
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

IDENTIFICATION OF GRAPHICAL USER INTERFACE
ELEMENTS FOR ROBOTIC TESTING SYSTEM
IDENTIFIKACE ELEMENTŮ GRAFICKÉHO UŽIVATELSKÉHO ROZHRANÍ PRO ROBOTICKÝ

TESTOVACÍ SYSTÉM

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. LUKÁŠ VÁLEK
AUTOR PRÁCE

SUPERVISOR Ing. MICHAL ŠPANĚL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Master's Thesis Specification

Student: Válek Lukáš, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Computer Vision
Title: Automated Identification of Graphical UI Elements for Robotic Quality

Assurance
Category: Image Processing
Assignment:

1. Get familiar with methods and existing solutions for automatic visual identification of UI
elements in images and analysis of UI elements semantics.

2. Prepare a dataset with appropriate scenes with UI elements for your own experiments.
3. Select suitable methods and propose solution for identification of UI elements and analysis of

their semantics in your dataset.
4. Implement selected methods and experiment with them. Propose further improvements.
5. Evaluate your results. Demonstrate advantages and disadvantages of your solution and

discuss possible future work.
6. Create a short poster or video presenting your work, its goals and results.

Recommended literature:
According to the superviser's instruction.

Requirements for the semestral defence:
Items 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Španěl Michal, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 2, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/25178/2021/xvalek15 Page 1/1

Abstract
This thesis explores the issue of graphical user interface (GUI) screen analysis using convo-
lutional neural networks (CNN) and computer vision methods. The thesis aims to create
a system which automatically identifies GUI elements based on pictogram and text infor-
mation for detected components in an input image. A combination of EfficientNetB1 CNN,
OCR, and traditional computer vision methods was used to develop the system. A custom
dataset which contains 120k pictograms was used to train the CNN. A UI element semantic
dictionary was created, which further utilises the text detected by OCR. Finally, a GUI
hierarchy analysis subsystem was created to detect and semantically categorise sections
in GUI. The resulting system automatically classifies detected pictograms, suggests addi-
tional text classes, and separates the GUI screen into hierarchical sections. The system
achieves 81.1% UI element identification accuracy and, on average, analyses a single screen
in 0.6 seconds. This system automates repetitive processes, thus decreasing needed person-
hours. In the future, the system can be further developed to function as a foundation
for automated exploratory testing.

Abstrakt
Tato práce se zabývá problematikou analýzy obrazovek grafického uživatelského rozhraní
(GUI) pomocí konvolučních neuronových sítí (CNN) a metod počítačového vidění. Cílem
této práce je vytvořit systém, který automaticky identifikuje GUI elementy na základě pik-
togramových a textových informací pro detekované prvky ve vstupním obrázku. K vývoji
systému byla použita kombinace EfficientNetB1 CNN, OCR a tradičních metod počí-
tačového vidění. K trénování CNN byla použita vlastní datová sada, která obsahovala
120 tisíc piktogramů. Byl vytvořen sémantický slovník UI prvků, který dále využívá text
detekovaný pomocí OCR. Nakonec byl vytvořen podsystém pro analýzu GUI hierarchie,
který slouží k detekci a sémantické kategorizaci oblastí GUI. Výsledný systém automaticky
klasifikuje detekované piktogramy, navrhuje další třídy na základě textu a rozděluje GUI
obrazovku do hierarchických sekcí. Systém dosahuje 81,1% přesnosti identifikace UI prvků
a v průměru zanalyzuje jednu obrazovku za 0,6 sekundy. Systém automatizuje indetifikaci
UI prvků, čímž umožňuje zaměstnancům věnovat se jiným činnostem. V budoucnu lze tento
systém dále rozvíjet, aby sloužil jako základ pro automatické exploratorní testování.

Keywords
UI element identification, object identification, EfficientNetB1, neural networks, image clas-
sification, semantic analysis of graphical user interface, computer vision, machine learning,
semantic dictionary of UI elements, OCR, Python, Keras, TensorFlow, OpenCV

Klíčová slova
identifikace UI prvků, identifikace objektů, EfficientNetB1, neuronové sítě, klasifikace obrázků,
sémantická analýza grafického uživatelského rozhraní, počítačové vidění, strojové učení, sé-
mantický slovník GUI prvků, OCR, Python, Keras, TensorFlow, OpenCV

Reference
VÁLEK, Lukáš. Identification of Graphical User Interface Elements for Robotic Testing
System. Brno, 2022. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Michal Španěl, Ph.D.

Rozšířený abstrakt
V dnešní době představují grafická uživatelská rozhraní (GUI) primární způsob interakce
uživatelů s aplikacemi. Atraktivní uživatelská rozhraní (UI) a instinktivní uživatelské
zkušenosti (UX) proto hrají obrovskou roli v uživatelsky vnímané kvalitě aplikace. Vývojáři
tudíž kladou velký důraz na testování aplikací s GUI. V případech, kdy je zdrojový kód
aplikací nebo struktura GUI (HTML) přístupná, mohou testeři psát automatické skripty,
které aplikace testují. V případech, jako jsou aplikace do vestavěných terminálů tiskáren
nebo software pro automobilový infotainment, však některé interakce, jako třeba kontrola
funkčnosti klimatizace nebo ověření vložení papíru do tiskárny nelze posoudit jiným soft-
warem. Tyto testy musí lidé provádět ručně, jedná se ale o monotónní a opakující se
činnosti. Proto existují robotická řešení, která toto testování automatizují. Tato automa-
tizovaná robotická řešení vizuálně detekují stav GUI, pomocí robotických ramen interagují
s UI a lze je upravit tak, aby pokryla potřeby různých domén, jako je podpora teplotního
senzoru k ověření funkčnosti klimatizace. Tato řešení však musí mít přehled, jaké UI prvky
se na obrazovce vyskytují.

Tato práce si klade za cíl vytvořit systém, který ve snímku obrazovky automaticky
identifikuje prvky UI, a to rychleji, než by to byl schopen udělat uživatel. Dále se práce
pokouší navrhnout řešení pro analýzu GUI hierarchie. Práce také zkoumá širokou škálu
metod počítačového vidění pro identifikaci objektů a prozkoumává dostupné datasety s
obrazovými daty vhodné pro tuto práci. Práce se dále snaží analyzovat podobná dostupná
řešení nastíněného problému.

Za účelem vytvoření systému byly vyvinuty následující komponenty: identifikátor UI
prvků, algoritmus pro extrakci textu, sémantický slovník piktogramů a analyzátor GUI
hierarchie. Identifikátor UI prvků využívá CNN EfficientNetB1 ke klasifikaci piktogramů
ve vstupním obrázku do 61 často používaných tříd, které reprezentují prvky UI. CNN je
natrénována na vlastní datové sadě UI prvků obsahující 120 tisíc obrázků v populárních
designových stylech. Algoritmus pro extrakci textu používá k detekci textu ve vstupním
obrázku interní OCR společnosti YSoft. Text je následně zpracován a přiřazen k odpovída-
jícím prvkům UI. Sémantický slovník piktogramů je ručně sestavený seznam slov, kterými
lze daný piktogram popsat. Tento slovník je porovnán s extrahovaným textem a na základě
shody textových informací jsou navrženy třídy UI prvků. Analýza GUI hierarchie využívá
tradiční metody CV k nalezení a sémantické kategorizaci sekcí v GUI obrazovkách.

Cílem práce bylo vytvořit systém, který automaticky identifikuje prvky UI na základě
piktogramových a textových informací pro detekované prvky ve vstupním obrázku. Tento
cíl byl splněn. Výsledný systém automaticky klasifikuje nalezené piktogramy, navrhuje
další třídy textu a rozděluje GUI obrazovku do hierarchických sekcí. Systém byl testován
s použitím výše zmíněného datasetu, který sloužil jako referenční příklady. U 5 975 anoto-
vaných UI prvků dosáhl systém top-1 přesnosti 70,2% (4 197) a top-5 přesnosti 79,8% (4
769). Sémantický slovník opravil 1,3% nesprávně klasifikovaných prvků, což vedlo k celkové
přesnosti identifikace UI prvků 81,1%. 15% (898) prvků bylo identifikováno nesprávně kvůli
chybám souvisejícím s OCR. 3,8% prvků bylo nesprávně identifikováno z důvodu jiných
chyb. Během procesu hodnocení, který trval 11 minut a 28 sekund, bylo analyzováno 1218
obrázků. V průměru tedy systém zpracuje jeden obrázek za 560 milisekund.

Výsledný systém podléhá několika nedostatkům, která je třeba mít na paměti. Neschop-
nost použitého OCR správně přečíst jednotlivé znaky a občasné nesprávné umístění ohraniču-
jícího rámečku textu jsou hlavními příčinami chyb systému. Algoritmus detekce piktogramů
může zaměnit šum na vstupních obrázcích za hledaný objekt. Analýza GUI hierarchie není
kvůli použitým metodám schopna detekovat menší oblasti, jako jsou například seznamy

položek a skupiny tlačítek. Bez ohledu na tato omezení představuje systém použitelnou
variantu pro robustní automatickou identifikaci UI prvků. Toto řešení kategorizuje UI
prvky do 61 různých tříd, zatímco jiná podobná řešení rozdělují prvky do přibližně 15
tříd. Tento systém navíc dokáže identifikovat ikony z více designových stylů, zatímco jiná
řešení se specializují na jediný designový styl. Tento systém také dokáže zpracovat obrázky
se značným množstvím vizuálního šumu, zatímco některá jiná řešení se spoléhají na čistý
snímek obrazovky. UI prvky jsou navíc rozděleny do hierarchických sekcí pouze pomocí
vizuálních informací, zatímco jiná řešení potřebují stromovou strukturu GUI aplikace. V
poslední řadě, systém je schopen kategorizovat prvky uživatelského rozhraní pouze na zák-
ladě textu, který obsahují.

V budoucnu by mohly být provedeny výzkumné práce s cílem zbavit systém jeho ne-
dostatků a dále jej vylepšit. Ke zlepšení přesnosti systému by bylo možné vyzkoušet jiné
OCR metody. Kromě toho by mohl být proveden výzkum týkající se rozšiřování sémantick-
ého slovníku piktogramů kontrolovanými uživatelskými příspěvky a automatickým překla-
dem slovníku do dalších jazyků. Dále by mohly být zkoumány rychlé a spolehlivé metody
pro odstranění Moiré efektu. Rovněž by se mohla zlepšit analýza GUI hierarchie. Místo
tradičních metod CV by mohl být natrénován detektor objektů na obecných datových
sadách UI prvků. To by systému umožnilo detekovat i konkrétní části, jako jsou seznamy
položek a seskupená tlačítka. Dále by tento systém mohl sloužit jako základ pro řešení au-
tomatického exploratorního testování. Propojením tohoto systému a systému pro průzkum
aplikací by mohlo být vytvořeno řešení, které by provádělo prozkoumávání aplikací pomocí
robotického zařízení a vytvářelo grafovou reprezentaci testované aplikace.

Vytvoření systému odhalilo nedostatek veřejně dostupných datových sad, které obsahují
UI prvky rozdělené do velmi podrobně rozčleněných tříd. Přístup k takovýmto datasetům by
umožnil další otestování tohoto systému, čímž by se zvýšila důvěryhodnost prezentovaných
hodnotících dat. Pomocí těchto datasetů by rovněž bylo možné vytvářet další pokročilejší
řešení.

Závěrem lze říci, že tento systém ve své současné podobě automatizuje identifikaci UI
prvků, čímž zbavuje zaměstnance povinnosti vykonávat tuto repetitivní a rutinní činnost.

Identification of Graphical User Interface Elements
for Robotic Testing System

Declaration
I hereby declare that this Masters’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Michal Španěl Ph.D. The supplementary information
was provided by the members of YSoft AIVA team. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Lukáš Válek

May 17, 2022

Acknowledgements
I would like to thank my supervisor, Ing. Michal Španěl Ph.D., for his kind guidance,
patience and valuable advice. I would also like to thank the YSoft AIVA team for their
insightful comments and consultations. Lastly, I would also like to thank my dear ones for
their endless support.

Contents

1 Introduction 3

2 Existing Solutions for UI Elements Identification and GUI Semantic
Analysis 4
2.1 UI Components Recognition System Based on Image Understanding 4
2.2 UIED: A Hybrid Tool for GUI Element Detection 5
2.3 Learning Design Semantics for Mobile Apps 5
2.4 Screen Recognition: Creating Accessibility Metadata for Mobile Applications

from Pixels . 7
2.5 Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile

Apps . 9

3 Current State of UI Elements Identification 12
3.1 UI Elements Identification Methods Overview 12
3.2 UI Elements Identification Datasets Overview 19

4 Draft of UI Elements Identification and GUI Semantic Analysis System 27
4.1 Objectives and Requirements for the Resulting Solution 27
4.2 Technical Specification of the Resulting System 27
4.3 System Outline . 28
4.4 Text Extraction Algorithm Outline . 28
4.5 Pictogram Detection and Identification Outline 29
4.6 Semantic Dictionary Outline . 30
4.7 GUI Semantic Analysis Outline . 30
4.8 System Input and Output Outline . 31

5 Proposed System Implementation 33
5.1 Programming Language and Frameworks Selection 33
5.2 UI Elements Identification Method Selection and Implementation 33
5.3 Pictogram Classifier Dataset Creation . 34
5.4 Text Extraction Algorithm Implementation 38
5.5 Pictogram Detection and Identification Implementation 40
5.6 Semantic Dictionary Implementation . 42
5.7 GUI Semantic Analysis Implementation . 43
5.8 System Input and Output Implementation 45

6 Experiments 48
6.1 Dataset Experiments . 48

1

6.2 EfficientNetB1 Network Training . 50
6.3 Text Extraction Experiments . 51
6.4 Pictogram Detection Experiments . 52
6.5 GUI Semantic Analysis Experiments . 53
6.6 System Overview . 54
6.7 System Evaluation . 55
6.8 Future Work . 57

7 Conclusion 62

Bibliography 64

A Additional Figures 67
A.1 List of Classes . 67
A.2 Semantic Dictionary . 67
A.3 System Input - UI Element Detections Example 70
A.4 System JSON Output Example . 71
A.5 GUI Hierarchy Analysis Examples . 71

2

Chapter 1

Introduction

In this day and age, a graphical user interface (GUI) represents the primary way users inter-
act with applications. Therefore, an attractive user interface (UI) and instinctive user expe-
rience (UX) play a vital role in users’ perceived application quality. Thus, developers place
a great emphasis on the testing of said applications. When the application’s source code
or the GUI structure is accessible, testers can write automated scripts which test the appli-
cation. However, in instances of printer embedded terminal applications or car infotainment
software, some interactions, such as air conditioning and inserting paper into a printer, can-
not be assessed by another software. These tests can be performed manually by humans,
but they are repetitive and mundane. Therefore, there is a demand for automation of such
tests. These automated robotic solutions detect the state of GUIs visually and interact
with UIs using robotic arms. Moreover, they can be modified to cover the needs of differ-
ent domains, like using temperature sensors to verify air conditioning functionality. These
solutions need to be aware of UI elements present in GUIs.

This thesis aims to create a system which automatically identifies these UI elements
faster than a user. Also, the thesis attempts to propose a solution for GUI hierarchy
analysis. Furthermore, it explores a vast array of computer vision methods for object
identification and relevant image datasets. Finally, the thesis strives to analyse similar
available solutions.

This research is motivated by the above-mentioned circumstances. In addition, it is
motivated by the author’s personal interest in computer vision, machine learning, and au-
tomation.

The thesis is divided into two parts, theoretical and empirical. Chapter 2 discusses
existing solutions for UI elements identification and GUI semantic analysis. It also intro-
duces the benefits and limitations of these solutions. Chapter 3 explores the current state
of convolutional neural networks to find a suitable method for the system. It also provides
an overview of available datasets relevant to this task. The empirical part of the thesis be-
gins with Chapter 4, which outlines the system. Furthermore, all components of the result-
ing system are proposed, and technical specifications and requirements are defined in this
chapter. The implementation of the system, its components, and datasets are described
in Chapter 5. The chapter also mentions the inputs, outputs, and limitations of each compo-
nent. Chapter 6 discusses experiments with the system and its components. Additionally, it
evaluates the system, shows achieved results, and proposes future work. The final Chapter
7 summarises the results and concludes the thesis.

3

Chapter 2

Existing Solutions for UI Elements
Identification and GUI Semantic
Analysis

This chapter explores existing solutions related to the issue of identification of UI elements
and GUI semantic analysis. These solutions are compared and contrasted with the task
of this thesis. The virtues and limitations of these solutions are discussed.

2.1 UI Components Recognition System Based on Image
Understanding

Testing of UI designs is an essential part of the application development cycle. Traditionally,
GUIs were tested by humans, which is not only very time consuming and expensive but
also prone to errors. The authors of this paper, published in 2020, propose a solution to UI
components recognition, enabling automatic application testing. [26]

The proposed solution uses image processing technology to detect UI components in the ap-
plication screenshot. Then it classifies the detected components using a custom CNN.
The CNN was trained using a randomly sampled ReDraw dataset 3.2. [26]

The screenshot image is converted into grayscale, filtered, thresholded, dilated and closed.
Then, Flood-Fill 1 algorithm is used to differentiate sections in the GUI. Detected GUI sec-
tions are then analysed to find hierarchical relationships between them. Then, UI compo-
nents and GUI sections are separated based on the size of the detected areas. UI components
are then classified into generic classes corresponding to the ReDraw dataset. Two thou-
sand five hundred images from each class were randomly sampled and divided into training
(0.7), validation (0.2) and test (0.1) datasets. The precision of the CNN reached 86.4%. [26]
Figure 2.1 shows the approach to UI components classification proposed in this solution.

The system discussed in this paper does a very similar analysis to the approach pro-
posed in this thesis. It classifies found UI components into 14 classes. Also, it detects
hierarchy relations within the GUI, albeit it does not use this information. However,
the precision of the proposed classifier is somewhat poor, considering the number of classes
in the dataset. Also, UI components detection is implemented using traditional computer
vision, and the detected contours must be post-processed to produce consistent results.

1https://www.techiedelight.com/flood-fill-algorithm/

4

Figure 2.1: Approach to UI components classification. Taken from: [26]

2.2 UIED: A Hybrid Tool for GUI Element Detection
UIED is a toolkit which provides users with a GUI element detection platform. It was
published in 2020. It is an image-based approach to GUI element detection. It offers a web
interface where users can upload their GUIs, and the system detects and identifies elements
in it [32].

It uses EAST 2 OCR to detect text in the screenshot image. Next, it uses the Flood-Fill
3 and Sklansky 4 algorithms to obtain potential layout blocks. Then, edges are detected
in the image, which is then converted to a binary form. The connected component labelling
algorithm then detects GUI elements. Proposed elements are then classified using a ResNet-
50, trained on 90,000 GUI elements, divided into 15 classes. The result of the process can
be seen in figure 2.2. UIED achieves an F1 score of 52% on 5,000 UI images from the Rico
dataset [32].

This method only classifies elements into 15 classes. Also, the element detection al-
gorithm would not work on noisy images, as the detection relies on clean input images.
Moreover, GUIs with open design (not perfectly closed regions) would be marked as one
large region.

2.3 Learning Design Semantics for Mobile Apps
In recent years, approaches to mine GUI hierarchies, designs and interaction data have been
developed. However, this data does not expose what elements on the screen mean and how
users use them to accomplish their goals. This solution proposes an automatic approach
for generating such annotations for mobile GUIs. [17]

The authors created the lexical UI database in an iterative approach by examining com-
ponent categories and merging components close in appearance and functionality. For ex-
ample, Input components contain EditText, SearchBoxView and TextView. [17]

A lexical UX database was created by analysing text buttons and icon elements. The au-
thors extracted 130,761 text buttons from the Rico 3.2 dataset. These buttons contained
20,386 unique strings. These strings were then filtered and clustered based on common
substrings. Each cluster was then assigned a label. A text string can belong to multiple
clusters. Icons were extracted from the Rico dataset by finding image components that are

2https://pyimagesearch.com/2018/08/20/opencv-text-detection-east-text-detector
3https://www.techiedelight.com/flood-fill-algorithm/
4http://cgm.cs.mcgill.ca/ athens/cs601/Sklansky2.html

5

Figure 2.2: UIED approach to GUI elements detection and identification. Taken from: [32]

visible and clickable, their area is less than 5% of the total area, and their aspect ratio
is no less than 0.75. 49,136 icons were gathered using the mentioned heuristic and were
manually divided into 135 icon classes. As icons can have multiple meanings depending
on their context, sets of synonyms were created for each icon class. [17]

Non-icon UI components can be classified using the lexical database. Semantic labels
for elements in the Rico dataset were classified. 1,384,653 elements out of 1,776,412 (77.95%)
visible elements were labelled. Twenty-five annotated components per UI on average. [17]

Icons cannot be classified by the code-based heuristic. Therefore CNN was trained
to classify images into 99 distinct classes. Previously annotated icons divided into 135
classes were used. Some of the classes were merged to increase support and reduce ambigu-
ity, resulting in 99 classes. Icons were converted to grayscale and whitened before training.
GMM model with 128 components was used to distinguish between icons and images that
significantly differ from icons in the dataset. As a result, 94% accuracy on the test set (10%
of data) was achieved. [17]

By combining both approaches mentioned above, the authors created a system which
was used to annotate the whole Rico dataset. Code-based patterns were used to detect UI
components, and the icon classification was used to add semantic annotations to the dataset.
[17] The result of this system can be seen in figure 2.3.

Also, the authors created a convolutional auto-encoder to enable finding similar UIs
to the queried one. The result can be seen in figure 2.4.

The system uses a lexical database, which highly correlates with the system presented
in this thesis. Also, it uses a CNN to classify images into very fine-grained classes. However,
this solution relies on a view hierarchy and a screenshot as inputs. As a downside, it cannot
analyse applications without access to its source code. Also, it only supports Android
applications.

6

Figure 2.3: Result of the analysis of UIs in the Rico dataset. Taken from: [17]

Figure 2.4: Result of UI similarity query. Taken from: [17]

2.4 Screen Recognition: Creating Accessibility Metadata for Mo-
bile Applications from Pixels

Screen Recognition is a system that, from a single GUI image, creates metadata which
describe UI components. Then, the system hands the metadata over to iOS VoiceOver,
increasing accessibility. The system is designed to run on mobile devices; therefore, it is
memory efficient and fast. It was published in 2021. It uses deep learning techniques
trained on an iPhone application dataset. [34] The approach of the creation of application
metadata can be seen in figure 2.5.

The system authors created a dataset of GUIs from 4,239 iPhone applications. First,
the top 200 most popular applications of each of the 23 categories (excluding games) were
manually downloaded. Then, ten people traversed through GUIs in each application to col-
lect screenshots of visited UIs and their metadata (tree structure, properties of UI ele-
ments). However, the collected data was incomplete, so manual annotation had to be done.
Forty people annotated all UI elements in the collected screenshots using bounding boxes

7

Figure 2.5: Screen Recognition’s approach to creating application metadata for screen
readers. Taken from: [34]

and identifiers. The dataset was divided into twelve classes: Checkbox, Container, Dialog,
Icon, Picture, Page Control, Segmented Control, Slider, Text, Text Field, Tab Bar Item,
and Toggle. These classes were selected based on an examination of 500 sample screens
which identified which UI elements are essential for accessibility tools. In total, 77,637 UI
screens were annotated. Imbalances in the dataset were solved by using data augmentations.
[34]

UI detection model was trained to extract elements from GUI and predict their class.
Multiple models like Faster R-CNN and TuriCreate model were tried. However, their
inference time and memory consumption were not suitable for use in a mobile environment,
so SSD model with MobileNetV1 backbone was selected. The model was trained using four
Tesla V100 GPUs for 20 hours (557,000 iterations). Model output is then filtered using Non-
Max Suppression and setting different confidence thresholds for each class. The model’s
weighted mean average precision (IOU > 0.5) is 87.5%. [34]

The solution then post-processes the inference result to remove extra detections, and finds
missing elements using built-in OCR service and VoiceOver image descriptors. Next, icon
click-ability is predicted using a Gradient Boosted Regression Trees model. Then, UI ele-
ments need to be grouped because the detector outputs a bounding box for each element
separately. The elements are grouped based on hard-coded heuristics empirically acquired
from 300 randomly picked samples. Figure 2.6 shows the raw output of the detector (orange)
and the grouped, post-processed output (blue). Lastly, a navigation order is inferred using
the OCR XY-cut page segmentation algorithm, which sorts UI elements in human-readable
order. [34]

An evaluation was conducted by 9 participants who used 22 different applications. They
were asked to use both VoiceOver and Screen Recognition and rate the usability of selected
applications on a scale from 1 to 5 (higher is better). VoiceOver achieved 2.08, while Screen
Recognition achieved 3.73. [34]

The goal of this system is different to the goal of this thesis. However, there are some
overlapping sub-goals like UI element classification, dataset creation, and OCR result post-
processing.

8

Figure 2.6: Grouping and ordering of detected GUI elements. Taken from: [34]

2.5 Machine Learning-Based Prototyping of Graphical User
Interfaces for Mobile Apps

Modern applications heavily rely on the attractiveness of GUI and UX to attract users
and offer them visually attractive UIs. Services like the Google Play store contain func-
tionally identical applications that differ mostly in GUIs and UX designs. Therefore, GUI
drafting and prototyping are essential for the creation of GUI-based applications. The pro-
totyping is usually done by graphical designers who use editing software like Photoshop
to create drafts of the GUI. The design language is usually very similar across multiple
facets like websites, mobile applications, and marketing materials. For all these facets,
mock-ups are created before committing to the development process. These mock-ups
then have to be faithfully translated into code, so that users can enjoy them as they were
intended. [18]

Different teams usually carry out the prototyping and development process, which is
challenging, time-consuming, and prone to errors. Also, designers often practice an iterative
development process, where feedback is collected, and changes are integrated into the mock-
ups. Using prototypes is preferred, as more detailed feedback can be collected; however,
updating such prototypes by hand proves to be very difficult. Moreover, past work on de-
tecting GUI design violations shows that because of the iterative design practices and devel-
opment processes. Many startups and innovative companies are creating software prototype
applications and could hugely benefit from automated prototyping. [18]

Modern IDEs offer visual GUI creators, allowing designers to create prototypes. How-
ever, creating complex and high-fidelity GUIs is difficult, and users are prone to create
buggy prototypes. Other GUI design solutions offer collaborative capabilities and inter-
active previewing on target devices. However, no public solution that offers automatic
translation of a mock-up into correct native code for a target platform exists. However,
automating such a process is a challenging task. The solution must create valid user inter-
face code from hand-drawn or digitally created design sketches. It has to recognise discrete

9

objects from mock-ups, categorise them into correct GUI components, and arrange them
into proper hierarchical structures. [18]

The design and functionality of GUIs differ dramatically. Hand-made encoding algo-
rithms and heuristics would not be able to perform automatic design prototyping. There-
fore, a data-driven machine learning approach, trained on existing GUI applications using
application mining software is proposed. The proposed system is divided into three major
parts: detection, classification, and assembly. Detection is responsible for finding bounding
boxes of atomic GUI components in UI mock-ups. Elements are detected using digital
mock-up metadata or computer vision techniques (Canny, dilation, contours) from image
input. Then, each element is classified into its class (button, switch, checkbox, ...). This
step is implemented using a custom CNN architecture trained using the dataset mentioned
in section 3.2. Lastly, using an iterative K-nearest-neighbours and computer vision tech-
niques, GUI-hierarchies are constructed and translated into target code. [18] Figure 2.7
shows the ReDraw approach for automated GUI prototyping.

Figure 2.7: The approach of ReDraw to automatic GUI mock-up generation. Taken from:
[18]

CNN GUI component classifier achieves a top-1 average precision of 91%. Generated ap-
plications are visually very similar to their mock-ups, and the code structure is similar to real
applications. ReDraw outperforms other related solutions for mobile application prototyp-
ing like REMAUI [19] and pix2code [2]. Figure 2.8 shows a comparison between the actual
application and the ReDraw’s automatically generated application. [18]

The system discussed in this paper shares some similarities with the task of this thesis.
GUI element detection and classification of those elements are also necessary for the goal
of this thesis. However, the authors of the system created a dataset of 15 most common UI
elements, while the system of this thesis requires more fine class separation. Also, the GUI
hierarchy analysis in this paper relies on a KNN technique constructed by having access
to thousands of Android application GUI layouts.

10

Figure 2.8: Result of ReDraw compared to original applications. [18]

11

Chapter 3

Current State of UI Elements
Identification

This chapter discusses the current state of neural networks for classification tasks. Also,
available image datasets for image classification tasks are mentioned.

In recent years, deep learning methods have become a widely popular solution for,
among other, machine learning tasks and image processing tasks. Deep neural networks
hugely benefit from the number of available computing resources and a large amount of avail-
able data grouped into massive datasets. Deep neural networks surpass traditional ma-
chine learning methods in almost every aspect, be it precision, the ability to generalise
or the possibility of modifying the network to perform better on a specific task. The tradi-
tional machine learning methods are still relevant to this date for specific scenarios, where
the algorithm’s speed might be more critical than its precision, or when the task is straight-
forward. These methods are also implemented in almost every machine learning framework
and are significantly optimised. [1] However, only deep neural networks relevant for this
image classification task are mentioned in this chapter.

3.1 UI Elements Identification Methods Overview
AlexNet

AlexNet (61M parameters) is a large scale CNN, published in 2010, with a respectable
classification accuracy on the ImageNet dataset. AlexNet architecture consists of blocks
of convolutional layers followed by pooling layers and fully connected layers at the end
of the network. Its architecture is similar to the LeNet [13] network, but it contains more
layers in total. The first block of the network contains 11x11 convolution filters, followed
by 5x5 filters. The rest of the filters have a size of 3x3. Two fully connected layers have
4,096 neurons, and the last FC layer has 1,000 neurons. Figure 3.1 shows the architecture
of the network. The network had to be trained using multiple accelerators because it did
not fit on GPUs of that time. It used dropout and data augmentation to avoid over-fitting.
It achieved a top-1 error rate of 37.5% on the ILSVRC-2010 challenge and won the first
place. [12, 22]

12

Figure 3.1: AlexNet architecture. Taken from: [16]

VGG

VGG is a deep CNN architecture that uses small 3x3 convolution filters. Compared to neu-
ral networks available at the time of publication of this network, it uses more layers (11-19)
of 3x3 convolution filters. [24]

Figure 3.2 shows the architecture of VGG16 architecture. It is composed of:

• 13 convolutional layers - 5 blocks (64 filters per layer in the first block, double until
512 filters per layer)

• 5 max-pooling layers (2x2, stride 2) - after each block

• 3 fully connected layers - at the end 2x 4096 neurons, 1x 1000 neurons (ImageNet
dataset number of classes)

Overall, the network has 16 trainable layers, which translates to 138,357,544 parameters. It
achieved state-of-the-art detection accuracy on the ImageNet 3.2 dataset at the ILSVRC-
2014 competition. It reached 23.7% top-1 (6.8% top-5) validation error compared to the sec-
ond place which reached 27.9% (9.1%). [24]

Figure 3.2: VGG16 architecture. Taken from: www.researchgate.net

VGG was, at the time, a revolutionary approach to a deep understanding of image
data by replacing larger convolutional filters with 3x3 filters and stacking them in mul-
tiple blocks. However, the network is very computationally demanding and is nowadays
surpassed in every regard. Therefore, it is not utilised in this thesis.

13

ResNet

ResNet was published in 2015 as a solution to the problem of vanishing gradients in deep
neural networks. The more layers the networks have, the more evident the problem is.
As the gradient is back-propagated to upper layers, it gets smaller and eventually reaches
zero. Because of that, the network’s performance might be lower compared to shallower
networks. [7]

ResNet solves this issue by introducing residual blocks, as shown in figure 3.3a. Residual
blocks contain shortcut connections which skip one or more layers. These layers perform
identity mapping, and their outputs are added to the outputs of stacked layers. They do
not add any parameters or computational complexity, and networks using this block can be
trained using conventional optimisers. [7] An evaluation of ResNet variants and the VGG-
16 network on the ImageNet 3.2 dataset can be seen in figure 3.3b. ResNet-34, while being
much less computationally intensive, achieves better top-1 accuracy then VGG-16 by 3%.

(a) ResNet residual block.
(b) ResNet performance evaluation
onImageNet 3.2.

Figure 3.3: ResNet residual block and performance evaluation. Taken from: [7]

ResNet is a revolutionary approach to deep networks but is outperformed by less com-
putationally intensive architectures nowadays. Therefore, it is not used in this thesis.

Inception

Inception architecture, published by Google engineers in 2014, is a solution to the downsides
of stacking convolution layers on top of each other. Bigger models are prone to over-fitting,
more computationally expensive and have problems with vanishing gradients. Also, in image
classification, the right convolution filter size depends on the distribution of the information;
a small filter is suitable for local information, while a large filter is suitable for global
information. [28, 23]

Inception v1 (5M parameters) solves those issues by having multiple convolution filters
of different sizes: 1x1, 3x3, and 5x5. Also, max-pooling is performed. Outputs of these
sub-blocks are concatenated into a single output. To reduce the computational demands
of the Inception block, 1x1 convolution is performed before 3x3 and 5x5 convolutions,
reducing the number of input dimensions. The Inception v1 block can be seen in figure
3.4a. Inception v1, also called GoogLeNet, has nine such blocks stacked on top of each other.
Also, two auxiliary classifiers, which propagate auxiliary loss, are added to the network

14

to prevent the vanishing of gradients during training. Inception v1 won the classification
ILSVRC-2014 challenge. [28, 23]

Inception v2 and Inception v3 (24M parameter) architectures replaced the 5x5 convo-
lution filters with two 3x3 filters, which resulted in a computational speed increase. Also,
convolution filters of size nxn were replaced by a combination of 1xn and nx1 filters. These
filters further decreased the computational intensity. Moreover, RMSProp optimiser, fac-
torised 7x7 convolutions, batch normalisation in auxiliary classifiers, and label smoothing
were added to the architecture. The factorised block can be seen in figure 3.4b. Incep-
tion v3 architecture, with all improvements, achieves 21.2% top-1 error, while Inception v1
achieves 29% on the ImageNet3.2. [28, 29, 23]

Inception v4 (43M parameters) further improves the architecture by updating the stem
of the network and reduction blocks. Inception-ResNet v2 (56M parameters) introduces
residual connections 3.1, enabling the network to converge faster, reducing the training time.
[27, 23] Accuracy comparison between the mentioned architectures can be seen in figure
3.4c. Inception-ResNet-v2 achieves the same accuracy as Inception-v4, but it converges
faster. The same applies for Inception-ResNet-v1 and Inception-v3.

(a) Inception v1 block (b) Inception v3 block

(c) Inception versions evaluation on ImageNet dataset.

Figure 3.4: Inception block and evaluation figures. Taken from: [28, 29, 27]

DenseNet

DenseNet is a CNN, published in 2018, which is inspired by the solutions of ResNet 3.1
and Highway Networks [25] to the vanishing gradients problem. DenseNet approaches
the shortcut creation from early layers to later layers by connecting all layers in a dense
block (with matching feature-map sizes) directly with each other. The connection be-
tween convolution layers is illustrated in figure 3.5a. In the figure, coloured blocks consist
of batch normalisation, ReLU and 3x3 convolution filters, while the white transition lay-

15

ers consist of batch normalisation, 1x1 convolution filter and average pooling. In contrast
to ResNet, DenseNet does not combine features using summation before passing to a layer;
instead, features are concatenated. Also, DenseNet requires fewer parameters to achieve
similar performance as ResNet. Moreover, all layers have direct access to the gradients
from the loss function, which helps with the training of deep models. Figure 3.5b shows
a comparison between DenseNet and ResNet on the ImageNet dataset. DenseNet achieves
consistently better validation accuracy while having around half parameters. [8]

(a) DenseNet architecture
(b) DenseNet and ResNet performance compari-
son

Figure 3.5: DenseNet architecture and performance comparison with ResNet. Taken from:
[8]

EfficientNet

EfficientNet is a CNN architecture published in 2019 which uses compound coefficient
to scale neural networks in width, depth and resolution simultaneously, achieving state-of-
the-art performance and efficacy. [30]

The authors studied the impact of scaling one parameter at a time on the network’s
performance. While scaling in such a way improves the network’s performance, it is not
optimal because as the input image gets bigger, the network needs more layers to increase
the receptive field and more channels to capture more fine-grained patterns on the big-
ger image [30]. Different types of neural network scaling methods can be seen in figure
3.6. Width scaling adds more feature maps at each layer, depth scaling adds more layers
to the network, and resolution scaling increases the input image resolution. [30] A compar-
ison between scaling across a single dimension can be seen in figure 3.7a. Scaling only one
dimension increases computational complexity dramatically and does not lead to the same
accuracy increase.

The compound scaling method balances scaling of width, depth, and resolution by scaling
with a constant ratio. The ratio of each scaling dimension is determined by a grid search
on the original tiny model while keeping the computational complexity increase in mind.
The authors found that the best scaling parameters for the baseline network architecture
were: depth by 1.2, width by 1.1 and resolution by 1.15. These parameters were fixed
as constants, and the baseline network was scaled to obtain EfficientNet-B1 to EfficientNet-
B7. The EfficientNet network family performance can be seen in figure 3.7. It achieves

16

Figure 3.6: CNN scaling methods overview and comparison. Taken from: [30]

state-of-the-art performance on ImageNet, CIFAR-100 and Flowers dataset. EfficientNet
architecture outperforms all other networks, both in accuracy and number of parameters.
This technique not only works on the baseline architecture that they used but also on other
popular architectures. [30]

Also, using compound scaling, models tend to focus more on relevant regions in the im-
age. An example of it can be seen in figure 3.8.

SqueezeNet

SqueezeNet (0.4M parameters) is a CNN published in 2016, which has the same accuracy
as AlexNet while being 50 times smaller. To achieve such performance, the authors em-
ployed three main strategies:

• Replace some 3x3 filters with 1x1 filters.

• Decrease the number of input channels to 3x3 filters.

• Downsample late in the network so that convolution layers have large activation maps.

Strategies 1 and 2 aim to decrease the number of parameters of the network while not de-
creasing its accuracy. Strategy 3 aims to maximise the accuracy of the network. The authors
also introduced a Fire module. The module consists of a squeeze layer (1x1 convolution
filter) which feeds into an expand layer that contains both 1x1 and 3x3 convolution filters.
[10] The Fire module can be seen in figure 3.9.

The SqueezeNet is built using a convolution layer, followed by eight Fire modules
and ending with a convolution layer. Authors also experimented with using bypass con-
nections, just like in ResNet 3.1. Using a simple bypass, the network achieves 60.4% top-1
accuracy on the ImageNet 3.2 dataset, which is 3.2% higher than AlexNet, while being
4.8MB large. [10]

ShuffleNet

ShuffleNet is an efficient CNN architecture designed to run on mobile devices with compu-
tation power of around 100 MFLOPs. The authors use two operations: group convolution

17

(a) EfficientNet Scaling methods comparison.

Figure 3.7: EfficientNet performance comparisons. Taken from: [30]

and channel shuffle. The goal of both of these operations is to reduce computation com-
plexity while maintaining accuracy. [33]

Group convolution was introduced in Xception and ResNeXt networks, but the authors
claim that it is not fully utilised in those architectures. Instead, the authors propose to use
group convolutions in conjunction with a channel shuffle, which enables groups to obtain
input data from different groups. The Shuffle unit can be seen in figure 3.10a. Image (a)
shows a residual block with depth-wise convolution, while in the image (b), 1x1 convolution
is replaced by 1x1 group convolutions, and a channel shuffle is applied after the first 1x1
group convolution. The network can be scaled to the desired complexity. [33]

The accuracy and computational complexity of this model are compared in figure 3.10b.
ShuffleNet outperforms VGG-16, Inception v1, AlexNet, and SqueezeNet while being less
computationally intensive. [33]

18

Figure 3.8: Class activation maps while using different scaling methods. Taken from: [30]

Figure 3.9: SqueezeNet Fire module. Taken from: [10]

3.2 UI Elements Identification Datasets Overview
ImageNet

ImageNet is an image dataset organised into a hierarchy, similarly to WordNet. It was
created in 2009 to offer researchers an extensive image database to enable proper training
of deep neural networks. [6]

Concepts in WordNet, which multiple words could describe, are a synset. WordNet
contains more than 100,000 synsets, the majority being nouns. ImageNet, at the time
of writing, contains 21,840 synsets, and the aim is to provide around 1,000 images to each
one. Images of each synset are quality-controlled and hand-made. The goal of ImageNet
creators is to offer tens of millions of labelled and sorted images to cover most of the Word-
Net concepts. At the time of writing, ImageNet contains 14,197,122 images. ImageNet
project does not own copyrights for images used in the dataset; therefore, it only com-
plies with an accurate list of web images for each synset. Researchers and educators can,
under conditions, access get access to the whole dataset. [6]

The most popular subset of the dataset, used for the ImageNet Object Localisation
Challenge, divides objects into 1,000 classes, 1,281,167 training images, 50,000 validation

19

(a) ShuffleNet block comparison (b) ShuffleNet performance comparison

Figure 3.10: ShuffleNet architecture and performance comparison on ImageNet 3.2. Taken
from: [33]

images and 100,000 test images. The size of this subset is 166GB and can be downloaded
from Kaggle 1.

Figure 3.11 shows an example of two root-to-leaf branches of ImageNet. The top row
is a mammal subtree, while the bottom row is a vehicle subtree. Figure 3.12 shows

Figure 3.11: Example of two root synsets to leaf branches. Nine random images represent
each synset. [6]

a graph-like representation of a root synset feline, all the way to leaf synsets like kitty
and cougar. It also shows a root synset of a stringed instrument. The more green the word is,
the more discriminable the synset is, and vice versa; the more red it is, the less discriminable
the synset is.

This dataset hugely helped the advancements in the computer vision industry, and it
revolutionised the approach to large scale dataset creations. However, it does not contain
any synsets, which could benefit this thesis. Therefore, it is not used.

1https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data

20

Figure 3.12: Example of a graph representation of a root synset to leaf branches. Taken
from: [6]

CIFAR

CIFAR datasets were created in 2009 by labelling a subset of the Tiny Images 2 dataset.
Two variants of CIFAR exist. The smaller one is called CIFAR-10. It consists of 60,000 im-
ages with a resolution of 32x32. It only has ten classes, and each class contains 6,000 images,
5,000 being training images and 1,000 being test images. The classes are generic real-life
objects, mainly vehicles and animals. CIFAR-100 dataset contains the same number of im-
ages, but they are spread across 100 classes, each containing 600 images. 500 of them
are used for training, and 100 are used for testing. Also, 20 superclasses group those fine
classes into coarser ones. Each image contains information about its coarse and fine class.
To give an example of how superclasses work: the people superclass contains baby, boy, girl,
man, and woman classes. The size of both of these datasets is around 160MB. [11] Figure
3.13 shows classes and image examples of CIFAR-10 and superclasses of the CIFAR-100
dataset.

As this dataset contains no GUI or UI element classes, it is not helpful for the task
of this thesis.

MNIST

MNIST dataset was created in 1998 as a combination of two NIST databases. It contains
70,000 images, of which 60,000 are used for training and 10,000 are used for testing. Images
are split into ten classes of handwritten digits. Images are black and white with a resolution
of 28x28 and are centred by computing the centre of the pixel’s mass. The dataset only has
around 15MB. [14]

A variant of the MNIST dataset is EMNIST. It contains both handwritten numbers
and handwritten letters. It was created in 2017 from NIST Special Database 19. The data
has the same structure as the MNIST dataset. Six subvariants of the dataset exist:

• ByClass - 814,255 characters, 62 unbalanced classes

• Balanced - 131,600 characters, 47 balanced classes
2https://paperswithcode.com/dataset/tiny-images

21

(a) CIFAR-10 dataset classes and images. (b) CIFAR-100 superclasses

Figure 3.13: CIFAR dataset overview. Taken from: [11]

• Digits - 280,000 numbers, 10 balanced classes

• MNIST - 70,000 numbers, 10 balanced classes

• Letters - 145,600 letters, 26 balanced classes

• ByMerge - 814,255 characters, 47 unbalanced classes

[3]
Other variants like KMNIST, QMNIST, 3D MNIST and BINARIZED MNIST exist.

However, none of the variants is relevant to the task of this thesis.

ERICA

ERICA was published in 2016. It is an interaction mining system that captures both static
(UI layout, visual details) and dynamic (user flows, motion details) components of an app’s
design. It allows mining of this information in a scalable way, without modifying source
code or configurations of existing Android applications. ERICA takes a human-computer
approach to mining, using people to interact with and understand UI designs, and machines
to capture the states of those UIs. ERICA provides a web interface that controls Android
applications. Users interact with that interface, and as they navigate through the ap-
plications, ERICA detects UI changes and records Android view hierarchies, user events
and screenshots. Then it combines them into a unified representation called interaction
trace. ERICA was used to gather interaction traces from more than one thousand popular
Google Play Store applications. They contain more than 18,000 unique UI screens, 50,000
user interactions, 500,000 interactive elements. [5]

ERICA depends on users to interact with applications instead of automated solutions
for various reasons. First, human interactions with applications are real-world data that
an automated crawler cannot provide because it would create unrealistic interaction traces.

22

Also, applications might need user inputs; creating a lot of valid user data across multiple
applications is demanding. Furthermore, the UI state has to be captured after it is fully
loaded, which is difficult to do automatically, as data can be injected into the already
loaded UI asynchronously. Whereas, users usually interact with UIs which are visibly
loaded, including the data. [5]

Figure 3.14 shows the creation of interaction trace while a user interacts with an online
shopping application. Six screenshots and view hierarchies are captured in that example.
Also, a search flow is highlighted within that interaction trace. [5]

Figure 3.14: User interaction trace in an online shopping application. Taken from: [5]

Although this thesis’s task is different from what this dataset aims to provide, it could
be used to provide some data it contains. More specifically, if it is possible to extract icon
images from it and automatically group them into different classes, it could be very helpful.

Rico

Rico was published in 2017. It is a repository of mobile app designs. It supports five classes
of data-driven applications. Rico was built by combining crowdsourcing and automation
to scalably mine interaction data and design data from Android applications at run-time.
The dataset contains data from more than 9,772 Android applications. The mining infras-
tructure does not need access to the source code, nor does it need to change it in any way.
The visual, textual, structural and interactive design properties of more than 72,219 unique
UI screens were collected from those applications. When Rico users interact with Android
applications using the web interface, the system records user interaction traces. The traces
include screenshots of UIs and interactions performed with them. The size of the dataset
is 6GB. [4]

Rico is four times larger than the ERICA 3.2 dataset and is a superset of ERICA’s
design information. While ERICA contains a collection of UIs encapsulated into user
interaction traces, Rico additionally contains a list of unique UIs gathered across the whole
application. This data is helpful for tasks that do not require UIs to be connected together
as a sequence. Rico can be used for multiple data-driven applications such as Design Search,
UI Layout Generation, UI Code Generation, User Interaction Modeling and User Perception
Prediction. [4]

As mentioned above, Rico uses a human-computer approach to data mining. Humans
rely on empirical application knowledge and contextual information to interact with a wide
variety of applications. They can get around challenging scenarios; however, they tend
to stick to common use cases, therefore achieving low application coverage. Automated
agents can crawl through all UIs and edge-cases present in applications. However, agents can

23

get stuck on screens requiring complex sequences of actions or valid data inputs. By com-
bining these two approaches, Rico can achieve better coverage. Humans are unlocking
application states locked behind complex UIs, and agents then extensively crawl the whole
application. Figure 3.15 shows an example of a crowd worker interacting with an applica-
tion requiring user input; in this case, a verification code is sent to that phone. The worker
can view SMS and e-mail messages that the phone receives to complete the verification
process. [4]

Figure 3.15: Crowd worker’s view when interacting with an application requiring user input.
Taken from: [4]

Compared to ERICA 3.2, Rico supports large-scale crowdsourcing over the internet.
Crowd workers can remotely authorise in the system, the application is loaded to a phone
in the mobile device farm, and the screen of the phone is streamed to the worker’s browser.
When workers interact with the application through the web interface, these commands are
sent to the phone, performing the action. When crowd workers complete a complex action
like data input, their actions are stored. Automated crawlers use those stored input data
and replicate crowd workers’ actions to inspect the whole application automatically. [4]
Over time, the dataset will become outdated as new applications are constantly produced,
designs are changing, and ways of interacting with applications might also change. User
input is still necessary to get around complex UIs, so workers must keep interacting with new
applications to keep the dataset updated. [4]

Although this thesis’s task is different from what this dataset aims to provide, it could
be used to provide some data it contains. More specifically, it could be beneficial if it is
possible to extract icon images from it and automatically group them into different classes.

Enrico

Enrico (Enhanced Rico) was created in 2020. It is a curated subset of Rico 3.2, containing
1,460 UIs and 20 design topics [15].

Rico 3.2 is the largest public dataset of mobile app designs. However, as Rico was
created semi-automatically, it is very noisy. Authors of the Enrico dataset claim that only
10% of the UIs in the Rico dataset can be deemed high-quality design examples. The most

24

commonly identified problems were: a mismatch between app screenshot and wireframe,
a mismatch between view hierarchy and wireframe, no wireframe available or empty image,
and considerable overlaps among wireframe elements. As a result, around 90% of UIs were
ruled out to create a smaller but high-quality dataset [15].

First, 10,000 UIs from the Rico dataset were randomly sampled and were evaluated,
whether they were a good or a bad design. Eventually, 1,460 UIs were approved, and 20
UI design topics were found in those UIs. Then, these UIs were assigned to design topics,
creating a smaller but higher quality version of Rico [15].

Although this thesis’s task is different from what this dataset aims to deliver, it could be
used to provide some data it contains. More specifically, it could be beneficial if it is possible
to extract icon images from it and automatically group them into different classes. However,
the Rico 3.2 dataset is better suited for this, as it is larger than Enrico and the increase
in data quality of this dataset is not relevant for this thesis.

ReDraw

Redraw was published in 2018 as a dataset of GUI components of Android applications. It
consists of 15 categories, 1,382 UI pictures and 191,300 annotated GUI components. [18]
The dataset is used to train CNNs that automatically detect GUI elements in mock-up
images 2.5.

All categories of Google Play 3, except games, were extracted, resulting in 39 categories.
Then, 240 top applications from each category were downloaded, which resulted in 8,878
unique applications. Each application was then explored, and GUI-related information
from each screen was stored. Each application was navigated using a Depth-First-Search 4

manner, exercising tappable components. GUI-related information that describes the hier-
archy, element type and coordinates, other properties displayed on the screen and its screen-
shot were saved for each unique screen. Only fifty actions were allowed per application to fin-
ish the exploration in a feasible time. 19,786 unique app screens containing 431,747 GUI
components were gathered. Then, applications that contained web technologies and Unity
5 were removed, as they could not be analysed appropriately. Also, Screens in a landscape
mode, screens containing only Layout components and screens containing WebViews were
removed. Lastly, components with less than 200 instances were removed, and cases when
bounding boxes were incorrect or cases when components were made up of a single colour
were solved. After this filtering, 191,300 labelled GUI components from 6,538 applications
remained. These components were split across 15 classes. However, these classes were
imbalanced, so data augmentations were used to balance the dataset. Figure 3.16 shows
examples and class distribution of the GUI components dataset. [18]

This dataset serves a very similar purpose as is needed for this thesis: GUI components
classification. However, the data is split across 15 generic components, while the system
implemented in this thesis needs to be able to classify UI element pictograms into much
finer groups.

Annotation Tools Overview

Using an appropriate annotation tool is very important to an effective annotation of datasets.
Therefore, a short research on available free annotation tools was conducted. The table

3https://play.google.com/store
4https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph
5https://unity.com/

25

(a) A subset of the ReDraw training dataset. (b) Class distribution of ReDraw dataset.

Figure 3.16: Examples and class distribution of the ReDraw dataset. Taken from: [18]

with findings can be seen in figure 3.17. Each feature is evaluated with one of three op-
tions: yes, no, and somewhat. Three of the tested tools, CVAT 6, Label Studio 7, and VOTT
8, were discovered to be useful for annotation of large datasets with many (30+) classes.
They offer look-up of classes, file management, assisted annotation, and a large variety
of export formats. Each of these tools come with its advantages and disadvantages, but
CVAT was selected for the purposes of this thesis.

Figure 3.17: Feature set comparison of popular free annotation tools

6https://cvat.org/
7https://labelstud.io/
8https://github.com/microsoft/VoTT

26

Chapter 4

Draft of UI Elements Identification
and GUI Semantic Analysis
System

This chapter outlines the UI elements identification method, the GUI hierarchy analysis
method, the text extraction algorithm, and the semantic dictionary. Also, a technical
specification is made. This chapter separates the research and the implementation part
of the thesis.

4.1 Objectives and Requirements for the Resulting Solution
The objective of the resulting solution is to identify UI elements of a device, which are
captured by a digital camera. The system expects an image of the device’s screen and a list
of detected elements on that screen as input, and for each member of that list, it should
return its class, text, and to which GUI hierarchy section it belongs. The system should be
able to distinguish between similarly looking pictograms that represent actions users can
do with the device. If the areas containing buttons also contain text, the system should be
able to extract that text and use it to enhance the class prediction. A draft of the output
of the system can be seen in figure 4.1. In the figure, blue bounding boxes represent input
button areas, green text is the result of the classification, p is a pictogram class, and t
is a text class. The colourful bounding boxes and text represent the result of the GUI
hierarchy analysis.

4.2 Technical Specification of the Resulting System
Based on the needs of YSoft AIVA, the system must meet the following requirements:

• The system processes an input image, without a GPU accelerator, faster than a user
could.

• The system works if the UI element both contains and does not contain text.

• The system must offer multiple predictions for a pictogram.

• The system must be able to process input in a parsable file.

27

Figure 4.1: Draft of the output of the system.

• It must be possible to use trained weights of neural networks in different ML frame-
works.

• The system’s output must be a parsable and sendable file.

4.3 System Outline
The system consists of pre-processing phase and two main phases, button classification
and GUI hierarchy analysis. The diagram of the system outline can be seen in figure 4.2.
The system first detects if the input button areas contain any text, and if they do, the text
is extracted and used to improve the accuracy of the button’s class prediction. If any
text is found, the button area is cropped to exclude it. The UI elements are then cut
from the input image, batched, and their class is inferred. Next, for those UI elements that
contained text, their predicted class is possibly corrected based on the text they contained,
using the semantic dictionary. The last phase of the system is the GUI hierarchy analysis.
The whole input image is analysed, and each button is assigned its hierarchical section.

4.4 Text Extraction Algorithm Outline
The system uses OCR to retrieve what text is present on the screen and where is it located.
OCR that is used is an internal YSoft service that, for a given image, returns all detected
words and their coordinates. Each word is then assigned to an element that the word
intersects the most. Then all words in an element are merged into sentences if they are close
enough together. The text provides additional information about the class of the button
by matching the text with a hand-made dictionary of synonyms. There can be multiple
proposed text classes for each button.

28

Figure 4.2: Diagram showing the system and its components.

It is also crucial to know if any text is present in the button area. If no text is present,
the whole button area is sent to the pictogram classifier. On the other hand, if some text is
present, another processing step is done to find only the area of the pictogram. This step
must be done because the classifier is only trained on pictogram images without any text
whatsoever. The pictogram detection algorithm is discussed further in section 4.5.

The implementation of this algorithm is discussed in section 5.4. An example of the OCR’s
output looks like this:

{"text": "Memory",
"position": {
"x": 1142.5,
"y": 101.666664
"width": 59.999996,
"height": 15.833333}}

4.5 Pictogram Detection and Identification Outline
As mentioned in section 5.2, the selected CNN used for pictogram identification is Google’s
EfficientNetB1. There are three possible scenarios for how the button’s identification can
happen. If a button does not contain any text, the whole button’s area is classified, and no
pictogram detection is needed. However, if a button contains some text, the text has to be
excluded from the classification. To accomplish this, traditional computer vision techniques
are used to find edges that are not part of the text. If such edges are found, they are en-
wrapped into a bounding box area that is then classified by the selected CNN. However,
if there is no pictogram found in the button, no classification is done, and only the text
information is used, as mentioned in section 4.6.

29

The classification result is the five most probable class predictions and it is also included
in the system’s output. The exact implementation is discussed in section 5.5. An example
of the classification output looks like this:

1: ALERT probability: 75.139%
2: TEXT_FIELD probability: 11.741%
3: DOWN probability: 11.629%
4: POWER probability: 0.411%
5: DOCUMENT probability: 0.365%

4.6 Semantic Dictionary Outline
The semantic dictionary is necessary to identify buttons that contain only text informa-
tion. In cases where there is both some text and a pictogram, the text information is
used to propose other possible classes of the button, may the classifier fail, or help select
the most probable class of top predictions from the classifier. For each classifier class,
the dictionary contains a list of words that are synonyms for the class’s name and words
which can also be used to describe the given pictogram class. Synonyms can be present
in multiple classes to make more accurate class predictions. All proposed predictions are
then assigned to the button and are a part of the system’s output. The semantic dictionary
is hand-crafted and, for the purposes of this thesis, only supports English text. A corpus
manager is used to find relevant synonyms for each class. Also, some synonyms are gathered
empirically from printer screens. Implementation of the semantic dictionary is discussed
in section 5.6.

An example of synonyms for the info class would look like this:
’info’: [’info’, ’information’,’notify’, ’about’, ’help’, ’check’]

4.7 GUI Semantic Analysis Outline
GUI semantic analysis is responsible for a hierarchical separation of the GUI screen. It
takes the whole screen image as an input and outputs the detected hierarchical structure.
The screen is processed using traditional machine learning techniques, and the analysis
works under the assumption that the screen has distinct edges that separate different parts
of the design. Such assumption can be made because most of input GUI images contain
edges that separate different sections of the screen, as can be seen in figure 4.3. Other
image features, like colour, could also be used to distinguish different GUI sections; however,
those are not as reliable because GUIs in some designs have the same background colour
throughout the whole screen and only lines of different colours separate sections. Such
examples can be seen in figures 6.1 and 6.3. When the image is pre-processed (edges are
exaggerated), the OpenCV function FindContours is used to obtain found contours. They
are then filtered to remove small contours, and largely intersecting ones are merged. When
this analysis is done, each button is assigned to the inner-most part of the hierarchy it
intersects. The implementation of this analysis is discussed further in section 5.7.

An example of the result of the analysis can be seen in figure 4.3. level refers to the level
of nesting, id refers to an identifier of the GUI section, parent refers to the identifier
of the parent GUI section. A structured description of this example looks like the following:

{"coordinates": ’some x,y,w,h coords’,

30

Figure 4.3: GUI semantic analysis draft example.

"parent_id": None,
"buttons": [...],
"id": 0,
"children": [{

"coordinates": ’some x,y,w,h coords’,
"parent_id": 0,
"buttons": [...],
"id": 2,
"children": [{

"coordinates": ’some x,y,w,h coords’,
"parent_id": 2,
"buttons": [...],
"id": 3}]},

{"coordinates": ’some x,y,w,h coords’,
"parent_id": 0,
"buttons": [...],
"id": 1,
"children": []}]}

The level is represented as parent/children relation in a tree structure. Each GUI section
also contains its id, its parents id, a list of buttons that belong to that section and a list
of child sections.

4.8 System Input and Output Outline
The system expects an input image of a device’s screen and a file with a parsable structure,
as mentioned in section 4.2, that contains coordinates for each found GUI element in that

31

image. Also, for each button, the file must contain a general class to which it belongs.
The valid general classes are StaticText, EditText, Button, RadioButton, Switch, CheckBox,
StaticImage, and ImageButton. If the button contains a different label, it is ignored.

As mentioned in the section 4.2, the system’s output is a parsable file that contains
every information obtained during the processing of the input. The output contains this
information:

• hierarchy information

– hierarchy coordinates
– hierarchy id
– hierarchy parent id
– list of buttons inside it
– list of child hierarchies

• button information

– button coordinates
– original button label
– button text and its coordinates
– button class
– five most probable classes
– suggested text classes
– relative pictogram area within the button

The exact implementation is discussed in section 5.8.

32

Chapter 5

Proposed System Implementation

In this chapter, the implementation of the proposed system is discussed. The creation
of datasets needed for the training of the system is described. Text extraction algorithm,
pictogram detection and identification, semantic dictionary and GUI semantic analysis
implementations are described in this chapter. All steps of these algorithms, along with their
inputs and outputs, are mentioned.

5.1 Programming Language and Frameworks Selection
Nowadays, there are multiple programming languages that are suitable for machine learn-
ing tasks, but Python [31] still has the largest community and the most available resources
and frameworks that help programmers focus on their specific tasks, ultimately increasing
productivity. Although Python’s runtime is very slow, thanks to the number of optimised
frameworks available, all time-sensitive computation is done outside of Python, making
the whole system run very fast. For those reasons, Python was selected to be the implemen-
tation language of the system. The selected ML frameworks were TensorFlow and Keras.
Keras framework contains an implementation of Google’s convolutional neural network Ef-
ficientNetB1 that was, as mentioned in section 5.2, selected for pictogram identification.
Nowadays, Keras exclusively uses TensorFlow as a backend, so it was also indirectly used.

Other frameworks worth mentioning that were selected are NumPy [20], OpenCV [21]
and Anytree 1. NumPy was selected for its fast array manipulation capabilities, whereas
OpenCV was selected for its image manipulation capabilities. These frameworks are written
in a low-level programming language and are compiled. Python only serves as a high-level
API, which makes its use convenient, but at the same time, the runtime is very fast.
Anytree, a tree data structure implementation, was selected to implement the hierarchical
analysis of the GUI screen. The hierarchical analysis is discussed in detail in section 5.7.

5.2 UI Elements Identification Method Selection and Imple-
mentation

Selection of the UI elements identification methods

Based on the research of methods suitable for UI elements identification, which is conducted
in section 3.1, the selected CNN for this system is EfficientNetB1 3.1. The EfficientNet

1https://anytree.readthedocs.io/en/latest/

33

family of networks contains 7 variants of the same architecture, scaled to fit different needs.
The B1 variant of the network was selected for its relatively low computational complexity
and high classification accuracy compared to other members of its family, and also differ-
ent methods. Due to open formats for ML models, for example like ONNX 2, the model
and the trained weights of the network can be loaded and used in any other modern ML
framework that supports the standard, even if the framework does not contain the imple-
mentation of said network.

Compilation of the network

Keras’s implementation of the EfficientNetB1 was used as it allows to load the model
with custom weights and without a top layer. Pre-trained weights, called NoisyStudentB1NoTop
3, were used to speed up the training process. The EfficientNetB1 was loaded without its
top layer so that the network’s output could be customised. Nevertheless, to keep the net-
work architecture the same, some layers (those that were not loaded) were added back,
followed by a dense layer to match the number of classes.

• GlobalAveragePooling2D layer

• BatchNormalization layer

• Dropout layer with 0.2 probability

• Dense output player with 61 neurons (number of classes) and Softmax activation
function

Adam with default learning rate was used as an optimiser function. Sparse categorical
cross-entropy was used as a loss function. The compiled network has 6,658,500 parameters,
of which 1,431,181 are trainable.

Implementation

The definition and training of the EfficientNetB1 convolutional neural network are located
in the file efficientnetb1_training.py. Running the scripts starts training the network.
The script requires that both the training and the test datasets are stored in a folder
./dataset/train, respectively ./dataset/test. The weights are saved after each epoch if
the validation accuracy exceeds the maximum achieved accuracy so far. These weights
are stored in the file efficientnetb1_model.hdf5. If there is such a file in the same folder
as the script, the weights are loaded, and training starts again. After each training phase,
a plot showing its progress is shown. At the end of the training, the model is evaluated,
and the results are printed into the terminal.

5.3 Pictogram Classifier Dataset Creation
As mentioned in section 3.2, there is no available dataset suitable for UI elements classi-
fication into fine classes; therefore, a new dataset had to be created. The dataset partly
consists of UI element cuttings of printer touch screen images taken by a camera and partly
by UI element icons in different designs downloaded from a website.

2https://onnx.ai/
3https://www.kaggle.com/ipythonx/efficientnet-keras-noisystudent-weights-b0b7

34

Printer dataset creation

YSoft provided the original images of printer screens. The dataset consists of 1,218 images
annotated into six classes. This number of classes was insufficient for identifying different
pictogram meanings, so new, more detailed annotations were created in the dataset annota-
tion tool 3.2 called CVAT 5.1. Icons were distributed among 61 classes A.1, which resulted
in 6,796 icon annotations. Before annotations were cut from the original image, augmen-
tations were applied to each annotation. Both, the original and the augmented images can
be seen in figure 5.2. Augmentations that were used to enhance the dataset were:

• rotation by +- 5°

• scale by +- 15%

• shear by +- 0.005

• translation by 8% of the icons width and height

Figure 5.1: Printer image annotated in CVAT.

Also, during training, a 10% contrast shift was used. For each icon, five new icons were
generated using the augmentations mentioned above, with values assigned by the uniform
distribution. This step could have been done in Keras during training but that would have
resulted in black corners due to a lack of surroundings information in the icon cuttings.
This process resulted in a final printer dataset with 40,776 images. The images were kept
in original resolution to save disk space. The images are resized to a resolution, as required
by the classification neural network, during training by TensorFlow dataset loader functions.

The creation of the printer dataset is implemented in the file printer_dataset_creation.py.

Printer dataset image filtering Since the images from the printer dataset were cap-
tured by a camera; they suffer from the Moiré pattern 4. This effect is generally periodical

4https://www.focuscamera.com/wavelength/what-is-the-moire-effect-in-photography-how-to-avoid-it/

35

(a) Search button (b) Add button (c) Folder button

(d) Augmented search
button

(e) Augmented add
button

(f) Augmented folder
button

Figure 5.2: Printer dataset buttons

and creates unwanted edges that could reduce the accuracy of classification. If the effect
were to be removed from images in the printer dataset, it would also have to be removed
from each image classified in a production environment. This means that the filtering needs
to be fast as the system needs to work in real-time. To remove the noise, three different
approaches were tried. Different tried filtering approaches are discussed in section 6.1.

Generic UI pictogram dataset creation

More varied data had to be gathered to teach the classification neural network to recognise
icons in different design styles. One such dataset that contains UI icons in different design
styles exists 5, but it was not used because the images are in jpg format, which is not
suitable for background replacement.

The images were downloaded from a website 6 that contains millions of icons in different
design domains. 3,402 black icons in different design styles with alpha channels were down-
loaded from the website. These icons are without noise and look too perfect in comparison
with the input data of the system, so image augmentation was used to expand the dataset
and make it visually correspond with actual input data.

Background replacement Background cuttings with different brightness levels, later
sorted into dark and light groups, were extracted from the original printer dataset. Then
each icon, which was initially only black, was recoloured to dark grey, light grey and white
colour. Also, black icons were left. As mentioned in the paragraph below, these recoloured
icons were augmented and then placed on top of the extracted backgrounds. Light icons

5https://www.kaggle.com/testdotai/common-mobile-web-app-icons
6https://icons8.com/

36

Figure 5.3: Examples of downloaded icons

were merged with dark backgrounds, and dark icons were merged with light backgrounds.
From a respective brightness group, which background was used is determined at random
with uniform distribution. Examples of downloaded icons and extracted backgrounds can
be seen in figure 5.4. Figure 5.5 shows examples of the finished icon dataset.

Figure 5.4: Examples of extracted backgrounds

Icon augmentation Augmentations were applied to each icon before icons were placed
on top of the background image. Augmentations that were used to enhance the dataset
were:

• rotation by +- 5°

• scale by +- 15%

• shear by +- 0.005

• translation by 8% of the width and height of the icon
Also, during training 10% contrast shift was used. Five new icons were generated us-
ing the augmentations mentioned above, with values assigned by the uniform distribution
for each icon. This step could have been done in Keras during training, but that would have
resulted in black corners due to a lack of surroundings information in the icon cuttings.

This process resulted in a final generic dataset with 81,624 images. The images were
kept in original resolution to save disk space. The images are resized to a resolution,
as required by the classification neural network, during training by TensorFlow dataset
loader functions.

The final dataset for UI elements identification was created by merging the printer icon
dataset with the generic icon dataset. In total, this dataset contains 122,016 images divided
into 61 classes.

The generation of this part of the dataset is located in the file icons_dataset_creation.py.

37

Figure 5.5: Examples of combined icons with backgrounds

5.4 Text Extraction Algorithm Implementation
As mentioned in section 4.4, the processing of text present on the screen is essential
for the proper working of the whole system. The system uses YSoft’s internal OCR to read
text on the screen.

The OCR expects an image encoded into base64 format and sent in the payload of a re-
quest. If the request fails, an empty string is returned. If the request succeeds, a JSON is
returned. The JSON contains a list of found words, which are in this format:

{ "text": "Memory",
"boundingBox": {

"position": {
"x": 1142.5,
"y": 101.666664},

"size": {"width": 59.999996,
"height": 15.833333}}}

The text key holds the text value of the word. The boundingBox/[x|y] key holds the top-left
coordinates of the text bounding box, while the size/[width|height] key holds the width
and the height of the bounding box. The OCR’s response is cached to avoid overloading
of the service.

Each word in the JSON response is then added to a button object that it intersects with.
If the button’s original class is not [StaticText|EditText|Button], the word is not added to it
as the other classes are not expected to contain any text and would, in most cases, result
in an error.

Next, each button’s text is merged into sentences. The merging is based on the distance
between each word. The threshold is 0.1 * 𝑏𝑢𝑡𝑡𝑜𝑛_𝑤𝑖𝑑𝑡ℎ , respectively 0.1 * 𝑏𝑢𝑡𝑡𝑜𝑛_ℎ𝑒𝑖𝑔ℎ𝑡
for horizontal merging, respectively vertical merging. The whole purpose of the merging,
even though it is not useful for further analysis, is to connect words that relate to each
other, as this result is more useful for end-users.

The result of the whole algorithm so far can be seen in figure 5.6. The blue bounding
box represents the whole element area, while the green bounding box represents the area
of a sentence.

The last text analysis phase matches the button’s text information with the semantic
dictionary 5.6. Each button’s sentence is split into words, and each of those words is checked
to whether it matches any values in the dictionary. Each word is converted to lowercase
before this process. Keys of values that matched with words are added to the button’s text
class prediction list.

38

Figure 5.6: Printer screen image with merged text.

The text class prediction is mainly used to classify buttons that contain text but do
not contain a pictogram. This helps massively helps automation, as users do not need
to annotate these text buttons manually, or for cases where more text classes were suggested,
they can only select one class from the suggested list, saving time and limiting human errors.
Also, as the text classification uses the same 61 classes as pictogram classification, another
use case is cross-checking these two results for buttons that contain both text and pictogram.
The effectiveness of result cross-checking is mentioned in the evaluation section 6.7.

An example of the text classification can be seen in figure 5.7.

Limitations One huge limitation is the OCR’s inability to read buttons with only one
letter or a number. Numbers are often correctly read, but the OCR tends to merge them
with nearby numbers on its own, making them overlap over multiple buttons. As a result,
letters are often incorrectly read or even not detected at all. A solution to this problem
might be using a different OCR, but the same problem, albeit not as apparent, occurred
using Google’s Cloud Vision OCR 7.

Another approach is ignoring buttons that are part of the software keyboard. However,
the detection of the keyboard would have to be hard-coded, which is not desired as more
errors could appear, or done using a neural network or traditional computer vision, which
is outside the scope of the thesis. The problem can be seen in figure 5.8.

Implementation The request creation and retrieval are implemented in the file text_analysis.py,
in OcrApiCommunicator class. The intersection check is implemented in the function
check_if_near_bb in the utils.py file. The text merging is implemented in the method
merge_ocr_result of ButtonCutting class. Finally, the button’s text semantic dictionary
matching is implemented in the function get_text_classes in the file text_analysis.py.

7https://cloud.google.com/vision/docs/ocr

39

Figure 5.7: Text classification example.

5.5 Pictogram Detection and Identification Implementation
The algorithm described in this section is responsible for the identification of pictograms
present in the input image. It uses EfficientNetB1 CNN as a classification method to dis-
tinguish pictograms into 61 classes. The training of the network is described in section 6.2.
Also, traditional computer vision methods are used to detect a region with the pictogram
in cases where the UI element contains some text. However, as the classifier is trained
on a dataset containing only pictograms, classifying UI elements with text would result
in poor classification accuracy.

The input of the algorithm is a UI element, which has already passed through the text
analysis. The whole UI element area is classified if it does not contain any text. Otherwise,
a pictogram detection occurs.

Pictogram detection First, the element is converted to grayscale and thresholded us-
ing Otsu’s method 8. Then, both Sobel-x and Sobel-y are applied to the binary image,
resulting in two images with found edges. Then, for both images, contours are found
and filtered to eliminate the ones that are too small. Contours that were eliminated were
erased from the binary images. Now that the noise was removed, a morphology operation
dilate is applied three times to both images. The binary images are then merged together
using a bitwise or operation. In the combined image, contours are found again. Contours
that are smaller than 1% of the element area are eliminated. Also, contours that intersect
with the text of the element are eliminated. Then, those contours located at the borders
(10%) of the area are eliminated. Lastly, if the height or the width of the contour is ten times
longer than the other, it is also eliminated. Finally, those contours that got through all
tests are merged into one singular area. If that area is larger than 4% of the total area
of the element, the result of the detection are coordinates of the supposed pictogram. If no

8https://learnopencv.com/otsu-thresholding-with-opencv/

40

Figure 5.8: An example software keyboard screen image failed text detection.

contours passed to the end, the element is not classified. The detection process can be seen
in figure 5.9. In that figure, the yellow bounding box shows the region outside of which
contours are ignored, the green bounding boxes are contours that passed through all tests,
and the blue bounding box is the final pictogram area that is created by merging the green
areas. Steps one 5.9a through five 5.9e show contours that passed through all tests and step
six 5.9f shows the output of the detection.

Pictogram classification The classification input is either the whole area or the area
of the supposed pictogram, as discussed above. First, the pictogram is resized to 240x240
resolution to fit the input layer size of the EfficientNetB1. Then, the pictogram is classified,
resulting in 61 probabilities. Finally, only the five most probable classes are stored and are
part of the system’s output. The classification output of the button shown in figure 5.9 can
be seen below.

Top 1 pred: DOCUMENT with~prob: 51.41647458076477%
Top 2 pred: COPY with~prob: 48.373040556907654%
Top 3 pred: CALENDAR with~prob: 0.15204616356641054%
Top 4 pred: PRINT with~prob: 0.04938848433084786%
Top 5 pred: FOLDER with~prob: 0.004582103429129347%

Limitations As the input images are very noisy and the Moiré effect creates a lot of strong
edges, pictograms are detected in elements that do not contain any pictogram. This error is
only present in cases when the element contains some text which also means that the seman-
tic dictionary is used and can propose correct classes, mitigating the error. Also, sometimes
no pictogram is detected even though it should. This happens in cases where the pictogram
contrast is very low as the algorithm is tuned to ignore the noise. The semantic dictionary
mitigates this error as well.

41

(a) Pictogram detection
step 1

(b) Pictogram detection
step 2

(c) Pictogram detection
step 3

(d) Pictogram detection
step 4

(e) Pictogram detection
step 5

(f) Pictogram detection
step 6

Figure 5.9: Example of pictogram detection steps

The implementation of algorithms mentioned in this section is located in the file pic-
togram_detection_identification.py.

5.6 Semantic Dictionary Implementation
The semantic dictionary is used to perform a text-based button classification. The button’s
text information is used to find dictionary values that match the word. If such a match
succeeds, the value’s key is returned as the button’s class. This algorithm is explained
in section 5.4.

The semantic dictionary is implemented simply as a Python dictionary data structure.
Its keys are equivalent to the pictogram classifier classes A.1. Values of these items are words
that could also be used to describe images in the pictogram dataset grouped under the same
class label. For example, a plus sign icon, which is assigned to the add class, could verbally
be described as plus, add, insert, join, new, etc. Some words were added to the dictionary
empirically. Then, Word Sketch 9 corpus manager system was used to enlarge the dictionary
systematically. There are some duplicate values as a word can describe multiple class labels.
For example, the word internet can describe icons that belong to both web class and wifi
class, even though these classes are two disjunctive sets. The whole semantic dictionary
can be seen in figure A.2.

9https://app.sketchengine.eu

42

Other classes can be added to meet domain-specific requirements for text button classi-
fication. In this thesis, text classes like job and waiting were added to increase classification
accuracy in the printer domain.

Limitations As this dictionary was hand-made, it does not scale well. All changes
and corrections have to be made manually. Also, in this thesis, the only supported lan-
guage is English, and the translation to other languages would mostly also have to be made
manually.

5.7 GUI Semantic Analysis Implementation
GUI semantic analysis separates the GUI into distinct, hierarchically ordered sections. It
uses traditional computer vision methods to filter the image, convert it into a binary form
and find the aforementioned hierarchical sections. The draft of this analysis is discussed
in section 4.7.

The analysis expects the whole GUI image as an input. The image is then converted
into grayscale, a bilateral filter (neighbour pixel diameter = 5, colour space sigma = 25,
coordinates space sigma = 75) and then a Gaussian blur with a kernel size of 3 is applied
to it. The blurring is necessary to eliminate the Moiré as much as possible and improve
further analysis. The grayscaled and blurred image, which can be seen in figure 5.10, is then
passed into the Canny detector (lower hysteresis threshold = 10, upper hysteresis threshold
= 80, aperture size = 3, L2Gradient = True) to detect edges present in the filtered image.
Next, the morphology operation close with a 5x5 kernel of ones is applied to the picture
to remove background noise and close gaps in found edges. The last pre-processing phase
adds a rectangle around the whole image to help correctly detect root contour in the last
step. The result of the pre-processing can be seen in figure 5.11. The function from OpenCV
findContours using RETR_TREE and CHAIN_APPROX_SIMPLE parameters is used
for this pre-processed image. It returns all detected contours, approximated as rectangles,
in a tree-like structure. Each detected contour contains its id, the id of its parent contour,
the id of its previous contour, and the id of its next contour on the same level.

However, only those contours representing GUI sections are necessary for this analysis;
therefore, the contours need to be filtered. First, contours that only take up 10% of the total
image area are eliminated. Next, intersection over union is calculated for each contour pair.
Those pairs whose IoU is larger than 0.92 are merged. During the merging process, contour
id and parent id values are combined into a list that contains them.

Next, the filtered contours are stored in a tree data structure using the AnyTree 10 li-
brary. The root node is the root contour that was artificially created at the edges of the im-
age. Children of the root node are all contours that match any of its parent ids with the root
node’s ids. The example image of this hierarchy analysis can be seen in figure 5.12. Each
section contains its level of nesting, id (list of merged ids) and parent id. The hierarchy
of the example image can be described as the following:

[123, 0]
|--[28]

|--[44, 38]

10https://anytree.readthedocs.io/en/latest/

43

Figure 5.10: An example of a blurred image before edge detection.

Lastly, all buttons are assigned to the inner-most hierarchy section where they intersect.
The detected hierarchy in the system’s output is represented as a tree. The root hierarchy
is also a root in the JSON output, and the children are stored as a list under the children
key. Each hierarchy section in the JSON also contains a buttons key which holds informa-
tion about each button that belongs to that section. The output of the system is further
discussed in section 5.8.

Implementation The algorithm discussed in this section is implemented in functions
in the file hierarchy_analysis.py. The function find_contours processes the input im-
age using computer vision methods and finds contours in the image. The function fil-
ter_merge_contours is responsible for merging contours with very similar areas and filtering
areas that are too small. The function build_tree converts detected contours into a tree data
structure. Finally, the function assign_button_hierarchy assigns a button to the correct
hierarchy.

Limitations Figuring out the correct parameters for used computer vision methods is
really difficult as a slight change of one parameter can make the analysis unsuccessful.
As those parameters are hard-coded, the analysis might fail when external conditions
like lighting, screen resolution, or camera resolution change. Therefore, parameters were set
to enable the algorithm to successfully analyse images with significant defects. As a down-
side, smaller details in the screen are not detected, so GUI sections with low contrast edges
are ignored. Still, sometimes noise is detected as a GUI section, resulting in a wrong output.
Also, as the hierarchy analysis is based on an edge detector, GUI screens with a minimalist
and clean design might result in an output with only the root section present. However,
it is not a huge problem, as in that case, human eyes cannot detect any edges either,
and the GUI is structured and works differently.

44

Figure 5.11: An example of an image after Canny edge detection and morphology close
operation.

5.8 System Input and Output Implementation

Input

The input of the system is a combination of a GUI image and UI element detections for that
GUI. The button detections, which are produced by YSoft’s internal service, are stored
in a file in Pascal VOC 11 format. These detections contain the coordinates of each element
along with its class. The class must be one of the following: StaticText, EditText, Button,
RadioButton, Switch, CheckBox, StaticImage, or ImageButton. An example of the input
detections can be seen in figure A.3. The whole visualised input can be seen in figure
5.13. Blue bounding boxes indicate areas of detected buttons, and the text represents
the original class of the element. When both files are loaded, ButtonCutting object is
created for each element. The object contains all information gathered about the UI element
during the analysis of the screen. It also contains methods to output the information
in a structured way.

Output

After analyses discussed in this chapter are done, the GUI hierarchy sections are stored
in a tree structure, and each section contains all buttons that belong to it. The tree is then
traversed, and its stored information is converted into a JSON file. The output file is too
large to include in the thesis, but the file’s structure with descriptions can be seen in figure
A.4.

11https://deepai.org/dataset/pascal-voc

45

Figure 5.12: An example image after the hierarchy analysis is complete.

A visualised example of the system’s output can be seen in figure 5.14. In the figure, blue
(purple 12) bounding boxes represent the input UI element area. Green bounding boxes,
along with the text inside of them, represent the detected text. Red (purple) bounding boxes
represent the supposed area with a pictogram. The word in the top left corner of the blue
(purple) area is a predicted class of that pictogram. The second row in the top left corner
is a list of predicted classes using the text information if there is any text in the element.
Bounding boxes with other colours represent the hierarchy sections. Each section contains
information about its nesting level, identifier, and parent.

12if the pictogram area is the same as the input element area, blue and red colour are overlapping →
purple

46

Figure 5.13: The visualised input of the system.

Figure 5.14: The visualised example of the output of the system.

47

Chapter 6

Experiments

In this chapter, experiments with the system and its components are mentioned. Then,
the system’s performance is evaluated. Finally, future work with the system is discussed.

6.1 Dataset Experiments
Image resizing EfficientNetB1 expects the input image to have 240x240 resolution, while
images in the dataset have a variable resolution. Images created using the icon website usu-
ally have 50x50 or 100x100 resolution, but images from the printer domain have a variable
resolution. The whole dataset cannot be stored in memory during training, so a single image
is resized multiple times. To mitigate that, each image was resized to the target resolution
during the creation of the dataset. Then, the training time was measured and compared
to the training time of the dynamic rescaling. The training took precisely the same time,
so the idea was dropped, as the dataset was around 2.5 times larger.

Dataset augmenting with noise During the dataset creation, augmentations like rota-
tion, scale, shear, and translation were used to augment and enlarge the dataset. Another
way to augment the dataset is by adding noise to it. Gaussian noise, salt and pepper noise
and colour noise were tried to expand the dataset further. These noise techniques were
used on top of augmentations used in section 5.3 and the dataset was three times larger.
However, as the input images are very noisy already and the accuracy of the classifier is
99% in all metrics, no improvements were noticed. Moreover, the training took three times
longer for the same amount of epochs. Also, the original dataset was acquired using an HD
camera, and the actual input of the system has a lot less noise nowadays. Therefore, no
additional augmentations were used.

Experiments with printer dataset filtering

Local filtering Both Median filter [9] and Gaussian filter 1 were tried to reduce the Moiré
pattern. However, due to the nature of the effect, none of the methods was able to sig-
nificantly reduce the effect while the rest of the image was degraded. Examples of such
filtering can be seen in figure 6.1. Therefore, due to these facts, these methods were not
used.

1https://www.geeksforgeeks.org/apply-a-gauss-filter-to-an-image-with-python/

48

(a) Median filter (b) Gaussian filter

Figure 6.1: Local filtering comparison. The original image (with some additional irrelevant
information) can be seen in figure A.4

Filtering in spectrum Due to Moiré’s pattern periodical nature, spectrum filtering was
tried to remove or reduce the unwanted effect. The printer image was converted to spectrum
using Fast Fourier Transform 2. Then a mask that should keep the main frequencies along
both axes and remove Moiré Pattern peak frequencies was applied to the image. However,
this approach did not, in most cases, result in a clear image. The Moiré pattern in the im-
ages was not perfectly symmetrical and was usually overlapping with the main frequencies
of the image. The filtered image still retained the pattern, but the edges of the buttons
were blurred. The input image, image in the spectrum, used filtering mask, and filtered
image can be seen in figure 6.2. Due to the ineffective filtering, this method was not used.

(a) Spectrum filtering input (b) Spectrum filtering output

(c) Spectrum filtering mask (d) Input in spectrum

Figure 6.2: Spectrum filtering process example
2https://docs.scipy.org/doc/scipy/tutorial/fft.html

49

Filtering in the spectrum is implemented in the file filtering_spectrum.py.

Non-local means filtering Because there are similar areas in typical screen images, non-
local means denoising was tried to remove the Moiré’s pattern. A function that implements
this algorithm is a part of OpenCV and is called fastNlMeansDenoisingColored3. The pa-
rameters that yielded the best filtered image were: h=10, hColor=30, tempWinSize=7,
searchWinSize=21. After the filtering, images were usually a little blurred, so an Unsharp
masking 4 sharpening algorithm was used. The result of this method can be seen in figure
6.3. However, this method’s performance is very poor; one image takes about 2 seconds
to filter, which is not acceptable in real-time applications.

(a) non-local_before (b) non-local_after

Figure 6.3: Non-local means filtering example

Non-local Means filtering is implemented in the file filtering_nonlocal_means.py.

6.2 EfficientNetB1 Network Training
EfficientNetB1 CNN implementation is discussed in section 5.2. The creation of the dataset
used for the training of the network is described in section 5.3. The dataset was split
into three parts:

• 10% test data

• 9% validation data

• 81% train data

A function image_dataset_from_directory from Keras’s utils module was used to load,
split, resize and batch the images. A contrast shift of 10% was used during training to aug-
ment the data.

The training was split into two parts. Firstly, the model was kept frozen, and only
the newly added layers were trained for fifteen epochs. The accuracy 5 of the model af-
ter this training was 79% on training data and 90% on the validation data. The training
accuracy is lower than the validation accuracy because dropout layers are only used dur-
ing the training process to avoid overfitting and improve model generalisation. The plot

3https://docs.opencv.org/4.x/d5/d69/tutorial_py_non_local_means.html
4https://scikit-image.org/docs/dev/auto_examples/filters/plot_unsharp_mask.html
5(TruePositive+TrueNegative)/Total samples

50

of the training can be seen in figure 6.4a. Secondly, the last twenty layers were un-frozen,
and the model was trained for another eighty epochs. After this training was completed,
the accuracy of the training data was 98%, while the accuracy of the validation data was
99%. These results can be seen in figure 6.4b. One epoch took around six minutes to finish
on the GTX 1070. After training, a classification report was generated, which can be seen
in table 6.1. In the table, accuracy is the number of correct predictions divided by the total
number of samples. Macro average is the sum of a metric of each class divided by the num-
ber of classes. Weighted average considers how many samples each class has, so fewer
samples in one class means that its precision, recall and f1-score have less of an impact
on the weighted average for each of those metrics 6.

(a) 15 epochs, frozen network (b) 65 epochs, unfrozen layers

Figure 6.4: Training progress of EfficientNetB1

metric precision recall f1-score support
accuracy X X 0.99 15431

macro avg 0.99 0.99 0.99 15431
weighted avg 0.99 0.99 0.99 15431

Table 6.1: Table showing the accuracy of the trained EfficientNetB1 model.

6.3 Text Extraction Experiments
Text extraction is significantly dependent on the quality of the OCR. In this case, YSoft’s
internal OCR was used to detect text. In this section, both successful and unsuccessful ex-
tractions are shown. In those images, a blue bounding box is a UI element’s area, and green
bounding boxes are the detected text. The list of words in the top left corner are class sug-
gestions based on the detected text in the UI element. This component cannot be evaluated
on its own automatically because no ground truth to which the result could be compared
exists. The creation of such ground truth, on a larger scale to provide meaningful result,
would be very time consuming. Therefore, only the number of UI elements with suggested

6https://towardsdatascience.com/choosing-performance-metrics-61b40819eae1

51

text classes is calculated. Out of 19590 UI elements, 11172 (57%) contained text informa-
tion. Out of those elements, which have some text information, 5387 (48.2%) elements were
suggested with at least one text class.

Successful text extraction examples

Text extraction is considered successful when there is some text in the image, and it is read
correctly or when there is no text in the image and no text is detected. Figure 6.5 shows
examples of successful text extractions and text class predictions. Images 6.5a through 6.5e
show text extractions when the buttons both contain and do not contain a pictogram.
Image 6.8c shows a modal window which contains buttons with pictograms, whereas image
6.5g shows buttons with text only. Image 6.5h shows a whole screen with all text correctly
read.

Unsuccessful text extraction examples

Text extraction is considered unsuccessful when there is some text in the image, and it is
misread or when there is no text in the image and some text is detected. Figure 6.5 shows
examples of unsuccessful text extractions. In image 6.6a, text was correctly detected but
was misread. The image 6.6b contains no text, but some text was detected. The images 6.6c
and 6.6d contain both text and a pictogram but the OCR mistakes the pictogram for a letter.
The image 6.6e is also incorrect because the OCR merged numbers in the image together.
The image 6.6f contains a whole software keyboard in which most of the letters were read
by the OCR but were incorrectly merged. If the OCR includes a pictogram in the detected
text area, it is not a big problem because the semantic dictionary usually corrects the error.
However, when the OCR detects text in a UI element with only a pictogram, it disables
the pictogram detector’s ability to find it, therefore causing an error.

6.4 Pictogram Detection Experiments
Multiple methods for pictogram detection were tried during the implementation of the pic-
togram detector. The methods mainly differed in the way edges are detected. Tried edge
detectors were the Sobel operator, Laplacian operator and Canny. Out of those methods,
edge detection using Sobel operator resulted in the smallest number of errors. This com-
ponent cannot be evaluated on its own automatically because no ground truth to which
the result could be compared exists. The creation of such ground truth, on a larger scale
to provide meaningful result, would be very time consuming. Therefore, an estimate of at
least 90% successful pictogram detection is made, based on the visual evaluation dur-
ing the implementation of this subsystem. This claim can be substantiated by the low
number of classification errors in the evaluation of the whole system 6.7. The figures below
show the result of pictogram detection on elements containing text. The yellow bounding
box indicates an area in which pictograms are being detected, the green bounding boxes
indicate areas where contours were found, and the blue bounding box indicates an area
where pictogram was detected.

Successful pictogram detection examples

Pictogram detection is considered successful when the area contains a pictogram, which is
detected without text being a part of that area. Also, when the UI element only contains

52

text, the correct output is an empty detected area. Figure 6.7 shows UI elements and their
binary representation, which were detected correctly.

Unsuccessful pictogram detection examples

Pictogram detection is considered unsuccessful when the area contains a pictogram which is
not entirely inside the output of a bounding box or when text is also part of the output. Also,
when the UI element only contains text and the output is not an empty area, the detection
is also unsuccessful. Figure 6.8 shows UI elements and their binary representation of failed
pictogram detection analysis. The image 6.8a and image 6.8e were incorrectly analysed
because the right edge of the button intersects with the detection area. The image 6.8c
was incorrectly analysed by the OCR as it did not detect the letter f ; therefore, pictogram
detection determined it to be a pictogram. Image 6.8g contains a lot of noise, as seen
in its binary representation, which was mistaken for a pictogram. Overall, most pictogram
detection errors are caused by wrong OCR or button edges intersecting with the detection
area.

6.5 GUI Semantic Analysis Experiments
The GUI semantic analysis cannot be evaluated automatically as no datasets that could
be used as a ground truth exist. Therefore, examples of cases where the analysis succeeds
and struggles are shown in this section. Also, in cases where the analysis struggled, a pre-
processed image is shown to help understand what went wrong. As the expected input
of the analysis is a noisy image, filtering algorithms are used before edges are detected.
However, during this process, edges with small contrast are also softened, making them
invisible for edge detection methods. Larger versions of images shown in this section can
be seen in section A.5.

Successful analysis examples

GUI hierarchy analysis is considered successful when all main GUI sections are detected
correctly, and no additional incorrect GUI sections are detected. The figure 6.9 shows
examples of successful analyses. Images 6.9a through 6.9c were analysed perfectly. All
main GUI sections were also detected in figure 6.9d but the item list was not detected,
as was accounted for above. For the reasons mentioned above, the GUI semantic analysis
cannot be evaluated automatically on a large number of inputs. Nevertheless, an estimate
of 80% successful rate was made.

Unsuccessful analysis examples

GUI hierarchy analysis is considered unsuccessful when at least one GUI section is incor-
rectly detected. Figure 6.10 shows examples of unsuccessful analyses, each example showing
a different cause. Image 6.10a is considered incorrectly analysed because, even though three
sections were detected, the innermost section contains all UI elements. The correct result
would be if the inner-most section originated just below the Scan workflows button, sep-
arating the tab’s content from the tab button itself. The error is, in this case, caused
by OpenCV ’s function findContours which did not return the correct contours for a cor-
rect binary image 6.10b. Image 6.10c was incorrectly analysed because the edge detection
process did not detect edges separating GUI sections present in the image. As mentioned

53

above, the filtering and edge detection is tuned to ignore the noise, which means that edges
with small contrast are ignored. Edges were correctly detected for image 6.10e but function
findContours found incorrect contours. Image 6.10g is an example of edge-less GUI design
where this analysis fails. These cases are a grey area and more of a limitation than errors,
as the analysis correctly did not find any sections (based on edges), but humans intuitively
sense how the GUI is structured.

6.6 System Overview
The system is separated into multiple folders and files based on the functionalities it im-
plements. Systems components:

• GUIElementsAnalyzer/AnnotationsParser.py - a file containing the class responsible
for loading input and creating button cutting

• GUIElementsAnalyzer/ButtonCutting.py - a file containing the class storing button
cuttings and methods that alter them

• GUIElementsAnalyzer/config.py - a file containing configuration settings

• GUIElementsAnalyzer/draw_bb_utils.py - a file containing functions that visualise
the output of subsystems

• GUIElementsAnalyzer/hierarchy_analysis.py - a file containing functions responsible
for GUI hierarchy analysis

• GUIElementsAnalyzer/logger.py - a file containing logger definition

• GUIElementsAnalyzer/main.py - a file containing the main system loop

• GUIElementsAnalyzer/pictogram_detection_identification.py - a file containing func-
tions responsible for pictogram detection and identification

• GUIElementsAnalyzer/text_analysis.py - a file containing functions responsible for text
analysis

• GUIElementsAnalyzer/utils.py - a file containing utility functions

• GUIElementsAnalyzer/test_data - a folder containing image data and its original
annotations

• GUIElementsAnalyzer/evaluation_data - a folder containing correct annotations

• efficientnetb1_training.py - a file containing EfficientNetB1 compilation and training
functions

• icons_dataset_creation.py - a file containing functions responsible for the creation
of icons dataset

• printer_dataset_creation.py - a file containing functions responsible for the creation
of printer dataset

• dataset - a folder containing the dataset used for EfficientNetB1 training

54

• utils.py - a file containing utility functions

• filtering_nonlocal_means.py - a file containing filtering experiments using non-local
means method

• filtering_spectrum.py - a file containing filtering experiments using non-local means
method

• noisy_student_efficientnet-b1.h5 - a file containing pre-trained weight used to make
the training faster

• efficientnetb1_model.h5 - a file containing the weights of EfficientNetB1 after training

• README.md - a file containing information how to run the system and its parameters

6.7 System Evaluation

Accuracy

Individual system components cannot be evaluated independently automatically, as there
are no ground truth results with which the output could be compared. The creation of such
ground truths on a large scale to provide meaningful results for each component of the sys-
tem would be incredibly time-consuming. Also, for example, ground truths for UI element
classes suggested by text information are highly subjective, as each person might assign
an element with different classes. Therefore, to evaluate individual components, the results
would have to be checked manually. To provide reasonable results doing the manual eval-
uation, hundreds of samples would have to be checked, which is also very time-consuming.
Therefore, the system is evaluated as a whole, using the annotations of the printer dataset
as a ground truth. This evaluates cases where the element contains only a pictogram
or both; a pictogram and text. Elements that only contain text are not annotated in that
dataset, so only a count of suggested text classes was calculated for them. Also, the hier-
archy analysis cannot be evaluated automatically, so it is evaluated manually on its own
in section 6.5.

The whole printer screen dataset (1,418 images) and the annotations (61 classes) were
used as an input; however, the class information of the element was ignored during the anal-
ysis. The system was run normally, and after each image was analysed, the system’s output
was compared with the annotation class. The following metrics were tracked:

• total_btn_cuttings - total number of elements in the input file

• buttons_with_text - total number of elements in the input file that contain text

• text_based_class_suggestions - number of non-annotated elements for which text
class was found

• total_annotated_btn_cuttings - total number of annotated elements in the input file
(elements with a pictogram and possibly text)

• correctly_top1_classified_cuttings - number of elements classified using its pictogram
(correct class the same as top 1 prediction)

• correctly_top5_classified_cuttings - number of elements classified using its pictogram
(correct class is in top 5 predictions)

55

Total button cuttings 19,590
Total button cuttings with text 11,172 (57%)

Text based class suggestions 5,387 (48.2%)
Total annotated button cuttings 5,975

Top 1 button classification 4,197 - 70.2%
Top 5 button classification 572 - 9.6% (79.8%)

Text classified buttons 76 - 1.3%
OCR errors 898 - 15%

Classification errors 232 - 3.8%

Table 6.2: Table showing the evaluation of the system.

• correctly_text_classified_cuttings - number of elements where pictogram classification
failed, but text classification suggested the correct class

• ocr_error - number of errors probably caused by wrong OCR text detection

• classification_error - number of errors probably caused by wrong classification

The result of the evaluation can be seen in table 6.2. 19,590 elements were in the input
images. Out of those elements, 11,172 (57%) contained text, and out of those elements
with text, 5,387 (48.2%) elements were assigned with classes using the semantic dictio-
nary 5.7. Only 5,975 elements were annotated (61 classes), and all those elements contain
a pictogram. Out of those elements, 4,197 - 70.2% were correctly classified, 572 - 9.6%
(79.8%) had their ground truth in the top 5 predictions, 76 - 1.3% were incorrectly classi-
fied (pictogram) but text-based classification suggested the correct class, 898 - 15% were
incorrectly classified due to OCR errors and 232 - 3.8% classified incorrectly due to other
errors. Overall, the system achieves 81.1% accuracy in classifying the correct class of the UI
element.

Performance

The performance was measured on the system with the following specifications:

• CPU - Intel i7 7700k @ 4.8Ghz - affects the performance of the whole system, as most
CV algorithms run on CPU

• GPU - Nvidia GTX 1070 @ 1911 Mhz - affects the performance of the pictogram
classification using EfficientNetB1

• Storage - M.2 NVMe SSD - affects image and annotation files loading times

• Network - 1Gbps download/50Mbps upload (wired) - affects communication speed
with the OCR service

• OS - Windows 10 64bit

The whole evaluation process, where 1,218 images were analysed, was finished in 11 minutes
and 28 seconds. This translates to 1.77 images per second, 28.5 UI elements per second
or in other words, one image per 560 milliseconds. As the program ran on a single thread,
the CPU usage was around 20%.

56

6.8 Future Work
The system could be improved by using an OCR capable of correctly detecting letters
and numbers in the software keyboard and correctly detecting text in noisy images. Al-
ternatively, an object detection neural network trained on a dataset of software keyboards
could be used to detect and exclude them from OCR processing. OCR performance and pic-
togram detection could be improved by figuring out how to remove the Moiré effects in sub
0.1 seconds.

Moreover, the semantic dictionary could be implemented in a more scalable and expand-
able way, for example, as a web service where users can suggest new synonyms and admins
could review the suggestions. Also, an automatic dictionary translation to other languages
would save many person-hours. Lastly, the detection and correction of spelling errors caused
by wrong OCR analysis would improve the accuracy of text class prediction.

Hierarchy analysis performance could be improved by using an object detection neural
network trained on a GUI design dataset like Rico 3.2 or Enrico 3.2. However, a custom
dataset with hierarchy annotations for printer and web GUIs would have to be created.
Moreover, hierarchy analysis could be improved by detecting item lists, button groups,
and other interconnected UI elements as hierarchy groups.

This system enables robotic solutions to identify UI elements on the screen with-
out the need of human interventions. Therefore, the system can be used in collaboration
with an application exploration system to create a solution for automatic exploratory test-
ing. An application exploration system controls a robotic device and, with the knowledge
of the UI, generates a graph representation of the tested application.

57

(a) (b) (c) (d) (e)

(f) Modal window (g) Only text buttons

(h) The whole screen detected

Figure 6.5: Examples of successful text extractions

58

(a) Incorrectly read (b) Wrong detection (c) Wrong detection (d) Wrong detection

(e) Merged (f) Merged incorrectly, some letters not detected

Figure 6.6: Examples of unsuccessful text extractions

(a) Pictogram detected (b) Binary image of 6.7a (c) Pictogram detected (d) Binary image of 6.7c

(e) Pictogram detected (f) Binary image of 6.7e (g) Pictogram detected (h) Binary image of 6.7g

(i) Pictogram detected (j) Binary image of 6.7i (k) Pictogram detected (l) Binary image of 6.7k

Figure 6.7: Examples of successful pictogram detections

59

(a) Edge detected (b) Binary image of 6.8a (c) Letter detected (d) Binary image of 6.8c

(e) Edge detected (f) Binary image of 6.8e (g) Noise detected (h) Binary image of 6.8g

Figure 6.8: Examples of unsuccessful pictogram detections

(a) All GUI sections detected (b) All GUI sections detected

(c) All GUI sections detected (d) All GUI sections except the item list detected

Figure 6.9: Examples of successful hierarchy analyses

60

(a) All elements in one hierarchy (b) Pre-processed binary representation of 6.10a

(c) No hierarchies found (2 clearly visible) (d) Pre-processed binary representation of 6.10c

(e) Incorrect hierarchy sections detected. (f) Pre-processed binary representation of 6.10e

(g) Edge less GUI - no hierarchies found (h) Pre-processed binary representation of 6.10g

Figure 6.10: Examples of unsuccessful hierarchy analyses

61

Chapter 7

Conclusion

This thesis pursues the issue of graphical user interface (GUI) screen analysis using convo-
lutional neural networks (CNN) and computer vision methods. The thesis aimed to create
a system which automatically identifies GUI elements based on pictogram and text infor-
mation for detected elements in an input image. This aim was accomplished.

In order to create the system, the following components were created: UI elements iden-
tifier, text extraction algorithm, pictogram semantic dictionary, and GUI hierarchy analysis.
The UI elements identifier uses EfficientNetB1 CNN to classify pictograms in the input im-
age into 61 classes of frequently used UI components. The CNN is trained on a custom UI
element dataset of 120k images of popular design styles. The text extraction algorithm uses
YSoft’s internal OCR to detect text in an input image. The text is then post-processed
and assigned to corresponding UI elements. The pictogram semantic dictionary is a hand-
made list of words which can be used to describe a pictogram. The dictionary is matched
with the extracted text to propose UI element classes based on its text information. Lastly,
GUI hierarchy analysis uses traditional CV methods to find and semantically categorise
sections in GUI screens.

The resulting system automatically classifies detected pictograms, suggests additional
text classes, and separates the GUI screen into hierarchical sections. The system was tested
using the aforementioned dataset as a ground truth. For 5,975 annotated UI elements
the system achieved top-1 accuracy of 70.2% (4,197), top-5 accuracy of 79.8% (4,769).
The semantic dictionary corrected 1.3% incorrectly classified pictograms, resulting in UI
elements identification accuracy of 81.1%. 15% (898) elements were identified incorrectly
because of OCR related errors. 3.8% of elements were incorrectly identified because of other
errors. During the evaluation process, which took 11 minutes and 28 seconds, 1218 images
were analysed. Hence, on average, the system processes one image in 560 milliseconds.

The resulting system is subject to a few limitations which should be borne in mind.
The primary cause of the system’s errors is the inability of the used OCR to correctly read
single characters and its occasional incorrect text bounding box placement. Also, the pic-
togram detection algorithm can mistake the noise in input images for a sought-after object.
Lastly, GUI hierarchy analysis is, due to the methods used, not capable of detecting smaller
sections like item lists and button groups. Notwithstanding these limitations, the system
represents a viable option for a robust automatic UI elements identification. This solu-
tion categorises UI elements into 61 distinct classes while other similar solutions separate
elements into around 15 classes. Moreover, this system can identify icons from multiple
design styles while other solutions specialise in a single design. In addition, the system can
process screen images with substantial visual noise, while some other solutions rely heavily

62

on a clean screenshot. Furthermore, UI elements are separated into hierarchical sections
using only visual information while other solutions need the view tree of the application.
Finally, the system can categorise UI elements solely based on the text it contains.

Future research work might be undertaken to eliminate the system’s limitations and to fur-
ther improve it. Different OCR solutions could be tested to improve the accuracy of the sys-
tem. Moreover, research on the pictogram semantic dictionary curated expansion, and au-
tomatic translation could be conducted. Furthermore, fast and reliable methods for Moiré
effect removal could be researched. Also, the GUI hierarchy analysis could be enhanced.
Instead of using traditional CV methods, an object detector could be trained on general UI
elements datasets. This would enable the system to detect specific sections like item lists
and grouped buttons. Lastly, this system might serve as a foundation for an automatic
exploratory testing solution. Combining this with an application exploration system could
create a solution which generates a graph representation of tested applications, utilising
a robotic device.

The creation of the system revealed a dire need for publicly available datasets containing
UI elements categorised into very finely separated classes. Having access to more diverse
datasets would enable further comparisons, thus increasing the credibility of the presented
evaluation data. Also, using these datasets, new advanced solutions could be created.

In conclusion, the system in its current state automates UI elements identification, thus
eliminating the need for human employees to engage in repetitive, mundane activities.

63

Bibliography

[1] Arai, K. and Kapoor, S., ed. Advances in Computer Vision. Springer International
Publishing, 2020. Available at: https://doi.org/10.1007%2F978-3-030-17795-9.

[2] Beltramelli, T. Pix2code: Generating Code from a Graphical User Interface
Screenshot. arXiv, 2017. DOI: 10.48550/ARXIV.1705.07962. Available at:
https://arxiv.org/abs/1705.07962.

[3] Bhattacharyya, J. 6 mnist image datasets that data scientists should be aware of
(with python implementation). Dec 2020. Available at:
https://analyticsindiamag.com/mnist.

[4] Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D. et al. Rico: A
Mobile App Dataset for Building Data-Driven Design Applications. In: Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
New York, NY, USA: Association for Computing Machinery, 2017, p. 845–854. UIST
’17. DOI: 10.1145/3126594.3126651. ISBN 9781450349819. Available at:
https://doi.org/10.1145/3126594.3126651.

[5] Deka, B., Huang, Z. and Kumar, R. ERICA: Interaction Mining Mobile Apps.
In: Proceedings of the 29th Annual Symposium on User Interface Software and
Technology. New York, NY, USA: Association for Computing Machinery, 2016,
p. 767–776. UIST ’16. DOI: 10.1145/2984511.2984581. ISBN 9781450341899.
Available at: https://doi.org/10.1145/2984511.2984581.

[6] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. et al. ImageNet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. 2009, p. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[7] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. arXiv, 2015. DOI: 10.48550/ARXIV.1512.03385. Available at:
https://arxiv.org/abs/1512.03385.

[8] Huang, G., Liu, Z., Maaten, L. van der and Weinberger, K. Q. Densely
Connected Convolutional Networks. arXiv, 2016. DOI: 10.48550/ARXIV.1608.06993.
Available at: https://arxiv.org/abs/1608.06993.

[9] Huang, T., Yang, G. and Tang, G. A fast two-dimensional median filtering
algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1979,
vol. 27, no. 1, p. 13–18. DOI: 10.1109/TASSP.1979.1163188.

[10] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. et al.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

64

https://doi.org/10.1007%2F978-3-030-17795-9
https://arxiv.org/abs/1705.07962
https://analyticsindiamag.com/mnist
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/2984511.2984581
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993

size. arXiv, 2016. DOI: 10.48550/ARXIV.1602.07360. Available at:
https://arxiv.org/abs/1602.07360.

[11] Krizhevsky, A. The CIFAR dataset. 2009. Available at:
https://www.cs.toronto.edu/~kriz/cifar.html.

[12] Krizhevsky, A., Sutskever, I. and Hinton, G. ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems. january
2012, vol. 25. DOI: 10.1145/3065386.

[13] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE. 1998, vol. 86, no. 11,
p. 2278–2324. DOI: 10.1109/5.726791.

[14] LeCun, Y., Burges, C. and Cortes, C. The mnist database. 1999. Available at:
http://yann.lecun.com/exdb/mnist/.

[15] Leiva, L. A., Hota, A. and Oulasvirta, A. Enrico: A High-quality Dataset for
Topic Modeling of Mobile UI Designs. In: Proc. MobileHCI Adjunct. 2020.

[16] Li, F.-F., Johnson, J. and Yeung, S. Fei-Fei Li, justin johnson, Serena Yeung -
Stanford University CS231N. 2019. Available at:
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf.

[17] Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R. et al. Learning Design
Semantics for Mobile Apps. In: Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology. New York, NY, USA: Association for
Computing Machinery, 2018, p. 569–579. UIST ’18. DOI: 10.1145/3242587.3242650.
ISBN 9781450359481. Available at: https://doi.org/10.1145/3242587.3242650.

[18] Moran, K., Bernal Cárdenas, C., Curcio, M., Bonett, R. and Poshyvanyk,
D. Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile
Apps. arXiv, 2018. DOI: 10.48550/ARXIV.1802.02312. Available at:
https://arxiv.org/abs/1802.02312.

[19] Nguyen, T. A. and Csallner, C. Reverse Engineering Mobile Application User
Interfaces with REMAUI (T). In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 2015, p. 248–259. DOI:
10.1109/ASE.2015.32.

[20] Oliphant, T. NumPy: A guide to NumPy [USA: Trelgol Publishing]. 2006–. [Online;
accessed <today>]. Available at: http://www.numpy.org/.

[21] OpenCV. Open Source Computer Vision Library. 2015.

[22] Patel, K. Architecture comparison of Alexnet, vggnet, ResNet, inception, DenseNet.
Towards Data Science, Mar 2020. Available at:
https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-
resnet-inception-densenet-beb8b116866d.

[23] Raj, B. A simple guide to the versions of the inception network. Towards Data
Science, Jul 2020. Available at: https://towardsdatascience.com/a-simple-guide-
to-the-versions-of-the-inception-network-7fc52b863202.

65

https://arxiv.org/abs/1602.07360
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
https://doi.org/10.1145/3242587.3242650
https://arxiv.org/abs/1802.02312
http://www.numpy.org/
https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d
https://towardsdatascience.com/architecture-comparison-of-alexnet-vggnet-resnet-inception-densenet-beb8b116866d
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

[24] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv, 2014. DOI: 10.48550/ARXIV.1409.1556.
Available at: https://arxiv.org/abs/1409.1556.

[25] Srivastava, R. K., Greff, K. and Schmidhuber, J. Highway Networks. arXiv,
2015. DOI: 10.48550/ARXIV.1505.00387. Available at:
https://arxiv.org/abs/1505.00387.

[26] Sun, X., Li, T. and Xu, J. UI Components Recognition System Based On Image
Understanding. In: 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C). 2020, p. 65–71. DOI:
10.1109/QRS-C51114.2020.00022.

[27] Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. arXiv, 2016.
DOI: 10.48550/ARXIV.1602.07261. Available at: https://arxiv.org/abs/1602.07261.

[28] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. et al. Going Deeper with
Convolutions. arXiv, 2014. DOI: 10.48550/ARXIV.1409.4842. Available at:
https://arxiv.org/abs/1409.4842.

[29] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. Rethinking the
Inception Architecture for Computer Vision. arXiv, 2015. DOI:
10.48550/ARXIV.1512.00567. Available at: https://arxiv.org/abs/1512.00567.

[30] Tan, M. and Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. arXiv. 2019. DOI: 10.48550/ARXIV.1905.11946. Available at:
https://arxiv.org/abs/1905.11946.

[31] Van Rossum, G. and Drake, F. L. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. ISBN 1441412697.

[32] Xie, M., Feng, S., Xing, Z., Chen, J. and Chen, C. UIED: a hybrid tool for GUI
element detection. In:. November 2020. DOI: 10.1145/3368089.3417940.

[33] Zhang, X., Zhou, X., Lin, M. and Sun, J. ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices. arXiv, 2017. DOI:
10.48550/ARXIV.1707.01083. Available at: https://arxiv.org/abs/1707.01083.

[34] Zhang, X., Greef, L. de, Swearngin, A., White, S., Murray, K. I. et al. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
2021.

66

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1707.01083

Appendix A

Additional Figures

A.1 List of Classes
add, alert, back, black_white, bluetooth, calendar, camera, card, chat, checkbox, close,
color, confirm, copy, decrease, delete, document, down, dropdown, edit, email, emoji, fa-
vorite, filter, folder, forward, fullscreen, help, home, info, keyboard, language, location, lock,
logo, menu, microphone, pause, phone, power, print, profile, progress, radiobutton, reload,
scan, search, send, settings, share, shop_cart, sign_in_out, slider, switch, text_field, time,
up, usb, visibility, web, wifi

A.2 Semantic Dictionary
{’add’: [’add’, ’insert’, ’sum’, ’append’, ’add-on’, ’attach’, ’adjoin’,

’join’, ’affix’, ’connect’, ’include’, ’prepend’, ’zoom-in’,
’zoom in’, ’new’, ’plus’],

’alert’: [’alert’, ’aware’, ’caution’, ’warn’, ’observant’, ’canny’,
’notify’, ’error’],

’back’: [’back’, ’retreat’, ’reverse’, ’previous’, ’former’, ’backwards’,
’withdraw’, ’backtrack’, ’prior’, ’undo’, ’return’],

’black_white’: [’black_white’, ’white’, ’black’, ’monochrome’, ’greyscale’,
’grey’, ’black and white’, ’white and black’],

’bluetooth’: [’bluetooth’, ’handsfree’, ’roaming’],
’calendar’: [’calendar’, ’date’, ’date picker’, ’date-pick’, ’date-picker’,

’anniversary’, ’appointment’, ’meeting’],
’camera’: [’camera’, ’photo’, ’record’, ’shoot’, ’lens’, ’cinema’, ’movie’,

’film’, ’video’,],
’card’: [’card’, ’identification’, ’game’, ’payment’, ’pay’, ’credit’,

’cash’, ’authentication’, ’credentials’, ’paid’, ’finance’,],
’chat’: [’chat’, ’message’, ’conversation’, ’chatter’, ’converse’, ’talk’,

’speak’, ’communication’, ’note’],
’checkbox’: [’checkbox’, ’tickbox’, ’check’, ’uncheck’, ’choose’],
’close’: [’close’, ’shut’, ’cancel’, ’closed’, ’decline’, ’no’, ’cancel’,

’revoke’, ’quit’, ’exit’, ’leave’, ’abandon’, ’retire’],
’color’: [’color’, ’hue’, ’colouring’, ’paint’, ’colour’, ’palette’, ’can’,

’colorful’, ’color-picker’, ’color picker’, ’red’, ’green’,

67

’blue’, ’yellow’, ’cyan’, ’magenta’, ’bw’, ’finish’],
’confirm’: [’confirm’, ’ok’, ’done’, ’verify’, ’validate’, ’affirm’,

’approve’, ’assure’, ’yes’],
’copy’: [’copy’, ’copied’, ’duplicate’, ’imitate’, ’imitation’, ’repeat’,

’replicate’, ’reproduce’, ’rewrite’, ’fake’],
’decrease’: [’decrease’, ’minus’, ’zoom out’, ’diminish’, ’less’, ’smaller’,

’small’, ’lessen’, ’depreciate’, ’shrink’],
’delete’: [’delete’, ’destroy’, ’exclude’, ’remove’, ’cut out’, ’omit’,

’cut’, ’drop’, ’erase’, ’trash’, ’backspace’],
’document’: [’document’, ’paper’, ’log’, ’report’, ’cite’, ’chronicle’,

’newspaper’, ’certificate’, ’pdf’],
’down’: [’down’, ’downward’, ’downgrade’, ’declining’, ’descending’,

’falling’, ’dropping’, ’download’],
’dropdown’: [’dropdown’, ’popdown’, ’pulldown’, ’submenu’, ’sub-menu’,

’pop-down’, ’pull-down’, ’listbox’],
’edit’: [’edit’, ’revise’, ’update’, ’pencil’, ’pen’, ’draw’, ’comment’,

’change’],
’email’: [’email’, ’e-mail’, ’e mail’, ’gmail’],
’emoji’: [’emoji’, ’smile’, ’face’, ’smiley’, ’sad’, ’avatar’, ’avatar’],
’favorite’: [’favorite’, ’star’, ’remember’, ’save’, ’saved’, ’favourite’,

’like’, ’heart’, ’preferred’, ’template’, ’templates’,
’favorited’, ’favourited’],

’filter’: [’filter’, ’order’, ’sort’, ’funnel’, ’descending’],
’folder’: [’folder’, ’file’, ’file-picker’, ’folder-picker’, ’filepicker’,

’folderpicker’, ’store’, ’save’, ’store’, ’stored’],
’forward’: [’forward’, ’right’, ’move’, ’fast-forward’, ’skip’,

’fastforward’, ’next’, ’next page’, ’redo’, ’proceed’,
’follow’],

’fullscreen’: [’fullscreen’, ’maximize’, ’maximise’, ’enlarge’,],
’help’: [’help’, ’question’, ’support’, ’inquire’, ’about’, ’aid’, ’assist’,

’assistance’, ’advice’, ’advise’, ’guide’],
’home’: [’home’, ’return’, ’go-home’, ’house’],
’info’: [’info’, ’information’, ’notify’, ’about’, ’help’, ’check’],
’keyboard’: [’keyboard’, ’type’, ’write’, ’console’,],
’language’: [’language’, ’translate’, ’translator’, ’dictionary’, ’speak’,

’speaker’, ’sound’, ’localization’, ’localisation’,
’languages’],

’location’: [’location’, ’gps’, ’position’, ’locate’, ’area’, ’region’,
’spot’, ’locality’, ’navigation’, ’navigate’],

’lock’: [’lock’, ’key’, ’unlock’, ’password’, ’pin’, ’code’, ’dpassword’,
’authentication’],

’logo’: [’logo’, ’brand’, ’icon’, ’symbol’, ’ysoft’, ’y-soft’, ’hp’,
’xerox’, ’teams’, ’km’, ’safeq’, ’osa’, ’osaa’],

’menu’: [’menu’, ’option’, ’select’, ’toolbar’, ’submenu’, ’application’,
’applications’, ’popup’],

’microphone’: [’microphone’, ’speak’, ’mute’, ’voice’, ’mic’, ’recorder’,
’transmitter’],

’pause’: [’pause’, ’stop’, ’halt’, ’interrupt’],

68

’phone’: [’phone’, ’call’, ’dial’, ’hang-up’, ’contact’, ’call up’, ’ring’,
’buzz’, ’ring up’, ’telephone’, ’fax’],

’power’: [’power’, ’start’, ’stop’, ’sleep’],
’print’: [’print’, ’imprint’, ’printer’, ’printed’],
’profile’: [’profile’, ’person’, ’figure’, ’silhouette’, ’portrait’, ’user’,

’username’],
’progress’: [’progress’, ’loading’, ’loaded’],
’radiobutton’: [’radiobutton’],
’reload’: [’reload’, ’refresh’, ’reset’],
’scan’: [’scan’, ’scanner’, ’ocr’, ’scanning’],
’search’: [’search’, ’inspection’, ’exploration’, ’investigate’, ’inspect’,

’examine’, ’check’, ’magnifier’, ’browse’],
’send’: [’send’, ’commit’, ’post’, ’ship’],
’settings’: [’settings’, ’options’, ’tools’, ’set-up’, ’setup’, ’service’,

’fixing’, ’fix’, ’cog’, ’cogged’, ’screwdriver’, ’wrench’,
’setting’, ’utility’, ’device’],

’share’: [’share’, ’upload’, ’shared’, ’uploaded’],
’shop_cart’: [’shop_cart’, ’shopping’, ’buy’, ’cart’, ’shopping-cart’,

’basket’, ’punnet’, ’cart’, ’shop’],
’sign_in_out’: [’sign_in_out’, ’login’, ’register’, ’sign-in’, ’sign-out’,

’logout’, ’leave’, ’disconnect’, ’registration’,
’authentication’, ’log out’, ’log in’],

’slider’: [’slider’],
’switch’: [’switch’],
’text_field’: [’text_field, text-field, text, text-area,textbox, text-box’],
’time’: [’time’, ’duration’, ’alarm’, ’clock’, ’stopwatch’, ’history’],
’up’: [’up’, ’top’, ’upwards’],
’usb’: [’usb’, ’wired’, ’connector’, ’connection’],
’visibility’: [’visibility’, ’visible’, ’hidden’, ’show’, ’hide’],
’web’: [’web’, ’website’, ’internet’, ’globe’, ’server’, ’servers’],
’wifi’: [’wifi’, ’connection’, ’signal’, ’internet’, ’connect’, ’wi-fi’],

’job’: [’job’, ’jobs’],
’waiting’: [’waiting’],
’print_mode’: [’simplex’, ’duplex’, ’original’, ’default’, ’stapling’,

’punching’, ’sides’, ’mode’]}

69

A.3 System Input - UI Element Detections Example
<annotation>

<folder/>
<filename>printer/1.png</filename>
<source>

<database>Unknown</database>
<annotation>Unknown</annotation>


</source>
<size>

<width>1280</width>
<height>724</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>

<name>StaticText</name>
<bndbox>

<xmin>325.2275390625</xmin>
<ymin>437.06640625</ymin>
<xmax>937.20361328125</xmax>
<ymax>502.0888671875</ymax>

</bndbox>
</object>
<object>

<name>StaticImage</name>
<bndbox>

<xmin>553.9541015625</xmin>
<ymin>241.9990234375</ymin>
<xmax>723.0124969482422</xmax>
<ymax>387.3433532714844</ymax>

</bndbox>
</object>
<object>

<name>Button</name>
<bndbox>

<xmin>507.673828125</xmin>
<ymin>634.6279296875</ymin>
<xmax>769.2936096191406</xmax>
<ymax>710.8189544677734</ymax>

</bndbox>
</object>

</annotation>

70

A.4 System JSON Output Example
{"name": [1], // hierarchy section id
"coordinates": [x,y,w,h], // hierarchy section coordinates
"parent_id": None, // parent hierarchy id
"buttons": [], // list of buttons in this section
"children": [{ // list of nested hierarchy sections

"name": [9], //
"coordinates": [x,y,w,h], //
"parent_id": 1, //
"buttons": [{ //

"original_label": "Button", // input class of the button
"xmin": int, // starting x position
"ymin": int, // starting y position
"xmax": int, // ending x position
"ymax": int, // ending y position
"button_text": [{ // text of the button

"text": "Close window", // text value
"boundingBox": { // bounding box of the text

"position": { //
"x": float, // start x pos of text bb
"y": float}, // start y pos of text bb

"size": { //
"width": float, // width of the text bounding box
"height": float}}}], // height of the text bounding box

"button_class": "close", // most probable class of the pict
"top_class_predictions":[// top five probable predictions

["close", 0.999981880], // name of the class and its prob
["back", 0.0000151827125],
["sign_in_out", 0.0000027493],
["up", 0.00000092499],
["alert", 0.00000009206],

"text_class": ["close"], // list of text class predictions
"rel_pictogram_area": [x,y,w,h]// coordinates of the pictogram

}]}]}

A.5 GUI Hierarchy Analysis Examples

71

Figure A.1: All GUI sections detected

Figure A.2: All GUI sections detected

72

Figure A.3: All GUI sections detected

Figure A.4: All GUI sections except item list detected

73

Figure A.5: All elements in one hierarchy

Figure A.6: Pre-processed binary representation of A.5

74

Figure A.7: No hierarchies found (2 clearly visible)

Figure A.8: Pre-processed binary representation of A.7

75

Figure A.9: Incorrect hierarchy sections detected

Figure A.10: Pre-processed binary representation of A.9

76

Figure A.11: Edge less GUI - no hierarchies found

Figure A.12: Pre-processed binary representation of A.11

77

	Introduction
	Existing Solutions for UI Elements Identification and GUI Semantic Analysis
	UI Components Recognition System Based on Image Understanding
	UIED: A Hybrid Tool for GUI Element Detection
	Learning Design Semantics for Mobile Apps
	Screen Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels
	Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps

	Current State of UI Elements Identification
	UI Elements Identification Methods Overview
	UI Elements Identification Datasets Overview

	Draft of UI Elements Identification and GUI Semantic Analysis System
	Objectives and Requirements for the Resulting Solution
	Technical Specification of the Resulting System
	System Outline
	Text Extraction Algorithm Outline
	Pictogram Detection and Identification Outline
	Semantic Dictionary Outline
	GUI Semantic Analysis Outline
	System Input and Output Outline

	Proposed System Implementation
	Programming Language and Frameworks Selection
	UI Elements Identification Method Selection and Implementation
	Pictogram Classifier Dataset Creation
	Text Extraction Algorithm Implementation
	Pictogram Detection and Identification Implementation
	Semantic Dictionary Implementation
	GUI Semantic Analysis Implementation
	System Input and Output Implementation

	Experiments
	Dataset Experiments
	EfficientNetB1 Network Training
	Text Extraction Experiments
	Pictogram Detection Experiments
	GUI Semantic Analysis Experiments
	System Overview
	System Evaluation
	Future Work

	Conclusion
	Bibliography
	Additional Figures
	List of Classes
	Semantic Dictionary
	System Input - UI Element Detections Example
	System JSON Output Example
	GUI Hierarchy Analysis Examples

