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Abstract
This thesis aims to reimplement the current topology of SSSD’s inter-process communi-
cation. This communication is managed through separate D-Bus message buses to which
components connect and send messages. The star topology with a single D-Bus requires
to create a central message bus for components to use without affecting the current perfor-
mance of SSSD. To ensure that, a thorough performance analysis had to be done by mea-
suring response times and monitoring SSSD’s behavior under constant stream of requests.
Therefore, the tools SystemTap and hyperfine were employed to assemble a performance
test suite.

Abstrakt
Cieľom tejto práce je nahradiť aktuálnu topológiu, prostredníctvom ktorej komponenty
nástroja SSSD komunikujú. Spomínaná komunikácia je manažovaná viacerými D-Bus zber-
nicami, ku ktorým sa komponenty pripajajú a posielajú cez ne správy. Požadovaná hviezdi-
cová topológia s jednou D-Bus zbernicou vyžaduje vytvoriť centrálnu zbernicu, ktorú sa
bude využívať všetkými komponentami, bez strát na výkone SSSD. Na zaručenie, že táto
podmienka bude splnená, je potrebná dôkladná analýza výkonu skrz meranie doby odozvy
a monitorovanie SSSD pri prívale stáleho prúdu požiadaviek. A tak bola vytvorená sada
testov pomocou nástrojov SystemTap a hyperfine.
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Rozšířený abstrakt
Cieľom tejto práce bolo navrhnúť a implementovať novú topológiu komunikácie skrz D-
Bus zbernicu v rámci produktu SSSD. Na prezentovanie nových možností odomknutých po
prechode z pôvodnej topológie na hviezdicovú topológiu sa taktiež práca venovala zmene D-
Bus rozhraní. Aby sa mohli tieto modifikácie využiť aj v produkcii, bolo potrebné vytvoriť
sadu výkonnostných testov a skontrolovať či nepôsobili na SSSD negatívne.

K pretvoreniu topológie bolo nutné analyzovať algoritmy využívané na tvorbu tej pôvod-
nej. Ich najväčšou súčasťou bola knižnica sbus, vytvorená tímom, ktorý stojí za vývojom
SSSD, a ktorá slúži k jednoduchšej práci s D-Bus knižnicou. S jej pomocou sa podarilo
zmeniť pôvodnú zostavu zberníc, kde jedna náležala vždy jednému poskytovateľovi dát, na
konfiguráciu s jednou centrálnou zbernicou, zodpovednou za správu všetkej komunikácie.
Keďže doteraz sa k príjemcom požiadavky rozdeľovali smerovaním na adresu konkrétnej
zbernice, D-Bus signály v SSSD doteraz nemali využitie. Jedná a sa o správy bez konkrét-
neho príjemcu, ktoré príjmu len komponenty, ktoré sa na ich príjem explicitne prihlásia. Po
zmene topológie ich však bolo možné začať využívať nakoľko ich odosieľatelia mohli začať
vysielať na centrálnu zbernicu kde sa o zvyšok smerovania postaral samotný D-Bus.

Na vykonanie analýzy výkonu boli zvolené programy SystemTap a hyperfine. Pomocou
prvého z nich bola vytvorená inštrumetácia priamo v kóde samotného SSSD. Prostred-
níctvom tejto inštrumetácie bolo možné skrz skript písaný pre SystemTap zachytávať údaje
o vnútornom stave jednotlivých komponentov. Toto bolo využité na zachytenie komunikácie
medzi bodom, v ktorom procesy odosielateľov posúvajú požiadavku na zbernicu, a bodom,
v ktorom prijímajú na ňu prijímajú odpoveď. Druhý vytváral na SSSD stálu záťaž a kon-
troloval priemerný čas vybavenia požiadavky dát užívateľa pomocou príkazu z príkazového
riadku. Dáta boli týmito dvoma scenármi zbierané z obidvoch topológií.

Výsledky z testovania ukázali, že ako celok tieto zmeny neprniesli žiadny negatívny vplyv
na výkon SSSD. V niektorých situáciách, ako spracovanie požiadavky odoslanej na LDAP
server, sa dokonca preukázalo vo všetkých meraniach zrýchlenie. Nakoľko sa ukázalo, že je
využitie týchto zmien možné aj v verejnej verzii SSSD odomyká to nové možnosti znižovania
komplexnosti tohto produktu.
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Chapter 1

Introduction

System Security Services Daemon (SSSD) is a client component of a multi-product system
used for centralized identity management. Its sister project, FreeIPA, together with Active
Directory Domain Services (a tool for managing Windows environments) are SSSD’s server-
side components. Centralized identity management, in short, represents a system that
simplifies the management of a large group of computers.

More precisely, SSSD is a tool created for the Linux environment (specifically Fedora),
and it incorporates many of its valuable mechanisms as well. One of them, D-Bus, is in
charge of the inter-process communication (IPC) between some of SSSD’s components,
such as back-ends (FreeIPA, AD DS) and responders (NSS, PAM, InfoPipe, . . . ). These
components all live in their separate processes, and every time a message needs to be
transmitted, a new D-Bus message bus is created.

How the components cooperate is described by a set of instructions, also called a topol-
ogy. The current topology dictates that the communication between processes is scattered
across multiple message buses, which is taxing on the system’s resources. Since the origi-
nal design of SSSD, better options to utilize D-Bus’ capabilities have surfaced. The most
significant change introduced an upgraded replacement for the original dbus-daemon: a
reimplementation, named dbus-broker, that brought D-Bus better performance and greater
stability.

Consequently, this thesis aims to reimplement the original behavior of SSSD in a way
that adopts these new possibilities. Therefore the original form of communication needs
to change to one represented by a star topology, thus to a one where all messages go
through a single message bus. Furthermore, once this configuration is realized, it is possible
to reimplement the interfaces so that they can utilize this new approach (transform the
appropriate D-Bus methods to D-Bus signals).

The secondary goal is to inspect whether incorporating these changes would preserve,
improve, or degrade SSSD’s performance. For this purpose, a performance test suite will
be created as well. This test suite will assess SSSD under expected and unexpected loads
(sending requests to remote identity management servers) using both old and new topolo-
gies. Thus, after examining the results of these measurements, a decision on whether these
changes are beneficial to SSSD or not can be made.

Outline. This thesis will first delve into SSSD’s core features and identity management
solutions compatible with SSSD. It will also explain the features of D-Bus and SSSD’s
wrapper sbus as well as performance testing of system tools. Furthermore, the focus will
be on reimplementation of SSSD’s topology and the subsequent performance analysis.
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Chapter 2

SSSD and related technologies

SSSD is a client-side component that ”serves and caches the information stored in the
remote directory server and provides identity, authentication, and authorization services
to the host machine” [2]. It manages this by connecting to a remote identity manager,
retrieving the required data, and creating a local cache of it.

Like any other tool, SSSD can be divided into multiple logical sub-elements. These
consist of back-ends, responders, client libraries, clients, monitor, and tools, as can be seen
in the Figure 2.1. Each of them has a specific set of capabilities and responsibilities:

• Back-ends keep cache consistent and constantly valid. Checks, both automatic
(timed) and triggered by events (user authentication), are in place to guarantee this
behavior. Back-ends are the only components that can write into the cache as well
as communicate with remote servers. This communication consists of requesting data
from external sources on behalf of other SSSD components and receiving replies.
These replies are then forwarded back to the originators of the requests and stored in
a local cache for further use. The terms back-end and SSSD domain are interchange-
able, and both describe an instance of an sssd_be process. Each back-end comprises
modules (data providers) that implement specific functionalities, such as:

– id provider (users, groups, services),
– authentication provider (user authentication),
– access provider (user/host authorization),
– sudo provider (sudo rules from remote servers),
– and many more [2].

• Responders mediate communication between the target application and the local
cache, as well as between the target application and the back-end through SSSD’s
internal message buses. As stated before, each responder lives in its own process
(sssd_nss for NSS1, sssd_pam for PAM2, sssd_sudo for sudo, . . . ). The processes
start at the same time as all the other components, and after the initial setup, they
idle and await requests from an application. When a request arrives, a responder
processes it and looks into the cache. If the data is found and it is valid (it has not
expired yet), it is returned by the responder. In contrast, whenever the data is either

1https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
2http://www.linux-pam.org/
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Figure 2.1: SSSD’s components and the relations between them. The connections to the
D-Bus server are depicted only for the monitor, the first back-end, and the first responder
to make the diagram less cluttered. In reality, each responder connects to all message buses
in the same way, and all back-ends connect to the monitor’s D-Bus and create their own.

not found or invalid, the responder forwards the original request to the back-ends and
awaits a response before replying.

• Client libraries implement interfaces through which the applications communicate
with SSSD. They arrange communication between the applications and the respon-
ders.

• Clients, also known as applications (id, getent, su, sudo, and more), ask for various
data from SSSD through the client libraries. Contrary to those, clients are not a part
of SSSD, but their behavior is closely intertwined with it.

• Monitor is the primary process that serves as a supervisor over all back-ends and
responders. It oversees their behavior, state and starts or stops them when needed
(e.g., a new request comes, an error occurs).
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Figure 2.2: This diagram shows how SSSD utilizes its three types of cache: local, negative,
and in-memory in its cache lookup process.

• Tools are mainly used to monitor SSSD and to manipulate some of it parts like cache,
configuration, etc. The most notable mentions are:

– sssctl3 - used to retrieving SSSD diagnostics and debugging
– sss-cache4 - used for invalidating SSSD’s cache records to initiate a data refresh
– sss-debuglevel5 - used for changing the debug level of components in a running

SSSD instance

The main advantage of using SSSD over working with FreeIPA or AD DS directly is
the local caching and offline authentication. Figure 2.2 depicts a simplified version of the
cache lookup process. This process provides a more seamless user experience, access to
already cached remote data offline and reduces the load on the identity and authentication
providers. For example, when a user’s connection fails, it does not mean all access to the
remote files would be denied. Since the user’s data is cached, ”as long as the user has logged
in before, they will be able to log in with SSSD even when it is unable to communicate to the
servers” [2]. There are three different types of cache in SSSD each with their own purpose
and features:

• Local cache (cache) – a persistent storage for all data currently in SSSD. The data is
stored and managed by an LDAP-like embedded Unix tool called the ldb6 database.

3https://jhrozek.fedorapeople.org/sssd/1.14.0/man/sssctl.8.html
4https://jhrozek.fedorapeople.org/sssd/1.14.0/man/sss_cache.8.html
5https://jhrozek.fedorapeople.org/sssd/1.14.0/man/sss_debuglevel.8.html
6https://ldb.samba.org/
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Validation is achieved by storing all the data with an expiration time which is read
and evaluated every time data is requested. Hence, when a responder finds an expired
or invalid value, it sends a request to the back-end, which forwards it to a remote
server. After receiving a reply, the back-end updates the original value and sets a new
expiration time. In contrast, if the remote servers would not hold any information
about the data anymore, the back-end would delete all traces regarding said data
from the cache.

• Negative cache (ncache) – a non-persistent storage present in each responder. When
a responder receives a reply from a back-end that some data no longer exists, it stores
information about this fact to prevent unnecessary subsequent lookups.

• In-memory cache (memcache) – a ”volatile memory-mapped cache of selected objects
(user, groups, initgroups)” [2]. Responders store data objects in their cache after
a successful lookup, and thus there is no need for a client library to ask a responder
again for data requested mere moments ago.

SSSD implements its own D-Bus7 wrapper sbus to create a convenient form of commu-
nication between back-ends and responders. Sbus is based on a reference C implementation
protocol libdbus combined with talloc and tevent libraries. More in-depth information
about D-Bus can be found in Section 2.2.

Talloc is a ”hierarchical, reference-counted memory pool system with destructors” [13].
In short, talloc simplifies memory management as it provides means to arrange allocated
space in an orientated graph (n-ary tree). This makes the handling of allocated memory
more straightforward, as shown in the Listing 2.1. Since all allocated memory fields are
hierarchically grouped under one root node r, deallocating all memory allocated within r
becomes only a matter of calling the talloc_free(r) function on the root. In contrast, all
r’s members would have to be deallocated one by one when not using talloc.

struct record {
char *name;
char *value;

};

struct record *r;

r = talloc_zero(NULL, struct record);
r->name = talloc_strdup(r, "Hello");
r->value = talloc_strdup(r, "World");

talloc_free(r);

Listing 2.1: Talloc allows recursive deallocation of resources by calling talloc_free()
function on the root struct. This example was taken from SSSD’s documentation.

The Listing 2.1 is just a simple demonstration of talloc’s abilities, but its potential
is truly realized when working with complex nested data structures. In SSSD, where the

7https://www.freedesktop.org/wiki/Software/dbus/
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Event received

Event 
loop

Register a new event handlerEvent handler

Start asynchdonous I/O

Figure 2.3: The talloc-based event loop spends most of its life cycle waiting for an event
trigger. Upon receiving an event, the event loop starts an event handler and returns back
to an idle state after the handler finishes. [2]

allocated memory can span through tens of layers of data structures, the option to free
everything with one command significantly decreases the code’s complexity.

Talloc is also a central element of the tevent library, an event system with ”support
for many event types, including timers, signals, and the classic file descriptor events” [14].
It brings a more coherent asynchronous programming style to SSSD by enabling parallel
request handling through talloc-based event loops, depicted in Figure 2.3. This provides
an easy way of sending, waiting for, and handling requests to remote servers and other
processes, all while remaining in a single thread.

The tevent library supports a few different types of events: signals, file descriptor
(fd) events, timer events, immediate events, and requests. Admittedly, it is the last type
that is the most prevalent in the topic of this thesis, and SSSD in general. They form a
callback-based API that provides a unified callback interface depicted in Figure 2.4.

Event loop Caller Request Subrequest I/O

Event loop Caller Request Subrequest I/O

Incomming message
Send request

Send subrequest
Start async I/O

Register callback
Register callback

Register callback
Return to event loop

Await event

I/O done
Execute callback

Receive data
Execute callback

Receive data
Execute callback

Receive data
Return to event loop

Figure 2.4: The tevent’s callback-based API depicted is the main building block of SSSD’s
request handling. In the top half it describes the process of tevent request’s set up, while
in the bottom half the request gets handled after it is received.
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step 1caller callbackstep N done recv

Figure 2.5: The chronologically ordered steps in the life cycle of a request in SSSD.

Each request ”needs to be named, created, finished, and consumed” [2]. Upon creation,
each request initiates an asynchronous operation. Registering of a low-level event (fd, timer,
immediate) can either happen at this time, or the responsibility falls upon a request’s
subsequent sub-request.

In SSSD, the life cycle of a request, as shown in Figure 2.5 consists of a few components:

• State structure (state) – a data structure containing all information related to the
current state of a request. Every request is associated with a state.

• Send function (send) – a function which initializes and creates the request with
tevent_req_create(). It also starts the setup of any structure related to the request
(back-ends, providers) as well as it ”initializes an asynchronous operation or sends
another sub-request after the request is created” [2].

• Done function (done) – after a reply is received, this function terminates the original
request with tevent_req_done(). After this, a callback associated with the current
request gets triggered. Depending on the request’s result, this function either finishes
the data structure’s setup or terminates it.

• Step function (step) – in some cases, it can take multiple steps (e.g., multiple sub-
requests, multiple LDAP lookups) to get everything needed to resolve a request.

• Receiver function (recv) – used to check the result of the request as well as a way
to pass along the received data.

• Caller – the originator of the request. It arranges everything from sending the request
to setting the callback to be triggered when the request finishes.

In SSSD’s code, the components follow a set order in which they are written:

struct fetch_user_state;
struct tevent_req *fetch_user_send(...);
void fetch_user_done(...);
errno_t fetch_user_recv(...);

This helps with understanding the code since it creates a deception of a synchronous flow
of the program even though it is not.

2.1 Identity management solutions compatible with SSSD
As stated before, SSSD is a client that users utilize to log in to access their files. To do
so, SSSD incorporates and builds upon tools like NSS and PAM as well as connects to any
combination of the following external identity and authentication providers:

8



• Identity Management – an open-source solution developed for Linux environment
which is officially supported by Red Hat.

• FreeIPA – a free alternative implementation of IdM without the official Red Hat
support services.

• AD DS – developed for Windows Servers by Microsoft.

• LDAP directory – server for storing and accessing cached user data.

• Kerberos realm – a domain with authority to authenticate a user.

The rest of this section will focus on FreeIPA and AD DS. These two management
services have many common features and integrate similar implementations of the same
protocols and tools. These include LDAP, DNS management, Certificate Authorities8, etc.

Upon closer inspection, a few differences can be spotted as well. The majority of them
are related to the two systems running on different platforms. Thus, they take advantage
of their respective platform utilities listed in Table 2.1.

Scenario AD DS FreeIPA

Authentication
Netlogon

MIT Kerberos9Kerberos Key
Distribution Center

Time Management Windows Time NTP
Component

Communication Intersite Messaging IPC

Table 2.1: AD DS and FreeIPA do similar things (i.e., identity management) using many
different utilities, some of them are listed in this table along with their primary function.

2.1.1 Active Directory Domain Services

This project is used as a service to manage security (authentication and authorization) in
a large environment of host machines. The following list consists of the main concepts on
which it is built:

• Schema – a blueprint that states what attributes to store about any data in AD DS.
It is designed to be extendable, which makes it easy to add or remove attributes at
any given time without causing any problems.

• Domain – a logical group of network objects (e.g., computers, servers) that share the
same database [2], security, and replication strategies.

• Tree – a group of domains with established implicit, transitive, two-way trusts. The
name reflects that all domains in the system have precisely one parent (aside from
the top domain) and thus form a tree-like structure. These domains have a shared
schema, global catalog, and user/host permissions.

8https://en.wikipedia.org/wiki/Certificate_authority
9http://web.mit.edu/kerberos/
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Figure 2.6: An example of an AD DS forest with two trees each with a domain and two
subdomains. The trusts between domains and subdomains are implicit because they are
automatically created upon starting the connection between them. The trusts between
trees on the other hand, have to be explicitly implemented.

• Forest – one or multiple trees with different schemas. In a forest environment, not
every tree has the same level of authority. Therefore, the trees within one forest
have explicit transitive one-way trusts with each other instead of the two-way trusts
mentioned previously.

• Domain Controller – a primary server that hosts AD DS. The domain controller
(DC) is the central storage of all user/host data and manages all user communica-
tion. The standard strategy is to have a group of DCs (cluster) per domain to avoid
preventable issues (e.g., data loss, overloading).

• Global Catalog – a basic DC stores a complete reference of objects within its domain.
In contrast, a global catalog is a DC that collects information about all objects within
its forest. This allows users and administrators to find information on anything,
regardless of which domain in the directory contains the data [6].

• Sites – a network topology that splits domains, trees, and forests into groups to pre-
vent connectivity and network issues. Hosts are grouped if their communication
latency will not affect the reliability of the whole system. These groups essentially
behave as forests that are interconnected by transitive site links. Through them,
replication strategies periodically synchronize data between the respective sites.

Most of the discussed terms are depicted in the schema in Figure 2.6. Granted, it is an
oversimplification of the described system, but it is sufficient as a general overview.

SSSD provides seamless integration between Windows clients using AD DS and Linux
clients, even though AD DS is officially supported only on Windows servers. It does this
through its ad provider, which provides SID to uid/gid translation and automatic domain
discovery (within a single forest). An alternative is using the ldap provider instead of ad,
but this comes at the expense of the mentioned automatic discovery and requires a broader
knowledge of SSSD configuration.
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The support of automatic discovery is inherited from DCs and removes the need to
pre-define all DCs in sssd.conf. The ad provider searches for DCs, starting with the current
AD DS site’s primary DC, searching for backups only when this one fails.

The whole process starts with an LDAP ping (a rootDSE10 search of a netlogon at-
tribute) to discover the primary DC. Upon receiving the reply containing information about
the site, forest, and domain, SSSD caches all of it. It also employs an alternative CLDAP
ping in subsequent attempts of this specific DC’s discovery to accelerate the process. It is
faster than its LDAP ping counterpart since it searches using UDP instead of TCP, which
is vital for SSSD’s operation.

If a user needs to integrate domains from multiple forests along with Linux domains, it
is recommended employing a strategy of creating trusts between AD DS and FreeIPA/IdM.
This is because a direct integration works only within one forest.

2.1.2 FreeIPA

FreeIPA is an integrated security information management framework. It is built up from
multiple tools and consists of a web interface and command-line administration tools [7].

Developed as an open-source project, FreeIPA aims to serve as a free Unix/Linux alter-
native to the Windows Active Directory. From FreeIPA version 3 onward, the contributors
implemented features that enabled compatibility between the two. This means that users
can use Single Sign-On11 to log in from a Linux machine into a Windows one and vice
versa.

FreeIPA is an extensive system that incorporates many tools and protocols to achieve
its functionality, the most crucial core elements are listed below:

• 389 Directory Server12 – a service that works as a centralized data storage for
all information about users, hosts, and more. It comprises an LDAP server, a web
console, and an SNMP agent [10].

• MIT Kerberos – a network authentication protocol developed to provide strong au-
thentication for client/server applications using server-key cryptography [15]. FreeIPA
utilizes Kerberos for its Single Sign-On scheme, which helps streamline the user
database since the system only needs to store one ID per user.

• Dogtag13 – a Certificate Authority that enhances the authentication capabilities by
unifying the control of a public key infrastructure. This entails validating requests, is-
suing certificates, storing keys, processing Online Certificate Status Protocol (OCSP)
requests, and managing tokens [4].

Each FreeIPA instance uses an LDAP server provided by the 389 Directory Server as
its centralized database. LDAP’s Access Control Models14 and Kerberos’ ticketing system
provide solid authorization and authentication throughout the whole system. Moreover, to
further augment the authentication capabilities, FreeIPA employs DogTag, which automates
the management of SSL certificates within the domain.

10https://ldapwiki.com/wiki/RootDSE
11Authentication service which allows user to use a single set of credentials.
12https://directory.fedoraproject.org/
13https://www.dogtagpki.org/wiki/PKI_Main_Page
14https://ldapwiki.com/wiki/Access%20Control%20Models
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As a sister project, SSSD provides full feature compatibility to FreeIPA at all times.
When it (or any other FreeIPA client) connects to a FreeIPA server through the Single Sign-
On, a Kerberos ticket is forwarded to the LDAP server. In this case, the LDAP database
also depends on Kerberos to establish the client’s identity. As a result, this allows LDAP’s
Access Control Information to limit what entries can be accessed and what operations can
be performed [1].

This approach simplifies the client’s implementation because the server can communi-
cate with all providers within its domain in the client’s place. In fact, the base capabilities
needed to pass as a client of FreeIPA are: the ability to forward a Kerberos ticket, process
XML Remote Procedure Call (XML-RPC) or JSON, and the ability to present resulting
responses to the user [1].

2.2 D-Bus
D-Bus is a very complex one-to-one (server-client) protocol and one of the main building
blocks for almost all Linux distributions. It incorporates features such as interprocess
communication (IPC), on-demand startup services, and security policies (more on them
later in this chapter).

It is designed to operate on two levels - system and session (per-user). There is always
only one system bus which serves mainly as a way for the system to communicate with the
user sessions. This communication consists of sending notifications and input requests to a
user and connecting all processes of every user. Moreover, thanks to the system bus’s single
well-known public address, these processes can be connected. In contrast, the session buses
can own multiple addresses that belong to the currently logged-in user and are accessible
only to those processes belonging to the said user.

D-Bus addresses consist of a transport name followed by a colon and an optional,
comma-separated list of keys and values in the form key=value [11] (key = guid, value
= UUID15). These addresses can be Unix paths or IP addresses with specified ports (e.g.,
unix:path=/tmp/dbus-test or tcp:host=127.0.0.1,port=4242 ). This means addresses do not
necessarily have to be unique. If they are not, D-Bus uses the aforementioned key=value
pairs to distinguish between them.

Similar to addresses, buses can have multiple names assigned to them, although only
one is unique and remains with them during their entire lifetimes. Unique names must
always start with a colon to distinguish them from others since this is forbidden for all
other names. All bus names comprise two or multiple elements separated by a period but
can not start with one. Only the characters ”[a-Z][0-9]_-” can be used, with dash being
discouraged in new names. Only elements that are part of a unique connection name may
begin with a digit; elements in other bus names must not begin with a digit [11].

Buses must also implement at least one interface. D-bus interfaces are similar to classes
or interfaces in programming languages and define each bus’s methods, signals, and prop-
erties.

The naming conventions for interfaces are almost identical to bus names, with a few
exceptions. Their names must not start with a number, and the dash character is also
forbidden, which is commonly replaced with an underscore. A few interfaces should be
present on every system, such as org.freedesktop.DBus.

15Universally unique identifier.
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Information about naming schemes for other D-Bus elements can be found in the D-Bus
specification16, but these do not relate as closely to the subject of this thesis.

The communication between various users’ processes is carried out by D-Bus messages.
These fall into two main categories, which are:

• Method call is a message invoked to change or get information about a remote
object. It has a single recipient and expects a reply17. The reply can be a method
return when the invocation succeeds or an error when it does not. Methods are
defined with zero or more arguments, where each argument can be of type in or out.
Both types of arguments are supplied by the caller but the out are expected to return
modified by the recipient accordingly.

– Method return is a message reply to the method calls. If the sender does
not specify otherwise, it must be sent out even if it will not contain any return
values. The reason is that the sender would not know whether its method call
succeeded or not if it did not.

– Error is a reply to a method call upon failure on the receiver’s end. It can also
be used as a reply from a message bus when it does not have enough memory to
forward the signal further. Errors can not have any arguments.

• Signal is different from a method call since it never requires a reply, plus it is required
that their caller specifies the interface in its header. They are broadcast messages,
therefore received by anyone who listens to them. Clients who want to start listening
for the event signal must explicitly register to the message bus, which adds them to
its internal list of listeners. Signals can not be implemented with in arguments as the
caller does not require nor listen for the recipient’s reply.

2.3 Topologies in distributed systems
Topologies in networking are a more prevalent topic of studies and articles than in dis-
tributed systems. However, the authors describe topologies as an architecture of nodes and
connections by which a system operates. The communication between nodes in a network
is analogous to distributed systems (described in Table 2.2). Consequently, this thesis will
apply the principles valid in networking to them.

Component Networking Distributed Systems

Nodes Servers
Computers Objects

Connections Cables
Routers

APIs
Protocols

Table 2.2: Comparison of nodes and connections in networking and distributed systems.

There are five metrics to compare the main topology types relevant to this thesis:
16https://dbus.freedesktop.org/doc/dbus-specification.html
17This is only a preset behavior and can be changed if needed.
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• Manageability – the level of complexity of a system. The more complex it is, the
more it ”requires management: updating, repairing, and logging” [9].

• Information coherence – the authoritativeness of a system. Takes into account
whether all data found anywhere on a system is accurate.

• Extensibility – how hard (or easy) it is to extend the system or add new resources
to it in future revisions.

• Fault tolerance – measure of the system’s ability to deal with errors or failures.

• Scalability – tells us ”how large can any given system grow” [9].

The rest of this section will describe each respective type of topologies, shown in the Fig-
ure 2.7, and evaluate them in regards to the mentioned characteristics.

A B

C
D

Figure 2.7: In distributed systems, topologies can be divided into multiple groups; star (A),
ring (B), mesh (C), and tree (D) topologies are just a few of them.
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2.3.1 Point-to-point topology

A topology for systems with the lowest number of nodes, which connects two nodes together.
The bandwidth is shared between these two nodes only, it has low latency, and it is effortless
to maintain since there are always only two nodes to handle. Depending on the system
needs, the data flow between the nodes can be managed in three ways:

• Simplex – one of the nodes transmits the data, and the other receives it, the direction
is set explicitly and never reverses.

• Half-duplex – the data can flow in both directions, but the nodes must take turns in
transmitting.

• Full-duplex – the nodes are allowed to transmit data simultaneously in both directions.

2.3.2 Star topology

A centralized topology with a single central node that manages all of the other nodes
(clients) in the system. These client nodes only connect to this central node and use it as
a router whenever they need to communicate with other parts of a system. Having one
central node has its positives; locating a problem becomes very simple when everything
in the system is stored and managed from one place (data consistency is guaranteed).
However, for this exact reason, the system is prone to crashes if the central node should
ever fail. It also has a limited ability to scale since the total number of client nodes is
limited by the central node’s capacity; thus, it is suitable for systems with a fewer number
of nodes.

2.3.3 Ring topology

In this topology, all nodes connect to another two in the system and together create a
circular link. The data flows sequentially from one node to the other until reaching its target
destination. It is tough to detect if an error happens between the sender and recipient. On
the other hand, thanks to its failover logic, if a node should fail, another would take its
place to cover up the problem. Moreover, it enables excellent scalability. Ring topologies
can be implemented unidirectional or bidirectional (less common).

2.3.4 Mesh topology

A decentralized topology in which nodes are connected to multiple other nodes in the
system. Its scalability is considered unlimited, but its scale is directly proportional to the
overhead in its management algorithms. Since all data is stored on every node, it is very
resource and time-demanding to keep it constantly consistent and coherent. The total
number of connections depends on the implementation:

• Full mesh – every node is connected, number of connections is defined by 𝑛(𝑛− 1)/2,
where 𝑛 is the number of nodes.

• Partially-connected mesh – at least two nodes are connected to multiple other nodes
in the system.
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Figure 2.8: A hybrid topology which consists of a ring topology utilized as the star topol-
ogy’s central node.

Characteristic Star Ring Mesh Tree
Manageable Yes Yes No Partially

Coherent Yes Yes No Partially
Extensible No No Yes Partially

Fault tolerant No Yes Yes Partially
Scalable ? Yes ? Yes

Table 2.3: Summary of topology characteristics adapted from Nelson Minar’s comparison
of topology categories [9]. The ? is used for topologies whose scalability can not be clearly
judged.

2.3.5 Tree topology

A topology where nodes are organized in a tree, with a node between any two other nodes in
the system and a single root node. The management, maintenance, and error detection are
simple since there is a clear chain of action thanks to its hierarchical approach. It is a lot
more fault-tolerant than other counterparts but shares a problem with the star topology;
the whole system is brought down whenever the root node fails. The tree is best utilized in
very large systems, because of its incredible scalability compared to the other topologies.

In practice, the majority of systems comprise combinations of these topologies, resulting
in the so-called hybrid topologies. The topologies used can bring out each other strengths
and suppress each other’s weaknesses. Star mixed with a ring topology is a great example,
shown in Figure 2.8. In this scenario, the disadvantage of a system dependent on one central
node is overcome by replacing the node by a ring system.
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Chapter 3

Performance analysis

Software tools and systems go through their life cycle with constant updates, bug fixes,
and revisions. This is an entirely standard and needed approach; however, it is not without
its drawbacks. A small change can create an unpredictable product behavior which can
sometimes translate into big loading times, crashes, etc.

It is an excellent practice to have a test suite developed alongside the product and mea-
sure its behaviors and performance with every new build. By aggregating and comparing
this data regressions or improvements in performance can be captured along with many
other valuable findings.

Software performance includes many concepts and can be grasped in many different
ways. Firstly, the following list contains some of the most important metrics and concepts
that have considerable importance when talking about a product’s performance:

• IOPS – This abbreviation stands for Input/Output Operations Per Second. It is a
”measure of the rate of data transfer operations” [8] (e.g., IOPS of disc operations
stand for read and writes per second).

• Throughput – The measurement of the rate at which a particular operation is per-
formed. There are a few different rates that this metric can measure. When a test
measures the application’s ability to transfer data in, e.g., bytes per second, it mea-
sures its data rate. In the context of databases, the value of interest is the operation
rate which determines how many operations per second they can perform.

• Response time – This is an evaluation of the entire time user spends waiting to get
serviced. The whole time, from their initial request to the moment they receive a
reply.

• Latency – In many situations, this term can mean a range of things. In one situa-
tion, it can stand for the whole time of the operation, in which case it equals the
application’s throughput. In other cases, for example, in a network service request,
it can stand for the time it takes the network to establish a connection. Because of
this variability, it is crucial to mention the context in which the latency is measured.

• Bottleneck – In the contect of distributed systems, it is a resource that limits their
performance.

• Cache – It is ”a fast storage area that can duplicate or buffer a limited amount of
data.” [8]. To speed up the process of repeatedly accessing the same data on a slower
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data storage, the data is stored in a faster one which can hold only a limited amount
of data.

Understanding what needs to be measured, and why, is fundamental when creating a
test suite. After that, the discussions about what gets assessed, when and how these metrics
are implemented can be held. There are a few well-known approaches to determining the
performance of a system or an application, some of which are mentioned in the following
list:

• Load testing – The process of thoroughly exerting a system or an application to
measure and gain knowledge about its behavior in extreme conditions. This process
consists of simulating users with many concurrent requests based on a prediction of
what the system should handle during production. Through these assessments, it is
possible to learn about the maximum load a system or an application can handle.

– Benchmarking – a type of a load test which ”tests performance in a controlled
manner” [8]. It employs metrics and workload specifications to produce com-
parisons between many performance measurements of a system under test.

• Tracing – Recording of a specific event happening in a system and storing the data
for later use by an analysis or consumed during the test’s run for custom summaries.
There are multiple tools for tracing events happening in a system: strace, tcpdump,
SystemTap, bpftrace, etc. Tracing can be done through two different approaches:

– Static – some preparations must be done before these tests start running. Static
tracing works by inserting instrumentation points to specific spots in the prod-
uct’s code. During the actual testing, these instrumentation points serve as a
way to get a hold of data about what is going on, parse values being used, etc.
In the release builds, the instrumentation is either omitted or substituted by No
Operation (NOP) instructions to avoid any needles overhead.

– Dynamic – this analysis creates the points and modifies instructions only after
the application is already running. One of the essential tools for dynamic instru-
mentation is DTrace1, initially created in 2005.

Some of the performance analysis tools were already mentioned in the list above; those
are just a few of the many that currently exist. Two of them are used for performance
analysis in this thesis; their features, advantages, and disadvantages will be discussed in
the following sections.

3.1 SystemTap

The first of the two tools is used for tracing and probing, which can be used to study and
monitor activities of an operating system (kernel) or in user-space programs2. Its benefit
over other kernel-oriented tools, e.g., netstat, ps, top, is that SystemTap provides a level
of flexibility not available through these built-in tools. With SystemTap, it is possible
to specify the exact points to measure and investigate how the acquired data should be
processed and how the data should be presented.

1https://github.com/opendtrace/opendtrace
2Starting from the version 0.6, SystemTap expanded into user-space probing too.
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In order to operate, SystemTap requires the packages used for debugging, kernel-devel
and kernel-debuginfo(-common), to work correctly. Unfortunately, these packages are not
tested with every single version of the kernel; thus, the reliability depends on the current
version installed on the system. SystemTap works best on RHEL and Fedora since it is
developed by Red Hat3, but in some cases, it can also be set up on other distributions.
The process can differ significantly; sometimes, it can be acquired by installation from the
specific package manager, through some workaround, or, in the worst-case scenario, it can
not be set up at all.

Similar to kernel-space probing based on tracepoints, markers can be used in the user-
space as well. These predefined markers (sometimes called User-space Statically Defined
Tracepoints or USDT too) can be created by inserting them into the target’s source code,
which will be discussed more in Subsection 3.1.3. The reliability of these markers working as
expected is also tied to the kernel support, with many of the kernel’s versions not supporting
it at all.

The tests can be run by using the stap command and passing it a script4, containing
all probes and functions related to the program. Probes can also be supplied from the
command-line by writing them after the -e flag, as shown in Listing 3.1.

stap -v -e ’probe vfs.read {printf("read performed\n"); exit()}’

Pass 1: parsed user script and 45 library script(s)
Pass 2: analyzed script
Pass 3: translated to C into "/tmp/stapiArgLX/stap_.*.c"
Pass 4: compiled C into "stap_.*.ko"
Pass 5: starting run.
read
Pass 5: run completed in 10usr/40sys/73real ms.

Listing 3.1: An example taken from the SystemTap documentation of a stap command’s
run. The .* replaces the hashes that are assigned to each generated temporary file. This
is an modified example taken from the SystemTap’s documentation.

The process in which stap runs the tests and how SystemTap works is neatly illustrated
in Listing 3.1. It is split into five steps (called passes), where each step depends on the
success of the previous one. Thus, all subsequent steps are canceled when one fails, and
an error message is printed out. The following list explains each of the steps in order that
they happen:

1. SystemTap reads and parses the probe passed from the command-line. As there is a
vfs.read alias supplied (more on tapsets and aliases in 3.1.1), it also searches through
its tapset library and uses the corresponding probe or function to process the supplied
script properly.

2. This is a confirmation that the semantic analysis has finished without any problems.

3. In this step, SystemTap converted the supplied probe to a code in C language and
stored the file containing the code in a temporary file.

3https://www.redhat.com/en
4SystemTap script have the .stp suffix.

19

https://www.redhat.com/en


4. After the successful conversion, the resulting code gets compiled and is ready for
execution.

5. Multiple things happen in this step. SystemTap loads the compiled kernel module,
starts it and waits for the specified function to be called. After the function gets
triggered, the probe’s body executes; hence, the message read appears. After this,
SystemTap stops the tracing and prints out the final message since the exit() function
is specified in the probe body. In other situations, SystemTap would keep waiting for
another vfs.read call and would keep running until the process is halted by the user
^C signal.

The SystemTap script language contains many interesting features. One of them,
the embedded C code, is useful when the script’s capabilities are insufficient for certain
types of analysis. The code is inserted into the script by defining its bounds by %{ %}.
These bounds can be used outside SystemTap’s primary probes and functions to declare,
define, or assign variables or create complete C functions with the syntax: function
name:type(arg1:type, ...) % <C code> %. To successfully run this type of probe
script, the stap command needs to be run in a guru mode triggered by specifying the
-g flag.

The following subsections will discuss the other interesting and essential features of
SystemTap.

3.1.1 Tapsets

Tapsets are best described as ”scripts that form a library of pre-written probes and functions
to be used in SystemTap scripts.” [3]. There are many tapsets predefined in SystemTap’s
library at /usr/share/systemtap/tapset/, but custom tapsets can also be created. As men-
tioned earlier in this chapter, during Pass 1, shown in Listing 3.1, when an alias from a
tapset is supplied, SystemTap looks for its definition inside its tapset library and replaces
them with the corresponding probes or functions. An example of such an alias is shown in
Listing 3.4. Using them makes it easier for developers to remember useful functions than
using the ”specific kernel functions that might vary between kernel versions.” [3].

3.1.2 Associative arrays

To enhance its ability to produce statistics about the monitored processes, SystemTap
supports associative arrays. These arrays are ”collections of unique keys; each key in the
array has a value associated with it.” [3].

The usual use case for these arrays is compactly representing a collection of global
variables for aggregation of collected data. To capture the data, the scripting language
enables the use of one of the two operators = or <<<. While the former assigns value to the
array at a specific key, the latter creates a list and appends values to it as necessary.

It is possible to state up to nine different values as keys for the arrays: arr[k1, ...,
k9]. Multiple operations can be executed on the values in the arrays. For example, there
can be an array whose values will be incremented with the ++ operator. With this setup,
it is possible to count the number of times a function gets triggered and store the counts
separately for each process that has done so.

It is possible to use the foreach statement to iterate over the existing keys, which works
in the same way as in many other programming languages. However, it has some additional
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features, which were developed to enhance the processing of the collected data. It is possible
to choose whether to start iterating through the values in ascending or descending order
by adding a + or - sign at the end of the array’s name. Furthermore, it is possible to set
how many values to iterate over using the limit x function. So to iterate over the top ten
captured values in the array, one can achieve it: foreach (x in reads- limit 10).

SystemTap also implements the concept of statistical aggregates, which are created with
the aforementioned <<< operator. The captured and saved data can then be run through
the native statistical functions to produce an output either during the test’s rest run, or
after it is finished. These functions, listed below, are used in combination with the foreach
statement to iterate over each key of the array to run calculation on the stored values:

• @count returns the number of the stored data,

• @sum returns the sum of the stored data,

• @min returns the smallest value,

• @max returns the largest value,

• and @avg returns the average of the stored data.

Having these functions is excellent for producing some statistical aggregates, but if there
is a need to use the values to compute some other result, SystemTap does not allow it. The
statistical aggregate arrays can be used only as intended by the creators and there is no
other way to access the values stored under any of the keys.

3.1.3 User-space probing

The user-space probing in SystemTap allows to latch on any function, statement, or marker
in the program’s code. The following list describes the different methods of instrumenting
on user-space program:

• .function(”name ”) – This is an instrumentation of the user-space function called
name, which allows wildcards5 and the .return suffix.

• .statement(”location ”) – This method points to the statement at the line location.

• .mark(”name ”) – This is a statically fixed marker point called name. The benefit
of using this method is that, unlike the first two, markers can pass pre-determined
parameters to the script. This enables a closer look at what is going on inside the
program.

• .syscall – Captures an user-space system call. When defined with the .return suffix,
the probe gets placed at the syscall’s return subsequence.

• .begin, .thread.begin, .end, .thread.end – Suffixes that are available for the first
three items in this list. The probe is listening for a different part of the method trigger
depending on the suffix that is chosen.

5To investigate multiple functions at ones, the asterisk (*) symbol can be used.

21



The syntax that defines how these methods are used is shown in Listing 3.2.
In a small project, adding a marker requires including the sys/std.h library and adding

DTRACE_PROBEx(provider, name, arg1, ..., argn) to the source file. It is suggested
to use compile-time configurable instrumentation to add these probes to a larger project.

probe process("<binary path>").method("<label>").suffix {
<function body>

}

Listing 3.2: The template of probe definitions in a SystemTap script.

To start with SystemTap user-space markers, a switch, shown in Listing 3.3, has to be
inserted into the project’s configuration.ac file. This switch, --enable-systemtap, enables
or disables SystemTap configuration in the project with the configure autotool6, which
then ”checks to determine if the dtrace script and the sdt.h header are available” [5].
After that, dtrace can generate the required header files with probe macro declarations
used by the program during its run.

AC_MSG_CHECKING([whether to include systemtap tracing support])
AC_ARG_ENABLE([systemtap],

[AS_HELP_STRING([--enable-systemtap],
[Enable inclusion of systemtap trace support])],
[ENABLE_SYSTEMTAP="${enableval}"], [ENABLE_SYSTEMTAP=’no’])

AM_CONDITIONAL([ENABLE_SYSTEMTAP],[test x$ENABLE_SYSTEMTAP=xyes])
AC_MSG_RESULT(${ENABLE_SYSTEMTAP})

if test "x${ENABLE_SYSTEMTAP}" = xyes; then
# Additional configuration for --enable-systemtap is HERE

fi

Listing 3.3: An example of configure.ac configuration, taken from SystemTap’s documen-
tation, for compile-time instrumentation for enabling SystemTap user-space markers.

The next step is to declare each marker in a declaration file (e.g. probes.d) that contains
a structure-like provider of functions (representing markers). In these functions, it is
possible to declare which variables are expected to be passed to the probe from the marker’s
location.

To be able to use these declarations in a program, it is required that the file which
contains them is coupled with trace.h header is added to the automake’s configuration file
Makefile.am. The trace header contains TRACE(probe) macro templates to which values
from the provider structure are sent during the program’s build. Thus, through compila-
tion, all this results in a probe header file (e.g., probes.h).

For example, let us say there is a test(int) probe in probes.d declared in the provider
my_probes. After the compilation, the header file (e.g., probes.h created by dtrace would
contain the following macro: #define MY_PROBES_TEST(arg1) STAP_PROBE1(provider,
test, arg1).

6https://www.gnu.org/savannah-checkouts/gnu/autoconf/manual/autoconf-2.71/autoconf.html
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Figure 3.1: The chart shows how hyperfine’s different phases go in subsequence in regards to
the original command: hyperfine –warmup 2 –runs 3 –prepare <p1> <c1> –prepare
<p2> <c2> –cleanup <cleanup>.

With all these preparations in place, it is possible to create the markers in the actual
code by including the probes.h and trace.h headers. One of the macros in the trace header
is used for cleaner marker inserts. Continuing with the previous example, adding a marker
would require to use TRACE(MY_PROBE_TEST()), and the header files would take care of
the rest. On the SystemTap’s side, this probe can be accessed by the tapset shown in
Listing 3.4.

probe my_probe_test = process("my_probes").mark("test")
{

string = $arg1;
probestr = sprintf("%s", string);

}

Listing 3.4: An example of an alias declared in a SystemTap’s tapset library that prints the
value of its string-type argument.

3.2 Hyperfine

Hyperfine is a lightweight ”command-line benchmarking tool”[12] written in Rust7. Some
of the hyperfine’s features include statistical analysis, support for basic shell commands,
warm-up and preparation runs, etc. Its workflow and a few of these features are depicted
in Figure 3.1.

It can be configured through flags to run the target command a specific number of times.
Furthermore, it enables one to choose whether to run several warm-up rounds before the
tests. The --prepare flag is another helpful feature that allows running a command before
the test’s run. This is beneficial to reach the desired state of the system the benchmarks
are running on (e.g., clearing the cache so that request always comes from the source).

To carry out various tests within a single run, this tool also provides the ability to enter
a list of values as a variable. The values are then iterated over during hyperfine’s run and
each value is then passed to a defined variable as its value.

The tool can export the results to a file in either Markdown or JSON. Markdown stores
values like the captured times’ mean, max, and min values. On the other hand, JSON
stores the time of every command run and is easier to use in performance analysis.

7https://www.rust-lang.org/
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Chapter 4

Design and implementation

This chapter will go through the design and implementation phases step by step, solving the
problems in a systematic manner. Starting with SSSD’s current way of dealing with D-Bus
communication and the possible solutions while developing the new topology. It will discuss
the processes which had to be changed and the steps that lead to the implementation of
the centralized communication through a single message bus.

Furthermore, following the bus reimplementation, it will look closely at the proof of
concept solution of SSSD’s interfaces defined with signals. With a single bus topology, it
would be possible to utilize the broadcast abilities of signals in place of methods that do
not require method replies.

4.1 Message bus reimplementation
All significant components of SSSD implement context structures that manage all data
relevant to the each of them, and improve cooperation between the respective components
in SSSD. Most of the data related to the D-Bus server is also available to responders
and back-ends through various doubly linked lists. Examples of such structures which are
relevant to the task at hand are in the list below:

• sss_domain_info – a doubly linked list that contains data about all currently active
remote providers (domains). Most data is assigned to the list during the start-up
in the confdb_get_domains() function. The member I have focused on the most
in this structure was the domain’s conn_name. In SSSD, this value represented the
bus’ well-known name and was originally used only for message routing and other
operations concerning message buses. The sss_domain_info also contains a member
name that held the same value but served a different purpose: it was used for the
initialization and management of the back-end itself.

• sbus_connection – this structure holds all information about a running message bus,
i.e. its address, well-known name, the actual D-Bus connection1, etc.

• resp_ctx – each responder stores its info in this structure. Most notably, it contains
the sbus_connection data about buses to which it is connected and the list of active
domains sss_domain_info.

1DBusConnection implemented in the dbus library
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• be_conn – a doubly linked list whose items are created by the back-ends for respon-
ders. It tracks details about all responders connected to the back-ends, the buses
through which the connections exist (e.g., well-known names, address), the match-
ing resp_ctx, etc. Whenever a responder needs to contact a particular provider,
it searches for an item containing the bus address through be_conn stored in their
resp_ctx.

These are just a few building blocks that comprise the current architecture in which
components communicate through message buses. Using these structures, as depicted in
Figure 2.1, SSSD coordinates its current IPC between responders and back-ends in the
form of multiple star topologies. Their central nodes are the D-Bus message buses spawned
by the monitor and the back-ends. As stated in Chapter 2, the monitor keeps track of
everything that goes on in SSSD, including communication. As such, the responders and
back-ends are the clients of the monitor’s bus in the current topology, with responders being
the clients of the back-end owned buses as well.

In contrast, the proposed architecture will instead contain only a single star topology.
SSSD will spawn a single instance of the message bus responsible for all communication,
and all components (monitor, responders, back-ends) will connect to it. To produce this
result, changes in different parts of SSSD’s implementation must occur. The process can
be divided into three steps:

1. Change how the monitor assigns names to the sss_domain_info->conn_name to en-
able routing using well-known names instead of addresses.

2. Modify SSSD’s spam filter, which is in place to halt any repeated request on any given
bus, to facilitate single-bus communication.

3. Create a central bus that all components will connect to and communicate through.

The following sections will discuss how I have decided to approach these changes with
a few details about the current state in contrast.

4.1.1 Prepare SSSD for routing by domains’ connection name

The original topology’s request routing consists of having the responders wait for a request
from a user or other part of SSSD. Upon receiving said request, responders use the data
to find which domain to contact and search for the correct D-Bus address to forward the
request along to the data providers.

The original topology contained multiple buses, so only their addresses needed to be
unique. Therefore, the two members of sss_domain_info, name, and conn_name, held
the same value: the name of the domain (e.g., ipa.vm, ldap.test, . . . ). The structure
sss_domain_info did not need to contain conn_name yet, but it helped to logically differ-
entiate between the two uses of the value, as described in Section 4.1.

One of the functions, sss_process_init(), gets called from the responders to build
up their be_conn entry. SSSD, through the sss_iface_domain_bus() function stores the
transformed conn_name value in the format sssd.domain_<conn_name>. This value is then
put into the header of a D-Bus message so it can be processed appropriately. To achieve
the required implementation, this value needed to be modified in a way that it could be
used as a key component in routing messages inside SSSD.
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Format old -:%u:%s.%s:%s:%s
new -:%u:%s: %s.%s:%s:%s

Legend old sender:type:interface.member:path[:arg0:arg1:...]
new sender:type:destination:interface.member:path[:arg0:arg1:...]

Example old -:0:sssd.dataprovider.getDomains:/sssd:arg0
new -:0:sssd.domain_ipa_2etest:sssd.dataprovider.getDomains:/sssd:arg0

Table 4.1: The original (old) and modified (new) formats of the request keys. The addition
of the request’s destination to the format is displayed in italics.

The function which was responsible for the formatting, sss_iface_domain_bus(), was
located in sss_iface.c. This file is part of the category responsible for setting up D-Bus
interfaces. One of the solutions would be to include the sss_iface_async.h header, which
declares the function, in confdb.c to acquire the required format during domain initializa-
tion. Nevertheless, the cleaner alternative was to move the whole function to confdb.c since
after all changes were done, this function was no longer needed anywhere else in SSSD.
After that, I have also renamed the function to confdb_get_domain_bus(), so it follows
the pattern of the existing functions in the file.

4.1.2 Modify the request keys

SSSD has a system to stop unnecessary repeated requests to the back-end providers. Each
request, during its configuration, creates a unique request key through the sbus wrapper.
This key is a concatenated string built up from various pieces of data regarding the request
itself:

• the type of the request,

• the target method,

• the interface which implements the method,

• the bus’ path,

• a list of arguments required by the chosen method (the length of the list is 0− 𝑛).

As the list’s last entry suggests, the keys’ format is slightly different for every D-Bus
method, but the majority of the string stays the same. When the request originates from
a specific remote client, the key also contains its UID at the beginning; otherwise, it only
includes a character ’-’ as shown in Table 4.1.

To keep track of the requests, SSSD utilizes a doubly linked list sbus_request_list.
A new list is created every time a new request key appears, and every subsequent request
with a corresponding request key gets appended. With these lists, SSSD can chain incoming
requests and prevent unnecessary repeated requests of the same data. Therefore, SSSD
sends only one message to the chosen destination, waits for an answer, replies to all requests
in the list, and clears the list.

This system worked very well for the original topology, but a problem would arise when
the number of message buses would be scaled down to one. These problems would be caused
by SSSD’s inability to separate the same requests for different providers.
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Let’s say a user requests data about the user admin with the id command in an en-
vironment where SSSD operates with these data providers: a FreeIPA server – ipa and
LDAP directory – ldap. When the user does not explicitly state the provider from which
SSSD should fetch the data, SSSD will try all active ones. This means the NSS responder
sends a message using the back-end’s getAccountInfo method to all providers stored in
sss_domain_info i.e., to both ipa and ldap in our case. When there are unique buses for
every back-end, each request is handled separately: the responder gets its reply, and the
user receives the requested data (if it exists). However, when there is only a single bus,
SSSD would be able to send out only the first request to a single provider, and the rest
would be incorrectly treated as repeated requests. So if the first request would go to ipa,
but the requested data would exist in ldap, then the user would not get the requested data
even though they should.

Hence, the original format needs to be extended with an additional element. In this
case, the best solution for the task was to add the destination’s bus name to the key. That
way, SSSD could differentiate between the requests mentioned in the previous paragraph
so that the proposal would go to both providers.

The management of the request keys belonged under one of many parts of the code
generated by the sbus library. Thus these changes which needed to be made in template
file: keygens.c.tpl. Here I found out that all of the parts of the request key were taken
from the sbus_request structure. This structure conveniently already included a member
destination with the exact data I needed to solve this issue. All that was left to do was to
add it to the talloc_asprintf() function in every function that generated the keys and
this step in the process has been finished.

4.1.3 Centralize communication to a single D-Bus server

The next problem was finding out which component should own the bus, which would
be the central point for all D-Bus communication in SSSD (as shown in Figure 4.1). As
previously mentioned, the monitor, along with the back-ends, starts and manages its own
bus. Since the monitor is a central component responsible for monitoring everything inside
the SSSD, it is the perfect place to have its monitor be the central bus. To do so, I firstly
made a cosmetic change and renamed the bus from sbus-monitor to sbus-master. Then
I split up the problem at hand into two smaller tasks to simplify it:

1. Stop the back-ends from creating their own buses and the responders from connecting
to them. Make them all connect to the monitor’s sbus_master instead.

2. Change the process by which responders search for the D-Bus connection of the re-
quested back-end.

To start with the first task, place which is used to creation of the back-ends’ buses had
to be located. At SSSD’s start up, during the last steps of monitor process’ initialization,
the function add_new_provider() gets called in a loop to start all providers mentioned in
sssd.conf. This function eventually calls onto the function dp_init_send() in the dp.c
file which contains most of the functions related to back-end configuration and management.

In this function, dp_init_send(), the back-ends fetch all the needed data for the bus’
set up until finally calling sbus_server_create_and_connect_send(). The sbus library
takes care of the rest and, after it is done, returns all the bus data through an asynchronous
tevent recv function.
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Figure 4.1: A schematic illustration of the new proposed architecture based on a single star
topology.

To alter the process in a way that is required by the new topology, the back-ends
needed to connect to monitor’s already existing bus instead of creating their own. This
closely resembles the way responders behave, as can be seen in their .*srv.c configuration
files (e.g., nsssrv.c, ifpsrv.c). There I have found that their process of connecting to the
monitor is managed through the sss_monitor_service_init() function.

Through this function, responders get access to sbus_conn filled with all relevant data
about the monitor’s bus and connect to it. The exact point where the responders acquire the
data is the function sbus_connect_private(), which had almost the same functionality
as was required in the back-ends. This function connects to a running bus specified by
an address and a well-known name but only in a synchronous parts of the code. Since the
back-end bus’ set up is an asynchronous process that meant the found function could not be
used for their purposes. However, the sbus_connect_private() function also has tevent-
based asynchronous alternatives sbus_connect_private_*() with the same functionality.
This set of functions was also used inside sbus_server_create_and_connect_send() as a
way to connect to the bus that it creates, which supported the indication that it could be
used as a replacement.

After the original functions for creating the buses in dp_init_send() were replaced
with the sbus_connect_private_*() functions, back-ends no longer could spawn their
own buses. Nevertheless, one more feature was still missing in the monitor’s central bus,
which was crucial for the back-ends to work. They needed a way to add their D-Bus
interfaces and methods. Formerly, this was done in a handler function dp_initialized(),
executed after all back-end set up was finished. In this function, two things needed to be
adjusted:

1. The original recv function for dp_init_send() was not meant to return any value
other than the back-end context itself. Through talloc and tevent, I was able to
modify it so that it could pass along the earlier created connection to the monitor in
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the form of sbus_conn. This data was essential to acquire before starting with the
next step’s task.

2. Furthermore, the function dp_initialized() was originally the place where back-
ends could connect to the monitor’s bus and did so in a similar fashion to responders.
It did so through the function sss_monitor_service_init(), but for it to be used
in the new implementation some parts of its functionality had to be changed. Thus
I have created the function sss_monitor_provider_init() which removed all re-
dundant steps of the original function and simply registered to monitor through the
RegisterSerice D-Bus method.

To reiterate, in the current state, no back-end can create their own bus anymore; they
can connect to the central one spawned by the monitor and register their interfaces to it.
This means that the task related to the back-ends was finished, and it was time to focus
on the responders and the routing logic.

To change the routing logic, I had to rework the way responders keep track of the avail-
able bus connections, addresses, and other values related to the message buses. Previously,
the responders kept track of all of the relevant data in their context structure resp_ctx’s
member be_conn. As I noted before, be_conn is a doubly linked list whose purpose was
to match accessible bus names and addresses to existing D-Bus connections. This meant
that after taking away all other buses, its functionality would be meaningless and should
be replaced by something else entirely.

Moreover, since there were no longer multiple buses, SSSD only needed to keep track of
a single address. Since that was the case, responders could now differentiate between the
buses only by their well-known names.

The conn_name format change, described in 4.1.1, was necessary so I could use the
sbus-generated functions (e.g., sbus_call_dp_autofs_GetMap_send()) properly. These
are the functions responsible for sending and receiving D-Bus message requests. Coupled
with the sbus_conn structure, conn_name’s value was vital to enable communication that
was previously accessed from the aforementioned be_conn list.

Since conn_name could be accessed by responders through the sss_domain_info struc-
ture at any time, it could be used as a be_conn->bus_name replacement. Therefore, the
next step was to also find a viable replacement for be_conn->conn.

The first point of interest was responders’ context structure resp_ctx, I found out that
other than back-ends’ buses2, it also contained the connection to the monitor’s bus. If this
value was available to responders at the right time during their start up, it could be the
last missing part of the solution.

When looking at the entire start up process of responders located in the beforemen-
tioned .*srv.c files, the function sss_monitor_service_init() appears in all of them.
To reiterate, this function is used for connecting components to monitor as services and
does so by connecting to its message bus among other things. When called, it returns the
sbus_conn structure full of data related to the monitor’s own bus. This meant that the
value was already available to responders by the time any request could be received and
that it could be used in routing during the actual run of SSSD without any problems.

Therefore, I have renamed mon_conn in resp_ctx to sbus_conn to represent that it
would no longer serve only as a means to connect to the monitor and removed the be_conn
structure from it entirely. Now I could replace all instances of the original be_conn->conn

2This data was stored inside resp_ctx->be_conns.
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with the resp_ctx->sbus_conn value. At this point, the last step was to remove the
be_conn structure from SSSD altogether and test if everything worked as intended.

4.1.4 A bug found during the reimplementation

As it turned out, all these changes uncovered a bug3 inside SSSD. While SSSD starts
up, providers send out messages to responders’ interface methods SetInvalidate and
SetActive, which disable and enable domains for responders. During this stage, the moni-
tor is not yet aware which responders are up and running, which are starting up, and which
are not configured at all; therefore, it attempts to send method calls to all of them. This
was not a problem before since the old format of request keys (as shown in Table 4.1) did not
include the destination’s name. That meant the requests to each responder interface had
the same key and thus were being chained, thus the desired action got triggered only once.
After extending the keys with the destination string, SSSD could distinguish between these
requests, and these actions started to get triggered simultaneously from multiple points,
which created problems. The whole reason is beyond the scope of this thesis, and the solu-
tion is still being figured out at this time. For now, to enable SSSD to run with a singular
central D-Bus server, I had to use a workaround that included simply commenting out the
PAM responder from the list of desired recipients.

4.2 Transform viable interface methods to signals
As mentioned at the beginning of Chapter 4, now that the topology included only a single
D-Bus message bus, it enabled SSSD to take advantage of the D-Bus signal’s broadcast
ability. Because there was no longer only a single recipient on the bus’ other end, and the
callers’ messages were no longer routed before going to the bus itself.

Therefore, it was now possible to transform a few of the interface’s methods into signals,
lowering the complexity of SSSD’s communication through D-Bus even more. The candidate
methods had to meet two requirements:

1. No out arguments in the method’s definition. As mentioned in Section 2.2, sig-
nals can not be implemented with an in argument. Because of that, this requirement
may seem contradictory, but after the transformation of a method into a signal, the
original concept reverses. While a method is a function call with an expected return
value, a signal is like receiving the same return value without ever calling a function.
Therefore, what previously was an in argument in a signal’s definition is assumed to
be an out argument and vice versa.

2. No part of the code on the caller’s side should require a confirmation
about a successfully finished operation. In some cases, even if the method does
not specify that it requests a reply, the functionality of SSSD’s components may
depend on a confirmation of a successful operation.

SSSD uses a combination of XML definitions and a set of C macros defined in the sbus
wrapper to implement interfaces. In SSSD, four XML files serve as templates used to
generate the actual code for the interfaces:

• dbus.xml – defines a general D-Bus interface.
3https://github.com/SSSD/sssd/issues/6286
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• external_iface.xml – defines interfaces for products that are not part of SSSD inter-
nally: systemd4 and Fleet Commander5.

• ifp_iface.xml – defines interfaces for the InfoPipe responder.

• sss_iface.xml – a general file for defining interfaces of responders and data providers.

The files use the official Document Type Definition6 created specifically for D-Bus. All
files have a root <node> element in which they implement their interfaces and methods
using the interface, method, and arg elements, as shown in Listing 4.1. In SSSD’s case,
the annotation element is used to guide the code generator, i.e., what interface name to use
in the generated function’s name or whether the method is synchronous or asynchronous.

<node>
...
<interface name="sssd.nss.MemoryCache">

<annotation name="codegen.Name" value="nss_memcache" />
<annotation name="codegen.SyncCaller" value="false" />
<method name="UpdateInitgroups">

<arg name="user" type="s" direction="in" />
<arg name="domain" type="s" direction="in" />
<arg name="groups" type="au" direction="in" />

</method>
<method name="InvalidateAllUsers" key="True" />
<method name="InvalidateAllGroups" key="True" />
<method name="InvalidateAllInitgroups" key="True" />
<method name="InvalidateGroupById" key="True">

<arg name="gid" type="u" direction="in" key="1" />
</method>

</interface>
</node>

Listing 4.1: XML definition of the original NSS interface from the sss_iface.xml file.

A large set of macros is used to make use of the sbus-generated functions more straight-
forward. The central macro SBUS_INTERFACE() is used to define all other methods, signals,
and properties by passing the macros SBUS_METHODS(), SBUS_SIGNAL(), etc.

These two macros both accept a variable number of arguments, and their count depends
solely on the number of methods or signals that a given interface implements. The viable
arguments for SBUS_METHODS() are SBUS_SYNC(), SBUS_ASYNC(), and SBUS_NO_METHODS.
The last one is self-explanatory, as it discloses that the interface does not implement any
methods. To describe the key difference between the first two, let’s inspect the arguments
of SBUS_SYNC():

• type – describes the type of a method. One of three values can be assigned to it:
METHOD, GETTER, or SETTER.

4https://www.freedesktop.org/wiki/Software/systemd/
5https://wiki.gnome.org/Projects/FleetCommander
6https://specifications.freedesktop.org/
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• iface – the interface’s name with underscores as a replacement to the dots in the
actual name. They are used because the macro takes in the value as a token rather
than as a string.

• method – the name of the D-Bus method.

• handler – the method’s handler function in SSSD.

• data – any private data required by the handler function (context structures or NULL).

Similar to the way synchronous and asynchronous functions are differentiated in SSSD,
the asynchronous macro SBUS_ASYNC() differs by requiring two send and recv handlers
functions instead of a single one. During the reimplementation, the way methods were
defined using these macros provided guidance while defining signals later on.

Moving onto the SBUS_SIGNALS(), this macro takes in a variable number of arguments
of two types: SBUS_NO_SIGNALS and SBUS_EMITS(). In contrast to the method’s macros,
the SBUS_EMITS() only takes in two arguments: the name of the interface and the name
of the signal. That is because the rest of the signal logic is implemented through signal
listeners.

To add the listeners, sbus implements the SBUS_LISTENERS() macro, which follows
the same structure as the previously mentioned SBUS_METHODS() and SBUS_SIGNALS().
It accepts two arguments, one for synchronous listeners: SBUS_LISTEN_SYNC(), and one
for asynchronous ones: SBUS_LISTEN_ASYNC(). These are defined similarly to the method
macros: the method argument is replaced by signal, they require the bus’ path, and do not
accept the type argument. To fully enable the listeners, it takes two more steps compared
to the method or signal definitions:

1. The listeners must be stored in an array of sbus_listener structures. The macros
that can be passed to SBUS_LISTENERS() expand into functions whose return value
is the sbus_listener structures. Furthermore, the SBUS_LISTENERS() macro itself
expands to an array, so their declaration in itself creates the required format.

2. This array then needs to be passed to the sbus_router_listen_map() function,
which maps the defined listeners to the D-Bus, thus activating them.

After a thorough evaluation, the interface I have chosen for reimplementation is from the
NSS responder: sssd.nss.MemoryCache. At first glance, its template, shown in Listing 4.1,
suggested that it could be a candidate for transformation since none of its methods contained
an out argument.

All the bus’ Invalidate.* methods defined for this interface had handler functions
defined in nss_iface.c. Their handler functions all had similar structures; they added a
string to the logs notifying that they got triggered, called another function, and returned
EOK7. This value was always returned, regardless of the outcome of the called function.

This behavior confirmed that this interface could be rewritten since it satisfied both of
the requirements mentioned at the beginning of this section.

In comparison, the method resInit in sssd.services has arguments that suggest
that there might be a possibility to reimplement it too. However, its handler function
data_provider_res_init() returns a value depending on the outcome of a function it
calls itself.

7This macro represents successful operation in SSSD and is equal to 0.
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To start the process, the method definitions written in sss_iface.xml had to be replaced
by signal definitions. The three methods: InvalidateAllUsers, InvalidateAllGroups,
and InvalidateAllInitgroups, required simply changing the element’s name from method
to signal. As an additional modification, since the InvalidateGroupById accepts a single
argument, I removed the direction attribute from its arg element. This slight modification
was unnecessary, but since the direction’s value in signals is set to out by default, it would
become redundant if not removed.

The last modification to its XML representation of the interface was removing the key
attribute from the signal elements. This attribute indicated that sbus should add the
generated request keys, described in Section 4.1.2, to the generated functions as arguments.
As discussed earlier, this would enable the signals to be chained when SSSD would notice
repeated requests. I have removed it because chaining coupled with signals resulted in un-
expected behavior, whereas without the key present, everything worked without a problem.
The resulting XML representation of the interface is shown in Listing 4.2.

<node>
...
<interface name="sssd.nss.MemoryCache">

<annotation name="codegen.Name" value="nss_memcache" />
<annotation name="codegen.SyncCaller" value="false" />
<method name="UpdateInitgroups">

<arg name="user" type="s" direction="in" />
<arg name="domain" type="s" direction="in" />
<arg name="groups" type="au" direction="in" />

</method>
<signal name="InvalidateAllUsers" />
<signal name="InvalidateAllGroups" />
<signal name="InvalidateAllInitgroups" />
<signal name="InvalidateGroupById">

<arg name="gid" type="u" key="1" />
</signal>

</interface>
</node>

Listing 4.2: XML definition of the modified NSS interface from the sss_iface.xml file with
the four Invalidate.* methods changed to signals.

Whenever any of the four XML files is modified, SSSD requires to be rebuilt so that
sbus has the chance to regenerate the files in the sss_iface directory. Now that the
sssd.nss.MemoryCache’s sbus_call_.* functions were replaced by the sbus_emit_.*
variants, the code which used the former had to be rewritten.

Since the original methods were created for back-ends to interact with responders, the
file where these functions were utilized was dp_responder_client.c. Previously the functions
used the tevent’s callback-based way of dealing with subsequent sub-requests, shown in
Figure 2.4. This way back-ends could receive the wanted, although unnecessary, reply from
responders. I have removed both the original sbus_call_.* methods which assigned value
to the subreq variable and removed the tevent’s callback function. To finish this part,
the sbus_emit_.* functions were added in the previous functions’ places to enable the
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back-ends to emit the respective signals. Two last things needed to be modified, or created,
to finish up the reimplementation of the interface:

1. Change the definition of the interface in nss_iface.c. This required remov-
ing the SBUS_NO_SIGNALS macro from SBUS_SIGNALS() and using the SBUS_EMITS()
macros in its place. I have added the values required (interface’s name and signal’s
name) by copying the same values from the SBUS_SYNC() macros before removing
them.

2. Add signal listeners to the sssd.nss.MemoryCache interface. As previously
mentioned, the values which were previously passed to the method macros are used
for defining listeners as well. Hence, I have utilized those as well, and all that was
left was to call the function sbus_router_listen_map().

This concluded the methods’ transformation into signals and thus wrapped up SSSD’s
reimplementation.
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Chapter 5

Performance evaluation

With the required changes to SSSD’s topology and interface finished, it was now needed to
find out whether these changes could be used in production. To answer that, a thorough
performance analysis had to take place to see whether the product’s performance regressed.

This chapter will describe the process of developing the performance test suite used for
the mentioned analysis. There are two types of tests in it: response time measurements
implemented with SystemTap, and benchmarks done through hyperfine.

Furthermore, the environment used to run the tests and the conditions that must be
adhered to will also be discussed. With the test runs finished it will be also possible to
come to conclusions about the proposed question of SSSD’s performance.

5.1 Test suite development
To evaluate SSSD’s performance, I have decided to use two tools discussed in the Chapter 3:
SystemTap and hyperfine. The former one, SystemTap, is an excellent choice for measuring
the response time of responder requests. Since there is now a single message bus responsible
for managing all SSSD communication between back-ends and responders, it was required
to check whether this substantial change affected SSSD’s performance. As described in
Section 3.1, SystemTap can examine code at explicitly specified points inside SSSD’s code.
In this thesis, this and other features were utilized to assess the exact times it takes to
deal with a user-triggered request. Measurements were made by running the tests on both
topologies and the captured times were compared to systematically evaluate whether SSSD’s
performance has changed.

To expand on the results acquired by SystemTap’s measurements, I also wanted to
measure the entire process between the user request and received reply. Therefore, I have
used the tool hyperfine to run benchmarks on the id command, which requests data from
SSSD through its NSS responder.

The root directory of the test suite contains the following files and directories:

• runner.py – a Python script responsible for running everything in the test suite (apart
from the figure plotting). User supplies data to this script through command-line
parameters to modify the runs of both SystemTap and hyperfine tests.

• requirements.txt – a file containing all required libraries for the test suite. It is used
to setup Python’s virtual environment: venv.
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• util/ – a directory containing modules responsible for parameter parsing and data
provider management.

• systemtap/ – a directory with SystemTap probe script sbus_stap.stp, a Python module
implementing functions to run the SystemTap tests. Additionally, it contains the file
evaluator.py which plots the captured data.

• hyperfine/ – similarly to the systemtap directory, it has both a Python module and a
script for plotting data.

Before discussing the test runs, the two following subsections will discuss the process
required to create the tests.

5.1.1 Measuring back-end response time with SystemTap

To add even a single SystemTap’s probe points, prep-work needs to be done to ensure that
it works as expected in a project this large. Fortunately, as with the macros used for SSSD’s
interfaces, the groundwork for SystemTap has been laid out as well already.

As mentioned in Section 3.1, to enable SystemTap’s abilities in a project, configu-
ration through autotools and dtrace is necessary. Before each build, users can decide
whether they want to have SSSD with SystemTap functionality by using (or not using) the
--enable-systemtap while using configure to prepare the project. This, coupled with
the SSSD’s implementation of macros for defining probes in the probes.h and more, has
been highly inspired by the SystemTap documentation.

However, SSSD expands on the concept of macro definitions of probes. Thus, the
PROBE(NAME, ...) macro (shown in Listing 5.1) is used when adding a probe. This macro
takes in a variable number of arguments and, during build-time expands to the format
required by SSSD. The format is defined by sbus_generated_probes.h, an auto-generated
file, whose macro formats are declared in the sssd_probes.d file and generated by dtrace.

#define PROBE_EXPAND(NAME, ...) NAME(__VA_ARGS__)

#define PROBE(NAME, ...) do { \
if (SSSD_ ## NAME ## _ENABLED()) { \

PROBE_EXPAND(SSSD_ ## NAME, \
__VA_ARGS__); \

} \
} while(0);

Listing 5.1: Definition of macros with a variable number of arguments used for SystemTap’s
user-space probes. Taken from SSSD’s codebase.

As previously mentioned, since SSSD can be compiled with or without SystemTap’s
functionality enabled, the file probes.h defines an alternative macro function. This function
expands the macros inside SSSD’s functions into an empty string, and thus leaves them out
of the binary altogether.

The following list introduces the places where the response time measurements could
take place and the tests’ possible scenarios:

• SSH responder – use ssh to connect to one of the remote data providers.
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– Measure the time between the SSH responder requests access for the currently
logged in user and the back-end’s reply.

• PAM responder – login into one of the existing users with the su command.

– Measure the time between the PAM responder requests of authentication of the
specified user and the back-end’s reply.

• NSS responder – request user data through the getent command from the command-
line and expect a reply.

– Measure the time between the NSS responder request data about the specified
user and the back-end’s reply.

The first two scenarios, while seemingly viable, lead too too much overhead between the
responder receiving the user’s request, forwarding it to the back-end, and receiving a reply.

The NSS scenario, on the other hand, is straightforward; the request from the user
gets forwarded to the requested back-end almost without any outside influences. When the
responder receives the request, SSSD only uses the bare minimum of its capabilities, as
shown in Figure 5.2.

While evaluating the request flow, I noticed that the best place to insert the probes
was in the responder_dp.c file. The two functions, sss_dp_get_account_send() and
sss_dp_get_account_done(), are the last place before the responder starts building the
request structure as well as the first place that processes the reply from the back-end, re-
spectively. Therefore, I have inserted markers by adding the PROBE() macro to those two
functions and started the work required to measure the actual time.

Even though I could now measure the start and stop time whenever these two probes
were triggered, SystemTap had no way of knowing whether the request which stopped the
timer was the same one that started it. This could lead to problems since the requests
originating from the test suite will not necessarily be the only ones. After observing the
whole process that the request goes through, I came up with a solution to differentiate
between the requests that required four more probes to be added to SSSD.

NSS_SEND: Got request for: admin@ipa.test
SSS_SEND: Sending request: admin@ipa.test to ipa.test

BUS_SEND: Method: getAccountInfo
BUS_DONE: Received reply from: ipa.test

SSS_DONE: Outcome: Success
NSS_DONE: Received reply for: admin@ipa.test

Listing 5.2: A look at the process through which a getent admin@ipa.test request goes
through. Each line states the name of its marker and the variable that the probe acquires
from the marker.

The following list describes those four along with the original two probes:

• nss_getby_name_send (nss_getby_name() ) – the first place which gets triggered af-
ter a successful getent passwd command. The purpose of probing this function is to
acquire the initial format of the requested username. This value is used throughout
the script to make sure the probes do not get triggered by any other request during
the test’s run.
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• sss_dp_send (sss_dp_get_account_send() ) – here the script stores the request’s
start time (in microseconds). Furthermore, it also stores the name of the target data
provider needed by the sbus_req_call_done probe.

• sbus_req_call_send (sbus_call_method_send() ) – this probe serves as a way to
check whether the request was successfully built. Furthermore, when starting the
script in a verbose mode (used for debugging), it deals with all the random nested
D-Bus methods that tend to get triggered.

• sbus_req_call_done (sbus_call_method_done() ) – this is the first probe which gets
called after the back-end replies to the request. The script checks if the request’s tar-
get corresponds to the script’s saved curr_conn_name (acquired in the sss_dp_send
probe) and sets the can_stop variable. It also checks the variable curr_bus, contain-
ing bus’ name, since in the previous topology, the sss_domain_info->conn_name is
not set to the newly required value. This variable signals to the sss_dp_done probe
that the request is the right one, and it can stop the timer once it returns to the place
of origin.

• sss_dp_done (sss_dp_get_account_done() ) – the script saves the time that it took
for the responder to receive a reply when this probe is triggered. The time is calculated
by subtracting the time acquired in sss_dp_send from the current time.

• nss_getby_name_done (nss_getby_done() ) – this probe is chronologically the last
probe of the whole process. Therefore, it is responsible for storing the time calculated
in sss_dp_done to both the associative array results[nss_getby_rawname] and the
C array. After the values are stored, it resets the variables used to measure the time
and thus enabling another request to be measured.

Once the script could reliably measure the request’s response time, the next step in
the SystemTap’s implementation was to figure out how to generate output in a suitable
format. Whereas many tools have built-in functionalities to generate output in multiple
file formats, SSSD can only use stdout. Either by printing to it directly or redirecting its
output to a file when the -f parameter is specified when running the stap command. Once
I had finished the work on the probe functions and acquired the required data, it was time
to format it for output.

I have decided that the most elegant solution would be to format the measured values so
that the SystemTap’s output would produce a makeshift CSV file, as shown in Listing 5.3.
That is why, as mentioned previously, the times were stored in two different arrays:

ipa.test,123,13213,3123,31231,312313
ldap.test,123,13213,3123,31231,312313
samba.test,123,13213,3123,31231,312313
wrong@ipa.test,123,13213,3123,31231,312313

Listing 5.3: An example of a file created by the SystemTap script. The first value represents
the name of the data provider with the requested user; the rest are the actual request times.

• C array – the time of requests get stored and sorted into arrays depending on the
provider they are targeting. Thus, the script has four different arrays: ipa_results,
ldap_results, samba_results, and one used for failed requests, wrong_results.
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Once the end probe gets triggered, the values inside these arrays are printed out
separated by commas.

• SystemTap’s associative array – although this array stores all values as well, it is
only used as a support for the C arrays. The times get stored with the instruc-
tion: results[provider] <<< time, which ensures that the script can, in its final
stages, use this array as a way to check which providers were present during a test
run. As mentioned in Subsection 3.1.2, the script could not use this array directly
to create an output because the operations which are possible with associative arrays
are limited.

Once the output formatted and saved in a file, the CSV can be easily parsed by Python’s
data-processing pandas library which can then in-turn be used by another Python’s library
seaborn to visualize the stored data in many different ways.

5.1.2 Benchmarking with hyperfine

Creating tests with hyperfine was less complex than the process described in previous Sub-
section 5.1.1. That is the case because hyperfine in contrast with SystemTap takes SSSD
as a black-box. Thus it measures SSSD’s response times from outside only by repeatedly
using a command which generates requests to be processed.

The runner.py script takes four parameters regarding the test’s configuration:

• –run-hyperfine – the switch which tells the script whether to run the tests or not,

• –hf-parameters – the list of usernames to use in the request,

• –hf-runs – the number of runs which will hyperfine do per each request,

• and –hf-output – the name of the JSON file to which hyperfine outputs the captured
results.

After their values; validation, all of them together are passed to the Popen1 function to
start the test run. For example, by running the script with:

$ python runner.py --run-hyperfine \
--hf-parameters admin@ipa.test admin@ldap.test --hf-runs 100

The final hyperfine command looks like this:

$ sudo hyperfine -i -r 100 \
--parameter-list user admin@ipa.test,admin@ldap.test ’id {user}’

After hyperfine has finished its run, the measured data is exported to a specified file,
later used in test evaluation.

Hyperfine measurements work better when running commands which take longer than
5 milliseconds on average (as it points out during its run). That is the reason why commands
for testing response times and benchmarking differ. While getent was a great candidate
for SystemTap thanks to its minimal overhead during the request’s lifetime, it was less than
ideal for hyperfine. The average time of the getent request was 0.5 milliseconds, so the
id’s average of 50 milliseconds was more suitable for this use-case.

1https://docs.Python.org/dev/library/subprocess.html?#subprocess.Popen
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5.2 Test result evaluation
After the implementation of the test suite was finished, what followed was to use it to
evaluate the two topologies of SSSD. The tests were run on a machine with an Intel i7-
10610U processor and 32 GB of RAM with data providers running in local containers. As
previously mentioned, both SSSD and SystemTap are developed by Red Hat and thus work
best in Fedora and RHEL so the machine was running a Fedora release 35 as well. This,
coupled with the FreeIPA’s installation commands created for the same environment, made
Fedora the best choice.

There are two rules regarding the data provider setup which must be adhered to so that
the tests can be run successfully:

• There can be only one instance of each type of data provider (FreeIPA,
LDAP, AD DS). The expected setup is: one to three connected providers to which
the tests send requests. The test suite has the ability to disconnect from providers to
comply with the ones chosen on the command-line. It can test SSSD’s performance
with each provider type, so having more than one instance of the same one would
not produce any additional interesting results. Since the test suite can either test all
providers at once, one at a time, or any other combination, it is enough to evaluate
SSSD’s performance.

• Each provider instance must be named either ipa.test, ldap.test, or
samba.test. To comply with SystemTap’s algorithm to keep track of the differ-
ent providers, these names are pre-configured in the test suite. It is not a limi-
tation since a provider’s name can be set in the sssd.conf by specifying it in the
[domain/<provider name>] statement without any other modifications. There is
an additional step of configuration regarding the LDAP provider. Since there is no
command which can automatically setup SSSD to connect to it, when using any
LDAP server with a different domain name a configuration snippet has to be supplied
through command-line to the test suite.

The mentioned providers can be remote servers, local virtual boxes, or containers since
the test suite manages them through SSSD and ipa-client-install and realm com-
mands. The containers2 used during the development of the test suite were implemented
by the SSSD team and provided a faster set up.

5.2.1 SystemTap results

As mentioned in Section 5.1.1, the data used for the graphs, shown in Figure 5.1 (run A)
and Figure 5.2 (run B), come from values in the CSV file. This file was read with the
pandas library and plotted with matplotlib and seaborn.

To run the tests, the following parameters may be passed from command-line to the
central script runner.py:

• --run-systemtap – the switch used to start the SystemTap test execution,

• --stap-output – the name of the output CSV file,

• --stap-request-count – the number of requests which the script should send out to
SSSD while SystemTap is running,

2https://github.com/SSSD/sssd-ci-containers
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Figure 5.1: Run A: The graph shows SystemTap’s test results in a run for all three providers
with 50 requests each, measuring both the new and the old topology.

• and --stap-verbosity – the switch for verbosity of the SystemTap script (used for
debugging purposes only).

When started, the central script triggers a warm-up run with 5 requests to each back-
end to reduce the number of outlier results. After the warm-up rounds are finished, the
script starts SystemTap and sending out requests to each of the selected data responders.

The data is depicted using boxplots since it has multiple features, which are ideal for
comparing performance data in this scenario. With a few shapes, they describe multiple
statistical values:

• Median – the horizontal black line going through each of the rectangles.

• First (Q1) and third (Q3) quantile – the bottom and the top sides of rectangles.

• Interquartile range (IQR) – the range of each rectangle on the y axis.

• Minimum3 – the bottom whisker.

• Maximum4 – the top whisker.

• Statistical outliers – the points which are spread along the y axis beyond the range of
the whiskers.

In both runs, the IQR of results captured for the ipa.test is slightly broader for the
new topology, suggesting a slightly higher number of unique times measured. Admittedly,
that is where the similarities between the two runs end. The run A on the new topology
has a more dense concentration of time values towards the top of the y axis, as can be seen
from the location of its median. The values are set in a significantly narrower range than

3𝑄1− 1.5 * 𝐼𝑄𝑅
4𝑄1 + 1.5 * 𝐼𝑄𝑅
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Figure 5.2: Run B: The graph shows SystemTap’s test results in a run for all three providers
with 750 requests each, measuring both the new and the old topology.

the older topology. That changes for run B, as the results show a much broader range of
values, and in this case, the median is lower in the new topology than in the old one.

Similar to the previous data provider, the results for samba.test do not show any radical
change. In this case, the results are almost identical in both runs for both topologies, with
the newer one being slightly slower than the old one. Through all of the test runs, it was
clear that requests routed to AD DS tend to take longer than others, so the findings might
suggest that the samba.test is a bottleneck.

Figure 5.3: Graph shows SystemTap’s test results containing only runs where the test suite
requested non-existent users.
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Conversely, the ldap.test results show an apparent distinction between the topologies
in both runs. The results indicate that the new topology might have helped stabilize
the response times in the case of LDAP. This indication can be read clearly from the
measured times’ range on the new topology, which is much more narrow than the old one.
Furthermore, the concentration of 99% of the results spans across such a narrow min-max
range of the lower time values for this provider. This causes the results of the tests for
LDAP to be the only one that shows multiple instances of statistical outliers in the higher
values of the y axis.

To demonstrate the response times for a non-existing user, the test suite requests data
for the user wrong@ipa.test. Its results demonstrate, as shown in Appendix 5.3, that
while the IQR and median stayed the same for both topologies, the higher valued outliers
are almost eliminated in the newer topology. This hints at the possibility that the change
might have accelerated the process of dealing with error scenarios.

I used the time command to better grasp what possibilities SystemTap’s features un-
locked for SSSD’s evaluation. Over each of the runs of type B, the test suite has made
3000 requests (750 with a non-existent user in addition to 750 per responder), and the time
it took to go through them all was six minutes on average. This shows us that with all
of the SSSD’s preparations, routing logic, and other types of overhead, the reply for each
request took, on average, 0.12 seconds (calculated from the time measurements). That time
is much longer than any of the times recorded through SystemTap. It shows that thanks
to its ability, the tests were able to ignore any overhead in SSSD and focus only on the
communication through the message bus.

5.2.2 Hyperfine results

Examining the results of both Figure 5.5 and Figure 5.4 is more straightforward than the
previous measurements.

Figure 5.4: Graph shows hyperfine’s test results for the AD DS provider repeated 100
times. This request has been separated from the others since its measured times are almost
quadruple the values measured on the other data providers or non-existent users.
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Figure 5.5: Graph shows hyperfine’s test results for 5 different commands each, repeated
100 times, for both the new and the old topology.

The ranges of the values measured by hyperfine while requesting data with the id
command, stay almost identical in the case of IQR as well as between the minimum and
maximum. As for the differences between the topologies, the new topology seems to contain
a lot more statistical outliers in the lower and higher ranges of time values. Additionally,
the new topology seems to have achieved overall speedup of the request service process.
The measurements for all providers and non-existent users show a significant decrease in
the durations.

The original prediction for the measurements of SSSD’s performance was that after the
changes made to its topology, it could service the requests faster or at least similarly fast
as in the old topology. The prediction was based on the fact that with newer versions of
the Fedora distribution, the dbus-broker replaced the original dbus-daemon. This new
implementation of the D-Bus promised higher speeds5 and upgraded reliability over the old
one.

The results of SystemTap have shown us that in some cases, these higher speeds did
not matter (FreeIPA, AD DS). However, in some cases, they accelerated and stabilized
the process. As for the results of benchmarking with the id command, there is a clear
distinction between the old and new topology.

5https://fedoraproject.org/wiki/Changes/DbusBrokerAsTheDefaultDbusImplementation
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Looking at both the response time tests and benchmarks, it can be concluded that
the performance of SSSD has not regressed, and in some cases, it is faster. In conclusion,
the performance of the topology is almost identical if not better, than in the previous
topology of the D-Bus communication. Hence, the goal of achieving a comparable, or
better, performance has been accomplished.

45



Chapter 6

Conclusion

The goals of this thesis were to reimplement the SSSD’s message bus topology, modify its
interface to utilize the bus’ new capabilities better, and measure its performance to ensure
these changes would not negatively impact it.

In this thesis, I have described the inner workings of SSSD and its main data provider
services: FreeIPA, AD DS, and LDAP. To illustrate the concept of SSSD’s communication
through D-Bus, I have also presented the concept of topologies and their applications in
distributed systems. These building blocks were then used in redesigning and implementing
the SSSD communication process based on a star topology. Next, I demonstrated the newly
unlocked possibilities of the message bus by implementing signals to one of the interfaces.
The inclusion of signals makes the complexity of the communication even lower since SSSD
does not have to manage unnecessary method returns.

Moreover, the thesis presents the concepts of performance analysis and test development
concerning performance. I have evaluated and tried many performance analysis tools and
utilized two that were the best suited for the performance evaluation of SSSD. Through
them, it was possible to assess whether the architectural changes made have caused SSSD’s
performance to regress. The results of this performance evaluation suggest that the perfor-
mance of SSSD is comparable, if not better, than in its previous version.

Future evaluation of SSSD’s interfaces is recommended to expand on the work I started.
There is still room to upgrade other interfaces, and as this thesis shows, their reimplemen-
tation is now possible.

Regarding the test suite, load testing would enable an even better assessment of the
SSSD’s state. Unfortunately, none of the load testing tools that were considered and evalu-
ated provided the ability to use them in this use case. They considered only remote requests
over the HTTP protocol and in no way provided a way to use basic shell commands aimed
at a local target. Therefore, as one of the possible ways to built upon this thesis, I suggest
creating of a small load testing framework. This framework should be able to use any shell
command and run it in several concurrent processes to measure the load the product can
handle.
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Appendix A

Contents of the included storage
media

The media storage includes:

• sssd/ – The directory containing the source code of SSSD. It is a git project which
includes the branches:

– original – the original version with added SystemTap markers used by the per-
formance test suite.

– centralized-sbus – the version with the new topology, newly implemented signals,
and SystemTap markers.

• sssd-perf/ – The directory containing the performance test suite.

• xuradn02-thesis.pdf – This thesis.

• README.md – The file containing descriptions of files stored in the media storage.
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Appendix B

Manual

Because of the nature of the products and programs this thesis is utilizing and modifying,
the Fedora distribution is recommended for SSSD and required for the test suite.

B.1 SSSD installation
After opening SSSD’s source directory, the following steps need to be taken to install it:

1. Source the preconfigured shell functions: $ source contrib/fedora/bashrc_sssd.

2. Configure and build it: $ reconfig && chmake.

3. Install SSSD: $ sssinstall (requires sudo privileges).

4. Update the service in systemd: $ systemctl daemon-reload.

5. Restart SSSD: $ systemctl restart sssd.service.

B.2 Test execution
The tests for SystemTap and hyperfine are both run through the runner.py script located
in the root directory of sssd-perf. First, the environment needs to be set up. The preferred
steps are written in the list below:

1. Clone the repository with the data provider containers:
$ git clone https://github.com/SSSD/sssd-ci-containers.

2. Start the containers: $ cd sssd-ci-containers; make up

3. Connect to FreeIPA: $ ipa-client-install ––unattended ––no-ntp ––domain
ipa.test ––principal admin ––password Secret123 ––force-join

4. Connect to AD DS: $ echo Secret123 | realm join samba.test

5. Connect to LDAP server by appending the contents of sssd-perf/systemtap/conf/sssd-
ldap.conf to /etc/sssd/sssd.conf.

6. Restart SSSD: $ systemctl restart sssd.service
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To run the tests for both scenarios use the following commands:

• python runner.py --run-systemtap – This command is used for the default run of
the SystemTap’s part of test suite. It will start the sssd-perf/systemtap/sbus_tap.stp
script with verbosity turned off and send 5 request to each of the three providers.
Furthermore, the results will be saved to the sssd-perf/systemtap/csv/stap.csv file.

• python runner.py --run-hyperfine – Runs the default configuration of the bench-
marks. After hyperfine’s start, it will send out 10 id requests to ask for data
regarding three users from three different back-ends and three non-existent users. It
will save the measured data to sssd-perf/hyperfine/json/hf.json after the tests finish.

Further customizability is described in the project’s README.md.
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