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Abstrakt 
Tato práce se zabývá problematikou jazykových modelů  v oblasti automatické ho přepisu mluvené  

řeči. V teoretické  části jsou rozebrány současně  používané  metody pro pokročilé  jazykové  

modelování  založené  na statistickém přístupu - modely založené  na třídách, na faktorech a na 

neuronových sí tích. Následně  je popsána implementace jazykové ho modelu založené ho na dvou 

neuronových sí tích. V závě ru práce jsou uvedeny výsledky dosažené  na Pražském a Brně nském 

mluveném korpusu (cca 1 170 000 slov) - redukce perplexity o zhruba 20%. Výsledky dosažené  při 

reskórování  N-best listů  ukazují  zlepšení  při rozpoznávání  spontánní  řeči o více než 1%. V závě ru 

práce jsou uvedeny možnosti využití  práce, její  možná rozšíření  a také  jsou uvedeny hlavní  nevýhody 

současně  používaných přístupů  pro statistické  jazykové  modelování . 

Klíčová  slova 

jazykový model, čeština, n-gramové  statistiky, neuronové  sí tě , rozpoznávání  řeči, umě lá inteligence 

 

Abstract 

This work concerns the problematic of language modeling in automatic speech recognition. Currently 

widely used techniques for advanced language modeling based on statistical approach are described 

in the first part of work - class based language models, factored language models and neural network 

based language models. In the next section, implementation of neural network based language model 

is described. Results obtained on "Pražský mluvený korpus" and "Brně nský mluvený korpus" corpora 

(1 170 000 words) are reported, with perplexity reduction around 20%. Also, results obtained after 

rescoring N-best lists with spontaneous speech are reported, with absolute improvement in accuracy 

by more than 1%. In the conclusion, possible uses of the work are mentioned, along with possible 

extensions in the future. Finally, main weaknesses of current statistical language modeling techniques 

are described. 
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1 Introduction 

 

1.1 Motivation 
The goal of this work is to improve current language models of Czech used at Brno University of 

Technology. In this chapter, I will clarify my motivation in this area.  

 

It is well known that computers were built to obtain artificial intelligence. First, it was supposed that 

most human work can be done by intelligent machines. In 1950s it was predicted that in fifty years, 

computers will become more intelligent than humans. Many scientists claimed that they can do things 

like language translation or machine vision in a few months. None of them has succeeded. 

 

After this decade of optimism, many others tried to prove that intelligent machines can’t ever be built. 

For example, Searle with his well known Chinese room experiment tries to prove that a computer that 

passes Turing test needs not to understand natural language. There is also a plenty of formal proofs 

that rely on words like consciousness, mind or understanding, "proving" that artificial intelligence 

can't be built using Turing machines. There were also even more amusing arguments - for example, 

that computer can't be surprised, frightened or fall in love. Much more about history of AI can be 

found in [8]. 

 

From my point of view, there is no magic about intelligence. It can be shown that if one believes in 

laws of physics, then as the whole brain can be simulated using a computer, there is no reason why 

computers can’t be intelligent. But effectivity of such solution is another question. 

 

Since I was always interested in artificial intelligence, it was natural that I was wondering what the 

intelligence really is. To my disappointment, many scientists in this field have no need to define what 

intelligence is. Answers like “a thing can be called intelligent if it acts somewhat reasonable” or “we 

all feel what intelligence is, but no one can say it” are maybe funny, but during my studies, there was 

nothing more. 

 

After some thinking, I decided that intelligence is based on the ability to make predictions – it is 

easily understood when thinking about behavior. We buy food because we know that it will be useful 
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when we’ll be hungry. Most of our behavior is not useful in the time of execution, but will prove to 

be useful in the future. The key part of all this are the predictions – we don’t know what the future 

shall be, but we can predict it using our knowledge. Similar conclusions, and much more, can be 

found in [8]. 

 

It can be shown that intelligence = ability to make predictions = compression [9]. For example, we 

have the following sentence: 

THE ROSES ARE * 

Our goal is to determine the last word of this sentence. It can be expected that this word could be 

RED or NICE or FLOWERS. It is not probable that the last word would be BLACK or ISLAND. 

It can be said that we are able to predict the last word using our knowledge. This ability is in fact 

intelligence. There is no known algorithm to make computers as good in making predictions as 

humans are (well known Shannon experiments with entropy of English text), but to some degree, they 

are successful. 

 

Simple prediction example: 

THE ROSES ARE RET 

THE ROSES ARE RED  

Assuming that the computer has a lot of unambiguous data, it is easy to assign a higher probability of 

being said/written to the second sentence. We can simply build a vocabulary from the training data 

and for each sentence containing unknown word assign a low probability. 

 

More complicated example: 

THE ROSES ARE MOON 

THE ROSES ARE RED 

Since all words are known, another technique must be used. For example, we may count how many 

times each sentence in the training data occurred. It can be expected that the second one occurred 

more often and thus it should have higher probability. 

 

Even more complicated example: 

FIFTY SEVEN AND THIRTY ONE IS EIGHTY EIGHT 

FIFTY SEVEN AND THIRTY ONE IS TWENTY TWO 

What now? Of course, one may think that by using the rule from the second example, the problem 

should be solved. But what if none of these sentences appeared in our training data? This is called 

sparse data problem and it is considered to be a big problem. There exist some solutions to overcome 

it, but their effectivity is questionable. It can be shown that humans understand novel situations and 

are able to make correct predictions about future, while computers with classic algorithms are unable 
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to do this. Some believe the problem is that the amount of training data for computers is too small. 

But from the previous example, it is clear that the problem is not data sparsity. The problem is that the 

computer does not understand the data, while humans do. 

 

Speaking about understanding, it is not easy to define it. It is often hard even to tell if a human 

understands something, or only pretends to. But if we use again the probability – we can compare two 

systems, and the one that gives better probability on testing data should be the one that has more 

‘understanding’. But even this approach has some drawbacks – calculating exact probabilities is not 

easy (since all probabilities must sum to one, it is needed to evaluate all possibilities) and the system 

giving worse prediction estimates may be the one with more understanding, simply because it does 

not make a good smoothing (more of this in chapter 2). Probably the most reliable way to determine 

quality of a language model is to use it in a speech recognizer (or similar system like OCR) and 

determine WER (word error rate). 

 

The most successful algorithms for language modeling and data compression are based on so called 

n-grams (the exact definition will be in chapter 2). The idea behind n-grams is simple – to estimate a 

probability of next symbol in a certain context, we can use only the most recent history. The longer 

the history is, the better probability estimates we should get, but since the amount of training data is 

never infinite, the estimates for longer contexts are less reliable. To solve this, many smoothing 

algorithms were designed. 

 

N-gram statistics itself is very simple, yet it is still used by many as the baseline for comparison. Due 

to its simplicity, large amounts of data can be processed very quickly and that is probably the reason 

why this approach is very hard to beat using more precise algorithms. On the other hand, it is clear 

that N-gram approach itself doesn’t lead to AI. It is unable to make good predictions in novel 

situations. However, n-grams may be closer to real brains then it seems, and this can be the true 

reason why they are so successful. In the real brains, however, predictions are made at multiple levels 

using a sophisticated hierarchical neural network (much more about this in [8]). 

 

Another interesting point of view while thinking about intelligence is by using information theory 

[11]. If we consider a transmitter that sends messages to a receiver, we can intuitively suppose that 

information that is expected by the receiver has less information content than a surprising one. For 

example, by sending a message "THE CAPITAL OF FRANCE IS PARIS" to an average European, 

we do not transmit much information, since the receiver already knows this. On the other hand, 

speaking to this person about African cities would have more information content. There is a direct 

connection between information theory and AI: intelligent machine should be able to learn efficiently 

regularities in the incoming signals, so it should be able to minimize received information content. 
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This means that intelligent machine should maximize its prediction capability by using the simplest 

possible solutions. This is quite the same conclusion as the ideas behind Minimum description length 

(MDL) and Kolmogorov complexity [12]. 

 

1.2 Czech language 
This work primarily concentrates on creating language model that will be useful for speech 

recognition in Czech. There are several differences between Czech and English that make classic N-

gram approach impractical. 

 

Czech language is inflective, so every word may occur in many forms. This increases the size of 

vocabulary about three times [3], in comparison to an English vocabulary computed on the same 

amount of text. This is quite a huge problem, since it increases the data sparsity problem. Another 

problem with vocabulary size is that commonly used tools for ASR (automatic speech recognition) 

like HTK are unable to handle more than 65 000 words in vocabulary. 

 

A solution here may be word division into smaller morphological parts - prefix, stem and suffix. 

Factored language models and neural network based language models are able to handle this type of 

information. 

 

Important difference between English and Czech is a particularly free word order in Czech sentences. 

This results again in increased data sparsity. A solution here may be neural network based language 

models, since they do not use explicit temporal back off. 
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2 Statistical language modeling 

 

2.1 N-gram statistics approach 
 

The aim of statistical language modeling is to compute probability of some utterance. Language 

model is built using training data, parameters are tuned using heldout data and the model performance 

is evaluated on testing data. The division ratio between training, heldout and testing data is usually 

something like 90: 9 : 1, but according to [2] it is only important to have 100 – 1000 words per 

parameter for heldout data and for testing data probably a few thousand of words. 

Language model is viewed as a probability distribution P(wi | w1, w2, ... , wi-1), where w1, ..., wi-1 is 

history. 

 

P(wi | w1, w2, ... , wi-1)= C(w1, w2, ... , wi) / C(w1, w2, ... , wi-1) 
(2.1) 

 

where C(w1, w2, ... , wi) denotes the number of occurrences of w1, w2, ... , wi. 

 

Such probability estimation can’t be computed directly, since with the increasing length of context we 

get less reliable estimations (as described in chapter 1). This problem is typically solved by using only 

a shorter context, with length of N-1. Such an approach is called N-gram language model (or, in data 

compression, PPM – prediction by partial match). 

 

Probability of word wi using N-gram LM is computed as 

 

P(wi | w1, w2, ... , wi-1)= C(wi-n+1, ... , wi) / C(wi-n+1, ... , wi-1) 
(2.2) 

 

For N=1 the LM is called unigram, for N=2 bigram and for N=3 trigram. Usually, N is between 1 and 

4. 

 

As it can be seen, the above formula shall assign zero probability to n-grams that have not occurred in 

the training data. This is quite a problem, since the overall probability of an utterance is computed as 
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so if some probability estimate is zero, then the overall probability is zero too. To prevent this, many 

smoothing techniques have been developed. 

 

2.2 Smoothing 

2.2.1 Add one smoothing 
This technique, also called Laplace smoothing, is probably the easiest one. To avoid zero counts, we 

simply add one to every count. The probability is then computed as 

V  ) w, ... ,C(w
1 ) w, ... ,C(w ) w, ... , w, w| P(w

1-i1n-i

i1n-i
1-i21i +

+
=

+
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where V denotes vocabulary size. 

 

This solves the zero probability problem, but usually too much probability mass is redistributed 

among unknown n-grams, from which many are highly unlikely. 

 

2.2.2 Add lambda smoothing 

Instead of adding a constant, we can assume that adding a certain value λ that will be determined on 

heldout data should be more useful: 

V  ) w, ... ,C(w
 ) w, ... ,C(w ) w, ... , w, w| P(w

1-i1n-i

i1n-i
1-i21i λ

λ
+
+

=
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(2.5) 

 

In this case, the probability mass reserved for unknown n-grams is much more optimal than in the 

previous case. However, this technique doesn’t take into account the fact that unknown n-grams have 

different probabilities, which can be already estimated using training data. 
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2.2.3 Simple interpolation 
Uses different n-gram statistics to obtain better estimates. For example, unigram statistics are reliable 

but context independent, while trigram is very noisy. So the mixture of both, and even bigram, should 

result in better estimates than by using only one of these alone. 

 

)(
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)()|(
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yzC

xyC
xyzCxyzP µλµλ  

(2.6) 

λ and µ parameters can be estimated on heldout data, )(•C means vocabulary size. 

 

Of course, the most reliable estimates should have high interpolation parameter values – and their 

value does not depend only on order of n-gram, but even on the reliability of estimate given by the 

number of occurrences. So the idea of interpolation of multiple n-gram statistics is extended in 

Jelinek-Mercer deleted interpolation using buckets (more about this in [2]). 

 

2.2.4 Good-Turing discounting 
This technique tries to estimate the probability mass that should be assigned to unknown n-grams 

using known frequency of n-grams that occurred only once. The saved probability mass is uniformly 

redistributed among unknown n-grams. These ideas are extended in Katz smoothing. 

 

2.2.5 Kneser-Ney discounting 
Kneser-Ney smoothing exploits the fact that although some unigrams are frequent, they appear almost 

always after some symbol - for example, "Francisco" appears usually after "San". So if the language 

model is backing off to unigram, "Francisco" should not have such a big unigram probability. 

Modified Kneser-Ney smoothing is considered to be the state of the art in current smoothing 

techniques [2] and should be used as a baseline for experiments, since it is implemented in SRI LM 

toolkit [13] and thus can be easily computed. 
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2.2.6 Comparison of different smoothing methods 

 
Figure 1: Comparison of different smoothing methods from [2] shows the best performance of 

Modified Kneser-Ney smoothing 

 

 

As it can be seen, many different techniques were developed to solve the zero probability assignment 

problem. More about them and a good comparison can be found in [2]. 

 

When comparing different smoothing techniques, or different language models, it is useful to do so 

with another measure than plain probability. Since the probability value itself is usually very small, 

logarithmic probability is used instead. But the comparison is difficult even with log probability, 

since it is affected by the size of testing data. So a size-independent measure is used, called 

perplexity. It is defined as 

n

n

i ii wwP
PPL ∏

= −

=
1 1...1 )|(

1
 

(2.7) 

 

Perplexity can be viewed as the size of a vocabulary of an equivalent uniform language model, or as 

an average branching factor. Its value depends directly on the quality of the language model and the 
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vocabulary size. However, as mentioned in chapter 1, better probability estimates may not lead to 

better language models, although perplexity decreases. So it was observed by many that reduction in 

perplexity may not lead to reduction in word error rate (WER) in automatic speech recognition 

(ASR): 

n
dsiWER ++

=  

(2.8) 

where n is the count of words, i number of insertions, s substitutions and d deletions between the 

correct utterance and the one given by ASR system. 

 

Accuracy is then defined as ACC = 1 – WER. 

 

2.3 Advanced approaches for statistical language 

modeling 
Although the plain n-gram approach seems to be very simple, it is considered to be the most 

successful single technique for language modeling. N-gram statistics are easy to compute even for 

huge training data, fast to evaluate and their results are very good. However, they are still far from the 

optimal solution, so more sophisticated techniques were developed. 

 

2.3.1 Class based language models 
Probably the most natural extension is by defining classes of words. In the simple case, where each 

word belongs exactly to one class, the model is called deterministic class based language model. For 

example, similar words, like days of a week, should belong to the same class. This reduces sparse 

data problem, since the algorithm uses probability estimates from all similar words. It is clear that this 

approach is most successful for small amounts of training data, where there is not enough information 

for classic n-grams. 

 

Another approach is to use statistical classes, where for each word and each class is defined 

probability of the word membership to that class. The problem is that known algorithms for 

estimating word membership to every class are computationally very expensive. 
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Improvement over n-gram baseline can be achieved by interpolation with classic n-grams, since class 

based LMs lose some information. 

 

2.3.2 Factored language models 
In the classical language modeling, each word is translated as an index to dictionary, which is formed 

during training phase. This means that every sense of nearness between words based on written form 

is lost and must be reobtained using class based LMs or neural network based LMs. In a highly 

inflectional language, like Czech, it is better to not lose this information. Much better approach would 

be to divide words into smaller parts - factors - and compute statistics using them. Every word is then 

seen as a vector of k factors - ),...,,{ 21 k
iiii fffw = . Factors can be anything - prefix, stem and suffix 

of words, class membership and so on. This approach is quite interesting in some aspects, since it 

allows us to compute statistics using words that were not present in the training data (OOVs, out of 

vocabulary). For example, we may have 10 occurrences of Czech word "Fourierova" in our training 

data, but no occurrence of "Fourierovy". If we use factored LMs with word division into prefix, stem 

and suffix, we should obtain useful estimates - while without this approach, the new word would be 

treated as OOV and no meaningful estimates for the next word would be possible to be computed. 

Factored language modeling is still quite a new technique, promising interesting results in the future. 

It would be best used with another technique that allows us to compute statistics from many factors - 

for example, using Generalized parallel back-off [14] or neural networks working in continuous space 

[15]. 

 

2.3.3 Approaches based on neural networks 
The use of neural networks in the field of artificial intelligence is a common task. However, for 

language modeling, this approach is quite new. The major reason is high amount of computational 

power needed by these algorithms. But it has been reported that the biggest improvement over classic 

n-grams using a single technique was obtained by using neural networks [2]. This is probably because 

a well trained neural network with hidden layer of adequate size can in theory perform any 

computable function. So, with a long context on input, the neural network may work as a mixture of 

many other techniques – n-grams, skipping n-grams, class based models and others. 

 

But there are two big problems – first was already mentioned, the high requirements for 

computational power needed by these algorithms. The second is the training  algorithm – although it is 

known that there exists an optimal solution if we use a hidden layer (with adequate size), the question 

is how to obtain this solution. This means finding global optimum in a large search space. 
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The basic algorithm used for training neural networks with hidden layers is a backpropagation 

algorithm. It is a gradient algorithm, so the obtained solution is only locally optimal. 

 

 

Figure 2: Architecture of the neural network language model used by [1]. hj denotes the context wj-

n+1, ..., wj-1. P is the size of one projection and H and N is the size of the hidden and output layer 

respectively 

 

At figure 2 is a typical architecture of a neural network for language modeling used by [1, 7]. In the 

input layer, words are coded as „one of N“ (input has the same size as vocabulary, at the word 

position is 1, elsewhere are 0). The history length is usually 4-8, so with a vocabulary size of 50, 000 

words the input layer size would be too big. 

 

To overcome this, words are projected onto much smaller space. In practice, each word in history is 

„translated“ to a vector of size 50 – 100. This step is very important: not only the number of synapses 

in the whole network dramatically decreases, but translating each word into a continuous space 

enables the network further exploit nearness of similar words. This compression loses some 
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information, and is somewhat similar to statistical classes in its behavior - two words that are used 

exactly the same will occupy the same position in the space. 

 

Size of the hidden layer is typically 500 – 1000 units. The output layer has the same size as 

vocabulary. For a given context, output layer can be seen as a probability distribution for next word 

(softmax function is used to ensure that the probability sums to 1). More about this architecture can 

be found in [7]. 
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3 Previous work in Czech language 

modeling 

Previous works concentrating on creation of language models for Czech (at least, those known to me) 

are trying to solve problems with high OOV rate (Out Of Vocabulary words, those not found in the 

training data). As was mentioned in chapter 1, Czech is an inflective language and one word may 

have a lot of different written forms. This increases the size of vocabulary and makes classic language 

modeling less practical (and in case of some languages even nearly impossible). 

 

In [4], inclusion of unigrams of rare words was investigated. This resulted in absolute 3% decrease in 

WER and increased the language model size only slightly. Another 2% improvement was achieved 

after lattice rescoring, again motivated by high OOV rate. Little difference between OOVs and IVs 

(In Vocabulary words) on the phoneme level was used to obtain this improvement. Third, lemmas 

were used as recognition units, but without much success. 

 

In [3], author is at first describing simple experiments like different smoothing techniques comparison 

and determination of language scaling factor (used in ASR to combine language model probabilities 

with acoustic probabilities). The same idea as in the previous work to use lemmas to reduce OOV rate 

was investigated. The results are that using lemma together with word based LMs is slightly 

beneficial (0.2% absolute improvement). Next, tags were used to obtain classes instead of lemmas 

(1.6% absolute improvement over baseline trigram) and morphemes (2% better than baseline). 

 

At Brno University of Technology, current language models for Czech were created by Ondřej 

Glembek and Ilya Oparin. For lecture transcription, the best results were achieved by interpolating 

data from several sources. Data sparsity problem was partially "solved" by using large amount of 

training data. Statistical class based models for Czech were created, but without much success, 

because with huge training data size, the beneficial effect of classes seems to be lesser. 

 

3.1 Available data 
Statistical language modeling techniques are very data hungry, since the more data we have, the better 

models we are able to train. A size of typical training data corpus may be easily few gigabytes. 

Despite this huge size, one cannot expect that a model trained on such an amount of text will be able 
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to handle all possible words that a person may use in spontaneous speech. For example, we cannot 

expect any corpus to contain all surnames, names of cities etc. 

At Brno University of Technology, there are several data sources usable for training language models . 

General corpus, consisting of various articles, provides about 4.6 GB of text data (829 mi llion words). 

However, for lecture recognition, spontaneous data are more desirable. For this purposes are available 

Pražský  mluvený  korpus (PMK, 686 000 words) and Brně nský  mluvný  korpus (BMK, 484 000 

words). Note that sizes of spoken corpora are very small, compared to general corpus - in this case, 

we must at least try to mine the most data from available sources that is possible. 

Probably the most valuable data are manually transcribed lectures, since they contain the target data - 

spontaneous speech with use of rare technical words. However, it is very time consuming to obtain 

such data and so the amount of text is very little (a few thousand words). 
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4 Goals of this work 

This work primarily focuses on improving accuracy in the task of automatic speech recognition of 

lectures in Czech language. First, I am going to create a language model that will be able to better 

model Czech language than the classic n-gram approach. For comparison, I will be using perplexity. 

Then I shall use this LM to rescore N-best lists generated with baseline back-off n-gram LM. 

 

The problems with ASR of lectures were already mentioned - mainly the use of words that were seen 

rarely or not at all in the training data. Since the speech is spontaneous and most of the available 

training data are just transcribed newspaper articles, there is a slight mismatch between training data 

and the speech we want to obtain. 

 

I am going to use methods non-specific for Czech language only, so that this work may be usable for 

other languages, and even for other areas than language modeling. I shall compare my results with 

those obtained from SRI LM toolkit, which is freely available [6]. 

 

Language modeling is quite a difficult area of research, since optimal language models demand 

existence of artificial intelligence. In the conclusion, I am going to point out main weaknesses of 

current approaches. 
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5 Syllable-based language models 

It is natural to notice first that problems with Czech language models using n-grams based on words 

are caused by inflection of words. My first idea to overcome this problem was to use syllable based 

language model instead of the word based one. It was supposed that this approach should reduce the 

number of OOVs, because many OOVs can be divided into known syllables. 

 

But since ASR generates lattices using classic n-grams with a little (65, 000 words) vocabulary, 

rescoring with syllable based LM would be probably of no use, since there are no OOVs in those 

lattices. So another point of using syllables is to improve probability estimates for rare words, which 

are mostly inflected form of words with more reliable probability estimates. Experimental results of 

syllable based models and their comparison to word based models is summarized in table 1. 

 

 Size Probability/1000 OOV rate (%) 
word based LM 10 -482 5.35 
word based LM 40 -489 2.41 
word based LM 80 -483 1.72 
word based LM 250 -470 0.72 
syllable based LM 10 -589 0.09 
syllable based LM 40 -553 0.04 
syllable based LM 80 -539 0.02 
syllable based LM 250 -516 0.01 
 

Table 1: Comparison of word based and syllable based n-gram language models. Size denotes 

training data size in megabytes (in case of syllable based LMs, it is the size of training data before 

word division is performed), probability denotes overall log probability of testing data obtained from 

SRI LM toolkit. Word based LMs are 3-gram, syllable based are 5-gram. Testing data size is 1MB. 

 

As was expected, syllable based LMs are much better at handling OOVs, resulting in much lesser 

OOV rate. Their overall performance is significantly worse, but since SRI LM toolkit assigns zero log 

probability to OOVs, probability alone can’t be used for comparison. Perplexity is not mentioned at 

all, since it uses count of words in testing data, which is different in both models (since syllable based 

model uses words divided into syllables). Vocabulary sizes are 385,481 for word LM and 21,776 for 

syllable LM when trained on 80MB. 
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It can be expected that for large training data sizes, the both models would be performing very 

similarly. There is no gain in using syllables, because true relations between syllables are longer 

range than normal n-gram approach is able to handle. So the syllable n-gram model collapses to just a 

word n-gram model and is not able to use more incoming information, as was expected at first. 

 

Syllables are used just to divide the words and are not real syllables from linguistic point of view. The 

algorithm for dividing words is based on simple rules. Example of such division: 

Original: ZIMNÍ OLYMPIJSKÉ HRY JAKO NEJLEPŠÍ V HISTORII  

Divided: ZI MNÍ x OLY MPI JSKÉ x HRY x JA KO x NE JLE PŠÍ x V x HI STO RI I x  

('x' is used as a special word, so that the transformation does not lose any data and is reversible) 

 

Assume now that we have a rare word "FOURIEROVY" and a more common word 

"FOURIEROVA". We know that bigram "FOURIEROVA TRANSFORMACE" is quite often; our 

task is to assign part of this high probability to "FOURIEROVY TRANSFORMACE", since the rare 

word written form is very similar to the more common word. If we divide words into syllables, the 

history will change from "FOURIEROVY" to "FOU RI E RO VY". We have good estimates for 

history "FOU RI E RO VA"; however, with language model with temporal back -off, we will end with 

the same results as when using words, since the "good" statistics of "FOURIEROVA" will not be 

used at all - "VY" differs from "VA". This can be partially solved by using skip n-grams, or better 

with class based language models or neural networks. 

 

Because plain n-gram statistics is unable to use more information provided by syllables, other 

modeling approaches were investigated. The most powerful seems to be the neural networks, because 

of their ability to perform any function. 
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6 Neural networks in language 

modeling 

Problems with neural networks in language modeling have been already mentioned in chapter 2. 

Their need for computational power limits their use, but since they offer significant improvement in 

WER over classic n-grams, it can be expected that in the future their use may arise. 

6.1 Architecture 
My first experiments with neural networks were therefore made on a small amount of data. I have 

used similar architecture as the one mentioned in chapter 2, but instead of using one neural network 

with two hidden layers, I have decided to use two networks, both with one hidden layer. The first 

neural network learns to project words from vocabulary into a continuous space while learning 

bigram language model. The second neural net is used to learn LM based on longer history, using the 

word projections computed by the first network. 

 

 
Figure 3: Neural network used for learning word projections into continuous space (bigram NN). 
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The first neural network has one hidden layer. Input and output layers have the same size as the 

vocabulary; hidden layer size is typically 10-50 neurons. Activation function in hidden layer is 

sigmoid, for output layer is used softmax, to ensure that sum of probabilities in the output layer will 

be 1. 

 

Since only one neuron in the input layer is active in one time, it is not needed to propagate signals to 

and from whole input layer. The complexity to calculate one probability estimation with this neural 

network is therefore 

 

VVHHO +++= *1  

(6.1) 

The memory requirements to store this neural network is 

HVO **2=  

(6.2) 

 

Using the word projections learned by the bigram neural network, it is possible to train n-gram neural 

network: 

 
Figure 4: Neural network used for learning n-gram language model, hist denotes the context. 
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The second network has input layer with size (N-1) * H, where N-1 is the length of context (for 

trigram model, N=3) and H is the size of projections learned by the first network (typically 10-50). 

Useful size of hidden layer (G) is 20-100 neurons. Output layer size is the same as the size of 

vocabulary. Activation functions are the same as in the first network (sigmoid, softmax). 

 

The computational complexity of one probability estimation using this neural network is 

 

VVGGGHNO +++−= ***)1(  

(6.3) 

The memory requirements are 

VGGHNO ***)1( +−=  

(6.4) 

 

6.2 Training algorithm 
Classic backpropagation algorithm is used for training of both networks. In the first network, input is 

coded as 1 of N - on the position of last word in history is 1, everywhere else in the input vector are 

zeros. The desired output vector uses the same coding – contains 1 on the position of the word that 

should have been predicted, elsewhere 0. Error vector is then computed as Error = Desired - Output. 

The second network uses word projections to obtain its input, training is the same as in the previous 

case. Starting learning rate values are 0.05 – 0.2. Both networks learn until no improvement on 

validation data set is obtained, then the learning rate is halved. After no significant improvement after 

learning rate division is obtained, the learning process is finished (it takes usually 10-30 epochs to 

train one network). 

 

[1] suggests using weight decay to prevent overfitting the training data by penalizing big weights in 

the network. This is done by adding some value to the error vector, based on a sum of weights of 

incoming synapses to some particular neuron, multiplied by some parameter β that has to be 

determined experimentally. 

 

For n-gram neural network, another modification of the training phase was investigated. By assuming 

temporal backoff (words in recent history are more important than words in distant history), vectors 

that represent positions of words in the continuous space in a distant history were multiplied by some 

constant lesser than 1 (which has to be again found experimentally). For example, for 6-gram neural 

network trained on little data, the best results were obtained by multiplying vectors of words in 
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history (wj-5, wj-4, w j-3, w j-2, w j-1) by constants (0.15, 0.3, 0.7, 0.9, 1.0). It was found that a 6-gram 

network trained without this modification provides worse results than a 3-gram network, while with 

the modification the results are getting better with a longer context. This is caused probably by two 

reasons: the network with long context possibly overfits the data, and may be confused by long 

history. So this is a mechanism to tell the network, which data are more important. It was also 

observed that modification of the constants during training may also be useful. 

 

6.3 Implementation 
The implementation itself consists of a few simple programs written in C language. On the input, 

clear text usable for building a language model is expected (one sentence per line, all characters 

uppercase, only letters + space + end of line symbols). Example of good training data: 

 
TŘEBA V TŘEBONI NEBO ČESKÉM KRUMLOVĚ TAM JE TO NÁDHERNÉ  
PAKLIŽE TAM MÁ ČLOVĚK ZÁZEMÍ A PRÁCI MŮŽE TO BÝT PŘÍJEMNÉ  
ALE V PRAZE JE NAŠTĚSTÍ SPOUSTA MÍST KTERÁ MILUJI  
JÁ MOC RÁDA CHODÍM A TAK JDU Z DIVADLA ČASTO PĚŠKY DOMŮ  
VEZMU TO NERUDOVKOU PŘES HRAD A POKAŽDÉ JSEM OKOUZLENÁ  
ÚPLNĚ PŘEKRÁSNÉ JE TO PRÁVĚ VEČER  
V ZIMĚ NEBO V LÉTĚ TO JE JEDNO   

 

To control training and prevent data overfitting, validation data with the same format are required (a 

few hundred words should be enough). The performance is then evaluated on testing data set, again 

with the same format of data. SRI LM toolkit is used for comparison of results. 

 

If we are interested in evaluation of perplexity improvements of neural networks over back-off 

n-gram models, typical sequence of required steps is this: 

 

1. Add end of sentence tag (</s>) to the data files before each end of line symbol. This is done 

 to ensure compatibility with SRI LM - each sentence is processed independently, assuming 

 no relations between ongoing sentences. In n-gram neural network, history is erased before 

 new sentence is processed, to ensure that the network has no more data than SRI LM uses. 

 

2. Create vocabulary using the training data. Vocabulary consists of all distinct words used in 

 the training data. Vocabulary is sorted, so that the most frequent words are first in the list. 
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3. Rewrite training, validation and testing data files, so that every word is rewritten as an index 

 to the vocabulary. For words from validation and testing data which are not found in the 

 vocabulary, special OOV word index is generated. 

 

4. Compute bigram neural network on the training data while using validation data to control the 

 training process. 

 

5. Use results from step 4 to establish a file containing positions of all words from vocabulary in 

 the continuous space, as it was learned by the bigram neural network. For example, if the first 

 network used a hidden layer with 30 neurons, each word may be rewritten as a vector in 30-

 dimensional space 

 

6. Compute n-gram neural network using training and validation data. Every word is translated 

 to the continuous space, as it was computed in the step 5. For details, see figure 3 and 4. 

 

7. Compute language model using SRI LM toolkit. This is usually done by executing  

 ngram-count -text train_text -lm language_model -order 4 
  -kndiscount -interpolate 
 It is possible to tune the resulting language model by modifying the order, or by using 

 different smoothing methods. However, 4-gram with modified KN discounting is usually the 

 best choice. 

 

8. Evaluate testing data by n-gram neural network and using LM learned by SRI LM toolkit.

 This is done by using command 

 ngram -lm language_model -ppl test_text -order 4 -debug 2 
  

9. Using results from step 8, compute perplexity of the test data using predictions from neural 

 network and SRI LM toolkit. The currently used interpolation method is simple linear 

 interpolation, with interpolation coefficient γ=0.5 (can be computed using validation data). 

 

Sample output file: 

 

Word       NN prob.        SRI prob.      Interpolated prob. 
   18   NN:   0.003689     SRI:   0.003684   MIX:   0.003686     LOGP:  -2.4334 
  176   NN:   0.004950     SRI:   0.005980   MIX:   0.005465     LOGP:  -4.6958 
    1   NN:   0.148345     SRI:   0.208526   MIX:   0.178436     LOGP:  -5.4443 
  766   NN:   0.000284     SRI:   0.000126   MIX:   0.000205     LOGP:  -9.1322 
  215   NN:   0.000315     SRI:   0.000315   MIX:   0.000315     LOGP: -12.6337 
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 7783   NN:   0.000005     SRI:   0.000005   MIX:   0.000005     LOGP: -17.9728 
  136   NN:   0.001380     SRI:   0.000574   MIX:   0.000977     LOGP: -20.9830 
   52   NN:   0.003587     SRI:   0.003176   MIX:   0.003381     LOGP: -23.4539 
    6   NN:   0.183653     SRI:   0.236825   MIX:   0.210239     LOGP: -24.1312 
. 
. 
. 
. 
   21   NN:   0.002435     SRI:   0.008481   MIX:   0.005458     LOGP: -13254.2197 
  248   NN:   0.001203     SRI:   0.000217   MIX:   0.000710     LOGP: -13257.3682 
   15   NN:   0.016652     SRI:   0.023843   MIX:   0.020247     LOGP: -13259.0615 
LOG PROB: -13259.061523 
Words: 5643 
PPL SRI: 284.372998 
PPL NET: 244.805139  
PPL MIX: 223.690541 
OOV rate: 4.19% 
 

Since the interpolation step combines two probability distributions, which both sum to 1, we can 

easily compute linear interpolation as PINTERPOLATED = PNN* γ + PSRI*(1- γ), γ >∈< 0,1 . 

 

Implementation note: the only important thing when making a language model is to keep in mind that 

the model must not use information from the future - building a prediction model that has access to 

the future is of course senseless;) Also, it is good to check that the probability distribution really sums 

to one. 
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7 Experiments and results 

In the first experiments with a small amount of data, I have used approximately 22 000 tokens for 

training, 6 600 for testing, vocabulary size was 700. Data consisted of Czech text with words divided 

into syllables, so that the vocabulary size was small enough to run similar tests with SNet 

implementation of neural networks [16] (SNet was unable to handle more than thousand words in 

vocabulary; the results were also slightly worse than from my implementation, mainly because weight 

decay and history attenuation extensions). SRI LM toolkit was used for comparison. For bigram 

statistics, results from SRI LM were 0.5% better in probability than from the best bigram neural 

network. The best single neural network (with long context) was 1% worse than the best result from 

SRI LM (trigram with modified Kneser-Ney discounting). Interpolation of four networks was better 

by 0.65% than the best result from SRI LM. After interpolation of the best results from neural 

networks and SRI LM, there was an improvement of 1.3% in probability over SRI LM baseline (4.5% 

improvement in perplexity). These results were obtained with weight decay, which has proven to be 

useful to improve training, at least in this case. History attenuation was also used. However, these 

results were quite poor and it was a question, whether the neural networks will be able to achieve 

better results with more data. 

 

For the other experiments, Czech lecture transcriptions and a part of PMK+BMK were used. 

 
 Vocabulary 

size 

Training data 

size (words) 

Test data size 

(words) 

SRI PPL NN PPL SRI+NN 

PPL 

Improvement 

Czech lecture 

transcriptions 
1 276 6 017 1 071 140.7 166.5 132.1 6.1% 

Part of PMK+BMK 

corpus 
5 385 31 618 6 538 183.3 190.3 168.0 8.3% 

 

Table 2: Perplexity on small amount of Czech word based data 

 

The results indicate better improvements in perplexity with more training data. It is because the 

neural network must see a certain word many times to place it in the right position in the 

multidimensional space. It was expected that with more training data, this effect may be strengthened. 

 

The computational complexity of the used architecture is pretty high, and is linearly depended on the 

size of training data and vocabulary. Although the experiments were done with artificially little data 

(no useful language model may be computed using 31 000 words), the training time was pretty high - 
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for training of part of the PMK+BMK corpus it was 1.5 hour on a computer with an AMD Opteron 

2,8GHz processor. 

 

It was observed during parameter tuning that neural network with lower perplexity may not lead to 

bigger perplexity reduction after interpolation with statistical n-grams. The important thing for 

perplexity reduction is neural network's ability to discover relations in the data undiscovered by 

statistical n-grams. For example, bigram neural network was usually better in perplexity than 4-gram 

network. However, after interpolation with statistical n-grams, bigram network provided almost no 

new information, while 4-gram network did. 

 

Another important thing was the use of weight decay and history attenuation - although these 

extensions have proven to be useful to improve the perplexity of the neural network itself, after 

interpolation, the behavior was again quite strange. Usually, both extensions helped to reduce the 

perplexity of the interpolated model by a few percent, at the cost of tuning the parameters. Because 

these extensions were found to hurt the training process (both speed and generalization of the model), 

if the parameters were not tuned, they were not used in the ongoing work. Their benefit seems to be 

too small. 

 

7.1 Vocabulary size reduction 
Although the training data size in the previous experiments was quite small, the training process took 

very long. Since the goal of this work was to train a language model based on all the spontaneous 

speech corpora (PMK+BMK), which consists of 1 170 000 words, it wouldn't be possible to train a 

neural network on this data in a reasonable time. So some improvements in implementation and 

architecture were made, to make the training process possible. 

 

It is clear that the overall performance depends mainly on two things: amount of training data and the 

vocabulary size. From these, it is possible to optimize the latter one. As was already mentioned, the 

neural network is able to increase the amount of learned data by assigning words to a right position in 

multidimensional space, so that words with similar use in an utterance lie near each other. However, it 

was also mentioned that with small amount of training data, the network is unable to find the right 

position, because there is simply not enough occurrences of a certain word to compute reliable 

statistics. We may exploit this fact to increase overall performance without hurting the training 

process. 
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There are two ways, both very similar, how to reduce vocabulary size by throwing out the least used 

words. We may assign all the rarely used words to one token (for example, <rare>), and compute 

statistics for these words by assuming uniform distribution. For example, if the predicting model 

assigns probability 0.5 to the <rare> token, with 100 rare words assigned to the <rare> token, the 

probability estimation for each rare word would be 0.005. Since the vocabulary consists mostly of 

rare words, we may easily reduce its size to a half or a third by throwing all the words, which 

occurred less then two or three times in the training data. This is quite the same solution as was used 

in [1]. 

 

The other way, used by [7], is to use so-called shortlists. The principle is quite the same: neural 

network is used to predict only s most frequent words. All words from the vocabulary are still 

considered as input of the neural network. 

 

 
(6.3) 

 
(6.4) 

 

where PN denotes probabilities in the shortlist computed by the neural network and PB probabilities 

obtained from standard 4-gram back-off LM. This means that the neural network redistributes the 

probability mass of words in the shortlist. However, this approach needs to evaluate probabilities of 

all the words in the shortlist using standard back-off model. 

 

In my implementation, I have used the first solution, merging all the rare words into one token. 

However, it's hard to predict behavior of such a solution; defining threshold of the least frequent 

words that will be present in the vocabulary does not tell us anything about the reduction of the 

vocabulary size. So the more natural solution seems to be using the shortlists; however, this approach 

as implemented by [7] would need better cooperation with back-off LM, since it is needed to compute 

probability mass assigned by the back-off model to all the words in the shortlist. So the used simple 

solution is to define the shortlist size and discard all the words past this limit in a vocabulary sorted 

by frequency of words. Thus, neural network learns only to predict words that are in the shortlist. 

Final probability for a word w in a given context h is then computed as 
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(6.3) 

 

The reason why [7] are using a more complicated solution is because they reduce the vocabulary size 

to 2 000 words, while in the experiments presented here, the shortlist is typically 15 000 - 20 000 

words. 

 

However, neural network trained this way will output zero probability estimation for words that are 

not present in the short list. Although we are primarily interested in perplexity of an interpolated 

model (so the zero probability from neural network is not a problem), it may be useful to report 

results obtained using only the neural network. For this case, it is possible to use previous solution 

(merging words into one <rare> token), or simply redistributing part of the probability over the rare 

words uniformly. 

  

Surprisingly, results obtained with well reduced vocabulary are sometimes even better than those 

computed with full vocabulary. The reason is probably significant reduction of parameters of the 

neural networks. Discarding all the words occurring less then three times in the training data is 

probably the most effective solution. Although it is possible to reduce the vocabulary further, the 

results are going worse with bigger reduction. 

 

 

7.2 Final training and evaluation using perplexity 
 

With the implementation of shortlists, it was possible to train a neural network based language model 

using all the data from Pražský  mluvený  korpus and Brně nský  mluvený  korpus (PMK+BMK). This 

corpus consists of 1 170 000 words. For evaluation purposes, it was divided into three parts - 1 155 

000 words for training data, 5 500 words for validation data and 9 500 words for testing. The baseline 

was a 4-gram back-off language model using modified Kneser-Ney smoothing, learned by SRI LM 

toolkit. 

 

Full vocabulary computed on the training data contained 68 500 words, from which only 20 300 were 

used more than two times. Starting value for learning rate was set to 0.1 in both networks. 

Experiments were made to see how much important is this value - how it affects the number of 

training epochs and overall perplexity results. 
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Learning rates 

 

Training epochs 

Perplexity of 

interpolated models 

0.3 0.2 11 10 222.6 

0.1 0.1 12 11 222.3 

0.06 0.03 14 12 223.9 

 

Table 3: Final perplexity (after interpolation with back-off LM) and required training epochs for 

bigram and n-gram neural network with different starting learning rates (with shortlist 15 000 words). 

 

It seems that the starting learning rate value is not much important and a well chosen value may only 

improve the number of required training epochs. 

 

Shortlist Validation Test Lecture 

10 000 248.7 273.8 534.9 

15 000 248.5 276.5 541.6 

20 000 247.1 276.2 540.9 

25 000 246.2 272.5 533.6 

 

Table 4: Perplexities of bigram neural network (after interpolation with KN 4-gram) with different 

size of the shortlist on various data. 

 

As it can be seen, determining the optimal shortlist length is not an easy task. The reason of this 

random performance lies in the neural network itself - the starting weights of the network are chosen 

randomly, so a network with the same parameters and architecture trained two times may provide 

significantly different results. The only way how to provide reliable results would be to train a 

network many times and selecting the one giving the best results, otherwise any tuning of parameters 

must be based more on experience than on some particular results. 
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 Validation data Test data Lecture transcription 

KN 4-gram 284.37 299.96 613.39 

Neural network 242.77 274.70 533.17 

Interpolation 221.34 250.30 486.68 

Improvement 22.2% 16.6% 20.7% 

 

Table 5: Perplexity of language models trained on PMK+BMK corpus, rare words are merged into 

one token 

 

Table 5 shows final results on validation and test data sets. These results were obtained with these 

parameters: all words occurring less then three times were merged to <rare> token (vocabulary 

reduction to 20 300 words), starting learning rates for both networks were 0.1, sizes of hidden layers 

were 30 neurons for the bigram network and 50 for the n-gram network. Length of the context for n-

gram network was chosen to be 5 words. Perplexity on lecture transcription is also reported, since the 

language model is aimed to model this type of data. Training time was 46 hours on a computer with 

an AMD Opteron 2,8GHz processor. 

 

The final results are comparable with [1], who has achieved a 20.1% perplexity reduction on 

validation data set and 21.5% reduction on test data on a Brown corpus (English text, 800 000 words 

for training, 200 000 validation and 181 000 testing, rare words occurring less then 3 times merged 

into one token, reducing vocabulary size to 16 400 words). 

 

 

 Validation data Test data Lecture transcription 

KN 4-gram 284.4 299.9 613.4 

Neural network 235.8 290.9 549.2 

Interpolation 217.6 256.8 497.6 

Improvement 23.5% 14.4% 18.9% 

 

Table 6: Perplexity of language models trained on PMK+BMK corpus, simple shortlist 

implementation with 20 000 of the most frequent words. 

 

As it can be seen, although the implementation with shortlists performs better on the validation data 

than implementation with merging words into one token, it is worse on the test data. 
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Figure 5: Log likelihood of validation data while learning bigram neural network language model. It 

can be easily seen that the training algorithm started to divide learning rate after epoch 8. 
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Figure 6: Learning process of the n-gram neural network. 
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7.3 Lattice rescoring 
Since this whole work is aimed on improving speech recognition of spontaneous Czech speech, 

experiments with lattices were also performed. Lattice is an oriented graph containing possible 

hypothesis for some utterance, for example: 

 
Figure 7: Sample lattice (the language and acoustic score values are not included) 

 

It is the ultimate goal of language modeling to assign the highest probability to the hypothesis that is 

the most meaningful in a given context. It is obvious that in the sample lattice, the path "the roses are 

red" should have higher probability than "the mouses are mad". 

 

Lattices are produced by some decoding system from the acoustic data using a simple back-off 

language model. They contain acoustic and language score for each edge. The acoustic score 

represents, how much likely a certain word was really said according to the acoustic models. The 

language score represents, how much likely the speaker intended to say it. 

 

The first experiments with lattice rescoring were done with a data from Speecon and TEMIC, which 

consists of 1 695 Czech non-spontaneous sentences. The original language score in those lattices was 

computed using trigram back-off language model trained on gigabytes of textual data. On the other 

hand, neural network LM was trained only on PMK+BMK corpus. This resulted in high OOV rate in 

lattices for the NN LM - 15% of words were not ever seen by the neural network LMs, and another 

8% were words that occurred in the training data less than three times. So, neural network language 

score was taken as an additional information, instead of replacing the old score.  
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First step to rescore lattices is to generate N-best lists from them. N-best list is a set of N best 

hypotheses in a lattice with their acoustic and language scores. Neural network LM was used to 

compute probability for each of this hypothesis; the OOV words were treated as rare words, thus they 

were given a small probability to avoid zero probability problem. Since N-best lists tend to contain 

redundant data, it was very useful to implement a cache based on a hash function, since during 

evaluation, neural network does not change and for the same history, the output will be always the 

same. Cache hit was about 92.44% (mainly because N-best list length aligning; the true cache hit can 

be around 70%). 

 

The final score for each hypothesis was then computed as 

 

LMNNLMSCORELM *)1(*_ γγ −+=  

PENALTYWICOUNTWORDSCORELMSCALELMSCOREACSCORE _*__*__ ++=
 

where NNLM denotes the probability of hypothesis computed by the neural network language model, 

LM denotes old language score, γ is an interpolation coefficient, LM_SCALE is a language score 

scaling factor, WORD_COUNT is the number of words in the hypothesis and WI_PENALTY is a 

word insertion penalty score. 

 

The parameters that significantly affect overall accuracy are LM_SCALE and WI_PENALTY. The 

first one is used to strengthen the influence of the language model score - since there is more 

variability in the acoustic data, they have much lesser likelihood and would otherwise dominate in the 

overall score. Word insertion penalty is then used to balance between word insertions and deletions 

mistakes. 

 

For experimental purposes, evaluation was done on all the available data. First, LM_SCALE and 

WI_PENALTY were tuned to obtain the best results with N-best lists (N=300), achieving baseline 

accuracy 81.65%. After incorporating score obtained from neural network and tuning the parameters 

(LM_SCALE, WI_PENALTY and γ), the accuracy went up to 82.01%. However, such an 

improvement is very modest, since it was obtained only on validation data. Oracle accuracy (best 

possible path through lattice with the highest accuracy, computed using the correct transcription) of 

lattices was 95.5%, so there was a plenty of space to improve. 

 

The reason why neural networks didn't help much is probably because the network was trained on 

spontaneous speech transcriptions, while the Speecon + TEMIC data contained mostly artificial 
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sentences (no speaker mistakes etc). Also, lattices contained mostly words unknown to the neural 

network. 

 

Another experiment, much closer to the PMK+BMK corpora, was a lecture data recognition - 

containing spontaneous speech with technical terms. A lecture consisted of 873 sentences, with 

original accuracy 54.24%. Since the experiments were made again on all the available data, first thing 

to do was to determine the best possible results with tuning of the LM_SCALE and WI_PENALTY 

parameters. 

 

 Accuracy (%) 

Original lattices 54.24 

Tuned parameters 56.82 

NN LM 55.80 

old LM + PMK + BMK 56.86 

old LM + NN LM 57.99 

 

Table 7: Accuracy on lecture data 

 

The experiments were made on N-best lists with N=100. After parameter tuning, obtained accuracy 

went up to 56.82%. This value was considered as a baseline. After substituting old language model 

score with the one obtained with neural network, accuracy went down to 55.80% - however, the 

original language model was trained on a huge data so it was expected that neural network alone will 

perform much worse (on the other hand, just by using 100-best list is a way of using the old language 

model). Another experiment was to determine the effect of PMK+BMK data - after computing a 

language model based on this corpora and an interpolation with old language model score, accuracy 

went up to 56.86%, which is almost no improvement over the baseline. Finally, after interpolating 

score from the neural network and the old language model, accuracy went up to 57.99%. The 

rescoring process took approximately only 0.5 hour, mainly because the use of cache. 
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8 Conclusion and future work 

The neural networks working in continuous space are able to significantly reduce perplexity of state 

of the art 4-gram back-off language model by exploiting similarity of certain words. Their use in any 

natural language processing task should be beneficial, be it machine translation, optical character 

recognition or speech processing. 

 

The main outcome of this work is an implementation of neural network based language model. The 

perplexity reduction over 20% is itself a very good result in comparison with other approaches for 

advanced language modeling (factored language models, class based models), at the cost of 

computational complexity needed for training the model. However, rescoring of N-best lists can be 

quite fast, working in much less than 1xRT, so the use in a practical system is possible. 

 

The neural network based language model should provide the best improvements if it would be 

trained on huge data - this is however impossible with the current implementation. There are ways 

how to speed up the whole implementation many times (70x or more using hierarchical neural 

network) - this should be investigated in the future work. 

 

There are also other possible uses of this work - since the neural network has some sense of nearness 

between words, it can be used for example to generate additional training data for the standard back-

off language model. Examples of near words can be found in Appendix A. 

 

One possible advantage of the neural network LM over standard back-off LM is the memory 

requirements - as can be seen in (6.2) and (6.4), memory requirements do not increase with the 

amount of training data, only with the size of vocabulary. So the resulting language model may be 

only a few megabytes in size, even if trained on huge data. 

 

Although the final perplexity reduction seems to be quite big, we are still very far from the optimal 

solution, artificial intelligence. But it can be said that the neural network based language model is 

more intelligent than the simple back-off LM. To improve things further, we may choose two paths. 

The first and easy one is to take some other successful language modeling techniques like cache 

language models (or better trigger LMs and topic LMs) and factored language models and build a 

complex model. This approach has one main advantage: it will surely work. The disadvantage is that 

it will not lead to AI, since it is an ad hoc solution. 
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The second way would be to propose completely new technique for language modeling. Main 

weaknesses of current language modeling lie in its simplicity, taking word units as the ultimate and 

often the only source of information. To identify sub-word information, new techniques, like factored 

language models, must be employed. On the other hand, to capture information over long contexts of 

words, techniques like cache models, trigger models or topic language models were developed. All 

these techniques aim in fact the same problem. 

 

The other main weakness, inability to follow more information sources in one time, is partially solved 

by class based LMs and NN LMs. However, these techniques are crude and there is a plenty of space 

for improvements. 

 

I believe that there exists a general solution able to capture information from a natural signal. 

However, finding this solution is a pure research with uncertain results, which may not be directly 

applicable in practical systems. 
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Appendix A 
Example of the nearest words in multidimensional space learned automatically by the bigram neural 

network: 

 

The nearest words to 'STO' and their distance in the continuous space: 

0.000000 STO 

0.485603 PADESÁT 

0.634387 SET 

0.715822 TISÍCE 

0.548773 ŠEDESÁT 

0.331836 STA 

0.740655 PATNÁCT 

0.644968 DEVADESÁT 

0.265452 STĚ 

0.568353 DALŠÍCH 

0.744552 SEDUMDESÁT 

0.722997 PRVNÍCH 

0.733424 NULA 

0.463603 VOSUMDESÁT 

0.735826 SEDUMNÁCT 

0.697874 ŠTYŘ ICET 

0.785682 OSUMNÁCT 

 

The nearest words to 'ONI': 

0.166965 VONI 

0.642922 DĚCKA 

0.738023 UČ ITELÉ 

 

The nearest words to 'PRÁCE': 

0.338162 PRÁCI 

0.444156 ZAMĚSTNÁNÍ 

0.453964 DĚTÍ 

 

The nearest words to 'NIMA': 

0.254859 NÍ 
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0.408227 NĚ 

0.366906 NICH 

0.277304 NĚJ 

0.447615 NIM 

0.344229 JU 

0.314955 VÁS 

0.383597 NĚHO 

0.428735 NĚM 

0.480196 KLIDNĚ 

0.264886 NÍM 

0.468224 NÁHODOU 

0.325690 NI 

0.461070 DÁVNO 

0.304047 TEBOU 

0.464210 NĚMU 

 

The nearest words to 'MLADÝ ': 

1.382202 NOVÝ  

1.348571 RÁDI 

1.292689 STARŠÍ 

0.833468 STARÝ  

1.217794 OSTATNÍ 

0.977726 CIZÍ 

1.372153 TYTO 

0.744946 SLUŠNÝ  

1.352882 PŘ ÍJEMNÝ  

1.372255 PLNÝ  

1.169210 HODNÝ  

1.000128 MLADÉ 


