
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

PORTING OF REDIRFS ON OTHER OS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. MIROSLAV ZELENÝ
AUTHOR

BRNO 2007

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

PORTACE REDIRFS NA JINÉ OS
PORTING OF REDIRFS ON OTHER OS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. MIROSLAV ZELENÝ
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ KAŠPÁREK
SUPERVISOR

BRNO 2007

Abstrakt
Tato diplomová práce popisuje proces portace RedirFS na operačńı systém FreeBSD.
Zdrojovým operačńım systémem je Linux. Tyto systémy jsou popsány z pohledu VFS,
č́ımž jsou určeny rozd́ıly a potřebné modifikace. Poté následuje implementace.

Kĺıčová slova
RedirFS, Linux, FreeBSD, operačńı systém, jádro, modul, soubor, adresář, symbolický
odkaz, souborový systém, VFS, superblock, inode, dentry, vnode, cache, operace.

Abstract
This thesis describes process of RedirFS portation to FreeBSD operating system. Source
operating system is Linux. Those two operating systems are described from VFS view to
determine differences and needed modifications. Then follows implementation of port.

Keywords
RedirFS, Linux, FreeBSD, operating system, kernel, module, file, directory, symbolic
link, file system, VFS, superblock, inode, dentry, vnode, cache, operation.

Citace
Miroslav Zelený: Portace RedirFS na jiné OS, diplomová práce, Brno, FIT VUT v Brně,
2007

Portace RedirFS na jiné OS

Prohlášeńı
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedeńım pana
Ing. Tomáše Kašpárka.

................................
Bc. Miroslav Zelený

22. května 2007

c© Miroslav Zelený, 2007.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě
informačńıch technologíı. Práce je chráněna zákonem a jej́ı užit́ı bez uděleńı oprávněńı
autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Prologue 2

2 Linux 3
2.1 Introduce to Linux . 3
2.2 Kernel and device drivers . 3
2.3 Special files . 4
2.4 Kernel modules . 4
2.5 File access . 5
2.6 Structure of file system . 5
2.7 Linux VFS . 6

2.7.1 Superblock . 6
2.7.2 Inode . 7
2.7.3 Dentry . 8
2.7.4 File . 9
2.7.5 File lookup . 9

3 FreeBSD 11
3.1 About FreeBSD . 11
3.2 Kernel . 11
3.3 Kernel modules . 11
3.4 VFS . 12

3.4.1 Vnode object . 12
3.4.2 File object . 14
3.4.3 File lookup . 15

4 RedirFS 18
4.1 About project . 18
4.2 Goals of RedirFS . 18
4.3 Implementation . 19
4.4 Download and installation . 19
4.5 RedirFS filter . 20

5 Portation 23
5.1 RedirFS source code overview . 23

5.1.1 Private objects . 24
5.2 Linked lists . 24

1

5.2.1 Linux kernel solution . 25
5.2.2 FreeBSD kernel solution . 25

5.3 Locking . 27
5.3.1 Linux mechanism . 27
5.3.2 FreeBSD mechanism . 29

5.4 Integer types and atomic operations . 29
5.5 Errors . 33
5.6 Dynamic memory allocation . 34

5.6.1 Linux kernel functions . 34
5.6.2 FreeBSD alternatives . 36

5.7 File name lookup . 38
5.8 Replacement of VFS object operations . 40

5.8.1 RedirFS solution on Linux review . 40
5.8.2 FreeBSD possibilities . 40

5.9 Testing . 42
5.9.1 RedirFS kernel module . 42
5.9.2 Testing filter . 42

6 Epilogue 45

2

Chapter 1

Prologue

Security is one of requirements of every system. Good data access design is basic, but not
enough part of security. Every implementation contains some bugs and is based on some
aspects. One of them is human operation. In this case, system break is not impossible.
Viruses, worms and others dangerous programs can be in system activated. Then file
access control is solid, because antivirus program can detect stored or loaded dangerous
code in real time.

Chapter 2 describes Linux operating system and its structure. Contains description of
Linux driver implementation and VFS operations and objects.

Chapter 3 contains informations about important parts of FreeBSD operating system
and its kernel, alike chapter 2 about Linux. Used version of FreeBSD is 6.0 in this
thesis.

Chapter 4 presents RedirFS framework, its goals and implementation. Further is de-
scribed RedirFS filter interface.

Chapter 5 summarize differences between source and destination operating systems and
needed modifications. Also describes solutions of those problems in other projects.
Main part of this chapter describes implementation on destination platform.

3

Chapter 2

Linux

2.1 Introduce to Linux

Linux is an open source operating system kernel created by Finland’s student Linus Tor-
valds, who was interested in Minix. In 1991 made this small unix-like system Linus inspired
to develop his own system for Intel 80386 microprocessor. After time was Linux ported to
AMD x86-64, ARM, Alpha, CRIS, DEC/VAX, H8/300, Hitachi SuperH, HP PA-RISC,
IBM S/390, Intel IA-64, MIPS, Motorola 68000, PowerPC, SPARC, UltraSPARC and
v850 platforms. Very stable Linux version 1.0 was released in year 1994. From version
2.0 are supported multiprocessor computer systems. In the course of time grow Linux in
worldwide project. Although Linux is unix-like operating system, it is writen from begin.
Linux implements Unix API, defined by POSIX. This fact makes Linux in some degree
compatible with other unix-like systems and brings relief in application porting.

Linux was achieved because it is noncommercial project and is distributed for free
under GNU General Public Licence version 2.0. Important step of Linux was association
with project GNU (GNU’s Not UNIX), which goal was complete noncommercial unix-like
operating system with sort of applications. In GNU project was developed microkernel
HURD. But its development was complicated and with not very good results. By porting
GNU applications to Linux arise new platform called GNU/Linux. When arrived project
XFree86 - free implementation of XWindow and grafic user interfaces was GNU/Linux
usage expanded to desktop. Because kernel and applications was distributed separately,
build of complete system was difficult. Then appeared linux distributions, which contained
installation program, build kernel and applications. Most popular are Debian, RedHat,
Suse, Slackware and in last time Mandriva. Last stable tree of Linux kernel is 2.6 and is
used in most of distributions.

2.2 Kernel and device drivers

This section describes device drivers problem solution in Linux. Kernels of lots of unix-like
operating systems are monolithic. This means, that kernel is one static binary file. Concept
of Linux kernel allows some sections separate out and store in independent modules. These
modules is possible dynamically in runtime to load from file system to operating memory
and to remove from memory. A Linux system make a difference between two process run

4

modes. One of them is called user-mode and the other kernel-mode. These modes are
implemented in hardware. In processors Intel 80386 and compatible is Ring 0 used as
user-mode and Ring 3 is used as kernel-mode. Processor modes Ring 1 and Ring 2 are
not used. Process in user-mode has not direct access to hardware. That is why are device
drivers implemented in kernel, which run in kernel-mode with direct access to hardware.

Devices drivers is possible to build as Linux kernel modules. But it is not possible in
all way. Because modules are stored on file system, all drivers needed to system start and
to mount file system containing modules, have to be statically compiled in linux kernel.
Only then are modules accessible for loading to memory. Namely disk interface driver and
file system driver. Devices can be character or block oriented. Character-oriented devices
are accessible sequentially, byte after byte. Drivers of these devices contain no buffer. For
example RS232 interface, sound devices or software device null. Block-oriented devices
have different data access. Reading and writing proceed by transfers multiple of block
sizes. In some operating systems is possible transfer of other size than multiple of block
size. In this case are used buffers for access. Linux belong to these systems. Typical
block-oriented device is hard disk.

2.3 Special files

To access device by application in user-space, operating system has to provide some in-
terface. Unix-like systems including Linux solve this problem by special files stored on file
system. These special files allow work with devices as with regular files and apply to them
standard system calls. Exception in Linux and some others operating systems is network
device.

Special files suppling devices have major and minor number. Major number determines
type of device and identifies corresponding device driver. In Linux kernel tree 2.6 is this
number 12-bit long. There is 4096 types of devices. Minor number determines concrete
device of relevant type. Length of this number is 20 bits. In older Linux kernel trees
were major and minor number 8-bit long. If special file from user-space is accessed, then
kernel use corresponding device driver for serve system call. So special file name plays
no role. Special file is possible to create on disk by command mknod. First argument is
name of file. Second argument indicate type of device: b for block-oriented devices, c for
character-oriented devices. Next arguments are major and minor numbers.

2.4 Kernel modules

Style of kernel module writing and compilation is in Linux kernel tree 2.6 other than in
older trees of Linux kernel. For developing Linux kernel module are typically used header
files linux/module.h, linux/config.h and linux/init.h. These files we can found in kernel
source in directory include. Because we write driver for kernel-space, we cann’t use libraries
designed for user-space. General functions are declared in header file linux/kernel.h. For
example often used function printk, equivalent to printf from user-space.

Modul contains init routine called by loading module and cleaning routine called by
removing module from operating memory. Initialization function looks like this:

static int init name of init routine (void)

5

and provide linking other functions to kernel. Return value represent result of initializa-
tion. Non-zero value means failure. In this case is kernel module removed from memory.
Cleaning function:

static void exit name of cleanup routine (void)

returns used sources. These two basic functions are given by macros

module init (name of init routine) and module exit (name of cleanup routine).

In Makefile dedicated for module compiling is definition of module name required (obj-m
:= modul.o). We can run compilation by command

make -C $(KDIR) SUBDIRS=$(PWD) modules

where variable KDIR substitutes kernel source path and variable PWD substitutes actual
directory of module source. This command cause settings of paths needed for compilation
and realize compilation. Created module has ”.ko” extension. We can load this module
to operating memory by insmod command. If module is present in reserved directory for
kernel modules, then it is possible to use modprobe command. We can remove loaded
module from operating memory by the help of rmmod command and show list of loaded
modules via lsmod command. Linux kernel modules can we found in tree structure of
directories beginning with directory named as linux kernel version (e.g. ”2.6.18”) and
stored in /lib/modules directory.

2.5 File access

Unix-like systems have all files stored in one tree of directories beginning with root direc-
tory /. Access to discs and other file systems is assured by mounting. Desired disc can
be connected to some existing directory of file system. All mounted discs create just one
directory tree. For disc mounting is used command mount and for unmounting command
umount. In system have not to be mounted only discs and other media, but also virtual
file systems. For example procfs mounted to directory /proc and used for system infor-
mation serve. Type of file system is determined by mounting. On the type depends used
file system driver. For real file systems is possible to use auto detection of file system via
identification numbers stored in table of disc allocation and in head of file system.

2.6 Structure of file system

Every disc file system has some defined data organization. Beside alone data is needed to
store informations about files and directory structure. Unix-like systems maintain to use
hard links, which allows access to one file with more names and from more directories.
Its why are so-called i-node used, which are identified by number. I-node is structure
containing all properties about file except name. Among others contains informations
about data storing and number of files using this i-node. Directories are represented as
files, but have directory flag set. Data of directory are names of files and numbers of
i-nodes. Symbolic links, pipes and special files are marked by correspondent flag.

6

2.7 Linux VFS

First version of Linux allowed only one file system. The one was file system of Minix.
In present time allows Linux to use lots of file system types. For example ext2, ext3, xfs
or vfat. Because every file system has different structure, properties, types of items and
attributes of items, is abstraction layer in kernel needed. For this purpose is VFS (Virtual
File Switch) destined. This layer is found between system call and file system driver.

Picture 2.1: The Linux VFS.

There are defined objects and operations, which form VFS model. Main objects are:

• superblock containing informations about mounted file system.

• inode representing file.

• dentry as an access point to directories.

• file representing opened file in context of user process.

2.7.1 Superblock

This structure is created by file system driver by mounting. If the file system is not
virtual, then informations are reading from disc. Structure super block is defined in file
include/linux/fs.h much like some next objects. Important items are:

• struct super operations s op contains functions for work eith this object.

• unsigned long s flags - file system mount flags.

• unsigned long s magic - identification number of file system.

• struct dentry *s root is entry for root directory of mounted file system.

Structure super operations contains pointers to lowest level functions of VFS. There
are for example functions for reading and writing superblock and for i-nodes handling.

7

2.7.2 Inode

This inode object contains all information needed for file and directory serving. It is
representation of i-node from file system in memory, in case of unix file system. For
example file system vfat do not contains i-nodes. In this case coherency between files and
i-nodes is secured by file system driver. Main items of inode structure are:

• unsigned long i ino is identification number of i-node.

• atomic t i count - number of references.

• kdev t i rdev - number of device.

• struct inode operations *i op is structure of pointers to i-node serve functions.

• struct file operations *i fop like previous, but for files.

• struct super block *i sb - reference to superblock of file system owning this i-
node.

Then are in structure all file properties stored in i-node on disc. The most interesting
is structure inode operations. Nonzero values of included functions mean error:

• int (*create) (struct inode *, struct dentry *, int, struct nameidata *) -
for creation new file given by inode argument in directory. It has to alloc i-node, set
its items and connect to dentry.

• struct dentry * (*lookup) (struct inode *, struct dentry *, struct namei-
data *) - serve to i-node search given by name contained in dentry.

• int (*link) (struct dentry *, struct inode *, struct dentry *) - goal of this
function is to create hard link. It is called by systel call link.

• int (*unlink) (struct inode *, struct dentry *) - called by systel call unlink.

• int (*symlink) (struct inode *, struct dentry *, const char *) - create
symbolic link by system call symlink.

• int (*mkdir) (struct inode *, struct dentry *, int) - like as function create for
directory.

• int (*rmdir) (struct inode *, struct dentry *) - sence of this function is to
remove directory (given by dentry) from directory given by inode.

• int (*mknod) (struct inode *, struct dentry *, int, dev t) - this function cre-
ates item in directory. It is called for pipes and special files of devices. Function can
be called from another function and so used for creation of regular file or directory.
Type of file and relevant major number are given by arguments.

Here is list of other functions: rename, readlink, follow link, truncate, permission,
setattr, getattr, setxattr, getxattr, listxattr, removexattr.

8

2.7.3 Dentry

Object dentry is second of main VFS objects. Its definition can we find in file in-
clude/linux/dcache.h of kernel source and is used as access point for searching or walking
path. Dentry can be associated with one i-node. But i-node can by associated with more
dentry. This fact reflects logic of hard links, which are in VFS realized. Heavy items of
dentry are:

• atomic t d count count of dentry references in user space.

• struct inode *d inode is i-node associated with this object.

• struct dentry operations d op - dentry object operations.

• struct dentry *d parent points to parent directory dentry object.

• struct qstr d name name of directory item.

Dentry can be in tree states:

• used - object has associated some i-node (d inode is not NULL) and item d count
is positive number.

• unused - object has associated some i-node (d inode is not NULL), but item d count
is zero.

• negative - object has not associated any i-node (d inode is NULL).

VFS uses dentry cache. It preserves repeating of directory walking, what is time
difficult. Informations about dentry caching are next items of this object. For directory
walking is used function lookup of object inode. Function serving system calls executes
lookup function of directory i-node. It will find i-node of this item and if i-node exists,
then associate them with dentry.

There are functions for serve dentry operations. Usually these functions are not in
drivers implemented and standard kernel functions are used. Defined structure den-
try operations has items:

• int (*d revalidate)(struct dentry *, struct nameidata *) - verification of
validity.

• int (*d hash) (struct dentry *, struct qstr *) - creates hash value for dentry.

• int (*d compare) (struct dentry *, struct qstr *, struct qstr *) - compares
names of files. It is used for example in vfat file system driver. There are file names
case insensitive.

• int (*d delete)(struct dentry *) - called when d count decreases to zero.

• void (*d release)(struct dentry *) - called by VFS by taking dentry out of
memory.

• void (*d iput)(struct dentry *, struct inode *) - called when dentry loses
i-node association.

9

2.7.4 File

This VFS object is data representation of file for user processes. Object is created in
memory when file opening by system call open is succeed. System call close deletes this
object. Object file points to object dentry and then points to inode. Heavy properties of
file object are:

• struct dentry *f dentry - reference to object dentry.

• struct file operations *f op - table of file operations. By file object creation VFS
sets its items to values given by item i fop of associated i-node.

• atomic t f count means count of references of this object.

• unsigned int f flags - flags of file opening.

• mode t f mode - mode of file opening.

By requests for file operations are calling functions given by structure file operations.
File operations for files and device drivers makes unified interface. Negative return value
means error. Heaviest of them are continues:

• loff t (*llseek) (struct file *, loff t, int) - changes position of cursor in file. The
new position is returned.

• ssize t (*read) (struct file *, char user *, size t, loff t *) - read data from
device (from application view) and returns count of readed characters.

• ssize t (*write) (struct file *, const char user *, size t, loff t *) - write
data to device.

• int (*readdir) (struct file *, void *, filldir t) - is designed for search of directory
context and is used by file systems.

• int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long) - for
device control by applications. Device drivers use it often.

• int (*open) (struct inode *, struct file *) - called by file opening.

• int (*release) (struct inode *, struct file *) - called by file closing.

2.7.5 File lookup

File name lookup in Linux kernel is implemented in function

int fastcall path lookup(const char *name, unsigned int flags, struct nameidata *nd).

First argument name is pathname of wanted file system item. Options given by flags can
be followings:

• LOOKUP FOLLOW - follow links

• LOOKUP DIRECTORY - directory required

10

• LOOKUP CONTINUE - ending slashes will be accepted even for nonexistent
files

• LOOKUP PARENT - path has more parts

• LOOKUP NOALT - dcache lock will be locked after path lookup call

• LOOKUP REVAL - revalidate dentry cache

Next options tell, what will be with wanted file done:

• LOOKUP OPEN

• LOOKUP CREATE

• LOOKUP ACCESS

• LOOKUP CHDIR

The last parameter nd of function path lookup is a pointer to nameidata structure. Into
this structure is stored lookup result:

struct nameidata {
struct dentry *dentry;
struct vfsmount *mnt;
struct qstr last;
unsigned int flags;
int last type;
unsigned depth;
char *saved names[MAX NESTED LINKS + 1];
union {

struct open intent open;
} intent;

};

Item dentry is a pointer to dentry object corresponding to wanted file pathname.
Second interesting item mnt points to structure representing mount point, where is wanted
path placed in. Array saved names contains parsed pathname.

Return value of path lookup is zero if succeed. In other case this function returns any
error value.

For nameidata structure release is in Linux defined void path release(struct nameidata
*nd) function.

11

Chapter 3

FreeBSD

3.1 About FreeBSD

This operating system is derived from BSD developed in Berkeley at the University of
California. BSD is one of two main trees of unix systems. FreeBSD supports alpha,
amd64, i386, ia64, pc98 and sparc64 platforms. Is distributed as a complete operating
system containing kernel with drivers and user applications. It is an open source project
started in 1993 and released under the terms of BSD and next licences. FreeBSD has a
hard position in server solutions.

3.2 Kernel

The FreeBSD kernel is the part of operating system running in protected mode of processor
and makes layer between hardware and user-space processes, similarly to Linux kernel.
Basic parts of kernel provide processes, file system, communications and system startup.
Source code of kernel is in /usr/src/sys directory. FreeBSD kernel supports kernel modules.

3.3 Kernel modules

FreeBSD contains Dynamic Kernel Linker (KLD). It allows to load and remove kernel
modules in run-time. It makes development of device drivers easy without constantly
rebooting. Commands for KLD operations are following:

• kldstat - prints all loaded modules

• kldload - loads kernel module to system

• kldunload - remove kernel module from system

By contrast to Linux, FreeBSD kernel modules are more integrated to kernel design.
Makefile for kernel module is simple:

SRCS=example.c
KMOD=example

.include <bsd.kmod.mk>

12

Variable SRCS is a list of source files needed for compilation. Files are in the list separated
by space. Other variable KMOD is a name of destination file.

Modules with different functions has different implementations. Function is given
by used macro for module specification. Possible macros are DECLARE MODULE,
DEV MODULE, DRIVER MODULE and SYSCALL MODULE declared in sys/module.h
header file. DECLARE MODULE macro is general and and is used by others. Full dec-
laration is DECLARE MODULE(name, moduledata t data, sub, order) and its argument
are:

• name - name of module used in SYSINIT macro

• data - pointer to the moduledata t structure; contains the official name of the
module and pointer to the event callback function

• sub - possible values are given by system sub id enumeration

• order - initialisation order of subsytem KLD; valid values are in sysinit elem order
enumeration

Event callback function is used for events given by parameter:

• MOD LOAD - module is loading to system

• MOD UNLOAD - module is removing from system

• MOD SHUTDOWN - kernel panic

3.4 VFS

Basic principle of FreeBSD VFS is similar to Linux VFS. One of differences is in buffering.
FreeBSD can work with blocks of different sizes and file system driver is more compli-
cated. In FreeBSD terminology is inode used only for disk inode. Structure in memory
representing this object is called vnode.

3.4.1 Vnode object

This object contains informations independent on concrete file system. Main items are:

• enum vtype v type - type of vnode specify regular file, directory, etc.

• struct vop vector *v op - structure of vnode operations

• int v usecount - count of vnode using

• struct vnode *v dd - pointer to .. vnode

Next items have functions:

• pointer to private data of file system

• vnode locking

13

• mutex protecting flags and counters

• name cache

• connecting to next structures of VFS

Enumeration type vtype can specify these file types:

• VNON - no type specified

• VREG - regular file

• VDIR - directory

• VBLK - block device special file

• VCHR - character device special file

• VLNK - symbolic link

• VSOCK - named socked

• VFIFO - fifo

• VBAD - bad type

Structure vop vector contains pointers to functions serving different operations of vn-
ode and pointer to default vop vector called vop default used when given operation func-
tion is not set. Interesting functions are following:

• vop open - called by file opening

• vop close - called by file closing

• vop create - called when the file is creating

• vop getattr - get file attributes

• vop link - serve inode referencing

• vop lookup - filename lookup used for directory

• vop mkdir - directory is creating

• vop mknod - called when other file types are creating

• vop read - reading data from file

• vop readdir - reading directory content

• vop remove - called when file is removing

• vop rename - serve renaming of file

• vop rmdir - called when directory is removing

14

• vop getattr - set file attributes

• vop symlink - create a symbolic link

• vop write - writing to file

Each of these functions takes a special structure as parameter. It contains specific argu-
ments for given operation.

Name of file is not stored in structure vnode. It is placed to vnode cache in conjunction
with given vnode. Detailed description of vnode cache is not destination of this chapter
and will be described later.

Structure vnode is defined in sys/vnode.h header file. This file requires automatically
produced vnode if.h file to be included. To ensure vnode if.h automatically generation is
needed to add name of this file to SRCS variable defined in Makefile. In conjunction with
vnode if.h will be other needed files generated. Their names are vnode if typedef.h and
vnode if newproto.h.

3.4.2 File object

File object of FreeBSD is very conformable to Linux file object. It is defined as struct file
containing these important items:

• LIST ENTRY(file) f list - linking of active file list

• short f type - type of file descriptor

• void *f data - specific data of given descriptor type

• u int f flag - file open flags

• struct mtx *f mtxp - lock

• struct fileops *f ops - file operations vector

• int f count - reference counter

• struct vnode *f vnode - corresponding vnode (or NULL)

• off t f offset - reader/writer position

Options stored in f flag can be followings:

• O RDONLY - read only

• O WRONLY - write only

• O RDWR - read and write

• O ACCMODE - mask for O WRONLY and O RDWR flags

• O SHLOCK - shared file lock

• O EXLOCK - exclusive file lock

15

• O ASYNC - send signal pgrp when data ready

• O FSYNC - synchronous writing

• O SYNC - equal to O FSYNC

• O NOFOLLOW - do not follow symbolic links

• O CREAT - create file if not exists

• O TRUNC - set length to zero

• O EXCL - do not open existing file

• O NOCTTY - no control terminal

• O DIRECT - bypass buffer cache if possible

Vector of file operations defined by struct fileops type contains pointers to functions
serving given operations:

• fo rdwr t *fo read

• fo rdwr t *fo write

• fo ioctl t *fo ioctl

• fo poll t *fo poll

• fo kqfilter t *fo kqfilter

• fo stat t *fo stat

• fo close t *fo close

Structure struct fileops contains item fo flags of type fo flags t moreover. This item can
carry these flags:

• DFLAG PASSABLE - can be used by sockets

• DFLAG SEEKABLE - seekable access

3.4.3 File lookup

User-space processes differentiate files by pathname, but kernel works with vnode object.
So transformation from pathname to vnode has to be implemented. Kernel walk vn-
odes from root directory or current directory by the help of lookup functions. Result of
translation is vnode of requested file.

For file name lookup is structure nameidata defined. There have to be set some input
items and called lookup function storing result into output items of structure nameidata.
Declared nameidata variable has to be initialized via function

void NDINIT(struct nameidata *ndp, u long op, u long flags, enum uio seg segflg, const
char *namep, struct thread *td).

16

Argument ndp is a pointer to nameidata structure, what has to be initialized. Posibble op-
erations given by option op are LOOKUP, CREATE, DELETE and RENAME. Operation
flags flags can be followings:

• LOCKLEAF - lock found vnode

• LOCKPARENT - parent vnode will be locked

• WANTPARENT - parent vnode will be unlocked

• NOCACHE - search only in cache

• FOLLOW - resolve symbolic links

• LOCKSHARED - shared lock leaf

• NOFOLLOW - do not resolve symbolic links

Parameter segflg tells about placement of path name in memory given by namep. Possible
options are UIO USERSPACE and UIO SYSSPACE. First means, that memory is located
in user space, the other option means kernel space. Last parameter td is a pointer to
thread. In context of this thread will be locked structures during file lookup. Usually is
used current thread represented by kernel macro curthread.

File name lookup is implemented in function int namei(struct nameidata *ndp). The
one argument is pointer to initialized nameidata structure. In accordance to items given
via nameidata initialisation, namei function tries to find vnode object pertaining to path.
Result is stored to following items of nameidata:

• struct vnode *ni vp - vnode of found file system item

• struct vnode *ni dvp - vnode of intermediate directory

Return value of namei function is 0 if succeed, otherwise any of defined FreeBSD kernel
errors.

More complex is function int lookup(struct nameidata *ndp). In compare to namei can
do CREATE, DELETE and RENAME operations given during nameidata initialization.
Function lookup can resolve symbolic links. Before call can be set items of nameidata:

• struct vnode *ni startdir - start directory vnode of search

• struct vnode *ni rootdir - root directory vnode

• struct vnode *ni topdir - logical top directory vnode

• struct componentname ni cnd - contains informations passed through the VOP
interface

Unused nameidata structure would be released via function void NDFREE(struct
nameidata *ndp, const u int flags) before its memory release, because during NDINIT
call is this structure chained to kernel structure. Interesting options given by flags can be
followings:

17

• NDF NO STARTDIR RELE - start directory vnode will not be released

• NDF NO VP RELE - releases found vnode

• NDF NO VP PUT - applies put function to vnode counter of use

• NDF NO VP UNLOCK - unlocks found vnode

18

Chapter 4

RedirFS

4.1 About project

RedirFS project means REDIRecting File System and arise in 2005 as thesis of Ing. Fran-
tisek Hrbata, student FIT VUT Brno. Purpose of RedirFS was to solve deficiencies of
existing similar projects allowing access control. These projects often change kernel source
code. RedirFS project was developed for Linux kernel tree 2.6. This chapter shows basic
informations about ResdirFS. More informations can be found on home website of project
http://www.redirfs.org.

4.2 Goals of RedirFS

Here are main goals of RedirFS given before development:

• general, fast and flexible framework

• open source solution

• no Linux kernel modifications

• implementation as kernel module independent on kernel version

• callback interface allowing registration and unregistration of selected file operations
for third-party filters

• pre and post callbacks

• selection of interested directory subtrees for filters

• calling filters in given order

• reaction on return value from filters

19

4.3 Implementation

Idea of RedirFS is to offer interface to third-party filters, implemented as kernel modules.
Filter can register to the RedirFS framework and get handler used for following interaction.
During registration is priority set. This determine order of several filters, in what have
to be called. Filter can dynamically set, modify or remove callback functions and set
attached directory subtrees. Next possible function of filter is to activate or deactivate
itself.

RedirFS defines several objects. Path object represents start directory of subtree
attached by filter. Those path objects are linked in tree. Every filter is represented by the
filter object attached to path objects. Next object of RedirFS framework is rinode object.
It is different object to VFS inode, but determine corresponding path object to the VFS
inode.

Picture 4.1: RedirFS.

4.4 Download and installation

The actual source code of this project can be downloaded via svn co http://redirfs.org/svn/redirfs
command. Note this is designed for Linux kernel tree version 2.6. After extracting is pos-
sible to build kernel module by the help of make command. Created Linux kernel module
redirfs.ko can loaded to system via insmod redirfs.ko. Latest version used for this thesis
was downloaded in 21. April 2007. There some problems with Linux kernel compatibility
occurred. This version of RedirFS use some data structures implemented from Linux ker-
nel version 2.6.17. When in use Linux kernel version 2.6.21, the following problem arisen.

20

Structure path of RedirFS framework conflicts with path structure of Linux kernel, which
is newly defined in used linux/namei.h header file.

4.5 RedirFS filter

All needed declarations for RedirFS filter writing are stored in header file redirfs.h of
RedirFS project. This file has to be included in RedirFS filter source code, what is
implemented as a kernel module.

Filter handler

This variable is initialized via filter registering and is used for others RedirFS functions
calling. Data type of this hadler has to be rfs filter. Return value of RedirFS public
functions can be:

• RFS ERR OK - no error occurred

• RFS ERR INVAL - invalid value

• RFS ERR NOMEM - memory allocation error

• RFS ERR NOENT - no entry point

• RFS ERR NAMETOOLONG - too long name of path

• RFS ERR EXIST - file exists

• RFS ERR NOTDIR - destination of path is not a directory

Filter registration and unregistration

Each filter has to be registered in RedirFS. Prototype of registration function is

enum rfs err rfs register filter(rfs filter *filter, struct rfs filter info *filter info)

and is usually called by kernel module initialization. Structure filter info sets filter pa-
rameters:

struct rfs filter info {
const char *name;
int priority;
int active;

};

Item name is name of filter a is used for /proc informations. Priority determines order
of filters. Lower number is higher priority. Last item active sign filter activation.

Unregistering function is then enum rfs err rfs unregister filter(rfs filter filter).

21

Selecting attached directories

RedirFS framework allows to select what directories have to be attached to filter. This
feature provide following function:

enum rfs err rfs set path(rfs filter filter, struct rfs path info *path info)

.
Structure rfs path info contains informations about path:

struct rfs path info {
const char *path;
int flags;

};

Path is a string of destination directory. Flags can be following:

• RFS PATH SINGLE - operation will be applied only to this directory

• RFS PATH SUBTREE - operation will be applied to this directory and all sub-
directories

• RFS PATH INCLUDE - filter touches this directory

• RFS PATH EXCLUDE - filter don’t touch this directory

Setting callback function

Following function sets or replaces pre and post callback functions for filter:

enum rfs err rfs set operations(rfs filter filter, struct rfs op info *op info).

Operations are defined by:

struct rfs op info {
enum rfs op id op id;
enum rfs retv (*pre cb)(rfs context, struct rfs args *);
enum rfs retv (*post cb)(rfs context, struct rfs args *);

};

Item op id is identification of captured operation, e.g. RFS DIR IOP CREATE or
RFS REG FOP READ. Full list of operations is available in redirfs.h header file. Two
next items of structure are functions called before and after operation call. Note parametr
op info of function rfs set operations is an array of rfs op info structures. The item op id
of last structure of this array has to be RFS OP END.

Callback functions accept two parameters. Currently unused rfs context and pointer
to structure rfs args carrying arguments to given operation. The rfs args is an union type
and for each operation contains special structure type. This makes a good abstraction
and then type of callback functions can be unified. Callback functions do not receive
information of type rfs op id. This makes callback function unusable for more types of
operation serving. The exception is the case when rfs args union is not used.

22

Activating and deactivating filter

After previous initializations can be filter activated and deactivated if needed:

enum rfs err rfs activate filter(rfs filter filter),

enum rfs err rfs deactivate filter(rfs filter filter).

23

Chapter 5

Portation

RedirFS use lots of internal Linux kernel functions and structures. Basic concept could
be kept and platform dependent sections replaced. Now lets have a look at differences.

5.1 RedirFS source code overview

Internal RedirFS documentation is in the making at this time. So this section describes
structure and the parting of the source code. Then will be possible to determine needed
modifications and to establish procedure of porting.

Header files

• debug.h - defines debug macros only

• redir.h - contains private object structures and interconnect functions heads (in-
cluded in all C-modules of RedirFS)

• redirfs.h - public data types and heads of public functions needed by RedirFS filter
modules

C modules

Source code of RedirFS framework contains these C modules:

• chain.c

• filter.c

• path.c

• proc.c

• rdentry.c

• redir.c

• rfile.c

24

• rinode.c

• ops.c

Main module is the redir.c, where is a kernel module initialization. File redir.c contains
operation replacement moreover. Module proc is used for /proc file system informations
and defines needed functions. Other modules implement object operations. Each of these
module names corresponds to given object type.

5.1.1 Private objects

All of these objects are dynamically created and destroyed in memory. There are linked
lists used. Objects of different type can be joined of course. This fact requires to keep
reference count and to destroy object when is not referenced already.

filter

Object filter represents registered RedirFS filter in memory and stores states of filter.

path

Objects of type path create tree structure corresponding to destination directory place-
ment. In the tree are objects representing registered paths from RedirFS filters only.
Linking of path objects is the most complicated, because there are linked objects on the
same level and every path contains a list of subpaths.

rfile, rdentry and rinode

This objects represent a touched VFS objects by RedirFS framework. Every of them is
pointing to associated path and chain objects.

chain

The chain is a connecting object. It can be referenced in more path, rfile, rdentry or rinode
objects and references all filters have to be applied on given referencing object.

ops

This object keepts informations about RedirFS operations. It is referenced by path, rfile
and rdentry objects.

5.2 Linked lists

Structures in RedirFS are dynamically allocated and linked to lists. The most complex is
structure path where are linked directories on same level and subdirectories.

25

5.2.1 Linux kernel solution

Because C language has not direct support for those lists, Linux kernel provide concept,
what make list creation easy. There is several types of lists and here is the basic double
linked type of list described. Others are not in RedirFS framework used. Via defined
macro LIST HEAD(name) can be head of list declared. Node of these lists can be every
structure containing item of type struct list head. This structure list head has items needed
to connection to another elements of list. Placement in list element is not important.
List has to be initialized by calling INIT LIST HEAD(*list head) with list pointer as
parameter.

Add item to list is possible with help of functions void list add(struct list head *new,
struct list head *head) or void list add tail(struct list head *new, struct list head *head)
where new is pointer to list head item from adding structure and parameter head is pointer
to head of requested list. Function list add inserts item to begin of list and function
list add tail adds item to end of list. Nodes of list can be removed via void list del(struct
list head *entry) function having list head structure of element as parameter. In this case
head of list is not important.

Sometimes is needed to move element from any list to other list. In Linux kernel is
declared function void list move(struct list head *list, struct list head *head) make this
possible. Argument list is element from source list and head is destination list, where has
to be element placed.

Function int list empty(const struct list head *head) offers to check, whether list is
empty. Returns logical one if is.

To access items of list is declared macro list entry(ptr, type, member) returning pointer
to this item. Argument ptr is poiter to list head structure named member from any struc-
ture of type type linked to list. Macro list entry is generally used in connection with
some of several macros creating cycles to walk a list. Basic macro is list for each(pos,
head). First parameter pos is pointer to list head structure, which is set to pointing to
list head of actual entry in every through of cycle. And head is as usual head of list. Next
important macro is named list for each safe(pos, n, head). Offers the same function as
list for each, but is possible to remove item inside the cycle. New parameter n is of type
list head pointer as pos. But in this case n is only temporal variable used for private stuff
of list for each safe.

Another macros to create cycle walking a list are list for each entry(pos, head, mem-
ber) and list for each entry safe(pos, n, head, member). Parameter pos is not set to
list head item of element structure, however directly to element structure. Arguments
head and member similar to list entry. Macro list for each entry safe contains parameter
n as list for each safe.

5.2.2 FreeBSD kernel solution

FreeBSD kernel supports linked lists too. Needed types, functions and macros are declared
in sys/queue.h header file. There are offer tree types of a list:

• List - supports adding new elements at the head of the list or after any element in
the list. Removed can be any element in the list. List can be walk forward only.

26

• Tail queue - in contrast to previous type is possible to insert element at the end of
a list. Due this is implementation more difficult than list implementation.

• Circular queue - the most complex type of list. in addition to tail queue entries can
be added before any entry in the list and support backward walking of the list.

List

List head structure type is defined by macro LIST HEAD(HEADNAME, TYPE) where
HEADNAME is name of struct and TYPE is type of linked structures. In contrast to
Linux, this macro do not defines variable of list, however its type only. By referencing
HEADNAME can be defined next list heads of this type. Linked structure has to contain
item, its type is defined by macro LIST ENTRY(TYPE), where TYPE is type of these
linked structure. List head has to be initialized by macro LIST INIT(LIST HEAD *head).

Item to list can be inserted by calling macros

LIST INSERT HEAD(LIST HEAD *head, TYPE *elm, LIST ENTRY NAME) and

LIST INSERT AFTER(LIST ENTRY *listelm, TYPE *elm, LIST ENTRY NAME)

where head is pointer to head of the list, listelm is pointer to element after it has to be
new element added, elm points to inserted element and NAME is name of LIST ENTRY
structure in linked structure type. Removal macro is defined as

LIST REMOVE(TYPE *elm, LIST ENTRY NAME)

where argument elm is pointer to touched element and sense of NAME is similar to previous
functions.

There are no macros for walking a list. Cycles have to be implemented manually
through the items of LIST HEAD and LIST ENTRY structures. This pass for next two
list types too.

Tail queue

Head of tail queue is defined via macro TAILQ HEAD(HEADNAME, TYPE) and item to
elements linking by TAILQ ENTRY(TYPE). Initialization do TAILQ INIT(TAILQ HEAD
*head). Arguments are identical to list macros.

Insertion of elements make possible macros

TAILQ INSERT HEAD(TAILQ HEAD *head, TYPE *elm, TAILQ ENTRY NAME),

TAILQ INSERT TAIL(TAILQ HEAD *head, TYPE *elm, TAILQ ENTRY NAME) and

TAILQ INSERT AFTER(TAILQ HEAD *head, TYPE *listelm, TYPE *elm,
TAILQ ENTRY NAME)

These macros are similar to previous list type. Difference is in referencing head by macro
TAILQ INSERT HEAD and added TAILQ INSERT TAIL inserting element at the end
of a list. Removal macro is called

TAILQ REMOVE(TAILQ HEAD *head, TYPE *elm, TAILQ ENTRY NAME).

27

Circular queue

Similar to previous types, macro for head definition is CIRCLEQ HEAD(HEADNAME,
TYPE), macro for elements linking is defined as CIRCLEQ ENTRY(TYPE) and initial-
ization macro is named CIRCLEQ INIT(CIRCLEQ HEAD *head).

For inserting elements to circular queue are defined macros

CIRCLEQ INSERT HEAD(CIRCLEQ HEAD *head, TYPE *elm, CIRCLEQ ENTRY
NAME),

CIRCLEQ INSERT TAIL(CIRCLEQ HEAD *head, TYPE *elm, CIRCLEQ ENTRY
NAME),

CIRCLEQ INSERT AFTER(CIRCLEQ HEAD *head, TYPE *listelm, TYPE *elm,
CIRCLEQ ENTRY NAME)

and new CIRCLEQ INSERT BEFORE(CIRCLEQ HEAD *head, TYPE *listelm, TYPE
*elm, CIRCLEQ ENTRY NAME)

to add element before any existing element of the list. Macro

CIRCLEQ REMOVE(CIRCLEQ HEAD *head, TYPE *elm, CIRCLEQ ENTRY
NAME)

removes element from the list.

5.3 Locking

5.3.1 Linux mechanism

Because Linux supports symetric multiprocessoring and several processors can call some
kernel functions at the same time. It could happened, that several processes want to
modify some internal structure at once. So it is necessary to prevent this situation. Linux
kernel architecture offers code locking of course.

Spinlock

Spinlock is a simple mechanism to protect code block against more processes entry. Any
process can lock it. When other process tries to lock spinlock, will be waiting until spinlock
is unlocked. Spinlock is represented by structure spinlock t. Locking and unlocking is
possible by the help of macros spin lock(lock) and spin unlock(lock).

When can be any spinlock locked from interrupt, is needed to foreclose following situ-
ation. A spinnlock is locked and some interrupt routine tries to lock it againg. Then will
be waiting without end and system will be frozen. To handle this case have to be used
macros spin lock irq(lock) and spin unlock irq(lock). These macros will disable processor
interrupts before spinlock locking. Next possible macros are spin lock irqsave(lock, flags)
and spin unlock irqrestore(lock, flags) storing and restoring state of interrupt disabling to
and from variable flags of type unsigned long.

28

Next type of Linux lock is rw-lock defined by structure rwlock t. Rw-lock can be
locked for reading and for writing. For rwlock t operations are macros read lock(lock),
read unlock(lock), write lock(lock) and write unlock(lock) declared. Similarly to spinlock
are irq save macros declared too:

read lock irq(lock), write lock irq(lock),

read unlock irq(lock), write unlock irq(lock),

read lock irqsave(lock, flags), write lock irqsave(lock, flags),

read unlock irqrestore(lock, flags) and write unlock irqrestore(lock, flags).

Mutex

This locking system uses wait queues. It makes possible to make process sleeping while is
waiting. Mutex is defined by structure mutex:

struct mutex {
atomic t count;
spinlock t wait lock;
struct list head wait list;

};

Mutex can hold three states in item count:

• 1 - mutex is unlocked

• 0 - mutex is locked

• negative value - mutex is locked and some waiters exist

Declaration with initialization can be made via macro DEFINE MUTEX(name). For
initialization at run time is defined mutex init(mutex) macro. Then can be mutex locked
and unlocked.

Locking functions are followings:

• void fastcall mutex lock(struct mutex *lock) - locks the mutex or inserts the
calling process to waiting queue when is locked

• int fastcall mutex lock interruptible(struct mutex *lock) - this function uses
interruptible sleep and returns 0 when attempt to lock is obtained or returns -EINTR
when process got signal

• int fastcall mutex trylock(struct mutex *lock) - tries to lock mutex without
waiting and returns 1 if succeed, otherwise returns 0

Mutex has to be unlocked via function void mutex unlock(struct mutex *lock). State
of mutex can process get through a call int mutex is locked(struct mutex *lock) function
returning 1 if mutex is locked, otherwise 0.

29

5.3.2 FreeBSD mechanism

FreeBSD kernel offers universal structure mtx providing locking. This structure and help-
ing functions are defined in sys/systm.h header file. Initialization function is defined as
void mtx init(struct mtx *m, const char *name, const char *type, int opts). Firts ar-
gument is the mutex. Argument name is used for debug and type for lock ordering. If
type is set to NULL then name holds this function. Last argument opts must to be set
to either MTX DEF or MTX SPIN. Variables name and type have to be valid till void
mtx destroy(struct mtx *m) call. Function mtx destroy destroys the mutex, which can not
be used anymore.

In context as Linux kernel spinlock (lock without process sleeping), where is mutex
initialized with opts = MTX SPIN, are macros mtx lock spin(m) and mtx unlock spin(m)
used. These macros automatically disable processor interrupts. To save and restore inter-
rupt flags have to be used macros mtx lock spin flags(m, opts) and mtx unlock spin flags(m,
opts).

Follows description of work with mutex initialized with option MTX DEF. There are
macros mtx lock(m), mtx unlock(m), mtx lock flags(m, opts) and mtx unlock flags(m, opts)
used. To try lock mutex is possible with help of macro mtx trylock(m). It returns 0 on
failure, otherwise non-zero value. Similar function with interrupt flags saving is defined
as mtx trylock flags(m, opts).

FreeBSD kernel defines several helpful macros:

• mtx initialized(m) - if mutex is initialized, then returns non-zero value

• mtx owned(m) - if current thread is owner of locked mutex, then returns non-zero
value

• mtx recursed(m) - if given mutex is presently recursed, then returns non-zero
value

• mtx name(m) - returns name of mutex defined by initialization

5.4 Integer types and atomic operations

Linux types

Numeric types of Linux kernel are defined in header file linux/types.h. The type size t is
generally used for memory size representing. Effect of this type is independence from used
architecture. Types often used as memory offset are off t and loff t. The second is longer
than the first. On i386 architecture is off t defined as long and loff t as long long. On
others platforms can be size of these types different, but in present are definitions equal.

Linux kernel defines some types representing unsigned variations of basic C language
data types. These types are platform dependent of course: u char, u short, u int, u long,
unchar, ushort, uint and ulong. First four are named in context of BSD unix tree compat-
ibility and other four in accordance to UNIX System V.

Common signed integer types independent on architecture are followings:

• int8 t

30

• int16 t

• int32 t

• int64 t

and unsigned variations respecting both unix trees are:

• u int8 t, uint8 t

• u int16 t, uint16 t

• u int32 t, uint32 t

• u int64 t, uint64 t

Linux atomic operations

In multiprocess environment with current access of more processes or threads to any
variable is required to make this access safe. For atomic operations would be using of
lock mechanism in code unnecessarily too time-consuming and complicated. Solution is in
implementation these operations so that will not be divided by process scheduler. Linux
kernel offers special type and functions in header file asm/atomic.h. Name of this type is
atomic t. To assign initial value to atomic t variable is possible through the use of macro
ATOMIC INIT(i) where i is value what has to be assigned. Possible operations under
atomic t type are in following list:

• macro atomic read(v) - offers value of requested atomic t variable

• macro atomic set(v,i) - sets value i to atomic t variable

• function void atomic add(int i, atomic t *v) - adds value of i to atomic t variable

• function void atomic sub(int i, atomic t *v) - subtracts value of i from atomic t
variable

• function int atomic sub and test(int i, atomic t *v) - as atomic sub, but returns true
if new value of v is zero

• function void atomic inc(atomic t *v) - increments atomic t variable

• function void atomic dec(atomic t *v) - decrements atomic t variable

• function int atomic dec and test(atomic t *v) - decrements v and returns true if new
value of v is zero

• function int atomic inc and test(atomic t *v) - increments v and returns true if new
value of v is zero

• function int atomic add negative(int i, atomic t *v) - as atomic add, but returns true
if new value of v is negative

31

• function int atomic add return(int i, atomic t *v) - as atomic add, but returns new
value of v

• function int atomic sub return(int i, atomic t *v) - as atomic sub, but returns new
value of v

• macro atomic cmpxchg(v, old, new) - compare and exchange - if v is equal to old
then assign new to v; returns initial value of v

• macro atomic xchg(v, new) - exchange values of v and new; returns new value of v

• macro atomic add unless(v, a, u) - if v is equal to value of u then returns false;
otherwise adds a to v and returns true

• macro atomic inc not zero(v) - if v is equal to 0 then returns false; otherwise incre-
ments v and returns true

• macro atomic inc return(v) - as atomic inc, but returns new value of v

• macro atomic dec return(v) - as atomic dec, but returns new value of v

How you see, there is lots of defined atomic operations. But is not true, that all of these
macros and functions are safe for current access of more processes. If it is needed, all
functions returning int value and last five macros require explicit lock.

FreeBSD types

In file sys/types.h of FreeBSD kernel headers is data type size t defined too. The type
off t, known from Linux kernel, is hardly defined as signed 64bit number. Type loff t is
not here available. But FreeBSD offers unsigned alternate of off t called uoff t. Native
unsigned variations of common C types are u char, u short, u int and u long. Moreover
are defined types ushort and uint for UNIX System V compatibility.

Tightly long number variables independent on used architecture are followings:

• int8 t, uint8 t

• int16 t, uint16 t

• int32 t, uint32 t

• int64 t, uint64 t

These variables are identical to types of Linux kernel. UNIX system V alternatives u int8 t,
u int16 t, u int32 t and u int64 t are in FreeBSD defined too, but are deprecated.

FreeBSD atomic operations

FreeBSD has no special data type for atomic subsystem. There are defined functions
and macros in machine/atomic.h header file. Atomic operations work with standard C
types and previously described tightly long number types. For all architectures are defined
operations handling pseudotypes represented in name of operations:

32

• int - int type of C language

• long - long type of C language

• ptr - variable of pointer length

• 32 - int32 t type

• 64 - int64 t type

Several architectures can support all or any operations for pseudotypes:

• char - char type of C language

• short - short type of C language

• 8 - int8 t type

• 16 - int16 t type

Now follows list of possible operations. For example is used pseudotype int. Variations
containing acq and rel will be described later:

• void atomic add int(int *p, int v) - adds v to *p

• void atomic add acq int(int *p, int v)

• void atomic add rel int(int *p, int v)

• void atomic clear int(int *p, int v) - clears bits of *p, where in mask v is 1

• void atomic clear acq int(int *p, int v)

• void atomic clear rel int(int *p, int v)

• int atomic cmpset int(int *dst, int old, int new) - if *dst is equal to old then sets
*dst to new and returns 1 else returns 0

• int atomic cmpset acq int(int *dst, int old, int new)

• int atomic cmpset rel int(int *dst, int old, int new)

• int atomic load acq int(int *p) - returns value of *p

• int atomic readandclear int(int *p) - returns value of *p and clears it

• void atomic set int(int *p, int v) - sets bits of *p where in mask v is 1

• void atomic set acq int(int *p, int v)

• void atomic set rel int(int *p, int v)

• void atomic subtract int(int *p, int v) - subtracts v from *p

• void atomic subtract acq int(int *p, int v)

33

• void atomic subtract rel int(int *p, int v)

• void atomic store rel int(int *p, int v) - sets *p to value of v

The acq in name of operation means memory barrier use. In this case compiler will
not optimize the operation. Also processor will not reorder data accesses. Operations
with rel are safe from SMP data access problems. Operations having no equivalent with
acq or rel are save in every case.

5.5 Errors

Linux kernel defines error constants in header file linux/errno.h. Interesting of them are
error constants used in RedirFS framework:

• EINVAL - invalid argument

• ENOMEM - not enought of memory

• ENOENT - file or directory not found

• ENAMETOOLONG - file name is too long

• EEXIST - file exists

• ENOTDIR - item is not a directory

Error constants are often returned by functions instead of standard value if some error
occure. To handle errors offers linux/err.h header file some suitable macros and functions.
First macro is MAX ERRNO, what tells what is maximum value of error constants. Now
is possible to determine what value is error and what value is not. In used Linux kernel
is MAX ERRNO defined as 4095. Macro IS ERR VALUE(x) can tell whether value x is
an error constant. If is then returns logical 1, in other case returns 0. Error constants can
be stored in pointer. To retype error constant to pointer and reversely are these functions
defined:

• void *ERR PTR(long error) - converts error value to pointer

• long PTR ERR(const void *ptr) - determines error value from pointer

Last stuff from linux/err.h is function long IS ERR(const void *ptr). It has similar task
as IS ERR VALUE(x). But in this case takes a pointer as parameter.

FreeBSD kernel contains header file sys/errno.h where are error constants defined.
Names and values of these constants can be different from Linux. But relevant is the fact,
that interesting error names are identical. FreeBSD offers macro ELAST consistent with
maximum value of error constants.

34

5.6 Dynamic memory allocation

5.6.1 Linux kernel functions

Header file linux/slab.h of Linux kernel offers operations for dynamic memory allocation.
Analog function to malloc known from user-space is defined as void *kmalloc(size t size,
gfp t flags). First argument is a size of requested block of memory. Then argument flags
can contain defined flags of allocation:

• GFP BUFFER - if no free memory is available then do not try to free other pages

• GFP ATOMIC - if no free memory is available then do not wait; this allocation
must be used in interrupt

• GFP KERNEL - standard allocation of memory - tries to free some pages if needed

• GFP USER - equal to GFP KERNEL on the present

• GFP NOBUFFER - do not try to shrink the buffer cache of kernel

• GFP NFS - similarly to GFP KERNEL, but recommended for lower number of the
requested pages (will be faster)

• GFP DMA - dedicated for allocation of DMA memory and will repeatedly try to
get requested memory

To free allocated memory has to be used void kfree(const void *) function, where is a
pointer to allocated memory as parameter required.

Sometimes is needed to allocate a very big area in memory. In this case would block
allocated in virtual memory. Header file linux/vmalloc.h declares prototypes of functions:

• void *vmalloc(unsigned long size) - allocates size of bytes in virtual memory
and returns pointer to allocated memory or NULL if failed

• void vfree(void *addr) - free given virtual memory

Cache subsystem

The same header file defines a common cache subsystem with handle type kmem cache t.
Use of cache subsystem makes operations faster, because works with objects of the same
size. Function

kmem cache t *kmem cache create(const char *name, size t size, size t align, unsigned
long flags, void (*ctor)(void *, kmem cache t *, unsigned long), void (*dtor)(void *,

kmem cache t *, unsigned long))

creates a cache. Parameter name is a pointer to string used for /proc informations. It
has to be valid until cache is destroyed. Next parameter size determines memory size
of objects witch will be caching. Alignment of objects in memory can be set via align
parameter. Options given in flags can be these:

• SLAB DEBUG FREE - expensive checks on objects free

35

• SLAB DEBUG INITIAL - call constructor (as verifier)

• SLAB RED ZONE - buffer overrun checks through the medium of so-called red
zones (watched neighbouring memory)

• SLAB POISON - cause catching references to uninitialized memory

• SLAB HWCACHE ALIGN - implicit hardware objects align

• SLAB CACHE DMA - use GFP DMA flag for memory allocation

• SLAB MUST HWCACHE ALIGN - hardware objects align will be forced

• SLAB STORE USER - stores last owner information (for debug)

• SLAB RECLAIM ACCOUNT - track pages allocated to indicate what is re-
claimable later

• SLAB PANIC - kernel panic when cache creation fails

• SLAB DESTROY BY RCU - use RCU for page freeing

• SLAB MEM SPREAD - spread some memory over cpuset

First three flags are working when SLAB DEBUG SUPPORT is in kernel defined. Last
two arguments of kmem cache create are pointers to constructor and destructor of ob-
jects witch will be stored in cache. These functions do not have to be declared and
kmem cache create can be called with NULL in their place. Both of them take a pointer
to corresponding kmem cache t handler as the first parameter. In the other parameter can
constructor get following flags (destructor can’t get any):

• SLAB CTOR CONSTRUCTOR - call of constructor - it makes to use the same
function for constructor and destructor possible

• SLAB CTOR ATOMIC - constructor can’t sleep

• SLAB CTOR VERIFY - this call of constructor is just a verify call

Objects in this cache can be created by the help of function

void *kmem cache alloc(kmem cache t *cachep, gfp t flags)

taking a pointer to corresponding kmem cache t handler as the first parameter. Parameter
flags can contain earlier described options as kmalloc function. Opposite function to
kmem cache alloc is

void kmem cache free(kmem cache t *cachep, void *objp)

. Except pointer to kmem cache t gets a pointer to object has to be freed.
Last important function from the cache subsystem is int kmem cache destroy(kmem cache t

*cachep) destroying given cache.

36

5.6.2 FreeBSD alternatives

Dynamic memory allocation is accessed through the medium of sys/malloc.h include.
There is a malloc function defined. This function takes other parameters in compare
to malloc defined in user-space. Head of this function is

void *malloc(unsigned long size, struct malloc type *type, int flags).

The size parameter is a number of bytes have to be allocated. Second parameter is a
pointer to structure malloc type. This structure contains debug informations. To define
varible of this type FreeBSD offers macro MALLOC DEFINE(type, shortdesc, longdesc),
where type is name of variable has to be defined. Parameters shortdesc and longdesc are
description strings. To use so defined malloc type variable in other C modules is possible
by the help of macro MALLOC DECLARE(type) (extern modifier inside). Parameter flags
of function malloc can set these options:

• M NOWAIT - do not wait for free memory

• M WAITOK - can wait for free memory

• M ZERO - clear memory after allocation

• M NOVM - don’t ask virtual memory manager for pages

• M USE RESERVE - can use reserved memory for allocation (this option is dep-
recated)

Already unused memory can be freed through the use of function void free(void *addr,
struct malloc type *type). Argument addr is a pointer to memory has to be freed and type
is the malloc type variable used in the course of memory allocation.

In compare to Linux kernel, FreeBSD offers memory reallocation. Function

void *realloc(void *addr, unsigned long size, struct malloc type *type, int flags)

requests actual allocated memory pointer given in first parameter addr. Other parameters
are identical to parameters of malloc function. Return value is a pointer to new memory
block which may differ from previous pointer. If error occurred then returns NULL. The
one variation of void realloc is

void *reallocf(void *addr, unsigned long size, struct malloc type *type, int flags).

Function reallocf frees old memory when new memory of requested size can’t be allocated.
Helping macros MALLOC and FREE are evident from the kernel source:

#define MALLOC(space, cast, size, type, flags) \
((space) = (cast)malloc((u long)(size), (type), (flags)))

#define FREE(addr, type) free((addr), (type))

37

Zones

FreeBSD defines so-called zones in header file vm/uma.h. It can be considered by alter-
native to Linux kernel cache subsystem. Collected type is usually defined as structure. It
is important to place at the beginning of this structure two pointers to this type. These
pointers are used internally for objects collecting. Example follows:

struct example {
struct example *pointer1;
struct example *pointer2;
// own items of collected structure

};

Handler type of zones is named uma zone t. Similar to kmem cache create known from
Linux kernel is function

uma zone t uma zcreate(char *name, int size, uma ctor ctor, uma dtor dtor, uma init
uminit, uma fini fini, int align, u int16 t flags).

Parameter name is a name of zone used for debug informations. The size determines size
of collected structures. The align parameter tells objects alignment fit in memory. Rather
align is a determinative mask of possible starting addresses. For example: to ensure object
being aligned to four-address blocks, the align has to be 3. Alignment fit templates are:

• UMA ALIGN PTR (sizeof(void *) - 1)

• UMA ALIGN LONG (sizeof(long) - 1)

• UMA ALIGN INT (sizeof(int) - 1)

• UMA ALIGN SHORT (sizeof(short) - 1)

• UMA ALIGN CHAR (sizeof(char) - 1)

• UMA ALIGN CACHE (16 - 1)

Interesting options given in flags can be followings:

• UMA ZONE ZINIT - initialization with zeroizing

• UMA ZONE STATIC - static size of zone

• UMA ZONE OFFPAGE - forces the slab structure allocation off of the real mem-
ory

• UMA ZONE MTXCLASS - define a new lock class

• UMA ZONE HASH - use a hash table

• UMA ZONE SECONDARY - defines secondary zone

• UMA ZONE REFCNT - allocates reference counts in slabs

38

Still undescribed parameters of uma zcreate are functions of types:

int (*uma ctor)(void *mem, int size, void *arg, int flags)

void (*uma dtor)(void *mem, int size, void *arg)

int (*uma init)(void *mem, int size, int flags)

void (*uma fini)(void *mem, int size)

All of these types of functions take a pointer to allocated (freed) memory of object in
argument mem and size of this memory block in argument size. The type uma ctor is
a constructor called after object memory allocation and uma dtor is a destructor called
before object memory release. New in compare to Linux cache subsystem are initializer
uma init and discard function uma fini. Functions uma ctor and uma init return error
value on failure, otherwise return 0. Sense of arg and flags arguments will be described
later. It is not needed to declare these functions and is possible to use NULL instead of
them.

New object can be allocated in zone zone by the help of functions

void *uma zalloc(uma zone t zone, int flags)

or void *uma zalloc arg(uma zone t zone, void *arg, int flags).

Address of new allocated object will be returned. Options given in flags are identical to
options accepted in malloc function. It makes possible to return NULL if flag M WAITOK
is not set. These flags will be passed to uma ctor and uma init functions. Argument arg
of uma zalloc arg will be passed to uma ctor function. The uma zalloc uses NULL instead
of arg. Initializer is called when object is cached and constructor after memory allocation.

To release object from zone is possible via functions

void uma zfree(uma zone t zone, void *item)

or void uma zfree arg(uma zone t zone, void *item, void *arg).

The uma zfree arg will pass arg and uma zfree will pass NULL to uma dtor function.
Destructor is called before memory release and discard function is called before remove
object from cache.

5.7 File name lookup

Current version of RedirFS framework developed for Linux use this fragment of code to
look file name up:

path lookup(path name, LOOKUP FOLLOW, &nd)

Varible path name is a full path of looked directory and nd is a nameidata structure.

39

Returned value is non-zero value if requested file can not be found. As the start point of
operation replacement is dentry used. This object is stored in the nameidata structure.

How it is already described, to look file name up can be namei function on FreeBSD
used. Result of this function is vnode object stored in nameidata. Note that namei func-
tion needs to obtain initialized nameidata structure. So FreeBSD variation is this:

NDINIT(&nd,LOOKUP,FOLLOW|WANTPARENT,UIO SYSSPACE,path name,curthread)
namei(&nd)

Return value is similar to path lookup. Start point of replacement is vnode object in
this case.

On both systems nameidata structure has to be released when is not necessary. There-
before has to be reference count of start point increased. Otherwise could happen that
this object will be released from memory. Later can be reference count of needless start
point decreased.

Release of nameidata on Linux:

path release(&nd)

Alternative on FreeBSD:

NDFREE(&nd,0)

Start point increase on Linux:

path->p dentry = dget(nd.dentry)

Alternative on FreeBSD:

path->p vnode = nd.ni vp
vref(path->p vnode)

Start point decrease on Linux:

dput(path->p dentry)

Alternative on FreeBSD:

vrele(path->p vnode)

40

5.8 Replacement of VFS object operations

5.8.1 RedirFS solution on Linux review

The RedirFS framework captures file system access by the help of VFS object replacement.
Injured objects are vnode, dentry and file. Possible RedirFS operations reflect operations
of these enumerated objects. This makes RedirFS dependent on defined VFS objects and
their operations.

Linux kernel uses VFS objects caches. RedirFS has to replace operations of already
cached objects and newly created objects. Operations of existing dentry objects are re-
placed through the dentry cache walking. At the same time are replaced operations of
inode objects referenced by cached dentry objects. Corresponding file objects can not be
directly discovered from dentry or inode objects, because more file objects can reference
one inode and the inode structure do not contain a list of these file objects. Files are listed
in super block structures. From dentry object can be detected corresponding super block
object. There can be found requested files. Current version of RedirFS does not walk this
list and offers newly opened files to serve only.

Operations of lately created inode and dentry objects are replaced in calls of existing
inode operations, that are for new object creation used. File operations are replaced
differently. Structure inode contains a pointer to file operations structure and during file
object initialization is this pointer to file structure copied. To replace operations of newly
created file object is needed to set file operations of every inode object. This can be made
along with inode operations replacement.

Together with inode and dentry operations replacement are RedirFS objects rinode and
rdentry created. RedirFS object rfile is created when any file is opened. These RedirFS
objects are released when corresponding inode or dentry object leaves cache.

5.8.2 FreeBSD possibilities

The VFS of FreeBSD operating system cointains objects vnode and file. These objects
have a vector of operations. In this time is not operations replacement implemented. Lets
try to find a method how to replace these operations of all instances. From file name
lookup is a vnode object available.

Vnode operations replacement

FreeBSD kernel has a name cache, what is implemented as zones. There are stored existing
vnodes with corresponding file names. The name cache is composed of two zones named
cache zone small and cache zone large. The first is dedicated to short file names and the
other is dedicated to long file names. Common structure for both zones is defined:

41

struct namecache {
LIST ENTRY(namecache) nc hash; /* hash chain */
LIST ENTRY(namecache) nc src; /* source vnode list */
TAILQ ENTRY(namecache) nc dst; /* destination vnode list */
struct vnode *nc dvp; /* vnode of parent of name */
struct vnode *nc vp; /* vnode the name refers to */
u char nc flag; /* flag bits */
u char nc nlen; /* length of name */
char nc name[0]; /* segment name */

};

This structure is not a complete data type, what is cached in name cache zones. Last
item of namecache structure is file name. Note in namecache is not any byte reserved for the
file name. To name cache zones are stored memory blocks longer then namecache structure.
But the namecache structure is placed at the beginning of these blocks. Lenghts of cached
blocks are defined by macros CACHE ZONE SMALL and CACHE ZONE LARGE.

#define CACHE ZONE SMALL (sizeof(struct namecache) + CACHE PATH CUTOFF)
#define CACHE ZONE LARGE (sizeof(struct namecache) + NAME MAX)

Used FreeBSD operating system version defines CACHE PATH CUTOFF as 32 and
NAME MAX as 255. Being of these two name cache zones makes caching faster and
more effective. FreeBSD defines macros common for both zones. Macro cache alloc(len)
allocates and returns a name cache item. Used zone depends on required file name lenght
given by len parameter. To release an item is possible by the help of macro cache free(ncp).
The ncp argument is a pointer to item has to be freed.

Internal structure of zones is very complicated and to walk cache via this structure is
not a good idea. Zones are not designed for this stuff. There is possible to use procedure
similar to walking in file name lookup used. Structure vnode contains several items used
for name caching:

• LIST HEAD(, namecache) v cache src - cache entries from this vnode

• TAILQ HEAD(, namecache) v cache dst - cache entries to this vnode

• struct vnode *v dd - parent directory vnode

By the help of this can RedirFS framework to walk existing vnodes and to replace vnode
operations.

Operations of latterly created vnodes can be replaced during parent vnode operation
call. This policy is used in RedirFS Linux version for newly created inode objects. The
alternative to this could be using of callback functions of name cache zones. The second
possibility presents higher complications risk.

RedirFS object named rvnode corresponding to vnode object has to be created closely
before operations replacement. VFS objects on FreeBSD have no operation called when
VFS object is released. So rvnode has to be released by the other way. Here callback
functions of name cache zone has to be used.

42

File operations replacement

Open files are linked in a list defined by LIST HEAD(filelist, file). To replace operations
of existing files is possible to walk this list and to compare referenced vnode object with
required vnode.

Object vnode does not contain an operations vector for files in contrast to inode object
defined in Linux kernel. Latterly created file object can be detected in vop open operation
of parent directory vnode call. Then vop close operation call can be used for detection of
file object removing. At the same time can be created and removed corresponding RedirFS
object named rfile.

5.9 Testing

Currently is ported full logic of RedirFS objects independent on operating system. It is
possible to use all public functions of RedirFS, but no operations to replace are defined.

5.9.1 RedirFS kernel module

Compilation

The RedirFS framework can be compiled from source code directory via make command.
Result of compilation is redirfs.ko file. This is FreeBSD kernel module.

Loading and unloading module

To load compiled RedirFS module to kernel offers command:

kldload ./redirfs.ko

By the help of command kldstat is possible to check if the module is loaded. User can
get more informations from command dmesg. In case of kldload error is detailed statement
there. Command

kldunload ./redirfs.ko

removes the module from memory. If is this module used by another module then it will
stay in memory.

5.9.2 Testing filter

RedirFS filters are implemented as kernel modules too. Created testing filter is named
testflt. Similarly to RedirFS kernel module can be compiled by force of command make.
Compiled kernel module is named testflt.ko.

This module depends on RedirFS kernel module redirfs.ko. It means that the testflt.ko
can be load only when redirfs.ko is already loaded into kernel. This can be made via call
of command kldload ./testflt.ko. The opposite command is kldunload ./testflt.ko.

43

Test objectives

When is the testflt.ko loaded into kernel, following actions are performed:

• filter registration

• setting of /bin path

• setting of /bin/sh path

• setting of /binx path

• call of function registering operations

• filter activation

• setting of /usr/bin path

During module unloading are performed these operations:

• filter deactivation

• filter unregistration

Test output

The testflt.ko module calls RedirFS functions and for each of them types description and
evaluation of returned value. After module loading and unloading the dmesg command
types:

testflt: load module
testflt: register filter
testflt: ok
testflt: set path ”/bin”
testflt: ok
testflt: set path ”/bin/sh”
testflt: error -20
testflt: set path ”/binx”
testflt: error -2
testflt: set operations
testflt: ok
testflt: activate filter
testflt: ok
testflt: set path ”/usr/bin”
testflt: ok
testflt: unload module
testflt: deactivate filter
testflt: ok
testflt: unregister filter
testflt: ok

44

Test evaluation

• filter registration ... ok

• setting of /bin path ... ok

• setting of /bin/sh path ... error -20

• setting of /binx path ... error -2

• call of function registering operations ... ok

• filter activation ... ok

• setting of /usr/bin path ... ok

• filter deactivation ... ok

• filter unregistration ... ok

Major part of calls was performed without error. Problematic are several calls of path
setting. The testflt.ko module uses these paths:

• /bin - existing directory

• /bin/sh - existing regular file

• /binx - nonexistent file system item

• /usr/bin - existing nested directory

In case of regular file is error -20 returned. It corresponds to RFS ERR NOTDIR. Er-
ror of nonexistent file system item is value -2 which is represented by RFS ERR NOENT.
Result of test is positive.

45

Chapter 6

Epilogue

This thesis describes VFS of source and destination operating systems of port. There are
described VFS objects containing operations which can be replaced. Then description of
RedirFS framework follows. The RedirFS project is very interesting from security view.
This framework defines operations reflecting operations of inode, dentry and file objects
used in VFS of Linux. FreeBSD has vnode and file objects. It is not possible to keep
defined RedirFS operations fully independent on used operating system. There can be
found any equivalences, but structures of operation arguments contain operating system
specific data types.

Currently are ported common RedirFS objects usable on both operating systems. Tem-
porarily is used dynamic linked list implementation of Linux, because logics of Linux
and FreeBSD lists are very different. Now can be implemented RedirFS objects new on
FreeBSD port.

Personal gains are skills in Linux and FreeBSD kernel development. There was a lot
of exploration of both kernel source codes. The kernel development is far harder than
development in user-space. Every fault can cause operating system crash and that is why
debugging is not so easy. Development of Linux kernel is faster and documentation used
to be not up to date. FreeBSD is better documented and source code contains more
comments. It was not easy to find any FreeBSD equivalents to Linux conceptions, because
are very differently named. Next complication was missing documentation of new RedirFS
framework conception.

46

Bibliography

[1] Robert Love. Linux Kernel Development. Sams, 2004. ISBN 0-672-32512-8.

[2] Neil Matthew, Richard Stones. Linux programujeme profesionálně. Computer press,
2001. ISBN 80-7226-532-6.

[3] Marshall Kirk McKusick, George V. Neville-Neil. Design and Implementation of the
FreeBSD Operating System. Addison-Wesley, 2005. ISBN 0-201-70245-2.

[4] Frantǐsek Hrbata. Callback Framework for VSF layer [Thesis]. FIT VUT Brno.

[5] WWW sites. The Linux kernel.
http://www.win.tue.nl/∼aeb/linux/lk/lk.html.

[6] WWW sites. Source code and documentation of Linux Kernel.
http://www.kernel.org/pub/linux/kernel/v2.6/.

[7] WWW sites. Seriál Porovnáńı systémů Linux a FreeBSD.
http://www.root.cz/serialy/porovnani-systemu-linux-a-freebsd/.

[8] WWW sites. FreeBSD manual pages.
http://www.freebsd.org/docs/man.html.

47

