
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
Ú STAV POČÍTAČOVÉ GRAFIKY A MULTIMÉ DIÍ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

MODELOVÁNÍ JAZYKA V ROZPOZNÁVÁNÍ ČEŠ TINY
LANGUAGE MODELING FOR SPEECH RECOGNITION IN CZECH

DIPLOMOVÁ PRÁCE
MASTER‘S THESIS

AUTOR PRÁCE Bc. TOMÁŠ MIKOLOV
AUTHOR

VEDOUCÍ PRÁCE Doc. RNDr. PAVEL SMRŽ, Ph.D.
SUPERVISOR

BRNO 2007

Zadá ní diplomové prá ce
Ř ešitel: Tomá š Mikolov, Bc.

Obor: Počí tačová grafika a multimé dia

Téma: Modelová ní jazyka v rozpozná vá ní češ tiny

Kategorie: Umě lá inteligence

Pokyny:

1. Prostudujte literaturu vě novanou jazykovému modelování s dů razem na jazyky s bohatou

 morfologií

2. Navrhně te a implementujte systém pro jazykové modelování češtiny, který bude možné

 použí t pro automatické rozpoznávání přednášek

3. Porovnejte výsledky realizované ho systému s dostupným řešením na dodaných testovacích

 datech.

Literatura:

1. Joshua Goodman. 2000. The State of the Art in Language Modeling. A tutorial presented at

 North American ACL, 2000, Seattle.

Vedoucí : Smrž Pavel, doc. RNDr., Ph.D., UPGM FIT VUT

Datum zadání : 28. 2. 2007

Datum odevzdání : 22. 5. 2007

 3

Abstrakt
Tato práce se zabývá problematikou jazykových modelů v oblasti automatické ho přepisu mluvené

řeči. V teoretické části jsou rozebrány současně používané metody pro pokročilé jazykové

modelování založené na statistickém přístupu - modely založené na třídách, na faktorech a na

neuronových sí tích. Následně je popsána implementace jazykové ho modelu založené ho na dvou

neuronových sí tích. V závě ru práce jsou uvedeny výsledky dosažené na Pražském a Brně nském

mluveném korpusu (cca 1 170 000 slov) - redukce perplexity o zhruba 20%. Výsledky dosažené při

reskórování N-best listů ukazují zlepšení při rozpoznávání spontánní řeči o více než 1%. V závě ru

práce jsou uvedeny možnosti využití práce, její možná rozšíření a také jsou uvedeny hlavní nevýhody

současně používaných přístupů pro statistické jazykové modelování .

Klíčová slova

jazykový model, čeština, n-gramové statistiky, neuronové sí tě , rozpoznávání řeči, umě lá inteligence

Abstract

This work concerns the problematic of language modeling in automatic speech recognition. Currently

widely used techniques for advanced language modeling based on statistical approach are described

in the first part of work - class based language models, factored language models and neural network

based language models. In the next section, implementation of neural network based language model

is described. Results obtained on "Pražský mluvený korpus" and "Brně nský mluvený korpus" corpora

(1 170 000 words) are reported, with perplexity reduction around 20%. Also, results obtained after

rescoring N-best lists with spontaneous speech are reported, with absolute improvement in accuracy

by more than 1%. In the conclusion, possible uses of the work are mentioned, along with possible

extensions in the future. Finally, main weaknesses of current statistical language modeling techniques

are described.

Keywords

language modeling, Czech language, n-gram statistics, neural networks, speech recognition, artificial

intelligence

Citation

Mikolov Tomáš: Language Modeling for Speech Recognition in Czech, Brno, 2007, Master's thesis,

Brno University of Technology.

Language Modeling for Speech Recognition in Czech

Prohlá šení

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením doc. RNDr. Pavla

Smrže, Ph.D.

Další informace mi poskytli Doc. Dr. Ing. Jan Č ernocký, Ing. Ondřej Glembek, Ing. František Gré zl a

Ing. Lukáš Burget, Ph.D.

… … … … … … … …
Tomáš Mikolov
20. kvě tna 2007

Podě ková ní

Dě kuji všem členů m Speech@FIT, kteří mi poskytli mnoho dů ležitých informací , bez nichž by

vypracování té to práce nebylo možné .

© Tomáš Mikolov, 2007.

Tato prá ce vznikla jako školní dílo na Vysokém učení technickém v Brně , Fakultě informačních

technologií. Prá ce je chrá ně na autorským zá konem a její už ití bez udě lení oprá vně ní autorem je

nezá konné , s vý jimkou zá konem definovaných případů.

 1

Contents
Contents.. 1
1 Introduction ... 2

1.1 Motivation... 2
1.2 Czech language ... 5

2 Statistical language modeling.. 6
2.1 N-gram statistics approach.. 6
2.2 Smoothing... 7

2.2.1 Add one smoothing .. 7
2.2.2 Add lambda smoothing... 7
2.2.3 Simple interpolation ... 8
2.2.4 Good-Turing discounting ... 8
2.2.5 Kneser-Ney discounting ... 8
2.2.6 Comparison of different smoothing methods ... 9

2.3 Advanced approaches for statistical language modeling .. 10
2.3.1 Class based language models ... 10
2.3.2 Factored language models .. 11
2.3.3 Approaches based on neural networks ... 11

3 Previous work in Czech language modeling ... 14
3.1 Available data ... 14

4 Goals of this work ... 16
5 Syllable-based language models.. 17
6 Neural networks in language modeling ... 19

6.1 Architecture .. 19
6.2 Training algorithm .. 21
6.3 Implementation ... 22

7 Experiments and results... 25
7.1 Vocabulary size reduction .. 26
7.2 Final training and evaluation using perplexity.. 28
7.3 Lattice rescoring ... 32

8 Conclusion and future work .. 35
Bibliography... 37
Appendix A .. 39

 2

1 Introduction

1.1 Motivation
The goal of this work is to improve current language models of Czech used at Brno University of

Technology. In this chapter, I will clarify my motivation in this area.

It is well known that computers were built to obtain artificial intelligence. First, it was supposed that

most human work can be done by intelligent machines. In 1950s it was predicted that in fifty years,

computers will become more intelligent than humans. Many scientists claimed that they can do things

like language translation or machine vision in a few months. None of them has succeeded.

After this decade of optimism, many others tried to prove that intelligent machines can’t ever be built.

For example, Searle with his well known Chinese room experiment tries to prove that a computer that

passes Turing test needs not to understand natural language. There is also a plenty of formal proofs

that rely on words like consciousness, mind or understanding, "proving" that artificial intelligence

can't be built using Turing machines. There were also even more amusing arguments - for example,

that computer can't be surprised, frightened or fall in love. Much more about history of AI can be

found in [8].

From my point of view, there is no magic about intelligence. It can be shown that if one believes in

laws of physics, then as the whole brain can be simulated using a computer, there is no reason why

computers can’t be intelligent. But effectivity of such solution is another question.

Since I was always interested in artificial intelligence, it was natural that I was wondering what the

intelligence really is. To my disappointment, many scientists in this field have no need to define what

intelligence is. Answers like “a thing can be called intelligent if it acts somewhat reasonable” or “we

all feel what intelligence is, but no one can say it” are maybe funny, but during my studies, there was

nothing more.

After some thinking, I decided that intelligence is based on the ability to make predictions – it is

easily understood when thinking about behavior. We buy food because we know that it will be useful

 3

when we’ll be hungry. Most of our behavior is not useful in the time of execution, but will prove to

be useful in the future. The key part of all this are the predictions – we don’t know what the future

shall be, but we can predict it using our knowledge. Similar conclusions, and much more, can be

found in [8].

It can be shown that intelligence = ability to make predictions = compression [9]. For example, we

have the following sentence:

THE ROSES ARE *

Our goal is to determine the last word of this sentence. It can be expected that this word could be

RED or NICE or FLOWERS. It is not probable that the last word would be BLACK or ISLAND.

It can be said that we are able to predict the last word using our knowledge. This ability is in fact

intelligence. There is no known algorithm to make computers as good in making predictions as

humans are (well known Shannon experiments with entropy of English text), but to some degree, they

are successful.

Simple prediction example:

THE ROSES ARE RET

THE ROSES ARE RED

Assuming that the computer has a lot of unambiguous data, it is easy to assign a higher probability of

being said/written to the second sentence. We can simply build a vocabulary from the training data

and for each sentence containing unknown word assign a low probability.

More complicated example:

THE ROSES ARE MOON

THE ROSES ARE RED

Since all words are known, another technique must be used. For example, we may count how many

times each sentence in the training data occurred. It can be expected that the second one occurred

more often and thus it should have higher probability.

Even more complicated example:

FIFTY SEVEN AND THIRTY ONE IS EIGHTY EIGHT

FIFTY SEVEN AND THIRTY ONE IS TWENTY TWO

What now? Of course, one may think that by using the rule from the second example, the problem

should be solved. But what if none of these sentences appeared in our training data? This is called

sparse data problem and it is considered to be a big problem. There exist some solutions to overcome

it, but their effectivity is questionable. It can be shown that humans understand novel situations and

are able to make correct predictions about future, while computers with classic algorithms are unable

 4

to do this. Some believe the problem is that the amount of training data for computers is too small.

But from the previous example, it is clear that the problem is not data sparsity. The problem is that the

computer does not understand the data, while humans do.

Speaking about understanding, it is not easy to define it. It is often hard even to tell if a human

understands something, or only pretends to. But if we use again the probability – we can compare two

systems, and the one that gives better probability on testing data should be the one that has more

‘understanding’. But even this approach has some drawbacks – calculating exact probabilities is not

easy (since all probabilities must sum to one, it is needed to evaluate all possibilities) and the system

giving worse prediction estimates may be the one with more understanding, simply because it does

not make a good smoothing (more of this in chapter 2). Probably the most reliable way to determine

quality of a language model is to use it in a speech recognizer (or similar system like OCR) and

determine WER (word error rate).

The most successful algorithms for language modeling and data compression are based on so called

n-grams (the exact definition will be in chapter 2). The idea behind n-grams is simple – to estimate a

probability of next symbol in a certain context, we can use only the most recent history. The longer

the history is, the better probability estimates we should get, but since the amount of training data is

never infinite, the estimates for longer contexts are less reliable. To solve this, many smoothing

algorithms were designed.

N-gram statistics itself is very simple, yet it is still used by many as the baseline for comparison. Due

to its simplicity, large amounts of data can be processed very quickly and that is probably the reason

why this approach is very hard to beat using more precise algorithms. On the other hand, it is clear

that N-gram approach itself doesn’t lead to AI. It is unable to make good predictions in novel

situations. However, n-grams may be closer to real brains then it seems, and this can be the true

reason why they are so successful. In the real brains, however, predictions are made at multiple levels

using a sophisticated hierarchical neural network (much more about this in [8]).

Another interesting point of view while thinking about intelligence is by using information theory

[11]. If we consider a transmitter that sends messages to a receiver, we can intuitively suppose that

information that is expected by the receiver has less information content than a surprising one. For

example, by sending a message "THE CAPITAL OF FRANCE IS PARIS" to an average European,

we do not transmit much information, since the receiver already knows this. On the other hand,

speaking to this person about African cities would have more information content. There is a direct

connection between information theory and AI: intelligent machine should be able to learn efficiently

regularities in the incoming signals, so it should be able to minimize received information content.

 5

This means that intelligent machine should maximize its prediction capability by using the simplest

possible solutions. This is quite the same conclusion as the ideas behind Minimum description length

(MDL) and Kolmogorov complexity [12].

1.2 Czech language
This work primarily concentrates on creating language model that will be useful for speech

recognition in Czech. There are several differences between Czech and English that make classic N-

gram approach impractical.

Czech language is inflective, so every word may occur in many forms. This increases the size of

vocabulary about three times [3], in comparison to an English vocabulary computed on the same

amount of text. This is quite a huge problem, since it increases the data sparsity problem. Another

problem with vocabulary size is that commonly used tools for ASR (automatic speech recognition)

like HTK are unable to handle more than 65 000 words in vocabulary.

A solution here may be word division into smaller morphological parts - prefix, stem and suffix.

Factored language models and neural network based language models are able to handle this type of

information.

Important difference between English and Czech is a particularly free word order in Czech sentences.

This results again in increased data sparsity. A solution here may be neural network based language

models, since they do not use explicit temporal back off.

 6

2 Statistical language modeling

2.1 N-gram statistics approach

The aim of statistical language modeling is to compute probability of some utterance. Language

model is built using training data, parameters are tuned using heldout data and the model performance

is evaluated on testing data. The division ratio between training, heldout and testing data is usually

something like 90: 9 : 1, but according to [2] it is only important to have 100 – 1000 words per

parameter for heldout data and for testing data probably a few thousand of words.

Language model is viewed as a probability distribution P(wi | w1, w2, ... , wi-1), where w1, ..., wi-1 is

history.

P(wi | w1, w2, ... , wi-1)= C(w1, w2, ... , wi) / C(w1, w2, ... , wi-1)
(2.1)

where C(w1, w2, ... , wi) denotes the number of occurrences of w1, w2, ... , wi.

Such probability estimation can’t be computed directly, since with the increasing length of context we

get less reliable estimations (as described in chapter 1). This problem is typically solved by using only

a shorter context, with length of N-1. Such an approach is called N-gram language model (or, in data

compression, PPM – prediction by partial match).

Probability of word wi using N-gram LM is computed as

P(wi | w1, w2, ... , wi-1)= C(wi-n+1, ... , wi) / C(wi-n+1, ... , wi-1)
(2.2)

For N=1 the LM is called unigram, for N=2 bigram and for N=3 trigram. Usually, N is between 1 and

4.

As it can be seen, the above formula shall assign zero probability to n-grams that have not occurred in

the training data. This is quite a problem, since the overall probability of an utterance is computed as

 7

∏
=

−=
K

i
ii wwwwPWP

1
121),...,,|()(

(2.3)

so if some probability estimate is zero, then the overall probability is zero too. To prevent this, many

smoothing techniques have been developed.

2.2 Smoothing

2.2.1 Add one smoothing
This technique, also called Laplace smoothing, is probably the easiest one. To avoid zero counts, we

simply add one to every count. The probability is then computed as

V) w, ... ,C(w
1) w, ... ,C(w) w, ... , w, w| P(w

1-i1n-i

i1n-i
1-i21i +

+
=

+

+

(2.4)

where V denotes vocabulary size.

This solves the zero probability problem, but usually too much probability mass is redistributed

among unknown n-grams, from which many are highly unlikely.

2.2.2 Add lambda smoothing

Instead of adding a constant, we can assume that adding a certain value λ that will be determined on

heldout data should be more useful:

V) w, ... ,C(w
) w, ... ,C(w) w, ... , w, w| P(w

1-i1n-i

i1n-i
1-i21i λ

λ
+
+

=
+

+

(2.5)

In this case, the probability mass reserved for unknown n-grams is much more optimal than in the

previous case. However, this technique doesn’t take into account the fact that unknown n-grams have

different probabilities, which can be already estimated using training data.

 8

2.2.3 Simple interpolation
Uses different n-gram statistics to obtain better estimates. For example, unigram statistics are reliable

but context independent, while trigram is very noisy. So the mixture of both, and even bigram, should

result in better estimates than by using only one of these alone.

)(
)()1(

)(
)(

)(
)()|(

•
−−++=

C
zC

yC
yzC

xyC
xyzCxyzP µλµλ

(2.6)

λ and µ parameters can be estimated on heldout data,)(•C means vocabulary size.

Of course, the most reliable estimates should have high interpolation parameter values – and their

value does not depend only on order of n-gram, but even on the reliability of estimate given by the

number of occurrences. So the idea of interpolation of multiple n-gram statistics is extended in

Jelinek-Mercer deleted interpolation using buckets (more about this in [2]).

2.2.4 Good-Turing discounting
This technique tries to estimate the probability mass that should be assigned to unknown n-grams

using known frequency of n-grams that occurred only once. The saved probability mass is uniformly

redistributed among unknown n-grams. These ideas are extended in Katz smoothing.

2.2.5 Kneser-Ney discounting
Kneser-Ney smoothing exploits the fact that although some unigrams are frequent, they appear almost

always after some symbol - for example, "Francisco" appears usually after "San". So if the language

model is backing off to unigram, "Francisco" should not have such a big unigram probability.

Modified Kneser-Ney smoothing is considered to be the state of the art in current smoothing

techniques [2] and should be used as a baseline for experiments, since it is implemented in SRI LM

toolkit [13] and thus can be easily computed.

 9

2.2.6 Comparison of different smoothing methods

Figure 1: Comparison of different smoothing methods from [2] shows the best performance of

Modified Kneser-Ney smoothing

As it can be seen, many different techniques were developed to solve the zero probability assignment

problem. More about them and a good comparison can be found in [2].

When comparing different smoothing techniques, or different language models, it is useful to do so

with another measure than plain probability. Since the probability value itself is usually very small,

logarithmic probability is used instead. But the comparison is difficult even with log probability,

since it is affected by the size of testing data. So a size-independent measure is used, called

perplexity. It is defined as

n

n

i ii wwP
PPL ∏

= −

=
1 1...1)|(

1

(2.7)

Perplexity can be viewed as the size of a vocabulary of an equivalent uniform language model, or as

an average branching factor. Its value depends directly on the quality of the language model and the

 10

vocabulary size. However, as mentioned in chapter 1, better probability estimates may not lead to

better language models, although perplexity decreases. So it was observed by many that reduction in

perplexity may not lead to reduction in word error rate (WER) in automatic speech recognition

(ASR):

n
dsiWER ++

=

(2.8)

where n is the count of words, i number of insertions, s substitutions and d deletions between the

correct utterance and the one given by ASR system.

Accuracy is then defined as ACC = 1 – WER.

2.3 Advanced approaches for statistical language

modeling
Although the plain n-gram approach seems to be very simple, it is considered to be the most

successful single technique for language modeling. N-gram statistics are easy to compute even for

huge training data, fast to evaluate and their results are very good. However, they are still far from the

optimal solution, so more sophisticated techniques were developed.

2.3.1 Class based language models
Probably the most natural extension is by defining classes of words. In the simple case, where each

word belongs exactly to one class, the model is called deterministic class based language model. For

example, similar words, like days of a week, should belong to the same class. This reduces sparse

data problem, since the algorithm uses probability estimates from all similar words. It is clear that this

approach is most successful for small amounts of training data, where there is not enough information

for classic n-grams.

Another approach is to use statistical classes, where for each word and each class is defined

probability of the word membership to that class. The problem is that known algorithms for

estimating word membership to every class are computationally very expensive.

 11

Improvement over n-gram baseline can be achieved by interpolation with classic n-grams, since class

based LMs lose some information.

2.3.2 Factored language models
In the classical language modeling, each word is translated as an index to dictionary, which is formed

during training phase. This means that every sense of nearness between words based on written form

is lost and must be reobtained using class based LMs or neural network based LMs. In a highly

inflectional language, like Czech, it is better to not lose this information. Much better approach would

be to divide words into smaller parts - factors - and compute statistics using them. Every word is then

seen as a vector of k factors -),...,,{ 21 k
iiii fffw = . Factors can be anything - prefix, stem and suffix

of words, class membership and so on. This approach is quite interesting in some aspects, since it

allows us to compute statistics using words that were not present in the training data (OOVs, out of

vocabulary). For example, we may have 10 occurrences of Czech word "Fourierova" in our training

data, but no occurrence of "Fourierovy". If we use factored LMs with word division into prefix, stem

and suffix, we should obtain useful estimates - while without this approach, the new word would be

treated as OOV and no meaningful estimates for the next word would be possible to be computed.

Factored language modeling is still quite a new technique, promising interesting results in the future.

It would be best used with another technique that allows us to compute statistics from many factors -

for example, using Generalized parallel back-off [14] or neural networks working in continuous space

[15].

2.3.3 Approaches based on neural networks
The use of neural networks in the field of artificial intelligence is a common task. However, for

language modeling, this approach is quite new. The major reason is high amount of computational

power needed by these algorithms. But it has been reported that the biggest improvement over classic

n-grams using a single technique was obtained by using neural networks [2]. This is probably because

a well trained neural network with hidden layer of adequate size can in theory perform any

computable function. So, with a long context on input, the neural network may work as a mixture of

many other techniques – n-grams, skipping n-grams, class based models and others.

But there are two big problems – first was already mentioned, the high requirements for

computational power needed by these algorithms. The second is the training algorithm – although it is

known that there exists an optimal solution if we use a hidden layer (with adequate size), the question

is how to obtain this solution. This means finding global optimum in a large search space.

 12

The basic algorithm used for training neural networks with hidden layers is a backpropagation

algorithm. It is a gradient algorithm, so the obtained solution is only locally optimal.

Figure 2: Architecture of the neural network language model used by [1]. hj denotes the context wj-

n+1, ..., wj-1. P is the size of one projection and H and N is the size of the hidden and output layer

respectively

At figure 2 is a typical architecture of a neural network for language modeling used by [1, 7]. In the

input layer, words are coded as „one of N“ (input has the same size as vocabulary, at the word

position is 1, elsewhere are 0). The history length is usually 4-8, so with a vocabulary size of 50, 000

words the input layer size would be too big.

To overcome this, words are projected onto much smaller space. In practice, each word in history is

„translated“ to a vector of size 50 – 100. This step is very important: not only the number of synapses

in the whole network dramatically decreases, but translating each word into a continuous space

enables the network further exploit nearness of similar words. This compression loses some

 13

information, and is somewhat similar to statistical classes in its behavior - two words that are used

exactly the same will occupy the same position in the space.

Size of the hidden layer is typically 500 – 1000 units. The output layer has the same size as

vocabulary. For a given context, output layer can be seen as a probability distribution for next word

(softmax function is used to ensure that the probability sums to 1). More about this architecture can

be found in [7].

 14

3 Previous work in Czech language

modeling

Previous works concentrating on creation of language models for Czech (at least, those known to me)

are trying to solve problems with high OOV rate (Out Of Vocabulary words, those not found in the

training data). As was mentioned in chapter 1, Czech is an inflective language and one word may

have a lot of different written forms. This increases the size of vocabulary and makes classic language

modeling less practical (and in case of some languages even nearly impossible).

In [4], inclusion of unigrams of rare words was investigated. This resulted in absolute 3% decrease in

WER and increased the language model size only slightly. Another 2% improvement was achieved

after lattice rescoring, again motivated by high OOV rate. Little difference between OOVs and IVs

(In Vocabulary words) on the phoneme level was used to obtain this improvement. Third, lemmas

were used as recognition units, but without much success.

In [3], author is at first describing simple experiments like different smoothing techniques comparison

and determination of language scaling factor (used in ASR to combine language model probabilities

with acoustic probabilities). The same idea as in the previous work to use lemmas to reduce OOV rate

was investigated. The results are that using lemma together with word based LMs is slightly

beneficial (0.2% absolute improvement). Next, tags were used to obtain classes instead of lemmas

(1.6% absolute improvement over baseline trigram) and morphemes (2% better than baseline).

At Brno University of Technology, current language models for Czech were created by Ondřej

Glembek and Ilya Oparin. For lecture transcription, the best results were achieved by interpolating

data from several sources. Data sparsity problem was partially "solved" by using large amount of

training data. Statistical class based models for Czech were created, but without much success,

because with huge training data size, the beneficial effect of classes seems to be lesser.

3.1 Available data
Statistical language modeling techniques are very data hungry, since the more data we have, the better

models we are able to train. A size of typical training data corpus may be easily few gigabytes.

Despite this huge size, one cannot expect that a model trained on such an amount of text will be able

 15

to handle all possible words that a person may use in spontaneous speech. For example, we cannot

expect any corpus to contain all surnames, names of cities etc.

At Brno University of Technology, there are several data sources usable for training language models .

General corpus, consisting of various articles, provides about 4.6 GB of text data (829 mi llion words).

However, for lecture recognition, spontaneous data are more desirable. For this purposes are available

Pražský mluvený korpus (PMK, 686 000 words) and Brně nský mluvný korpus (BMK, 484 000

words). Note that sizes of spoken corpora are very small, compared to general corpus - in this case,

we must at least try to mine the most data from available sources that is possible.

Probably the most valuable data are manually transcribed lectures, since they contain the target data -

spontaneous speech with use of rare technical words. However, it is very time consuming to obtain

such data and so the amount of text is very little (a few thousand words).

 16

4 Goals of this work

This work primarily focuses on improving accuracy in the task of automatic speech recognition of

lectures in Czech language. First, I am going to create a language model that will be able to better

model Czech language than the classic n-gram approach. For comparison, I will be using perplexity.

Then I shall use this LM to rescore N-best lists generated with baseline back-off n-gram LM.

The problems with ASR of lectures were already mentioned - mainly the use of words that were seen

rarely or not at all in the training data. Since the speech is spontaneous and most of the available

training data are just transcribed newspaper articles, there is a slight mismatch between training data

and the speech we want to obtain.

I am going to use methods non-specific for Czech language only, so that this work may be usable for

other languages, and even for other areas than language modeling. I shall compare my results with

those obtained from SRI LM toolkit, which is freely available [6].

Language modeling is quite a difficult area of research, since optimal language models demand

existence of artificial intelligence. In the conclusion, I am going to point out main weaknesses of

current approaches.

 17

5 Syllable-based language models

It is natural to notice first that problems with Czech language models using n-grams based on words

are caused by inflection of words. My first idea to overcome this problem was to use syllable based

language model instead of the word based one. It was supposed that this approach should reduce the

number of OOVs, because many OOVs can be divided into known syllables.

But since ASR generates lattices using classic n-grams with a little (65, 000 words) vocabulary,

rescoring with syllable based LM would be probably of no use, since there are no OOVs in those

lattices. So another point of using syllables is to improve probability estimates for rare words, which

are mostly inflected form of words with more reliable probability estimates. Experimental results of

syllable based models and their comparison to word based models is summarized in table 1.

 Size Probability/1000 OOV rate (%)
word based LM 10 -482 5.35
word based LM 40 -489 2.41
word based LM 80 -483 1.72
word based LM 250 -470 0.72
syllable based LM 10 -589 0.09
syllable based LM 40 -553 0.04
syllable based LM 80 -539 0.02
syllable based LM 250 -516 0.01

Table 1: Comparison of word based and syllable based n-gram language models. Size denotes

training data size in megabytes (in case of syllable based LMs, it is the size of training data before

word division is performed), probability denotes overall log probability of testing data obtained from

SRI LM toolkit. Word based LMs are 3-gram, syllable based are 5-gram. Testing data size is 1MB.

As was expected, syllable based LMs are much better at handling OOVs, resulting in much lesser

OOV rate. Their overall performance is significantly worse, but since SRI LM toolkit assigns zero log

probability to OOVs, probability alone can’t be used for comparison. Perplexity is not mentioned at

all, since it uses count of words in testing data, which is different in both models (since syllable based

model uses words divided into syllables). Vocabulary sizes are 385,481 for word LM and 21,776 for

syllable LM when trained on 80MB.

 18

It can be expected that for large training data sizes, the both models would be performing very

similarly. There is no gain in using syllables, because true relations between syllables are longer

range than normal n-gram approach is able to handle. So the syllable n-gram model collapses to just a

word n-gram model and is not able to use more incoming information, as was expected at first.

Syllables are used just to divide the words and are not real syllables from linguistic point of view. The

algorithm for dividing words is based on simple rules. Example of such division:

Original: ZIMNÍ OLYMPIJSKÉ HRY JAKO NEJLEPŠÍ V HISTORII

Divided: ZI MNÍ x OLY MPI JSKÉ x HRY x JA KO x NE JLE PŠÍ x V x HI STO RI I x

('x' is used as a special word, so that the transformation does not lose any data and is reversible)

Assume now that we have a rare word "FOURIEROVY" and a more common word

"FOURIEROVA". We know that bigram "FOURIEROVA TRANSFORMACE" is quite often; our

task is to assign part of this high probability to "FOURIEROVY TRANSFORMACE", since the rare

word written form is very similar to the more common word. If we divide words into syllables, the

history will change from "FOURIEROVY" to "FOU RI E RO VY". We have good estimates for

history "FOU RI E RO VA"; however, with language model with temporal back -off, we will end with

the same results as when using words, since the "good" statistics of "FOURIEROVA" will not be

used at all - "VY" differs from "VA". This can be partially solved by using skip n-grams, or better

with class based language models or neural networks.

Because plain n-gram statistics is unable to use more information provided by syllables, other

modeling approaches were investigated. The most powerful seems to be the neural networks, because

of their ability to perform any function.

 19

6 Neural networks in language

modeling

Problems with neural networks in language modeling have been already mentioned in chapter 2.

Their need for computational power limits their use, but since they offer significant improvement in

WER over classic n-grams, it can be expected that in the future their use may arise.

6.1 Architecture
My first experiments with neural networks were therefore made on a small amount of data. I have

used similar architecture as the one mentioned in chapter 2, but instead of using one neural network

with two hidden layers, I have decided to use two networks, both with one hidden layer. The first

neural network learns to project words from vocabulary into a continuous space while learning

bigram language model. The second neural net is used to learn LM based on longer history, using the

word projections computed by the first network.

Figure 3: Neural network used for learning word projections into continuous space (bigram NN).

 20

The first neural network has one hidden layer. Input and output layers have the same size as the

vocabulary; hidden layer size is typically 10-50 neurons. Activation function in hidden layer is

sigmoid, for output layer is used softmax, to ensure that sum of probabilities in the output layer will

be 1.

Since only one neuron in the input layer is active in one time, it is not needed to propagate signals to

and from whole input layer. The complexity to calculate one probability estimation with this neural

network is therefore

VVHHO +++= *1

(6.1)

The memory requirements to store this neural network is

HVO **2=

(6.2)

Using the word projections learned by the bigram neural network, it is possible to train n-gram neural

network:

Figure 4: Neural network used for learning n-gram language model, hist denotes the context.

 21

The second network has input layer with size (N-1) * H, where N-1 is the length of context (for

trigram model, N=3) and H is the size of projections learned by the first network (typically 10-50).

Useful size of hidden layer (G) is 20-100 neurons. Output layer size is the same as the size of

vocabulary. Activation functions are the same as in the first network (sigmoid, softmax).

The computational complexity of one probability estimation using this neural network is

VVGGGHNO +++−= ***)1(

(6.3)

The memory requirements are

VGGHNO ***)1(+−=

(6.4)

6.2 Training algorithm
Classic backpropagation algorithm is used for training of both networks. In the first network, input is

coded as 1 of N - on the position of last word in history is 1, everywhere else in the input vector are

zeros. The desired output vector uses the same coding – contains 1 on the position of the word that

should have been predicted, elsewhere 0. Error vector is then computed as Error = Desired - Output.

The second network uses word projections to obtain its input, training is the same as in the previous

case. Starting learning rate values are 0.05 – 0.2. Both networks learn until no improvement on

validation data set is obtained, then the learning rate is halved. After no significant improvement after

learning rate division is obtained, the learning process is finished (it takes usually 10-30 epochs to

train one network).

[1] suggests using weight decay to prevent overfitting the training data by penalizing big weights in

the network. This is done by adding some value to the error vector, based on a sum of weights of

incoming synapses to some particular neuron, multiplied by some parameter β that has to be

determined experimentally.

For n-gram neural network, another modification of the training phase was investigated. By assuming

temporal backoff (words in recent history are more important than words in distant history), vectors

that represent positions of words in the continuous space in a distant history were multiplied by some

constant lesser than 1 (which has to be again found experimentally). For example, for 6-gram neural

network trained on little data, the best results were obtained by multiplying vectors of words in

 22

history (wj-5, wj-4, w j-3, w j-2, w j-1) by constants (0.15, 0.3, 0.7, 0.9, 1.0). It was found that a 6-gram

network trained without this modification provides worse results than a 3-gram network, while with

the modification the results are getting better with a longer context. This is caused probably by two

reasons: the network with long context possibly overfits the data, and may be confused by long

history. So this is a mechanism to tell the network, which data are more important. It was also

observed that modification of the constants during training may also be useful.

6.3 Implementation
The implementation itself consists of a few simple programs written in C language. On the input,

clear text usable for building a language model is expected (one sentence per line, all characters

uppercase, only letters + space + end of line symbols). Example of good training data:

TŘEBA V TŘEBONI NEBO ČESKÉM KRUMLOVĚ TAM JE TO NÁDHERNÉ
PAKLIŽE TAM MÁ ČLOVĚK ZÁZEMÍ A PRÁCI MŮŽE TO BÝT PŘÍJEMNÉ
ALE V PRAZE JE NAŠTĚSTÍ SPOUSTA MÍST KTERÁ MILUJI
JÁ MOC RÁDA CHODÍM A TAK JDU Z DIVADLA ČASTO PĚŠKY DOMŮ
VEZMU TO NERUDOVKOU PŘES HRAD A POKAŽDÉ JSEM OKOUZLENÁ
ÚPLNĚ PŘEKRÁSNÉ JE TO PRÁVĚ VEČER
V ZIMĚ NEBO V LÉTĚ TO JE JEDNO

To control training and prevent data overfitting, validation data with the same format are required (a

few hundred words should be enough). The performance is then evaluated on testing data set, again

with the same format of data. SRI LM toolkit is used for comparison of results.

If we are interested in evaluation of perplexity improvements of neural networks over back-off

n-gram models, typical sequence of required steps is this:

1. Add end of sentence tag (</s>) to the data files before each end of line symbol. This is done

 to ensure compatibility with SRI LM - each sentence is processed independently, assuming

 no relations between ongoing sentences. In n-gram neural network, history is erased before

 new sentence is processed, to ensure that the network has no more data than SRI LM uses.

2. Create vocabulary using the training data. Vocabulary consists of all distinct words used in

 the training data. Vocabulary is sorted, so that the most frequent words are first in the list.

 23

3. Rewrite training, validation and testing data files, so that every word is rewritten as an index

 to the vocabulary. For words from validation and testing data which are not found in the

 vocabulary, special OOV word index is generated.

4. Compute bigram neural network on the training data while using validation data to control the

 training process.

5. Use results from step 4 to establish a file containing positions of all words from vocabulary in

 the continuous space, as it was learned by the bigram neural network. For example, if the first

 network used a hidden layer with 30 neurons, each word may be rewritten as a vector in 30-

 dimensional space

6. Compute n-gram neural network using training and validation data. Every word is translated

 to the continuous space, as it was computed in the step 5. For details, see figure 3 and 4.

7. Compute language model using SRI LM toolkit. This is usually done by executing

 ngram-count -text train_text -lm language_model -order 4
 -kndiscount -interpolate
 It is possible to tune the resulting language model by modifying the order, or by using

 different smoothing methods. However, 4-gram with modified KN discounting is usually the

 best choice.

8. Evaluate testing data by n-gram neural network and using LM learned by SRI LM toolkit.

 This is done by using command

 ngram -lm language_model -ppl test_text -order 4 -debug 2

9. Using results from step 8, compute perplexity of the test data using predictions from neural

 network and SRI LM toolkit. The currently used interpolation method is simple linear

 interpolation, with interpolation coefficient γ=0.5 (can be computed using validation data).

Sample output file:

Word NN prob. SRI prob. Interpolated prob.
 18 NN: 0.003689 SRI: 0.003684 MIX: 0.003686 LOGP: -2.4334
 176 NN: 0.004950 SRI: 0.005980 MIX: 0.005465 LOGP: -4.6958
 1 NN: 0.148345 SRI: 0.208526 MIX: 0.178436 LOGP: -5.4443
 766 NN: 0.000284 SRI: 0.000126 MIX: 0.000205 LOGP: -9.1322
 215 NN: 0.000315 SRI: 0.000315 MIX: 0.000315 LOGP: -12.6337

 24

 7783 NN: 0.000005 SRI: 0.000005 MIX: 0.000005 LOGP: -17.9728
 136 NN: 0.001380 SRI: 0.000574 MIX: 0.000977 LOGP: -20.9830
 52 NN: 0.003587 SRI: 0.003176 MIX: 0.003381 LOGP: -23.4539
 6 NN: 0.183653 SRI: 0.236825 MIX: 0.210239 LOGP: -24.1312
.
.
.
.
 21 NN: 0.002435 SRI: 0.008481 MIX: 0.005458 LOGP: -13254.2197
 248 NN: 0.001203 SRI: 0.000217 MIX: 0.000710 LOGP: -13257.3682
 15 NN: 0.016652 SRI: 0.023843 MIX: 0.020247 LOGP: -13259.0615
LOG PROB: -13259.061523
Words: 5643
PPL SRI: 284.372998
PPL NET: 244.805139
PPL MIX: 223.690541
OOV rate: 4.19%

Since the interpolation step combines two probability distributions, which both sum to 1, we can

easily compute linear interpolation as PINTERPOLATED = PNN* γ + PSRI*(1- γ), γ >∈< 0,1 .

Implementation note: the only important thing when making a language model is to keep in mind that

the model must not use information from the future - building a prediction model that has access to

the future is of course senseless;) Also, it is good to check that the probability distribution really sums

to one.

 25

7 Experiments and results

In the first experiments with a small amount of data, I have used approximately 22 000 tokens for

training, 6 600 for testing, vocabulary size was 700. Data consisted of Czech text with words divided

into syllables, so that the vocabulary size was small enough to run similar tests with SNet

implementation of neural networks [16] (SNet was unable to handle more than thousand words in

vocabulary; the results were also slightly worse than from my implementation, mainly because weight

decay and history attenuation extensions). SRI LM toolkit was used for comparison. For bigram

statistics, results from SRI LM were 0.5% better in probability than from the best bigram neural

network. The best single neural network (with long context) was 1% worse than the best result from

SRI LM (trigram with modified Kneser-Ney discounting). Interpolation of four networks was better

by 0.65% than the best result from SRI LM. After interpolation of the best results from neural

networks and SRI LM, there was an improvement of 1.3% in probability over SRI LM baseline (4.5%

improvement in perplexity). These results were obtained with weight decay, which has proven to be

useful to improve training, at least in this case. History attenuation was also used. However, these

results were quite poor and it was a question, whether the neural networks will be able to achieve

better results with more data.

For the other experiments, Czech lecture transcriptions and a part of PMK+BMK were used.

 Vocabulary

size

Training data

size (words)

Test data size

(words)

SRI PPL NN PPL SRI+NN

PPL

Improvement

Czech lecture

transcriptions
1 276 6 017 1 071 140.7 166.5 132.1 6.1%

Part of PMK+BMK

corpus
5 385 31 618 6 538 183.3 190.3 168.0 8.3%

Table 2: Perplexity on small amount of Czech word based data

The results indicate better improvements in perplexity with more training data. It is because the

neural network must see a certain word many times to place it in the right position in the

multidimensional space. It was expected that with more training data, this effect may be strengthened.

The computational complexity of the used architecture is pretty high, and is linearly depended on the

size of training data and vocabulary. Although the experiments were done with artificially little data

(no useful language model may be computed using 31 000 words), the training time was pretty high -

 26

for training of part of the PMK+BMK corpus it was 1.5 hour on a computer with an AMD Opteron

2,8GHz processor.

It was observed during parameter tuning that neural network with lower perplexity may not lead to

bigger perplexity reduction after interpolation with statistical n-grams. The important thing for

perplexity reduction is neural network's ability to discover relations in the data undiscovered by

statistical n-grams. For example, bigram neural network was usually better in perplexity than 4-gram

network. However, after interpolation with statistical n-grams, bigram network provided almost no

new information, while 4-gram network did.

Another important thing was the use of weight decay and history attenuation - although these

extensions have proven to be useful to improve the perplexity of the neural network itself, after

interpolation, the behavior was again quite strange. Usually, both extensions helped to reduce the

perplexity of the interpolated model by a few percent, at the cost of tuning the parameters. Because

these extensions were found to hurt the training process (both speed and generalization of the model),

if the parameters were not tuned, they were not used in the ongoing work. Their benefit seems to be

too small.

7.1 Vocabulary size reduction
Although the training data size in the previous experiments was quite small, the training process took

very long. Since the goal of this work was to train a language model based on all the spontaneous

speech corpora (PMK+BMK), which consists of 1 170 000 words, it wouldn't be possible to train a

neural network on this data in a reasonable time. So some improvements in implementation and

architecture were made, to make the training process possible.

It is clear that the overall performance depends mainly on two things: amount of training data and the

vocabulary size. From these, it is possible to optimize the latter one. As was already mentioned, the

neural network is able to increase the amount of learned data by assigning words to a right position in

multidimensional space, so that words with similar use in an utterance lie near each other. However, it

was also mentioned that with small amount of training data, the network is unable to find the right

position, because there is simply not enough occurrences of a certain word to compute reliable

statistics. We may exploit this fact to increase overall performance without hurting the training

process.

 27

There are two ways, both very similar, how to reduce vocabulary size by throwing out the least used

words. We may assign all the rarely used words to one token (for example, <rare>), and compute

statistics for these words by assuming uniform distribution. For example, if the predicting model

assigns probability 0.5 to the <rare> token, with 100 rare words assigned to the <rare> token, the

probability estimation for each rare word would be 0.005. Since the vocabulary consists mostly of

rare words, we may easily reduce its size to a half or a third by throwing all the words, which

occurred less then two or three times in the training data. This is quite the same solution as was used

in [1].

The other way, used by [7], is to use so-called shortlists. The principle is quite the same: neural

network is used to predict only s most frequent words. All words from the vocabulary are still

considered as input of the neural network.

(6.3)

(6.4)

where PN denotes probabilities in the shortlist computed by the neural network and PB probabilities

obtained from standard 4-gram back-off LM. This means that the neural network redistributes the

probability mass of words in the shortlist. However, this approach needs to evaluate probabilities of

all the words in the shortlist using standard back-off model.

In my implementation, I have used the first solution, merging all the rare words into one token.

However, it's hard to predict behavior of such a solution; defining threshold of the least frequent

words that will be present in the vocabulary does not tell us anything about the reduction of the

vocabulary size. So the more natural solution seems to be using the shortlists; however, this approach

as implemented by [7] would need better cooperation with back-off LM, since it is needed to compute

probability mass assigned by the back-off model to all the words in the shortlist. So the used simple

solution is to define the shortlist size and discard all the words past this limit in a vocabulary sorted

by frequency of words. Thus, neural network learns only to predict words that are in the shortlist.

Final probability for a word w in a given context h is then computed as

 28

)1(*)|(*)|()|(γγ −+= hwPhwPhwP BN

(6.3)

The reason why [7] are using a more complicated solution is because they reduce the vocabulary size

to 2 000 words, while in the experiments presented here, the shortlist is typically 15 000 - 20 000

words.

However, neural network trained this way will output zero probability estimation for words that are

not present in the short list. Although we are primarily interested in perplexity of an interpolated

model (so the zero probability from neural network is not a problem), it may be useful to report

results obtained using only the neural network. For this case, it is possible to use previous solution

(merging words into one <rare> token), or simply redistributing part of the probability over the rare

words uniformly.

Surprisingly, results obtained with well reduced vocabulary are sometimes even better than those

computed with full vocabulary. The reason is probably significant reduction of parameters of the

neural networks. Discarding all the words occurring less then three times in the training data is

probably the most effective solution. Although it is possible to reduce the vocabulary further, the

results are going worse with bigger reduction.

7.2 Final training and evaluation using perplexity

With the implementation of shortlists, it was possible to train a neural network based language model

using all the data from Pražský mluvený korpus and Brně nský mluvený korpus (PMK+BMK). This

corpus consists of 1 170 000 words. For evaluation purposes, it was divided into three parts - 1 155

000 words for training data, 5 500 words for validation data and 9 500 words for testing. The baseline

was a 4-gram back-off language model using modified Kneser-Ney smoothing, learned by SRI LM

toolkit.

Full vocabulary computed on the training data contained 68 500 words, from which only 20 300 were

used more than two times. Starting value for learning rate was set to 0.1 in both networks.

Experiments were made to see how much important is this value - how it affects the number of

training epochs and overall perplexity results.

 29

Learning rates

Training epochs

Perplexity of

interpolated models

0.3 0.2 11 10 222.6

0.1 0.1 12 11 222.3

0.06 0.03 14 12 223.9

Table 3: Final perplexity (after interpolation with back-off LM) and required training epochs for

bigram and n-gram neural network with different starting learning rates (with shortlist 15 000 words).

It seems that the starting learning rate value is not much important and a well chosen value may only

improve the number of required training epochs.

Shortlist Validation Test Lecture

10 000 248.7 273.8 534.9

15 000 248.5 276.5 541.6

20 000 247.1 276.2 540.9

25 000 246.2 272.5 533.6

Table 4: Perplexities of bigram neural network (after interpolation with KN 4-gram) with different

size of the shortlist on various data.

As it can be seen, determining the optimal shortlist length is not an easy task. The reason of this

random performance lies in the neural network itself - the starting weights of the network are chosen

randomly, so a network with the same parameters and architecture trained two times may provide

significantly different results. The only way how to provide reliable results would be to train a

network many times and selecting the one giving the best results, otherwise any tuning of parameters

must be based more on experience than on some particular results.

 30

 Validation data Test data Lecture transcription

KN 4-gram 284.37 299.96 613.39

Neural network 242.77 274.70 533.17

Interpolation 221.34 250.30 486.68

Improvement 22.2% 16.6% 20.7%

Table 5: Perplexity of language models trained on PMK+BMK corpus, rare words are merged into

one token

Table 5 shows final results on validation and test data sets. These results were obtained with these

parameters: all words occurring less then three times were merged to <rare> token (vocabulary

reduction to 20 300 words), starting learning rates for both networks were 0.1, sizes of hidden layers

were 30 neurons for the bigram network and 50 for the n-gram network. Length of the context for n-

gram network was chosen to be 5 words. Perplexity on lecture transcription is also reported, since the

language model is aimed to model this type of data. Training time was 46 hours on a computer with

an AMD Opteron 2,8GHz processor.

The final results are comparable with [1], who has achieved a 20.1% perplexity reduction on

validation data set and 21.5% reduction on test data on a Brown corpus (English text, 800 000 words

for training, 200 000 validation and 181 000 testing, rare words occurring less then 3 times merged

into one token, reducing vocabulary size to 16 400 words).

 Validation data Test data Lecture transcription

KN 4-gram 284.4 299.9 613.4

Neural network 235.8 290.9 549.2

Interpolation 217.6 256.8 497.6

Improvement 23.5% 14.4% 18.9%

Table 6: Perplexity of language models trained on PMK+BMK corpus, simple shortlist

implementation with 20 000 of the most frequent words.

As it can be seen, although the implementation with shortlists performs better on the validation data

than implementation with merging words into one token, it is worse on the test data.

 31

11800

12000

12200

12400

12600

12800

13000

13200

13400

13600

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-L
og

 li
ke

lih
oo

d

Epoch

Learning process - bigram network

Figure 5: Log likelihood of validation data while learning bigram neural network language model. It

can be easily seen that the training algorithm started to divide learning rate after epoch 8.

11600

11800

12000

12200

12400

12600

12800

13000

1 2 3 4 5 6 7 8 9 10 11 12

-L
og

 li
ke

lih
oo

d

Epoch

Learning process - ngram network

Figure 6: Learning process of the n-gram neural network.

 32

7.3 Lattice rescoring
Since this whole work is aimed on improving speech recognition of spontaneous Czech speech,

experiments with lattices were also performed. Lattice is an oriented graph containing possible

hypothesis for some utterance, for example:

Figure 7: Sample lattice (the language and acoustic score values are not included)

It is the ultimate goal of language modeling to assign the highest probability to the hypothesis that is

the most meaningful in a given context. It is obvious that in the sample lattice, the path "the roses are

red" should have higher probability than "the mouses are mad".

Lattices are produced by some decoding system from the acoustic data using a simple back-off

language model. They contain acoustic and language score for each edge. The acoustic score

represents, how much likely a certain word was really said according to the acoustic models. The

language score represents, how much likely the speaker intended to say it.

The first experiments with lattice rescoring were done with a data from Speecon and TEMIC, which

consists of 1 695 Czech non-spontaneous sentences. The original language score in those lattices was

computed using trigram back-off language model trained on gigabytes of textual data. On the other

hand, neural network LM was trained only on PMK+BMK corpus. This resulted in high OOV rate in

lattices for the NN LM - 15% of words were not ever seen by the neural network LMs, and another

8% were words that occurred in the training data less than three times. So, neural network language

score was taken as an additional information, instead of replacing the old score.

 33

First step to rescore lattices is to generate N-best lists from them. N-best list is a set of N best

hypotheses in a lattice with their acoustic and language scores. Neural network LM was used to

compute probability for each of this hypothesis; the OOV words were treated as rare words, thus they

were given a small probability to avoid zero probability problem. Since N-best lists tend to contain

redundant data, it was very useful to implement a cache based on a hash function, since during

evaluation, neural network does not change and for the same history, the output will be always the

same. Cache hit was about 92.44% (mainly because N-best list length aligning; the true cache hit can

be around 70%).

The final score for each hypothesis was then computed as

LMNNLMSCORELM *)1(*_ γγ −+=

PENALTYWICOUNTWORDSCORELMSCALELMSCOREACSCORE _*__*__ ++=

where NNLM denotes the probability of hypothesis computed by the neural network language model,

LM denotes old language score, γ is an interpolation coefficient, LM_SCALE is a language score

scaling factor, WORD_COUNT is the number of words in the hypothesis and WI_PENALTY is a

word insertion penalty score.

The parameters that significantly affect overall accuracy are LM_SCALE and WI_PENALTY. The

first one is used to strengthen the influence of the language model score - since there is more

variability in the acoustic data, they have much lesser likelihood and would otherwise dominate in the

overall score. Word insertion penalty is then used to balance between word insertions and deletions

mistakes.

For experimental purposes, evaluation was done on all the available data. First, LM_SCALE and

WI_PENALTY were tuned to obtain the best results with N-best lists (N=300), achieving baseline

accuracy 81.65%. After incorporating score obtained from neural network and tuning the parameters

(LM_SCALE, WI_PENALTY and γ), the accuracy went up to 82.01%. However, such an

improvement is very modest, since it was obtained only on validation data. Oracle accuracy (best

possible path through lattice with the highest accuracy, computed using the correct transcription) of

lattices was 95.5%, so there was a plenty of space to improve.

The reason why neural networks didn't help much is probably because the network was trained on

spontaneous speech transcriptions, while the Speecon + TEMIC data contained mostly artificial

 34

sentences (no speaker mistakes etc). Also, lattices contained mostly words unknown to the neural

network.

Another experiment, much closer to the PMK+BMK corpora, was a lecture data recognition -

containing spontaneous speech with technical terms. A lecture consisted of 873 sentences, with

original accuracy 54.24%. Since the experiments were made again on all the available data, first thing

to do was to determine the best possible results with tuning of the LM_SCALE and WI_PENALTY

parameters.

 Accuracy (%)

Original lattices 54.24

Tuned parameters 56.82

NN LM 55.80

old LM + PMK + BMK 56.86

old LM + NN LM 57.99

Table 7: Accuracy on lecture data

The experiments were made on N-best lists with N=100. After parameter tuning, obtained accuracy

went up to 56.82%. This value was considered as a baseline. After substituting old language model

score with the one obtained with neural network, accuracy went down to 55.80% - however, the

original language model was trained on a huge data so it was expected that neural network alone will

perform much worse (on the other hand, just by using 100-best list is a way of using the old language

model). Another experiment was to determine the effect of PMK+BMK data - after computing a

language model based on this corpora and an interpolation with old language model score, accuracy

went up to 56.86%, which is almost no improvement over the baseline. Finally, after interpolating

score from the neural network and the old language model, accuracy went up to 57.99%. The

rescoring process took approximately only 0.5 hour, mainly because the use of cache.

 35

8 Conclusion and future work

The neural networks working in continuous space are able to significantly reduce perplexity of state

of the art 4-gram back-off language model by exploiting similarity of certain words. Their use in any

natural language processing task should be beneficial, be it machine translation, optical character

recognition or speech processing.

The main outcome of this work is an implementation of neural network based language model. The

perplexity reduction over 20% is itself a very good result in comparison with other approaches for

advanced language modeling (factored language models, class based models), at the cost of

computational complexity needed for training the model. However, rescoring of N-best lists can be

quite fast, working in much less than 1xRT, so the use in a practical system is possible.

The neural network based language model should provide the best improvements if it would be

trained on huge data - this is however impossible with the current implementation. There are ways

how to speed up the whole implementation many times (70x or more using hierarchical neural

network) - this should be investigated in the future work.

There are also other possible uses of this work - since the neural network has some sense of nearness

between words, it can be used for example to generate additional training data for the standard back-

off language model. Examples of near words can be found in Appendix A.

One possible advantage of the neural network LM over standard back-off LM is the memory

requirements - as can be seen in (6.2) and (6.4), memory requirements do not increase with the

amount of training data, only with the size of vocabulary. So the resulting language model may be

only a few megabytes in size, even if trained on huge data.

Although the final perplexity reduction seems to be quite big, we are still very far from the optimal

solution, artificial intelligence. But it can be said that the neural network based language model is

more intelligent than the simple back-off LM. To improve things further, we may choose two paths.

The first and easy one is to take some other successful language modeling techniques like cache

language models (or better trigger LMs and topic LMs) and factored language models and build a

complex model. This approach has one main advantage: it will surely work. The disadvantage is that

it will not lead to AI, since it is an ad hoc solution.

 36

The second way would be to propose completely new technique for language modeling. Main

weaknesses of current language modeling lie in its simplicity, taking word units as the ultimate and

often the only source of information. To identify sub-word information, new techniques, like factored

language models, must be employed. On the other hand, to capture information over long contexts of

words, techniques like cache models, trigger models or topic language models were developed. All

these techniques aim in fact the same problem.

The other main weakness, inability to follow more information sources in one time, is partially solved

by class based LMs and NN LMs. However, these techniques are crude and there is a plenty of space

for improvements.

I believe that there exists a general solution able to capture information from a natural signal.

However, finding this solution is a pure research with uncertain results, which may not be directly

applicable in practical systems.

 37

Bibliography

[1] Yoshua Bengio, Ré jean Ducharme and Pascal Vincent. 2003. A neural probabilistic language

model. Journal of Machine Learning Research, 3(2):1137–1155.

[2] Joshua Goodman, Eugene Charniak. 1999. The State of The Art in Language Modeling.

[3] Ircing Pavel. Large Vocabulary Continuous Speech Recognition of Highly Inflectional

language (Czech). 2003. Ph.D thesis, University of West Bohemia in Pilsen Department of

Cybernetics

[4] Petr Podveský. Speech Recognition of Czech Using Finite-State Machines. Ph.D thesis, Ústav

formální a aplikované lingvistiky, MFF UK

[5] Holger Schwenk and Jean-Luc Gauvain. Training Neural Network Language Models On Very

Large Corpora. Published in Joint Conference HLT/EMNLP, pages 201–208, oct 2005

[6] Andreas Stolcke. 2002. SRILM - an extensible language modeling toolkit. International

Conference on Speech and Language Processing, 2002, pp. II: 901–904.

[7] Holger Schwenk and Jean-Luc Gauvain. 2005. Building Continuous Space Language Models

for Transcribing European Languages.

[8] Jeff Hawkins and Sandra Blakeslee. 2004. On Intelligence. Times Books, Henry Holt and

Company, New York, NY 10011. In Press.

[9] Mathew V. Mahoney. 2000. Fast Text Compression with Neural Networks.

[10] Joshua Goodman. 2006. Language Models for Handwriting.

[11] Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell System Technical

Journal, 27, pp. 379–423 & 623–656.

[12] C. S. Wallace and D. L. Dowe. 1999. Minimum message length and Kolmogorov complexity.

Computer Journal (special issue on Kolmogorov complexity), 42(4):270--283.

 38

[13] Andreas Stolcke. 2002. SRILM - an extensible language modeling toolkit. In ICSLP, pages II:

901–904.

[14] J. A. Bilmes and K. Kirchhoff. 2003. Factored language models and generalized parallel

backoff. In Proceedings of HLT/NACCL, pp. 4--6.

[15] Andrei Alexandrescu, Katrin Kirchhoff. 2006. Factored Neural Language Models.

[16] S. Kontár. 2006. Parallel training of neural networks for speech recognition. In Proc. 12th

International Conference on Soft Computing MENDEL’06.

 39

Appendix A
Example of the nearest words in multidimensional space learned automatically by the bigram neural

network:

The nearest words to 'STO' and their distance in the continuous space:

0.000000 STO

0.485603 PADESÁT

0.634387 SET

0.715822 TISÍCE

0.548773 ŠEDESÁT

0.331836 STA

0.740655 PATNÁCT

0.644968 DEVADESÁT

0.265452 STĚ

0.568353 DALŠÍCH

0.744552 SEDUMDESÁT

0.722997 PRVNÍCH

0.733424 NULA

0.463603 VOSUMDESÁT

0.735826 SEDUMNÁCT

0.697874 ŠTYŘ ICET

0.785682 OSUMNÁCT

The nearest words to 'ONI':

0.166965 VONI

0.642922 DĚCKA

0.738023 UČ ITELÉ

The nearest words to 'PRÁCE':

0.338162 PRÁCI

0.444156 ZAMĚSTNÁNÍ

0.453964 DĚTÍ

The nearest words to 'NIMA':

0.254859 NÍ

 40

0.408227 NĚ

0.366906 NICH

0.277304 NĚJ

0.447615 NIM

0.344229 JU

0.314955 VÁS

0.383597 NĚHO

0.428735 NĚM

0.480196 KLIDNĚ

0.264886 NÍM

0.468224 NÁHODOU

0.325690 NI

0.461070 DÁVNO

0.304047 TEBOU

0.464210 NĚMU

The nearest words to 'MLADÝ ':

1.382202 NOVÝ

1.348571 RÁDI

1.292689 STARŠÍ

0.833468 STARÝ

1.217794 OSTATNÍ

0.977726 CIZÍ

1.372153 TYTO

0.744946 SLUŠNÝ

1.352882 PŘ ÍJEMNÝ

1.372255 PLNÝ

1.169210 HODNÝ

1.000128 MLADÉ

