaoberali analýzou „Proof-of-Stake“ (PoS) distribuovaného konsen-
zuálneho protokolu Avalanche, problematikou blockchainu, konsenzuálnych algoritmov a
simulačnými nástrojmi určenými na simuláciu blockchainu. Po oboznámení sa so všetkými
potrebnými skutočnosťami, práca pokračuje implementáciou simulátora konsenzuálneho al-
goritmu implementovaného v protokole Avalanche, ktorý napodobňuje fungovanie Avalanche
konsenzu. Experimenty so simulátorom boli vykonané s rôznymi parametrami a pomohli
nám pochopiť vlastnosti Avalanche.

Keywords
Blockchain, Proof-of-Stake, Node, Block, Transaction, Consensus, Avalanche

Klíčová slova
Blockchain, Proof-of-Stake, Uzol, Blok, Transakcia, Konsenzus, Avalanche

Reference
SAPÁK, Filip. Security and Performance Analysis of Avalanche Distributed Consensus
Protocol. Brno, 2022. Bachelor’s thesis. Brno University of Technology, Faculty of Infor-
mation Technology. Supervisor Ing. Martin Perešíni

Rozšířený abstrakt
Táto práca sa zaoberá analýzou „Proof-of-Stake“ (PoS) distribuovaného konsenzuálneho
protokolu Avalanche a implementáciou simulátora konsenzuálneho algoritmu implemento-
vaného v protokole Avalanche. V práci sa zaoberáme problematikou „blockchainu“, jeho
štruktúrou, architektúrou a všetkými komponentami, ktoré sú dôležité pre jeho pochope-
nie. Ďalej sú spomenuté aj iné konsenzuálne modely, ako napríklad „Proof-of-Work“
(PoW) alebo „Practical byzantine fault tolerance“ (PBFT), ktoré sme navzájom porov-
nali. Popísané sú aj rôzne blockchain simulátory a ich porovnanie kompatibility s konsen-
zuálnym modelom PoS, ktorý práve používa aj sieť Avalanche, a je teda veľmi dôležitým
parametrom pri výbere simulačného nástroja. Sieť Avalanche je momentálne veľmi pop-
ulárna medzi vývojármi vďaka možnosti spustenia Web3 aplikácií na vlastných „subnet-
workoch“ - výhodou sú rýchlejšie transakcie a nižšie poplatky za transakcie pre užívateľov
konkrétnej Web3 aplikácie ktorá beží na „subnete“. Pre podporu rôznych decentralizo-
vaných finančných nástrojov a blockchainových hier je sieť Avalanche veľmi populárna aj
medzi užívateľmi. Motivácia analyzovať protokol Avalanche vznikla faktom, že je to re-
latívne nový a aktuálne jeden z najlepších PoS protokolov ktorý by mal byť podľa tvrdení
nástupcom Nakamoto konsenzu. Chceli sme sa zamerať hlavne na konsenzuálny algoritmus,
jeho vlastnosti a nastaviteľné parametre v rôznych situáciách, ktoré môžu v sieti Avalanche
vzniknúť. Konsenzuálny algoritmus Avalanche sa skladá z 3 hlavných algoritmov: Slush,
Snowflake a Snowball, ktoré prebiehajú v kolách a ich funkcionalita je implementovaná v
navrhnutom simulátore. Slush je základom rodiny týchto algoritmov, nie je odolný voči
Byzantským uzlom, no slúži ako základ pre na algoritmy Snowflake a Snowball, ktoré
na ňom ďalej stavajú a tento problém odstraňujú. Zamerali sme sa hlavne na možnosť
simulovať priebeh týchto algoritmov ku dosiahnutiu konsenzu vo veľkých sieťach ktoré ope-
rujú nad desiatkami tísic uzlov. Výsledky implementácie sa dajú považovať za úspech,
pretože navrhnutý simulátor zvláda simulovať veľké siete pomerne efektívne a v krátkom
čase vďaka spôsobu výpočtu výsledkov v jednotlivých kolách konsenzuálneho algoritmu
Avalanche. Vďaka implementovanému simulátoru sme mohli uskutočniť experimenty týka-
júce sa vplyvu parametrov konsenzuálneho algoritmu na rýchlosť dosiahnutia konsenzu a
jeho náchylnosť na „škodlivé“ alebo „zákerné“ uzly v sieti, ktoré sa snažia sieť zvrhnúť.
Výsledky experimentov potom odhalili vplyv rôznych parametrov na sieť Avalanche a po-
mohli nám priblížiť vlastnosti distribuovaného konsenzuálneho protokolu Avalanche.

Security and Performance Analysis of Avalanche
Distributed Consensus Protocol

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Mr. Martin Perešíni. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Filip Sapák

May 11,2022

Acknowledgements
I would like to thank my supervisor Martin Perešíni for his supervision of this work and
also my family and closest friends for the emotional and physical support they created in
my academic path.

Contents

1 Introduction 2

2 Blockchain technologies 4
2.1 Definition . 4
2.2 Architecture . 6
2.3 Structure of blockchains . 7

3 Consensus models 11
3.1 Proof of Work . 11
3.2 Proof of Stake . 13
3.3 Practical byzantine fault tolerance . 14

4 Avalanche 16
4.1 Platform . 17
4.2 Consensus algorithm . 19

5 Simulation tools 23
5.1 SimBlock . 23
5.2 BlockSim . 24
5.3 VIBES . 25
5.4 BlockZoom . 26
5.5 Proof of Stake support . 26

6 Implementation and evaluation 27
6.1 Simulator description . 27
6.2 Experiments . 29
6.3 Summary . 36

7 Conclusion 37

Bibliography 38

A Contents of the included storage media 40

1

Chapter 1

Introduction

The term blockchain is being used more and more nowadays, mostly because it is asso-
ciated with cryptocurrencies that offer high returns and attract investors. Most consider
blockchain a new technology even though the early stages of development of blockchain-like
protocols date back from 1980’s to 1990’s. Blockchain is a shared, immutable, distributed
ledger system that secures data integrity, transparency and decentralization. The first
real decentralized blockchain protocol was announced on October 31, 2008 when Satoshi
Nakamoto, the anonymous founder of Bitcoin, sent the Bitcoin whitepaper to the Cypher-
punk email list. Today, Bitcoin is the world’s largest cryptocurrency in terms of capitaliza-
tion and is widely used and popular for it’s security and decentralization among investment
companies and investors. Although the application of blockchain nowadays is mostly found
in financial sector, new types of applications, like in the governance systems, medical sys-
tems, virtual reality or art trade are emerging every day.

Blockchain is spread across nodes whose job is to verify transactions on the network and
help keep the network safe - using the community to help verify if transactions are genuine.
The rules by which nodes (a.k.a.,participants,devices) process transactions are declared by
consensus mechanism implemented on particular blockchain. Anyone can submit informa-
tion to be stored onto a blockchain but all nodes must agree on the state of the network -
achieving consensus, following the predefined rules or protocol.

Different blockchain protocols use different consensus models. The best known is the
concept of Proof-of-Work (PoW) which is based on performing computationally intensive
operations. The problem with this concept is its energy inefficiency. Bitcoin, using the PoW
model, can consume more energy per year than the Netherlands [15]. Another problem is
the low number of transactions that can be achieved with this type of consensus. Compared
to centralized systems with a throughput of approximately 50,000 transactions per second,
systems based on PoW have lower performance (5 to 10 transactions per second). Protocols
based on the Proof-of-Stake (PoS) model are a potential solution. Instead of challenging
operations, different approaches are used to select the participants who are responsible for
the correct functioning of the network. Not only does this approach save electricity, but also
increases the overall throughput of the blockchain. However, PoS protocols also have their
vulnerabilities. For this reason, they need to be studied and compared thoroughly. This is
precisely the purpose of of this thesis, with the goal of analyzing Avalanche consensus in
terms of its performance and security using simulation.

2

Document structure
Chapter 2 explains the blockchain to the ordinary user and informs about blockchain ar-
chitecture (2.2) with all its layers and blockchain structure (2.3) with all its components -
blocks, transactions, smart contracts, virtual machines, nodes and incentive mechanisms.

Chapter 3 describes consensus models Proof-of-Work (3.1), Proof-of-Stake (3.2) and
Practical byzantine fault tolerance (3.3).

Chapter 4 describes the Avalanche consensus protocol in detail with its main part being
consensus algorithm (4.2).

For the simulation needs of Avalanche consensus, we looked at some of the existing
simulation tools in chapter 5. In addition, we created a table (5.1) that summarizes the
support of Proof-of-Stake protocol simulation by each of the mentioned tool.

Next chapter (6) is dedicated to implementation of the proposed Avalanche consensus
simulator and evaluation of experiments done with various Avalanche consensus parameters.
Lastly, we discuss achieved results in chapter 7.

3

Chapter 2

Blockchain technologies

To further understand any consensus protocol, we need to have a basic understanding of
blockchain. The following chapter will explain the working principle of this technology.

2.1 Definition
Blockchains are tamper evident and tamper resistant digital ledgers implemented in a dis-
tributed manner (i.e., without a central repository) in which data records (i.e., blocks) are
linked using a cryptographic hash function, and each new block must be agreed upon by
participants (a.k.a., nodes) usually without a central authority (i.e., a bank, company or
government). At their basic level, they enable a community of users to record transac-
tions in a shared ledger within that community, such that under normal operation of the
blockchain network no transaction can be changed once published [16].

Features

• Immutability: No participant can change or tamper with a transaction once the
transaction in published. In order to do it, the majority of the nodes need to agree
upon that.

• Decentralization: The transactions are not processed through a central entity (i.e.,
central server), but through the participants (a.k.a., nodes) in parts of the network,
which function based on a set of rules that they must follow.

• Security: Blockchain uses cryptography to sign data in order to prove that a trans-
action was approved by the sender. Each running node of network has a copy of all
the information contained in that blockchain. Thus, the data is protected even if a
certain amount of the nodes are compromised by an attack or network issues.

• Transparency: All the actions on a public blockchain are viewable and accessible
for everyone.

• User anonymity: The user identities are hidden, only the digital addresses and
interactions within the network are visible.

4

Types

Based on permission model, which determines who can join the consensus protocol and
publish blocks, we can distinguish the two main blockchain network types:

• Permissionless blockchain networks are open to anyone,participants can join and
publish blocks without needing permission from any authority. As a result, malicious
users can join and attempt to publish blocks in a way that subverts the system. To
prevent this, permissionless blockchain networks usually require a verification of the
transactions through consensus methods such as Proof-of-Work, Proof-of-Stake and so
on, which require users to expend or maintain resources when attempting to publish
blocks. These consensus systems promote non-malicious behavior through rewarding
the publishers of protocol-conforming blocks.

• Permissioned blockchain networks are under the control of a centralized or feder-
ated authority, which decides which participants can publish blocks and maintain the
network. The authority has such control over the network, it also has a power to
restrict who can issue transactions and to restrict read access. Like in permission-
less networks, permissioned blockchain networks use consensus models for publishing
blocks, but because of the establishment of participants identities and the level of
trust between them, these consensus methods often do not require the expense or
maintenance of resources [10].

Figure 2.1: Blockchain types [8].

5

2.2 Architecture
This section discusses components involved in the blockchain structure.

Figure 2.2: Technology architecture of blockchain system [17]

We can divide blockchain system architecture into layers:

• Application layer encapsulates various application scenarios and cases of the blockchain.

• Contract layer contains various scripts, algorithms and smart contracts, which is
the basis of blockchain programmable features.

• Consensus layer mainly encapsulates all kinds of consensus mechanisms while the
incentive layer integrates economic factors into blockchain technology.

• Network layer includes a peer to peer distributed networking mechanism, a data
propagation and verification mechanism.

• Data layer encapsulates the underlying data block, basic data and algorithms related
to data encryption and time stamping.

6

2.3 Structure of blockchains

Blocks

Figure 2.3: Chain of blocks [18]

Figure 2.4: Simplistic structure of a block [18]

The blockchain data structure is represented by an append-only ordered list of blocks
which consist of transaction records as shown in Figure 2.3. A block contains individual
transactions and transaction counter. The maximum number of transactions that a block
can contain depends on the block size and the size of each transaction. A block also holds
block header which consists of:

• Block version: refers to the blockchain version that the particular block is using,
which rules must be used to validate the particular block

7

• Merkle tree root hash: the hash value that represents all the transactions that are
recorded in particular block, it is found by repeatedly hashing pair of transactions
together until a single hash value remains

• Timestamp: the time of block foundation, used as a parameter to verify the authen-
ticity of a particular block

• nBits: represents the target value/threshold for a new valid block

• Nonce: 32-bit number that has to be equal or lower than given target value. Once
node finds the correct value, it broadcasts the block to other nodes that must validate
it in order to append the particular block to blockchain.

• Parent block hash: a 256-bit hash value that stores pointer to the previous block,
the first block in the blockchain is called the Genesis Block and has no previous block
hash value

As a result of each block containing the hash digest of the previous block’s header, they
form an imaginary chain, hence the name blockchain. If a hash of already published blocks
is changed, it implies a change in a particular published block’s data. This change would
cause change in all the later published blocks’ hashes, which makes it easy to trace and
reject that particular block which caused this alteration.

Transactions

Transactions are encrypted in a form called Merkle tree, a data structure where all trans-
actions in block are hashed and combined until a single root hash is found that represents
the entire structure, which is then stored in Merkle tree root hash in the block header of
particular block.

Figure 2.5: Merkle tree [16]

8

Hashing is a method of calculating a relatively unique fixed size output from any input.
The encryption in the tree is done by bottom-up approach, the nodes at the bottom repre-
sent each transactions data which will be used as input to hash function. The transaction
information can be different for every blockchain information, it may contain sender’s ad-
dress, sender’s public key, a digital signature, transaction inputs and transaction outputs.
Next level nodes hold the hash result from previous level which will then get paired and
used as input to hash function to form a new single encrypted node. This process continues
until all the nodes are combined into the root node at the top of the tree - the Merkle tree
root hash. The final block will then combine the Merkle tree root hash with previous block
encrypted header hash [7, 16].

Smart contracts

A smart contract in blockchain is a special type of transaction, a program code which is
stored, verified and then run on a blockchain to facilitate, execute and enforce the terms
of an agreement. Smart contracts promise low transaction fees by automatically executing
the terms of an agreement once the specified conditions are met as opposed to traditional
systems that require a trusted third party to enforce and execute the terms of an agreement.

Once the contract is deployed into the blockchain, the contract code cannot be changed.
To run a contract, users can simply send a transaction to the contract’s address which will
then be executed by every consensus node in the network to reach a consensus on its output
and update the contract’s state. The contract can, based on the transaction it receives:

• store money into its account balance

• read or write to its private storage

• send or receive messages or money from users or other contracts

• create new contracts

It is often used as part of larger applications. The term smart contracts was first used in
1997 well-known cryptographer Nick Szabo. Protocols which work with its functionality
are for example Ethereum and Cardano [1].

Virtual Machine

A Virtual Machine (a.k.a.,VM) defines the application-level logic of a blockchain. In tech-
nical terms, it specifies the blockchain’s state, state transition function, transactions, and
the API through which users can interact with the blockchain and allows smart contracts
from multiple sources to interact with one another [3].

9

Nodes

In general, every participant in a blockchain network is a node. Most blockchains involve
three native types of parties that according to their roles and actions can be organized into
a hierarchy.
(1) Consensus nodes can read blockchain and write to blockchain by appending new

transactions and prevent malicious behaviors by not appending invalid transactions
or ignoring an incorrect chain. They can also validate the blockchain and check the
other consensus nodes actions correctness.

(2) Validating nodes read blockchain, validate it, and propagate transactions. They
can detect malicious behavior sice they hold copies of the entire blockchain, but unlike
consensus nodes, validating nodes cannot prevent malicious behaviors as they cannot
write to the blockchain.

(3) Lightweight nodes have limited information about blockchain and they rely on
consensus nodes and validating nodes. Lightweight nodes can detect only a limited
set of attacks as they can read only fragments of the blockchain and validate only a
small number of transactions that concern them [6].

Figure 2.6: Interaction of nodes with the blockchain [6].

Incentive mechanisms

In public chains, it is of great importance to encourage nodes to participate in the main-
tenance of the blockchain through incentive mechanisms to prevent tampering with the
ledger. It is done so by rewarding nodes that follow the rules with different forms of tokens
or cryptocurrencies and penalizing nodes that do not. In the original Bitcoin blockchain,
participants provide their calculation and accounting services through ”mining” to create
new blocks, thus jointly maintaining the continuation of the blockchain. The winning min-
ers receive Bitcoin rewards, some of which come from mining and partly from commissions
in the transactions [17].

10

Chapter 3

Consensus models

One of the aspects blockchain technology must address is determining which user publishes
the next block and how to solve situations when one or more users want to publish the block
at the same time. There are generally many publishing nodes competing to publish the next
block at the same time. The reason for this competition between nodes is usually financial
gain, users are trying to win cryptocurrency and/or transaction fees without caring about
the well-being of the other publishing nodes or even the network itself. To resolve conflicts
between nodes and make it work, blockchain uses consensus models to enable a group of
mutually distrusting users to work together [16].

There are two types of consensus protocols, the ones using synchronous assumption
found in traditional consensus algorithms and the ones that are non-deterministic that
are used in most blockchain networks. In traditional consensus algorithms as opposed to
consensus algorithms in blockchain networks, each node must be aware of and communicate
with every other node in the network. Therefore, these algorithms often scale poorly.
Scalability in addition to decentralization and security, is one of the blockchain’s most
crucial aspects. Blockchains are often forced to make trade-offs between these three aspects
that prevent them achieving them all. Various blockchain consensus protocols try to solve
this trilemma differently.

3.1 Proof of Work
Proof of Work is designed for permissionless public distributed ledger and consumes compu-
tational resources of the system, it assumes that the nodes will use computational effort for
the chance to decide the next block where the new transactions will be stored. This process
is called mining where nodes are supposed to solve the cryptographic puzzle of finding a
random integer that leads to hashes with a specified number of leading zeroes. The miners
would change the nonce in block header frequently to get different hash values.

In PoW, the consensus requires that the calculated value must be equal to or smaller
than a certain given value. The solution is the proof they have performed work. Once
node finds the correct value, it broadcasts the block with a valid nonce to full nodes that
must validate it in order to append the particular block to their own blockchains and then
forward the transaction to their peers. This process is repeated until the transaction has
propagated throughout the network. It is designed such that solving the puzzle is difficult
but checking that a solution is valid is easy as only a single hash needs to be done to
check to see if it solves the puzzle. The target value may be modified over time to adjust

11

the difficulty to influence how often blocks are being published. The publishing nodes (i.e.
miners) attempt to solve this computationally difficult puzzle to claim a reward of some sort
usually in the form of a cryptocurrency offered by the blockchain network. The prospect
of being rewarded for extending and maintaining the blockchain is referred to as a reward
system or incentive model.

One of the prime examples of blockchain using PoW is Bitcoin which adjusts the puzzle
difficulty every 2016 blocks by increasing or decreasing the number of leading zeros required
therefore making publication rate around once every ten minutes. With increasing number
of leading zeros the puzzle becomes more difficult to solve as there are fewer possible solu-
tions. Correspondingly, with decreasing number of zeros required the the puzzle becomes
less difficult as there are more possible solutions. This adjustment is made to maintain the
computational difficulty of the puzzle and therefore maintain the core security mechanism
of the Bitcoin network as it ensures no entity can take over block production. Available
computing power increases over time, as does the number of publishing nodes, so the puzzle
difficulty is generally increasing. Due to the significant resource consumption of some proof
of work blockchain networks, there is a move to add publishing nodes to areas where there
is a surplus supply of cheap electricity.

B1 B2 B3

U4

B4 B5

Shorter branch

Longer branch

Figure 3.1: Blockchain branches [18]

For many PoW based blockchain networks, publishing nodes tend to organize themselves
into ”pools“ where they work together to solve the puzzles and then split the reward.
Dividing up the work amongst many more machines yields much better results, as well as
more consistent rewards in a proof of work model.

The use of a computationally difficult puzzle helps to combat the “Sybil Attack” – a
computer security attack (not limited to blockchain networks) where an attacker can create
many nodes (i.e., creating multiple identities) to gain influence and exert control. The proof
of work model combats this by having the focus of network influence being the amount of
computational power (hardware, which costs money) mixed with a lottery system (the most

12

hardware increases likelihood but does not guarantee it) versus in network identities (which
are generally cost-less to create) [16, 18].

In the decentralized PoW networks, valid blocks might be generated simultaneously
when multiple nodes find the suitable nonce nearly at the same time which may be create
branches as shown in Figure 3.1. However, it is highly unlikely that two competing forks
will generate next block simultaneously. In PoW protocol, a chain that becomes longer is
judged as the authentic one. Figure 3.1 shows fork created by simultaneously validated
blocks U4 and B4. Miners keep mining their blocks until a longer branch is found. B4,B5
forms a longer chain, so the miners on U4 would switch to the longer branch [18].

3.2 Proof of Stake
Proof of stake reduces the amount of computational work needed to verify blocks and
transactions with the idea that the more stake a user has invested into the system, the
more likely they will want the system to succeed, and the less likely they will want to
subvert it. The owners offer their coins (i.e. cryptocurrency) as collateral for the chance
to validate blocks. Coin owners with staked coins become validators. Once staked, the
cryptocurrency is generally no longer able to be spent. PoS blockchain networks mostly
use the amount of stake a user has as a determining factor for publishing new blocks - the
likelihood of a blockchain network user publishing a new block is tied to the ratio of their
stake to the overall blockchain network amount of staked cryptocurrency - users with more
stake are more likely to publish new blocks.

Most PoS blockchain networks are designed such that all the cryptocurrency is already
distributed among users rather than new cryptocurrency being generated over time. The
reward for block publication is then usually the earning of user provided transaction fees.

The approach for how the blockchain network uses the stake to choose the validator for
next block can vary depending on the project design:

• Random selection - choosing next block publisher based on their ratio of stake to
the overall amount of cryptocurrency staked.

• Multi-round voting - selecting several staked users to each create a proposed block
which will be voted on by all staked users. This method allows all staked users to
have a voice in the block selection process.

• Coin aging systems - staked cryptocurrency has an age property. After a certain
amount of time the stake owning user can be selected to publish the next block
resetting the staked cryptocurrency age property. This prevents users with more
stake to dominate the system since there is a cooldown timer.

• Delegate systems - users vote for nodes to become publishing nodes. Blockchain
network users’ voting power is tied to the amount of their staked coins - the lager
the stake, the more weight the vote has. Nodes which recieve the most votes become
publishing nodes (representing their voters) and can validate and publish blocks.
Users can try to remove established publishing nodes by voting against them. The
voting occurs continuously to promote competitiveness and incentivize nodes to not
act maliciously. Users can also vote on delegates who participate in the governance
of the blockchain and propose changes, which will be voted on by users [16].

13

3.3 Practical byzantine fault tolerance
Comparing to the Proof based consensus such as PoW, where the security threshold is 51
percent, i.e., absolute secure transaction can be achieved if the malicious user occupies no
more than half of the overall resource, PBFT requires the number of malicious users under
33 percent of total participants to ensure the system immune from the malicious attacks.

In PBFT, nodes in the system share messages among each other to commit a block to
the chain. Malicious nodes, in this case, may broadcast tampered blocks, as a result, the
block which is considered valid by a most number of nodes is considered valid by the entire
network. The process of voting can be divided into three phases: pre-prepare, prepare,
commit. Before a voting round begins, transactions are broadcasted among nodes so that
all nodes have the same transactions in their pool. After a sufficient number of transactions
is in the pool, nodes start a new round. A proposer is chosen in a round-robin fashion and
sends a pre-prepare message which contains a proposed block and each node enters pre-
prepared state. Each node sends a prepare message if they agree upon the proposed block.
After a certain amount of such messages, nodes change state to prepared. Prepared nodes
send commit messages to each other, upon a certain amount of commits, nodes move to
commit state and add the block to the chain. After adding the block they move to the final
commited state and the process can be repeated.

Given the fact that each node has to query other nodes, traditional single layer PBFT
based blockchains are difficult to scale up.

Figure 3.2: Execution of PBFT protocol. Node 0 is primary, rest of the nodes are replicas
where replica number 3 failed [9].

14

Consensus mechanisms compared

Consensus Nakamoto (PoW) Avalanche (PoS) Classical (PBFT)
Scalable ✓ ✓ x
Robust ✓ ✓ x

Highly decentralized ✓ ✓ x
Low latency x ✓ ✓

High throughput x ✓ ✓

Lightweight x ✓ ✓

Sustainable x ✓ ✓

Resilient to 51%attacks x ✓ x

Table 3.1: Comparison of consensus mechanisms [3].

Avalanche consensus, which is based on Proof-of-Stake, claims to have the best properties
among Nakamoto consensus based on Proof-of-Work and PBFT, which is a Classical con-
sensus. In the next chapter, we will describe the structure of Avalanche network and also
how Avalanche consensus protocol works.

15

Chapter 4

Avalanche

Avalanche is an open-source platform for launching decentralized applications and enterprise
blockchain deployments in one interoperable, highly scalable ecosystem that aims to address
the blockchain trilemma of scalability, security and decentralization through Proof of Stake
mechanism. It supports smart contracts written in the Solidity language and aims to
create greater blockchain interoperably by integrating a number of decentralized finance
ecosystems, including well-established projects. The native token of the Avalanche platform
- AVAX, is used to power transactions in its ecosystem and serves as the means to distribute
system rewards, participate in governance and facilitate transactions on the network by
paying fees. There are three primary aspects of its design that distinguish it from other
blockchain projects: its consensus mechanism, its incorporation of subnetworks and its use
of multiple built-in blockchains.

Avalanche uses a novel consensus mechanism that builds on the PoS foundation. When
a transaction is initiated by a user, it’s received by a validator node that samples a small,
random set of other validators, checking for agreement. The validators perform this sam-
pling procedure repeatedly, “gossiping” with each other to ultimately reach consensus. In
this way, one validator’s message is sent to other validators, which sample more validators,
which sample even more validators – again and again, until the whole system reaches agree-
ment on an outcome. Just as a single snowflake can become a snowball, a single transaction
can eventually turn into an avalanche. Validator rewards scale according to the amount of
time a node has staked its tokens, called Proof of Uptime, and if the node has historically
acted according to the software’s rules, called Proof of Correctness.

Avalanche users can launch specialized chains that can operate using their own sets
of rules. This system is comparable to other blockchain scaling solutions, like Polka-
dot’s parachains and Ethereum 2.0’s shards. Consensus on these chains is reached by
subnetworks, which are groups of nodes that participate in validating a designated set of
blockchains. All subnet validators must also validate Avalanche’s Primary Network [3, 12].

16

4.1 Platform
Avalanche is built using three different blockchains in order to address the limitations of the
blockchain trilemma. All 3 blockchains are validated and secured by the Primary Network.
The Primary Network is a special subnet, and all members of all custom subnets must also
be a member of the Primary Network by staking at least 2,000 AVAX. Digital assets can be
moved across each of these chains to accomplish different functions within the ecosystem.

Figure 4.1: Avalanche network structure [3].

• The Exchange Chain (X-Chain) is the default chain based on Direct Acyclic
Graph and acts as a decentralized platform for creating and trading digital smart
assets, a representation of a real-world resource (e.g., equity, bonds) with a set of
rules that govern its behavior. This includes Avalanche’s native token, AVAX. The
X-Chain is an instance of the Avalanche Virtual Machine (AVM). The X-Chain API
allows clients to create and trade assets on the X-Chain and other instances of the
AVM.

• The Contract Chain (C-Chain) allows for the creation and execution of smart
contracts using the C-Chain’s API. Because it is based on the Ethereum Virtual
Machine (EVM), Avalanche’s smart contracts can take advantage of cross-chain in-
teroperability.

• The Platform Chain (P-Chain) is the metadata blockchain on Avalanche and
coordinates validators, keeps track of active subnets, and enables the creation of new
subnets. The P-Chain implements the Snowman consensus protocol.
The P-Chain API allows clients to create subnets, add validators to subnets, and
create blockchains

17

DAG

Directed Acyclic Graph is a data structure that uses topological ordering and is mostly
used for solving problems such as data processing, finding the best route for navigation,
scheduling, and data compression. As opposed to blockchain, DAG eliminates the block
creation and the transactions go directly into the validation process. After validation,
every transaction is linked to a new and also an existing transaction on the network thus
keeping the network width under a certain range that can support quick transaction and its
validation. Time to confirm and the speed of executing a transaction does not depend on
block-size but on the bandwidth between nodes. Therefore the scalability of transactions
is increased in the DAG network [4].

Figure 4.2: A DAG holds a genesis transaction defining an initial state [11]

Subnetworks

Subnetwork (a.k.a.,subnet), is a dynamic set of validators (a.k.a.,nodes) working together
to achieve consensus on the state of a set of blockchains. Each blockchain is validated by
exactly one subnetwork. A subnetwork can validate many blockchains. A node may be a
member of many subnetworks. A subnet manages its own membership, and it may require
that its validators have certain properties. Some examples of requirements include:

• Validators must be located in a given country.

• Validators must pass a KYC/AML checks.

• Validators must hold a certain license.

These requirements do not apply to the Avalanche Primary Network [3].

18

4.2 Consensus algorithm
A key difference between Avalanche and other decentralized networks is the consensus pro-
tocol which employs a novel approach to consensus to achieve its strong safety guarantees,
quick finality, and high-throughput without compromising decentralization.

Figure 4.3: Avalanche consensus flowchart [3].

Avalanche starts with a protocol called Slush and progressively build up to Snowflake
and Snowball, all based on the same common majority-based metastable voting mechanism.
These protocols are single-decree consensus protocols of increasing robustness. This section
provides full specifications for the protocols inspired by epidemic or gossip protocols [12, 3].

Slush

The simplest protocol shown in Algorithm 1, Slush, is the foundation of this family of
protocols. Slush is not tolerant to Byzantine faults, only crash-faults (CFT), but serves as an
illustration for the Byzantine fault tolerant protocols that follow. For better understanding,
Slush will be described using a decision between two conflicting colors, red and blue.

In Slush, a node starts out initially in an uncolored state. Upon receiving a transaction
from a client, an uncolored node updates its own color to the one carried in the transaction
and initiates a query. To perform a query, a node picks a small, constant sized (k) sample
of the network uniformly at random, and sends a query message. Upon receiving a query,
an uncolored node adopts the color in the query, responds with that color, and initiates
its own query, whereas a colored node simply responds with its current color. Once the
querying node collects k responses, it checks if a fraction ≥ 𝛼 are for the same color, where
𝛼 > ⌊k/2c⌋ is a protocol parameter. If the 𝛼 threshold is met and the sampled color differs
from the node’s own color, the node flips to that color. It then goes back to the query step,
and initiates a subsequent round of query, for a total of m rounds. Finally, the node decides
the color it ended up with at time m.

19

Algorithm 1 Slush [12]
1: procedure onQuery(𝑣, 𝑐𝑜𝑙′)
2: if 𝑐𝑜𝑙 = ⊥ then 𝑐𝑜𝑙 := 𝑐𝑜𝑙′

3: RESPOND(𝑣, 𝑐𝑜𝑙)
4: procedure slushLoop(𝑢, 𝑐𝑜𝑙0𝜖 {R,B,⊥})
5: 𝑐𝑜𝑙 := 𝑐𝑜𝑙0 //initialize with a color
6: for r 𝜖 {1...m} do
7: //if ⊥, skip until onQuery sets the color
8: if 𝑐𝑜𝑙 = ⊥ then continue
9: //randomly sample from the known nodes

10: 𝐾 := SAMPLE(𝑁∖𝑢, 𝑘)
11: 𝑃 := [QUERY(𝑣, 𝑐𝑜𝑙) for 𝑣 𝜖 𝐾]
12: for 𝑐𝑜𝑙′𝜖 {R,B} do
13: if 𝑃 .COUNT(𝑐𝑜𝑙′) ≥ 𝛼 then
14: 𝑐𝑜𝑙 := 𝑐𝑜𝑙′

15: ACCEPT(𝑐𝑜𝑙)

Slush has a few properties of interest. First, it is almost memoryless: a node retains no
state between rounds other than its current color, and in particular maintains no history
of interactions with other peers. Second, unlike traditional consensus protocols that query
every participant, every round involves sampling just a small, constant-sized slice of the
network at random. Third, Slush makes progress under any network configuration even fully
bivalent state (i.e. 50/50 split between colors), since random perturbations in sampling will
cause one color to gain a slight edge and repeated samplings afterwards will build upon and
amplify that imbalance. Finally, if m is chosen high enough, Slush ensures that all nodes
will be colored identically with high probability. Each node has a constant, predictable
communication overhead per round, and m grows logarithmically with n. The Slush protocol
does not provide a strong safety guarantee in the presence of Byzantine nodes. In particular,
if the correct nodes develop a preference for one color, a Byzantine adversary can attempt
to flip nodes to the opposite so as to keep the network in balance, preventing a decision.
This issue is addressed in Snowflake, the first BFT protocol that introduces more state
storage at the nodes [12].

20

Snowflake

Snowflake augments Slush with a single counter that captures the strength of a node’s
conviction in its current color. This per-node counter stores how many consecutive samples
of the network by that node have all yielded the same color. A node accepts the current color
when its counter reaches 𝛽, another security parameter. Algorithm 2 shows the amended
protocol, which includes the following modifications:

• Each node maintains a counter cnt.

• Upon every color change, the node resets cnt to 0.

• Upon every successful query that yields ≥ 𝛼 responses for the same color as the node,
the node increments cnt.

Algorithm 2 Snowflake [12]
1: procedure snowflakeLoop(𝑢, 𝑐𝑜𝑙0 𝜖 {R,B,⊥})
2: 𝑐𝑜𝑙 := 𝑐𝑜𝑙0, 𝑐𝑛𝑡 := 0
3: while undecided do
4: if 𝑐𝑜𝑙 = ⊥ then continue
5: 𝐾 := SAMPLE(N∖u,k)
6: 𝑃 := [QUERY(v,col) for v 𝜖 K]
7: 𝑚𝑎𝑗 := 𝑓𝑎𝑙𝑠𝑒
8: for 𝑐𝑜𝑙′ 𝜖 {R,B} do
9: if 𝑃 .COUNT(𝑐𝑜𝑙′) ≥ 𝛼 then

10: 𝑚𝑎𝑗 := 𝑡𝑟𝑢𝑒
11: if 𝑐𝑜𝑙′ ̸= 𝑐𝑜𝑙 then
12: 𝑐𝑜𝑙 := 𝑐𝑜𝑙′, 𝑐𝑛𝑡 := 1
13: else 𝑐𝑛𝑡++

14: if 𝑐𝑛𝑡 ≥ 𝛽 then ACCEPT(𝑐𝑜𝑙′)
15: if 𝑚𝑎𝑗 = 𝑓𝑎𝑙𝑠𝑒 then 𝑐𝑛𝑡 := 0

When the protocol is correctly parameterized for a given threshold of Byzantine nodes
and a desired 𝜖-guarantee, it can ensure both safety and liveness. As will be later shown,
there exists an irreversible state after which a decision is inevitable. Correct nodes begin
to commit past the irreversible state to adopt the same color, with high probability. There
also exists a phase-shift point, where the Byzantine nodes lose ability to keep network in a
bivalent state [12].

21

Snowball

Snowflake’s notion of state is ephemeral: the counter gets reset with every color flip. Snow-
ball augments Snowflake with confidence counters that capture the number of queries that
have yielded a threshold result for their corresponding color Algorithm 3. A node decides
if it gets 𝛽 consecutive chits for a color. However, it only changes preference based on the
total accrued confidence. The differences between Snowflake and Snowball are as follows:

• Upon every successful query, the node increments its confidence counter for that color.

• A node switches colors when the confidence in its current color becomes lower than
the confidence value of the new color [12].

Algorithm 3 Snowball [12]
1: procedure snowballLoop(𝑢, 𝑐𝑜𝑙0 𝜖 {R,B,⊥})
2: 𝑐𝑜𝑙 := 𝑐𝑜𝑙0,𝑙𝑎𝑠𝑡𝑐𝑜𝑙 := 𝑐𝑜𝑙0, 𝑐𝑛𝑡 := 0
3: 𝑑[𝑅] := 0, 𝑑[𝐵] := 0
4: while undecided do
5: if 𝑐𝑜𝑙 = ⊥ then continue
6: 𝐾 := SAMPLE(𝑁∖𝑢, 𝑘)
7: 𝑃 := [QUERY(𝑣, 𝑐𝑜𝑙) for 𝑣 𝜖 𝐾]
8: 𝑚𝑎𝑗 := 𝑓𝑎𝑙𝑠𝑒
9: for 𝑐𝑜𝑙′ 𝜖 {R,B} do

10: if 𝑃 .COUNT(𝑐𝑜𝑙′) ≥ 𝛼 then
11: 𝑚𝑎𝑗 := 𝑡𝑟𝑢𝑒
12: 𝑑[𝑐𝑜𝑙′] + +
13: if 𝑑[𝑐𝑜𝑙′] > 𝑑[𝑐𝑜𝑙] then
14: 𝑐𝑜𝑙 := 𝑐𝑜𝑙′

15: if 𝑐𝑜𝑙′ ̸= 𝑙𝑎𝑠𝑡𝑐𝑜𝑙 then
16: 𝑙𝑎𝑠𝑡𝑐𝑜𝑙 := 𝑐𝑜𝑙′, 𝑐𝑛𝑡 := 1
17: else 𝑐𝑛𝑡++

18: if 𝑐𝑛𝑡 ≥ 𝛽 then ACCEPT(𝑐𝑜𝑙′)
19: if 𝑚𝑎𝑗 = 𝑓𝑎𝑙𝑠𝑒 then 𝑐𝑛𝑡 := 0

Conclusion

In this work, we want to simulate properties and behaviour of Avalanche consensus algo-
rithm to analyze its consensus performance and security when it comes to large networks
with tens of thousands of nodes with different properties.

22

Chapter 5

Simulation tools

Several simulation tools were developed for the purpose of testing the properties of blockchain
protocols. Most of them have been created for simulating Proof-of-Work protocols mainly
due to their considerable prevalence. In our case, we will investigate the performance of the
consensus algorithms implemented in Avalanche and their behavior with various properties
or under various attacks. Let’s take a look at few interesting simulation tools used to test
blockchain networks.

5.1 SimBlock
SimBlock is event-driven simulator, that considering block generation and message trans-
mission/reception as events. Each node generates messages and events informing the mining
process. The user has the ability to edit parameters such as:

• Block size: The size of the block generated by the node.

• Block generation interval: Block generation interval targeted by the blockchain.

• Number of nodes: The number of nodes involved in the blockchain network.

• Number of neighbor nodes: The number of neighbor nodes of each node.

• Location of the node. Network parameters are determined by the region.

• Block generation capacity: The block generation capacity of each node. The block
generation difficulty is obtained from the sum of the block generation capacity of all
the nodes and the target of the block generation interval.

• Network bandwidth: The upstream and downstream bandwidths for each region.

• Network propagation delay: The average value of propagation delay between regions.

It supports the creation of a model for any type of consensus, with models already im-
plemented by the authors for the Proof-of-Work protocols Bitcoin, Litecoin and Dogecoin.
The tool is written in Java and supports visualization from the output stored in JSON
format [2].

23

5.2 BlockSim
The BlockSim tool is based on a stochastic simulation model. It can model events based on
the probability distribution of their occurrence. This requires changes in the state of the
system in discrete time. BlockSim controls operations running in continuous time in certain
time intervals, thus making them discretized and at the same time less demanding to run.
This makes it possible to monitor hundreds of nodes simultaneously. Users are allowed
to take advantage of this tool to simulate existing protocols in already created models or
create new models.

BlockSim allows specification of various parameters including latency or duration of
block creation. It is also possible to create factories for nodes or transactions, that will
later be broadcasted to nodes. Due to its dynamic nature, it allows nodes to connect and
also disconnect from the simulated system. The architecture shown in Figure 5.1 includes
a module for monitoring the simulation from captured metrics and a module for creating
reports. The entire simulation can be edited by the user in the BlockSim programming
interface using Python. It is primarily designed for testing the performance of protocols
and does not support behavioral testing for different types of attacks on the blockchain [5].

Figure 5.1: BlockSim architecture [5].

24

5.3 VIBES
VIBES is a blockchain network simulator built on peer-to-peer technology. It differenti-
ates itself from other blockchain simulators in its ability to simulate blockchain systems
beyond bitcoin and its support for large-scale simulations with thousands of nodes. Its
big advantages are optimal scalability and high speed. It supports configuration of various
input parameters such as network topology, area size, latency, bandwidth, number of nodes,
number of miners, block size, block confirmation time, number of transactions per block,
transaction size, electricity cost, smart contract time, smart contract intensity and smart
contract density, percentage of attacker nodes or percentage of failing nodes. The output of
the simulation are values representing statistical information about the transactions, total
time to process, total number of transactions processed, throughput (transactions per sec-
ond), block propagation delay for, client bootstrap time, cost per transaction, probability
of an attacker taking over at each stage, and a log of all transactions [14].

Figure 5.2: VIBES architecture [14].

One of the great advantages it provides is the possibility of accelerated simulation. If
parameters specified at startup are theoretical values that represent the individual calcula-
tions, VIBES can skip the difficult calculations. For example, if the duration of the block
creation time is 10 minutes, then VIBES in accelerated simulation mode will perform the
necessary calculations and allow the node to create the block at a rate of a few milliseconds.
Full simulation time is thus significantly shorter and the user is able to change the neces-
sary parameters more frequently and obtain desired results. At the same time, VIBES can
provide simulation speedup without loss of quality of the results. The VIBES simulator
architecture shown in Figure 5.2 uses cloud services to run the application server [14].

25

5.4 BlockZoom
Similar to VIBES, BlockZoom supports the simulation of large-scale blockchain systems.
The simulation environment is based on the Grid’5000 platform and seeks to create condi-
tions similar to those in a production environment. The user is able to change the config-
uration of individual nodes and then compare the results of the simulations performed. In
addition to the configuration of nodes, the system load can also be adjusted, which allows us
to create different stress conditions for the blockchain. The simulations use private network
between resources stored on several geographical locations in France and the Netherlands.
This makes the simulation properties, such as network latency, very similar to the real ones.
This tool is still under development at the time of writing and thus its properties are mainly
theoretical. The architecture of the BlockZoom tool is shown in Figure 5.3 [13].

Figure 5.3: BlockZoom architecture [13].

5.5 Proof of Stake support

Protocols PoW and PoS support
SimBlock Bitcoin, Dogecoin, Litecoin PoW, other consensus mechanisms
BlockSim Bitcoin,Ethereum PoW
VIBES Bitcoin PoW

BlockZoom Ethereum PoW

Table 5.1: Comparison of supported protocols [13, 14, 5, 2].

These simulation tools do not state whether they are designed for the needs of simulat-
ing Proof-of-Work protocols or whether they also support Proof-of-Stake based protocols.
However, mostly PoW protocols have been simulated by them. Table 5.1 gives a summary
of the protocols that have been simulated by the authors of each tool and their support of
PoW and PoS protocols.

For our work, we decided not to use any of the mentioned tools for the sake of not
supporting PoS protocols. Instead we implement a simulator that focuses more on the
Avalanche consensus algorithm and its properties.

26

Chapter 6

Implementation and evaluation

Choosing the right tool is the key to simulation. Each of the tools that have been mentioned
are different and have their advantages or disadvantages. To test the impact of consensus
settings on performance and safety, it is necessary to create a new tool that is built with
Slush Algorithm 1, Snowflake Algorithm 2 and Snowball Algorithm 3 in its core.

We implemented a Python1 script avalanche-sim.py that is able to simulate Avalanche
consensus for thousands of nodes using NumPy2 library for computing and Matplotlib3

library for visualization of the results. It produces the Avalanche simulation array of round
results for a given set of parameters. The user has the ability to edit parameters such as:

• Number of nodes in the network.

• Stake distribution of nodes.

• Maximum number of rounds.

• Sample size in polling mechanism.

• Virtuous commit threshold 𝛽.

• Percentage of malicious nodes in network.

• Number of simulations.

All the optional parameters are shown in Figure 6.1.

6.1 Simulator description
The core procedure avalanche simulates the Avalanche consensus algorithm for the pro-
vided number of nodes, sample size and stake weights. It applies the stake-weighted Slush
polling mechanism and makes a random choice of a sample size for each element within the
array of nodes. Then for each sample determines, if the 𝛼-majority of the sample indicates
red or blue colors. However, if there is no 𝛼-majority within the sample, no changes are
made.

1https://www.python.org
2https://numpy.org
3https://matplotlib.org

27

It also applies the percentage of population, which is malicious towards the network
attempting to flip peer nodes without actually following the consensus rules if the needed
parameter is given. Then the algorithm proceeds to apply the Snowflake conviction model
onto the nodes and returns an array of results for each round.

> python .\avalanche-sim.py --help
usage: avalanche-sim.py [-h] [-N NODENUMBER]
[-D {normal,uniform,exponential,cauchy,equal}]
[-R MAXROUND] [-S SAMPLESIZE]
[-B BETA] [-M MALICIOUS] [-n SIMNUM]

Produces the Avalanche simulation array of round results for a given set of parameters.

options:
-h, --help show this help message and exit

-N NODENUMBER, --nodeNumber NODENUMBER
number of nodes in the network(default: 10000)

-D {normal,uniform,exponential,cauchy,equal},
--distribution {normal,uniform,exponential,cauchy,equal}

stake distribution(default: uniform)

-R MAXROUND, --maxRound MAXROUND
maximum number of rounds(default: 20)

-S SAMPLESIZE, --sampleSize SAMPLESIZE
sample size (default: 20)

-B BETA, --beta BETA virtuous commit threshold (default: 15)

-M MALICIOUS, --malicious MALICIOUS
Share of malicious nodes in [0.0, 0.5](default: 0.0)

-n SIMNUM, --simNum SIMNUM
number of simulations(default: 1)

Figure 6.1: The run-time arguments of avalanche-sim.py.

28

Once the simulator was implemented, tests were performed and the results made it pos-
sible to approximate the properties of Avalanche protocol. In addition to standard tests,
such as the effect of number of rounds on consensus algorithm, various other experiments
were performed. Using them we monitored the tolerance of the Avalanche consensus pro-
tocol to malicious nodes and we also simulated scenarios with various adjustments to see
what is the optimal setup. In this chapter we will describe the method of testing and the
observed results.

6.2 Experiments
In blockchain systems, it is important to be able to quickly process large amounts of trans-
actions. The more transactions that can be logged into the ledger, the better. However,
throughput is closely related to the liveness of the protocol, because if we are able to insert
blocks or transactions into the ledger faster, the number of transactions written will also
increase. We can also assume the number of rounds in which we can reach consensus also
greatly affects the throughput of the protocol, the lesser the rounds the consensus is reached
within, the faster the transactions are processed.

We investigated how many rounds does it usually take to reach consensus with a certain
number of participants and sample size in a fully bivalent state (i.e. 50/50 split between
colors). Another important aspect is security, however, with our simulator we are only able
to investigate the security of the consensus,therefore we investigated how malicious nodes
are affecting reaching of consensus. In terms of scalability, we investigated how a large
number of nodes achieves consensus as many may expect, that by drastically increasing
the participants in the network by an order to tens of thousands, a similar increase of the
sample size and rounds would be required to effectively reach consensus.

First set of experiments

Firstly, we concluded basic experiments using the same parameters as the actual mainnet,
the number of rounds is 20, the size of subsamples is also 20 and the quorum rate is 70%
of the subsample size with all the attributes shown in Table 6.1 and the results are shown
in Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5.

Nodes Sample size Rounds Simulations
1000 20 20 100
10000 20 20 100
50000 20 20 100
100000 20 20 100

Table 6.1: First set of experiments.

29

Figure 6.2: First set of experiments. Nodes = 1000.

Figure 6.3: First set of experiments. Nodes = 10000.

30

Figure 6.4: First set of experiments. Nodes = 50000.

Figure 6.5: First set of experiments. Nodes = 100000.

As these experiments show, the parameters of the mainnet are set so that Avalanche
consensus is highly scalable at the expense of speed. Even though the consensus is reached
within three rounds, the sample size greatly affects the time spent in each round.

Second set of experiments

In the second set of experiments the size of subsamples has decreased to 5 to see if there are
any significant changes in the number of rounds within the consensus can be reached. All
the attributes are shown in Table 6.2 and the results are shown in Figure 6.6, Figure 6.7,
Figure 6.8 and Figure 6.9.

31

Nodes Sample size Rounds Simulations
1000 5 20 100
10000 5 20 100
50000 5 20 100
100000 5 20 100

Table 6.2: Second set of experiments.

Figure 6.6: Second set of experiments. Nodes = 1000.

Figure 6.7: Second set of experiments. Nodes = 10000.

32

Figure 6.8: Second set of experiments. Nodes = 50000.

Figure 6.9: Second set of experiments. Nodes = 100000.

The second set of experiments shown that with sample size of 5 there is a small decrease
in consensus. The consensus can be reached within 4 rounds as opposed to 3 rounds with
sample size of 20. We can assume the time spent in reaching consensus is lower than with
the sample size of 20 as the time spent with subsampling 5 participants is much lower than
time spent subsampling 20 participants.

33

Third set of experiments

In the third set of experiments we apply malicious nodes where a percentage of the network
participants by stake are modeled to be malicious and are trying to sabotage the network
in each round from reaching the maximum possible consensus level. All the attributes are
shown in Table 6.3 and the results are shown in Figure 6.10, Figure 6.11, Figure 6.12 and
Figure 6.13.

Nodes Malicious nodes[%] Sample size Rounds Simulations
10000 20 5 20 100
10000 20 20 20 100
10000 40 5 20 100
10000 40 20 20 100

Table 6.3: Third set of experiments.

Figure 6.10: Third set of experiments. Malicious nodes make up 20% of all nodes.

34

Figure 6.11: Third set of experiments. Malicious nodes make up 20% of all nodes.

Figure 6.12: Third set of experiments. Malicious nodes make up 40% of all nodes.

35

Figure 6.13: Third set of experiments. Malicious nodes make up 40% of all nodes.

The third set of experiments shown that with a sample size of 20, the network easily and
very quickly reaches the maximum possible consensus level and then tightly maintains it
despite constant interference by malicious network participants. The network with a sample
size of 5, however, seem to be worse at maintaining the maximum possible consensus level
as well as being slower reaching it.

6.3 Summary
While there seems to be an engineering trade-off between a lower sample size and a higher
number of rounds, sample size of 5 seems to be a good choice when it comes to private
networks that can be run on Avalanche subnetworks, as there would be no malicious nodes
trying to overthrow the subnet and the consensus would be achieved quite efficiently
and quickly in a small scaled subnet. However, when it comes to public networks, it
is better to have more security. Therefore, the mainnet, which is a large network, using
sample size of 20, not only is more resistent to malicious nodes when it comes to
achieving consensus, but also reaches consensus faster as a larger network works better
with higher sample size. Another security measure seems to be the amount of rounds,
which in case of mainnet and our experiments, is 20. We could expect that these parameters
can be even applied to a much larger networks of one million nodes without almost any
significant decrease in consensus.

36

Chapter 7

Conclusion

The goal of this thesis was to implement a Avalanche consensus simulator that is able to
accurately simulate network of thousands of nodes reaching consensus in various scenarios.
We learned how blockchain networks work and the difference between the various consensus
mechanisms and protocols. We learned about transactions, blocks, smart contracts and new
approaches to distributed consensus protocols with Direct Acyclic Graph. We studied and
analyzed individual consensus protocols with consensus mechanisms as well as blockchain
simulators. Next, we figured out how to implement Slush,Snowflake and Snowball into the
proposed Avalanche consensus simulator and conducted experiments upon the implemen-
tation. We summarized results of mentioned experiments and came to a conclusion about
various parameters of Avalanche consensus algorithm. The experiments were used to an-
alyze Avalanche consensus, but the real-world Avalanche network analysis would have to
be done on much more robust and sophisticated simulator, which is also the weakness of
this approach we used to implement this simulator. This thesis can be extended with the
implementation of network or other layers, which could significantly improve the usability
of the final simulator for other experiments. Nevertheless, we came to a conclusion that
the overall approach of using the model of an Avalanche seems to be an efficient process of
generating consensus among a very large population.

37

Bibliography

[1] Alharby, M. and Moorsel, A. van. Blockchain-based Smart Contracts: A
Systematic Mapping Study. CoRR. 2017, abs/1710.06372. Available at:
http://arxiv.org/abs/1710.06372.

[2] Aoki, Y., Otsuki, K., Kaneko, T., Banno, R. and Shudo, K. SimBlock: A
Blockchain Network Simulator. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 2019, p. 325–329.
DOI: 10.1109/INFCOMW.2019.8845253.

[3] Ava Labs, I. Avalanche. 2021. https://docs.avax.network [Online; posted 2021].

[4] Benčić, F. M. and Podnar Žarko, I. Distributed Ledger Technology: Blockchain
Compared to Directed Acyclic Graph. In: 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). 2018, p. 1569–1570. DOI:
10.1109/ICDCS.2018.00171.

[5] Faria, C. and Correia, M. BlockSim: Blockchain Simulator. In: 2019 IEEE
International Conference on Blockchain (Blockchain). 2019, p. 439–446. DOI:
10.1109/Blockchain.2019.00067.

[6] Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R. et al.
The Security Reference Architecture for Blockchains: Toward a Standardized Model
for Studying Vulnerabilities, Threats, and Defenses. IEEE Communications Surveys
Tutorials. 2021, vol. 23, no. 1, p. 341–390. DOI: 10.1109/COMST.2020.3033665.

[7] Academy, H. Blockchain as a Data Structure [online]. 2019 [cit. 2021-12-29].
Available at:
https://academy.horizen.io/technology/expert/blockchain-as-a-data-structure/.

[8] Kathleen E. Wegrzyn, E. W. Types of Blockchain: Public, Private, or Something
in Between. 2021. https://www.foley.com/en/insights/publications/2021/08/types-of-
blockchain-public-private-between [Online; posted 2021].

[9] Lei, K., Zhang, Q., Xu, L. and Qi, Z. Reputation-Based Byzantine Fault-Tolerance
for Consortium Blockchain. In:. December 2018. DOI:
10.1109/PADSW.2018.8644933.

[10] Miller, A. Permissioned and permissionless blockchains. Blockchain for Distributed
Systems Security. John Wiley & Sons. 2019, p. 193–204.

[11] Peresíni, M., Bencic, F. M., Malinka, K. and Homoliak, I. DAG-Oriented
Protocols PHANTOM and GHOSTDAG under Incentive Attack via Transaction

38

http://arxiv.org/abs/1710.06372
https://docs.avax.network
https://academy.horizen.io/technology/expert/blockchain-as-a-data-structure/
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between

Selection Strategy. CoRR. 2021, abs/2109.01102. Available at:
https://arxiv.org/abs/2109.01102.

[12] Rocket, T. Snowflake to avalanche: A novel metastable consensus protocol family
for cryptocurrencies. Available [online].[Accessed: 4-12-2018]. 2018.

[13] Shbair, W. M., Steichen, M., François, J. and State, R. BlockZoom:
Large-Scale Blockchain Testbed. In: 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). 2019, p. 5–6. DOI:
10.1109/BLOC.2019.8751230.

[14] Stoykov, L., Zhang, K. and Jacobsen, H.-A. VIBES: Fast Blockchain Simulations
for Large-Scale Peer-to-Peer Networks: Demo. In: Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Posters and Demos. New York, NY,
USA: Association for Computing Machinery, 2017, p. 19–20. Middleware ’17. DOI:
10.1145/3155016.3155020. ISBN 9781450352017. Available at:
https://doi.org/10.1145/3155016.3155020.

[15] Times, T. N. Y. Bitcoin consumption. 2021.
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-
electricity.html?smid=url-sharek [Online; posted 2021].

[16] Yaga, D., Mell, P., Roby, N. and Scarfone, K. Blockchain technology overview.
National Institute of Standards and Technology. Oct 2018. DOI: 10.6028/nist.ir.8202.
Available at: http://dx.doi.org/10.6028/NIST.IR.8202.

[17] Yu, Z., Liu, X. and Wang, G. A Survey of Consensus and Incentive Mechanism in
Blockchain Derived from P2P. In: 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS). 2018, p. 1010–1015. DOI:
10.1109/PADSW.2018.8645047.

[18] Zheng, Z., Xie, S., Dai, H., Chen, X. and Wang, H. An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends. In: 2017 IEEE
International Congress on Big Data (BigData Congress). 2017, p. 557–564. DOI:
10.1109/BigDataCongress.2017.85.

39

https://arxiv.org/abs/2109.01102
https://doi.org/10.1145/3155016.3155020
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html?smid=url-share
https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html?smid=url-share
http://dx.doi.org/10.6028/NIST.IR.8202

Appendix A

Contents of the included storage
media

Source codes of the Avalanche consensus simulator are located on the attached compact
disk in directory sources and the thesis including LATEX source code in directory thesis.

• sources - here you can find zip file with all sources:
⋆src.zip that contains:

– avalanche-sim.py - main simulation script
– README.md - notes and instructions

• thesis - contains PDF and sources of this thesis

– xsapak05_sources.zip - LATEX sources to compile this thesis
– xsapak05.pdf - Portable Document Format of this thesis

40

	Introduction
	Blockchain technologies
	Definition
	Architecture
	Structure of blockchains

	Consensus models
	Proof of Work
	Proof of Stake
	Practical byzantine fault tolerance

	Avalanche
	Platform
	Consensus algorithm

	Simulation tools
	SimBlock
	BlockSim
	VIBES
	BlockZoom
	Proof of Stake support

	Implementation and evaluation
	Simulator description
	Experiments
	Summary

	Conclusion
	Bibliography
	Contents of the included storage media

