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BACHELOR’S THESIS
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Abstrakt
Tato práce se v prvńı části zabývá problematikou vývoje modulu pro linuxové jádro, speci-
ficky moduly implementuj́ıćı filtry pro RedirFS. V následuj́ıćı části zvažuje r̊uzné druhy
kompresńıch algoritmů a implementačńı detaily CryptoAPI rozhrańı linuxového jádra. Dále
popisuje návrh a fungováńı CompFLT modulu pro linuxové jádro implementuj́ıćı kompresńı
filtr nad systémem RedirFS. Srovnávaćı testy provedené při použit́ı CompFLT modulu jsou
prezentovány v záverečné části.
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Abstract
This thesis in its first part examines the problems of developing linux kernel modules,
specifically modules implementig RedirFS filters. In the next part it considers different types
of copression algorithms and the implementation specifics on the CryptoAPI framework in
the linux kernel. Finally it describes the design and operation of the CompFLT module that
implements a RedirFS compression filter. Benchmarks done using the CompFLT module
are presented in the last section.
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Chapter 1

Prologue

The aim and main goal of this bachelor thesis is the design and implementation of a linux
kernel module, implementing a compression filter for the RedirFS [9] (Redirecting FileSys-
tem) framework developed by Frantǐsek Hrbata.

The first part is an introduction to linux kernel module development. It covers the
problematic of compilation, specific features of development in the kernel and debugging.
The following section continues by explaining the way the RedirFS API is used to implement
a filter.

Chapter four considers different types of compression algorithms and specific compres-
sion algorithms and programs that use them. This is complemented by next chapter which
explains implementation specifics of the linux kernel CryptoAPI framework.

The main part is the description of the design and operation of the CompFLT kernel
module which implements a compression filter using CryptoAPI as its compression backend.
Benchmarks done using this filter are shown in chapter seven.
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Chapter 2

Linux kernel module development

2.1 Basics

Linux kernel modules are pieces of kernel code which are loaded and unloaded on demand
(provided they are not used at that moment). They can provide new functionality without
the need to rebuild the kernel or even restart the computer.

Every module needs to contain two basic functions. The first one init_modules is
called when the module is loaded into the kernel and its purpose is to initialize everything
the module needs to initialize. The second one cleanup_module is called just before the
module is unloaded from the kernel and should provide a safe way to unload the module.
Their prototypes can be seen in figure 2.1.

#include <linux/kernel.h>
#include <linux/modules.h>

int __init init_module(void);
void __exit cleanup_module(void);

Figure 2.1: init modules and cleanup modules function prototypes

The __init macro causes the function an its data to be unloaded from memory after it is
finished if the code was compiled built-in and not as a module. Analogously the __exit
macro causes the cleanup_module function to be ommited when the code is compiled into
the kernel.

As of version 2.4 of linux it is possible to give arbitrary names to these two functions
and register them using the module_init and module_exit macros (figure 2.2). This is
mandatory from version 2.6.

module_init(my_init_function);
module_exit(my_exit_function);

Figure 2.2: Module init and cleanup functions registration

In order to identify and describe a module the MODULE_AUTHOR, MODULE_DESCRIPTION
and MODULE_LICENSE macros are provided. Their use can be seen in figure 2.1. The value
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set in the MODULE_LICENSE macro is also used to determine if the kernel is tainted, that is
if it contains any closed-source code.

MODULE_LICENSE(‘‘Dual MIT/GPL’’);
MODULE_AUTHOR(‘‘Jan Podrouzek <xpodro01@stud.fit.vutbr.cz>’’);
MODULE_DESCRIPTION(‘‘Compression filter for the RedirFS Framework’’);

There are a few things to keep in mind while developing any kernel code. Code inside
the kernel has access only to symbols inside the kernel itself, or to those exported by other
modules. In order to make a symbol available outside a module, it has to be explicitly ex-
ported using the EXPORT_SYMBOL macro. Another important thing to keep in mind is that
the kernel is heavily concurrent environment even on simgle procesorr computers (preemp-
tion). This leads to the need to usa atomic data types, spin locks, semaphores (specially
mutexes) and other mechanism to prevent inconsistencies or race conditions.

2.2 Compilation

The easiest way to compile kernel modules outside the main kernel tree is to use the Kbuild
build mechanism. It requires a configured kernel with the full source code. Figure 2.3 shows
a sample Makefile and Kbuild files that build a module named compflt.ko composed of
3 source files.

[Makefile:]
all:

make -C /lib/modules/‘uname -r‘/build M=‘PWD‘

[Kbuild:]
obj-m := compflt.o
compflt-y := part1.o part2.o part3.o

Figure 2.3: sample Makefile and Kbuild files

2.3 Debugging

The best, simplest and recommended debugging method is with debugugging output at
key points in the code. This is achieved using the printk[10] function which has the same
functionality as the printf functions known from the standard C library[16]. In addition
printk accepts an integer value defining the severity of the message. This value ranges
from KERN_DEBUG to KERN_EMERG. If no level is specified it defaults to
DEFAULT_MESSAGE_LOGLEVEL defined in kernel/printk.c.

If this simple approach of debugging output does not work an interactive debugger such
as gdb[8] can be used. An in-kernel debugger can be also used, such as kdb [12] (which is
included in the official linux kernel tree) or kgdb [13].

To prevent data and hardware loss kernel code should be developed and tested either on
a different machine connected using a serial console, or in a virtual machine. Some freely
available open source virtual machines are qemu [1] or User Mode Linux (uml). Uml is
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a linux virtual machine implemented as aseparate architecture in the kernel itself , and is
a part of the main linux tree as of version 2.6.9. Both qemu and uml use a regular file for
their root filesystem.
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Chapter 3

RedirFS filter development

3.1 Introduction

RedirFS [9, 17] replaces native Virtual filesystem switch (VFS) operations of files, inodes
and dentries. Specific filters that register with RedirFS provide functions running before
and/or after the original operations. The functions can in effect extend, modify or com-
pletely replace the behaviour of the original operations.

Individual filters can be attached to a directory, subtree or a single file, presenting away
to filter only specific parts of the filesystem. In case of multiple filters attached to the same
object a priority (set in each filter) determines the order in which they are called. Filters
can dynamically change registered filters and attached fielsystem subtrees.

3.2 Writing a filter

A RedirFS filter module needs to include the redirfs/redirfs.h header file. Different fil-
ters are identified by a handler of type struct rfs filter, which is registered using the
rfs register filter function as can be seen in figure 3.1.

rfs_filter compflt;
struct rfs_filter_info flt_info = {‘‘compflt’’, 999, 0};

compflt = rfs_register_filter(&compflt, &flt_info);

Figure 3.1: registering a filter with redirfs

struct rfs_filter_info defines the name of the filter, its priority and flags. The priority
field serves as a way to determine calling order between multiple filters (higher priority
filter being called first). The flags field is not used at present.

The second step is to tell RedirFS which operations will the filter intercept and which
functions implement the pre and post calls. This is done by first filling an array of
struct rfs_op_info, each containing a constant defining which operation is to be fil-
tered and what type of object it applies to (e.g. open operation on a regular file) and
function pointers to the pre and post calls (if only one is desired then the second can be set
to NULL). This array is then passed to the rfs_set_operations function. The array has
to be terminated properly with an item containing RFS_OP_END as its operation identifier.
A sample operation registration can be seen in figure 3.2
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static struct rfs_op_info ops_info[] = {
{RFS_REG_FOP_OPEN, f_pre_open, NULL},
{RFS_REG_FOP_RELEASE, NULL, f_post_release},
{RFS_REG_FOP_READ, f_pre_read, NULL},
{RFS_REG_FOP_WRITE, f_pre_write, NULL},
{RFS_OP_END, NULL, NULL}

};
rfs_set_operations(compflt, ops_info);

Figure 3.2: registering operations with redirfs

The next step is to attach the filter to a directory or a subtree. Every path is defined in
a single struct rfs_path_info. The first field specifies the path and the second defines
the type of inclusion (only the directory itself, the whole subtree, etc.). Every path is then
registered by passing it to the redirfs_include_path function as seen in figure 3.3

struct rfs_path_info pinfo = {‘‘/tmp’’, RFS_PATH_INCLUDE|RFS_PATH_SUBTREE};
rfs_set_path(compflt, &pinfo);

Figure 3.3: registering a path with redirfs

Filters are by default inactive and have to be activated with the redirfs_activate_filter
function.
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Chapter 4

Compression

4.1 Introduction

Data compression is a process of encoding input data into another data in fewer bits (most
of the times). There are two main types of data compression algorithms:

• lossless compression

• lossy compression

4.2 Lossy compression algorithms

Lossy compression is a method of compressing that drops some of the original data. Lossy
compression methods achieve better compression ratios then loosless ones, which is balanced
by the fact that the exact original data can’t be retrieved from it.

Lossy compression is mostly used to compress multimedia files such as video and audio,
where a certain amount of dropped data does not affect the resulting reproduction too
much. This is mostly allowed by the limited properties of the human sensory system.

In the cases of our compression module the lossy compression method is not a viable
option because the data being compressed is arbitrary in nature.

4.3 Lossless compression algorithms

Lossless compression employ the fact that almost all data contains some level of redundancy.
All the lossless compression algorithms are reversable without any loss of data (hence the
name).

There are many types of algorithms that allow to use the redundancy within any data to
make the resulting data smaller. Most of the times these compression algorithms are used
in conjuction to achieve the best compression results. The next few sections will describe
some of the main lossles compression algorithms available.

4.3.1 Run-length encoding

Run-length encoding [5] is an algorithm that encodes consecutions of same data by savig
the count of repetitions and one occurence of the data. This algorithm is very effective on
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data that consists of long lines of same data. It is also used as part of other compression
algorithms.

Some variations of run-length encoding are used in image data compression [15] and
althou this algorithm is loosless is nature there are variants of lossy run-length algorithms
used in image compression.

4.3.2 Dictionary coders

Dictionary compression algorithms substitute parts of the data by references to data con-
tained in a dictionary. There are two main types of dictionaries differing in the way they
construct the dictionary.

• static

• dynamic

Static dictionaries contain preset data entries, that do not change in the process of
compression. Dynamic dictionaties mostly start with a static set of entries, which change
in the process of compression depending on the content of the compressed data.
Dictionary compression algorithms include:

• LZ77

• LZ78

• LZW

4.3.3 Block-sorting compression

Block-sorting [2] compression algorithms transform the input data in away that the result
contains patterns which are easily compressed by other compression algorithms such as run-
length enconding or Huffman coding. An example of block-sorting is the Burrows-Wheeler
transform. The important thing is that the transform has to be reverseable in order to be
incorporated in compression of data.

4.3.4 Entropy encoding

Entropy encoding substitues pieces of data with codes of variable length. Assigning the
shortest codes to symbols which are contained the most in the input data. These types of
algorithms needs some statistical data on the input data in order to decide which symbols
get substitued to specific codes. Commonly used entropy encoding algorithms are:

• Huffman coding

• Adaptive Huffman coding

• Arithmetic coding
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4.4 Lossless compression algorithm implementations

4.4.1 deflate

The Deflate [4, 7] compression algorithm is the combination of Huffman coding and LZ77
compression. There are many implementations of this algorithm including pkzip and zlib.
This compression algorithm is also used in the widely used gzip compression utility.

4.4.2 bzip2

Bzip2 is a highly efficient and relatively fast compression algorithm. It can achieve com-
pression ratios close to the best available compression algorithms while being faster both
in compressing and decompressing the data.

Bzip2 comprises of a combination of many compression algorithms, mainly the Burrows-
Wheeler block sorting algorithm, and Huffman coding. The best known implementation is
the libbzip2 library [20] and the bzip2 compression utility.

4.4.3 lzo

The lzo compression algorithm [11] is a form of block compression algorithm derived from
the Lempel-Ziv algorithm designed with speed as the main concern, favouring descompres-
sion speed over compression speed.

4.4.4 lzma

Lempel-Ziv-Markov algorithm [14] is a compression algorithm developed for the 7z [18]
achieving a very high compression ratio.
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Chapter 5

CryptoAPI

5.1 Introduction

CryptoAPI is a framework in the linux kernel used for data transformation. It is designed
in three layers

• algorithm API - provides an interface for registering new algorightms

• transform ops - implementation of the transform algorithms

• transform API - user(developer) interface

There are three types of transforms in CryptoAPI:

• cipher

• digest

• compress

Our focus is on the compress transform, but most of the logic is common to all the transform
types. At current the main linux kernel tree contains only one compression transform
implementing the deflate algorithm using the linux zlib library.

5.2 Usage

An example on how to use this API can be seen in figure 5.1. First a handle is registered
using the allocation function specific to the type of the requested transform. In the case
of a compression transform this is crypto_alloc_comp. The first parameter defines the
requested algorithm and the second and third are used for miscelanous flags. After the
handle gets registered, it can be used in transform functions such as crypto_comp_compress
(every transform type has its own specific trasform functions). After the handle is no longer
needed, it has to be freed by the crypto_free_tfm functions.

There are also some utility functions available, such as crypto_has_alg (and its trans-
form specific counterparts) which is used to verify the availability of a specific transform
algorithm.
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struct crypto_tfm *tfm;
tfm = crypto_alloc_comp(‘‘rle’’, 0, 0);
if (IS_ERR(tfm))

fail();
crypto_comp_compress(tfm, in, slen, out, &dlen);
...
crypto_comp_decompress(tfm, in, slen, out, &dlen);
crypto_free_tfm(tfm);

Figure 5.1: Cryptoapi compression transform usage example

5.3 Expanding CryptoAPI

The essential component in registering a new transform with CryptoAPI is the crypto alg
structure:

struct crypto_alg {
struct list_head cra_list;
u32 cra_flags;
unsigned int cra_blocksize;
unsigned int cra_ctxsize;
unsigned int cra_alignmask;
int cra_priority;
char cra_name[CRYPTO_MAX_ALG_NAME];
char cra_driver_name[CRYPTO_MAX_ALG_NAME];

int (*cra_init)(struct crypto_tfm *tfm);
void (*cra_exit)(struct crypto_tfm *tfm);

union {
struct cipher_alg cipher;
struct digest_alg digest;
struct compress_alg compress;

} cra_u;

struct module *cra_module;
};

all

A linked list containing all currently registered transforms.

cra name

Unique ideintifier of the transform within cryptoapi. Used when requesting the trans-
form (as can be seen in the previous section).

cra flags

Specifies the type of the transform, possible values are CRYPTO_ALG_TYPE_CRYPTO,
CRYPTO_ALG_TYPE_CIPHER and CRYPTO_ALG_TYPE_DIGEST.
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cra init

Function called when the transform is initialized.

cra exit

Cleanup function called when the transform is being deinitialized.

cra u

Union of structures containing information specific to the type of the transform. In
the case of a compression transform it contains pointers to functions used to compress
and decompress data, as can be seen in figure 5.2

struct compress_alg {
int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,

unsigned int slen, u8 *dst, unsigned int *dlen);
int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,

unsigned int slen, u8 *dst, unsigned int *dlen);
};

Figure 5.2: compression transform specific functions

The registration and unregistration of a transform is done usign the crypto_register_alg
and crypto_unregister_alg functions. Their function prototypes are shown in figure 5.3.

int crypto_register_alg(struct crypto_alg *alg);
int crypto_unregister_alg(struct crypto_alg *alg);

Figure 5.3: cryptoapi (un)register function prototypes

5.4 Implemented cryptoapi modules

5.4.1 null

In order to test the compflt module independently of any compression algorithm a null
cryptoapi module was written. This module copies its input data to the output without
changing it. It is implemented in a single file crypto/null.c.

5.4.2 run-length encryption

This is a cryptoapi module implementing a simple run-length encryption algorithm as de-
scribed in [3]. The main reason to implement this algorithm in particular was to complement
the existing deflate compression algorithm wich achieves good compression ratios but is rel-
atively slow. A sample of uncompressed and rle-compressed data can be seen in figure 5.4.
The whole module is implemented in a single file crypto/rle.c.
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input:
0x61 0x61 0x61 0x61 0x61 0x62 0x62 0x62
0x63 0x64 0x61 0x61 0x61 0x61 0x61 0x62
compressed:
0x61 0x61 0x03 0x62 0x62 0x01 0x63 0x64
0x61 0x61 0x03 0x62 0x62 0x01 0x63 0x64

Figure 5.4: sample rle data
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Chapter 6

Compflt

6.1 Introduction

Compflt is the kernel module that implements filters for file and inode operations needed
to compress/uncompress data within a file on-the-fly. It is independent of any specific
compression algorithm by using the CryptoAPI framework to do the actual compression
work.

6.2 Data structures

6.2.1 File header

The file header written to the compressed file contains three items. First a magic number
[19], which is a reasonably long unique sequence of bytes written at the start of the file
in order to recognise t as one compressed by Compflt. The sequence of bytes chosen is
a 4-byte representation of the authors birth date.

0x06 0x10 0x19 0x82

Its uniqueness was verified by checking the magic file (to be found at
/usr/share/file/magic on most linux installations) in a recent version of a Linux distri-
bution. A corresponding entry in a magic file would be:

0 long 0x06101982 Compflt compressed file

Second is the compression method identifier. This is used to detemine which compression
algorith was used to compress the file. It is 1-byte long and corresponds to the method field
in struct fheader. Last is the block size used to compressed data blocks within the file.
The layout of the file header can be seen in figure 6.1.

0 4 5 9

magic method blk size

Figure 6.1: File header layout
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struct cflt_file {
struct list_head all;
struct list_head blks;
struct inode *inode;
unsigned int method;
unsigned int blksize;
unsigned int size_u;
atomic_t compressed;
atomic_t dirty;
atomic_t cnt;
wait_queue_head_t ref_w;
spinlock_t lock;

};

Figure 6.2: struct fheader

As a representation of the file header and file-specific attributes in the code struct
file is used. Its definition can be seen in figure 6.2.
The fields have the following meaning:

all

This field links all cflt_file structures together in one list. This list starts at
cflt_file_list defined in file.c

blks

This field is the head for a list of all blocks contained in this file. They are linked
using the file member of struct cflt_block.

inode

Holds a pointer to the inode to which this cflt_file corresponds.

method

This field holds the number of the compression method used in the file. It is used as
an index into the comp methods array defined in compression.c:

char *comp_methods[]={‘‘deflate’’, ‘‘lzf’’, ‘‘bzip2’’, ‘‘rle’’, NULL};

For example a file compressed with the deflate compression method would have the
field set to 0. This is also one of the two fields within struct cflt_file that is
written to the compressed file.

blksize

Defines the block size of blocks in the file. Its value boundaries are defined by the
CFLT_BLKSIZE_MIN and CFLT_BLKSIZE_MAX constants. This field is written to the file.

size u

Represents the total uncompressed size of the file. At this moment used only to set
appropriate offset values when the lseek syscall is used with the whence values set to
SEEK_END.
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compressed

A flag identifying the file as being compressed using Compflt.

dirty

A flag that is set whenever the state of any field from struct cflt_file which is
written to the file has changed. It is unset when the state is written to the file.

cnt

Reference count.

ref w

Wait queue used when the file is getting deinitialized, to ensure there are no references
to it.

lock

A spin lock used to protect non-atomic members of the structure.

In order to minimize read/write operation upon the compressed file a file header cache
is in place. It is implemented using the kernel slab allocator. The name of the cache is
defined in the CACHE NAME constant defined in file.c.

6.2.2 Block

The block has a header that contains a mapping between the position and size of the
compressed data block saved in the compressed file and the position and size of the same
data block in its uncompressed form. The mapping is necessary for both read and write
operations and is used to identify blocks that are to be part of the current operation.

An early version of Compflt contained all the block headers in a reserved space at the
beggining of the file just behind the file header. This demanded a reserved space for these
headers which represented a constat size overhead. For example to be able to support a file
size of 2GB using 4 kB data blocks, the total overhead would be around 6 MB. Even if
a block size as high as 16 kB would be used, the resulting overhead would be approximately
1.5MB. The advantage of this approach was the ability to read all the block headers from
a contiguous area within the compressed file. This method was later modified so that every
block header was saved in the compressed file just before the data as can be seen in figure 6.3

0 1 5 7 9

type off u size c size u

Figure 6.3: Block header layout

This approach removed the constant size overhead of the previous approach, although
it degraded performance slightly because the headers are read from the full length of the
file. This disadvantage is partially compensated by the use of a block cache. The structure
representing a block is struct block and can be seen in figure 6.4.
The fields have the following meaning:
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struct cflt_block {
struct list_head file;

unsigned int type;
unsigned int off_u;
unsigned int off_c;
unsigned int size_u;
unsigned int size_c;
struct cflt_file *par;
atomic_t dirty;
char *data_u;
char *data_c;

};

Figure 6.4: struct block

file

This field links all blocks that belong to a single file in a list. The list starts at the
blks member of the corresponding struct file.

type

Identifies the blocks type. This is to support multiple block header types and also free
blocks (blocks not currently holding any data). At the moment the possible values
for this field are CFLT BLK NORM and CFLT BLK FREE.

off u

The offset from the start of the uncompressed file to the start of the uncompressed
data in this block. This field is written to the compressed file in 4 bytes.

off c

The offset from the start of the compressed file to the beginning of this block in it.
This field is not written to the file, because it is implied by the blocks position at the
time when it is read from the file.

size u

The size of the uncompressed data in this block. This field is written to the compressed
file in 2 bytes, limiting the block size to 65535 bytes.

size c

The size of the compressed data in this block. This field is written to the compressed
file in 2 bytes, which limits the largest block size to be 65535 bytes.

par

A pointer to the cflt file in which this file is contained.

dirty

A flag set when any member of this structure that is written to file gets modified.
These are off u, size u and size c. It is unset when the block is updated in the
file. This is implemented in block write header.
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data u

This is a temporary pointer to the uncompressed data from the block. It is present
purely for convinience.

data c

This is a temporary pointer to the compressed data from the block. It is present
purely for convinience.

The cache of blocks (only the header data is actually saved in the structure) is imple-
mented using the kernel slab allocator. The name of the cache is defined in the CACHE NAME
constant defined in block.c.

6.3 Operations

6.3.1 File read

We register a precall function for the file read operation. The function is named f pre read.
In the first place it tries to get a file header corresponding to the file upon which the read
operation was called. This is done in the cflt file get function which either returns a file
header from the cache, or it initializes a new file header and tries to populate it by reading
the compressed file. If the read fails or the file is not recognised as a compressed one, the
read pre call function returns operation to the original read operation.

If the file header was succesfully retrieved, the requested data is saved to the user buffer
through a call to cflt_read function. This function iterates over the list of blocks in the
file. If a block contains some part of the requested data, the compressed data is read from
the file, uncompressed and the appropriate part of the uncompressed data is copied over to
the user buffer.

The last task is to set the return value to the size of the data saved in the user buffer,
and increment the current position within the file by the same amount.

6.3.2 File write

We register a precall function for the file write operation. The function is named
f pre write. Identically to f pre read the first thing done is the retrieval of a file header.
After that an additional check is done to determine if the O APPEND flag is set for the file.
If it is set the position argument is set to the uncompressed file size (this value is stored in
the size_u field of struct file).

After that the requested write operation is performed by calling the cflt_write func-
tion. It first iterates over all existing blocks. If a block is matched (meaning it contains
some part of the file that we want to write to), it is read from the compressed file and de-
compressed. Next the appropriate part of the input buffer gets written to the corresponding
part of the uncompressed data block. The block is then recompressed and written back to
the file. If there is some data left to be written after the iteration is finished, the function
creates new data blocks, compresses them and writes them to the file until there is no data
left in the input buffer.

Same as in f pre read the last action is to update the file position and set the return
value to the count of bytes written.
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6.3.3 File open

We register a precall function for the file open operation. The function is named f pre open.
The sole purpose of this function at this moment is to detect the O TRUNC file flag. If this
flag is set the function invalidates all blocks within the specified file, updates its size to zero
as well as set the compressed flag to zero.

6.3.4 File release

A post call function is registered for the file release operation. The function is named
f post release. This function is in charge of writing all file headers marked as dirty to
the compressed file. This in effect also writes all block headers marked as dirty.

6.3.5 File llseek

The precall for the llseek file operation is used to update the i_size value of the cor-
responding vfs inode in order for the lseek system call to work correctly on compressed
files.

6.4 Block placement logic

Every new and changed block is written to the file in a place determined by the
cflt_file_place_new_block and cflt_file_place_old_block functions respectively.

In the case of a new block compflt first tries to find an existing free block which has
enough space to accomodate it. If such a block is found the new one is written in its place.
If there is space left over (the new block is smaller then the existing free block), a new free
block is placed in the free space. If there are no suitable free blocks available the new block
is placed at the end of the file.

Old blocks have a more complex placement algorithm. If the size of the modified block
is unchanged, or if it is the last block in the file, it is left in its old place. In the case the
block has shrinked (smaller compressed size) and we cannot fit a new free block in the freed
space the block is moved (explained in the next paragraph) to a different place. If the block
has grown (bigger compressed size) and the next block is a free one the block expands over
the space currently occupied by the free block. If that is not possible the block has to be
moved.

If the modified block has to be moved compflt first checks if the previous block is a free
one. If so, the modified block is shifted into the free space (reducing the size of the free
block). If that is not possible the algorithm tries to find a suitable free block anywhere
within the file. If that fails too the block is moved to the end of the file.

6.5 Command line parameters

The Compflt module accepts two optional parameters on load. First is in cmethod which
defines the compression method that will be used. If the requested method is unknown
or the parameter is not set, the default one (deflate) is used. The second parameter is
in blksize and it permits the user to set the initial block size.

21



6.6 User-space interaction

6.6.1 compflt ctl

Compflt posseses the ability to query and change the compression method and block size
at any time using two control files, /proc/fs/compflt/method and /proc/fs/compflt/blksize.
Both files when read return their current value.

If the method file is written to, compflt compares the string to all known compression
methods and if it finds a match it verifies that that compression method is available by
calling crypto_alg_available (if the algorithm isn’t found within the ones currently reg-
istered this function tries to load a kernel module of the same name eliminating the need
to load the compression modules beforehand).

If the blksize file is written to, the passed values is compared to the boundaries defined
in compflt/compflt.h. If the value is within the acceptable limits the block size is changed.

In order to make querying and setting of these values easier a shell script control utility
copflt/util/compflt ctl is provided along with a manual page. A sample usage session can
be seen in figure 6.5

defiant-qemu:~# ./compflt_ctl
method=lzf
bzize=4096
defiant-qemu:~# ./compflt_ctl bsize 2048
compflt: block size set to 2048 bytes
bsize=2048
defiant-qemu:~# ./compflt_ctl method lzf
compflt: compression method set to ’lzf’
method=lzf

Figure 6.5: compflt ctl script usage

6.6.2 compflt stat

Compflt also provides a way to query per-inode compression statistics by reading the
/proc/fs/compflt/stat file. A sample output can be seen in figure 6.6. There is also an
accompanying shell script compflt/util/compflt stat that presents the data in a more human-
readable way. An example of its output can be seen in figure 6.7

defiant-qemu:~# cat /proc/fs/compflt/stat
ino alg blksize comp ohead decomp
1120431 deflate 4096 4559 45 15501
1120440 deflate 4096 2229 27 5782
1120441 deflate 4096 2334 27 6522
1120450 deflate 4096 349 18 635
1120453 lzf 4096 7425 45 15501

Figure 6.6: Example statistics output
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defiant-qemu:~# ./compflt_stat
==== per-inode stats ===
<1120431> deflate 15501 -> 4604 (70.2987%)
<1120440> deflate 5782 -> 2256 (60.9824%)
<1120441> deflate 6522 -> 2361 (63.7994%)
<1120450> deflate 635 -> 367 (42.2047%)
<1120453> lzf 15501 -> 7470 (51.8096%)

==== per-alg stats ===
<deflate> 28440 -> 9588 (66.2869%)
<lzf> 15501 -> 7470 (51.8096%)

avg ratio achieved: 61.1798%

Figure 6.7: Example compflt stat output
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Chapter 7

Benchmarks

7.1 Tests and test data

As a suitable and tested data collection the Canterbury corpus and Large corpus from the
Canterbury corpus [6] benchmark suite were chosen. It consists of an assortment of files
such as a English text, a html source, c source, excel spreadsheet, executable file and more.

The tests were done using an automated bash script which copies the two corpuses to
a directory to which the compflt filter is attached and then it copies them to a directory
without the filter attached. Both operations are timed using the standard built-in time
function. The total size of the compressed corpuses is also calculated. The script iterates
over different compression algorithms and different block size settings. Every test is repeated
3 times and their values averaged.

The machine used to run these tests consists of a Pentium M 1500 MHz processor,
768 MB of RAM memory and is running the 2.6.21 versison of the Linux kernel.

7.2 Results

The tables 7.1 and 7.2 show the averaged results for the canterbury and large corpuses
respectively. The cp method in these tables represent results done while the compflt filter
was not loaded.

Some graphs that might be more exemplificative can be found in appendix A.

7.3 Conclusion

The deflate compression algorithm achieves the best compression ratios on all data types,
but on the other hand has the worst compression times. Its use could be in situations
where the data is not modified often and the resulting size is the main concern (for example
backup data).

The lzf algorithm achieves a good and balanced combination of compression ratio and
speed, making it the best choice for situations where the data is modified more often.

The rle compression module althou being relatively fast, has very bad compression
abilities on ’average’ data, making it unsuitable for most environments. The only possible
use could be on specific data containing repetitions of characters, such as spaces.

Considering the block size used, the best setting in average is 4096 bytes. This can be
explained by the setting of the disk device block size, and also by the usage of this size by
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method block size [B] ratio [%] write [s] read [s]
cp n/a 100.00 0.0210 0.0097

2048 30.56 0.4187 0.1240
deflate 4096 28.64 0.4213 0.1157

8192 27.47 0.6233 0.1337
2048 54.98 0.0650 0.0347

lzf 4096 53.79 0.0567 0.0320
8192 54.98 0.0863 0.0470
2048 90.56 0.0327 0.0453

rle 4096 90.32 0.0280 0.0477
8192 90.20 0.0407 0.0480
2048 100.45 0.0327 0.0277

null 4096 100.23 0.0280 0.0250
8192 100.12 0.0407 0.0370

Table 7.1: Canterbury corpus test results

method block size [B] ratio [%] write [s] read [s]
cp n/a 100.00 0.0350 0.0343

2048 41.24 2.0833 0.7030
deflate 4096 38.71 2.1967 0.5820

8192 37.25 3.2970 0.6863
2048 81.83 0.5200 0.2558

lzf 4096 80.18 0.3957 0.2053
8192 79.06 0.5410 0.2700
2048 106.17 0.3547 0.3093

rle 4096 105.95 0.2347 0.3010
8192 105.84 0.3127 0.3537
2048 100.44 0.2890 0.2077

null 4096 100.22 0.1673 0.1490
8192 100.11 0.1943 0.1785

Table 7.2: Large corpus test results

user-space utilities such as cp for the buffers used in read / write operatoins. If a smaller
block size is chosen more than one block is created during one write operation, if a larger
block size is used the filter has to decompressed the block before writing the subsequent
data to it. In both cases operation speed suffers from these effects, and althou a larger
block size yields better compression ratios the benefit is small compared to the degradation
of performance.

The overall best combination on the tested machine is the use of the lzf compression
module and 4096 bytes long blocks.
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Chapter 8

Conclusion

The main goal of this work was achieved and a working implementation of a RedirFS
compression filter was developed. It has the ability to compress and decompress data on-
the-fly, supports random access (both reading and writing) to the compressed file without
the need to decompress it as a whole. An independency from any specific compression
algorithm was achieved by the use of CryptoAPI as its compressoin backend. It also proved
the usefulness of the RedirFS framework itself. Future development should make it an
even better solution for data compression and an alternative to current methods of saving
compressed data on computer storage devices. Some of the possible future extensions and
additions are mentioned in the next section.

8.1 Future additions

• mmap support

Support for the mmap operation, which maps a files content to memory, making it
easy to manipulate with standard memory functions. This is also needed to support
execution of executable files from within a compressed directory.

• directory compression utility

An utility that compresses files that were created before a directory was included in
the filters path settings. This utility could also automatically add the desired path
to the compression filters paths.

• defragmentation utility

Because the compressed files can suffer from fragmentation, a utility that defragments
these files could be usefull for situations where heavy file modifications occured.

• RedirFS configuration callback

Support for the currently developed feature of the redirfs framework which lets filters
register a special configuration callback that can pass various settings from user-space
to filters in an unified way.

• various optimizations

Some optimizations could be made mainly to the write operations. Such cases as the
overwriting of entire block (no need to decompress them), or limited use of a block
cache in sequential write operations.
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• more compression modules

Further development of new compression modules with different compression algo-
rithms suitable for various specific environments. A bzip2 compression module is
currently under development.

• configfs support

As the procfs file system, currently used to change compression parameters, was never
ment to provide such functions and should only contain process specific information
these functions should be migrated to a more suitable file system such as configfs.
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Appendix A

Graphs
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