
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

DESIGN AND IMPLEMENTATION OF AX.25 MONI-
TOR

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN DEMÍN
AUTHOR

BRNO 2007

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

NÁVRH A REALIZACE MONITORU AX.25
DESIGN AND IMPLEMENTATION OF AX.25 MONITOR

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN DEMÍN
AUTHOR

VEDOUCÍ PRÁCE Ing. JAROSLAV ŠKARVADA
SUPERVISOR

BRNO 2007

Abstract
The work describes a design of an implementation of an AX.25 Monitor, capable of de-
modulation and decoding of AFSK 1200/2200 modulated AX.25 frames. The output is
provided to USB/UART port and to the LCD. Demodulator uses FIR filters implemented
in MSP4305.

Keywords
AX.25, FPGA, FITkit, AFSK, FIR filter, Demodulation

Abstrakt
Práca popisuje dizajn a implementáciu monitoru AX.25, ktorý dokáže demodulovat’ a
dekódovat’ AFSK 1200/2200 modulované AX.25 rámce. Výstup je poskytovaný na USB/UART
port FITkitu a na LCD. Demodulátor použ́ıva FIR filtre implementované v MSP430.

Kĺıčová slova
AX.25, FPGA, FITkit, AFSK, FIR filtr, Demodulace

Citace
Martin Demı́n: Design and Implementation of AX.25 monitor, bakalářská práce, Brno, FIT
VUT v Brně, 2007

Design and Implementation of AX.25 monitor

Prohlášeńı
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatne pod vedeńım pana Ing.
Jaroslava Škarvadu

. .
Martin Demı́n
15. 5. 2007

c© Martin Demı́n, 2007.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Chapters . 3

2 Brief description of FITkit 4
2.1 Hardware . 4
2.2 Software for MCU . 4
2.3 Software for FPGA . 5

3 Link and Physical Layer 6
3.1 Protocol AX.25 . 6

3.1.1 Frames . 6
3.1.2 Bit Stuffing . 8
3.1.3 S Frames . 8
3.1.4 U Frames . 9
3.1.5 I Frames . 9

3.2 AFSK Modulation . 9

4 Design 10
4.1 Demodulator . 10

4.1.1 Filter Chain . 10
4.1.2 Band-pass filters . 10
4.1.3 Signal Strength Calculation . 11
4.1.4 Alternative approach . 12

4.2 Frame Decoder . 12
4.2.1 Clock generator . 12
4.2.2 Filter . 12
4.2.3 Sampler . 12
4.2.4 Flag Detector . 13
4.2.5 Deserializer . 13
4.2.6 UART Controller . 13
4.2.7 LCD Controller . 13

5 Implementation 14
5.1 MCU Part . 14

5.1.1 AD Converter . 14
5.1.2 Filters and Detection . 14
5.1.3 Bitstream Generator . 15

1

5.2 FPGA Part . 15
5.2.1 Clock Generator . 16
5.2.2 Filter . 16
5.2.3 Flag Detector . 16
5.2.4 Sampler . 16
5.2.5 Deserializer . 17
5.2.6 UART Controller . 17
5.2.7 LCD Controller . 18

6 Output Description and Usage 19
6.1 LCD . 19
6.2 UART . 19
6.3 Usage . 20

7 Conclusions 21

8 Appendix 22

2

Chapter 1

Introduction

1.1 Overview

This work is aiming at creation of an AX.25 Monitor. The monitor should be able to
demodulate 1200/2200 AFSK modulated signal at a rate of 1200 baud per second. After
demodulation it should decode the frames and display them on LCD and/or send them via
UART.
The monitor should be implemented into FITkit. The audio signal shall be provided

through audio input on the FITkit.

1.2 Chapters

The work is divided into several chapters. In the initial 2 chapters we introduce hardware
we will use and describe protocol and modulation used. Chapter 4 shows design ideas. The
way of their implementation is shown afterwards. The device documentation and usage are
presented in chapter 6. In the end we discuss results of our work.
Some of the ideas presented in Semestral Project appear in chapter 4. We used the

initial design and extended it.

3

Chapter 2

Brief description of FITkit

2.1 Hardware

FITkit is a development tool provided at BUT to allow students to come to a contact with
hardware. It consists of some basic peripherals:

• FPGA Spartan 3 XC3S50

• MCU MSP430F168

• USB to UART converter FT2232C

• Audio IN/OUT

• 1-line LCD display
These peripherels are interconnected as shown in the block diagram 2.1.

Please note that only the peripherals used in this project are mentioned. For complete
description visit official FITkit website [7].

2.2 Software for MCU

We required a C toolchain for MSP430. There are several available for various operating
systems. Detailed step-by-step guides are available on official FITkit site[7]. We used the
one distributed with TinyOS with some patches applied.

4

Figure 2.1: FITkit block diagram

2.3 Software for FPGA

The Xilinx FPGA requires a specialized synthetize tool ISE WebPack. At the time of
development there was a version 8.2i available. The tool is downloadable through official
Xilinx website[3].

5

Chapter 3

Link and Physical Layer

3.1 Protocol AX.25

Note: Following section may contain information taken from AX.25 description[1].

AX.25 is a link layer protocol derived from X.25 protocol. It is used in amateur radio
networks. It is responsible for data delivery over nodes and detection of errors in commu-
nication. The protocol identifies each station by an SSID and is capable of transportion of
a layer 3 protocol.

3.1.1 Frames

Every information sent and received is divided into frames. AX.25 recognizes 3 general
types of frames:

• Information frame (I frame)

• Supervisory frame (S frame)

• Unnumbered frame (U frame)

Basic structure of these frames is shown in figures 3.1.1 and 3.1.1. Every field is transmitted
LSB first except FCS field which is transmitted MSB first.

Flag

Flag field is a special field. It determines beginning and end of a Frame. The Flag is also
transmitted continuously if a delay is needed for proper start of transmittion or reception.

Flag Address Control Info FCS Flag
01111110 112/224 Bits 8/16 Bits N*8 Bits 16 Bits 01111110

Table 3.1: U and S frame

6

Flag Address Control PID Info FCS Flag
01111110 112/224 Bits 8/16 Bits 8 Bits N*8 Bits 16 Bits 01111110

Table 3.2: U and S frame

Address Field

Address field identifies source and destination of a frame. In addition may contain the path
of frame through repeaters. The field consist of amateur radio call sign and an SSID that
distingueshes stations with the same call sign.

Non-repeater address field

Destination Address Subfield Source Address Subfield
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Octets A1 through A6 and A8 through A13 are ASCII characters shifted one bit left, with
LSB set to 0. SSID octets A7 and A14 have following structure:

CRRSSIDL

• C bit is a command/response bit

• RR bits are reserved and may be used in some networks

• SSID is a unsigned integer 0-15

• L bit is indicating last that this was the last address field. It is set to 0 in destination
field, and may be set to 1 in source field if no repeater field follows.

Repeater address encoding

After destination and source address may exist up to 2 repeater addresses with the
same encoding as source or destination with a difference of C bit in SSID octet. In case
of repeaters this bit is called H and indicates that the frame has passed through specified
repeater(has been repeated).

Control Field

Identifies type of frame. The field may occupy one or two octets. Only one-octet control
field will be supported and described. This field is further described in sections 3.1.3,3.1.4
and 3.1.5.

PID Field

PID field is present only in Information (I) frames. It determines what kind of layer 3
protocol is in use.

7

Information Field

Information field transports user data from one node to another. It may only appear in
some kinds of frames:

• I frame

• UI frame

• XID frame

• TEST frame

• FRMD frame

The length of this field defaults to 256 octets.

FCS Field

The Frame-Check Sequence (FCS) is a 16 bit number calculated by both the sender and
the receiver of a frame. It ensures that the frame was not corrupted by the transmission
medium. The Frame-Check Sequence is calculated in accordance with recommendations in
the HDLC reference document, ISO 3309. FCS is the only field transmitted MSB first.

3.1.2 Bit Stuffing

The flag octet is an important bit sequence that marks beginning and end of a packet.
It therefore cannot appear anywhere inside a frame. To assure this, a method called bit
stuffing is used. Any time 5 consecutive 1’s are send, transmitter sends a 0. On the receiver
side, any time 5 consecutive 1’s are received, the 0 immediately following is dropped.

3.1.3 S Frames

S frames provide supervisory link control such as acknowledging or requesting retransmis-
sion of I frames, and link-layer window control. Encoding of the frame follows.

Type 7 6 5 4 3 2 1 0
Receive Ready RR N(R) P/F 00 01
Receive Not Ready RNR N(R) P/F 01 01
Reject REJ N(R) P/F 10 01
Selective Reject SREJ N(R) P/F 11 01

Where:

• N(S) is sent sequence number

• N(R) is received sequence number

• P is a Poll/Final bit. It is used to get an immediate reply to a frame.

8

3.1.4 U Frames

U frames are responsible for maintaining additional control over the link beyond what is
accomplished with S frames. U frames are responsible for establishing and terminating link
connections. U frames also allow for the transmission and reception of information outside
of the normal flow control. Field description follows.

Control Field Type Type 7 6 5 4 3 2 1 0
Set Async Balanced Mode SABME Cmd 011 P 11 11
Set Async Balanced Mode SABM Cmd 001 P 11 11
Disconnect DISC Cmd 010 P 00 11
Disconnect Mode DM Res 000 F 11 11
Unnumbered Acknowledge UA Res 011 F 00 11
Frame Reject FRMR Res 100 F 01 11
Unnumbered Information UI Either 000 P/F 00 11
Exchange Identification XID Either 101 P/F 11 11
Test TEST Either 111 P/F 00 11

Where P is a Poll/Final bit. It is used to get an immediate reply to a frame.

3.1.5 I Frames

The information (I) command transfers sequentially-numbered frames containing an infor-
mation field across a data link. The encoding of the field follows.

7 6 5 4 3 2 1 0
N(R) P N(S) 0

Meaning of the subfields is further described in section 3.1.3.

3.2 AFSK Modulation

Note: Following section may contain information taken from an article in Wikipedia[2].

AFSK is a modulation technique in which data is modulated into audio signal of varying
frequency, mostly two tones:

• mark represents a binary one

• space represents a binary zero

Probably the biggest pro of this modulation is a lack of need for modification of transceiver,
as the frequencies are in the range of speech.

On the other hand there are some severe limitations like maximum baud rate that is
mostly 1200 or a need for wider bandwidth than for different modulations.

9

Chapter 4

Design

The whole design is separated into two main parts: the MCU part and the FPGA part as
shown in the figure 2.1.

4.1 Demodulator

There were several demodulator proposed and implemented. We will discuss them.

4.1.1 Filter Chain

For filtering we use the following filter chain. We will describe every part of the chain
detaily in the following sections.

4.1.2 Band-pass filters

IIR filters

Initial design suggested using IIR filters as bandpass. After some testing and simulation
this idea was replaced. IIR filters may provide better characteristics as FIR filters but suffer
from several disadventages:

• Response is not finite, nature of these filters.

• There may be calculation errors because we use every input indefinetely.

10

Since response time is not defined, it took filter long time after a change in frequency to
respond properly and if the one frequency was used longer time (more 0’s or 1’s) it took it
long time to attenuate the signal.

There were also some testing with use of differentiated output from the filters. A low-
pass filter was added and the changes in signal were also used in calculation. The output
was better, but the calculation were too complex for embedded device. These filters will
therefore no longer be discussed.

FIR filter

FIR filters promised much better results. For calculation of coefficients a program LabVIEW
Digital Filter Design was used. Filters’ parameters are:

Sampling frequency 8000 8000
Passband Edge Frequency 1100 2100
Passband Ripple 2 2
Stopband Edge Frequency 112.45 112.45
Stopband Attenuation 16.5 16.5
Method Equi-Ripple Equi-Ripple

The parameters gave following coefficients:

f 1200 2200
1 -0.158347 0.083486
2 -0.077582 -0.210826
3 0.155284 -0.083486
4 0.298433 0.333607
5 0.155284 -0.083486
6 -0.077582 -0.210826
7 -0.158347 0.083486

The filters response was then ploted (using Octave[6]) as show in the figures 8.1 and 8.2.
The coefficients were recalculated with equation, because a signed char value was needed:

coefficient schar = round(coefficient * 127)

The signed char values will be used directly in the program.

4.1.3 Signal Strength Calculation

To simply calculate strength of signal we have done an absolute function onto both out-
puts from filters. These two signals were then passed through very simple low-pass filters
designed using weightning:

output = output/2 + input/2

Now the two signals were compared to each other to get DATA output and to a constant
to get ENABLE output. This provided enough precision to perform demodulation.

11

Figure 4.1: Block diagram of decoder

4.1.4 Alternative approach

There was also an alternative approach proposed. We tried to detect zero-crossing and
calculate time since last zero-crossing. This seemed to give good results but as it turned
out, the output was unuseable. Parts of this solution are still present in the source code.

4.2 Frame Decoder

Frame decoder was designed to be fully integrated into FPGA. Its block diagram is in figure
4.1. We will now describe every part of decoder.

4.2.1 Clock generator

Clock generator will provide clock signal to almost all peripherals. It will works as a simple
divider of SMCLK frequency(7.3728MHz). These clock are required:

• 32 x 1200Hz = 38.4kHz

• 8 x 1200Hz = 9.6kHz

4.2.2 Filter

Filter will do a very simple filtering of a bit stream. Sampled at 8 x 1200Hz, it will count
how many ones and zeros are present in last five samples and will output one if there are
more ones, and zero otherwise.

4.2.3 Sampler

Sampler will recover clock from incoming signal. It is essential to have a rising edge in the
middle of the bit. This will be done by a 5 bit counter that is incremented every rising edge
of 38.4kHz clock signal. If an edge occurs in the bit stream and counter is more than 16,
it means that counter is running too slow, so we increment it once more. This way we will
have proper bitclock within few octets received.

12

4.2.4 Flag Detector

It is important to know when a flag has been received. Flag detector will look for octet 7E
hex received in last 8 bits, uppon detection will rise its output.

4.2.5 Deserializer

Deserializer will translate bitstream to byte stream. It will also be responsible for removal
of redundant zeros added during bitstuffing.

4.2.6 UART Controller

UART controller will analyze the frame as it comes and send it to UART/USB port. It
will feature following:

• Decode call signs and SSIDs of destination and source node as well as repeater nodes

• Show some basic information about the frame(type)

• Output data in hex format to UART

4.2.7 LCD Controller

LCD controller will output destination and source call sign and SSID to the LCD. Display
will be cleared on every signal detection.

13

Chapter 5

Implementation

The two parts are connected via 3 signals(there are more signals, but those are not relevant
to this work):

• ENABLE - connected to P3M7

• RESET - connected to P3M2

• DATA - connected to P3M0

Signal ENABLE is risen by MCU in an event of signal detection. After the reception
stops the signal is lowered back.

Signal DATA represents the current bit/baud being demodulated.

Signal RESET (active HIGH) resets FPGA, clears LCD.

5.1 MCU Part

MSP430 is the heart of the demodulator. It uses several filters to demodulate the signal.
We will walk through every part of implementation done.

5.1.1 AD Converter

AD converter is setup according to the MSP430F168 datasheet[5]. The conversion is started
with timer on value 921. This gives sampling rate of 8kHz. Once conversion is complete
an interrupt is generated and the signal(value) is passed through filters. The lower 4bits of
12bit result are thrown away and only 8bit result is used for calculation.

5.1.2 Filters and Detection

All filters are placed into separate file filter.c .

14

FIR Filters

The implementation of FIR filters is based on Doc. Dr. Ing. Jan Cernosky’s IIR filter,
which can be found on his official site[4]. The filters use the coefficients mentioned in section
4.1.2. The code was modified to use hardware multiplier. Function prototypes are:

signed char filterFIR1(signed char); // 1200Hz

signed char filterFIR2(signed char); // 2200Hz

The functions return output from the filter.

Signal Detection

The absolute value filter had to be implemented as a macro because the MCU was
not able to process so many function calls.

#define FILTERABS(x) if(x<0) x=-x;

The low-pass filters were implemented as shown in section 4.1.3. Prototype of the
functions follows:

signed char filterLowpass1(signed char);

signed char filterLowpass2(signed char);

Data from low-pass filters is compared using if clause and outputs are set accordingly.

5.1.3 Bitstream Generator

Bitstream generator is an undocumented and unrequested feature. The generator is imple-
mented in file sampler.c . Purpose of this generator is to test the decoder in FPGA. The
feature can be accessed using two functions

int get_sample();

void set_sample(int *samples, int length);

Function set_sample() accepts array of octets to transmit. A special number -1 is used to
transmit flag. Second argument is length of array. Second function get_sample() is called
by a timer interrupt at a baud rate. It outputs a bit to be sent out.

5.2 FPGA Part

The FPGA part of the device consists of several components interconnected in top level.vhd.
Some of these components are based on controllers available from FITkit website[7].

15

5.2.1 Clock Generator

component ax25_clk_gen

port (

CLK : in std_logic; -- clock input

CLK8x1200 : out std_logic; -- clock output 8 x 1200

CLK32x1200 : out std_logic; -- clock output 64 x 1200

en : in std_logic

);

end component;

Clock generator is based on two counters that count to specified values. Once these
values are reached the according output is negated. Clock generator expects 7.3728MHz on
CLK.

5.2.2 Filter

component ax25_filter

port(

CLK : in std_logic;

EN : in std_logic;

DIN : in std_logic;

DOUT : out std_logic

);

Filter is implemented as a simple 5-bit shift register. The DIN is shifted in on every
CLK rising edge. The output is a simple but rather long logical expression, which looks for
at least three ones in the shift register.

5.2.3 Flag Detector

component ax25_flag

port(

CLK : in std_logic; -- bit clock input

EN : in std_logic; -- enabled

FRAME : out std_logic; -- frame begin strobe (flag received)

DIN : in std_logic

);

end component

Flag detector is a shift register that detects 01111110 sequence and sets FRAME ac-
cordingly.

5.2.4 Sampler

component ax25_sampler

port(

CLK : in std_logic;

EN : in std_logic;

SAMPLE : out std_logic;

16

DIN : in std_logic

);

Sampler is written as a 5bit counter. The counter is incremented on every rising edge
of CLK by 1 unless there was a change in DIN. Than it is incremented by 2, to compensate
clock drift.

5.2.5 Deserializer

component ax25_deser

port(

CLK : in std_logic; -- bit clock input

EN : in std_logic; -- enabled

DOUT : out std_logic_vector(7 downto 0);

READY : out std_logic; -- data read

DIN : in std_logic;

RST : in std_logic -- asynch reset

);

end component;

Deserializer consists of two shift registers:

• shift_reg

• shift_reg1

The shift_reg1 is shifted on every falling edge of CLK. If the shift_reg1 contains 5
or more consecutive ones, it locks shift_reg and it is not shifted by the CLK. This way it
is possible to remove zeros added by bitstuffing.

Please note, that the registers are shifted on falling edge, so they can react to detection
of flag properly.

5.2.6 UART Controller

component ax25_serial

port (

CLK : in STD_LOGIC;

DATA_VALID : in STD_LOGIC;

BYTE : in STD_LOGIC_VECTOR (7 downto 0);

RST : in STD_LOGIC;

RSTF : in STD_LOGIC; -- next line on rising edge

START : in STD_LOGIC;

-- UART interface

RXD_232 : in STD_LOGIC;

RTS_232 : in STD_LOGIC;

TXD_232 : out STD_LOGIC

);

end component;

17

UART controller is a FSM responsible for decoding of receiver frames as they came.
It goes state by state and converts the incoming octets onto readable data(either hex or
subfields) . 232 signals connect directly to pins.

After a loss of a signal, the FSM is locked and is waiting for first flag to be re-
ceived(START signal). Afterward it starts to process input.

5.2.7 LCD Controller

component ax25_lcd

port (

CLK : in STD_LOGIC;

DATA_VALID : in STD_LOGIC;

BYTE : in STD_LOGIC_VECTOR (7 downto 0);

RST : in STD_LOGIC;

RSTF : in STD_LOGIC;

START : in STD_LOGIC;

LRS : out std_logic;

LRW : out std_logic;

LE : out std_logic;

LD : inout std_logic_vector(7 downto 0)

);

end component;

LCD Controller is a lightweight FSM taken from UART Controller. This can only
output callsigns and SSIDs of destination and source nodes.
Attention: This component contains lcd ctrl high. It was found out that either the

component or the LCD cannot operate on small frequency(few kHz). In order to make LCD
work correctly the CLK had to be connected to 7.3728MHz source.

18

Chapter 6

Output Description and Usage

6.1 LCD

Every callsign + SSID is 7 characters long. Non-printable (mostly corrupted) characters
are shown as “?”. So the output on LCD may look like this:

QSL 0<SK9DEM0

Showing that the frame was sent from SK9DEM-0 to QSL-0.

6.2 UART

FPGA UART output has following format:

DESTINx < SOURCEx[VIA REPEATx][VIA REPEATx],{p/P}{acr} xx xx ...

Where:

• DESTINx - Destination nodes

• SOURCEx - Source nodes

• REPEATx - Repeater

• p/P - Bit P set/clear.

• acr - Acronym for the type of frame

• xx - hexadecimal representation of octet

For example

NJ7P 0 < N7LEM0,p71 EC 70 F0 00 00

NJ7P 0 < N7LEM0 VIA REPAA0,pI73 E4 AA 80 A2 84 80 49 EC 70 F0 00 00

19

6.3 Usage

Uppon connection to MCU via UART(more information on FITkit website[7]) there are
several commands available:

• help - prints available commands

• stop - stops currently running task

• start - starts reading signal from audio input

• positive - sets positive mode, logical 1 is represented by 1200Hz tones

• negative - sets negative mode, logical 1 is represented by 2200Hz tones

• test1 - sends test frame #1 to FPGA

• test2 - sends test frame #2 to FPGA

• freset - perform an FPGA reset

20

Chapter 7

Conclusions

Decoding frames in FPGA turned out to be a rather complex task. Also MCU speed is
barely enough for demodulation. If there was an AD converter attached directly to FPGA,
the filtering could be implemented smoothlessly into the FPGA and decoding into the MCU.
Another option is to use the SPI bus to send AD results to FPGA for demodulation

and back for decoding.
The positive side is that FPGA decoder can be used for much higher baudrates.
We have concluded that the filter may have som drawbacks since final rejection of the

other frequency(1200Hz for 2200Hz signal and vice versa) is around 30dB. It may happen
that some receiver may have a low-pass filter installed that will push the higher frequency
down and the demodulator may have problem reading signal correctly. A possible solution
may be a use of filters with higher rejection ratio, but for these is the MCU not fast enough.
The device may be used for monitoring of traffic on CB or amateur band. As far as we

know, there is no such embedded device available.
For future projects may the device be further modified to provide a repeater between

nodes. Or a separate project may build an AD converter connected to an FPGA for high
speed FIR filtering.

21

Chapter 8

Appendix

22

Figure 8.1: Response 1200Hz

23

Figure 8.2: Response 2200Hz

24

Bibliography

[1] William A. Beech, NJ7P; Douglas E. Nielsen, N7LEM; Jack Taylor, N7OO. Ax.25
ax.25 link access protocol for amateur packet radio.
http://www.tapr.org/pdf/AX25.2.2.pdf.

[2] WWW pages. Frequency-shift keying.
http://en.wikipedia.org/wiki/Frequency-shift keying.

[3] WWW pages. Ise webpack. www.xilinx.com/ise/logic design prod/webpack.htm.

[4] WWW pages. Iss official site. http://www.fit.vutbr.cz/~cernocky/sig.

[5] WWW pages. Msp430f168 datasheet.
http://focus.ti.com/docs/prod/folders/print/msp430f168.html.

[6] WWW pages. Octave. http://www.octave.org.

[7] WWW pages. Official fitkit website. http://www.fit.vutbr.cz/kit.

25

	Introduction
	Overview
	Chapters

	Brief description of FITkit
	Hardware
	Software for MCU
	Software for FPGA

	Link and Physical Layer
	Protocol AX.25
	Frames
	Bit Stuffing
	S Frames
	U Frames
	I Frames

	AFSK Modulation

	Design
	Demodulator
	Filter Chain
	Band-pass filters
	Signal Strength Calculation
	Alternative approach

	Frame Decoder
	Clock generator
	Filter
	Sampler
	Flag Detector
	Deserializer
	UART Controller
	LCD Controller

	Implementation
	MCU Part
	AD Converter
	Filters and Detection
	Bitstream Generator

	FPGA Part
	Clock Generator
	Filter
	Flag Detector
	Sampler
	Deserializer
	UART Controller
	LCD Controller

	Output Description and Usage
	LCD
	UART
	Usage

	Conclusions
	Appendix

