
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

PLATFORM FOR ORGANIZING
AMATEUR COLLECTIVE SPORTS
PLATFORMA PRO ORGANIZOVÁNÍ AMATÉRSKÝCH KOLEKTIVNÍCH SPORTŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Mgr. Bc. ADAM LÁNÍČEK
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Master's Thesis Specification

Student: Láníček Adam, Mgr.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Platform for Organizing Amateur Collective Sports
Category: User Interfaces
Assignment:

1. Get acquainted with the matters of design and development of web and mobile applications.
2. Analyze the field of organizing amateur collective sports; focus on ice hockey.
3. Propose and design the targeted application - analyze use cases, key elements of the user

interface, the looks, usability, data management, etc.
4. Prototype elements of the application, test them with users and iteratively improve them.
5. Integrate the individual elements into the application, test it with users and iteratively improve

it.
6. Assess the achieved results and propose possibilities for future work; create a poster and

a short video for presenting the project.
Recommended literature:

Tidwell et al.: Designing Interfaces: Patterns for Effective Interaction Design, O'Reilly, 2020
Steve Krug: Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability,
ISBN: 978-0321965516
Steve Krug: Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and Fixing
Usability, ISBN: 978-0321657299
Joel Marsh: UX for Beginners: A Crash Course in 100 Short Lessons, O'Reilly 2016

Requirements for the semestral defence:
Items 1 and 2, considerable progress on items 3 and 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Herout Adam, prof. Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: May 16, 2022

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/25201/2021/xlanic04 Page 1/1

Abstract
The aim of this thesis was to design and implement a Platform for facilitating organization
of amateur team sports, with the main focus on ice hockey with its arguably largest ineffi-
ciencies. As opposed to the traditional systems, focusing on rigid groups management, the
Platform introduces an on-demand element by providing a transparent database of games,
effectively facilitating a market for ad hoc amateur ice hockey. Additionally, it implements
a follow mechanism to enable the athletes to play with their favourite teammates. The
Platform is composed of a REST API server written in Python/Flask framework and a
web application front end implemented in React TypeScript. The design mock-ups that
are appended to this work were created using the Figma tool. The goals of designing the
web application and implementing its core features, supported by the corresponding API
endpoints, were fulfilled. Numerous features, such as skill rating mechanism completion
and an e-mail subscription service for reporting the upcoming games, were left as task for
future development.

Abstrakt
Cílem této práce bylo navrhnout a implementovat Platformu pro organizaci amatérského
kolektivního sportu s důrazem na lední hokej, kde jsou náklady neefektivní organizace
pravděpodobně nejvyšší. Narozdíl od tradičních systémů, zaměřených na organizaci rigid-
ních skupin, přichází tato platforma s on demand prvkem v podobě transparentní databáze
utkání, která efektivně vzato tvoří trh účastníků a utkání ad hoc amatérského lední hokeje.
Dále implementuje mechanismus sledování, který zdůrazňuje utkání, kterých se účastní
oblíbení spoluhráči. Platforma se skládá z REST API serveru implementovaného v rámci
Flask/Python a webového front endu naprogramovaného s pomocí knihovny React Type-
Script. Designové návrhy přiložené k této práci byly vytvořeny v nástroji Figma. Cíle
práce spočívající v návrhu platformy a implementace jejich klíčových částí, adekvátně pod-
pořených ze strany serverového API, byly splněny. Další funkcionalita, jako například
dokončení mechanismu udělování pozápasového hodnocení mezi hráči a e-mailová služba
pro hlášení vybraných nadcházejících utkání, budou předmětem vývoje v budoucnu.

Keywords
amateur sports management, team sports management, ice hockey management, ice hockey
management web application, sport organization web application

Klíčová slova
webová aplikace pro amatérské sportovce, správa amatérského sportu, řízení a organizace
ledního hokeje

Reference
LÁNÍČEK, Adam. Platform for Organizing
Amateur Collective Sports. Brno, 2022. Master’s thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor prof. Ing. Adam Herout, Ph.D.

Rozšířený abstrakt
Bude-li tázán kdokoli, kdo se v minulosti pravidelně věnoval týmovým sportům, na své do-
jmy, odpověď bude pravděpodobně vždy podobná — ve správném kontextu skvělý zážitek,
zbytečně vynaložené úsilí v opačném případě. V mládežnickém kolektivním sportu jsou
sportovci nuceni zvyknout si, že jsou schopni ovlivnit jen omezené množství faktorů. To
se však obvykle mění v situaci, kdy sportovec opouští mládežnické kategorie, startuje svoji
mimosportovní pracovní kariéru a na svůj sport nechce úplně zanevřít. Najednou si uvědo-
muje, že jeho volný čas je s každým dalším rokem omezenější, svého herního času si tudíž
váží daleko více a chce jej využít na maximum.

Lze namítnout, že výše uvedený vývoj se týká všech kolektivních sportů, autor si však
dovoluje zavést předpoklad, že podstata ledního hokeje tuto výzvu činí ještě náročnější.
Žádný jiný sport se neodehrává na kluzkém povrchu, vyžadujícím od hráčů ovládání pro
člověka nepřirozených pohybových vzorců a rozhodování ve zlomcích sekundy. S tolika
herními proměnnými bývá velice náročné najít jen několik hráčů, kteří zapadají do hráčova
profilu, natožpak dvacet a více jako v případě ledního hokeje. Ostatní hráči mají navíc
také své kariéry a související časové preference, což situaci dále komplikuje. Dále je třeba
uvědomit si, že lední hokej je ze své podstaty finančně velmi náročný sport, generující
nezanedbatelné náklady obětované příležitosti, a to i pokud finanční náročnost posuzujeme
jen z pohledu cen pronájmů hokejové plochy.

Výše uvedené faktory přispívají ke všudypřítomným neefektivitám v rámci ad hoc orga-
nizovaného amatérského hokeje. Hokejisté hrají v nepraktických termínech, s jinak herně
schopnými hráči a v nejhorším případě i bez brankářů, a to vše za několik stokorun Kč za
utkání. Ačkoli platformy podporující organizaci týmových sportů existují, jejich hlavním
posláním není podporovat střet nabídky s poptávkou hráčů amatérského hokeje, jedná
se spíše o portály zajišťující organizaci v již existujících, často více či méně uzavřených,
skupinách. Proto bylo cílem této práce vytvořit platformu pro řešení úskalí spojených s
účastníky amatérských kolektivních sportů, a to se zaměřením na lední hokej, kde je z výše
uvedených důvodů předpokládáno, že jsou kumulativní neefektivity nejvyšší.

Pro dosažení tohoto hlavního cíle bylo v rámci naplánováno několik cílů dílčích. Za-
prvé, bylo nutno provést důkladnou analýzu klíčových aspektů organizace ledního hokeje
pro vhodnou definici případů užití Platformy, která se zaměří na největší úskalí. Ta byla
identifikována jednak jako nedostatek dostupných amatérských brankářů, způsobený jejich
neefektivním, nebo spíše neexistujícím, trhem, a dále velká náročnost udržet počty hráčů
konzistentní v podmínkách vysokých fixních nákladů spojených s pronájmem ledové plochy.

Následovala definice uživatelského rozhraní, vytvářející návrhy pro obě cílové platformy
– webové rozhraní i mobilní aplikaci. Po úvodním náročném seznamování s nástrojem
Figma na tvorbu uživatelských rozhraní, jeho schopnost strukturovat komponenty následně
velmi podpořila několik návrhových iterací, kdy byly návrhy opakovaně vylepšovány na
základě zpětné vazby od potenciálních uživatelů.

Vzhledem k důrazu na webové rozhraní spolu s plány na pokračující implementaci mo-
bilní aplikace v budoucnu, jako vhodná back end technologie byl zvolen REST API server,
implementován v programovacím jazyce Python. Principy této technologie byly důkladně
analyzovány, stejně jako základní stavební kameny JavaScript/TypeScript knihovny React,
využívané pro implementaci webového rozhraní, a její varianty React Native pro imple-
mentaci víceplatformních mobilních aplikací.

Vzhledem ke komplexitě webového rozhraní Platformy bylo úspěšně naplněným cílem
vyvinutí jejich klíčových funkcionalit, náležitě podporovaných ze strany REST API serveru.
Pro maximalizaci uživatelského prožitku byly v rámci studia asynchronní komunikace zk-

oumány a použity možnosti stránkování dat. Pro rychlejší vtažení uživatele do Platformy
byla definice registračního procesu ovliněna moderními principy odložené registrace. V
neposlední řadě byly dále položeny základy pro další vývoj mobilní aplikace, jejíž imple-
mentace částečně započala v rámci předmětu Tvorba aplikací pro mobilní zařízení na FIT
VUT. Přirozeným důsledkem bylo přijmutí monorepo přístupu ke správě repozitáře, který
poskytuje nutný základ pro využití mechanismu sdílení kódu, dostupného díky volbě kni-
hoven React a React Native jakožto rámců pro implementaci aplikačního front endu.

Závěrem lze podotknout, že cíle této práce byly naplněny, přičemž další funkcionality a
nápady ještě na implementaci čekají — nejdůležitějším z nich je v krátkém období imple-
mentace interaktivní části hodnocení hráčských schopností, konkrétně vyhodnocení výkonů
hráčů po utkání. Dalším krokem je implementace stránky Uživatelského profilu, kde si bude
uživatel schopen zobrazit svoje statistiky, což dále může zvýšit jeho angažovanost v Plat-
formě. Dlouhodobým cílem je přidání mechanismu e-mailových hlášení o utkáních, kterých
se účastní uživatelem sledovaní hráči.

Platform for Organizing
Amateur Collective Sports

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of prof. Ing. Adam Herout, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Adam Láníček
May 17, 2022

Acknowledgements
Hereby I would like to thank my supervisor prof. Herout for pushing me to make things
happen over the course of these two last semesters and at the same time for being lenient
enough to let some innovative concepts mature before diving into the implementation phase.
Additionally, I would like to express my sincere gratitude to my friend and a former class-
mate Ing. Šimon Pokorný for the creative critique provided and the endless sessions spent
together brainstorming.

Contents

1 Introduction 2

2 Amateur Ice Hockey Matches Organization 4
2.1 Key Aspects of Organization . 5
2.2 User stories of an amateur ice hockey player 5
2.3 Platform’s extended use case diagram . 6

3 User interface creation 9
3.1 Personas . 9
3.2 Responsive web application versus dedicated mobile application 10

4 User interface mock-ups 13
4.1 Mock-ups creation process . 13
4.2 Mobile application mock-ups . 15
4.3 Web application mock-ups . 16

5 Technological and Operational Aspects of Web & Mobile Applications 24
5.1 REST API Server Network Communication 24
5.2 API Server Back End Technologies . 28
5.3 Application Front End Technologies . 33
5.4 Application Deployment Technologies . 39

6 Amateur ice hockey organization platform 42
6.1 Analysis of existing services . 42
6.2 Facilitating a market of goaltenders and referees 47
6.3 Lazy registration . 48
6.4 Game attendance management principles 49

7 Implementation 52
7.1 REST API server . 52
7.2 React web application front end . 58
7.3 React Native mobile application front end 66

8 Conclusion 70

Bibliography 71

A Full web application mock-ups 74

B Web application screen captures 81

C Mobile application screen captures 86

D Included storage medium contents 87

1

Chapter 1

Introduction

Asking a person who has ever participated in a team sport on a regular basis about his ex-
perience will perhaps always yield the same answer – terrific under the right circumstances,
a waste of effort otherwise. When playing in youth teams, an athlete has to come to terms
with the fact that there is only a few things he can influence in this regard – a coach is a
given, teammates are more or less constant and games are played against the same or very
similar opponents over the course of multiple seasons. Put simply, either the odds are in his
favour or not. However, as he leaves his youth team to start his professional career outside
sports with an ambition not to abandon his beloved sport completely, the tides tend to
change. Suddenly, multiple constraints are gradually placed around his free time and he
cherishes his amateur game time more with every year passing by. An increasingly scarce
resource has to be exploited as much as possible.

Arguably, this development affects every existing team sport, though the author dares to
assume that the nature of ice hockey renders this exploitation challenge especially difficult.
No other team sport is played on a slippery surface, necessitates a control of unnatural
movement patterns, stick handling and requires decisions in a collective context at a fraction
of a second. With so many variables at hand, it can be a real challenge to find a few
teammates that fit in athlete’s profile, let alone twenty or more, as generally required.
Additionally, other athletes have also their careers and time preference, complicating the
situation even further. On top of that, ice hockey is an inherently expensive sport, even
when taking into account only the ice rink renting costs, generating significant opportunity
costs.

All of the factors named above contribute to the ubiquitous inefficiencies within the
amateur ad hoc organized ice hockey. Athletes are playing at unfavourable time slots, with
inadequately skilled teammates and without goaltenders for a few hundreds of CZK a game.
Although there are platforms facilitating team sports management, their core purpose is
not to match the athletes’ demand with the supply, it is rather to take an existing set of
athletes and help with the organization within that specific closed group. Therefore, the
aim of this work is to rise to the challenge of facilitating the attendance of amateur sport
games, while focusing on the ice hockey where the cumulative inefficiencies are arguably
the highest.

To lay the groundwork for the Platform’s definition, the work will start with a thorough
analysis of the main aspects of amateur ice hockey, followed by an identification of hockey
player’s needs and a proposal of said Platform’s use cases. Having a clear idea of the
Platform’s mission, its Personas, representing the core user groups, will be defined and
the selection process of the appropriate target platforms described. To conclude the user

2

interface creation process, the following chapter deals with the user interface mock-ups
creation process using the Figma tool and presents the resulting web application and mobile
client mock-ups.

The next chapter describes the technological and operational aspects of the planned
Platform, starting with an analysis of the technological background required for imple-
menting a REST API server as the application back end solution of choice. In the second
half of the chapter, an in-depth tour into React JavaScript/TypeScript library targeted for
web application front end development as well as its variant React Native, which lever-
ages React’s abstraction power to bring the technology to mobile devices via cross-platform
mobile applications.

The penultimate chapter starts with the analysis of existing services serving similar
markets to draw inspiration, and consequently highlights some of the key features of the
newly implemented Platform. The actual implementation and the challenges faced are
covered in the final chapter, focusing on the Platform’s two main building blocks – REST
API server and the React web application front end – with the mobile application to be
left mainly as a task for future development.

3

Chapter 2

Amateur Ice Hockey Matches
Organization

Ice hockey is among the most popular team sports in Czechia. Its popularity can be il-
lustrated using Figure 2.1, displaying shares of registered ice hockey players within the
population in the most notorious hockey countries worldwide. Given the country’s popu-
lation of 10,6 million people (Czech Statistical Office [38]), approximately 1,2 out of 100
inhabitants is registered with the Czech Ice Hockey Association1. This proportion is, per-
haps surprisingly, even greater than in Canada with its 345000 registered players and the
population of 38.5 million [4], rendering it third with the value of 0.9%. For example, in
the United States of America, where over three-quarters of National Hockey League teams
reside2, is this proportion approximately ten times lower than in Czechia.

Figure 2.1: Share of registered ice hockey players within the population (2021)
Source: Own calculations based on data from [4], [12] and [38]

Not surprisingly, this popularity in Czechia is reflected on amateur level as well. As of
January 2022, an own survey of the existing amateur leagues [2] has shown that there are at

1Available at http://www.czehockey.cz/
2Currently 25 out of 32. Source: https://www.nhl.com/info/teams [01-04-2021]

4

http://www.czehockey.cz/
https://www.nhl.com/info/teams

least 110 amateur hockey leagues, being played on 196 indoor ice rinks [11] scattered across
the country. Assuming 10 participating teams per league and 20 players per team, the size
of the amateur hockey crowd can be estimated at around 22000 people. Additionally, the
majority of these players does not limit their ice hockey participation to organized leagues
and plays other games which take place more or less regularly. This majority of players is
also the main target group of the application developed within this work. Therefore, the
rest of the chapter will be dedicated to an analysis of their needs as well as to a discussion
of the key aspects of the game to be optimized to maximize the game experience.

2.1 Key Aspects of Organization
Ice hockey is played by two opposing teams. In standard circumstances, 5 players from
each team, along with a goaltender guarding the net, are present on the ice at any given
moment. Given the inherent high intensity nature of the game, it is desirable to have
at least the same amount of players on the bench, ready to be substituted, theoretically
keeping the work/rest ratio at 1:1. Driving this ratio higher in favour of the work inevitably
leads to a decrease of game experience of all participants. As a result, one specific game
slot (typically reserved for 60 or 75 min) requires at least 20 players plus two goaltenders
that are, preferably, similarly skilled. Moreover, rent prices of an indoor ice rink range
from 3800 to 5200 CZK an hour, depending on the time of the day, providing an additional
incentive to maximize the amount of players that share its cost.

Requiring 20 similarly skilled amateur players to meet more or less regularly at a specific
time and place is a challenge. Therefore, inevitably, a significant subset of the player lineup
is constituted from ad hoc players, showing up irregularly multiple times over the course
of the year. Irregularity implies the attendance unpredictability, which results in a higher
risk of an unfavorable financial burden to all players who have to pay more while enjoying
less.

Another crucial aspect of the game are the goaltenders. Given their highly specialized
and rather costly equipment, as well as a specific skillset, it might not be easy to find them
for your specific game, let alone find replacements in case of an attendance cancellation. To
compensate amateur goaltenders for their higher upfront equipment costs, it is a common
practice to let them play free of charge. Even in this setting, many amateur games are
nowadays played with one or both goaltenders missing, decreasing the game experience so
drastically that players are willing to cover additional costs of having a paid goaltender,
ranging from 200 to 500 CZK per a goaltender and a game.

Teams are facing similar organizational issues in every amateur team sport. However,
none of them is inherently as expensive as ice hockey. Whether it is insufficient amount of
players or missing goaltenders, the inefficiencies expressed financially are really significant,
providing a lot of space for optimization.

2.2 User stories of an amateur ice hockey player
What an amateur ice hockey player and goaltender strives for can be identified by tak-
ing another perspective on the organizational aspects described in the previous section.
Therefore, the user stories can be defined as follows:

As an amateur ice hockey player,

5

1. I want to be able to play hockey wherever and whenever it fits in my tight schedule.
As life sometimes goes into the way, I want to be able to decide to participate as
spontaneously as possible.

2. I want to play with similarly skilled players in order to avoid disappointment in either
direction.

3. I want to play with the people I know.

4. I want to play in games where at least 20 players are present.

5. I want to participate only in games where both goaltenders are present.

As an amateur ice hockey goaltender, I want to participate in games where all player’s
stories are met. In addition to that, crucially,

1. I want to play/prefer to play in games where I am financially compensated the most.

All of the user stories mentioned above present the core issues and challenges which the
platform developed within this work aims to face and resolve.

2.3 Platform’s extended use case diagram
Reflecting the needs of amateur hockey player, as discussed in previous section, the use
cases of the target Platform are proposed in the extended use case diagram depicted in
Figure 2.2. Rather than focusing exclusively on actors interacting with the system, as is
the case in a standard use case diagram, the variant described hereinafter attempts to model
the whole application logic to provide an overview of its workings. Extracting the relevant
pieces of information from Figure 2.2 to emphasize the user perspective, available user’s
action can be inferred as described by the following text.

Platform’s user is able to:

• assign himself/herself one or multiple participation roles in the user profile.

• participate in a game in roles restricted by the settings in user profile – theoretically
as a player, goaltender or a referee.

• organize a game to offer places to attend to all of the platform users.

• follow another user in one of the modes determining the ability of the game-organizing
followee to sign him/her up for a game without any further action from the added
person. The follow relationship is either of

– the opt-in type, to be able to be to see his/her attended or organized games on
the Dashboard, or

– the opt-out mode, to reap the benefits of the opt-in variant and allow the
automatic sign up.

• add the followed athlete to a game, provided that he/she is followed in the opt-out
mode.

6

• evaluate a game performance of other players to contribute to the rating creation
mechanism.

• create and maintain a group of athletes who follow him/her in the opt-out mode
to facilitate and simplify the new game creation process by adding a group of people
to the game instead of searching for each and every athlete in the system with every
game created.

To conclude the diagram interpretation, it should be noted that a game renumerates
goaltenders and referees for their attendance in these crucial roles (namely in goaltender’s
case) and expects a payment from the attending players to cover the game costs. These rela-
tionships, however, do not describe the planned interactions within the system for the time
being, as the proposal of payment processing interface implementation has been postponed.

Despite simplifying both organizer’s and attendee’s workflows by removing the incon-
venience of dealing with cash money and providing an opportunity for the Platform to
charge a small premium on every transaction to cover for the operational costs, major chal-
lenges and complications would arise from the simple fact that only a subset of the athletes
attending the games are actively using the Platform.

It is reasonable to assume that over time, based on the fear of missing out on the rating
and Platform’s social features, a large majority of athletes would register in the Platform.
But even then the question remains – In an environment of scarce player resources, especially
but definitely not limited to late spring or summer, what leverage does the organizer have
to make a player use the Platform for payment processing and thus pay the Platform’s
premium, however insignificant? The answer lies in providing an adequate value to the
athlete. Is the rating system and the ability to choose their games ad hoc enough? If
yes, implementing a payment interface would be a next logical step. This question will be
answered only by a long-term existence of the Platform in the market.

7

Figure 2.2: Platform’s extended use case diagram. Depicts user’s use cases in the target
Platform as well as other relationships among the entities interacting within the system.
Compared to a standard use case diagram, which focuses exclusively on users as actors
interacting with the system, this diagram attempts to model the whole application logic

to provide a high-level overview of its workings.

8

Chapter 3

User interface creation

The aim of this chapter is to apply the well-known user interface concepts to efficiently
facilitate solving of issues and challenges faced by an amateur ice hockey player/organizer
which were introduced in the previous chapter. The following content is structured as
follows:

1. To begin with, Platform Personas representing typical Platform users are defined.

2. Consequently, the decision process towards the selection of an appropriate target
platform for the application is analyzed.

3. And lastly, the chapter is concluded with a description of the process of user interface
mock-ups creation and testing, as well as with the presentation of the actual mobile
and web application mock-ups created for the Platform at hand.

3.1 Personas
When designing an application, it is crucial to have a clear understanding about who its
end users are going to be. As Sauro [32] noted, instead of creating a product based on just
abstract demographics, using Personas as a basis for the design phase leads to a better
focus on real customer needs and goals.

A Persona is a fictional character representing the real needs of a larger group of users.
Despite being a representative essentially aggregating opinions of a group, Persona’s char-
acteristics should be defined in a significant level of detail to clearly express major needs
and expectations of the most important user groups. Since the goal of creating these fic-
tional characters is, according to Sauro [32], capturing the needs of the most sizeable user
clusters, rather than of each and every one, the number of Personas should be limited to
three or four at maximum.

Analyzing a rough demographic structure of target users significantly narrows down the
opinion space for the purposes of Personas definition. Therefore, let us introduce some
reasonable demographic assumptions:

1. According to IIHF [16], the share of women in registered ice hockey in the Czech
Republic is 3.92%. Although the share might be different for amateur ice hockey, for
which there is no such statistics available, it is reasonable to assume that around 95%
of Platform’s users are going to be men.

9

2. The age range of users can be divided into the three groups, encompassing both
former registered players and hockey enthusiasts without any prior structured ice
hockey training:

(a) 18–27 years, often referred to as Generation Z, the members of which have been
living their whole life in the digital age and are accustomed to using smartphones
for nearly every web task imaginable. According to data.ai [13], these people visit
their favourite websites frequently and keep the visit duration low.

(b) 28–49 years, representing Millennials, who divide their attention between mo-
bile and desktop devices equally, do not consume their favourite websites’ content
as often, but have a 25% longer attention span than a typical representative of
a younger generation.

(c) >49 years of age generation, which emphasizes desktop activities and the
representatives of which extend their visit length by additional 25% compared
to Millennials.

The shares of the groups described above within the population of ice hockey amateur
players in the Czech Republic can be roughly estimated to 25, 60 and 15%1, respectively.
Though the real shares may vary, it is reasonable to assume that three different Personas
representing the vast majority of users can be defined as indicated in the Table 3.1.

Based on the group shares discussed above, Petr Novotný and his peers are arguably the
most important group to focus on, followed by Bartoloměj Březina and Lukáš Terasový on
the last place. Bearing in mind that Petr Novotný spends half of his technology consumption
time on desktop, it seems that the Platform should definitely offer a web-based client, which
offers the most value for the development effort overall when preferences of Bartoloměj and
Lukáš are taken into account as well. The importance of a comfortable mobile access cannot
be underestimated, though. While the mobile platform is strictly preferred by Bartoloměj
and his peers, representing a quarter of all users, even Petr appreciates the possibility to
sign up for a late evening ice hockey match during a busy working day. Similarly Lukáš,
who generally limits the interaction with a smartphone to work-related phone calls and a
few text messages to his kids, is more often than not away from the keyboard, requiring
another modality for signing up for his favourite hockey match.

3.2 Responsive web application versus dedicated mobile ap-
plication

The previous section established that the development of a web-based client for the Platform
is reasonable because of the preferences of typical Personas. Additionally, it has been
concluded that there should be a feasible modality to access the Platform using a mobile
device. The selection process of the correct mobile modality is, for its complexity, worth
further analysis and discussed in this section.

Generally speaking, there are two high-level approaches towards building a solution for
mobile platforms, each of which comes with specific costs and benefits:

• a website built respecting Responsive web design (RWD) principles
1Author’s estimate based on more than 10 years playing in or organizing 10 or more different groups in

total

10

Bartoloměj
Březina Petr Novotný Lukáš Terasový

Age 22 36 52
Employment

status University student Full-time worker Self-employed in a
small company

Family status Single Married with two
kids

Married with two
high-school kids

Playing time
preference

Late morning/early
evening

Early morning/late
evening

Early morning/late
afternoon

Ratio of desktop
vs mobile usage 20:80 50:50 80:20

Attention span 8s 12s 16s

Table 3.1: User Personas representing the vast majority of Platform’s users. Bartoloměj
Březina as a member of Generation Z, Petr Novotný as a millenial and Lukáš Terasový

representing the oldest age group.

• dedicated native/cross-platform mobile application

Responsive web design (RWD)

Simply put, Responsive web design, as defined by the MDN Web Documentation [7], is a
set of best practices used to create a layout that responds to the device being used to view
the content. It was first introduced by Ethan Marcotte [26] who described the use of three
techniques in combination:

1. Fluid grids with fluid-width columns that expand and shrink based on the screen
size to fill the available space.

2. Fluid images ensuring that images placed within a fluid grid scale down smaller
when the grid shrinks down in size but never grow larger when a grid grows, avoiding
the pixelation that would occur otherwise.

3. Media queries as a feature of Cascading Style Sheets (CSS) that enabled changing
the layout based on the screen size by querying the relevant features in the browser.

Nowadays, most modern and popular layout techniques available in CSS are inherently
responsive. The Platform implemented within this work, for example, uses both the two
most popular layouts - Grid and Flexbox as discussed in more detail in Section 7.2.4.

Utilizing Responsive web design as the only solution for mobile devices without im-
plementing another dedicated one offers significant benefits, the most attractive one being
having just one codebase to maintain. Additionally, the site contains the same content
across varying platforms, providing a consistent experience.

Having said that, unless a mobile-first approach is taken, the website will never be
fully optimized for mobile devices. On top of that, performance of a web application can
never be a match for a dedicated mobile application. And lastly, mobile users are used
to mobile-specific interfaces and may find interacting with the Platform’s web application

11

Responsive website Dedicated mobile
application

Compatibility
Equally displayed in all

browsers irrespective of the
device

Requires development of at
least one extra

(cross-platform)
application

Audience All devices with internet
connection Smartphones and tablets

Regular usage
convenience Mediocre Really good

Personalization Mediocre – inherently
focused on the service

Really good – aim is at the
individual user

Table 3.2: Comparison matrix: Responsive web design as the only solution for mobile
versus an extra dedicated mobile application.

cumbersome, which may eventually lead to a loss of active users and limit the amount of
the up-to-date data available at the Platform at any given time. All of these factors limit
the user experience of the interaction with the Platform in a mobile browser compared to
a mobile application.

Dedicated mobile application

Dedicated mobile clients undoubtedly offer the best user experience. Optimized for the
device they are running on, they are more responsive while interacting with a user via
familiar user interface elements. They can even be accessed in the offline mode with a limited
functionality. For example in Platform’s case, a user could launch the application to see to
which games he is signed up for without requiring any connectivity. Even more importantly,
contrary to a web browser variant, a mobile application can exploit all the features of a
device, including push notifications that might significantly improve the user experience in
Platform’s case. A user can be informed about the upcoming matches organized by his
favourite organizers or reminded that his match starts in a few hours. On the flip side, a
mobile application requires the user to download it. Additionally, maintaining two separate
clients can significantly raise Platform’s operational costs.

Having introduced all the benefits a dedicated mobile client has to offer, it should be
noted that there are ways to reduce the costs to increase the incentives of choosing this
product strategy even more. For example, as demonstrated in Section 7.2.2, when choosing
the React JavaScript/TypeScript framework for a web front end implementation and React
Native for a mobile client, it is possible to leverage the reusability of the whole business logic
of an application. This implies, in essence, that only the target platform-specific rendering
logic (see Section 5.3.2 for details) is kept separate for both the target platforms while its
inputs originate from the same codebase.

12

Chapter 4

User interface mock-ups

Given the level of interactivity of the proposed Platform and the possibility to exploit
sharing mechanisms of React TypeScript code described in the previous chapter, it has been
decided to pursue the more challenging path of implementing a standalone mobile client
along with a standard web application. This chapter describes the process of creating user
interface mock-ups for both platforms. The following content is structured into the three
sections:

1. Description of the process of user interface mock-ups creation using the Figma tool.

2. Short presentation of the key mobile application’s mock-ups.

3. Presentation of the key web application pages and components mock-ups.

4.1 Mock-ups creation process

For the purpose of mock-ups creation, Figma1 web-based graphics editing and user interface
design tool has been used. The basic primitives in Figma are layers which are stacked on top
of others by using simple user interface gestures. These layer groups can then be treated as
one entity, i.e. moved or edited together or even abstracted away as a Component, making
this layer group reusable across the whole project.

After getting familiar with these concepts, working with Figma is really productive and
efficient. This proved to be really useful over the whole mockup design phase – almost every
screen or a page underwent a complete overhaul after informal discussions with potential
users. To illustrate the Figma’s layering logic, Figure 4.1 depicts an instance of the ”Skill
puck“ component and the corresponding Figma user interface drill down of the layers it is
composed of. Notably, its Figure 4.10a demonstrates how a simple feature of hiding/showing
layers can help when creating a component with variable properties – the first three black
pucks are shown while the first three grey pucks are hidden and the opposite applies for
the three remaining pucks.

Being the core of the application, the first screen/component to be designed was the
Games overview. One of the important features of the Platform is incorporating attendees’
skill levels into the game management process. This presented a first user interface design
challenge to be faced. In the first iteration, 6 black or grey stars depicted in Figure 4.2
were used as a measure of the skill expected from a player attending a given game. After

1Accessible at https://www.figma.com/

13

https://www.figma.com/

(a) Layer tree structure of a
component instance (b) Resulting component

Figure 4.1: Figma and the tree structure of its components. Skill pucks component taking
advantage of the layering by hiding/showing only the relevant layers.

Figure 4.2: Stars as the first dismissed prototype of expected skill depiction. Rather than
conveying expected skill, according to the potential users, it gives an impression of a

rating request.

presenting this suggestion to the potential user base, however, this design proposal was
completely dismissed as the stars evoked rather a rating request instead of the expected
skill of the game.

In general, at the early phase of the mock-up creation process the Platform’s core user
interface was composed of the following components:

1. Games Overview aiming to provide a user with a comprehensive overview of all
games taking place in a given location along with all the crucial details, such as count
of players and goaltenders. Another important requirement is a variant of Games
overview showing the games the user is already signed up for.

2. Game Detail providing a detailed information about the game, containing the fol-
lowing subsections:

• Game basic information displaying location, time and other important fea-
tures of the game.

• Game attendance comprehensively showing the game attendees divided per
their roles in the given game.

• Game location (optionally) showing a map providing information on the loca-
tion of the ice rink.

3. User Profile where the user profile can be edited and where the relevant user statis-
tics are evaluated. Additionally, the component should act as an interface managing
the followed players and displaying the user’s followers.

14

The following subsections contain the presentation of Platform’s web application and
mobile application mock-ups. While the focus of this work from the design and implemen-
tation perspective is mainly on the web client, the next subsection commences the mock-ups
presentation with mobile mock-ups for the sake of completeness.

4.2 Mobile application mock-ups
One of the main challenges faced by a designer when drafting a mobile application is not
to overwhelm the user with a lots of details, while simultaneously ensuring that everything
relevant is present on the screen, not requiring the user to navigate all over the application
to find the information he needs. In context of user experience, perfection can definitely be
described in words of Antoine de Saint-Exupéry [31], who aptly stated:

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

The aim of the mock-ups was to adhere to this principle as closely as possible while
iteratively asking for a feedback a group of 6 potential users. Main pieces of information
that should be conveyed by the Games Overview can be summarized as follows:

• Time and date of the game

• Goaltenders’ participation

• Expected skill level of the game

• Games I am already attending

Distinguishing the attended games from the rest proved to be a user interface chal-
lenge. In the first mock-ups, a dedicated subscreen has been designed for this purpose.
Introduction of a new screen, however, required adding a submenu to the Games Overview,
rendering the otherwise clean and intuitive tab bar navigation scheme a lot more complex.
Therefore a lot simpler approach has been taken – to add the ”My Games“ criterion only
as an additional filter property as shown in Figures 4.3a and 4.3b. Additional feedback was
related to the green colouring of the attended games – some subjects were confused as it,
according to them, conveyed a meaning of the game’s favourable status from the perspective
of a logged in user. For example, for one test subject, the green evoked a presence of two
goaltenders and an attendance of more than 15 players at the same time. This feedback is
definitely worth a reflection in future iterations.

Figure 4.3c displays the User profile screen, showing a statistics of the attended games,
displaying a list of player groups the user is member of2 and listing all the players that are
followed by the current user for the game recommendation mechanism purposes, which is
analyzed in detail in Section 6.4.1.

Whereas the aim of the Games Overview screen was to show as few details as possible
while being informatively dense, the purpose of the Game Detail overview is to display
every attribute of a game. In order to avoid screen cluttering and at the same time not to
require the user to scroll too much, Game Detail sub-menu was introduced. The first screen
depicted in Figure 4.4a presents basic features of a game along with a concise attendance

2In later stages of the Platform’s logic definition, Groups in this specific sense were abandoned altogether
– for details refer to Section 6.4

15

(a) All upcoming games (b) Games I am attending (c) User profile

Figure 4.3: Games overview & User Profile mobile mock-ups: First subfigure listing all
games and the second, filtered one, listing only games the current user is attending. The
third subfigure depicts the User Profile screen, showing user’s game statistics and lists of

followers/followees.

summary, the second one tries to leverage the available space to naturally sort the attendees
based on their roles. The last sub-screen contains a map pointing to the rink where the game
is taking place. During user testing, in 25% of cases an additional feature was proposed
by the users, namely to be able to see all the upcoming games at a given ice rink after a
click-through.

4.3 Web application mock-ups
Whereas the presented mobile mock-ups cover only a part of the Platform’s functionality,
web application mock-ups, with web application being the focus of this work, were designed
to cover all the features available. The following content presents the key elements of the
whole design, while the full page mock-ups can be viewed in Appendix A.

16

(a) Basic information (b) Attendance overview (c) Game location

Figure 4.4: Game detail mobile mock-ups: Three sub-screens displaying basic set of
information about a game, detailed attendance overview and a map to show the ice rink’s

location

In general, the aim of Platform’s web application design was to divide the functionality
to only a limited amount of separate pages to keep the navigation as simple and lightweight
as possible. After a careful analysis of the planned logic of the application, the page split
was determined as follows:

1. Dashboard displaying My Upcoming Games, Games Calendar and Might Interest
You components.

2. Games containing a filterable Games list.

3. Athletes showing a filterable overview of Athletes. along with their follow status
with respect to the currently logged in user.

4. Groups providing an interface to create Player groups used in new game creation.

Given their importance, the following subsections present selected component mock-ups
of the first three pages to provide the reader with the design and the application concept

17

overview, both of which can be studied further in the later content – selected features of
the application logic are analyzed in the second part of Chapter 6 and the full mock-ups
are available in Appendix A.

4.3.1 Dashboard

In simple terms, the aim of a dashboard in context of the user interface design is sparing the
user an unnecessary navigation through the application, essentially saving user’s time and
effort to get the information he needs the most. Platform’s Dashboard strives to achieve
this goal by rendering these three components, as depicted in Figure 4.5:

• My Upcoming Games containing the list of three closest games the user is attend-
ing to be able to directly access the most relevant games.

• Games Calendar providing a timeline perspective on the attended games.

• Might Interest You recommending games attended by the followed athletes, es-
sentially meeting user’s preference to play with the people he knows as discussed in
Section 2.2. In addition, this component is also a part of the Game attendance fa-
cilitation concept presented in Section 6.4 as it also displays games organized by the
followed people.

4.3.2 Games page

The Games overview page is the core of the application. From a high-level perspective,
contrary to other platforms currently available3, the Games Overview page aims to display
literally all hockey games taking place in a list to make the games market completely
transparent, decreasing the information asymmetry between the game’s potential attendees
organizers. The Games Overview is composed of the following parts:

• Games List: A component displaying an infinite list of games sortable by date and
athletes’ attendance.

• Games Filter: An infinite list of data requires an efficient filter to extract the
information tailored to a user’s preference. As depicted in Figure 4.7, games can be
filtered by a specific organizer, day of the week, time within the day as well as by the
number of free places in specific game roles.

• Game: A component displaying all the important features of the game, such as count
of players and goaltenders, as well as the price of attendance for the former group
and the renumeration value for the latter. Additionally, to streamline the attendance
management process, a user is able to join or leave the game directly from the list
using the Attendance Selector Shortcut component, depicted in Figure 4.6 as the
penultimate element on the right.

3Such as Týmuj.cz analyzed in Section 6.1.

18

(a) My Upcoming Games overview (b) Games Calendar

(c) Might Interest You component

Figure 4.5: Dashboard components, summarizing the most relevant data for a user at one
place. My Upcoming Games providing an overview of the three nearest games, Games
Calendar providing a time planning dimension and the Might Interest You component

showing games attended by the followed athletes.

19

Figure 4.6: Game from the Games Overview list reporting all the relevant game features
as well as Attendance Selector Shortcut component, enabling the user to join or leave the

game without requiring him to open the Game Detail

Figure 4.7: Games
Overview filter

Figure 4.8: Attendance management component containing
instances of User Badge component

4.3.3 Athlete page

While the Games Overview page is generally expected to be visited before a game as a
means of connection with other players at a given time and place, Athlete Overview’s main
purpose is to foster the post-game social aspect of the Platform. Having recently attended
a game with a few players the user does not know, he/she is able to look them up in the
Athlete Overview, see how many games they have attended so far and what is their skill
rating as rated by other players. If the user enjoyed their playing style and would like to play
in the same games as they do in the future, he/she can follow them. The exact implications
of this action and the comprehensive description of the follow mechanism is contained in
Section 6.4.1. As was the case in the Games Overview page, Athlete Overview page also
offers various filtering and sorting possibilities (for details refer to Athlete Overview page
as depicted in Figure A.1 in Appendix A).

4.3.4 New Game page

Organizing a hockey game is a complex process and the Platform’s New Game page aims
to minimize the related inconvenience. Apart from the inputs to set the standard game
parameters, such as time, place, expected amount of players, goalies etc., it provides three
helper components as depicted in Figure 4.10:

20

Figure 4.9: Item of the Player Overview list reporting player rating as well as the count of
games he has attended in total. Also contains ”Follow“ button to initiate a follow

relationship

1. Recently Organized component listing four of the most recently organized games
to be able to copy all the previously defined game settings to the game currently being
created.

2. Estimated Game Costs as an informational component calculating the total game
costs, taking into account automatically determined price of the rink as well as all
the planned renumerations, simplifying the process of setting the player attendance
price signalled to potential players.

3. Available Groups aiming to simplify the basic attendance setup of the players follow
the organizer in the opt-out mode, i.e. allowing him/her to sign them up automatically
on a created event.

Admittedly, assuming that all the athletes desirable to attend the game are users
registered within the Platform is unrealistic. Instead of forcing organizers to implement
workarounds using dummy user profiles to avoid attendance count discrepancies, New Game
page provides an interface to add unregistered players to a game, as demonstrated in Figure
4.8. Using this feature, apart from adding players from the limited set of the registered
players4, an organizer can add arbitrarily-named anonymous athletes as players, goaltenders
and referees to mirror the game planning reality as closely as possible. Both registered and
anonymous athletes are represented by athlete badges, an element representing an athlete
at multiple places within the Platform.

4.3.5 Game Detail page

Game Detail page, depicted in Figure A.4 in Appendix A, accessible from the games ren-
dered within the Dashboard components or from the Games Overview component, is com-
posed of four user interface components:

1. Basic Information displaying basic features of the game.

2. Game Attendance containing an overview of all athletes, both registered and non-
registered, assigned to different roles within a game, represented by athlete badges.

4Not all players can be automatically signed up for an event – only those in the opt-out mode (see Section
6.4.1 for details)

21

(a) Recently Organized (b) Estimated Game Costs (c) Available Groups

Figure 4.10: Helpers for new game creation: Recently Organized component to provide an
a helper to copy the details of the previously organized games, Estimated Game Costs

component to help determine the final price for a player and Available Groups component
enabling the organizer to easily add players who follow him in the opt-out mode to the

game (see section 6.4.1 for details)

3. Game Chat providing an interface for simple chat-based discussion related to the
specific game.

4. Game Evaluation component is an interface to evaluate the attendees of the game,
accessible after the game. The evaluation provides anonymous feedback regarding the
performance in the specific game for athletes generated by the system.

4.3.6 User profile page

Apart from an interface towards modification of user profile, the User Profile contains three
additional components:

1. Played Games Summary summarizes the count of games played within the last
30 and 90 days and within the last half a year.

2. Evaluation Summary, depicted in Figure 4.11, provides overview of the monthly
development of user’s rating score as evaluated by his peers in the post-game evalua-
tion in the Game Detail.

3. Followers List lists all athletes that follow the current user along with the infor-
mation on the follow relationship type – whether it is currently set up as opt-out or
opt-in (see Section 6.4.1 for details).

4. Followee List, analogically to the Followers List, enumerates all the athletes that
are followed by the current user, with the possibility to toggle the follow relationship
type.

22

Figure 4.11: Rating component displayed in User’s Profile showing the current skill rating
of the user as rated over time by players who he played with

23

Chapter 5

Technological and Operational
Aspects of Web & Mobile
Applications

This chapter aims to introduce main parts of technology stack upon which the platform has
been implemented. The introductory Section 5.1 will cover key parts of HTTP protocol
specification and their relation to the REST API specification and a corresponding tradi-
tional REST API implementation. Consequently, main building blocks of the platform will
be introduced. Starting from the top level, the platform can be decomposed into two parts:

1. Python-Flask REST API server back end, underlying principles of which are
described in Sections 5.1 and 5.2, and

2. React.js/React Native front end, encompassing both the web application and
cross-platform mobile application, both of which are discussed in Section 5.3.

Having introduced both front end and back end implementation starting points, the chapter
will conclude with Section 5.4, describing utilities and technologies used for the facilitation
of server API deployment, namely:

• Docker application containers and the Docker Compose utility,

• Elastic Container Service (ECS)1 Docker container runtime provided by Amazon Web
Services

5.1 REST API Server Network Communication
As the principles of building REST APIs are derived from the definition of the underlying
HTTP protocol, the first part of this section will be dedicated to introducing those. In
the second part, implications of HTTP features will be discussed in the context of REST
principles and consequently towards building a REST API.

1Available at https://aws.amazon.com/ecs/

24

https://aws.amazon.com/ecs/

Figure 5.1: Network stack and HTTP protocol communication happening in the
application layer on top of the transport layer [6]

Hypertext Transfer Protocol

The Request for Comments 2324 (RFC) defines the the Hypertext Transfer Protocol as
follows [27]:

HTTP is an application-level protocol for distributed, collaborative, hypermedia
information systems. It is a generic, stateless, protocol which can be used for
many tasks beyond its use for hypertext, such as name servers and distributed
object management systems, through extension of its request methods, error
codes and headers.

Being generic allows systems to be built independently of the data being transferred
based on typing and negotiation of data representation. Being stateless allows the server
to process each request independently, without any knowledge of the requests that were
executed beforehand.

Figure 5.2 shows the HTTP placement on the Application layer of the network protocol
stack. Built upon a reliable data-transmission Transfer Control Protocol (TCP), residing on
the Transport layer, HTTP guarantees the integrity of the data at both communicating ends.
As Totty et al. [34] summarize it, once a TCP connection is established, messages exchanged
between the client and server will never be lost, damaged, or received out of order. From the
developer’s point of view, that implies creating applications without worrying about data
consistency, significantly reducing the burden of implementing sophisticated error handling
mechanisms for every HTTP request created.

HTTP protocol is based on a simple scheme where a HTTP request is always followed
by a HTTP response. The upper part of Figure 5.2 depicts most typical payload types of
HTTP responses which together with the protocol itself represent the Web:

• HTML to provide web pages content,

25

• CSS styling web pages layouts,

• JavaScript to introduce dynamic elements into a webpage, and, finally,

• Web APIs providing application data during client-server communication.
All of the resources named above are fetched using several different request commands

in HTTP syntax, called HTTP methods. Every HTTP request declares which method it
uses and the server responds accordingly. The typical actions taken by the server based on
four most common methods can be found in Table 5.1.

HTTP method Description

GET Send representation of a resource from the server to the client.
PUT Store representation from the client into a named server resource.

DELETE Delete the named resource from a server.
POST Create a new resource based on the provided representation.

Table 5.1: Common HTTP methods [34] [29].

On an intuitive level, just by looking into Table 5.1, reader can gain a solid under-
standing of what a client wants a server to do - whether it’s trying to get a representation,
delete a resource, or connect two resources together. This intuition is referred to as pro-
tocol semantics of HTTP. However, based on this understanding, it is not possible to tell
whether the representations being transferred are players in a team or books from a book-
store, since HTTP does not introduce any application semantics. That said, application
semantics should always be driven by the protocol one. For example, as Richardson et al.
note [29], no matter what the application domain is, a GET request should always fetch a
resource representation from the server, ensuring semantic consistency.

Representational State Transfer (REST)

In the preceding paragraphs, a term resource has been mentioned multiple times. In a Web
environment, a resource is anything that is important enough to be referenced as a thing in
itself, the only condition being that is is assigned a URL. From the client’s point of view,
the resource is not important. What really matters is, as defined by Richardson et al. [29],
a representation describing resource state.

REST is a software architectural style created to guide the design and development of
web applications. In simple terms, this paradigm sets standards for a server transmitting
a representation describing the current state of a resource (e.g. GET response) to a client,
as well as for a client sending a desired representation of the resource [29] it wants to have
created/updated on a server (e.g. POST request). Fielding [18] introduced six guiding
constraints of REST architecture:

1. Uniformity of interface as a prerequisite of functioning interactions among the Web’s
components (clients, servers etc.).

2. Client-server architecture implementing the separation of concerns paradigm, allow-
ing clients and servers to evolve independently and keeping the server components
reasonably simple.

26

3. Statelessness implying no storage of client’s state on the server. As a consequence,
all requests are required to provide all the information needed to complete them.

4. Cacheability requiring the server response to label itself as cacheable or non-cacheable.

5. Layered system ensuring that each component is unable to see beyond the immediate
layer they are interacting with.

6. Code on demand representing applets or scripts that are provided by the server in
the form of a code that is run on client’s side.

RESTful Application Programming Interface (REST API)

An API is a set of definitions and protocols for building and integrating application software.
For example Red Hat [28] defines it as a contract between an information provider and an
information user. REST API is a special case of this contract where the above defined
REST constraints are respected. Table 5.1 contains the typical HTTP methods to be
implemented within a REST API. To illustrate an usual communication with a REST API
server in practice, as depicted in Figure 5.2, let us analyze in more detail perhaps the most
complex one - a POST request:

1. Client (e.g. mobile application) creates a JSON object containing the desired repre-
sentation of a resource on the server.

2. This JSON object is inserted into body of an HTTP request and sent over HTTP to
a server.

3. REST API server receives the request and:

(a) Recognizes a POST request based on the ”Method“ field in request header
(b) Checks if request’s endpoint is registered with the given method.
(c) Looks for a handler of this endpoint and waits for it to process the request body.
(d) Handler informs the server if the request body was processed successfully or not.

4. Server returns a HTTP response to the client, containing the corresponding HTTP
status code. The extract of the most frequently returned HTTP status codes for a
POST request can be found in Table 5.2. Comprehensive overview of all HTTP status
codes is provided by the corresponding RFC 7231 [17].

Figure 5.2: REST API communication flow [30]

27

HTTP status code Potential reason

200 OK The resource was successfully created and is en-
closed in the body of the response

201 Created New resource was created as a result of the re-
quest

400 Bad Request Server could not understand the request due to
malformed syntax

401 Unauthorized Unauthenticated access to the resource has been
attempted

403 Forbidden Despite being authenticated, client does not
have access rights to the content.

404 Not found Server cannot find the requested resource.
500 Internal Server Error Server has encountered a situation it does not

know how to handle.

Table 5.2: Most frequently occurring HTTP status codes as defined by the corresponding
RFC 7231 [17]

The actual syntax of HTTP communication is indicated by the GET request listed in
Listing 5.1. Every HTTP request has to define its method, endpoint and HTTP protocol ver-
sion based on which the communication will be conducted. This version is then confirmed
right in the beginning of a HTTP response header, which also defines type of the content
enclosed in the request body. In this case it is a JSON object, therefore Content-Type
header is set to application/json. What follows is the actual request body referencing a
representation of /api/athlete resource, containing a collection of players, each described
by his attributes.

5.2 API Server Back End Technologies
In the previous section, principles of REST API communication as well as of underlying
HTTP protocol were introduced. This section will focus on the engine that ensures the
requests (as for example 5.1) are properly handled, i.e. the API itself. Luckily, there
is a whole array of efficient frameworks in virtually all the most popular programming
languages, abstracting the complexity of HTTP communication away from a developer.
In Python language, for example, developer can choose (among others) between full-stack
frameworks, like Django2, and rather light-weight ones, such as Flask3 micro framework.
While the latter focuses on the main things web framework has to offer, like URL routing,
the former integrates many features like sessions, authorization, authentication, templating
and database access out of the box [21]. That said, less complex frameworks can easily be
extended with those, the main advantage being developer’s freedom to choose whichever
extension he prefers.

2https://www.djangoproject.com
3https://flask.palletsprojects.com

28

https://www.djangoproject.com
https://flask.palletsprojects.com

1GET /api/athlete HTTP/1.1
2Host: www.platform.com
3--------------------------------
4HTTP/1.1 200 OK
5Last-Modified: Thu, 10 Jan 2021 01:45:22 GMT
6Content-Type: application/json
7{
8"athletes":
9[
10{
11"id": 1,
12"name": "John Doe",
13"skill_level": 3
14},
15{
16"id": 2,
17"name": "Martin New",
18"skill_level": 2
19},
20]
21}

Listing 5.1: HTTP GET request & response

From the perspective of web framework features, a Python REST API server back end
requirements are mainly the following:

1. Routing of API endpoints to the corresponding request processing methods.

2. Authorization of a user to verify client’s identity.

3. Authentication of a user with each request sent. This is required given the statelessness
requirement of REST discussed in Section 5.1.

4. Database access to be able to persistently store data to be processed.

Flask micro framework was chosen based on its rather shallow learning curve compared
to the full stack frameworks like Django. Therefore, the rest of this section will be devoted
to possibilities that Flask offers in this regard. But before diving into that, a protocol
ensuring smooth communication between a web server and a Python application has to be
introduced.

Web Server Gateway Interface

Python Enhancement Proposal (PEP) 333 [14] presented a standardized interface between
Web servers and Python Web frameworks/applications, called Web Server Gateway Inter-
face (WSGI). This interface is supported by all Python frameworks, aiming to provide [3]:

• relatively simple yet comprehensive interface capable of supporting all (or most) in-
teractions between a Web server and a Web framework

• support for middleware components for pre- and post-processing of requests

29

Flask

WSGI protocol is used to pass all the HTTP requests from client to a Flask application
instance that is instantiated as follows:

1from flask import Flask
2app = Flask(__name__)

Once the application is started using app.run() command, it enters a loop and waits for
the incoming request to be processed. Flask engine has to keep a mapping of URLs to
Python functions in order to know what code should be run for each URL requested. This
mapping is called a route and can be used via the app.route function decorator as follows
[20]:

1@app.route(’/’)
2def homepage():
3return ’<h1>Hello World!</h1>’

This way of mapping ensures that when a user enters http://www.myflaskweb.com/news
into a web browser, Flask routes this GET request using WSGI protocol to a Python func-
tion decorated by app.route(’/news’). Also, this decorator accepts a second parameter
methods that is used to enumerate HTTP methods that will be accepted at this URL (end-
point). If omitted, its value defaults to GET method. If multiple methods are provided,
the decorated function is called for all of them and a developer is able to implement actions
depending on the request type within the same view function.

To facilitate request processing, Flask application context is available within those deco-
rated view functions. For example, details of the currently processed request can be accessed
via the request variable. Context variables are accessed in a similar way as the global ones,
even though they are technically not global due to a multi-threaded nature of a web server.
Once started, a web server launches a pool of threads and selects a thread to process an
incoming request. As Grinberg notes [20], each such thread needs to have access only to the
specific request currently processed which is exactly the object the request context variable
refers to.

It is entirely feasible to implement a REST API server using the Flask features described
above. The process would follow this pattern for each API endpoint:

1. Creating a view function and decorating it with the endpoint URL as well as enumer-
ating all the HTTP methods this function is able to handle.

2. Bearing in mind that each view function implements behaviour for all stated HTTP
request methods, the function is likely to be branched into many directions - a GET
request on a specific endpoint should probably trigger very different actions to its
POST counterpart.

3. Each view function returns HTTP status code that is processed by the WSGI engine
and returned to the client. Along with it, especially in case of a GET request, it
returns a representation of a resource requested by the client, most often a JSON
object.

This approach might be suitable for very simple APIs where number of endpoints and
resources is rather low and obtaining resources’ representations is not computationally
complex. For a more complex Flask REST API project, such as the one built within this
work, however, it might be better to take advantage of a specialized extension tailored for

30

this purpose. One of such extensions is called Flask-RESTful and will be described in the
last part of this section. But before that, it is important to know how resources and their
representations will be represented in various parts of the application. This is a task for
the SQLAlchemy Python module and the Flask-SQLAlchemy extension.

SQLAlchemy

SQLAlchemy is a high-level open-source code library simplifying the process of working with
relational databases such as Oracle, DB2, MySQL, PostgreSQL, and SQLite for Python
developers. Its main mission is to abstract away all the peculiarities in working with
relational databases directly, enabling developers to seamlessly migrate from one database
system to another. Copeland summarizes [9] SQLAlchemy’s two-mode operation as follows:

1. SQL Expression Language (SQLAlchemy Core) providing only a very light abstraction
on top of SQL and preserving the schema-centric way of thinking about relational
databases and querying their content.

2. Object-Relational Mapping (ORM) providing a high-level approach to data manage-
ment with main focus on the domain model of the application and more idiomatic
way of querying the database, known also from ORM frameworks from other popular
programming languages.

These two modes are not mutually exclusive - quite on the contrary. ORM mode is
built upon the SQLAlchemy Core, meaning that a developer generally preferring the ORM
approach is able to switch into the schema-centric one whenever a situation requires it.

As the API resources of the server implemented within this work are managed using the
SQLAlchemy ORM system, it might be helpful to analyze an example of a player entity
and its setup and processing using the framework. This insight is provided by Listing 5.2.
Especially noteworthy is line 15 with its idiomatic and, often referred to as ”Pythonic“,
way of querying the database.

1from flask_sqlalchemy import SQLAlchemy
2...
3db = SQLAlchemy(app)
4class Player(db.Model):
5id = db.Column(db.Integer, primary_key = True)
6name = db.Column(db.String(100))
7skill_level = db.Column(db.Integer)
8

9def __init__(self, name, skill_level):
10self.name = name
11self.skill_level = skill_level
12...
13player = Player("John Doe", 5)
14db.session.add(player)
15skilled_player = Player.query.filter_by(skill_level > 4).all()

Listing 5.2: Database entity setup and processing in SQLAlchemy.

31

Flask-RESTful extension

Flask-RESTful is an extension for Flask that simplifies building REST APIs. Its key
building block are resources that built on top of Flask pluggable views4. Resources are
represented by classes extending flask_restful.Resource class. That way, as Flask-
RESTful authors [23] note, a developer is easily able to access all HTTP methods requested
at a given endpoint just by defining methods of corresponding names on those resources.
Listing 5.3 demonstrates this concept. Similarly to Flask, Line 8 shows that you can return
a (iterable, response code) tuple and the back end automatically converts it into a proper
HTTP response with the provided status code.

1from flask_restful import Api
2from flask_restful import Resource, reqparse
3class Player(Resource):
4parser = reqparse.RequestParser() # For request body parsing
5parser.add_argument(...)
6

7def get():
8return { ’players’: [{’name’: ’John Doe’}] }, 200
9def post():
10data = Player.parser.parse_args()
11# Process data dictionary containing a parsed request body
12

13app = Flask(__name__)
14api = Api(app)
15api.add_resource(Player, ’/api/player’)

Listing 5.3: Flask-RESTful in practice

Building a Flask REST API

A combination of Flask framework core along with its SQLAlchemy and Flask-RESTful
extensions constitutes a powerful tool for building a flexible and easily maintainable REST
API server. Synthetizing knowledge of Flask high-level principles and a typical usage of
both extensions as demonstrated in Listing 5.2 and Listing 5.3, it is reasonable to approach
the implementation as follows:

1. Every resource (endpoint) is represented by a class extending flask_restful.Resource
class

2. In general, following methods are generally implemented within the resource class,
though some of these might be skipped:

• get for obtaining representations of the resource
• post for resource representation creation
• put for updating the resource representation
• delete for resource representation deletion

3. Each of the methods representing HTTP methods might be regarded as views in
Model-View-Controller architecture.

4http://flask.pocoo.org/docs/views/

32

http://flask.pocoo.org/docs/views/

4. These views are calling controller’s API to perform a desired action with the data
relevant for the given resource. Controller is representing a layer between these views
and the model layer, encapsulating implementation of underlying data processing and
therefore keeping the views codebase as simple as possible.

5. The model layer models the underlying entities as Python objects extending SQL-
Alchemy’s ORM base classes. This mechanism enables leveraging of SQLAlchemy
APIs for querying the actual database engine.

5.3 Application Front End Technologies
The last section focused on REST API and server back end fundamentals to lay the ground-
work for implementation of Platform’s data management engine. This section aims to
provide the same basis for Platform’s user-facing applications. To begin with, reasons for
selecting TypeScript as the implementation language for Platform’s front end will be pro-
vided. Secondly, underlying principles of React JS framework will be introduced. And
lastly, this section will be concluded with an analysis of React Native as a derivate of React
JS for cross-platform mobile development.

TypeScript versus JavaScript

Traditionally, JavaScript has been a synonym for the front end web development. Starting
in an era where only a handful of dynamic elements were present on a web page, lately it
has been getting even greater traction with the paradigm shift towards the complex web
applications. Supposedly, that is why some of JavaScript’s features, or weaknesses, for that
matter, have recently started to cause inconvenience to corporations managing extensive
web-based applications.

The main weakness of JavaScript is the absence of type safety. For example, in statically-
typed programming languages, such as C++ or Java, the following expression is invalid due
to the obvious type incompatibility:

11 + []

JavaScript, on the other hand, silently evaluates the expression with the result being the
string ”1“. Instead of throwing an exception, or at least signal a warning, it does its best
to evaluate it, even though this expression makes no actual sense. Crucially, this type of
errors is not identifiable until the application’s runtime. As Cherny [5] states, this creates a
very large time gap between the moment when an error is made and when it is discovered,
wasting a lot of development effort.

TypeScript was introduced in 2012 as a type layer above JavaScript aiming to prevent
these and similar situations from happening. Let us analyze its compilation process de-
scribed on Figure 5.3. Firstly, TypeScript compiler compiles TypeScript into an abstract
syntax tree (AST) which is consequently type-checked by the typechecker. This process
often happens directly in developer’s IDE without needing him/her to compile the code,
let alone to run it, strongly facilitating prompt error fixes. Having passed the type check,
TypeScript AST is compiled into plain JavaScript. From this point on, the process con-
tinues as it normally does for vanilla JavaScript with the crucial distinction that all of the
type-related errors were already eliminated without running the program even once.

Based on the reasons above and despite placing additional type management burden
on a developer, TypeScript development has proven to be more time-efficient. For un-

33

Figure 5.3: Compiling and running TypeScript. TypeScript compiler compiles TypeScript
into an abstract syntax tree (AST) which is consequently type-checked by the typechecker.

Having passed the type check, TypeScript AST is compiled into plain JavaScript. [5]

derstandable reasons, this holds especially true when dealing with large-scale applications.
Therefore, it has been chosen as a programming language for development of Platform’s
both web (ReactJS) and mobile (React Native) front end clients.

Asynchronous JavaScript And XML (AJAX)

The very same simple principles of HTTP request and response described in earlier sections
that enabled the rapid proliferation of the Web in 2000s posed a serious challenge for web
interaction designers. At that time it seemed technically impossible to reach levels of
smoothness and responsiveness provided by the user interfaces of desktop applications due
to the inherent nature of HTTP communication. As Garrett [19] notes, most user actions
in the web user interface triggered a HTTP request back to a server whose task was to
respond with the HTML code of the page that should be displayed to the user based on his
action. Most importantly from the user experience perspective, the synchronous nature of
this communication implied that the only thing the user could do in the meantime was to
wait.

The first and most important step towards solving this issue was the introduction
of AJAX (Asynchronous JavaScript And XML), which implemented asynchronous client-
server communication by adding an intermediary – AJAX engine – between the user and
the server. In this scheme, a user action generates a call to AJAX engine instead of di-
rectly generating HTTP request. Often, this call can be a simple request to validate form
data, not requiring any server action whatsoever. If resolving the request requires server
communication, the AJAX engine takes care of creating the corresponding HTTP request
without stalling a user’s interaction with the application, as noted by Garrett [19].

5.3.1 React

Taking advantage of AJAX introduction, Single Page Applications (SPA) have been gaining
momentum in front end web development since 2010. Contrary to the traditional browsing
model described above, SPAs interact with user by dynamically rewriting only a single one5

with the data provided from the server.
5Precisely speaking, usually there is a comparatively low number of base pages, not just only one.

34

Taking advantage of AJAX, multiple frameworks facilitating SPA creation in an more
efficient manner than vanilla JavaScript and JQuery were developed - among others An-
gularJS or Ember.js. All of these frameworks, however, are inherently limited from a
performance perspective due to the way they approach Document Object Model (DOM).
In essence, interactive web pages are created using DOM manipulation. First generation
of SPA frameworks reloaded the whole DOM with each its update, regardless of its size,
wasting a lot of memory and lowering the performance.

With DOM reload representing the front end performance bottleneck, one of the key
features of React is its Virtual DOM. It serves as a layer between the JSX description of
the page defined by the developer, i.e. what the page should look like, given the application
state at that point in time, and the actual steps that are needed to be taken in order to get
to the layout desired. This process is depicted in Figure 5.4. The main purpose of Virtual
DOM is to ensure the smooth user experience by calculating the smallest set of required
changes possible to end up with the layout required by the new application state.

Figure 5.4: React Virtual DOM, serving as a layer between the JSX description of the
page defined by the developer, i.e. what the page should look like and the browser DOM

manipulation necessary to get the result required. [15]

Contrary to the first generation of SPA frameworks, which were aiming to cover multiple
parts of the Model-View-Controller paradigm, Wieruch [36] stresses React’s sole focus on
the View part. From an architectural standpoint, React application is composed from
hierarchically organized reusable components, each of which provides a rather small piece of
HTML mark up of the resulting page. A HTML code output of a component is generated,
as nicely put by Eisenman [15], using a mixture of JavaScript and XML-esque markup,
known as JSX.

JSX is a syntax extension of JavaScript. It is essentially an implementation of React’s
paradigm to embrace the fact that rendering logic is inherently coupled with other UI
logic. Event handling, state changes, preparation of the data for display are all inherently
intertwined. Therefore, JSX implements a separation of concerns rather than a separation
of technologies paradigm.

There are two basic approaches towards implementing React components. They can be
implemented either as:

35

1. classes extending React.Component class from React and implementing its render
method, or

2. functional components that are ordinary TypeScript functions with a JSX object as
a return value.

Recently, React community has been recommending the functional approach, especially
with the introduction of hooks6 that cannot be used in the class one. Listing 5.4 shows
a common structure of a React application implemented functionally, while lines 9 - 12
demonstrate a typical JSX return value of a React component.

1import React from ’react’
2

3type PlayerProps = {
4name: string
5skillLevel: number
6}
7

8const Player = ({ name, skillLevel }: PlayerProps) => {
9return (
10<h1>Hello, {{ name }}!</h1>
11<p>Work harder, your skill is only {{ skillLevel }}!</p>
12)
13}
14

15function App() {
16return <Player name="Adam" skillLevel=3 />;
17};

Listing 5.4: Simple React TypeScript application. A functional component Player, taking
props arguments according to the predefined interface and returning a JSX value.

5.3.2 React Native & Multiplatform Mobile Applications

React Native (RN) is a JavaScript library for cross-platform mobile development based on
React JS, created by Meta Inc. (Facebook Inc.) in 2015. The introduction of React Native
enabled a large community of web front-end developers to write mobile applications that feel
like being written natively with low additional study overhead compared to native mobile
development. Additionally and crucially, cross-platform development enables developers to
target audience in both main mobile platforms iOS and Android with just one codebase,
requiring only relatively minor platform-specific adjustments.

React Native was developed taking advantage of is React’s Virtual DOM. While preced-
ing paragraphs related to web application rendering praised its performance implications,
it is its power of abstraction that really stands out. Being the abstraction layer between
developer’s code and the actual rendering process, Eisenman points out [15] that React
already “understands” what your application is supposed to look like. Therefore, it can be
linked to whatever target platform (rendering engine) at hand, provided there is a bridge
implemented for it. This capability was exploited by a group of engineers at Meta, Inc., who
implemented a bridge between JavaScript and the native rendering engine (iOS/Android)
to render native mobile views, effectively creating React Native framework.

6https://reactjs.org/docs/hooks-intro.html

36

https://reactjs.org/docs/hooks-intro.html

Analyzing the architecture of React Native, three main communicating building blocks
can be identified, as depicted on Figure 5.5:

• JavaScript part handling the app logic and sending objects (properties that need to
be reflected in final layout, function callbacks) to Native part,

• RN bridge providing the interface between JavaScript and Native parts, and, finally

• Native part taking care of rendering native UI elements and sending events back
over the bridge to the JS part

Figure 5.5: JavaScript side handling the application logic, the Native part rendering the
native UI elements and the RN bridge providing the interface inbetween.

Once an app is launched, its main (UI) thread is launched by the operating system
(iOS/Android). Afterwards, as Cook [8] describes, the JavaScript and the shadow thread
are started by the main thread. The mobile view defined in JavaScript (using JSX) is
calculated in the shadow thread and finally sent to UI thread for rendering.

For example when a text needs to be changed in the UI, its new contents are serialized
to be sent over the bridge. Simultaneously, it might be required to disable a button. All
these updates are batched together and sent to the native side at the end of each iteration of
JS event loop7. The payload of the message sent over the bridge can be virtually anything –
for example serialized function callbacks that should be triggered after a specific UI event.
Since the UI knows there is a callback associated to the event, it lets the JavaScript part
know once that specific event happened. Actually, the UI can send the information about
an event even without specifying the recipient on the JS part, letting the event listeners
capture it themselves. This approach might, however, make debugging of the application
much harder and for example Cook [8] discourages developers from it.

7Event loop is the core concept of the JavaScript’s asynchronous programming. For more details please
refer to https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

37

Naturally, the benefits of implementing just one application for both two most impor-
tant platforms comes with a trade-off. From an performance perspective, communication
between the JavaScript side and the native UI over the RN bridge works flawlessly in most
applications that do not require heavy computational effort. As an illustration of a poten-
tial computational bottleneck let us assume an app displaying an infinite list of complex
animations provided as an example by Cook [8]. As a user scrolls down through the list,
these scroll events are sent from the UI into the JavaScript thread where appropriate ac-
tions are dispatched, the shadow thread recalculates the view layout and sends it back to
the UI. The volume of these messages sooner or later overwhelms the RN bridge’s capacity,
leaving the user with a blank screen.

Being derived from React JS, the React Native’s views are created by using previously
introduced JSX as well. Then, under the hood, as described by Eisenman [15], the bridge
invokes the native rendering APIs in Objective-C (iOS) or Java (Android). Contrary to
React JS, where the JSX gets converted into a HTML template, creating web views, mobile
UI generated by RN engine will be composed of native UI components, making the user
experience native-like indeed. The path from JSX into the actual generated UI can be
studied on Figure 5.6.

Figure 5.6: Rendering in ReactJS and React Native [15]. JSX return value converted into
a HTML template in case of ReactJS and into native UI elements in case of React Native.

Predictably, React Native’s different rendering targets manifest themselves in JSX re-
turn values of React functional components8. As shown in Listing 5.5 on Lines 5 - 9,
<View> and <Text> elements are generated instead of HTML’s <div> and <p>. Addition-
ally, whereas in plain React the styling of elements is usually kept in a separate CSS file,
reflecting traditional web development practices, in React Native the layout is defined us-
ing StyleSheet class from the React Native’s core, the instance of which is usually tightly
coupled with the styled component and kept within the same file.

8Or implementation of the render method in case of the React.Component class extension approach

38

1import React from ’react’;
2import { StyleSheet } from ’react-native’;
3

4export const GameExcerpt = (game: IGame) => {
5return (
6<View style={[styles.container]}>
7<Text style={[styles.name]}>{ game.name }</Text>
8</View>
9);
10}
11

12const styles = StyleSheet.create({
13container: { ... },
14name: { ... }
15});

Listing 5.5: An example React Native component. Styled by the StyleSheet class
instance and returning <View> and <Text> elements instead of HTML’s <div> and <p>

5.4 Application Deployment Technologies
There are various options to consider when planning to publicly deploy a Flask server API.
A developer can either use his/her own machine equipped with a HTTP server and a Python
interpreter or purchase services from one of the cloud server providers. Choosing the cloud
option, a developer usually aims to mirror the development one as closely as possible to
finally create development environment that is nearly identical as the development one.
Achieving 1:1 relationship is, however, usually hardly possible. As a result, different run-
time environments may lead to different application behaviour, which in turn significantly
complicates both development and debugging efforts.

Docker, a containerization open source project that started in 2013, has been developed
to protect developer community from this inconsistency, or, more precisely, to prevent it
from occurring altogether. Since Docker is used for deployment of Platform’s server API, the
following text introduces its high-level principles and indicates their potential applications
to solve the deployment task at hand. To publicly deploy a Docker container, it is necessary
to have an access to a Docker runtime provider. An example of such a service is the Elastic
Container Service, managed by Amazon Web Services (AWS), briefly discussed at the end
of this section.

Docker

Virtualization in general can be implemented taking two different approaches, clearly dis-
tinguishable by locating the computer architecture layer where it resides:

1. Hypervisor virtualization running on a physical HW via an intermediate layer. The
purpose of this layer, hypervisor, is to abstract computer hardware into software,
enabling multiple virtual machines to run on just one set of hardware.

2. Virtualization based on operating system’s kernel, providing an application deploy-
ment engine on top of a virtualized container execution environment, using the op-
erating system’s normal system call interface and thus requiring limited overhead, as
stressed by Turnbull [35].

39

Docker is an example of the second approach. Not suffering from the overhead imposed
by the hypervisor layer, it is a very lightweight and highly performant virtualization tech-
nique, providing developers with consistent development environments. There are two main
components within the Docker environment – images and containers:

1. Image is an immutable (read-only) template of the application environment, con-
taining a set of instructions for creating a container. This template defines all the
prerequisites for the specific application - its source code as well as all the dependen-
cies required. From the perspective of traditional virtualization, it can be regarded as
a snapshot of a virtual machine. A Docker image is defined in the Dockerfile. An ex-
ample, shown in Listing 5.6, demonstrates its layered structure. For example, Line 1
states that a Python image should be used as a base image, while each line represents
an additional immutable layer that should be stacked on top of the preceding one.

1FROM python:3.9.1
2EXPOSE 5000
3RUN mkdir /api
4WORKDIR /api
5COPY requirements.txt /api/requirements.txt
6RUN pip install -r requirements.txt

Listing 5.6: Dockerfile defining Docker image

2. Container represents an instance of an image completely isolated from the host
system. While all the layers stacked during the image creation are strictly immutable,
container creates a read/write copy of an image, leaving the original image intact, and
places an additional writable layer on top of those. Importantly, since the underlying
image is a copy, this writable layer adheres to the image immutability principle.

REST API containerized deployment

There are two main building blocks of a REST API - an application processing HTTP
requests and implementing all data processing logic and a database engine ensuring data
persistence. As they are independent, it might be reasonable to put each of them in a
separate image, making them run in a different Docker container. Fortunately, Docker
environment provides an utility called Docker compose that allows its users to run multi-
container Docker applications based on a single YAML9 file configuration. Using Docker
compose is basically a three step process [10]:

1. Setting up application environment using Dockerfile.

2. Defining the services that should run together, each in a separate container.

3. Launch the whole application setup using docker compose up. This command en-
sures that all the required images are either built or fetched and initiates the corre-
sponding application containers.

Listing 5.7 demonstrates a minimal Docker compose configuration for the two services
- an API server and its database. Each of this services needs to have its base image
provided. For the API application service, the basic semantics of its YAML configuration
is the following:

9YAML: YAML Ain’t Markup Language - https://yaml.org/

40

https://yaml.org/

1version: ’3’
2volumes:
3dbdata:
4

5services:
6api:
7image: api-image
8container_name: api
9build: .
10environment: # DB access
11links:
12- db
13depends_on:
14- db
15volumes:
16- .:/api
17ports:
18- "80:80"

19

20db:
21image: mysql:5.7
22container_name: flask_mysql
23environment:
24MYSQL_ROOT_PASSWORD: p
25MYSQL_DATABASE: server_db
26MYSQL_USER: u
27MYSQL_PASSWORD: passwd
28ports:
29- "6033:3306"
30volumes:
31- dbdata:/var/lib/mysql

Listing 5.7: Defining application &
database services in docker-compose.yml

1. Wait till the db container is instantiated and running (line 13).

2. Create an image named api-image based on the Dockerfile present in the current
directory (lines 7 - 9) and create a container named ”api“ running an instance of this
image.

3. Map the host’s port 80 to the port 80 in container10.

Contrary to the service representing the main application, the database service config-
uration is based on the prebuilt MySQL Docker image, maintained by the MySQL team
and available in Docker repository. During the first container launch, this image is down-
loaded and made locally available to consequent launches. In this case, host and container
ports are set to different values - the host port is set to 6033 in order not to interfere with
the 3306 port traditionally reserved for the MySQL communication. Practical implication
of this setting is a redirection of all traffic to the local 6033 port to the container’s 3306
MySQL port. While database data persistence is its essential feature, the immutable nature
of images along with the independence of container runs render any data persistence almost
impossible. This issue is resolved by mounting a dedicated host’s local data storage into
the container using volumes element as demonstrated on lines 30 – 31.

10tcp:80 is a network communication port reserved for HTTP communication - see TCP Port Number
Registry at https://www.iana.org

41

https://www.iana.org

Chapter 6

Amateur ice hockey organization
platform

While Chapter 2 summarized the status quo of the amateur ice hockey matches organiza-
tion and indicated the key potential inefficiencies, namely lack of goaltenders available for
amateur ice hockey games, the aim of this chapter is to emphasize the Platform’s approach
towards addressing it. Before doing that, it is reasonable to conduct an analysis of exist-
ing platforms that try to address some of the inefficiencies to identify their strengths and
weaknesses.

To conclude this chapter, an insight into Platform’s features is provided, such as the
lazy registration approach to facilitate user engagement or specifics of the follow mechanism
variant proposed for the Platform.

6.1 Analysis of existing services
There are multiple applications that foster organization of sport teams, be it amateur
groups or even more professional ones. Most of them, however, are focused on management
of a rather rigid group of people, i.e. a fixed number of players over time. When playing
amateur ice hockey outside of organized leagues, as discussed in Section 2.1, the groups
playing together tend to be all but rigid. A typical and in Czechia very popular platform
falling into this category is Týmuj.cz1, features of which are to be analyzed in the following
text.

In soccer, for example, there is an application introducing the on-demand element into
games organization, called CeleBreak2. Its features and user stories will be discussed in
the second part of this section as they might present a valuable source of inspiration for
introducing a variant of such an on-demand element into ice hockey organization.

Týmuj.cz

Týmuj.cz is an online platform for facilitation and management of sport teams. It is a prime
example of the approach mentioned above - with the focus on management of rigid teams,
a team being the main entity of the platform. The application usage scheme implemented
within the application can be summarized as follows:

1https://tymuj.cz/
2https://celebreak.eu/

42

https://tymuj.cz/
https://celebreak.eu/

• A team manager (coach) creates a team and invites another members into the team
via an e-mail link.

• Once the team is set up, team manager (or other person with administrative role)
creates events specific to the given team for which only members of the given team
can sign up.

• A team can be later joined by new players via an e-mail link.

As already mentioned, this approach is reasonable for groups where the amount of players
over the year/season remains fairly stable, i.e. the set of players attending games throughout
a year remains more or less constant. Put differently, games created within the team are
of no interest to external players. Especially managers and members of professional/semi-
professional sport teams can really leverage Týmuj.cz’s versatility of team management.

On the other hand, platform’s versatility inevitably implies that sport-specific needs
are either completely unsolvable or require cumbersome workarounds. Clearly, applying
these notably reduces the benefits Týmuj.cz offers for the team managers as well as for
the individual team members. For example, in Section 2.1, the importance of participation
of a pair of goaltenders has been discussed. Within Týmuj.cz platform, there is no way
to distinguish player roles. With goaltenders being the key components of any game, it
is important for an organizer to signal their presence to other players, making them more
likely to participate as well. Bearing this in mind, as a workaround, the team manager
might increase the desired required count of players for the game. Looking at Figure 6.1a
to provide an example, let us increase the participation limit from 20 to 22 players for the
goaltenders to be able to sign up. Since these two additional places are not role-bound, two
issues inevitably arise:

1. Without sufficient prior knowledge of the group on a personal level, a player is not able
to recognize goaltenders in the list of attendees. Therefore, assuming no goaltender
participation, he might decide to skip the game altogether.

2. Adding two extra places for goaltenders effectively removes the organizational conve-
nience of an automatic participation limit. The organizer has to make sure that no
other player signs up for the event as soon as player count reaches a desired level,
while players themselves are technically still able to join.

Additionally, as already stated, the games are by definition private, i.e. visible to only
members of the team. Putting private events (such as team training sessions) aside, this
barrier might unnecessarily prevent the demand for amateur hockey3 from being realized.
Equivalently, games are played with the sub-optimal amount of players, effectively prevent-
ing the market from reaching its equilibrium. In context of Týmuj.cz, this barrier can be
overcome only by extending your team’s roster, i.e. by inviting every external player into
the team by e-mail, even if he never joins your games again. Looking closely at Figure 6.1c,
specifically HC Walkers and HC Kyru teams, this is exactly what has been happening in
practice. Their roster has risen up to 62 and 63 players, while at least quarter of it will
probably never play in this group again.

As already mentioned, it is very cumbersome and inefficient to manage goaltenders using
the platform, Even more importantly, it does not help an organizer to find any. Analogically
to the players’ market, there is a market for amateur goaltender’s services at a specific time

3Set of players willing to play amateur hockey at a given time and place.

43

and place. Increasingly often, its existence manifests itself in current trend of financial
compensation for amateur goaltenders (see Section 2.1 for relevant discussion). This aspect
of ice hockey games organization is not facilitated neither by Týmuj.cz nor by any other
existing platform.

(a) All upcoming games (b) Game detail (c) All teams the user is member of

Figure 6.1: Týmuj.cz mobile application screen captures: List of all upcoming games for
the logged in user, Game Detail displaying details of one specific games and lastly a list of

all teams the user is member of.

Celebreak

As opposed to Týmuj.cz, a quick glance on the screenshots contained in Figure 6.3 reveals
that CeleBreak completely ignores the idea of teams. It rather adopts the ad hoc approach
of attending games, meeting the need of an amateur player to be time flexible, as discussed in
Section 2.2. Match organization within the CeleBreak platform has the following properties:

• All the games are organized by a CeleBreak Match Host, so all the burden related to
a game’s organization lies on the CeleBreak team.

44

• Being the game organizer, CeleBreak is able to request an upfront payment for the
participation, significantly increasing the probability of actual attendance of all the
signed-in players. Player are able to cancel their attendance 15 hours before the game
with 0% fee, automatically obtaining game credits available for them to spend in any
other game. Later attendance cancellation automatically implies a 100% cancellation
fee.

• A user is able to find a game based on soccer fields’ location. This feature is especially
convenient in larger cities where commutes to and from a game might be a decisive
factor whether to actually attend or not. On a similar note, the Game Details screen
provides a map with the location of the soccer field.

Figure 6.2: CeleBreak - user profile
with the overview of played games a

user’s streaks and achievements.

To motivate users to attend as many games
as possible, CeleBreak also provides Games played,
Streaks and Achievements overview as depicted on
Figure 6.2. In this regard, Týmuj.cz only offers the
participation percentage figure, calculated as a ra-
tio of attended games and all the games organized
within a single team.

From the perspective of the Platform developed
within this work, especially CeleBreak’s organization
scheme is worth further analyzing. Organizing games
by the Platform’s support team would potentially
generate two very important benefits described be-
low.

Payment flow control. Requiring all players to
pay for the match via the Platform would enable it
to charge a small fee to cover operational expenses.
Simultaneously, it would ensure that all players sign
up for the event via this channel, requiring them to
install and use the app in the first place.

Player skill level relevance. One of the selling
points of the Platform is its capability to reflect the
skill level of the players by advertising what kind of
players are expected to join the game. Naturally,
this is a very abstract and subjective concept. A
player is expected during the registration to subjec-
tively evaluate his skill on a scale one to six and is
later expected to attend games that correspond to
his/her skill level, while this number is subjectively
preset by the game’s organizer. Keeping the games
organization in-house would gradually enable the Platform’s team to objectify this crite-
rion, at least to a limited extent, by adjusting the skill levels of players based on a physical
presence at a game.

Game statistics gathering. Being able to gather more detailed statistics of the game,
such as goals or goal assists, and consequently to evaluate players over long term based

45

on these figures, would be another significant selling point of the Platform. Providing this
feature while leaving the statistics gathering task in the hands of the community would,
however, render it completely irrelevant. Thus, a presence of Platform’s organizer is manda-
tory.

Despite all the benefits described above, there is, unfortunately, a very significant draw-
back related to this organization scheme. Naturally, organizing the games in-house would
require one person to always be present at the games to facilitate its organization and
gather the data, significantly raising its operational costs. Even more important are the
implications for the Platform’s business model. With every new city added an additional
Platform’s representative would be required, limiting Platform’s scalability, as the addi-
tional revenue coming from the new customers would be partially offset by the rise of the
fixed costs related to this new employee.

(a) All games in the selected city (b) Game detail (c) Game search based on location

Figure 6.3: CeleBreak mobile application screen captures: A list of all soccer games
organized by CeleBreak in the selected city. Game Detail of a specific game. Overview of

all soccer games organized by CeleBreak in the selected city grouped by the specific
location.

46

VašeLiga.cz

VašeLiga.cz is a subscription-based platform organizing virtual leagues in individual sports
like badminton, squash and tennis. From a high level perspective, the platform’s core idea
is to provide a set of opponents from a pool of similarly-skilled players that a user plays
against over the course of a month. Results of these matches are then entered into the
platform and player’s skill is reevaluated accordingly. Additionaly, a part of the platform’s
business model is also organizing face to face tournaments. A workflow of a typical user of
VašeLiga.cz looks like this:

1. User chooses a city where he wants to play and estimates his skill.

2. At the beginning of each month, the platform generates 4 different opponents the user
should face within the upcoming 4 weeks.

3. With each of the assigned opponents, a match is arranged. Organizational details
are discussed with the specific opponent and the court is paid for by the players
themselves.

4. After the match, its results are entered into the platform.

5. At the end of each month, user moves into a pool of players with a higher or lower
skill depending on his results.

Similarly to the Platform proposed within this work, an important feature of VašeLiga.cz
application model is the athlete’s skill level. Whereas capturing player’s capabilities in team
sports can be a real challenge, always suffering from a subjective bias, the ”one on one“
nature of the sports supported by VašeLiga.cz enables it to base the skill characteristics on
an objective measure - results of the matches.

6.2 Facilitating a market of goaltenders and referees
As thoroughly elaborated upon in Section 2.1, there is an ongoing imbalance between the
supply and the demand for amateur ice hockey goaltenders. Despite being not as critical
as goaltenders, the same can be stated about amateur referees, making the reasoning below
partly applicable to them as well.

In simple terms, the free market economic theory states that an excess demand in a
competitive market generates incentives to rise the price of a given scarce commodity, which
eventually rises to the level where all the demand is satisfied and there is no excess supply,
establishing a market equilibrium in the long term. When this concept is applied on the
amateur ice hockey goaltender market, the supply is represented by a group of goaltenders
and the demand by the games requiring their presence at a given time and place.

A long standing consensus, not a market-driven equilibrium, has been that goaltenders
are compensated for their higher equipment costs by participating in the game free of charge.
Empirical evidence, such as a discussion with at least 10 different hockey games organizers
in Brno, suggested that each of them struggles to find goaltenders for their games, while
some of them pay their amateur goaltender up to 500 CZK per game while the rest is willing
to compensate an attending goaltender with lower hundreds of CZK.

This situation is a textbook example of an underserved market. What if, in the short
term, were all goaltenders systematically incentivised to attend the games and other players

47

even motivated to accept a goaltender in the longer term? For this to happen as efficiently
as possible, the market transparency is key and the Platform implemented within this work
is a perfect opportunity to facilitate the transition towards the market equilibrium. Ad-
ditionally, both organizers and goaltenders might have different time preference, naturally
implying a potential existence of different equilibrium compensation levels for different time
slots throughout the week – a challenge entirely solvable by the Platform by its very na-
ture via openly advertising all games at a given time and place along with their planned
goaltender/referee renumeration values.

6.3 Lazy registration
For an application like the Platform in question, the purpose of which is to provide a
marketplace for users’ interaction, each registered additional user generates a significant
value. To convince a user to actually perform the sign up procedure, however, can be a
challenge [33] – as as many as 54% of users abandon a website if the registration process
is too cumbersome. On top of that, 86% of users dislike lengthy forms so much they make
them quit registrations and almost 9 users out of 10 will simply enter incomplete or false
information if the sign-up process is too exhaustive or intrusive.

So even if the registration process follows all the best practices, the application is likely to
lose some of its potential users in the process. This is where the concept of lazy registration
comes into place. At its core, it is an approach of letting the users to explore the application
for themselves, engaging with it and seeing its benefits without requiring any sign-up effort.
Duolingo, for example, the language educational platform, lets the user finish a whole
language lesson before reminding the user to sign-up. And even then, instead of being
compulsory, the completed registration just unlocks additional features to the user, such as
achievement badges. Wroblewski [37] illustrates the impact of the lazy registration approach
in practice, mentioning Twitter’s sign-up process redesign in 2010 and the consequent soar
of their conversion rate by 29%.

At the first design stage of the Platform’s registration process, the sign-up process was
bound to happen before any interaction with the actual application was allowed. The user
was required:

• to enter his name, e-mail and the year of birth and

• to choose the roles in which he wants to participate in the games as well as estimate
his skill for the player and goaltender roles, if applicable.

Apparently, this approach of having all the required data available before letting the user
log in into the application significantly reduces application logic complexity. Additionally,
these requirements might even not seem that demanding at a first glance, so a notion of a
win-win situation can be established. This way, however, we are forcing user’s cooperation
without actually showing what he/she gets in return.

Learning a lesson mentioned above, it has been decided the Platform will apply the
principles of lazy registration. After navigating to the Platform in a web browser, a user is
offered the usual two options – either to log in as an already registered user or to register.
After choosing registration, the user is prompted for an e-mail for its later verification and
a password. Once this step is finished, the user has technically created an account, though
only with a limited functionality. Redirected to the second step, displayed in Figure 6.4,
the user is able to skip the profile finalization altogether and be redirected directly to the

48

Figure 6.4: Lazy registration implementation: a sign-up form in the second step of the
registration process. User can skip it and continue browsing in the Platform with a

limited functionality – the ability to attend a game is conditioned on having at least one
attendance role assigned.

Games Overview page from where he/she can navigate all over the Platform. Without a
finished registration, it is not possible to neither to attend a game, nor to set up a follow
relationship to another athlete.

6.4 Game attendance management principles
This section is dedicated to the exploration of the game attendance management principles;
specifically the proposed mechanism of attendance facilitation using a follow relationship
will be introduced. Provided the user has assigned himself/herself the desired attendance
roles, there are multiple ways available to sign up for a game:

1. To choose a game using the Attendance Shortcut Selector by just analyzing basic
features of the game in the Games Overview.

2. To attend a game using the Attendance Selector in the Game Detail.

3. To attend a recommended game in a manner similar to the two described above.

4. To be added to a game by an organizer automatically, provided the user follows him
in the opt-out mode

As already discussed in Chapter 2, given the high requirements of amateur ice hockey
on the player head count, it is, based on author’s experience, as well as on the experience
of 9 other seasoned organizers, a real challenge to build a group of people large enough
to ensure that every game is properly manned. Hence the need for a Platform to mediate

49

the missing ad hoc players. That said, there is also another subset of players, representing
approximately a third of the expected attendance count, which is present at 9 games out
of 10. If the Platform facilitates the game attendance management for the ad hoc players,
as important as they are for the game, the regular dedicated players should perhaps not
be forgotten about, either. Arguably, there should be a way to simplify the attendance
procedure for them and the organizer himself as well.

Moreover, the importance of the social aspect of a game cannot be underestimated,
either. When choosing between multiple otherwise similar games, a player will always
choose by a large margin the one attended by the most people he knows or who he enjoys
to play with the most. The solutions for both of these recently introduced challenges are
presented in the two remaining subsections in this chapter.

6.4.1 Follow mechanism

Generally, there are two different ways to initiate a relationship with another user within
platforms with a social element, both of which express the wish to consume the content or
activities of the counterpart. As summarized by Yu-Hao and Chien [24], this tie can be
either:

• a symmetric one when a person sends a request to another person, and that individual
needs to accept the request for mutual information disclosure, often referred to as
friendship or

• an asymmetric one in case a user follows another person without requiring the other
party’s approval.

To keep the application logic from the perspective of the user as straightforward as
possible, the second variant has been selected for the Platform’s purposes. The use case
for the follow relationship has already been discussed in Section – in the Athlete Overview,
a user can initiate a follow relationship with a person he/she wants to play with or whose
games he/she wants to attend. Having initiated the relationship, a user can see the list
of the followed athletes in the User Profile and potentially unfollow these4. The follow
relationship setup directly influences the Dashboard page, specifically the Might Interest
You component as its purpose is to search for the games with the biggest amount of the
followed athletes and to render them with the most interesting games at the top.

6.4.2 Opt-in vs opt-out

The Platform’s follow mode described in the previous section is further divided into the two
modes, determining the strength of the follow relationship, both of which influence solely
the possibility of an automatic sign up for a game:

• the default, opt-in mode is just a standard follow relationship with no further impli-
cations, and

• the opt-out mode encompasses a standard follow relationship with a transfer of the
game sign up rights towards the followed athlete.

Following in the opt-out mode, i.e. letting the trusted organizer to sign an athlete for
a game without any further action required, is a feature aimed at organizers and those

4Unfollow action can be performed in the Athlete Overview as well

50

dedicated regular players discussed above. The occurence of the activated opt-out mode
is going to be rather scarce among the set of followed athletes – letting an organizer to
perform an automatic sign up on user’s behalf is a sign of a substantial levels of both
mutual trust and user’s resolve to attend the vast majority of the games organized by that
specific organizer. In the end, by signing an athlete automatically for a game, an organizer
is exposed to a risk of athlete’s ignorance, resulting in an absence without cancelling the
attendance in advance. For this reasons, every time a new follow relationship is established,
opt-in mode is the default one. Activating opt-out mode is a matter of clicking a single
toggle switch either in Athlete Overview or in the User Profile page. From an application
business logic perspective, this action results in the availability of the follower in the athlete
search results for a given organizer in the New Game Attendance form (as depicted in Figure
4.8).

51

Chapter 7

Implementation

The aim of Chapter 5 was to lay the technological foundations for the Platform implemented
within this work. Its content was structured according to its main building blocks – a
REST API server, a web application implemented in React TypeScript framework and
a cross-platform mobile application leveraging the React Native framework. The same
structure is going to prevail in this Chapter, describing the actual implementation of the
three mentioned pillars.

Because of the expected user base structure, reflected by the Personas defined in Chap-
ter 3 and given the amount of effort required by the design phase, the focus of the imple-
mentation phase has been on the web application’s core features implementation, supported
by the development of all the API business logic necessary. That said, a groundwork for
the development of the cross-platform mobile application was laid nonetheless, as explained
in Section 7.3.

7.1 REST API server
The Flask microframework written in the Python programming language, whose properties
and features were thoroughly discussed in Section 5.2, has been selected for the implemen-
tation of the REST API server. The following subsections are dedicated to selected aspects
of its implementation, namely:

• API server architecture and its main features

• User authentication process necessary for restricting the requests only for authorized
users

• API endpoints available for client front end applications

7.1.1 Architecture and main features

From the technological perspective, the API server is built upon the following pillars

• Flask microframework facilitating the client requests processing via its WSGI engine
introduced in Section 5.2.

• Model-View-Controller (MVC) architecture, the favourable implications of which en-
compass a modular code structure and a straightforward extensibility, maintenance
and testing.

52

• Object-relational mapping of entities using the SQLAlchemy Python library.

• A data seeding script exploiting the SQLAlchemy’s API to seed the database in a
way which mirrors the real life reality as closely as possible.

• Docker and Amazon Elastic Container Service (ECS) integration ensuring fast auto-
matic redeployment.

Model-View-Controller

As its name suggests, the MVC is an architectural pattern dividing the application into
three main logical components: the model, the view and the controller. Contrary to other
design patterns, however, as noted by Bucanek [1], the MVC is less clearly and strictly
defined than many other patterns, leaving a lot of latitude for alternate implementations,
basically being more a philosophy than a recipe. The server API discussed within this work
adopts the MVC philosophy. Manifestations of the MVC components in its architecture
can be found represented as files in the file tree structure depicted in Figure 7.1. Using the
MVC terminology, they can be described as follows:

• Model as layer holding raw data and providing the APIs to query the underlying
MySQL database engine, represented by the app/core/model/models.py file further
discussed in the next section.

• View as layer processing the incoming and outgoing HTTP requests, representing
the actual resources and implementing their corresponding API endpoints. Their
implementation can be found in the app/resources directory.

• Controller as a middle layer containing the business logic for calculating the content
to be wrapped in the outgoing HTTP request by the View layer based on the input
also provided by the View layer. The corresponding implementations can be found in
the app/core/models/*_handler.py files.

Used entities and their ORM representation

Entities used within the application logic are encapsulated in the corresponding model
classes defined as children of the base SQLAlchemy class that provides all the APIs re-
quired for querying the MySQL database engine. A comprehensive list of semantically de-
scribed models located in app/core/model/models.py with their corresponding database
table names available in Figure 7.2 follows:

• GameModel (game) represents a game entity, contains all the relevant attributes
such as the start time and the expected skill as well as the 1:1 relationship to
IceRinkModel referencing a game location.

• AthleteModel (athlete): represents an athlete entity with all its important attributes

• AnonymousAthleteModel (athlete_anonymous) represents an anonymous athlete
entity added within a game, referencing GameModel as the game for which the athlete
has been added and the AthleteModel as the id of the athlete who added him/her.

• IceRinkModel (icerink) represents ice rink entity and stores its properties, most
importantly its rent price.

53

puckee-api

app

alembic/

core

model/

athlete_handler.py

attendance_handler.py

game_handler.py

icerink_handler.py

models.py

seed.py

resources

athlete.py

auth.py

base.py

game.py

game_participants.py

icerink.py

utils.py

Dockerfile

docker-compose.yml

docker-compose-aws.yml

Figure 7.1: Highlighting the core components of the Platform’s API server directory
structure, reflecting the Model-View-Controller architecture. Resources directory contains

the implementation of the API endpoints handling (View), while ∖*∖_handler.py files
implement the actual business logic (Controller) and are called from the Views. The file

models.py contains the ORM representation of the application entities (Model). The
seed.py file utilizes the Models to fill the database with the relevant mock data.

Dockerfile defines the API Docker image and docker-compose.yml files ensure the
connection of the API container to the underlying MySQL database Docker container,

with the docker-compose-aws.yml containing additional settings required when
deploying the container to Amazon Elastic Container Service.

54

• AthleteRoleModel (athlete_role) represents athlete role entity, the corresponding
table is filled with values user, player, goaltender and referee.

To be able to capture the M:N relations among the entities, as for example required in
case of players/goaltenders/referees attending a game, or the 1:N relations as needed for
athlete roles, SQLAlchemy’s relationships were introduced to the corresponding models.
These relationships are based on the association tables generated using the SQLAlchemy
Core APIs, i.e. using a thin wrappers around the traditional SQL syntax instead of lever-
aging the ORM feature.

This raw association table approach, however, does not work as required by the ORM
engine when an additional attribute has to be stored along with the mapping. For example,
looking at the followers table in Figure 7.2, it contains two foreign keys referencing the
athlete table determining who follows whom as well as an additional attribute determining
the type of the follow relationship. Using the SQLAlchemy Core approach, it is not possible
to later access the attribute using the standard ORM queries. Therefore, in this specific
case, an association model instead of table had to be used to set up the follow relationship.

Mock data generation

The development of a data-intensive application such as the Platform requires large sets of
data to be efficient. Without a continuous corner cases testing, exceptions are being thrown
as late as in the user testing phase, instead of much earlier during the development phase
on a developer’s machine as the code is being written.

Bearing in mind the importance of having a large dataset at the developer’s disposal,
a significant effort was put into developing a data seeding script (stored in the file app/
core/model/seed.py as shown in Figure 7.1). There are multiple parameters related to
the distribution of the athlete roles and the game participants counts, which influence the
database seeding process – a comprehensive list of all those is listed in Table 7.1. As it
currently stands, this script is run with every database initialization, i.e. as part of the first
Docker Compose launch, initializing the API and MySQL database containers.

7.1.2 User authentication

A vast majority of the Platform’s API endpoints deal with the processing of user actions
or providing data tailored for a given user. Therefore, a mechanism to verify the user’s
identity with every request is necessary. The authentication process is facilitated using the
JSON Web Token (JWT) – an open standard defining a compact and self-contained way
for securely transmitting information between parties as a JSON object (RFC 7519 [22]).
From the technological perspective, the actual authentication process, facilitated by the
Flask-JWT-Extended Python module, is as follows:

1. The Flask application’s secret key needs to be defined since the created JWTs are
signed with it.

2. Once a user is authorized, the success HTTP response contains an access token gener-
ated by the create_access_token() method provided by the Flask-JWT-Extended
module.

3. All the protected endpoints, i.e. get(), post(), put() and update() methods
implemented in resource files located in app/resources, are decorated using the

55

Parameter Value

Games total count 300
Athlete total count 400

Anonymous athlete total count 50
Player role occurence Randomly selected 2/3 of athletes

Goaltender role occurence period 5
Referee role occurence period 13

Count of followed players (min - max) 3 - 20
Opt-out mode occurence probability in a

given follow relationship 10%

Game participant counts ranges Minimum - maximum value

Organizers 1 - 2
Registered players 7 - 16

Unregistered players 1 - 4
Goaltenders 0 - 1

Unregistered goaltenders 0 - 1
Referees 0 - 1

Unregistered referees 0 - 1

Table 7.1: Data seeding script parameters: Two out of three athletes are players, every
fifth athlete is a goaltender, every 13th athlete is a referee. Every athlete follows 3 - 20

other athletes, while 10% of those are followed in the opt-out mode. There are 14-20
players attending a game on average, with one attending goaltender and one referee.

56

jwt_required() decorator which checks every incoming request for a presence of
the corresponding authorization header in the format:

Authorization: Bearer <access_token>

7.1.3 Available API Endpoints

There are 12 endpoints available within the server API, each of which has implemented at
least one of the methods corresponding to the traditional HTTP methods – the available
are the following: get(), post(), put() and delete(). The purpose of this section is to
describe their specific usage within the Platform’s context.

Athlete-related endpoints

1. /athlete: An endpoint serving the Athlete Overview by providing a paginated1 list of
athletes via its corresponding get() method, requiring page_id and per_page GET
request parameters.

2. /athlete/search: With only the get() method available as well, it returns a list of
Athletes searched by name. The required GET parameters are these:

• name: athlete name substring of an arbitrary length
• role_id: restrict the search only to athletes with a given role
• requesting_id: identification of the athlete performing the search for the follow

status determination

Additionally, two optional parameters can be passed as well:

• followers_only: restrict the search results to only the followers of the requesting_id
athlete.

• opt_out_mode: restrict the search results to only the followers following the
requesting_id in the opt-out mode.

3. /athlete/<follower_id>/follow/<followee_id>: An endpoint for setup, modifi-
cation and cancellation of the follow relationship from follower_id towards followee_id,
with the corresponding post(), put() and delete() methods implemented. post()
method requires boolean parameter opt_out_mode present in request body.

Game-related endpoints

1. /game: Analogically to the /athlete endpoint, this endpoint serves the Games
Overview by providing a paginated list of games. Its get() method also requires
page_id and per_page request parameters. On top of the methods available at the
/athlete endpoint, this one implements also a post() method for game creation,
requiring the presence of a JSON object describing the created game in the request
body.

2. /game/date: Implements only the get() method to fetch all the games taking place
between specified dates. Requires start_date and end_date parameters.

1As discussed in more detail in Section 7.2

57

3. /game/user/<athlete_id>: An endpoint implementing the get() method, used in
the My Upcoming Games component, listing all the games attended by the athlete
with a given athlete_id. The length of the returned list can be limited by an optional
parameter game_limit.

4. /game/user/<athlete_id>/followees: Analogically to the previous one, this end-
point also implements only the get() method for the purposes of the Might Interest
You Dashboard component.

5. /game/<game_id>: An endpoint for game modification, update and deletion imple-
menting the corresponding methods.

Game participants endpoints

1. /game/<game_id>/participants: An endpoint whose:

• get() method returns all registered as well as unregistered participants of a
game identified by the game_id. Requires the requesting_id parameter refer-
encing the requesting athlete for determining the follow status of all the returned
athletes.

• post() method adds a registered or unregistered participant in a specific role to
a game based on the athlete_id or the athlete_name parameters, respectively,
present in the request body. The athlete_role request body parameter is also
expected.

• delete() method removes a registered or unregistered athlete from a game based
on the corresponding GET parameters athlete_id or athlete_name.

2. /game/<game_id>/organizers/<athlete_id>: An endpoint for obtaining, adding
and removing game organizer identified by the athlete_id GET parameter. Corre-
sponding post() method requires game_id and athlete_id parameters, while get()
and delete() methods require only the game_id parameter.

Ice rink endpoints

1. /icerink: An endpoint whose get() method returns a list of all the ice rinks available
in the database including their properties.

2. /icerink/<rink_id>: An endpoint for fetching only one specific ice rink referenced
by the rink_id GET parameter.

7.2 React web application front end
Having described the implementation of the REST API server, encapsulating all the busi-
ness logic and providing data for the Platform’s user-facing applications, the following
content will take a deep dive into Platform’s front end, namely the web application imple-
mented using the React TypeScript library. At the start of the implementation phase, the
Platform has been assigned a name – Puckee. Therefore, from this point onward, it will be
referred to using this name.

58

7.2.1 Architecture

Starting from the very top level, as depicted in Listing 7.1, the application is created by
the React functional component called Puckee, which returns a JSX (recall Section 5.3.1
discussing React functional components). The parent element of this JSX is the div element
of the class App, following the usual naming convention in React applications. What follows
is a React component tree where each wrapper component has a specific purpose:

• NotificationsProvider: Creates a React context for notifications generation and
removal, to provide users feedback on their actions. This context is accessible in all the
child components throughout the application after calling the useNotifications()
hook2.

• AuthProvider: Creates a React context for the user authentication. This encompasses
information on the authentication status as well as the details of a logged in user. The
context is accessible in all the child components calling the useAuth() hook.

• Routes: Provided by the react-router-dom library for web routing, Routes and Route
are the primary ways of rendering a component based on the current URL location.
After a location change, Routes component iterates over all its child Route elements
to find the best match and renders the corresponding user interface branch.

• Route: Defines a path for which the specific React component will be rendered or,
alternatively, serves as a wrapper of a Route placed lower in the tree. In Puckee’s
instance, the wrapper feature is used to wrap the corresponding components in a
layout that is shared among multiple components. This wrapper Route renders a
Outlet which in turn renders the path-matching lower-level child component. For
example, AuthLayout component defines a layout specific for the login and sign-up
pages. Within this layout, the specific child components, such as the SignInForm or
the SignUpForm, are rendered based on the URL entered in a browser – /sign-in for
the former, /sign-up for the latter.

• RequireAuth: A wrapper leveraging the AuthProvider context to enforce the au-
thenticated status of a user who is trying to access a given path.

7.2.2 Sharing the front end code

As mentioned in the preceding text, the long term aim is to provide two fully-featured clients
for Puckee. Starting from the web client written in React TypeScript, it is a sensible choice
to use React Native as a platform for the mobile client. Although developing React Native
applications requires adopting a different paradigm in selected areas, such as navigation, the
overlaps are significant, saving a lot of development effort by reusing the learned knowledge.
Luckily, the knowledge is not the only thing that can be reused. The architecture of
both React and React Native applications is composed of many layers, the majority of
which can be shared. Examples of a shareable code might be (but are not limited to)
the NotificationsProvider and AuthProvider components introduced in the previous
subsection.

To ensure the shareability of the code, the monorepo approach towards repository man-
agement had to be adopted. A monorepo is a version-controlled repository holding multiple

2For more details refer to https://reactjs.org/docs/hooks-intro.html

59

https://reactjs.org/docs/hooks-intro.html

1import React from ’react’
2import ...
3

4export default function Puckee() {
5return (
6<div className="App">
7<NotificationsProvider>
8<AuthProvider>
9<Routes>
10<Route element={<AuthLayout />}>
11<Route path="sign-in" element={<SignInForm/>} />
12<Route path="sign-up" element={<SignUpForm/>} />
13<Route path="sign-up-details"
14element={<RequireAuth><SignUpDetailsForm/></RequireAuth>} />
15<Route path="*" element={<NoMatch />} />
16</Route>
17<Route element={<DashboardLayout />}> ... </Route>
18<Route element={<StdLayout />}> ... </Route>
19<Route element={<SearchLayout />}> ... </Route>
20</Routes>
21</AuthProvider>
22<Notifications />
23</NotificationsProvider>
24</div>
25)
26}

Listing 7.1: High-level component structure of Puckee web application, defined in
apps/web/Puckee.tsx. NotificationsProvider providing context for generating user
notifications, AuthProvider providing authentication context. Routes and Route from

the react-router-dom library for matching URL paths to the corresponding components to
be rendered. RequireAuth wrapper enforcing user’s authenticated status for its child

components.

60

related, often logically independent, projects3. From a high level perspective, Puckee’s
monorepo is divided into the three parts, all of which are identifiable in Figure 7.3:

• apps/web containing the codebase of the React web application.

• apps/mob where React Native mobile application’s source code is located.

• packages/puckee-common containing the modules shared between the web and mo-
bile clients.

While simply keeping the code in the same repository is a prerequisite when striving for
module shareability, it does not make the modules reusable from the application engine’s
perspective. This aspect is covered by Yarn workspaces. Yarn is a package manager devel-
oped by Facebook, Inc. (Meta, Inc.) and workspaces are one of its features, leveraging the
monorepo approach to make the mutual cross-referencing possible. In Puckee’s case, the
root-level package.json configuration file defines the two workspaces as follows:

{
"name": "puckee",
...
"workspaces": [

"apps/*",
"packages/*"

]
}

This setting makes every subdirectory of apps and packages to be a separate workspace
while ensuring that all the modules contained can be cross-referenced. For example, im-
porting a model class to a web application module from the puckee-common package is as
straightforward as:

import { Athlete } from ’puckee-common/types’

As analyzed in Section 5.3.2, the target of the React rendering engine is the DOM
of the webpage, whereas in case of React Native it is the native mobile view elements.
In the code, this is exhibited by a different content of the returned JSX values, where for
example div elements are substituted by their View counterparts. Also, inherently different
navigational paradigms of web and mobile applications require different handling of this
application feature in both platforms. Apart from that, in an ideal situation, code dealing
with the remaining aspects of an application can theoretically be shared. To achieve this
level of reusability, however, it is necessary to be familiar with the more advanced React
design patterns which were not studied as part of this work – making maximum possible
code reuse definitely a goal for future development. As it currently stands, the shared
puckee-common package contains the following directories:

• api containing athlete.tsx, game.tsx, icerink.tsx modules with all the required
API calls.

• auth defining the authentication context encapsulated into the AuthProvider and
RequireAuth components and the useAuth() hook described in the previous subsec-
tion.

3As a side note, React library itself is a prime example of monorepo repository

61

• context introducing the notifications context implemented in the Notifications-
Provider component and the corresponding useNotifications() hook also men-
tioned in the previous subsection.

• types defining the model classes representing the key application entities - Anonym-
Athlete, Athlete, Game and IceRink.

7.2.3 Asynchronous client-server communication

Asynchronous communication between a web client and a server poses multiple challenges,
such as data fetching, caching and server state update and its synchronization. Out of the
box, In React environment, these functionalities have been traditionally implemented using
various combinations of React core features, such as the state and the useEffect() hook
or via using general purpose client state management libraries, such as React Redux, to
handle and provide asynchronous data throughout the application. However, as shown by
Linsley [25], server and client states are inherently different, rendering the usage of those
state management libraries inappropriate. Namely, server state:

• requires asynchronous APIs for fetching and updating,

• implies shared ownership, and finally

• potentially becomes outdated in the application when handled improperly.

Based on author’s and his friends’ frustrating experience with other event management
platforms which suffered from improper handling of server vs. client state matters, resulting
in front end clients displaying clearly outdated data, it was evident that the importance
of its correct management cannot be overstated. In the beginning, Puckee web application
set out to use React Redux in a manner similar as described above. Later, its usage was
abandoned completely in favour of the React Query library, specialized in working with the
server state. It is used for asynchronous communication throughout the whole application.
In principle, its usage can be summarized as follows:

1. Data is fetched using the useQuery() hook which accepts, among others, these argu-
ments:

• Asynchronous function to perform the API request.
• Structured query key as a unique identification of the query.
• Additional parameters, such as a boolean to determine if a given query is active

or not.

2. Along with every relevant user action, there is a mutation defined using the
useMutation() hook, which creates a request (POST, PUT or DELETE) to be sent
and prepares a set of corresponding actions if the request:

• successes: Invalidate all the queries affected by this change by enumerating
their keys. These will be refetched lazily, i.e. once a component referring to
them is re-rendered.

• fails: Report a server API error and perform no further action.

62

While this scheme captures a majority of React Query use cases within the Puc-
kee web application, Games and Athlete Overview pages with their theoretically infinite
lists of items require different approach4. For this purpose, React Query provides the
useInfiniteQuery() hook implementing a pagination approach towards data fetching. In
addition to the parameters provided to the standard useQuery(), useInfiniteQuery()
requires methods to get the identifications of the next/previous pages to be requested, so
function callbacks facilitating this have to be provided as well. In essence, the asynchronous
communication works as follows:

1. useInfiniteQuery() sends a request to the game API endpoint, providing the GET
parameters page_id, identifying the page and per_page parameter, indicating the
desired length of the list to be returned.

2. The server returns a JSON response in the format:

{’next_id’: 2, ’previous_id’: null, ’data’: [...]}

3. useInfiniteQuery() processes the response data list and stores the next_id and
previous_id values, providing the next and previous page numbers, respectively.

4. If a next page is required based on user’s scroll effort, a new API request is sent
with the value of page_id = next_id. If the previous page is required in the Games
Overview based on the corresponding button click and if it actually exists, as ensured
by previous_id != null condition, a request is sent with page_id = previous_id.

7.2.4 Web client layout definition

Apart from the indispensable HTML code and a limited use of the plain vanilla Cascading
Style Sheets (CSS), the design of the web application as presented in the next subsection is
based on the following four pillars, each of which is described in the following paragraphs:

• Bootstrap

• CSS Grid Layout

• CSS Flexbox Layout

Bootstrap

Originating at Twitter in 2011, Bootstrap is an open-source CSS framework, containing
HTML, CSS and JavaScript-based design templates for all sorts of web interface compo-
nents. It contains predefined CSS classes for styling as well as for web page layout struc-
turing, leveraged in the Puckee web client mainly to prevent reinventing the wheel and to
avoid repetitive CSS classes definition. Additionally, as most of the data content within
the application is positioned using the Flexbox Layout CSS feature, Bootstrap classes
implementing its properties were used extensively.

4Actually, in case of Games Overview the list is bidirectionally infinite – a user starts from the present
day and browses through games both in the future and to the past.

63

1<div className="d-flex flex-column justify-content-between">
2<div className="d-flex flex-row justify-content-center flex-1">
3<div>A</div>
4<div>B</div>
5</div>
6<div className="d-flex flex-row justify-content-center flex-7">
7<div>C</div>
8<div>D</div>
9</div>
10</div>

Listing 7.2: Frequently occuring Flexbox layout usage pattern in Puckee web application.
Starting from the top level, the parent div defines a vertically-oriented Flexbox with its

direct child div maximizing space that separates them along the vertical axis.
Second-level div elements define horizontally-oriented Flexbox with their direct child div

elements centered along the horizontal axis.

CSS Grid Layout

CSS Grid Layout is a two-dimensional grid-based layout system. In the Puckee web appli-
cation, Grid Layout was used for the high-level partition of page to define the grid-areas
where the horizontal header, the vertical menubar and the page content box are positioned5.
The resulting layout can be seen in Section 7.2.5.

CSS Flexbox Layout

Another CSS layout system that can be used to easily define a web page layout is the CSS
Flexbox. Given its one-dimensional nature, it is not as powerful as the Grid. In practice,
however, a significant portion of positioning problems do not require the management of
the second dimension. Therefore, it is reasonable to trade off a theoretically lower layout
definition capabilities for the Flexbox’s flexibility and its straightforward use, which is why
in the Puckee web application it was used to position all the content within all the grid-
areas, from a basic layout setup to a detailed positioning of displayed icons. Given its
ubiquity within the Platform, an illustrative example of a frequently-used pattern using the
Bootstrap’s implementation of Flexbox layout can be found in Listing 7.2 with a detailed
description.

7.2.5 Application tour

With the long term goal of creating the Platform’s web interface featuring all the func-
tionality described in Section 4.3, the focus of the web application implementation phase
within this work was to create the working prototypes of the Games Overview, Athlete
Overview and Dashboard pages. The following text contains a descriptive summary of the
implemented pages and a description of selected aspects of their implementation. Web
application screen captures of the discussed pages are available in Appendix B.

5For the specific definition of the Grid used please refer to apps/web/index.css

64

Games Overview

The key feature of the Games Overview page whose layout is captured in Figure B.1 is
the useInfiniteQuery() hook discussed in Section 7.2.3, facilitating the smooth loading
of the bidirectional infinite list of games. To be able to manage broad palette of games and
simultaneously to enable a user to create its tailored version of this page for himself/herself,
a plan into the future is to implement a complex set of filters with a possibility to save them
for a later use. At the time of finishing this thesis, the page enables a user to do the following:

• attend/leave games in various roles using the Attendance Shortcut Selector – examples
of some of its possible states are depicted in Figure B.2,

• open a Game Detail page of a specific game,

• create a new game, i.e. navigate to the New Game page, and, finally,

• modify a game, provided the logged in user is present in the list of game’s organizers

Athlete Overview

Analogically to the Games Overview page, the core of this page is the infinite list of Players,
though this time it is only unidirectional – no sufficiently relevant time criterion has been
identified to justify the need for the time dimension. As depicted in Figure B.3, the Athlete
Overview page covers the following use cases:

• Finding an arbitrary athlete to initiate the follow relationship, for example based on
a favourable game experience in past games.

• Finding the athlete’s skill rating in his various attendance roles.
Additionally, these features are planned for the future:

• A complex set of filters - by name, attendance roles, follow status, preferred playing
location and skill rating.

• As indicated in the previously presented Athlete Overview mock-ups, played games
statistics over the previous month, quarter, and a year are to be added.

Dashboard

The purpose of the Puckee Dashboard is to extract the most relevant game data to the
user and present it in a cohesive manner. Specifically, as depicted in Figure B.4, Puckee’s
Dashboard is divided in the three parts:

• My Upcoming Games section always reports three nearest games of the currently
logged in current user. Compared to the Games Overview page and the Might Interest
You component, games in this list are rendered slightly differently, with the Game
Attendance Shortcut Selector displaying also the financial implications to the user.

• Games Calendar section aims to stress the planning dimension of the user’s games.
At the time of this thesis submission, the Games Calendar user interface has not been
connected to the server back end yet.

• Might Interest You shows a maximum of 10 games not currently attended by the
logged in user and attended by followed athletes and/or organizers, sorted by the
count of the participating followed people.

65

Game detail

Game Detail page is divided in the three parts, one of which (Game Chat) has not been
implemented yet, as depicted in Figure B.5. In general, it aims to convey the following
information:

• Basic Game Data – when and where does the game take place, who is organizing
it, what is the target count of players, goaltenders and referees.

• Game Attendance – what players, goaltenders and referees are attending the game.
Highlight the followed ones to make the game more attractive and show what addi-
tional unregistered participants were added by the organizers.

• Game Chat – is there any game specific information that needs to be discussed?

New game

The New Game page, depicted in Figure B.6, offers the organizer an interface to create a
game and, if sensible for his/her use case, to directly add athletes in different roles to a
game, provided that they follow him in the opt-out mode. From the React component tree
perspective, the page content is represented by the GameAdminForm component which has
the following children:

• Three instances of the GameAdminParticipants component for the Player, Goal-
tender and Referee roles. This component encapsulates the athlete search bar and
updates the GameAdminForm state with the relevant participants added in their spe-
cific roles, ensuring their addition to the game right at the moment it is created on
the server.

• Three instances of three different helper components, discussed in Section 4.3.4, all
of which will be subject to future development:

– GameAdminAvailableGroups suggesting groups of followers to be added,
– GameAdminFinancialEstimate providing a basic game budgeting overview, and,
– GameAdminRecentlyOrganized serving as templates for auto-filling of basic game

properties.

7.3 React Native mobile application front end
Even though the mobile client implementation was of lower priority, author’s enrollment
to the Application Development for Mobile Devices course at FIT BUT seemed to present
a good opportunity to implement a small feature subset of Puckee’s mobile application
client, despite being limited by the length of one semester. This constraint proved to be
unfavourable, as the development had to proceed even without a comprehensive definition
of the Platform concept, which was still in the definition phase, continuously altered based
on discussions with various stakeholders to maximize the value it brings to the market.

Because of the above, it was becoming increasingly evident that the mobile application
was going to be rendered partially obsolete by the final version of the application concept.
That ended up being the case, indeed. That is not to say, though, that in the big picture
this endeavour did not bring any benefits – quite the opposite. Apart from the more tan-
gible benefits, such as having a basic application structure along with the more advanced

66

navigational features already laid out for the future, this parallel implementation was con-
stantly reminding the author about the necessity to make some of the modules shareable
to avoid code duplication and the related unproductive double maintenance effort. This
led to a research of potential solutions, resulted in adopting the monorepo approach for the
whole application front end, essentially influencing the path forward for the mobile client,
which was determined as follows:

1. Incorporation of mobile client’s code into the Platform’s monorepo.

2. Mobile client’s architecture refactoring to reflect the newly introduced puckee-common
package, introducing the shared modules, as discussed in Section 7.2.2.

3. A temporary freeze of mobile client development in favour of the web application.

For the sake of completeness, Appendix C contains the screen captures of some of
the mobile screens implemented, matching in principle the mobile mock-ups introduced in
Section 4.2: Games Overview, Game Detail: Basic Info and Game Detail: Attendance.

67

Figure 7.2: Server API database diagram showing the schema structure generated by the
SQLAlchemy engine based on ORM representation of the entities and their relationships

defined in app/core/model/models.py.

68

puckee

apps

mob/

web

src/

components/

Athletes

Auth

Dashboard

Games

Groups

SkillPucks

UserProfile

...other miscellaneous components...

packages

puckee-common

api/

auth/

context/

types/

utils/

package.json

Figure 7.3: Platform’s front end React and React Native clients’ directory structure. The
root-level package.json defines two Yarn workspaces: apps and packages. The apps

package contains the platform-specific source code for the web and mobile clients in their
appropriately-named directories, while both of them import shared modules code from the

puckee-common package

69

Chapter 8

Conclusion

Multiple aims were outlined for this thesis, all of which were the necessary preliminary
steps towards achieving the main goal – the development of a Platform facilitating the
organization of collective amateur sports, namely the game of ice hockey.

Firstly, a thorough analysis of the key aspects of amateur ice hockey organization had to
be performed to support the definition of appropriate Platform’s use cases, solving the most
pressing of issues. Those were identified as, first, the lack of available amateur goaltenders,
caused by an inefficient or rather non-existent market, and, second, the inability to keep
the player attendance counts consistent in an environment of high fixed costs.

With these challenges to be solved, the user interface design phase followed, generat-
ing user interface mock-ups for both of the target platforms determined by the Personas’
analysis – a web application client and a mobile application. After the initial struggle with
the Figma user interface designer tool, its component structuring capabilities later greatly
facilitated the generation of multiple mock-ups iterations based on feedback from potential
users.

Emphasizing the web client, while simultaneously planning to further develop the mobile
application in the future, the REST API server written in Python programming language
was chosen as a suitable back end technology, whose foundations were deeply analyzed
along with those of React JavaScript/TypeScript web front end library and its React Native
variant for creating cross-platform mobile applications.

In the implementation phase, bearing in mind the Platform’s complexity, the successfully
fulfilled aim was to develop the core features of the web application, supported by the
necessary REST API back end endpoints. To maximize the user experience, advanced
use cases of asynchronous communication, such as the data pagination, were studied and
employed. Additionally, the modern principles of lazy registration guided the design of the
Platform’s registration process. Next, the groundwork was laid for further development of
the mobile client, originally and partly implemented in the Application Development for
Mobile Devices course at FIT BUT. This naturally led the monorepo repository scheme
adoption, providing the necessary basis for the code sharing mechanisms available by the
selection of React and React Native as the two front end frameworks.

In general, the goals of this thesis were fulfilled, while many development tasks and ideas
are still outstanding – most importantly, in the short term, it is to implement the interactive
part of the skill rating feature, the post game player rating. Next step is to implement the
User Profile page, enabling the user to see his statistics, further strengthening the user
engagement. A long term plan is to add an e-mail subscription mechanism to regularly
report the games attended by the followed athletes.

70

Bibliography

[1] Model-View-Controller Pattern. In: Learn Objective-C for Java Developers. Berkeley,
CA: Apress, 2009, p. 353–402. ISBN 978-1-4302-2370-2.

[2] ahl.cz. Soutěže a turnaje registrované na AHL.cz
[https://www.ahl.cz/registrovane-souteze]. January 2022. Accessed: 2022-01-04.

[3] Brown, T. An Introduction to the Python Web Server Gateway Interface (WSGI).

[4] Canada, S. Canada’s population clock (real-time model)
[https://www150.statcan.gc.ca/n1/pub/71-607-x/71-607-x2018005-eng.htm].
January 2022. Accessed: 2022-01-04.

[5] Cherny, B. Programming TypeScript: Making Your JavaScript Applications Scale.
O’Reilly Media, 2019. ISBN 9781492037606. Available at:
https://books.google.cz/books?id=YemUDwAAQBAJ.

[6] contributors, M. An overview of HTTP
[https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview]. December
2021. Accessed: 2022-01-05.

[7] Contributors, M. Responsive design [https://developer.mozilla.org/en-US/
docs/Learn/CSS/CSS_layout/Responsive_Design]. April 2022. Accessed: 2022-04-20.

[8] Cook, J. How the React Native bridge works and how it will change in the near
future [https://dev.to/wjimmycook/how-the-react-native-bridge-works-and-
how-it-will-change-in-the-near-future-4ekc]. August 2020. Accessed:
2021-12-17.

[9] Copeland, R. Essential Sqlalchemy. Firstth ed. O’Reilly, 2008. ISBN
9780596516147.

[10] cos, D. Overview of Docker Compose [https://docs.docker.com/compose/].
August 2021. Accessed: 2021-01-13.

[11] Cough, C. Countries by number of ice hockey rinks in 2020/21
[https://www.statista.com/statistics/282353/countries-by-number-of-ice-
hockey-rinks/]. December 2021. Accessed: 2022-01-04.

[12] Cough, C. Countries by number of registered ice hockey players in 2020/21
[https://www.statista.com/statistics/282349/number-of-registered-ice-
hockey-by-country/]. December 2021. Accessed: 2022-01-04.

[13] data.ai. Who Uses Apps? A Mobile App Demographics Primer [https:
//www.data.ai/en/academy/uses-apps-mobile-app-demographics-primer/].
January 2022. Accessed: 2022-04-15.

71

 https://www.ahl.cz/registrovane-souteze
https://www150.statcan.gc.ca/n1/pub/71-607-x/71-607-x2018005-eng.htm
https://books.google.cz/books?id=YemUDwAAQBAJ
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://dev.to/wjimmycook/how-the-react-native-bridge-works-and-how-it-will-change-in-the-near-future-4ekc
https://dev.to/wjimmycook/how-the-react-native-bridge-works-and-how-it-will-change-in-the-near-future-4ekc
https://docs.docker.com/compose/
https://www.statista.com/statistics/282353/countries-by-number-of-ice-hockey-rinks/
https://www.statista.com/statistics/282353/countries-by-number-of-ice-hockey-rinks/
https://www.statista.com/statistics/282349/number-of-registered-ice-hockey-by-country/
https://www.statista.com/statistics/282349/number-of-registered-ice-hockey-by-country/
https://www.data.ai/en/academy/uses-apps-mobile-app-demographics-primer/
https://www.data.ai/en/academy/uses-apps-mobile-app-demographics-primer/

[14] Eby, P. J. Python Web Server Gateway Interface v1.0. PEP 333. 2003. Available at:
https://www.python.org/dev/peps/pep-0333/.

[15] Eisenman, B. Learning React Native. O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472., 2016.

[16] Federation, I. I. H. Season Summary 2020 edition [https://blob.iihf.com/iihf-
media/iihfmvc/media/downloads/annual%20report/seasonsummary2020b.pdf].
January 2021. Accessed: 2022-04-15.

[17] Fielding, R. T. and Reschke, J. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content [RFC 7231]. RFC Editor, june 2014. DOI:
10.17487/RFC7231. Available at: https://rfc-editor.org/rfc/rfc7231.txt.

[18] Fielding, R. T. REST: Architectural Styles and the Design of Network-based
Software Architectures. 2000. Doctoral dissertation. University of California, Irvine.
Available at: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[19] Garrett, J. J. Ajax: A New Approach to Web Applications. In:. 2007.

[20] Grinberg, M. Flask Web Development: Developing Web Applications with Python.
1stth ed. O’Reilly Media, Inc., 2014. ISBN 1449372627.

[21] Guardia, C. de la. Python Web Frameworks. USA: O’Reilly Media, Inc., 2016.
ISBN 9781491938096.

[22] Jones, M., Bradley, J. and Sakimura, N. JSON Web Token (JWT) [RFC 7519].
RFC Editor, may 2015. DOI: 10.17487/RFC7519. Available at:
https://www.rfc-editor.org/info/rfc7519.

[23] Kevin Burke, R. H. F. S. G. B. Flask-RESTful
[https://flask-restful.readthedocs.io/en/latest]. May 2020. Accessed:
2022-01-11.

[24] Lee, Y.-H. and Yuan, C. W. The Privacy Calculus of “Friending” Across Multiple
Social Media Platforms. Social Media + Society. 2020, vol. 6, no. 2,
p. 2056305120928478. DOI: 10.1177/2056305120928478.

[25] Linsley, T. React Query: Overview
[https://react-query.tanstack.com/overview]. August 2020. Accessed: 2021-05-05.

[26] Marcotte, E. Responsive Web Design. A Book Apart, 2011. Book Apart. ISBN
9780984442577. Available at: https://books.google.cz/books?id=vhe4XwAACAAJ.

[27] Masinter, L. M. Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0) [RFC
2324]. RFC Editor, 1. april 1998. DOI: 10.17487/RFC2324. Available at:
https://rfc-editor.org/rfc/rfc2324.txt.

[28] Red Hat, I. What is a REST API?
[https://www.redhat.com/en/topics/api/what-is-a-rest-api]. May 2020.
Accessed: 2022-01-09.

[29] Richardson, L., Amundsen, M. and Ruby, S. RESTful Web APIs. O’Reilly
Media, Inc., 2013. ISBN 1449358063.

72

https://www.python.org/dev/peps/pep-0333/
https://blob.iihf.com/iihf-media/iihfmvc/media/downloads/annual%20report/seasonsummary2020b.pdf
https://blob.iihf.com/iihf-media/iihfmvc/media/downloads/annual%20report/seasonsummary2020b.pdf
https://rfc-editor.org/rfc/rfc7231.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.rfc-editor.org/info/rfc7519
https://flask-restful.readthedocs.io/en/latest
https://react-query.tanstack.com/overview
https://books.google.cz/books?id=vhe4XwAACAAJ
https://rfc-editor.org/rfc/rfc2324.txt
https://www.redhat.com/en/topics/api/what-is-a-rest-api

[30] router, O. What is REST? Use in industry
[https://www.opc-router.com/what-is-rest]. December 2021. Accessed: 2022-01-06.

[31] Saint Exupéry, A. de. Airman’s Odyssey. Harcourt Brace Jovanovich, 1984. ISBN
9780156037334.

[32] Sauro, J. Customer analytics for dummies. New Delhi: Wiley, ©2015.

[33] Tom, N. Should You Give Users Access Before They Register [https:
//auth0.com/blog/should-you-give-users-access-before-they-register/].
October 2021. Accessed: 2022-04-26.

[34] Totty, B., Gourley, D., Sayer, M., Aggarwal, A. and Reddy, S. Http: The
Definitive Guide. USA: O’Reilly Associates, Inc., 2002. ISBN 1565925092.

[35] Turnbull, J. The Docker book. October 2014.

[36] Wieruch, R. Road to React: Your journey to master plain yet pragmatic React.js.
CreateSpace Independent Publishing Platform, 2017. ISBN 1979807078. Available at:
https://books.google.cz/books/about/The_Road_to_Learn_React.html?id=
NFD6swEACAAJ&redir_esc=y.

[37] Wroblewski, L. Gradual Engagement Boosts Twitter Sign-Ups by 29%
[https://www.lukew.com/ff/entry.asp?1128]. June 2010. Accessed: 2022-04-26.

[38] [ČSÚ], C. S. O. Population [https://www.czso.cz/csu/czso/obyvatelstvo_lide].
October 2021. Accessed: 2022-01-04.

73

https://www.opc-router.com/what-is-rest
https://auth0.com/blog/should-you-give-users-access-before-they-register/
https://auth0.com/blog/should-you-give-users-access-before-they-register/
https://books.google.cz/books/about/The_Road_to_Learn_React.html?id=NFD6swEACAAJ&redir_esc=y
https://books.google.cz/books/about/The_Road_to_Learn_React.html?id=NFD6swEACAAJ&redir_esc=y
https://www.lukew.com/ff/entry.asp?1128
 https://www.czso.cz/csu/czso/obyvatelstvo_lide

Appendix A

Full web application mock-ups

Figure A.1: Athlete Overview page: A filterable infinite list of players to find the
teammates from the past games to either follow them or to find their current skill rating.

74

Figure A.2: Dashboard page: My Upcoming Games overview of the three nearest
games, Games Calendar simplifying game planning by providing timeline perspective and

Might Interest You overview of the selected games attended/organized by the largest
amount of user’s followed athletes.

75

Figure A.3: Games Overview page: An infinite list of games along with a complex set
of filters enabling the user to create his own Games Dashboard.

76

Figure A.4: Game Detail page: Renders basic game data, detailed list of both
registered and unregistered attendees as well as Game Chat for game-related discussions.
Evaluation section is opened to access after a game to provide an interface for evaluation

of selected athletes. This input serves for athlete’s skill rating calculation.

77

Figure A.5: Game Admin page: Provides interface for determining basic game features
and offers helper components such as Recently Organized Games and estimated budgeting

to facilitate the process. Also provides an interface to add both registered and
unregistered players into the game. Note: Referee role was intentionally skipped to fit the

screen capture on one page.

78

Figure A.6: Groups page: An interface for game organizers to predefine groups of
athletes, following them in the opt-out mode, i.e. enabling him/her to add them to a
game without requiring their confirmation. Groups can then be added to a game by a

single click of an organizer.

79

Figure A.7: User Profile page: Provides interface the for user profile management,
statistics of the played games in different roles, as well as the development of his skill
rating based on post-game evaluation by his/her teammates (as noted in Figure A.4).

Also an interface to manage the followed athletes is provided and all user’s followers are
listed in the last section.

80

Appendix B

Web application screen captures

Figure B.1: Games Overview: A paginated infinite list of games displayed to a user with
all their key properties. To be extended with complex filtering capabilities in the future,
enabling the user to predefine and save a set of filters to effectively create his own Games

Dashboard (in addition to the Dashboard provided by Puckee).

81

Figure B.2: Games as Games Overview items with different states of Attendance Shortcut
Selector in case of user with the Player and the Goaltender attendance roles.

Figure B.3: Athlete Overview as a page to filter the athletes worth following and find out
their basic characteristics, such as their current skill level, as evaluated by their

playmates, as well as the count of games played during the last month, quarter and a
year. Game Statistics and the Athlete Filters features have not been implemented by the

time of this thesis’s submission.

82

Figure B.4: The Dashboard page rendering My Upcoming Games, Games Calendar and
Might Interest You components. My Upcoming Games displays three nearest games

attended by the user, Might Interest You component recommends games attended and/or
organized by followed athletes. Games Calendar component has not been connected to

the application back end yet by the time of this thesis’s submission.

83

Figure B.5: Game Detail page divided into three sections: Basic Game Data, Game
Attendance and a Game Chat which has not been implemented by the time of this thesis

submission. Game Attendance showing the comprehensive overview of all game
participants while highlighting the followed ones to make the game more

attendance-worthy.

84

Figure B.6: The New Game page represented by the GameAdminForm component,
instantiating GameAdminParticipants for each of the attendance roles. Only its Player

role instance is captured in the screenshot. Additionally, three helper components
GameAdminAvailableGroups to suggest groups of followed people to be added,

GameAdminFinancialEstimate to assist with game’s budgeting and
GameAdminRecentlyOrganized to provide an interface to duplicate previous events’

details are instantiated, all of which are subject to future development.

85

Appendix C

Mobile application screen captures

(a) Games Overview (b) Game Detail: Basic Info (c) Game Detail: Attendance

Figure C.1: Selected screens from the mobile client: Games Overview screen structured as
a section list grouped by date. The two subscreens of the Game Detail screen — Basic

Info and Attendance.

86

Appendix D

Included storage medium contents

• puckee-api: a repository containing the REST API server implementation

• puckee: a repository containing the front-end code for both web and mobile applica-
tions

– apps/web: web-specific implementation
– apps/mob: mobile-specific implementation
– packages/puckee-common: shared modules used by both clients
– mockups: a directory containing all the mock-ups presented in this work in the

SVG format

• poster.svg: a poster presenting the implemented Platform

• presentation.mp4: a short video presentation showing the Platform’s features

87

	Introduction
	Amateur Ice Hockey Matches Organization
	Key Aspects of Organization
	User stories of an amateur ice hockey player
	Platform's extended use case diagram

	User interface creation
	Personas
	Responsive web application versus dedicated mobile application

	User interface mock-ups
	Mock-ups creation process
	Mobile application mock-ups
	Web application mock-ups

	Technological and Operational Aspects of Web & Mobile Applications
	REST API Server Network Communication
	API Server Back End Technologies
	Application Front End Technologies
	Application Deployment Technologies

	Amateur ice hockey organization platform
	Analysis of existing services
	Facilitating a market of goaltenders and referees
	Lazy registration
	Game attendance management principles

	Implementation
	REST API server
	React web application front end
	React Native mobile application front end

	Conclusion
	Bibliography
	Full web application mock-ups
	Web application screen captures
	Mobile application screen captures
	Included storage medium contents

