
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

POKROČILÉ NÁSTROJE PRO MĚŘENÍ VÝKONU
ADVANCED TOOLS FOR PERFORMANCE MEASUREMENT

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JAROMÍR SMRČEK
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ KAŠPÁREK
SUPERVISOR

BRNO 2008

Abstrakt
Tato práce prezentuje vstupně-výstupńı vrstvu jádra Linux a ukazuje možnosti jej́ıho laděńı
a optimalizace. Dále ukazuje nástroje, které je možno použ́ıt pro sledováńı systému a jejich
výstupy. Práce se také soustřed’uje na kombinaci takových nástroj̊u, která by vedla k jed-
noduchému použit́ı a komplexńımu výsledku sledováńı. Praktická část sestává z aplikace
skript̊u pro SystemTap a blktrace a z vlastńıho programu pro monitorováńı fragmentace s
grafickým výstupem.

Kĺıčová slova
Linux, měřeńı výkonu, I/O vrstva, bloková vrstva, kernel, optimalizace, výkon, NFS, CFQ
plánovač, deadline plánovač, anticipatory plánovač, trasováńı I/O, blktrace, SystemTap,
fragmentace, defragmentace, filefrag, server, zat́ıžeńı

Abstract
This thesis presents the I/O layer of Linux kernel and shows various tools for tuning and
optimization of its performance. Many tools are presented and their usage and outputs
are studied. The thesis then focuses on the means of combining such tools to create more
applicable methodology of system analysis and monitoring. The practical part consists of
applying SystemTap scripts for blktrace subsystem and creating a fragmentation monitoring
tool with graphical output.

Keywords
Linux, performance, performance measurement, I/O layer, block layer, kernel, optimization,
NFS, CFQ scheduler, deadline scheduler, anticipatory scheduler, I/O tracing, blktrace, Sys-
temTap, fragmentation, defragmentation, filefrag, server, workload

Citace
Jaromı́r Smrček: Advanced Tools for Performance Measurement, diplomová práce, Brno,
FIT VUT v Brně, 2008

Advanced Tools for Performance Measurement

Prohlášeńı
Prohlašuji, že jsem tento diplomový projekt vypracoval samostatně pod vedeńım pana Ing.
Tomáše Kašpárka. Uvedl jsem všechny literárńı prameny a publikace, ze kterých jsem čerpal.

. .
Jaromı́r Smrček
1. května 2008

c© Jaromı́r Smrček, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı oprávněńı
autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 4
1.1 Thesis structure . 5

2 The I/O architecture of a Linux kernel 6
2.1 Device nodes . 7
2.2 Accessing data on a block-device storage . 7
2.3 I/O caching . 7
2.4 Network devices . 9

3 I/O Optimization 10
3.1 Choosing the I/O scheduler . 10
3.2 Runtime parameters . 11

3.2.1 Optimizing the I/O scheduler . 11
3.2.2 Sysctl . 12

3.3 Choosing the filesystem . 13
3.4 System maintenance . 14
3.5 Programming . 14

4 Analysis and monitoring tools 15
4.1 Kernel messages . 15

4.1.1 debugfs . 15
4.2 Sysfs . 16
4.3 Networking tools . 16

4.3.1 ifconfig . 16
4.3.2 iftop . 16
4.3.3 ifstat . 17
4.3.4 dstat . 17
4.3.5 netstat . 17
4.3.6 lsof . 17
4.3.7 nfsstat . 17

4.4 Disk tools . 18
4.4.1 smartctl . 18
4.4.2 lsof . 18
4.4.3 iostat . 18
4.4.4 dstat . 18
4.4.5 filefrag . 18

4.5 Kprobes . 19
4.6 SystemTap . 19

1

4.6.1 Implementation . 20
4.6.2 Installing . 20
4.6.3 Tracing using SystemTap . 21
4.6.4 Tapsets . 21
4.6.5 Safety . 22

4.7 blktrace . 22
4.7.1 Events . 22
4.7.2 Output storing . 25

5 Solving high I/O workload situations 26
5.1 Detecting the global source . 26

5.1.1 CPU load in userspace . 26
5.1.2 CPU load in kernel . 27
5.1.3 Memory allocation in userspace . 27
5.1.4 Memory allocation in kernel . 28
5.1.5 Network bandwith usage . 28
5.1.6 Network latency . 29
5.1.7 Disk I/O . 29

5.2 Focusing on the disk I/O . 30
5.2.1 Disk and partition . 30

5.3 SystemTap scripts for blktrace . 30
5.3.1 Parameters . 31
5.3.2 countall.stp . 31
5.3.3 spectest.stp . 31
5.3.4 iotop.stp . 32
5.3.5 topfile.stp . 32
5.3.6 traceread.stp . 32

5.4 Summary . 32

6 Scenarios 34
6.1 Non-disk scenarios . 34

6.1.1 High CPU load . 34
6.1.2 High network usage . 34
6.1.3 Too many network connections . 35
6.1.4 Network protocol . 35
6.1.5 Swapping . 35

6.2 High disk usage . 36
6.2.1 Dealing with disk-intensive processes 36

6.3 Badly positioned files . 37

7 Fragmentation monitoring tool 39
7.1 Preliminaries . 39

7.1.1 Fragmentation . 39
7.1.2 Defragmentation . 39

7.2 Motivation . 39
7.3 Implementation . 40

7.3.1 Output format . 40
7.4 Sample output . 41

2

7.5 Usage . 41

8 Conclusion 46
8.1 Future work . 47

Bibliography 48

A I/O tools outputs 50
A.1 ifstat . 50
A.2 dstat . 50
A.3 netstat . 51
A.4 lsof . 51
A.5 nfsstat . 52
A.6 smartctl . 53
A.7 iostat . 54
A.8 blktrace . 55

B SystemTap examples 58
B.1 kprobeio.stp . 58
B.2 countall.stp . 58
B.3 spectest.stp . 59
B.4 iotop.stp . 59
B.5 topfile.stp . 60
B.6 traceread.stp . 60

3

Chapter 1

Introduction

Performance measurement of computers and computer systems is an integral part of
system administration. Without the means of performance analysis, optimization and bot-
tleneck elimination, there would be no possibility to ensure stable and up-to-date system
performance.

In this thesis I focus on the performance measurement of the input-output (I/O) sub-
system, more specifically the disk access time, throughput and load. This goal requires not
only the study of block-layer subsystem but also networking, because disk access in modern
computer systems is not only done locally.

The analysis of disk-based bottlenecks is not a simple nor sufficiently processed task at
the time. There are many tools for monitoring, testing, benchmarking and tuning processors
or memory access, but as for elaborate monitoring and data analysis of disk access, the
situation is not that well. This fact is more significant in the way that disk is the slowest,
therefore the weakest, link in the datapath.

Describing these problems, tools and techniques mentioned above is the first center-
piece of this thesis. The second one is using the knowledge about these tools to create
a methodology that can be used in every-day system administration. Most disk-oriented
analysis tools have all the important data, but do not show usable results for quick action
or decision. My work will then focus on transformation of these outputs into an applicable
form.

By presenting example situations and showing how given tools and methods should be
applied to extract most information from a running system, I will try to give the adminis-
trator all the data needed to resolve situations in the shortest time possible.

As for more practical part of this work, specialized tool for fragmentation monitoring
has been implemented and it is described in this thesis. Use of the tool should be helpful
in many other aspects mentioned in the work.

Both investigative and practical parts of this thesis are based on the GNU/Linux oper-
ating system. Applying such procedures on other UNIX-based systems should not be too
difficult, but as for Microsoft family of operating systems, the methodology of performance
measurement and optimization is so different that supplying alternatives would be out of
the scope of this thesis.

All tests and suggested settings have been tested on a dual-core machine running Gen-
too GNU/Linux with a 2.6.23 kernel. Some paths or default settings can be distribution
dependant, see your distribution handbook or documentation.

4

1.1 Thesis structure

The first chapter of this thesis is documenting the I/O architecture of the Linux kernel.
After the global view it goes more deeply into the model of how the data on the disk is
accessed through multiple layers and also specifies the network communication architec-
ture. It also describes the disk datapath and all points of possible performance loss and/or
optimization.

The second chapter presents the means of configuration and optimization of components
to set the performance up and also create the basis for analysis and monitoring. Some
configuration is done by kernel variables (and have to be enabled by compilation), others
use runtime settings.

The third chapter sums up the tools used for performance measurement of studied
subsystems used in the GNU/Linux environment. In addition to more or less known tools,
I present more complex and profound tools that can be used for kernel data analysis and
without which a sufficiently deep monitoring and analysis is impossible to be done in the
I/O layer.

The fourth chapter is focused on using previously mentioned tools and giving procedural
techniques for monitoring different areas on a running server. These methods are used
to get useful information from the running system, using it to create countermeasures,
optimizations and changes to prevent unwanted slowdown situations. Aside from methods
using available tools, it also gives an overview on where to get the raw information for
making an automated script or tool for this job. The chapter introduces specialized scripts
for one of the advanced monitoring tools that are mostly suitable for disk I/O monitoring.

The fifth chapter tries to show the most usual situations that can happen on a running
server (or a desktop system for the matter) and defines methods that can be applied to
solve such situations. More specific information regarding the usage of given tools is also
provided as a part of these solutions.

The sixth chapter takes some situations from the fifth chapter, but puts them into a
more practical perspective and tries to solve them from the beginning. In contrast with the
fifth chapter, where some methods have been defined, here they are applied in particular
situations.

The last chapter presents the fragmon tool that has been implemented as a part of
this thesis. Basic reasons and motivation for creating it and many aspects of implemented
functionality are described. The tool can be used as a part of some problem-solving methods
described earlier.

5

Chapter 2

The I/O architecture of a Linux
kernel

To make a computer work properly, data paths must be provided to let the information
flow between CPU(s), RAM, and multiple I/O devices that can be connected to a personal
computer. These data paths, which are denoted as buses, act as primary communication
channels inside the computer.

The data path that connects a CPU to an I/O device is generically called an I/O bus.
Each device connected to the I/O bus has its own set of I/O addresses, which are usually
called I/O ports. The x86 architecture uses 65,536 8-bit I/O ports which can be aggregated
to create 16-bit or 32-bit ports. I/O ports may also be mapped into addresses of the physical
address space instead of using specialized instructions (in, out) to access or write the data.
In older kernels (2.4 and less) the mapped I/O could only be done in low memory and
there had to be ”bounce buffers” to use high memory which meant double buffering and
slow performance.

Every device has its own set of registers and the program that is run on the computer
must know the communicating protocol to communicate directly. Also peripheries are
asynchronous mostly, so they use IRQ calls and DMA. Therefore to encapsulate the I/O
protocol and access each device by the same means, device drivers are built and loaded into
the kernel.

Device drivers provide the implementation of standard operations on a file (as the file is
the basic notion of UNIX-type operating systems). Userspace application can use standard
system calls (write(), read(), . . .) to communicate with a peripheral device regardless of
its I/O protocol. Device files are typically located in /dev as a convention.

Communication between the device driver and the device itself is mostly asynchronous,
but system calls to pass data between the device through the kernel into the userspace
process are done synchronously and system calls are usually blocking. There are ways to
gain asynchronous access to the device via aio (see [2]).

6

2.1 Device nodes

Devices are identified by their major and minor number (the device type and the se-
quence identifier respectively) which can be passed to mknod command to create a device
node (represented by a device file). Most of the devices today have their device files,
with the main exception – network cards. Nowadays the creation of device nodes is done
automatically via udev – userspace dev (see [1]).

Devices can be splitted into two main categories – character devices and block devices
– based on the type of data communication. Character devices communicate by single
characters (terminal, random number generator, . . .), Block devices communicate by blocks
of data (network card, disk, . . .).

2.2 Accessing data on a block-device storage

Block devices are more sophisticated than character devices, not only the data is sent
in a block, but there can be multiple levels of caching to create bigger blocks of data
and increase efficiency of I/O communication. Many block devices can be connected to
a single bus, so there has to be a fairness algorithm to select the appropriate device for
communication. The hardware can have the access time for different data spanning over
large interval and every device can have its own protocol.

The encapsulating layer for all the device drivers above the I/O protocols is called
generic block layer and it creates I/O requests for adjacent blocks physically located on the
disk device. It also brings other features to the kernel, like mapping and unmapping the
data page frames only when needed by the CPU, zero-copy effort for passing data to the
userspace (buffers from the userspace are used directly by DMA or CPU), logical volumes
management (LVM, RAID) and advanced usage of modern controllers, DMA and caches.

Block devices can perform a one-block transaction, but it is a resource-wasting opera-
tion. Burst transfers are used instead. To improve performance, the request sent to the
device can be rearranged in a way of maximizing throughput. A sub-layer of the generic
block layer focusing on the rearrangement of requests for block devices is called I/O sched-
uler (more on I/O schedulers in 3.1).

Generic block layer is called by every filesystem module to access raw data. The filesys-
tem module then transforms the data into inodes, files and directories for upper layers of the
architecture. To encapsulate differences between multiple filesystems, a virtual filesystem
layer provides unified interface for userspace processes.

2.3 I/O caching

Just like the CPU uses a fast SRAM cache to increase performance when accessing data
in much slower DRAM memory, the I/O subsystem has a similar method of reducing disk
access.

One level of caching is the dentry cache and inode cache, that keep the last few requested
dentries and inodes (directory and file metadata) for further use. Many processes access
the same file in the same directory multiple times, so caching the metadata (like location,
size, etc.) causes a performance boost.

7

Figure 2.1: The basic schema of the datapath (from [3])

The main disk cache used in a Linux kernel is the page cache. It keeps whole pages of
data (4kiB for x86 architectures) in memory instead of directly writing them to disk. This
can be overridden by using direct I/O. The page is removed from the memory only when
it is already written to the disk and there is no more space for new pages, otherwise the
page stays in memory for further use. This applies for reading and also writing. When
writing data to disk, page cache waits for more write requests before actually committing
the changes – deferred write.

In order to use the page cache efficiently, it is stored as a radix-tree, where each node
contains multiple information about the page itself. One of the most important information
is the dirty flag, that specifies whether the page should be written to disk or not. Writing
is deferred and occurs when the dirty page has been dirty for a long time, the page has
been flushed or a process requests the writing explicitly (by sync() for example).

The page cache works on the level of pages, whereas the filesystem drivers work with
blocks and the disk devices use sectors as a unit of data. Sectors are mostly 512B large
(although there are few devices with 520, 1024 or 2048B sectors). The I/O scheduler and
device driver must manage sectors of data. Block size is defined by each filesystem, but it
has to be a power of 2, must contain an integral number of sectors and for some versions
of filesystems (e.g. XFSv1) it must fit into a page (512, 1024, 2048 or 4096 bytes for x86).

This differentiation of data units means that every layer uses its own method of address
translation and data caching. The process requests data from a file to be read to a memory
buffer located in a certain page, the filesystem reads first block and puts it into the page.
The block however usually consists of more than one sector that has to be read from a
device. Devices today do not read only one sector, but read a segment instead (multiple
adjacent sectors) and cache such data.

8

2.4 Network devices

Network interface cards (NICs) are block devices which on lower levels look much the
same for the kernel. The difference is that there are no device nodes to create a unified
entrypoints for processes. Instead a socket must be created, this socket is a file-descriptor
bound to a certain network port and process. This differentiation from standard device
files is given by the internet protocol architecture.

Linux network architecture is conform to the Internet model (not ISO/OSI model)
of networking. The application layer resides in userspace and other layers in the kernel.
Processes request/send data through a system call (recv() or send()) and it goes through
all underlying layers (the transformation of TCP/UDP and IP packets is not significant for
this thesis), till the encapsulated data is prepared to be sent using a link protocol. This is
when the device driver takes over and sends the data through NIC.

Every NIC has two queues for data (one for sending and one for receiving) and uses IRQ
mechanism to independently send and receive data. DMA is used for data communication
between kernel and NIC.

9

Chapter 3

I/O Optimization

Optimizing the I/O subsystem on a GNU/Linux operating system can be done by
changing kernel parameters (at boot or runtime), setting device driver parameters or using
specialized tools or firmware commands. Most given optimizations are focused on the
performance of the I/O layer, some optimizations can also speedup the access or reaction
time for the device.

3.1 Choosing the I/O scheduler

Much like the process scheduler, the I/O scheduler distributes a shared resource among
multiple processes. Unlike the process scheduler, the I/O scheduler is not mandatory, its
purpose is solely to increase the performance by reducing disk access time.

When reading data from a disk, the slowest part of the process is to locate the requested
block of data, this means ”seeking” over the disk platter. On a multiuser system, many
processes can request data located on different sectors, that are very far from each other,
thus making the disk seek from one end of the disk to the other one over and over again.

The purpose of the I/O scheduler is to put all requests into a queue and sort it in a
way that minimizes the disk seeking, thus reducing the average access time. The most
important part of current schedulers is the elevator algorithm. There are four possible
elevator algorithms in current kernels.

The name ”elevator algorithm” comes from the idea of a basic scheduler used in older
kernels, the Linux Elevator. The idea is an analogy to a real-life elevator, that goes from the
lowest request floor to the topmost one and can stop on its way to pickup more people. For
example requests <5 150 12 35 145 10> are handled this way: <5 10 12 35 145 150>.

There are flaws in the main idea, mainly there is a threat of starvation. This is where
more sophisticated elevator algorithms come in.

• NOOP – Just a FIFO queue, no overhead, used when the scheduler is not wanted.

• Deadline – It has three different queues. Aside from the main FIFO queue, a pair
of secondary queues (for read and write requests) is added to store the requests’
timeout. After a timeout in secondary queue(s) the scheduler moves to a sector from
such queue, dispatches timeouted requests and continues with the main queue.

• Anticipatory – Based on the deadline scheduler, but because processes usually re-
quest multiple sectors in a stream, it waits a small amount of time after the request
anticipating another request on the same spot.

10

• CFQ – Completely fair queuing. Every process has its own elevator queue and the
system handles them with a round-robin algorithm or by priority.

Test results for scheduler comparison can be found at [4], [5] or [6]. Results show that
the deadline scheduler prevents starvation (e.g. by reading a big file in a stream), but still
a stream of writes can starve reading. The anticipatory scheduler deals with both such
problems and when the anticipation meets the real situation, it excels over other schedulers
(but when the reads do not go in a stream, the anticipation is a slowdown).

Default scheduler for the linux kernel is currently the CFQ scheduler. The anticipatory
scheduler can be used in smaller systems, but basically the CFQ is better overall. The
CFQ scheduler has been chosen over the anticipatory scheduler because of its fairness in
distributing the I/O requests over multiple devices and scalability per process.

There are however cases, when we do not want the I/O scheduler to rearrange I/O
requests. This can be due to the nature of the device, where the access time is not based
on seeking (SSD). Another use of the NOOP scheduler is for highly efficient disk drivers
supporting their own reordering of commands (NCQ, TCQ, . . .).

To provide I/O schedulers other than NOOP, compile kernel with options
CONFIG_IOSCHED_DEADLINE, CONFIG_IOSCHED_AS and/or CONFIG_IOSCHED_CFQ. The cur-
rent scheduler can be set by CONFIG_DEFAULT_IOSCHED or by kernel boot parameter
elevator= or via /sys/block/<disk>/queue/scheduler.

3.2 Runtime parameters

3.2.1 Optimizing the I/O scheduler

The sysfs (see chapter 4.2) can be used to change parameters of the I/O scheduler. The
scheduler is selected via /sys/block/<disk>/queue/scheduler. Based on the selected
scheduler the /sys/block/<disk>/queue/iosched/ directory is filled with files holding
parameters of the current scheduler, that can be read or set by cat or echo command.

Changing the default values is not recommended, although in some special cases it can
get better results (e.g. changing the readahead size or anticipation timeout), for complete
description, see [6].

Because with CFQ every process has its own queue, processes can have priorities for
disk access. The tool used for changing the priority of a process is called ionice (a part
of schedutils). Usage is analogical to the nice tool (you can set either real-time priority,
idle-priority or best-effort, in which case there are 8 levels if niceness).

Some parameters that optimize the CFQ scheduler (relative to /sys/block/<disk>/):

• read_ahead_kb – Sets the readahead buffer size, default is 128, 512 can speedup
streaming reads.

• nr_requests – Sets queue length, default is 128, higher value speeds-up at the expense
of latency.

• iosched/back_seek_* – Configure back seeking (like in the anticipatory scheduler),
CFQ is an ascending elevator otherwise.

• iosched/fifo_batch_* – Configure expiration times for deadline scheduling in CFQ.

11

3.2.2 Sysctl

Some of the most notable performance improvements for Linux can be accomplished via
system control (sysctl variables) in /proc/sys. Unlike most other areas of /proc, sysctl
variables are typically writable and are used to adjust the running kernel rather than simply
monitor currently running processes and system information.

There are two ways to work with sysctl: by directly reading and modifying files in
/proc/sys or by using the sysctl command. Direct reading and modifying means the
usage of cat and echo commands. These changes however are only temporary. To make
the effect permanent, all changes must be done in /etc/sysctl.conf configuration file
(location can be distribution dependant) which is loaded at startup.

The sysctl command uses the same hierarchy as the directory structure in /proc/sys
where forward slash is replaced by a fullstop. For example:

echo "1" > /proc/sys/net/ipv4/ip_forward
equals
sysctl -w net.ipv4.ip_forward="1"

To reload the configuration file, simply type sysctl -p, to list available variables type
sysctl -a.

Binary access to system information by sysctl() system call is now to be deprecated
(it should have been removed in 2006 but then stayed in the kernel) and will be removed
from Linux kernel in 2010. File-oriented access through /proc/sys should be used instead.

The most important values for I/O optimization in sysctl:

• fs – file systems – The directory structure depends on which filesystem you use. As
for the general parameters, file-nr and file-max are relevant for this work. They
specify how many handles are there and how many can be allocated.

• net – networking – This section offers the most options for increasing performance
but it can also make the system non-compliant with other computers on the network.
Among others, iptables can be configured here.

• net.core – General section, buffer setup, memory usage
(wmem_max, rmem_max, wmem_default, rmem_default).

• net.ipv4 – Overrides the core settings, setups the IPv4 protocol. Value
tcp_max_syn-backlog specifies the maximum amount of half open connections and
tcp_syncookies enables syn-cookies. These values can be increased (set on) for
some webservers. ip_local_port_range is self-explanatory and by default set to
32768 61000. Buffers can be set more specifically by tcp_wmem tcp_rmem tcp_mem.
Finally keepalive timeout can be reduced by tcp_keepalive_time from default 7200
to a lower value.

• vm – virtual memory – There are few variables that are very useful when tuning per-
formance. They control the behavior when allocating, swapping or syncing memory.

• vm.overcommit_memory – By default it is set to 0, which means that the kernel heuris-
tically estimates free memory left and prevents allocating more than this amount.
When set to 1 kernel pretends that there is always enough memory, until it physically
runs out of it. This can be used when running programs allocating large chunks of

12

memory and using only a little of it. Setting it to 2 uses the vm.overcommit_ratio
which prevents allocating to exceed swap plus this percentage of physical memory.

• vm.page-cluster – On pagefault, the kernel loads not only one page, but
2vm.pagecluster pages. Default is 3, maximum 5.

• vm.dirty_ratio – Percentage of total system memory pages at which dirty pages are
written to disk. Per process.

• vm.dirty_background_ratio – Percentage of total system memory pages at which
pdflush starts to write dirty data.

• vm.dirty_writeback_centisecs – Periodical timer to run pdflush and sync ”old”
data to disk. In 100’s of seconds.

• vm.dirty_expire_centisecs – The age of data in 100’s of seconds to be considered
”old”.

• vm.laptop-mode – Saves energy by minimizing spin-up times.

For full documentation of system control variables, see linux kernel documentation [21],
Red Hat Magazine1 (focused on virtual memory) or other community pages (like [8], [7]).

Some of the parameters can also be set by hdparm or blockdev tools.

3.3 Choosing the filesystem

The filesystem has a great impact on the system’s performance. The overhead that can
arise because of badly chosen filesystem can be overwhelming on a highly accessed disk.

For desktop computers, the filesystem choice is not such a big deal because the disk ac-
cess is not very high nor constant and also those systems are more general-purpose oriented.
Servers on the other hand have more specialized requirements for a disk. Some filesystems
have better performance on many small files (like ext2 or ext3), others on files with big
amount of data (XFS, JFS).

Some filesystems can use native unicode in filenames (JFS, NTFS), some have short
maximum filename length (FAT32 without LFN) and the maximum file size also comes
to question (FAT32 - 4GiB, ReiserFS 3.5 - 4GiB). The question of journalling is also
important because it has a performance impact and some filesystems use full journalling
while others only metadata journalling (nowadays most filesystems can turn full journalling
on) or none at all (ext2). The choice then depends on the server’s scope of operation.

Other properties like scalability or recovery possibilities can be compared. The XFS
filesystem should not be used without uninterruptible power supply, because it doesn’t
synchronize with the disk very often (which is a great performance boost) and fills corrupted
data files with zeroes on recovery. Also fragmentation is to be considered (ReiserFS gets
fragmented very quickly).

Main parameters of mostly all known filesystems can be found on Wikipedia [9], one of
the most complete comparisons for mainstream filesystems can be found at [10], [11]. The
results in short show, that ext2/ext3 are very good for great number of files, whereas XFS
excels in big file handling and file deletion.

Setting the filesystem blocksize is essential for the balance between data access time for
larger files and the amount of internal fragmentation when smaller files are stored.

1http://www.redhat.com/magazine/001nov04/features/vm/

13

3.4 System maintenance

As in real life, the biggest enemy of a system in use is time. Every system should be
properly maintained to prevent slowdowns. Checking hardware status of the server (error
rates, SMART capabilities, etc.) and monitoring memory and disk usage status is essential
for enterprise servers. The next few chapters will give more detailed information about
system monitoring and available tools.

One problem that most definitely falls in this category of system optimization is frag-
mentation. Although linux filesystems do not fragment that much as many other known
filesystems, fragmentation is still a problem. Also, more global scope of fragmentation is
often omitted, the directory data fragmentation.

When files under one directory are far from each other, disk must seek more, thus
creating a slowdown in the I/O layer. Monitoring and defragmenting essential directories
should be done regularly.

3.5 Programming

Some of the performance can be gained by writing programs in optimized way (see
[25]). Reading two subsequent small block instead of one larger can be slower because of
the request queue at the disk. Random access is much slower than sequential, mapping into
memory can be of a good use. If the application has its own caching system (like database
servers usually do), direct I/O can be used (open() with O_DIRECT) so the OS caching is
taken out.

There is also an asynchronous I/O project with limited functionality [2].

14

Chapter 4

Analysis and monitoring tools

Monitoring tools are not only needed when having performance difficulties. They are
also useful for long-term logging, auditing, etc. This chapter gives an overview of many
tools and their functionality. The choice of such tools depends on particular demands of
administrators.

There are few very sophisticated and complex tools for overall system monitoring in
current window-manager packages, like KSysGuard or gkrellm. All such applications are
based on the same sources of data as the ones mentioned in next sections. The main purpose
of these applications is to gather the information into one place and graphically represent it
for the user. Command-line utilities are more suitable for scripting and server maintenance.

4.1 Kernel messages

To receive messages from the kernel in userspace, there has to be some facility to pass
such messages. Kernel messages are not always warnings, errors or debug messages. When
configured, the kernel can pass statistics or other monitoring information to be logged
afterwards.

The simplest way for the kernel to report some data is via printk(), and then the user
can access the kernel message buffer by dmesg command (the binary connection is done via
/proc/kmsg) or by syslog daemon. Most of the data is generated in bootup stage, so it can
be used to check the configuration of kernel and hardware (like duplex NIC etc.).

4.1.1 debugfs

The syslog daemon is useful for logging all the data from all processes in a computer,
but is not very practical for transferring huge amounts of data from the kernel. Special
filesystem, debugfs, can be used instead.

debugfs is a virtual filesystem developed to export debugging information to the user-
space, highly used by kernel developers. Creating a file in /proc requires too complex kernel
programming, files in /sys can mostly contain only one value and not sequential data. The
best way to put lots of debugging information to userspace is by using special filesystem
and debugfs has been created by Greg Kroah-Hartman to become a standard debugging
filesystem.

15

Programming the debugging filesystem is a simple task for kernel developer, to export
values, you only have o create a directory and then a file filled with sequential data or you
can use predefined functions to export only one variable into a file. Exported variables are
also writable which makes the filesystem ideal for debugging purposes.

4.2 Sysfs

The linux kernel provides a special filesystem sysfs to access device information from
userspace (like procfs provides kernel parameters) and it is usually mounted at /sys. The
goal of the sysfs filesystem is to expose the hierarchical relationships among all components
of the device driver model.

The related top-level directories of this filesystem are:

• block – block devices, independently connected to the bus

• bus – buses in the system with all connected devices

• class – types of devices in the system

• devices – devices recognized by kernel, organized per bus

• firmware – files to handle the firmware of certain devices

• module – information generated by (parameters of) loaded modules

• power – files to handle the power state of certain devices

4.3 Networking tools

Tools for monitoring network activity are primarily focused on the throughput of a NIC.
Basic information is obtained from hardware device counters in the form of byte and packet
count (received, sent or aggregated), which can then be transformed into bytes per seconds
(this information can be found in /proc/net/*).

4.3.1 ifconfig

Essential tool for configuring network interfaces. Aside from the configuration func-
tionality, it also reports many properties and statistics of the interface. The total sum of
transferred packets, dropped and erroneous packets since bootup time is shown for requested
interfaces.

4.3.2 iftop

Simple, yet well arranged command line tool for monitoring the current bandwidth
usage on network interfaces. This tool also provides filter for packets to be counted in the
statistics.

16

4.3.3 ifstat

A command-line tool for interface statistics reporting. The output (see A.1) is similar
to iostat or vmstat. Without any parameters given, it displays the current transfer rate
(in and out) for all interfaces that are up. The output is written after a polling interval
(default 0.1s, can be changed) infinitely (the number of polls can also be specified).

When the parameter -i is set, only selected interfaces will be displayed. Using param-
eter -T a total transfer rate is printed. To get the timestamp for current values, add a -t
parameter. The application uses multiple sources (or drivers) to receive the data, like proc,
SNMP and others, see man ifstat for all definitions.

4.3.4 dstat

Dstat is a versatile tool combining iostat, vmstat and ifstat to show multiple statis-
tics in its output. It also uses colorized output to show the magnitude of printed values. For
example network usage can be seen in a context with disk usage. The decolorized output
is shown in appendix A.2.

4.3.5 netstat

Netstat can printout much statistical information about the network interface or under-
lying network connections based on the type of information requested. See A.3 for outputs
based on different settings.

• netstat – Lists open sockets of all families (-A unix,ip,... selects the family
of sockets) and related processes (parameter -p).

• netstat -M – IP masquerading statistics (if enabled in the kernel).

• netstat -r – Kernel routing table, equals to the output of route.

• netstat -g – Displays multicast group membership for all interfaces.

• netstat -i – Kernel interface table, similar to cat /proc/net/dev.

• netstat -s – Overall statistics for all network protocols. There are many statistical
values (e.g. TCP retransmission count, ICMP message count, IP packets forwarded,
etc.).

4.3.6 lsof

This command lists open files in the system. Parameter lsof -i addr lists internet
connections to/from given address (if no address specified, all connections are listed). Where
the netstat -A ip -p shows only open connections, lsof -i lists also listening sockets
and UDP connections (A.4).

lsof also supports filtering based on user or process name, SELinux policies and more.
For complete usage description see man lsof.

4.3.7 nfsstat

Nfsstat is a monitoring tool for NFS. Prints out statistics about client and server RPC
calls and transactions (all versions by default, override by -[234]). With the option -m it
lists all mounted volumes via NFS. Example output can be found in appendix A.5.

17

4.4 Disk tools

In the case of disk monitoring, not only the throughput is important, but also the
response time of the disk (i.e. queue status and seeking time). As for the space usage, it is
not the goal of this work to monitor the disk space usage (e.g. via df or du).

4.4.1 smartctl

This tool is a part of smartmontools and it is used to monitor disk’s SMART information
and executing a self-test. Use this tool to monitor the hardware status of the disk.

Disk hardware information can be obtained via smartctl -i (device identification and
information) or smartctl -a (for SMART related values and errors). Other parameters are
used to set the SMART capabilities, run/abort testing, enable features, etc. Full parameter
list and description can be found in man smartctl.

4.4.2 lsof

The lsof command can be widely used for other files than only network sockets. The
filtering capabilities are very useful when looking for a process or a user/group (by -p or
-u/-g) that has an extensive amount of opened files. It can also list only files opened in
given directory (and subdirectories) when +d (+D) parameter is used.

See documentation in man lsof and example outputs in A.4 for usage information.

4.4.3 iostat

Iostat reports CPU statistics and I/O statistics for disks and partitions. The disk
utilization statistics include transfers per second rate, block read/write statistics and data
transfer rates. More specific information (when parameter -x is given) includes read/write
requests merged to queue/sent to device/completed per second, average service times for
the device and device data transfer speeds.

Iostat also supports NFS statistics when -n is specified (only for kernel 2.6.17 or later).
See appendix A.7 for examples.

4.4.4 dstat

As mentioned in previous section, the dstat command provides complex and centralized
statistics in one combined output.

4.4.5 filefrag

Filefrag is a reporting tool for ext2/ext3 filesystems, that can be used for other filesys-
tems as well. It reports how much a file is fragmented (on how many series of blocks it
resides). It is best for a file to be in one consecutive chunk instead of being distributed over
the disk, because more seeking is needed to read all the data of a file.

The problem of this tool is that it only scans one regular file at a time and the output
is text-only, which would not really useful for larger scale. This problem is addressed later
in this work.

18

4.5 Kprobes

Kprobes, a new feature in the Linux 2.6 kernel, allows for dynamic, in-memory kernel
instrumentation. To use kprobes, the developer creates a loadable kernel module which
calls the kprobes interface. These calls specify a kernel instruction address, probe point,
and an analysis routine, probe handler.

Kprobes arrange for control flow to be intercepted by patching the probe point in
memory (adding a breakpoint before given instruction), with control passed to the probe
handler. Kprobes has been carefully designed to allow safe insertion and removal of probes
and to allow instrumentation of almost any kernel routine. It lets developers add debugging
code into a running kernel. Because the instrumentation is dynamic, there is no performance
penalty when probes are not used.

The basic control flow interception facility of kprobes has been enhanced with a number
of additional facilities. Jprobes make it easy to trace function calls and examine function call
parameters. Kretprobes are used to intercept function returns and examine return values.
Although it is a powerful system for dynamic instrumentation, a number of limitations
prevent kprobes from a broader use:

• Kprobes do very little safety checking of probe parameters, making it easy to crash a
system through accidental misuse.

• Safe use of kprobes often requires a detailed knowledge of the code path to be instru-
mented.

• Due to references to kernel addresses and specific kernel symbols, the portability and
reusability of the instrumentation code using kprobes interface is poor.

• Kprobes do not provide a convenient mechanism to access a function’s local variables,
except for a Jprobe’s access to the arguments passed into the function.

• Although using kprobes doesn’t require a kernel build-install-reboot, it does require
knowledge to build a kernel module and lacks the support library routines for common
tasks.

These problems create a significant barrier for potential users. A script-based system
that provides the support for common operations and hides the details of building and
loading a kernel module will serve a much larger community, which is one of the main
motivations for creating SystemTap.

4.6 SystemTap

The goal of SystemTap is to provide an infrastructure to simplify the gathering of
information about the running Linux kernel, so that it can be further analyzed. This can
assist in identifying the underlying cause of a performance or functional problem. The
recent addition of Kprobes to the Linux kernel provide the needed support but does not
provide an easy-to-use infrastructure. SystemTap provides a simple command-line interface
and scripting language for writing kernel instrumentation scripts.

The essential idea behind a systemtap script is to name events and to give them handlers.
Whenever a specified event occurs, the Linux kernel runs the handler as if it were a quick
subroutine, then resumes. There are several kind of events, such as entering or exiting a

19

function, timer expiration, or the entire systemtap session starting or stopping. A handler
is a series of script language statements that specify the work to be done whenever given
event occurs. This work normally includes extracting data from the event context, storing
them into internal variables and printing results.

Using SystemTap is simpler, much safer and easier to use that directly using Kprobe
modules. As systemtap scripts can be found in the community, reusability becomes easy.
One of the main goals of SystemTap is enabling a production-environment use, which means
having crash-proof tool at hand.

4.6.1 Implementation

SystemTap takes a compiler-oriented approach to generating instrumentation. Archi-
tectural overview can bee seen in figure 4.1.

First, SystemTap parses user’s script (probe.stp) and resolves library functions, filling
in needed data from current kernel debugging information. Based on such created parse
tree, a C-source code is generated (probe.c).

The probe.c file is compiled into a regular kernel module (probe.ko) using the GCC
compiler. The compilation may pull in support code from the runtime libraries. After GCC
has generated the module, the SystemTap daemon is started to collect the output from this
instrumentation module.

The instrumentation module is loaded into the kernel, and data collection is started.
Data from the instrumentation module is transferred to userspace via relayfs (data relay-
ing filesystem, see [18]) and displayed by the daemon. When the user hits Control-C the
daemon unloads the module, which also shuts down the data-collecting process.

Figure 4.1: Flow of data in SystemTap (from [17])

4.6.2 Installing

SystemTap makes heavy use of compiler debugging information in the kernel binaries.
Therefore to use systemtap scripts, kernel has to be compiled with such debugging infor-
mation.

There are few possible ways to achieve this, varying from distribution to distribution.
Some distributions provide a special kernel package (Debian – linux-image-debug, RHEL
– kernel-debuginfo) that can be precompiled. Another way is to recompile the kernel
manually with CONFIG_DEBUG_KERNEL=y in the kernel config file.

20

The systemtap daemon and command-line interface can be installed using the stap or
systemtap package (see your distribution package tree or visit the systemtap homepage –
[15]).

On some distributions there is a glitch in compatibility. SystemTap tries to open uncom-
pressed kernel image using a path /lib/modules/‘uname-r‘/vmlinux. When systemtap
complains about missing debugging symbols, check the existence of the image in that path
and when missing, simply create a symlink to it (e.g.
ln -s /usr/src/‘uname-r‘/vmlinux /lib/modules/‘uname-r‘/vmlinux).

4.6.3 Tracing using SystemTap

The systemtap input consists of a script, written in a simple language. This language
describes an association of handler subroutines with probe points. Probe points are abstract
names given to identify a particular place in kernel/user code, or a particular event (timers,
counters) that may occur at any time.

Handlers are subroutines written in the script language, which are run whenever the
probe points are hit. Probe points correspond to gdb breakpoints, and handlers to their
command lists.

The language resembles C, itself inspired by the old UNIX tool awk. The language is
lacking types, declarations, but adding associative arrays and simplified string processing.
The language includes some extensions to interoperate with the target software being in-
strumented, in order to refer to its data and program state. Complete language reference
can be found in Documentation section on the SystemTap homepage [15].

A simple example script kprobeio.stp (see appendix B.1) uses one global variable
count_generic_make_request and three probes. The probe locations are: begin, which
executes before any other probe in the script and logs the start of probing; end, which
executes on the instrumentation shutdown; kernel.function("generic_make_request"),
which is called due to a breakpoint inserted into the kernel at the point where the actual
generic_make_request() function is called.

Running the script is very simple, just typing stap kprobeio.stp into the command-
line is sufficient. The user has to have root privileges to insert probes into a running kernel
of course. Output of this simple script is following:

starting probe
ending probe
generic_make_request() called 24 times

4.6.4 Tapsets

Tapsets are similar to libraries known from modular programming. There are two main
types – scripted tapsets and C-language tapsets. The scripted tapsets are common for defin-
ing aliases (kernel.syscall.read → sys_read), creating small but widely-used functions
(e.g. formatting outpus) or some helpful commands to parse data into a structure, etc.
C-language tapsets are mostly used by developers for the consistency of this programming
language and to create more sophisticated and optimized functions.

21

4.6.5 Safety

SystemTap is designed for safe use in production systems. One implication is that
it should be extremely difficult, if not impossible, to disable or crash a system through
use or misuse of SystemTap. Problems like infinite loops, division by zero, and illegal
memory references should lead to a graceful failure of a SystemTap script without otherwise
disrupting the monitored system.

The developers avoid privileged and illegal kernel instructions by excluding constructs
in the script language for inlined assembler, and by using compiler options used for building
kernel modules. SystemTap incorporates several additional design features that enhance
safety. Explicit dynamic memory allocation by scripts is not allowed, and dynamic memory
allocation at runtime is avoided.

4.7 blktrace

Tracing block device’s I/O actions is another new addition to Linux kernel. Using
debugfs it sends per-I/O-action data to the userspace. This is the main difference between
blktrace and iostat. iostat can report only global statistics, but blktrace has the
capability of tracing each and every I/O operation requested from the kernel.

This tracing has a very low overhead (about 2% of application performance according
to developers). The kernel module reports events that happen in the block layer (queue
insertion, sleeps, merges, start and completion of I/O request, . . .) through the debugfs
and the monitoring side reads it from there. However blktrace is not an analysis tool, it
is only the mean of transporting needed information through debugfs into userspace.

Events extracted by blktrace are in binary form and can be stored or piped to the
extraction utility called blkparse. This utility can generate statistics from given binary
data. The output data contains: device ID, CPU ID, sequence number, timestamp, PID,
event type (queue, request, complete, . . .), block address, block size and process name.

When the tracing is finished, blktrace outputs a summary containing the average
thoughput, number of merges, queued requests, completed events, etc.

The last tool using traced statistics is btt, which shows the lifetime information about
an I/O request. The lifetime information traces the processing time of a request and shows
all the parts of the request-path (before insertion to the queue, being idle and time being
active on the device).

To enable block tracing support, set CONFIG_BLK_DEV_IO_TRACE=y in the kernel config
file and install the
blktrace application package. Before using the tool itself, debugfs has to be mounted and
the path given to blktrace (default value is /sys/kernel/debug).

Example outputs of all programs mentioned above are in appendix A.8.

4.7.1 Events

By default, blktrace collects all events that can be traced. To limit the events being
captured, you can specify one or more filter masks via the -a option. The event types and
possible mask values (they are not disjunctive) are following:

• barrier – barrier attribute
Some requests can have this flag set. Before a barrier request is started, all preceding
requests in the queue must be finished and all following requests can be started only

22

after this request has been completed. This creates a firm request ordering and
flushing to disk. It is used mostly for journalling.

• complete – completed by driver
Event marking an end of the I/O operation. Useful for time measurement.

• fs – filesystem request
These are all read/write operations on an IDE disk (having specific disk location and
size). Useful for data tracking.

• issue – issued to driver
Event occurring when the request is taken from scheduler queue and handed over to
the hardware driver by the kernel. Very useful for measuring seek times and disk
hardware attributes.

• pc – packet command event
There are all SCSI commands with command data block. Useful for monitoring SCSI
driver events.

• queue – queue operation
All operations done on the scheduler queue (addition, merge, etc.). Useful for sched-
uler profiling and average queue-time monitoring.

• read – read trace
Only read operations (transferring data from the disk).

• requeue – requeue operation
The scheduler can remove a request from the queue and requeue it afterwards to
increase performance.

• sync – synchronous attribute
This flag is only set for request that are synchronous (like writing into files with
O_DIRECT flag).

• write – write trace
Only write operations (transferring data to the disk).

Synchronize and barrier flags are set on the beginning (if needed or specified). An
example datapath for reading some data from a disk (and emitting appropriate flags) is
visualized on figure 4.2 – all events would be flagged read because we are reading data.

The blkparse utility (or btrace script that combines blktrace and blkparse) shows
the type of events captured. One of the output columns can contain RWBS symbols to show
whether the request was a read or write request and whether it has been called with a
barrier or synchronize flag.

The second flag column can contain following symbols – ABCDFGIMPQSTUX, the meanings
are:

• A – I/O was remapped to a different device
For stacked devices, incoming request is remapped to device below it in the I/O stack.
The remap action details what exactly is being remapped to what.

23

Virtual Filesystem

Generic Block Layer

userspace

kernel

FS FS FS FS

I/O Scheduler

queuequeue

requeuequeue

DriverDriver Driver
software

hardware

completeissue

pc pc fs fs

ATA

read(fp, buf, count);

SCSI

Figure 4.2: Datapath and emitted flags for blktrace

• B – I/O bounced
The data pages attached to this block-io structure are not reachable by the hardware
and must be bounced to a lower memory location. This causes a big slowdown in I/O
performance, since the data must be copied to/from kernel buffers.

• C – I/O completion
A previously issued request has been completed. The output will detail the sector
and size of that request, as well as the success or failure of it.

• D – I/O issued to driver
A request that previously resided in the I/O scheduler queue has been sent to the
driver.

• F – I/O front merged with request on queue
Same as the back merge, except this request ends where a previously inserted request
starts.

• G – Get request
To send any type of request to the scheduler, a memory structure container must be
allocated first.

• I – I/O inserted into a request queue
A request is being sent to the I/O scheduler for addition to the internal queue. The
request is fully formed at this time.

24

• M – I/O back merged with request on queue
A previously inserted request exists that ends on the boundary of where this request
begins, so the I/O scheduler can merge them together.

• P – Plug request
When a request is queued to a previously empty block device queue, scheduler will
plug the queue in anticipation of future requests being added before this data is
needed.

• Q – I/O handled by request queue code
A request is being formed to be sent to scheduler.

• S – Sleep request
No available request structures were available, so the issuer has to wait for one to be
freed.

• T – Unplug due to timeout
If no more requests are sent to the plugged queue, scheduler will automatically unplug
it after a defined period has passed.

• U – Unplug request
Some requests are already queued in the device, start sending requests to the driver.
This may happen automatically if a timeout period has passed (see T) or if a number
of requests have been added to the queue.

• X – Split
On RAID or device mapper setups, an incoming request may straddle a device or
internal zone and needs to be chopped up into smaller pieces for service.

For a detailed description see the blktrace and blkparse userguide [13].

4.7.2 Output storing

Although the output data of blktrace is of a huge quantity, it should be stored for later
analysis. But storing such large data output comes with many difficulties. There are few
ways to achieve the backup of blktrace outputs:

• Physical disk – enough space, easy to use, but system calls are used for writing
(performance impact) and the I/O subsystem that should be monitored is part of the
test-harness now

• RAM disk – although little impact on CPU and I/O, limited in space and fixed
memory allocation

• tmpfs – only utilizes RAM when needed, less I/O intensive, but still some impact,
RAM drain can be large, limited size

25

Chapter 5

Solving high I/O workload
situations

Running a server in an enterprise environment comes with a great responsibility at
many times. Most of such servers have to be available all the time, where available doesn’t
only mean that the server is running, but that it is also responsive and stable.

To meet these requirements, administrators must have adequate tools for performance
monitoring and analysis, which are not only used for long-term monitoring and thus opti-
mization, but also for dealing with problems in the shortest time possible.

This particular thesis is focused on such tools, particularly on I/O oriented tools. The
reason is simple: determining a bottleneck or an error bound to a CPU is a well-mapped
task, one only has to run the top command to see which processes are CPU-intensive and
based on that information limit them or increase the CPU power. The same situation
applies for memory-oriented deficiencies.

Disk operations on the other hand are more complicated. There are many layers on
the datapath and many components with different interfaces, data rates etc. That is the
main reason for not having a complex set of tools and methods for dealing with disk I/O
inefficiency. Following chapter tries to provide such solution.

Next sections of this chapter describe a method to be applied by the administrator to
deal with I/O oriented deficiencies on a running server (e.g. fileserver, webserver, etc.). I
will first show needed steps to be taken to determine the source of the slowdown from the
very beginning. Using these methods I will present some common real-life situations and
use previously defined steps to deal with them.

5.1 Detecting the global source

The first step to be taken is to determine the basic scope of the slowdown. There are
four main areas to be focused on – CPU load, memory allocation, network bandwidth usage
and disk throughput/responsiveness.

5.1.1 CPU load in userspace

The first thing that people think of when a computer responds slowly is that the CPU
load is too high. This is not really true, most of time the real problem lies in disk response
time, because operating systems (particularly on desktop computers) can easily deal with
CPU-intensive processes and still preserve overall responsiveness.

26

Nevertheless, a high CPU load can easily slow down the whole server. To detect high
CPU load one can use many tools from top to graphical applications. The source of CPU
load information is the /proc/stat file, which can easily be parsed in a script or binary
application. First few lines of the output contain data bound to each processor of the
machine (the first line aggregates all other CPU lines):

cpu 82419 351399 113941 4983746 57796 11335 39058 0
cpu0 35202 182639 56921 2482112 37595 5361 20027 0
cpu1 47217 168759 57019 2501633 20201 5973 19030 0

These numbers identify the amount of time the CPU has spent performing different
kinds of work. Time units are hundredths of a second. The meaning of shown columns is as
follows, from left to right: user, nice, system, idle, iowait, irq, softirq. For more information
see [20].

The percentual load can be computed from the difference of these numbers in given
time slot and computing the fraction part of each type of work.

5.1.2 CPU load in kernel

High kernel CPU load can also be detected by previously mentioned tools (usually
labeled as sys load). The problem lies in determining the exact source of such load and
also in resolving the problem.

Some processes can use system calls too much (fork() and exec() for example), which
is detected by higher system time of a process. The only resolution is changing its behavior
by rewriting the program’s source code.

The second (and worse) possible case of high system CPU load is more difficult to
examine. Kernel manages all the low-level operations needed for the computer to work,
process and memory management, I/O, etc. Kernel should utilize its jobs to be executed
only in relatively small batches and when the CPU is more idle, but sometimes there are
jobs that have to be executed immediately.

These situations are more common when a module has a bug or a built-in driver loops
in the kernel. Finding the real source in the kernel is highly difficult and is mostly resolved
by kernel or driver developers.

5.1.3 Memory allocation in userspace

Memory allocation as such is not really a source of a slowdown. When a process cannot
allocate more memory it usually dies, so the problem is not a slow responsiveness but wrong
functionality. However, this also has to be detected and resolved.

Due to the existence of virtual memory, space itself is usually not a problem, but
swapping is. When a memory segment is swapped, it has to be written to disk and read
from it afterwards. This can cause severe amounts of disk usage thus creating a high
I/O workload and slowing down the computer. The extreme case is called thrashing, a
situation where the most time is spent on swapping instead on actual work.

Detection of high memory allocation is also relatively simple. A command line utility
free provides the essential data about memory usage.

27

total used free shared buffers cached
Mem: 3105548 2875064 230484 0 17740 2422076
-/+ buffers/cache: 435248 2670300
Swap: 4008176 260 4007916

The first line’s memory usage (first three columns) is not really useful, because linux
kernel doesn’t free memory immediately (it stays cached), but only when needed. The
buffers column is the amount of memory used for directory cache and other kernel buffers.
Special type of such buffers is the filesystem buffer cache (separated column cached), that
holds all the data read/written from/to a disk for further use. This cache grows and shrinks
on demand, it is only freed when the memory is needed for running processes.

The second line shows the ”real” memory usage (without cached memory and buffers).
This is the addition in the new format of this tool. Last line shows the amount of memory
swapped to disk. When the swap space is used, disk I/O starts to be a factor, so the higher
the swap, the most likely a slowdown occurs.

It has to be said, that having the swap space used (although it may be of nearly 100%)
doesn’t always mean that thrashing will occur. There may be much data swapped and
not used for a long time. The crucial factor is the swap partition usage. To determine
read/write transfer speed, vmstat tool can be used. The output is following:

procs ----------memory---------- --swap-- ---io--- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 260 121976 35556 2487904 0 0 561 134 497 663 3 2 95 1

The --swap-- column shows written (so) and read (si) data in bytes from previous mea-
suring (or average from bootup, when delay parameter not given, see man vmstat).

Kernel reports the memory information via /proc/meminfo (which is also where free
looks) and it is the first place to use when writing scripts for automatic memory monitoring.
The file output is self-explanatory.

5.1.4 Memory allocation in kernel

To see the kernel memory usage statistics, see /proc/slabinfo that reports the kernel
slab cache usage. This cache is used for objects having the same size, thus saving memory.
Too many allocated entities can cause a problem in memory allocation. A command-line
tool similar to top is focused on slab memory allocator – slabtop.

Another important allocator is the buddy allocator. It is used to minimize memory frag-
mentation created by memory allocation. Kernel exports statistics in /proc/buddyinfo.

Kernel itself allocates memory mainly through slab caches and has some statical amount
of memory allocated all the time. More memory is of course allocated when needed. The
largest memory-consumers in kernel are buffers. Buffers are used for transferring data into
userspace and in many cases (disk, network, etc.), such buffers are allocated the whole time,
thus decreasing the amount of useable memory for processes.

5.1.5 Network bandwith usage

When talking about servers, the network connectivity has to be taken in account too.
Due to the fairness algorithm of TCP protocol, a connection shares the bandwith equally
with all other established connections. When there are too many connections transferring
data, the responsiveness can be low.

28

The solution for this problem is easy to provide, but hard to make. Lowering down the
number of possible connections can increase transfer speed, but also decreases the number of
transactions at one time. Limiting a connection speed by quotas or daemon configuration is
another way of achieving balance, but can be counterproductive when only few connections
are established.

Monitoring network bandwidth on an interface is easy through a command-line graphical
tool iftop. The raw data can be obtained through ifconfig where the packet count
(measured from bootup) is shown or directly from kernel in /proc/net/dev.

5.1.6 Network latency

Currently, the network usage is usually not a problem. Network cards are capable of
really high speeds and configuring quotas to ensure balanced throughput is trivial. Network
latency however can still be a problem. Besides the ”outside” latency (latency on the
network path – switches, long distances, LAN firewalls, . . .), latency can occur on the
server itself.

As for TCP, bad setup of maximum read/write buffer (both have to be set, because
TCP chooses the smaller one) that are used to compute the congestion window, can cause
major latency because the TCP fairness algorithm narrows the window down. More on
setting network buffers in 3.2.2.

Another latencies can occur when the packet processing time becomes too long. Packets
are processed by the kernel when iptables are compiled in. Various other firewall tools
(mainly packet inspection tools, IDS/IPS) prolong the packet processing time by checking
the contents of data payload.

5.1.7 Disk I/O

Finally, when other possible sources are eliminated, disk I/O subsystem should be an-
alyzed. The analysis is not that simple as in other areas covered before. There are many
reasons why the disk can be responding slowly, as there are many ways processes can
read/write data.

When a process reads large amounts of data, the disk maximum transfer rate and bus
bandwidth are used. A disk has a limited transfer rate (ranging greatly depending on its
technology, rotational speed, etc.) that can be determined by hdparm -t.

The disk maximum transfer rate is nowadays much slower than the bus bandwidth, but
the bus is usually shared by more disks, so the bus bandwidth limit can be reached easily on
a server. For SATA it is 150 or 300 MiB/s, for SCSI 320 MiB/s, for SAS 375 MiB/s. SATA
disks are usually connected as single drives to a single bus, but using an expander (device
connecting more disks via one bus), the bus can be easily choked although disks are still
running below the maximal bandwidth capacity. The same goes for external SATA/SCSI
devices.

Detecting a high disk usage is the simpler task in disk monitoring. Again there are some
tools that can be used, like iostat or dstat, which show current transfer rates for disks
and partitions. The kernel data can be obtained through /proc/diskstats (the output
format is very similar to /proc/stat).

Other way, the disk can become slow in the view of waiting processes, is a long data
retrieval time. Long data retrieval time can be caused by many factors – high or slow disk
seeking, disk errors, too many requests in the waiting queue, Determining the exact
cause is a non-trivial task and it is much more complex than a high-bandwidth detection

29

mentioned in the previous paragraph. Some information is given by the iowait value for
CPU load, but it is an aggregated value for all I/O subsystems.

In both cases, the I/O waiting time grows and the processes that use blocking reads
or writes become unresponsive. It is then the goal of the administrator to determine
the exact source of such problems and to deal with them. Finding the problem-causing
processes/files/disks is the focus of the next section.

5.2 Focusing on the disk I/O

After determining the global source of system slowdown, some actions can be taken im-
mediately (stopping CPU intensive processes, configuring daemons, upgrading hardware),
but when the source is selected to be the disk I/O subsystem, there are too little information
to make action at this point.

To properly analyze the problem, more exact information has to be gained, preferably
which process and which file(s) are involved. Following steps can help determine more
precise source of a system slowdown.

5.2.1 Disk and partition

The first information to be determined is the disk and partition where the problem
resides. This information is itself very valuable. When only one disk of the server is heavily
used during a longer time period, files could be split among multiple disks to prevent high
disk usage and a risk of failure. Also filesystem change on a partition can be reconsidered.

Of course such steps cannot always be taken in practice. Distributing data among
several disks is possible for fileservers or data storage servers, but not really for database
servers, where the data has to be placed in given directories.

The affected disk and partition is the main parameter passed to more sophisticated
tools (as in following scenarios, a disk device is passed to blktrace). iostat, dstat or
reading direct data from /proc/diskstats should be used to obtain the particular partition
affected.

When the transfer rate for no partition is of a higher value, the problem can reside in
the data retrieval time (errors on disk, long seeking, etc.) which is harder to detect and
can be a reason for monitoring each device separately.

5.3 SystemTap scripts for blktrace

Having known the disk to be monitored, blktrace is the right tool to analyze all I/O
transactions executed on that disk. Such data then lead to understanding where the problem
lies (long waiting time, disk seeking, etc.).

However, the blktrace subsystem provides big amounts of data gathered by the tracing
process. The tool itself is very powerful and sufficient for the goal of this work. On the
other hand the data is not easy to follow and parse in sufficient time, so formatting and
parsing the output is the key element for providing simple, yet efficient method for the
administrator to use on the server.

Parsing outputs from blktrace would be very intensive for the server and results would
not be ready in sufficiently short time. Combining blktrace data with SystemTap scripts
gives us relatively easy, sufficiently portable and reliable way to create realtime results and
statistics from blktrace data, because the data are taken directly from function calls inside

30

the Linux kernel. The SystemTap developers and community gather scripts for many uses
and different kernel modules and then shares them for public use, so updating, maintaining
and support (through mailing lists mostly) is at a satisfactory level.

One particular article on the systemtap mailing list from March 2007 (available at [19])
is focused on SystemTap and blktrace integration based on the function call
__blk_add_trace(). Tom Zanussi created a tapset and some scripts for basic I/O statistics.
Those scripts can easily be used to provide the essential information about the I/O workload
and to help the administrator to achieve the goal mentioned in this thesis.

The script and tapset package are available at the mailinglist website 1. I will shortly
summarize those scripts for further use.

5.3.1 Parameters

SystemTap scripts do not take parameters themselves (except for a filename, changes can
be done quickly in the code when needed), but they gather data from __blk_add_trace()
function call, which means, that they only produce outputs, when blktrace is running.
Parameters for blktrace command-line utility were discussed earlier, in short, you can focus
only on reading/writing, synchronous events, or only on device or queue operations. The
main parameter being the traced device.

Running stap using these scripts and tapsets is simple: stap -I tapsets <name>.stp.

5.3.2 countall.stp

This script just keeps a running count of all blktrace events that have occurred over
the run, broken down by event type and read/write direction. The output from a kernel
compile can be found in appendix B.2.

The script output gives an overview of I/O operations happening during selected period
of time, useful for tuning and optimization of the system.

5.3.3 spectest.stp

This script provides speculative tracing, it keeps the most recent I/O requests in memory
and when a condition is met, it stops tracing, enabling the user to check the last few requests
for possible problems. The condition implemented in the script is checking the q2c time
(the time between the request entering a device queue and the moment data successfully
returns to userspace) for not going over one second (the time period can be easily changed
in the script’s code).

Using this script, one can detect long seeks that prolong the device’s d2c time (time
between issuing the request to the device and data returning to userspace) and too many
requests waiting in the queue (usually from too many processes using the device at one
time) – the q2d time. When needed, changing the condition in the script from q2c to d2c
or q2d conditions, more precise tracing can be done. Although it is not really necessary.

Using the sector number in output (see B.3), one can locate the data that caused spectest
to stop. When multiple files are seen having very different sector numbers, the problem
mostly lies in the data physical position on the disk, thus increasing seeking time. The full
output of blktrace tool should be saved somewhere to be analyzed later. In this case the
sector number gives the exact point in the output to be looked at.

1http://sourceware.org/ml/systemtap/2007-q1/msg00485/blktap.0.tar.gz (last visit

04.02.2008)

31

5.3.4 iotop.stp

This is the most ”user-friendly” script providing similar output as the well-known top
tool. It periodically (5 seconds) displays top 20 I/O producers in the system. In the output
(see B.4 – cold starting firefox) there is the PID, process name and I/O statistics for transfer
rates (total, read and write). Don’t forget, that the values are measured in 5s intervals.

Such tool is highly valuable to the administrator when a high workload occurs and it
lets him find the right process to deal with. When the highest producer of I/O workload is
found, it is on the administrator to choose the next action (stop, kill the process or setup
the process properly). If more data is needed, using the process name and topfile.stp
script, the exact file (or files) the process reads can be detected.

Besides the output formatting, the main benefit of this script is the process-to-request
connection. Because most of the write requests are deferred ones, the actual write is issued
by pdflush. The script tracks dirty pages to determine what process is responsible for the
write request by retrieving the dirtying PID associated with the page in bio structure in
kernel.

Running iotop.stp requires extra parameters to increase memory limits, because Sys-
temTap default limits are set too low (will be changed in future versions):
-DMAXMAPENTRIES=10000 -DMAXACTION=10000.

5.3.5 topfile.stp

Sometimes it is useful for the server workload analysis to know which files are frequently
read/written from/to, either in the global scope or only for one process that is examined
(see previous section). The output of this script does exactly the job, during its runtime it
gathers blktrace data and after shutdown it prints the I/O statistics for all files used by the
process(es). The truncated example output for the firefox process can be found in appendix
B.5.

To set the process to be traced (instead of the global scope), uncomment the watchme
global variable in the script and change it appropriately. This script also requires additional
parameters to increase limits: -DMAXMAPENTRIES=10000 -DMAXACTION=10000.

5.3.6 traceread.stp

This script gives a detailed sequence of events with their timings and time-delays from
entry into vfs_read() function to this function return. Tracing can be done for all files or
only one specified as a parameter (give all for all files or a filename). The output shows
where the longest delay is, helping the administrator to find bottlenecks. The truncated
example output can be found in appendix B.6.

5.4 Summary

Choosing the right solution varies from problem to problem (based on the reason of it)
and it is on the administrator to do such thing. Some ideas were mentioned in previous
chapters and optimization techniques wee discussed in chapter 3.

To summarize, I present the main categories of solutions to most of the problems,
ordered by severity of changes:

32

• Proper configuration – consulting manual and setting basic options for daemons:
See documentation and manuals for appropriate software.

• System optimization – configuring buffers, virtual memory, filesystem, etc.:
See chapter 3 for more information on GNU/Linux optimization.

• Load balancing – moving files to separate disks and bus channels avoids bottlenecks:
Depending on the situation, not always possible.

• Access policy – reducing processes/people accessing data at one time:
Mostly application-side setting, disk/CPU quotas.

• Hardware upgrade – should be used only when optimization failed, sometimes un-
avoidable

33

Chapter 6

Scenarios

To provide practical usage examples of previously presented tools and methods, this
chapter gives some of the most common situations related to I/O slowdown on servers
and/or desktop systems. Each section describes a situation and known information as a
prerequisite for uncovering the source of the problem and giving a solution to it.

Going from simpler situations to the ones more complex, this chapter creates a basic
”guide” for I/O-oriented slowdown resolution. First few situations do not cover the area of
I/O subsystem, but show solutions for uncovering the problem in other scopes. Use these
scenarios as a guide to eliminate other areas of interest before stepping into I/O layer.

Network oriented scenarios given further apply mostly to situations, when the slowdown
is reported from the outside (remote client), because the response on the client side can be
slow, but local users do not usually see any problem.

6.1 Non-disk scenarios

6.1.1 High CPU load

All processes have a slow response. The important symptom is that it affects all types
of processes, not only disk-oriented (web and file servers, copying files, . . .). Even if this
information was not given, the detection is still simple, just by running top the problematic
process is discovered.

Having a high system CPU load can be a sign of a slowdown due to too many system
calls, but it doesn’t have to be so. It is normal for fileservers (or any servers dealing mainly
with I/O), that the kernel is called more often thus creating a higher system CPU load.
Such servers are not optimized for running any other applications, so the higher latency for
userspace applications is not really a problem.

6.1.2 High network usage

Connection speed (read and/or write, depending on the situation) is low. This can be
seen only when transferring larger amounts of data, connectivity itself stays at a good level.
To test whether the problem lies in the network or in data retrieving from the server itself,
network interface statistics have to be reviewed.

The ifstat tool displays bandwidth usage for given interfaces. If the total bandwidth
on an interface is reaching the maximum for the given line (and of course interface card), the
problem has been found. To track-down the remote client(s), iftop can be used, because

34

it displays bandwith related to local and remote address and port. Network statistics are
more precise for TCP than UDP streams, because TCP is a connection-oriented protocol
and relevant connection is established for a longer time period, enabling better information
gathering for statistics.

There is yet one situation caused by a high network usage. When there are more
interfaces (or a gigabit network card), the total bandwidth of the network subsystem can
be higher than the maximal transfer rate of a disk. In that case, it is important to know
the disk partitioning of the server. If there is for example only one disk on the server and
the combined transfer rate of all network cards gives the maximum transfer rate for this
single disk, the problem is not in the system configuration nor the disk, the server is just
fully utilized. If the problem is not the high network load, more data gathering is needed.

To gather more data in this case, it is not necessary to use sophisticated tools, but
instead study the logs or monitoring tools of communicating daemons (ftpd, sshd, apache).
The data should be sufficient to locate proper user and file(s) involved in the slowdown.

6.1.3 Too many network connections

This scenario is also a well-known case of DoS attack. Creating many connections on
a remote server can deplete the number of free ports for the transport protocol (state-
oriented TCP) or create too many processes when the server-side daemon uses fork() for
every incoming connection. Servicing too many clients at once can also be a problem for
some other server applications.

Interface bandwith statistics are useless here, monitoring of open sockets (files) and con-
nections is needed. The netstat -tu command shows all established connections for TCP
and UDP protocols. lsof -i also can be used, but does not have that much possibilities
to filter the output. Connections also can be set-up and monitored on an application level
(apache, ftptop, ftpwho for proftpd, etc.).

6.1.4 Network protocol

Some protocols are not really optimized for high-bandwidth usage, sometimes a special
configuration is needed for sending large amounts of data (e.g. sendfile option for proftpd).
Most of the optimization are discussed in chapter 3.

As this work focuses on servers and server performance, network filesystems are common
(also FTP or SFTP, etc., but these are relatively easy to optimize for speed). As for NFS,
monitoring and optimization is not that easy, the most used and discussed parameter is the
size of a data block that is sent through the network, which should be around 32kiB these
days. For more information about NFS optimization, see [26].

6.1.5 Swapping

Although this scenario manifests itself by a high disk usage, the source of the problem is
in the memory layer. When thrashing occurs (being the worst case scenario), every process
is affected, the kernel utilizes most of the time by moving pages from disk to memory and
back. To determine whether virtual memory is full, check the output of free on the Swap:
line.

Only if the memory is mostly used, thrashing can occur, otherwise the swapping is not
that intense and is determined by the amount of free physical memory. To really know how
much swapping is going on, swap partition data transfers have to be monitored. Memory

35

monitoring tool vmstat gives information about swapping in and out by reading and writing
data from and to the swap partition. Of course disk monitoring for the partition itself gives
the transfer rates as well.

Using top and sorting the output by VIRT column (virtual image size – amount of virtual
memory used by the process), the highest consumer(s) can be found and then removed from
running processes, thus creating more free space in the system.

6.2 High disk usage

When the disk becomes fully utilized, blocking read or write requests take a long time
to be serviced, thus slowing the issuing process down. Processes not tied to disk operation
continue to function normally. When other possible areas have been tested, the only in-
formation that can be retrieved by ordinary tools (tools used in almost every distribution,
used on a regular basis) is the affected disk and partition(s).

The overall statistics for partitions is given by dstat -d -D sda,sdb (gives output
periodically) or iostat. This information can solely be enough for some situations, like
partitions with restricted access to only few processes. Mostly however it is only the first
step to find the affected process and/or file.

Having found the highly used partition, the systemtap script iotop.stp should be used.
Because SystemTap gathers data from calls to blktrace functions, blktrace process has to
be running. Saving its output is a good practice, it can later be used for more precise
analysis. More about storing blktrace outpus in 4.7.2, in this example, /tmp/boutput is
used. The following commands are needed to get the output from SystemTap (assuming
the current directory being the one with script package mentioned in the previous chapter):

btrace /dev/sda >/tmp/boutput &
stap -I tapsets -DMAXMAPENTRIES=10000 -DMAXACTION=10000 iotop.stp
...
...
Ctrl+C
fg
Ctrl+C

The periodic output gives the overview of the top disk transfer rate consumers. Moni-
toring of affected files can be done through topfile.stp, using the same commands above
(changing only the script name) and changing the global variable value inside the script.

6.2.1 Dealing with disk-intensive processes

Now that the affected files and processes are known, actions have to be taken, to decrease
the amount of disk usage (either at a local or global scope). This phase gets easier if the
administrator knows exactly what processes are running on the server and what exactly
should they be doing.

The fastest, but worst, solution is to stop the process from accessing the disk. Killing
the process is not really an option (especially on a server), but stopping it for a short while
to let other processes finish their work can sometimes be appropriate. Having a backup
process or kernel compilation running while a vital data have to be sent to multiple clients
is just the case when SIGSTOP is an option.

36

Similar technique is the use of ionice tool, although it is available only when the CFQ
scheduler is selected. Setting a low priority for non-vital processes resolves the slowdown,
but just like stopping said process, it is still just a local solution. In special cases however,
it can be used in long-term.

If the disk-intensive process cannot be restricted in any way, further knowledge is needed.
The process can read in an unoptimized way, that means reading a large amount of data by
relatively small chunks (bytes or tenths of bytes), thus using a system call too many times
and forcing the kernel to seek and copy data over and over again. Aside from studying the
source code, this information can be obtained from iostat (comparing the read/write speed
against transactions per second) or blktrace output that shows the data size requested
(systemtap scripts spectest.stp or traceread.stp can also be used).

Previously mentioned scripts can also show that the process reads relatively big blocks,
but the data is positioned on distant addresses. This can be due to big file fragmentation or
more open files in the process which are not adjacent. Moving the files closer together can
resolve the problem (see next section for more information about fragmented directories).

The process however can read in an optimized way, but just needs so much data, that the
system cannot cope with it. Optimizing the system and setting the program configuration
can make a difference (see chapter 3). Hardware upgrade or disk architecture change is
appropriate when all previous steps failed.

6.3 Badly positioned files

In this situation, the disk bandwidth is not really utilized, but still, the data retrieval
is slow. There are more possible reasons for this, filesystem can be too fragmented or there
are many processes accessing different places on the disk, in both cases causing high seek
times. Other reasons can be streaming writes issued by one process and chunky reading by
another (like copying a large file and browsing a directory).

Basic information is given by topfile.stp output. Resolving the most frequently
read/written files and their locations can be useful. More exact information is however
obtained by the spectest.stp script, which reacts on long data retrieval time (long seek
or full queue) and prints out affected data locations. Based on the sector numbers, files
stored far from each other and usually being read in parallel (database files, web pages),
should be moved to be closer (simple file copy should suffice, given that there is enough
free space on the device to prevent another fragmentation).

Even more detailed information about the data retrieval process is given by the system-
tap script traceread.stp. In the script output the administrator can find data about the
exact layer of the I/O subsystem where the slowdown occurs (in the queue, when the disk
retrieves the data, in copying the data to user, etc).

Fragmentation of a volume is something to be monitored at a regular basis. The tools
for getting the fragmentation value and defragmenting are in most cases part of a filesystem-
tools package:

• XFS – xfs_db – filesystem debugger, the frag command retrieves fragmentation level

• ext2/ext3 – defrag – a python script for defragmenting

• JFS – defragfs

• ReiserFS – doesn’t have such tool, although fragmentation is a problem

37

The basic and most successful way to defragment a volume is to simply copy the data
into another volume (and back if needed). For some filesystems it is also the only way to
keep filesystem fragmentation in shape.

Aside from using SystemTap scripts to find badly positioned files, more regular and
specialized tool is needed. To ease the recognition of badly positioned files and also direc-
tories, I created a command-line tool, fragmon, with graphical output to achieve this goal,
see next chapter.

38

Chapter 7

Fragmentation monitoring tool

In this chapter I present a specialized tool, fragmon, for fragmentation monitoring. It
should ease the system maintenance done at a regular basis.

This utility takes a list of files and/or directories and shows the fragmentation map of
associated data blocks. The textual output (aside from warnings or progress messages) is a
list of file blocks for every file, listed as intervals of continuous data. fragmon also creates
an .png image file showing used data blocks in the scope of given list of files/directories.

7.1 Preliminaries

7.1.1 Fragmentation

Fragmentation is a state of data when there are multiple chunks of it stored at distant
places of a storage media. Current storage media define internal fragmentation and external
fragmentation. The internal fragmentation occurs when the smallest physical data units
are not filled entirely, thus creating gaps and wasting space. This type of fragmentation is
not the issue of this tool for it is only of small consequence these days.

The external fragmentation stands for a much bigger issue. Externally fragmented data
can be distributed on a disk in such a way, that some blocks are on the very beginning of
the disk and other on the very end. This forces the disk to seek for a very long distance over
and over again, creating huge slowdowns. To prevent this from happening, defragmentation
should be performed.

7.1.2 Defragmentation

Defragmentation is a process of collecting file data and moving it to a consecutive
portion of disk space. There are few tools for this job (most of filesystem-tools packages
are shipped with some), but the most used and simple method is just to copy (or move)
the data from one directory (or disk) to another one. There has to be enough consecutive
space on the disk to prevent another fragmentation, of course.

7.2 Motivation

The problem in running environment is not the defragmentation process, but detecting
fragmented data. Some data become fragmented very easily and still do not pose a problem

39

(like temporary files), other will cause big slowdowns to the system (database or file data
on a server). Therefore a tool is needed to analyze files and report the fragmentation.

There is a command-line tool filefrag (a part of ext2 filesystem tools) that analyzes
a file and reports block addresses of all discontinuous data. The function of this tool is
exactly what should be used for said analysis, but the scope of it is too narrow. On a
running system, many files are read, not only one, the appropriate tool should analyze a
given list of files or directories and show an aggregated fragmentation.

Another functionality that is missing, is a more comprehensive output. Textual data
of file discontinuities are difficult to follow, graphical output would be of better use to the
administrator, giving an overview of data blocks right away.

These two drawbacks of the filefrag utility are main motivations for creating a new
fragmentation-monitoring utility – fragmon.

7.3 Implementation

As mentioned earlier, filefrag is a great utility for analyzing one file. According to its
license (GPLv2), its source code has been used as a cornerstone of my utility. The system
part using ioctl() for getting file block map and block addresses stayed and more code
implementing directory traversal and data gathering has been added (the original tool only
displayed recovered addresses and didn’t store any for later use).

The main datasource for statistics and graphical output is the so-called block map of a
file. Each file is stored as a list of data blocks (the block-size and implementation of the list
itself is dependant on a given filesystem). Each data block can be accessed from userspace
by its block number, therefore an ioctl(FIGETBSZ) call is needed to get the number of
blocks in a file.

To really know where the data block is stored on the physical disk, a linear block-address
(LBA) is needed. Block number is converted to LBA using an ioctl(FIBMAP) call. Going
through all data blocks of a file and detecting consecutive areas of data is how the program
fills the statistical table.

The utility has then been enhanced with a graphical output using libpng as a graphical
library to produce comprehensive images. Sample output can be found in section 7.4.

As for the directory traversal, only regular files and directories are accepted, the program
does not follow symlinks and does not enter directories located on another partitions (the
partition is set by the first file/directory of the list to scan).

7.3.1 Output format

As for the statistical output, it is just a listing of consecutive data intervals. The
graphical information format is a map of data blocks displayed as cells aligned in a table
(much like graphical defragmenting utilities known from Windows OSes). The table has
255 rows and 255 columns, each cell can contain one or more blocks, depending on the
overall size of measured data. This ensures that the table stays the same for any data, only
the scale changes.

When the overall data span (the interval between the lowest and the highest block
address of all given data) is too high to fit in the table, aggregation on blocks is done, so
one cell is not only one block, but a group of n blocks. The aggregation value is reported
in terminal output.

40

On the left of the table, the scale is displayed for better head-to-head comparison (the
data span can immediately be seen).

The original goal of the tool’s output format was to diplay the exact position of data
blocks on physical disk (sectors on a circular disk platter). Such output would be the best
for determining good or bad data position, because some data can be relatively far form
one another in LBA addressing, but still quickly accessible because of the disk geometry
(which is reflected in the C/H/S addressing).

This would require C/H/S addresses instead of LBA ones. Requiring C/H/S address
is currently not possible on modern computers, because disk manufacturers (and also the
disk hardware) report values that are conforming to addressable space but not to the real
low-level formatting of the disk itself. The specification on a disk label (sticker) is also
misleading.

7.4 Sample output

Following two pictures both show a block map for the same 1.2 GiB ISO image. In
the first picture (figure 7.1), the image is on its original disk and it can be seen, that the
data is widely spread over the disk. Also the data span reported by the utility is larger
(9765378. . . 10251502). The second block map (figure 7.2) was taken after moving the file
to another disk (with 50 % free space).

Resulting block span is smaller (1064690. . . 1414794) and most importantly the change
can immediately be seen in the picture. Each picture has a different aggregation (8 and 6
respectively), which is reflected on the scale.

For badly fragmented directories (not the file data but whole files are too far from each
other), the process is more visible, see 7.3 and 7.4 for comparison. Resulting change is really
huge, the block aggregation for the first image is 159 blocks per cell and for the second one,
it is only 14 blocks per cell and output images speak for themselves.

One final word about the output images. You can see some artifacts in the pictures that
seem to be something like a bad alignment of blocks. The reason for this is the filesystem
property (not used in filesystems on Windows) that tries to eliminate fragmentation. When
a file is created, it is not placed right after another file, but rather few blocks away. This
prevents fragmenting due to appending new data to a file. On FAT for example, such added
data block is placed on a first free space found and the file is split. In GNU/Linux the data
can be appended easily without creating fragments. A really great visual explanation can
be found at [24].

7.5 Usage

fragmon takes parameters in a standard UNIX way (it has been implemented using
getopts). Switches are: -v or -vv for verbose (or very verbose) mode, -s for printing
statistics, -r for enabling directory traversal recursively (not only one level as default) and
-o followed by a filename to specify the output filename for the .png image (default value
is out.png). The rest of command line arguments is taken as a list of input files and
directories to analyze.

Like the preceding filefrag utility, fragmon needs root privileges to access file block
maps.

41

Figure 7.1: File block map before copying

42

Figure 7.2: File block map after copying

43

Figure 7.3: Directory block map before copying (29267 . . . 10303345)

44

Figure 7.4: Directory block map after copying (10721485 . . . 11615829)

45

Chapter 8

Conclusion

This work has presented the I/O architecture of a Linux kernel. After studying the
structure and layers of I/O operations, ways for optimization have been shown and some
example settings given. This area is also covered by many other studies, articles and reports,
so there should be no problem for the administrators to set the system infrastructure for
optimal performance.

Performance optimization can be done in many ways, because there are many layers
of the datapath itself and optimizing those layers to cooperate in the best way gives a big
performance boost. However initial optimization is only the first step for a well-performing
system, which can be done without the system being under a workload. The second and
more demanding step follows – monitoring, analyzing and dynamically changing the running
system, which in case of servers can be under continuous and heavy workload.

Monitoring the I/O performance on is still somehow problematic. Many tools (as shown)
give only general view of the current state of the system, to get more specific data, block
I/O tracing has to be used (as the only way to get exact information per file/process basis).
The blktrace and related programs report all necessary information about I/O requests
and queues, but the output form is only usable for backtracing or overall performance of a
process.

The solution for such problem is a tracing subsystem – SystemTap. The SystemTap trac-
ing subsystem uses current kernel’s debug information and Kprobes (kernel instrumentation
tool) to connect to a running kernel and react on events happening on the fly. By connect-
ing to various function calls (system reads, writes, . . . , but mostly the __blk_add_trace())
it gathers information from the running kernel and then formats and parses it to present
compact and comprehensive output information.

To ease the monitoring process some more, a specialized fragmentation monitoring
tool has been implemented. Based on a filefrag tool (using ioctl() calls), file and
directories are read to create a data block map visualization for a quick and easy monitoring.
Administrators then can maintain disk access time through defragmentation if needed.

The thesis presented useful methods and tools to be applied on many situations of
system slowdown, particularly focusing on the disk-oriented problems. Using the blktrace
and SystemTap tools, a new methodology is available to administrators of GNU/Linux
systems and hereby implemented fragmon eases the monitoring some more. Monitoring
the I/O subarchitecture is now becoming less difficult, much like CPU, RAM or network is
now.

46

8.1 Future work

Kernel tracing in general is a very current topic these days. Many changes to the Linux
kernel done recently reflex the need of a sophisticated tracing tool for administrators (the
addition of probes, block layer tracing, etc.).

The community also tries to create a framework that uses the kernel-side tracing capabil-
ities to ease maintaining and using tracing modules (like previously mentioned SystemTap).
SystemTap (and its script libraries located on the project homepage) is quickly developing
and it can be predicted that more scripts will be focused on the I/O subarchitecture.

Another Linux kernel tracer is being created at the time. LTTng and output viewer
LTTv are being programmed and Linux kernel patches are available. It uses a slightly
different approach, using statistical kernel markers. According to the homepage1, this
system should be more comprehensive than SystemTap because of special viewer and XML
support. The actual pros and cons of this toolkit will however be known in the future, but
due to a different approach it could be a great addition to monitoring possibilities.

Another project in development is a new tracing tool from Intel called LatencyTOP.
This year the first version 0.1 has been released and kernel patches are still unstable for
normal use. From what can be found on the home website2, this project is slightly more
focused on desktop systems and at the time it only allows you to use a command-line
statistics viewer.

Taking in account, that this work is focused on Linux-based operating systems, most
of given methods and tools can also be used on *BSD systems. Unfortunately SystemTap
and blktrace are not a part of BSD kernels and are therefore unusable. On the other hand,
BSD systems use a similar tracing subsystem called DTrace. It is a dynamic tracing system
developed by Sun Microsystems, but it has been ported for BSD with some limitations.
More information can be found at [22] and [23].

1http://ltt.polymtl.ca/
2http://www.latencytop.org

47

Bibliography

[1] udev.
http://www.kernel.org/pub/linux/

utils/kernel/hotplug/udev.html (20.12.2007)

[2] Kernel Asynchronous I/O (AIO) Support for Linux.
http://lse.sourceforge.net/io/aio.html (20.12.2007)

[3] Understanding the Linux Kernel, 3rd Edition. Daniel P. Bovet, Marco Cesati.
http://www.linux-security.cn/ebooks/

ulk3-html/0596005652/toc.html (20.12.2007)

[4] Kernel Korner - I/O Schedulers. Robert Love.
http://www.linuxjournal.com/article/6931 (20.12.2007)

[5] Choosing an I/O Scheduler for Red Hat R© Enterprise Linux R© 4 and the 2.6 Kernel.
D. John Shakshober.
http://www.redhat.com/magazine/008jun05/features/schedulers/ (20.12.2007)

[6] A Comparison of I/O Schedulers. Mulyadi Santosa and Fawad Lateef.
http://www.samag.com/documents/s=10131/sam0707b/0707b.htm (20.12.2007)

[7] Linux Kernel Tuning Using System Control. Dustin Puryear
http://www.samag.com/documents/s=8920/sam0311a/0311a.htm (20.12.2007)

[8] Kernel optimization – /etc/sysctl.conf. Frank Marsh
http://frankmash.blogspot.com/

2005/11/sysctl-kernel-optimization.html (11.03.2008)

[9] Comparison of file systems – Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Comparison_of_file_systems (20.12.2007)

[10] Benchmarking Filesystems Part II. Justin Piszcz.
http://linuxgazette.net/122/TWDT.html#piszcz (20.12.2007)

[11] Filesystems (ext3, reiser, xfs, jfs) comparison on Debian Etch.
http://www.debian-administration.org/articles/388 (20.12.2007)

[12] Block I/O Layer Tracing. Alan D. Brunelle.
http://www.gelato.org/pdf/apr2006/

gelato_ICE06apr_blktrace_brunelle_hp.pdf (20.12.2007)

48

[13] blktrace and blkparse user guide
https://secure.engr.oregonstate.edu/wiki/

CS411/images/2/25/Blktrace.pdf (04.02.2007)

[14] Debugfs
http://lwn.net/Articles/115405/ (20.12.2007)

[15] SystemTap
http://sourceware.org/systemtap/ (04.02.2008)

[16] Deployment Guide – Red Hat Enterprise Linux
http://www.redhat.com/docs/manuals/enterprise/

RHEL-5-manual/Deployment_Guide-en-US/ch-systemtap.html (04.02.2008)

[17] redhat.com – SystemTap
http://www.redhat.com/magazine/011sep05/features/systemtap/ (04.02.2008)

[18] relayfs home page
http://relayfs.sourceforge.net/ (04.02.2008)

[19] A blktrace tapset, or 101 things you can do with blktrace and systemtap. Tom Zanussi
http://sourceware.org/ml/systemtap/2007-q1/msg00485.html (04.02.2008)

[20] /proc/stat explained
http://www.linuxhowtos.org/System/procstat.htm (05.02.2008)

[21] Linux kernel documentation
<kernel source>/Documentation,
http://www.kernel.org/doc/

[22] DTrace – Wikipedia, the free encyklopedia
http://en.wikipedia.org/wiki/DTrace (21.02.2008)

[23] DTrace for FreeBSD
http://dtrace.what-creek.com/ (21.02.2008)

[24] OneAndOneIs2 - Why doesn’t Linux need defragmenting?
http://geekblog.oneandoneis2.org/

index.php/2006/08/17/why_doesn_t_linux_need_defragmenting (21.02.2008)

[25] Software optimization resources
http://frankmash.blogspot.com/

2005/11/sysctl-kernel-optimization.html (11.03.2008)

[26] Optimizing NFS performance
http://tldp.org/HOWTO/NFS-HOWTO/performance.html (13.03.2008)

49

Appendix A

I/O tools outputs

A.1 ifstat

a04-0232a ~ # ifstat -tT -i eth0,eth1
Time eth0 eth1 Total

HH:MM:SS KB/s in KB/s out KB/s in KB/s out KB/s in KB/s out
17:32:01 309.54 12025.43 291.83 11551.86 601.36 23577.29
17:32:02 302.09 11939.68 315.88 11505.03 617.97 23444.71
17:32:03 303.84 12000.47 327.39 11485.13 631.24 23485.60
17:32:04 305.78 12003.00 327.23 11483.94 633.01 23486.94
17:32:05 316.18 12025.31 227.73 6447.10 543.91 18472.41
17:32:06 305.41 11798.82 0.55 1.17 305.96 11799.98
17:32:07 308.70 11968.05 0.00 0.00 308.70 11968.05
17:32:08 128.57 5309.63 0.00 0.00 128.57 5309.63
17:32:09 38.75 1947.94 0.00 0.00 38.75 1947.94
17:32:10 40.71 2022.03 0.00 0.00 40.71 2022.03
17:32:11 40.81 2027.85 0.00 0.00 40.81 2027.85

A.2 dstat

a04-0232a ~ # dstat -N eth0,eth1,total -D sda,sdb
--dsk/sda-----dsk/sdb-- --net/eth0----net/eth1---net/total- ---system--
read writ: read writ| recv send: recv send: recv send| int csw
1885k 10k:1885k 9.8k| 0 0 : 0 0 : 0 0 |7237 1554
5772k 0 :5657k 0 | 308k 12M: 0 0 : 308k 12M| 11k 1506
5748k 8192B:5864k 0 | 310k 12M: 0 0 : 310k 12M| 11k 1559
5645k 0 :5748k 4096B| 301k 11M: 0 0 : 301k 11M| 11k 1441
5875k 0 :5645k 0 | 308k 12M: 0 0 : 308k 12M| 11k 1389
5760k 0 :5760k 0 | 311k 12M: 0 0 : 311k 12M| 11k 1486
4109k 0 :4170k 0 | 221k 8802k: 0 0 : 221k 8802k|7972 1272
897k 20k:1024k 8192B| 44k 2087k: 0 0 : 44k 2087k|1676 678
1024k 0 : 897k 0 | 38k 2026k: 0 0 : 38k 2026k|1481 761

50

A.3 netstat

a04-0232a ~ # netstat -A ip -p
Active Internet connections (w/o servers)
Local Address Foreign Address State PID/Program name
a04-0232a:42469 64.12.26.124:aol ESTABLISHED 6496/sim
a04-0232a:36114 nf-in-f109.google:pop3s TIME_WAIT -
a04-0232a:41122 jaja.kn.vutbr.cz:imap ESTABLISHED 6551/kmailfK2Jzb.sl
a04-0232a:ftp pluto.kn.vutbr.cz:56572 TIME_WAIT -
a04-0232a:56363 eva.fit.vutbr.cz:imaps ESTABLISHED 6552/kmail5oUrib.sl
a04-0232a:ftp b07-901b.kn.vutbr.:1267 FIN_WAIT2 -

a04-0232a ~ # netstat -g
IPv6/IPv4 Group Memberships
Interface RefCnt Group
--------------- ------ ---------------------
eth0 1 ALL-SYSTEMS.MCAST.NET
eth1 1 ALL-SYSTEMS.MCAST.NET
lo 1 ALL-SYSTEMS.MCAST.NET

a04-0232a ~ # netstat -s
Ip:

102316833 total packets received
76759755 forwarded
0 incoming packets discarded
25556785 incoming packets delivered
128652730 requests sent out

Icmp:
0 ICMP messages received
0 input ICMP message failed.
ICMP input histogram:
691 ICMP messages sent
0 ICMP messages failed
ICMP output histogram:

destination unreachable: 691

The output of netstat -s has been truncated and first three columns of nestat -A ip -p
have been removed.

A.4 lsof

a04-0232a ~ # lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
dnsmasq 5746 nobody 5u IPv4 7507 UDP *:bootps
dnsmasq 5746 nobody 6u IPv4 7512 UDP *:domain
dnsmasq 5746 nobody 7u IPv4 7513 TCP *:domain (LISTEN)
dnsmasq 5746 nobody 11u IPv4 7523 UDP *:32768
portmap 5854 bin 4u IPv4 7691 UDP *:sunrpc

51

portmap 5854 bin 5u IPv4 7711 TCP *:sunrpc (LISTEN)
rpc.statd 5918 nobody 6u IPv4 7835 UDP *:1006
rpc.statd 5918 nobody 8u IPv4 7843 UDP *:32769
rpc.statd 5918 nobody 9u IPv4 7846 TCP *:44051 (LISTEN)
rpc.mount 5983 root 6u IPv4 7945 UDP *:32770
rpc.mount 5983 root 7u IPv4 7950 TCP *:42309 (LISTEN)
proftpd 6149 proftpd 0u IPv4 8261 TCP *:ftp (LISTEN)
sshd 6212 root 3u IPv4 8431 TCP *:ssh (LISTEN)
sim 6496 plague 13u IPv4 9502 TCP

a04-0232a.kn.vutbr.cz:42469->64.12.26.124:aol (ESTABLISHED)
sim 6496 plague 14u IPv4 9483 UDP *:32776
sim 6496 plague 15u IPv4 9497 TCP *:22293 (LISTEN)
proftpd 16658 kn 15u IPv4 34590 TCP

a04-0232a.kn.vutbr.cz:44258->b07-901b.kn.vutbr.cz:1321 (ESTABLISHED)

a04-0232a ~ # lsof +d "/tmp/.X11-unix/"
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
X 6329 root 1u unix 0xf7b1f880 8651 /tmp/.X11-unix/X0
X 6329 root 20u unix 0xf687fd00 8848 /tmp/.X11-unix/X0
X 6329 root 21u unix 0xf668ad80 8934 /tmp/.X11-unix/X0
X 6329 root 22u unix 0xf6552c80 9369 /tmp/.X11-unix/X0

a04-0232a ~ # lsof -u proftpd
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
proftpd 6149 proftpd cwd DIR 253,11 4096 128 /
proftpd 6149 proftpd rtd DIR 253,11 4096 128 /
proftpd 6149 proftpd txt REG 253,9 557744 699200 /usr/sbin/proftpd
proftpd 6149 proftpd 0u IPv4 8261 TCP *:ftp (LISTEN)
proftpd 6149 proftpd 5r REG 253,11 1454 4196630 /etc/passwd
proftpd 6149 proftpd 6r REG 253,11 745 4196627 /etc/group

a04-0232a ~ # lsof -p 6496
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sim 6496 plague cwd DIR 253,12 4096 132 /home/plague
sim 6496 plague rtd DIR 253,11 4096 128 /
sim 6496 plague txt REG 253,9 14024 162777 /usr/bin/sim
sim 6496 plague mem REG 253,9 990428 392694 /usr/lib/sim/icq.so
sim 6496 plague 0r CHR 1,3 765 /dev/null
sim 6496 plague 5u unix 0xf58539c0 9450 socket
sim 6496 plague 9w FIFO 0,5 9457 pipe
sim 6496 plague 14u IPv4 9483 UDP *:32776
sim 6496 plague 15u IPv4 9497 TCP *:22293 (LISTEN)

The outputs have been truncated.

A.5 nfsstat

xsmrce00@merlin:~$ nfsstat -3

52

Server rpc stats:
calls badcalls badauth badclnt xdrcall
1179675769 3904 3 3901 0

Server nfs v3:
null getattr setattr lookup access readlink
6844406 0% 458488745 38% 4168476 0% 259267773 22% 304602085 25% 585700 0%
read write create mkdir symlink mknod
69457303 5% 29353492 2% 5437279 0% 945480 0% 1411 0% 0 0%
remove rmdir rename link readdir readdirplus
5359994 0% 1017627 0% 85947 0% 23648 0% 88672 0% 10634022 0%
fsstat fsinfo pathconf commit
42293 0% 77504 0% 0 0% 21443135 1%

Client rpc stats:
calls retrans authrefrsh
130390105 5132 0

Client nfs v3:
null getattr setattr lookup access readlink
0 0% 51364926 39% 3230253 2% 16396169 12% 14629954 11% 361223 0%
read write create mkdir symlink mknod
17818431 13% 17167416 13% 1257718 0% 26892 0% 9911 0% 74135 0%
remove rmdir rename link readdir readdirplus
2766762 2% 32598 0% 400668 0% 91186 0% 411729 0% 4175304 3%
fsstat fsinfo pathconf commit
135594 0% 21 0% 0 0% 39194 0%

xsmrce00@merlin:~$ nfsstat -m
/homes/eva from eva:/home/users
Flags: rw,nosuid,nodev,v3,rsize=16384,wsize=16384,hard,intr,lock,
proto=tcp,addr=eva

/homes/mail from eva:/var/mail
Flags: rw,nosuid,nodev,v3,rsize=16384,wsize=16384,hard,intr,lock,
proto=tcp,addr=eva

/homes/kazi from kazi:/home/users
Flags: rw,nosuid,nodev,v3,rsize=16384,wsize=16384,hard,intr,lock,
proto=tcp,addr=kazi

A.6 smartctl

a04-0232a ~ # smartctl -i /dev/sda
smartctl version 5.37 [i686-pc-linux-gnu] Copyright (C) 2002-6 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

53

=== START OF INFORMATION SECTION ===
Model Family: Western Digital Caviar SE16 family
Device Model: WDC WD5000KS-00MNB0
Serial Number: WD-WCANU1544624
Firmware Version: 07.02E07
User Capacity: 500 107 862 016 bytes
Device is: In smartctl database [for details use: -P show]
ATA Version is: 7
ATA Standard is: Exact ATA specification draft version not indicated
Local Time is: Thu Dec 20 18:31:35 2007 CET
SMART support is: Available - device has SMART capability.
SMART support is: Enabled

a04-0232a ~ # smartctl -A /dev/sda
smartctl version 5.37 [i686-pc-linux-gnu] Copyright (C) 2002-6 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

=== START OF READ SMART DATA SECTION ===
SMART Attributes Data Structure revision number: 16
Vendor Specific SMART Attributes with Thresholds:
ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED
1 Raw_Read_Error_Rate 0x000f 200 200 051 Pre-fail Always
3 Spin_Up_Time 0x0003 224 224 021 Pre-fail Always
4 Start_Stop_Count 0x0032 100 100 000 Old_age Always
5 Reallocated_Sector_Ct 0x0033 200 200 140 Pre-fail Always
7 Seek_Error_Rate 0x000f 200 200 051 Pre-fail Always
9 Power_On_Hours 0x0032 093 093 000 Old_age Always
10 Spin_Retry_Count 0x0013 100 100 051 Pre-fail Always
11 Calibration_Retry_Count 0x0012 100 100 051 Old_age Always
12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always
194 Temperature_Celsius 0x0022 112 104 000 Old_age Always
196 Reallocated_Event_Count 0x0032 200 200 000 Old_age Always
197 Current_Pending_Sector 0x0012 200 200 000 Old_age Always
198 Offline_Uncorrectable 0x0010 200 200 000 Old_age Offline
199 UDMA_CRC_Error_Count 0x003e 200 200 000 Old_age Always
200 Multi_Zone_Error_Rate 0x0009 200 200 051 Pre-fail Offline

A.7 iostat

xsmrce00@PCO104-15:~$ /usr/bin/iostat -n
Linux 2.6.22.14 (PCO104-15.fit.vutbr.cz) 20.12.2007

avg-cpu: %user %nice %system %iowait %steal %idle
0,01 0,00 0,03 0,05 0,00 99,91

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 1,10 24,52 16,59 757762 512782

54

Device: rBlk_nor/s wBlk_nor/s rBlk_dir/s wBlk_dir/s rBlk_svr/s wBlk_svr/s
merlin:/root 0,25 0,00 0,00 0,00 0,15 0,00
merlin:/pub 0,00 0,00 0,00 0,00 0,00 0,00

a04-0232a ~ # iostat
Linux 2.6.23-gentoo-r3-plague (a04-0232a) 20.12.2007

avg-cpu: %user %nice %system %iowait %steal %idle
0,99 0,00 4,34 0,45 0,00 94,22

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 96,53 3642,76 18,40 89385875 451560
sdb 96,70 3642,90 17,31 89389166 424800

a04-0232a ~ # iostat -x
Linux 2.6.23-gentoo-r3-plague (a04-0232a) 20.12.2007

avg-cpu: %user %nice %system %iowait %steal %idle
0,99 0,00 4,34 0,45 0,00 94,22

Dev: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rq-sz qu-sz await svctm %util
sda 3533,46 0,43 95,93 0,67 3645,31 18,41 37,93 0,12 1,21 0,68 6,60
sdb 3533,24 0,48 96,17 0,60 3645,45 17,32 37,85 0,12 1,21 0,68 6,56

A.8 blktrace

a04-0232a ~ # btrace /dev/sda
8,0 1 1 0.000000000 3033 A W 875394956 + 8 <- (253,0) 1750789772
8,0 1 2 0.000000441 3033 Q W 875394956 + 8 [xfsbufd]
8,0 1 3 0.000001588 3033 G W 875394956 + 8 [xfsbufd]
8,0 1 4 0.000002286 3033 P N [xfsbufd]
8,0 1 5 0.000002611 3033 I W 875394956 + 8 [xfsbufd]
8,0 1 6 0.000037499 3033 D W 875394956 + 8 [xfsbufd]
8,0 0 1 0.481468667 0 C W 875394956 + 8 [0]
8,0 0 2 1.383417343 6499 A R 906697172 + 16 <- (253,0) 1813394132
8,0 0 3 1.383417661 6499 Q R 906697172 + 16 [krusader]
8,0 0 4 1.383419021 6499 G R 906697172 + 16 [krusader]
8,0 0 5 1.383419588 6499 P N [krusader]
8,0 0 6 1.383419943 6499 I R 906697172 + 16 [krusader]
8,0 0 7 1.383422640 6499 D R 906697172 + 16 [krusader]
8,0 0 8 1.394178391 0 C R 906697172 + 16 [0]

CPU0 (8,0):
Reads Queued: 1, 8KiB Writes Queued: 0, 0KiB
Read Dispatches: 1, 8KiB Write Dispatches: 0, 0KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 1, 8KiB Writes Completed: 1, 4KiB
Read Merges: 0, 0KiB Write Merges: 0, 0KiB
Read depth: 1 Write depth: 1

55

IO unplugs: 0 Timer unplugs: 0
CPU1 (8,0):
Reads Queued: 0, 0KiB Writes Queued: 1, 4KiB
Read Dispatches: 0, 0KiB Write Dispatches: 1, 4KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 0, 0KiB Writes Completed: 0, 0KiB
Read Merges: 0, 0KiB Write Merges: 0, 0KiB
Read depth: 1 Write depth: 1
IO unplugs: 0 Timer unplugs: 0

Total (8,0):
Reads Queued: 1, 8KiB Writes Queued: 1, 4KiB
Read Dispatches: 1, 8KiB Write Dispatches: 1, 4KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 1, 8KiB Writes Completed: 1, 4KiB
Read Merges: 0, 0KiB Write Merges: 0, 0KiB
IO unplugs: 0 Timer unplugs: 0

Throughput (R/W): 5KiB/s / 2KiB/s
Events (8,0): 14 entries
Skips: 0 forward (0 - 0.0%)

a04-0232a ~ # blktrace -d /dev/sda -o test.blktrace
Device: /dev/sda
CPU 0: 0 events, 4 KiB data
CPU 1: 0 events, 2 KiB data
Total: 0 events (dropped 0), 5 KiB data

a04-0232a ~ # btt -i test.blktrace.blktrace.1
==================== All Devices ====================

ALL MIN AVG MAX N
--------------- ------------- ------------- ------------- -----------
Q2Q 0.000002862 0.000008885 0.000024049 6

==================== Device Overhead ====================

DEV | Q2I I2D D2C
---------- | ------ ------ ------

==================== Device Merge Information ====================

DEV | #Q #D Ratio | BLKmin BLKavg BLKmax Total
--------- | -------- -------- ------- | -------- -------- -------- --------

==================== Device Seek Information ====================

DEV | NSEEKS MEAN MEDIAN | MODE

56

------ | ------- ------------ ------- | ---------------
(8,0) | 6 151070921.3 0 | 6(1) 21 9266519 9266488 875394956

==================== Plug Information ====================

DEV | # Plugs # Timer Us | % Time Q Plugged
---------- | ---------- ---------- | ----------------

Total System
Total System : q activity
25009.139355413 0.0
25009.139355413 0.4
25009.139408724 0.4
25009.139408724 0.0

Total System : c activity

Per device
8,0 : q activity
25009.139355413 1.0
25009.139355413 1.4
25009.139408724 1.4
25009.139408724 1.0

8,0 : c activity

Per process
xfsbufd : q activity
25009.139355413 3.0
25009.139355413 3.4
25009.139408724 3.4
25009.139408724 3.0

xfsbufd : c activity

57

Appendix B

SystemTap examples

B.1 kprobeio.stp

/* kprobebio.stp
This is a simple module to get information about block I/O operations.
Will Cohen

*/

global count_generic_make_request

probe kernel.function("generic_make_request")
{

++count_generic_make_request;
}

probe begin { log("starting probe") }

probe end
{

log("ending probe")
log("generic_make_request() called "
. string(count_generic_make_request)
. " times");

}

B.2 countall.stp

MAJ MIN ACTION RW COUNT KiB
--- --- --------------- ----- -------- --------
3 0 backmerge R 4600 21748
3 0 backmerge W 65545 262180
3 0 backmerge RM 4 16
3 0 complete R 8537 104580
3 0 complete W 13209 316868
3 0 frontmerge W 36 144

58

3 0 frontmerge R 12 52
3 0 get request R 7620 79096
3 0 get request W 13636 54544
3 0 get request RM 916 3664
3 0 insert R 8536 82760
3 0 insert W 13636 54544
3 0 issue R 8536 104576
3 0 issue W 13209 316868
3 0 plug R 8621 0
3 0 queue R 12232 100896
3 0 queue W 79217 316868
3 0 queue RM 920 3680
3 0 unplug R 10031 0
3 0 unplug timer R 20 0

B.3 spectest.stp

q2c time > 1 second detected, dumping and exiting...

q2c (1.009127993) = q2d (0.995869990) + d2c (0.013258003)

Last 15 records of trace (locate complete data run in blktrace output):
3,0 0 376.050241410 9954 D W 141509292 + 16 [cc1]
3,0 0 376.063755312 9954 C W 141509292 + 16 [0]
3,0 0 376.063817162 9954 D W 141509412 + 8 [cc1]
3,0 0 376.067128381 9954 C W 141509412 + 8 [0]
3,0 0 376.067182275 9954 D W 141509436 + 8 [cc1]
3,0 0 376.070480022 9954 C W 141509436 + 8 [0]
3,0 0 376.070531315 9954 D W 141509484 + 8 [cc1]
3,0 0 376.072908834 9954 C W 141509484 + 8 [0]
3,0 0 376.072961535 9954 D W 141509540 + 8 [cc1]
3,0 0 376.073211216 9954 C W 141509540 + 8 [0]
3,0 0 376.073240432 9954 D W 141509604 + 8 [cc1]
3,0 0 376.073502322 9954 C W 141509604 + 8 [0]
3,0 0 376.073531807 9954 D W 141509700 + 8 [cc1]
3,0 0 376.077646354 9954 C W 141509700 + 8 [0]
3,0 0 376.077702407 9954 D W 141509716 + 8 [cc1]
3,0 0 376.090960410 9954 C W 141509716 + 8 [0]

B.4 iotop.stp

PID EXECNAME TOTAL(k) QR(k) QW(k)
-------- -------- -------- -------- --------

5649 firefox-bin 6388 6388 0
1900 kjournald 400 0 400
5641 cc1 200 200 0
5708 cc1 44 44 0

59

5617 make 24 24 0
5662 cc1 24 24 0
5472 as 20 0 20
5476 fixdep 20 0 20
5620 cc1 20 20 0
5346 fixdep 16 0 16
5361 fixdep 16 0 16
5384 fixdep 16 0 16
5400 fixdep 16 0 16
5420 fixdep 16 0 16
5430 fixdep 16 0 16
4543 bash 16 16 0
5350 ld 12 0 12

B.5 topfile.stp

INO FILENAME TOTAL(k) QR(k) QW(k)
-------- -------- -------- -------- --------
458901 XUL.mfasl 896 896 0
1540368 nsExtensionManager.js 268 268 0
1540370 nsUpdateService.js 228 228 0
1655550 _CACHE_002_ 160 88 72
1655549 _CACHE_001_ 156 96 60
1753153 bookmarks.properties 148 148 0
475249 compreg.dat 144 144 0
1986358 forms.css 124 124 0
1986359 ua.css 116 116 0
1655551 _CACHE_003_ 100 48 52

B.6 traceread.stp

tracking file module.c
3.358570676 0.000000000 T R

tracking file module.c, ino 548922
11.192565429 0.000000000 vfs_read.entry cat(4932) file module.c,

pos 0 count 4096
11.192612604 0.000047175 Q R sector 120456092, bytes 16384
11.192639507 0.000026903 G R sector 120456092, bytes 16384
11.192654697 0.000015190 P R
11.192666705 0.000012008 I R sector 120456092, bytes 16384
11.192685104 0.000018399 U R
11.192701796 0.000016692 D R sector 120456092, bytes 16384
11.197560999 0.004859203 C R sector 120456092, bytes

16384, q2d 0.000089192, d2c 0.004859203, q2c 0.004948395
11.197612869 0.000051870 vfs_read.exit cat(4932) file module.c

60

	Introduction
	Thesis structure

	The I/O architecture of a Linux kernel
	Device nodes
	Accessing data on a block-device storage
	I/O caching
	Network devices

	I/O Optimization
	Choosing the I/O scheduler
	Runtime parameters
	Optimizing the I/O scheduler
	Sysctl

	Choosing the filesystem
	System maintenance
	Programming

	Analysis and monitoring tools
	Kernel messages
	debugfs

	Sysfs
	Networking tools
	ifconfig
	iftop
	ifstat
	dstat
	netstat
	lsof
	nfsstat

	Disk tools
	smartctl
	lsof
	iostat
	dstat
	filefrag

	Kprobes
	SystemTap
	Implementation
	Installing
	Tracing using SystemTap
	Tapsets
	Safety

	blktrace
	Events
	Output storing

	Solving high I/O workload situations
	Detecting the global source
	CPU load in userspace
	CPU load in kernel
	Memory allocation in userspace
	Memory allocation in kernel
	Network bandwith usage
	Network latency
	Disk I/O

	Focusing on the disk I/O
	Disk and partition

	SystemTap scripts for blktrace
	Parameters
	countall.stp
	spectest.stp
	iotop.stp
	topfile.stp
	traceread.stp

	Summary

	Scenarios
	Non-disk scenarios
	High CPU load
	High network usage
	Too many network connections
	Network protocol
	Swapping

	High disk usage
	Dealing with disk-intensive processes

	Badly positioned files

	Fragmentation monitoring tool
	Preliminaries
	Fragmentation
	Defragmentation

	Motivation
	Implementation
	Output format

	Sample output
	Usage

	Conclusion
	Future work

	Bibliography
	I/O tools outputs
	ifstat
	dstat
	netstat
	lsof
	nfsstat
	smartctl
	iostat
	blktrace

	SystemTap examples
	kprobeio.stp
	countall.stp
	spectest.stp
	iotop.stp
	topfile.stp
	traceread.stp

