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Abstrakt
Tato práce pojednává o fenoménu grafického intra, často označovaném jako digitálńı graffiti.
Detailně se rozebere téma grafického intra s omezenou velikost́ı a poṕı̌śı se techniky vhodné
k jeho realizaci. Na konci práce jsou diskutovány postřehy a zkušenosti źıskané během
tvorby, stejně tak i celkové shrut́ı a pohled do budoucna.
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Abstract
This work deals with the phenomenon of graphic intros, a digital graffiti of the modern age.
The focus is put on size restricted animation of size of the executable file lower than 64
kilobytes. It reveals the main techniques used. Finally, interesting aspects and experiences
that came up are discussed, as well as the conclusion and future work proposal.
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Chapter 1

Introduction

The purpose of this thesis is to present a subculture of computer art, dating from the late
1970’s but still rather not well known to the general public. This work, in particular, speaks
about short animations, furthermore about size-restricted to 64KB. A part of the project
was producing a final piece of computer art, a short animation. However, the focus is put
on describing techniques chosen or developed. The primary intention was to create a library
and a set of tools for possible future use or as a inspiration for others.

1.1 Graphic demo and intro

A graphic demo is a noninteractive multimedia presentation or animation. In contrast to
the common video, it is produced as an executable program, which renders the animation
in real time, making the computational power of various computing devices a considerable
challenge. There are several categories demos are informally classified into, based on the
output platform, size restriction or contents of the demo. Nowadays, it is the most common
to see demos running on Microsoft Windows, as a stable and uniform platform providing
good support for hardware accelerated rendering. However, there is a wide range of other
popular platforms, such as Linux or BeOS or text mode animation. The challenge of real
time animations eventually spread on some curious platforms as PDAs, mobile phones, iPod,
Nintendo or calculators, extending the horizon of possible applications of those devices.

Another challenge is considered the size restriction of an executable code of a demo.
There are several categories, usually based on technological capacities of older computing
devices. These limitations are in most cases obsolete with modern computers, but they
provide a competition area for coders. A size limited demo is often referred to as an intro.
The most important is the division between the “full-size” demos and the size-restricted
intros, a difference visible in the competitions of nearly any demo party. Because of the
strict size limits, intros show off the programmer’s ability to squeeze much into little space,
often by generating graphic and sound data rather than just reading it from a datafile.
Because of the extremely low size limit, 4K intros used to lack sound, or had extremely low
quality music. Some demoparties organize 1K, 256 byte or even 64 byte intro competitions.
While creating a 4K might not require low-level programming knowledge anymore, less-
than-1K competitions require the demo coder to be skilled in both assembly programming
and algorithmic optimization. The most typical competition categories for intros are the
64K intro and the 4K intro, where the size of the executable file is restricted to 65536 and
4096 bytes, respectively. It is also quite common to classify demos by style and content
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rather than technology. Storydemos, for example, are based on a story line, while ravedemos
share the musical and visual aesthetics of rave parties. The most experimental, unusual
and controversial demos are often referred to as art demos or abstract demos. Many groups
have a distinctive style of their own, and sometimes a demo can be described by referring
to a well-known group cultivating a similar style.

Figure 1.1: A 64K demo Chaos Theory(2006) by Conspiration ranked 2nd at Assembly
2006 party.

Demo making is considered a subculture of computer art, referred to as a demoscene.
The animation itself is rarely made by a single person, instead a demogroup is formed,
involving programmers, musicians and graphic artists. Members of a demogroup, de-
mosceners, usually share similar ideas and the group keeps their characteristic style of
animation. A demoscener is typically specialized in a certain area of creativity. The tradi-
tional division is in coders, graphic artists and musicians, who are specialized in program-
ming (often including overall design), still graphics (including 2D art and 3D modelling)
and music, respectively. Eventually, groups compete with each other in technical and artis-
tic excellence. That takes place either on the internet or, more likely, on a demo party. A
party based competition, so called compo, is basically a huge LAN party held for several
days. Demogroups enrolled in the competition usually present their work since the last
demo party. However, depending on the rules of the competition, it is not rare to compete
in making demos straight on the party. There are usually no restrictions on the contents
of competing demos. The vote is public and generally the overall impression decides.

1.2 Development

The demoscene dates form the 1980’s, in the era of 8-bit computers such as Commodore
64 or ZX Spectrum and becomes widely popular with the rise of 16/32 bit computers, as
Atari or Amiga. In the early years, demos were strongly connected with software hacking.
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The cracker or the team commonly inserted short graphic introductions in order to take
credit for their effort. Later, the scene evolved into a standalone culture independent from
software piracy. These demos usually involved scrolling text or bitmaps, simple vector
graphics and synthetised music. Competitions and parties were held at own houses or high
school gyms, involving only few people. Later, in the nineties, more complex vector routines
comes, bringing the importance of three dimensional approach. Larger parties are organized
in town arenas of major cities. The advancement of hardware accelerated graphics brings
PC to the front of interest.

Figure 1.2: A still image from munching squares display hack. Image taken from [4].

1.3 Czech and Slovak demoscene

The czechoslovak demoscene dates from early nineties with GIH DemoBit demo-party
(1993) in Bratislava, held as a competition of high school projects. Lack of serious de-
moscene in the Czech Republic brought czech demosceners to the idea of organizing Fiasko
demo-party (1998) in cooperation with the Charles University in Prague, Faculty of Math-
ematics and Physics. Raise of the czech demoscene is clearly seen in those years. Demos
and intros submitted to international competitions brought fame to czech programmers and
computer artists, especially in the category of extreme size restriction such as 256 byte or
4KB.

1.4 Motivation

Even through the extensive technological progress in computer graphics, today’s demoscene
is, generally, divided in two contrary parts. One is a bit more than a mere audio-digital
projection, while the other is rather blindly following the eye-taking technological modern
trend. We can see creations whose high artistic spirit will outlive all the new technological
excesses of modern time. The other, however, often creates an imaginary sieve where
many brilliant pieces might finally end unnoticed. That is rather believed proposal of the
mainstream demoscene further development.
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This project relations to the Year Project in some aspects. It employs knowledge of
computer graphic techniques and approaches, specifically related to OpenGL standard.
Skills obtained through the last year work on the Year Project were used to tailor selected
techniques to produce a minimalist animating solution. We try to create a functional
set of tools for further animation development. The primary focus is not on technically
advanced rendering, however, several recent techniques and optimizations are considered to
be implemented, to provide additional space for someone’s creativity.
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Chapter 2

Concept

The primary intention is to develop a solid system for creating short, size-restricted intros.
Basically, it is two major units that together make an intro. It is a rendering system and
data of the scene. Each demogroup has usually its own demotool tailored to the approach
the group takes towards the process of animation-making. Intros are executable programs,
and the program code created by the coder is still considered a very important element of
an intro. Although there are programs known as demomakers or demotools that allow the
creation of technically decent demos without coder involvement, demo groups not using any
code of their own are often considered as “cheating” the demo making. Furthermore, in
order to get an in-depth understanding of what is behind making an intro, no third-party
components will be used.

The work will be divided into 3 major units. Firstly, it is DemoBasic, a library with
a minimalist rendering system and structures to describe and animate the rendered scene.
Secondly, it is a demotool application. Finally, an animation is created using the compo-
nents mentioned above. See fig. 2.1.

2.1 OpenGL is a good choice

The rendering system will be built on OpenGL graphic library, the industry’s widely used
and supported 2D and 3D graphics application programming interface(API). It provides a
basic API to hardware accelerated graphic routines, is well arranged and easy to use as a
graphic foundation for higher-level APIs. Furthermore, OpenGL is supported on all UNIX R©
workstations and shipped standard with Windows and MacOS personal computers. It runs
on all major operating systems including Windows 95/98/2000/NT/XP/Vista, MacOS,
OS/2, UNIX, LINUX, OPENStep and BeOS [8][9]. At present, the rendering system and
the animation itself is being developed for PC running Microsoft Windows. However,
portability to other platforms has been kept in mind as a possible future development of
the project.

The rendering system, which forms the DemoBasic library, will be composed as a set
of data structures describing entities of the animation and functions operating with them.
Considering the size of the output code, it is primarily designed as an automation of OpenGL
commands, data structures and general techniques. On top of that are methods providing
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Figure 2.1: A model of an approach.

secondary functionality including decompression of data, parametric definition of data and
scripting.

Let’s begin with the basic functionality.

• defining and showing geometry

• lighting of the scene

• texture states and materials

• environmental attributes

• handling OpenGL extensions

2.2 Basic functionality

This section describes the basic entities and methods designed for DemoBasic library. They
are intended to provide an easy-to-use approach to general 2D/3D rendering techniques and
OpenGL commands [14]. Furthermore, they prepare solid ground for further approaches
more relevant to intro making and to the size restriction.
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2.2.1 Geometry

Geometry data will be held in indexed data arrays. That is, data such as vertices or normals
are held in separate sequential buffers, index buffer provides references to enabled buffers
when constructing geometry primitives. This is an approach identical to OpenGL routine
DrawElements[13]. This approach, in contrast to direct construction from data arrays,
provides a compact way of storing data.

Figure 2.2: Constructing geometry via indexed arrays.

The focus is primarily on the simplicity of code and compatibility with different graphic
devices. Vertex arrays, included in OpenGL 1.1 Standard, provide a compromise between
compatibility and rendering performance. A favourable alternative to vertex arrays is com-
piled vertex arrays, defined through EXT compiled vertex array extension. It allows the
vertex buffers to be locked, giving the driver more optimization opportunities. Another
option is to use Vertex Buffer Objects, defined through ARB vertex buffer object extension.
This mechanism allows various vertex data to be cached in high-performance graphic mem-
ory on the graphic device, therefore significantly increasing the data transfer rate. However,
older implementations of OpenGL do not support vertex buffer objects. See section 2.2.3
about OpenGL extensions.

OpenGL evaluators

It is intended to widely employ parametric surfaces, particularly Bézier surfaces. OpenGL
natively supports rendering of polynomial surfaces with Bézier basis through a mechanism
called evaluators. For various reasons, evaluators have not been particularly popular as an
interface for drawing curves and surfaces. Generally speaking, OpenGL evaluators provide
only basic functionality for rendering of surfaces and there are several major limitations.
Firstly, due to the nature of OpenGL, there is no straightforward mechanism to retrieve the
geometry values produced by evaluators. If it is the case the geometry data is needed for
further computation (case of collision detection of objects for example), OpenGL evaluators
can not be used.

Secondly, the basic functionality of evaluators does not cover the needs of today’s mod-
ern approaches and techniques. OpenGL evaluators provide a way to use polynomial or
rational polynomial mapping to produce vertices, normals, texture coordinates and col-
ors. It is, however, desirable to use other vertex attributes in nowaday’s techniques in-
cluding multiple texture coordinates sets for multi-texturing, vertex weights for skeletal
animation, tangents and binormals for custom per-pixel lighting and others. See section
2.2.3. This obstacle would be partially solved by a specific OpenGL extension, particularly
GL NV evaluators by NVIDIA Corporation, proposing a new interface for surfaces that
provides a number of significant enhancements to the functionality provided by the original

7



OpenGL evaluators [10]. This extension is, however, not longer supported in driver updates
after November 2002 due to low popularity of evaluators.

Furthermore, only the number of rows and columns can be specified for the tesselation
process [13]. This does not allow optimizing the tesselation for particular purposes, such
as progressive resizing of the tesselation grid based on the distance from viewer. Also,
difficult problems can arise when multiple adjacent patches are drawn. Numerical accuracy
problems can cause cracks to appear between patches with the same boundary control
points.

At last, evaluators involve a lot of math. Many implementations do not optimize evalua-
tors and the performance becomes unacceptable in immediate mode. Furthermore, inserting
evaluators in a display list does not cause any significant performance increase, that is be-
cause evaluators themselves being compiled into the display list are not pre-calculated to
produce the geometry data. See fig. 2.3.

It is a commonly proposed approach to implement own tesselation routines. See section
2.3.

Figure 2.3: A simplified diagram of OpenGL rendering pipeline.

Structure

The structure itself is intended as a foundation for procedural-generated geometry or para-
metric surfaces. It proved to be useful to contain binormals and tangents in the structure.
A rather high amount of custom per-pixel lighting is expected in an intro. (see section
2.2.3.)

Structure for defining geometry will allow following data.

• vertices – essential for geometry construction

• normals

• binormals

• tangents

• multiple texture coordinates – a set of texture coordinates for each texture layer
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• vertex colors

• vertex groups and bones

2.2.2 OpenGL state - lighting, materials and textures

OpenGL, internally, acts as a state machine. That is a collection of states that holds the
information about current lighting parameters, material definitions and many others. Then,
the rendering of each primitive drawn is affected by the current state. OpenGL, naturally,
provides mechanisms to query and control the current state. The goal is to automate state
changes of logically separate units including lighting, texture state definition and material
properties. To do that, we will hold the data relevant to each unit in a structure, allowing
to change the state to reflect the given data in one function call.

Light

The structure will hold data relevant to defining a light source as specified by OpenGL
function glLight [13].

Material

The structure will hold data relevant to defining a material properties as specified by
OpenGL function glMaterial [13].

Fog

The structure will hold data relevant to defining a fog properties as specified by OpenGL
function glFog [13].

Texture state

This is a slightly different case. The structure will hold data relevant to texture binding
and texture combiners settings for one or more texture units (see section 2.2.3). Further-
more, the routine responsible for applying the changes will guarantee the consistency of
the OpenGL state. That is, primarily, checking the limits of current hardware, enabling all
used texture units and disabling the unused ones. Furthermore, the implementation will
optimize OpenGL state changes.

2.2.3 OpenGL extensions

OpenGL is architected for flexibility and differentiation. The processing pipeline is defined
by the OpenGL specification, however, platform vendors have the freedom to tailor the
OpenGL implementation to meet desired requirements. That is achieved by extending the
OpenGL specification. Generally speaking, an OpenGL extension is a functionality that is
not (or is different) in the original specification. Each extension is uniquely identified by
its name and defined by its specification [5]. Basically, an OpenGL extension brings either
a whole new function or an alternative to behaviour of an existing function.

OpenGL Architecture Revision Board (ARB) is an independent consortium governing
the future of OpenGL. Its goal is to approve OpenGL specifications and advance the stan-
dard. In July, 2006, it has joined with the Khronos Group, an industry consortium focused
on creation of open standard APIs [11].
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The fundamental OpenGL specification (version 1.0) is guaranteed to be supported by
every OpenGL-compliant graphic device. In today’s rapid development of computer graph-
ics industry, graphic hardware vendors encapsulate their developed techniques and improve-
ments in OpenGL extensions providing access to cutting edge rendering functionality so the
application can achieve higher performance and rendering quality. In addition to opening
the door to the latest features of the hottest new graphic hardware, it provides backward
compatibility strategy with older OpenGL implementations which does not support the
desired extensions. OpenGL employs a mechanism to determine at run-time whether the
OpenGL implementation supports the particular extension or not. Furthermore, each time
the standard advances, approved extensions are included and the compliance of a graphic
device with an OpenGL standard (eg. 1.1, 1.2, 1.2.1, 1.3, 1.4, 1.5, 2.0, 2.1) guarantees the
presence of support of all extensions included in the standard.

Due to the demanded size limitation of the rendering system, ARB approved extensions
are recommended. They provide functionality respected by majority of hardware vendors
and graphic devices, hence it is not necessary to develop individual routines specific to the
design of current hardware. An important issue is to provide functionality with graphic
hardware that does not support the specified extension.

Structure

The library will contain a set of functions to work with OpenGL extensions. Firstly, it
is a tool to query the support of the extension on current hardware. Secondly, it is a
set of routines which provide access to the extension’s routines. The library will contain
mechanisms to:

• query the presence of given extension on current hardware at run-time

• provide entry points for routines implemented by given extension

Furthermore, we will provide automation of routines specific to frequently used ex-
tensions. The attention was put on simplifying the use of techniques relevant to modern
approaches. Namely, the decision is:

• to optimize performance of rendering of geometry using EXT compiled vertex array
and ARB vertex buffer object extension

• easy use of multiple texture units for multi-texturing via ARB multitexture extension
(included in the OpenGL 1.2.1 Specification)

• accessing programmable texture combiners through ARB texture env combine and
ARB texture env dot3 extensions (included in the OpenGL 1.3 Specification)

• to allow low-level custom vertex programming with ARB vertex program extension
(OpenGL 1.3 Standard is required)

• to allow low-level custom fragment programming with ARB fragment program exten-
sion (OpenGL 1.4 Standard is required)

• to access advanced image processing capacities of the graphic device via ARB imaging
extension (included in the OpenGL 1.2.1 Specification)

• ARB point sprite
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Optimizing rendering of geometry

Compiled vertex arrays is a simple technique allowing the user to lock portions of the vertex
data. At that step, driver can perform several optimizations on them including removing
duplicated vertices and copying the data to high-performance memory. Going further, the
need of copying the data can be removed using vertex buffer objects.

Multi-texture and texture combiners

Multi-texturing is a frequently used technique. It allows to process and apply multiple tex-
tures to rendered geometry in a single pass. The ARB multitexture extension implements
several functions. In order to keep the size of code as small as possible, we will use the
necessary minimum:

• MultiTexCoord2f and MultiTexCoord3f allow to define two and three-dimensional
texture coordinates for given texture unit

• ActiveTextureARB and ClientActiveTextureARB allow to select the active texture
unit for server and client side respectively

Programmable texture combiners is a mechanism allowing further control over blending
operations when multi-texturing is employed. It provides limited facility to per-pixel opera-
tions in contrast to fully programmable fragment programs, however, most implementation
optimize the performance of texture combiners making them noticeably faster. Neither
ARB texture env combine nor ARB texture env dot3 introduce new functions, however,
behaviour of OpenGL standard TexEnv function is expanded to reflect the new function-
ality.

Vertex and fragment program

Vertex and fragment programs expose a significant degree of per-vertex and per-fragment
programmability, making the vertex and fragment operations highly customizable. For the
sake of simplicity and size of the code, ARB vertex program and ARB fragmen program
are used for GPU programming. Basically, vertex and fragment program is a sequence
of floating-point 4-components vector operations written in assembler-like programming
language, compiled at run-time and loaded into the graphic device.

Imaging subset

The new features of the imaging subset are primarily intended for advanced image pro-
cessing applications. It is, however, possible to employ this functionality to perform post-
processing filtering in order to enhance the quality of real-time rendered scene, hence, to
provide impressive effects.

The imaging subset brings following additional functionality to standard pixel opera-
tions.

• color tables

• color matrices

• convolution - 1D, 2D and separable
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• pixel statistics

• new blending equations

Point sprites

Specific tasks, such as rendering of particle systems, need the geometry to face the viewer
at all times. The conventional approach required an additional state change to remove the
rotation of the viewer from transformation matrix before each primitive is drawn. Fur-
thermore, particle systems have tended to use a four-sided rectangular polygons to render
their geometry. That can be expensive on vertex-processing operations for systems with a
high number of particles as this approach quadruples the amount of geometry needed to be
processed. The purpose of ARB point sprite extension is to allow to render particle systems
using standard OpenGL points rather that quads. The new functionality provided includes
texture-mapped rectangular points and automatic generation of texture coordinates.

2.3 Parametric curves and surfaces

When Archimedes (287 BC – 212 BC), a Hellenistic mathematician, physicist, engineer,
astronomer, and philosopher, introduced his inventions for irrigating high-pitched areas,
he defined what is believed to be one of the first mathematical curves, Archimedes’ spiral.
The spiral is a set of points corresponding to the locations over time of a point moving
away from a fixed point with a constant speed along a line which rotates with constant
angular velocity. Nowadays, scroll pumps and scroll vacuum pumps as well as some DLP
television sets still use technology based on Archimedes spiral. Johannes Kepler applied
various curves in astronomy, clearly in his study of Mars’ orbit relative to the Earth.

With the industrial development in the nineteenth century came the need for more
complex analysis and stable solutions. New production technologies demanded a method
to describe surfaces and shapes, accurate and still suitable for machine processing. Pierre
Étienne Bézier (1910 – 1999), a French engineer, developed a mathematical solution of
the Bézier curves and Bézier surfaces for Renault, where he was working on UNISURF
CAD CAM system. In 1959, Paul de Casteljau, a physicist and mathematician at Citroën,
developed an algorithm for computation of a Bézier curve. It has been widely used, although
the efficiency has been questioned compared to today’s algorithms.

There are two major ways of seeing curves and surfaces, based on the way they are
defined and their purpose.

• An interpolation curve and an interpolation surface is a tool for modeling shapes and
objects of the real world. A Bézier curve and Bézier surface is an example of employing
curves to design shapes of objects in the modern industry. An interpolation curve
and surface is defined by the set of points in space which it goes through. Saying in
simple words, they are defined by their appearance.

• A mathematical curve and mathematical surface, on the other hand, represents the
result of a mathematical formula. Therefore, it is used as a visualization of the result
of a computation.

Interpolation curves and surfaces offer convenient way for modeling shapes. Basically, a
provided set of points defines the shape. A continuous and smooth curve or surface is put
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through these points. It has the capacity to interpret basically any shape, and yet provides
an intuitive approach to the modeling.

Figure 2.4: A teapot constructed using parametric interpolated surfaces.

2.3.1 Bézier curve

Bézier curves and surfaces are now used in most computer-aided design and computer
graphics systems. There is robust and stable mathematical base and efficient algorithms.
They represent smooth shapes, which are easy to manipulate, have good continuity prop-
erties and require relatively small amount of input data. In addition, common parametric
shapes such as spheres, cylinders or cones can be well approximated by a small number of
Bézier surfaces. Rational Bézier curve adds adjustable weights for each control point to
provide closer approximations to arbitrary shapes.

Application

In real situations, Bézier curve is considered in one, two or three-dimensional Euclidean
space. However, there is no limit on the dimension in which the curve is evaluated. Com-
puting is componentwise, therefore the calculation is separable for each component of the
vector. For the reason of effectivity and computation speed, at most cubic Bézier curves,
of degree 3, are used. More complex shapes are constructed with several curves joined
together. This method is known as a spline, in this case a Bézier spline.

There is a wide variety of application for Bézier curves. Originally, two and three
dimensional curves were designed to represent shapes. Furthermore, they are well suited
for defining paths in space, which are traced by objects. The movement is smooth and
continuous, naturally, Bézier splines allows for sharp corners at points where two curves
meet. One-dimensional Bézier curve is also interesting. It can be used as an interpolation
function for a variable changing it’s value over time. This can be beneficial when defining
an animation of an object.

2.3.2 Bézier surface

Bézier surface can be viewed as a generalization of Bézier curves. It can be of any degree,
but cubic Bézier surfaces generally provide enough degrees of freedom for most applications.
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Figure 2.5: An example of a Bézier spline constructed from three Bézier curves.

A Bézier surface of degree (n, m) is defined by (n+1)(m+1) control points Pi,j for integer
indices i = 0 to n, j = 0 to m.

2.3.3 Implementation

Due to their complexity, Bézier curves and surfaces can not be rendered directly. Instead,
they are transformed into a set of primitives understandable for graphic hardware. The
transformation is included as core function in OpenGL standard through one and two
dimensional evaluators. Given a set of control points, degree of the polynomial function
and interval on which to evaluate, the curve or surface is rendered using OpenGL primitives.
This approach clearly benefits from the computational power of the graphic device. On the
other hand, due to the nature of OpenGL, it is not possible to store the calculated data
into any kind of buffer for further reading. This is a considerable disadvantage, as the
curve or surface must be evaluated every time it is rendered. It is also desirable to keep
the evaluated coordinates for further processing or calculations, for example animating the
structure of an object or creating interactions and employing physics. Obvious case would
be a Bézier curve, which is rarely rendered, instead it is mostly used as a path for animating
movement of objects.

2.4 Noise and procedural textures

2.4.1 Perlin noise

Perlin noise was developed in 1981 – 1983 by Ken Perlin as a part of his study of procedural
textures for Mathematics Application Group, Inc. (MAGI). At that time Ken Perlin worked
on special computer imagery for TRON (1982), the first movie with a large amount of solid
shaded computer graphics. In 1985 the noise was presented as a paper at SIGGRAPH 85
Annual Conference[2]. He revised and improved the algorithm in 2002, which was described
at SIGGRAPH 2002 paper [3].

The main aim of Perlin noise is to produce naturally-looking distorted signal. In the
nature, many things are in the form of fractal. They have various levels of detail. Perlin
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noise follows the same idea, it is an interpolation of multiple noises of different frequencies
as shown in figure 2.6. Perlin noise is widely used in computer graphics for effects like
fire, smoke, and clouds. It is also frequently used to generate textures when memory is
extremely limited, which makes it well suited for graphic intros. However, Perlin noise can
be applied in basically any case where a smooth natural-looking distortion is desired.

Figure 2.6: A principle of Perlin noise. Five layers of noise of various frequency and
amplitude are blended together.

The gist of Perlin noise is a noise function. For given frequency, the noise function
generates a smooth noise wave, which is used to create a layer of Perlin noise. The orig-
inal approach, as developed by Ken Perlin and described in his paper [2], employs cubic
polynomial function generating the wave from given random values. However, several other
methods have been described, considering the speed and efficiency of the process.

The noise function

The essential part is a random noise generator. In this case, it is desirable to employ a
generator based on a seed, so that it is possible to reproduce the same noise again. The
noise function operates on a domain of real numbers and can be of basically any dimension.
A random value is generated at each multiple of the given wavelength. To produce smooth
noise, the interval between two generated values is interpolated. There are three major
interpolating techniques.

Linear interpolation is the simplest technique. The algorithm can be possibly used for
real-time computation, the drawback of this method is clearly the poor quality of the result.

Definition 2.1 Given points A, B and the fraction f of the interval between them, f ∈
[0, 1], linear interpolation ILIN between A and B at position f can be defined as

ILIN (A,B, f) = A (1− f) + B f. (2.1)

Cosine interpolation provides much smoother result than linear interpolation. It is
clearly better if a slight loss of computation speed is not an issue.

Definition 2.2 Given points A, B and the fraction f of the interval between them, f ∈
[0, 1], cosine interpolation ICOS between A and B at position f can be defined as

ICOS(A,B, f) = ILIN (A,B,
1
2

(1− cos(f π))). (2.2)
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Cubic interpolation gives very smooth result because the function respects gradients in
both border points. However, low speed of such algorithm is a considerable disadvantage.
The quality of the result might finally not be adequate the computation time. The algorithm
is based on the same principle as cubic Bézier curves. The interpolation is performed on
four points (instead of two border points as previous methods) – the border points A and
B, the predecessor of A and the successor of B. These points form four control points of a
cubic Bézier curve. The fraction f of the interval between A and B is adjusted to define
that portion of the curve.

Definition 2.3 Given points APRED, A, B and BSUCC , which represent the predecessor
point, both points of interpolation and the successor point, and the fraction f of the interval
between A and B, f ∈ [0, 1], cubic interpolation ICUB between A and B at position f can
be defined as

P = (BSUCC −B)− (APRED −A) (2.3)
Q = (APRED −A)− P (2.4)
R = B−APRED (2.5)
S = A (2.6)

ICUB(A,B, f) = P f3 + Q f2 + R f + S. (2.7)

Figure 2.7: An example of two-dimensional interpolations.

Multiple layers

To produce natural-looking output, several noise functions of different frequencies are added
together. It is recommended that the frequency of each noise function is double of the
previous, thus f = 2i where f is the frequency and i is the i-th noise function being added.
Two terms, persistence and number of octaves are used to control noise functions and their
addition.

• Persistence is a value specifying the amplitude of the noise wave of given frequency.

Definition 2.4 Given the frequency f of a layer of Perlin noise, in a form that f = 2i,
and persistence P, the amplitude A(f) of noise function can be defined as

A(f) = Pi. (2.8)
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• Number of octaves represents the number of noise functions being added, in other
words the number of layers of Perlin noise.

Hardware implementation

Let’s recapitulate the idea of Perlin noise. It consists of layers of smooth noise data. That is
achieved by interpolating random noise values. Finally, layers are added together. See figure
2.6 for an example. All these steps can take considerable advantage of the computational
power of modern GPUs. Nowadays, basically every graphic card on the market offers
texturing with linear filtering. That is a very well suited instrument for generating smooth
noise waves. Furthermore, blending capacity of the graphic hardware can be used to add
noise waves together.

The hardware implementation brings several differences. The produced Perlin noise
and it’s each layer (each noise wave) is represented as a two-dimensional texture. That
is because the whole operation is done into a viewport or an off-screen buffer, which are
naturally two-dimensional. That means this approach can be used to generate sampled
Perlin noise, but not a continuous function. However, for the reason of performance, it is
desirable to hold the produced Perlin noise in a buffer instead of calculating every time it
is needed.

At first, a noise texture is generated, using a common random value generator. This
texture is used for generating interpolated samples, which are drawn one on top of the
other using the blending capacity of the graphic hardware. Furthermore, this method can
benefit from the ability of the hardware to use several texturing units in a single pass, so
called multitexturing. Blending layers using various opacity factors equals to adding noise
waves of various amplitudes, therefore it is possible to use the same noise texture for all the
samples. The trick to the increasing frequency of added samples is using portions of the
noise texture. Smaller portion of the texture represents a noise wave of lower frequency,
on the other hand, the size of the whole texture represents the highest frequency available
without repeating the noise.

There are several approaches to produce interpolated noise samples, based on the ca-
pacity of the graphic hardware and the quality of the output. Producing linear-interpolated
samples is relatively simple and does not require specific graphic hardware and OpenGL
extensions. A textured polygon is rendered to fill the whole viewport or off-screen buffer.
If the portion of the texture mapped on the polygon is smaller than the viewport size and
linear filtering is enabled on the graphic device, the rendering is naturally linear interpo-
lated when the part of the texture is stretched to fill the desired space. This approach is
very efficient, making it possible to produce Perlin noise on common graphic hardware in
real time. For better interpolation methods, convolution filters can be used. However, this
approach require more sophisticated graphic equipment with support for the ARB imaging
extension. The quality of linear-interpolated Perlin noise, as an easy, compatible and effi-
cient approach, is shown in figure 2.8. This method gives satisfying result not much worse
than cubic-interpolated Perlin noise, used as a reference quality measure.
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Figure 2.8: A quality experiment of five layer Perlin noise . Linear-interpolated Perlin noise
(left) in comparison to the original approach, Cubic-interpolated Perlin noise(right).

2.5 The principle of rendering and animating

To bring the scene to life is basically the most important part of the whole process of
making an intro. At the final state, the animation should be smooth and pleasant to watch.
Furthermore, sound and music is integrated to emphasize the overall mood. A high level
of synchronisation is desired.

The whole animation is commonly splitted into smaller logical portions (scenes). Find-
ing appropriate algorithms and approaches to control the scene animation is essential for
later synchronisation process. Using parametric algorithms is a well suited approach. In
principle, the properties of objects involved in the scene are bound to variables, usually in
the real numbers domain, which are adjusted by a control algorithm. The control algo-
rithm, given a reference value, provides the value of the bound variable. An apparent and
convenient way is animating the scene based on the time flow of the animation. A value of
each variable controlling the animation is computed from the time interval.

A common and efficient approach is to employ polynomial functions in algorithms con-
trolling the animation. Namely, Bézier curves and Béezier splines are easily and intuitivelly
used. As being parametric curves, they are evaluated giving the specified time as a param-
eter. Additionally, nonuniform Bézier splines handle nonhomogeneous distribution of the
time interval over the curve. That is convenient to control the acceleration produced on
the curve.

2.6 First step of compression

In order to minimize the size of structures holding data for the rendering system, we in-
troduce a simple model of data compression. This model is based on quantization of
homogeneous arrays of values to minimize the bit-depth needed to represent each value.
Note that this approach represents a lossy data compression. Generally, the situation is
to express real numbers with floating-point precision as numbers with fixed-point precision
using less bits. Furthermore, we propose a refinement of common quantization approach to
adapt to the internal structure of data used in the rendering system.

Let’s put an example of data structure holding control points of Bézier surface, which is
intended to be widely used. The surface consists of several patches. Each patch is defined
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by 16 control points, each of a three-component vector of real numbers. Considering that
each adjacent patch shares 4 edge control points and there is N patches in the surface,
there is exactly 16+(12∗ (N −1)) control points in the surface. For a surface of 10 patches
it is 140 control points resulting in a buffer of 1680 bytes (3 components per control point,
32 bits per a floating-point real number). In a real situation, the number of patches is
considerably higher, resulting in several hundreds of control points in one surface. That
makes Bézier surfaces significantly expensive on the size of input data.

Quantization

Let’s look at the data to be compressed. It will be primarily arrays of control points,
normals and texture coordinates. Generally, it is not possible to predict the distribution
of the data over its bounding area. Therefore, an uniform quantization is preferred and, in
real situations, it provides good results. See fig. 2.9 for a test of quality of the produced
data.

Figure 2.9: A comparison of quantize-coded mesh (right) with the original (left). A 32 bit
floating-point vertex buffers were quantized to 10 bit fixed-point precision, a 32 bit floating-
point buffer of normals was quantized to 8 bit fixed-point precision. The mesh consists of
1980 vertices and the same amount of normals, resulting in 47 520 bytes of data(the original
approach) and 13 365 bytes of quantized data. The subjective visual quality has been well
preserved. The model has been taken from Blender standard models.
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Interleaved arrays

Eventual enhancement of the coding technique comes from further investigation of the data
to be compressed. In important cases, such as arrays of vertices, there is usually an internal
structure in the array itself. Let’s demonstrate on an array of vertices. It is a sequence of
three-component vectors representing each vertex in three-dimensional space, eg. it consists
of values for X, Y and Z axis. See fig. 2.10. It is, then, possible to quantize each component
separately, using various bit depths. This approach clearly benefits from the knowledge of
the structure topology to reflect the bit-depth precision used to quantize each component.
In case of an irregularly sized object, for example, the use of various bit depths for each
axis (eg. X, Y or Z) allows more precise coding maintaining the same number of bits.

Figure 2.10: A structure of an interleaved array of vertices. Each vertex is a three-
component vector representing values in X, Y and Z axes respectively.
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Chapter 3

DemoBasic library

The main challenge in making a demo is clearly it’s limited size. Apart from expressing ideas
or telling a story, there certainly is a satisfaction for programmers to show how much can
be packed in such a small amount of code. Despite of it’s small size, the animation should
appear complete, producing comfortable and enjoyable experience for a viewer. Most of
todays intros are developed for Microsoft Windows for it’s uniformity and good support of
modern graphic hardware and tools.

One way to decreasing the size of the output executable code is clearly the right choice of
a compiler. Yet more important, there are techniques to minimize the size after compilation
using compressing techniques.

3.1 Programming language and compiler

Earliest demos were typically made in machine code monitors, the same programs that
were used by the crackers to crack copy protections. The next step was the transition from
monitors to assemblers. Higher-level programming languages, such as C and C++, started
to gradually take over assembly programming in the demos of the 1990s, when cycle-level
timing was no longer considered as important as before and compilers were beginning to be
able to produce code comparable to hand-coded assembly. The transition to higher-level
languages originated in the PC scene. Nowadays, demos programmed in pure assembly are
rare on the PC, except for the extreme size-restricted categories.

C and C++ are well suited for making size restricted intros, as they provide enough
flexibility and compilers produce native binary code. There is a wide variety of C anc C++
compilers for Microsoft Windows, some are more suitable than others though.

• MinGW – Minimalist GNU for Windows is a collection of freely available and
freely distributable Windows specific header files and import libraries combined with
GNU toolsets that allow one to produce native Windows programs that do not rely
on any 3rd-party C runtime DLLs.

• Microsoft Visual Studio is a comercial solution which provides a powerful tool
for making native Windows applications. It contains highly optimized C and C++
compiler. However, the produced program relies on a third party runtime DLL, which
is not present in all configurations of Microsoft Windows.
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• Intel C/C++ Compiler offers excellent compiler and other tools for developing and
tuning Windows applications which do not rely on any 3rd-patry runtime libraries.
It is distributed for comercial purposes though and is available to buy or limied trial
only.

A question whether to use pure C or more flexible C++ came up. C++ offers a fancy
and well arranged coding, as well as further optimizations. However, it is necessary to
consider the size of the output code. Because no really reliable investigation was found,
a simple experiment took place to answer this question. A basically random code, yet
functional and relevant to computer graphics, OpenGL and this project, written in pure C
was gathered from several sources, put together and compiled. Furthermore, the same code
was gradually transformed into C++, using namespaces, classes, user-defined operators,
templates and memory allocation using the new operator. MinGW – Minimalist GNU for
Windows was used for compiling, as it was also the decision for compiling the whole project,
using gcc as the compiler. Also, the Ultimate Packer for eXecutables (UPX), see section
3.2, was used to see the final output size, as it was also the decision for reducing the size of
the final executable in this project.

Compiling the C code, removing unused resources, as debugging symbols, and com-
pressing produced a 24Kb executable. The transformed code using namespaces for better
formatting of the code and defined operators for vector algebra produced, after removing
unneccessary resources and compressing, a code of the same size. A slightly bigger code
was generated when classes with defined constructors were involved. The difference was
approximately 2Kb. However, the use of templates and the new operator required the
extended compiler, g++, for compilation. The difference in code produced by g++ was
approximatelly 10Kb. For that reason it was decided not to use templates, C++ memory
allocation and further complex C++ constructions.

3.2 Compression

Executable compression has been used in demos since the very beginning. Pirated software
needed to be packed into a compact and easily spreadable format, which often required
some kind of compression for both the software itself and the attached intro. Early demos
often had multiple parts which were separately decompressed into memory during the short
pauses between parts. Executable compression is any means of compressing an executable
file and combining the compressed data with the decompression code it needs into a single
executable. There are compressors designed specially for small intros, however demogroups
usually do not publish their compression tricks in order to keep the advantage. There are
several common executable packing programs though.

• Ultimate Packer for eXecutables (UPX) is an open source executable packer
supporting a number of file formats. It is free software, released under the GNU
General Public License. It achieves an compression ratio of approximatelly 40-70%,
depending on the source program, and offers very fast decompression. The executable
suffer no memory overhead or other drawbacks because of in-place decompression. See
table 3.1 for details. UPX uses a lossless compression algorithm called UCL, which
is a free implementation of the proprietary NRV, Not Really Vanished, algorithm.
UCL requires no additional memory to be allocated for decompression, a considerable
advantage that means that a UPX packed executable requires no additional memory.
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• PECompact2 by Bitsum Technologies is a next generation win32 executable/module
compressor. It provides slightly better compression than UPX compressor (see table
3.1). It is licenced for comercial use and is only available to buy or as a limited trial.

• ASPack is an advanced Win32 executable file compressor, capable of reducing the
file size of 32-bit Windows programs by as much as 70%. It is licenced for comercial
use and is only available to buy or as a limited trial. See table 3.1 for details.

Compressor 120 320 bytes source 43 064 bytes source COMPRESSION RATIO(%)
UPX 61 440 bytes 21 504 bytes 48.94 / 53.06

PECompact2 53 760 bytes 19 417 bytes 55.04 / 54.9
ASPack 66 560 bytes 24 064 bytes 44.69 / 44.12

Table 3.1: Compression quality experiment.

There are few drawbacks using compressed executable files. Some (usually older) an-
tivirus software reports compressed executables as viruses. Compressed executables have a
greater impact on system resources. The operating system cannot read their decompressed
images on demand from the disk, like it would with normal, uncompressed executables.
Instead, the decompressor usually allocates a block of memory to hold the decompressed
data, which stays allocated as long as the executable stays loaded, whether it is used or
not. However, considering the size of the animation in tens of kilobytes, it is not an issue
on today’s computers.

3.3 Design

The goal was to design and implement a suitable library which could be used for future
animation making. Size of the produced executable code was the main criteria. Further-
more, the library is intended to be transparent and easy to use. It is written in C++ and
organized into namespaces, each covering a specific functionality. See fig. 3.7 for a view on
namespaces present in the library.

Initialization

Each namespace contains initialization function init() which does not take any argument
and returns true on success and false otherwise. The purpose is to allow to set-up the
necessary environment, often including pre-calculation of commonly used data, retrieving
pointers to OpenGL functions and others.

Query

Each namespace contains functions to query data relevant to its functionality. Principally,
it is data retrieved by previous initialization function call. Currently, there is an integer-
returning version only.
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int geti(int enum_what);

Section 3.4 describes specific aspects of each namespace.

3.4 Implementation

DemoBasic library, in general, implements and automates techniques and constructions
frequently used in computer graphics. Please see the referenced literature, namely the
book Moderńı poč́ıtačová grafika [1], for an overview on this topic. Further information
can be also found on Gamedev.net [7], a website devoted to interactive computer graphics.
In the following sections is an overview of functionality implemented in DemoBasic library
with a description of selected tasks specific to intro-making.

3.4.1 Video

Namespace video provides automation to Windows API (WinAPI) calls related to open-
ing a window and further tasks on its device context. It offers the minimum necessary
functionality to OpenGL rendering under Microsoft Windows.

Initialization

Function create() opens a window with WS OVERLAPPEDWINDOW style and
WS EX APPWINDOW extended style. Naturally, it requests a pixel format descriptor
supporting OpenGL, drawing to window and double-buffering. Furthermore, for better
image quality, graphic device is inspected for presence of a pixel format supporting multi-
sample anti-aliasing (MSAA) and stereographic rendering.

bool video::create(char *title, int width, int height, int bits, bool fullscreen);

Its initialization function covers setting-up initial OpenGL state and querying useful
information on implementation specific OpenGL capabilities. Following information is re-
trieved and available for further use to the application.

int video::geti(int enum_what);

enum what:

N MAX LIGHTS the number of light sources
N MAX VIEWPORT SIZE maximum supported viewport size
N MAX TEXTURE SIZE maximum supported texture size
N MAX LIST NEST maximum display list nesting level
N ALPHA BITPLANES the number of alpha bit planes present in the

pixel format
N DEPTH BITPLANES the number of depth buffer bit planes
N ACCUM RED BITPLANES the number of accumulation buffer red bit planes
N ACCUM GREEN BITPLANES green bit planes
N ACCUM BLUE BITPLANES blue bit planes
N ACCUM ALPHA BITPLANES alpha bit planes
N MULTISAMPLE multisample anti-aliasing support
N STEREO the presence of stereographic buffers

24



Device context

The functionality of this namespace lays in providing rendering canvas for OpenGL. Before
each frame, the device context should be made current with select() function. After, buffers
are swapped with swapBuffers() function.

void video::select();
void video::swapBuffers();

Multisample anti-aliasing

Anti-aliasing techniques has been developed since the very beginning of computer graph-
ics in order to minimize the distortion artifacts appearing after image rasterisation. It
is usually done by supersampling, an anti-aliasing technique of rendering the image at
higher resolution and downsampling. Multisample anti-aliasing generally refers to a hard-
ware implementation of supersampling technique with several optimizations. For further
information please refer to [1].

Figure 3.1: Anti-aliasing improving image quality. An aliased and anti-aliased line (left).
A perspective projected view on a checkerboard with no anti-aliasing (center) compared to
anti-aliased (right). Checkerboard images taken from Wikipedia, The Free Encyplopedia
[12].

Employing MSAA is a little tricky. It requires an additional step to query for presence
of a pixel format supporting MSAA. It is OpenGL specific task, in the BasicLibrary is
implemented through ARB multisample extension. However, we cannot request the pres-
ence of ARB multisample extension and the MSAA support unless there is a valid device
context. The gist is to open a window with common pixel format supporting OpenGL.
With this widow being set as the current device context, we can query a the presence of
ARB multisample extension and support of appropriate pixel format. Eventually, we renew
the window and update the pixel format to reflect the result of the query. Figure 3.2 shows
briefly the process of getting pixel format and device context supporting MSAA.

Stereographic rendering

Stereography is a visualization technique creating the illusion of depth in an image by
providing a slightly different image for each eye. It dates back to the mid 19th century
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Figure 3.2: A brief diagram of multisample anti-aliasing initialized in WinAPI.

when Sir Charles Wheatstone, a british scientist and inventor, described the principle of
human perception of depth. He showed that the impression of solidity comes from combining
two separate images taken by both eyes from slightly different points of view. He produced
several stereographic drawings and constructed stereograph (also called stereoscope), an
instrument designed to watch stereographic cards. The construction has been improved
and considerably lightened over the time, however, the principle remains.

Figure 3.3: An old Zeiss pocket stereoscope with original test image. Image taken from
Wikipedia, The Free Encyklopedia [12].

Stereographic rendering involves an additional framebuffer for each rendering target to
hold rendered frame for each eye. WinAPI pixel format descriptor natively covers stereo
imaging capacity. Therefore, one just specifies stereo buffers request in the pixel format
descriptor. If enabled, OpenGL will support left and right version of each front (and back)
framebuffer.

Stereoscopic buffer is requested:

PIXELFORMATDESCRIPTOR pfd;
...
pdf.dwFlags |= PFD_STEREO;
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...
SetPixelFormat(...);

The currently set pixel format can be queried whether various flags has remained set or
not. If the user’s graphics configuration is not set up for stereo buffering, Windows will not
allow the PFD STEREO flag to be set.

int PFI = GetPixelFormat(hDC);
PIXELFORMATDESCRIPTOR pfd;
DescribePixelFormat (hDC, PFI, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
if ((pfd.dwFlags & PFD_STEREO))
...

Stereographic rendering requires a slight intervention to the vertex transformation pro-
cess. The scene is rendered separately for the left and right buffer. An appropriate view
displacement is applied to each projection matrix for left and right eye rendering. The
projection matrices can be pre-computed with calcStereoPerspective() function.

void video::calcStereoPerspective(float parallax_angle,
float FOV,
float focal_length,
float separation);

parallax angle angle of displacement of the left and right eye image
recommended to be kept less than or around 3 % of viewport width

FOV projection filed of view
focal length focal length, thus, the frame of focus
separation separation of the two images in horizontal axis

influences the strength of dept illusion produced

Stereographic rendering is an experimental feature of DemoBasic library and is not
included in the final animation.

3.4.2 Time

In order to make the animation flow consistent, an internal time counter is implemented.
It is being synchronized with system time.

Initialization

This namespace currently does not need any initialization. The timer is started explicitly
using start() function. That allows to begin the time flow from a specified point of program,
eg. after all data is generated and the anomation begins to play.

void time::start();
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Functionality

Internal time value can be queried with getLocal() function returning the time in seconds.

float time::getLocal();

Furthermore, the time flow can be paused and resumed with pause() and resume() functions.

void time::pause();
void time::resume();

3.4.3 Images

DemoBasic library is able to hold three types of images.

• simple raster images in sImage and sImagef structure for unsigned char and float
data respectively

• RLE encoded raster images in sRLEImage structure

• vector images in sVectorImage structure

3.4.4 Texture

Namespace texture is intended to automate work with OpenGL textures. Currently, only
two-dimensional textures are handled. The automation includes creating an empty texture
or a copy of user-defined raster data, setting filtering modes and procedural generation.

Initialization

This namespace currently does not need any initialization and does not have any attribute
to query.

Functionality

Function create2D() creates a two-dimensional texture, either empty or as a copy of user-
specified data.

unsigned int texture::create2D(sImage *image);

Furthermore, there are routines for procedural generation of textures. It is, namely,
turbulence noise, pattern, linear and radial gradient and normal map generator. They have
been designed and implemented to use the computational power of graphic device, thus,
making the generation process significantly faster. Compatibility issues have been kept in
mind also. Here we describe the implementation aspects of these techniques. For detailed
information on the usage please see DemoBasic reference manual.
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Turbulence

Function turbulence2D() generates a two-dimensional turbulence noise texture. It originates
in Perlin noise, however, compared to the original approach, it is significantly simplified
and lightened. Refer to section 2.4.1 for further information on the principle of Perlin noise.

There are two conceptual approaches. Firstly, the generation can be written whole as
a fragment program, rendering the noise in a single pass. That would allow to employ
real-time generated turbulence noise which might be, indeed, useful for various effects. An
alternative is to use fixed-function rendering using OpenGL blending capabilities. The
last method was chosen for the fact that we, at this point, do not intend to use real-time
generated turbulence. Let’s look how it is done. Primarily, we create an uniform noise
texture, which will stand as our noise function.

sImage *image = noise::noise2D(type, size);
unsigned int T = texture::create2D(image);

To imitate the use of noise functions of various frequencies, we use various portions
of this texture stretched over the entire output texture area. Filtering mechanism of the
graphic device will do linear interpolation for us. Furthermore, the blending capacity will
accumulate layers of the noise. Therefore, the whole generation comes in few OpenGL calls.

glBlendFunc(GL_SRC_ALPHA, GL_ONE);

for (int k = 0; k < detail; k++) {
float texcoord_select[2] = {(float)(k) / (detail), (float)(k+1) / detail};
glColor4f(color.x, color.y, color.z, (1.0 - ((k / (float)detail) )) * A);
fillFrameBuffer(vec2f(texcoord_select[0]), vec2f(texcoord_select[1]));

}

We use (sourcecolor)∗(sourcealpha)+(destinationcolor)∗1.0 blending equation. That
makes the current layer scaled to desired amplitude and added to an off-screen buffer. A is
blending opacity ratio, it controls the saturation properties of subsequent addition of layers.

Figure 3.4: A principle of turbulence noise generation implemented in DemoBasic.
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This method is easily optimized using multiple texture units, allowing to render the
turbulence in significantly less rendering passes. Eventually, this approach can be used for
real-time generation.

Pattern

Various textures such as woods, marbles or clouds can be achieved with pattern() function.
The idea is to somehow distort the contents of an image, preferably with the data stored
in another image. It is implemented using OpenGL fixed-function rendering. The pattern
is rendered into a framebuffer or an off-screen buffer pixel by pixel with distorted texture
coordinates for each. Filtering capabilities of the graphic hardware will do bi-linear sample
filtering for us, significantly improving the output quality.

Figure 3.5: A principle of pattern generation implemented in DemoBasic. An original sine
gradient texture is distorted with a turbulence. Various structures and materials can be
imitated this way.

Figure 3.6: A principle of pattern generation implemented in DemoBasic. A radial gradient
texture is distorted with turbulence texture to yield a cloud texture.
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video

init()
create(title, width, height, bpp, fullscreen)

calcStereoPerspective(parallax angle, FOV, focal length, separation)

applyStereoPerspective(mode)

shutdown()

select()

swapBuffers()

getDC()

getRC()

getHWnd()

time

start()

update()

getLocal()

pause()

resume()

isPaused()

getFPS()

texture

init()
create2D(image)
buildMipmaps2D(size)
setFilter(min, mag)
turbulence2D(size, detail, type, color, color scale, target)
blend2D(size, color, channel 1, channel 2, ratio, sfactor, dfactor, target)
pattern2D(size, detail, color, ch1, ch2, ratio, target)
rgbToAlpha2D(size, color, ratio, alpha channel, target)
normalMap2D(size, ratio, channel, target)
radial2D(size, color, ratio, target)
linear2D(size, color, width, stride, target)
vector2D(size, vector image, target)
intoImage(size, mode)
intoTexture2D(image)

noise

init()

init(seed)

noise2D(type, size)

randc()

randf()

randuf()

turbulence2D(size, detail, type, color, color scale)

image

struct sImage
struct sImagef
struct sRLEImage
struct sVectorImage

extension

init()
isSupported()
createProgramARB(type, source)
bindProgramARB(type, program ID)
localParameter4fARB(type, location, value)
attribArrayARB(type, location, data size, data)
enableAttribArrayARB(type)
disableAttribArrayARB(type)
textureUnit(ID)
glMultiTexCoord2f(unit, x, y)
enablePointSpriteARB()
disablePointSpriteARB()
prepareFilter(size)
beginFilter()
endFilter()
rescaleFilter(size)
prepareToDrawFilter()
drawFilter(ID)

image

struct sLight
struct sMaterial
struct sFog
struct sTexProcStage
struct sTexProc
struct sTStateUnit
struct sTState

init()
applyLight(ID, data)
applyMaterial(material)
applyFog(fog)
applyTState2D(state)
applyTexProc2D(proc)
disableAllUnits()
loadBillboard()

sound::midi

struct sPattern
struct sTrack
struct sPlayback
init(pattern base)
getPatternBase()
getPatternBaseSize()

play()

stop()
prepareAndStream(playback, time)

scene

init()

add(scene definition)

initAndRecalc()

render(time)

regObject(pointer, name)

getObject(name)

deQuantizeFloat(data)

 

shape

struct sBezier
struct sBSurf
struct sLayeredSurf
bezierf(curve, ref, output)
bsurface(surface, patch, u, v)
renderBSurface(surface, mode, steps)
renderBPatch(surface, patch, mode, steps)
updateVectors(surface)
intoMesh(surface, detail)
intoMesh(layered surface, detail)
intoList(surface, detail)

geometry

struct sPointCloud
struct sGroup
struct sMesh
struct sCompactMesh

init()
renderMesh(mesh)
renderGroup(group)
intoList(mesh)
intoList(group)
flipNormals(mesh)
extrude(shape, trajectory, segments, close)
centerQuadf(center, size)

centerBillboardf(center, size)
decompactMesh(compact mesh)
buildTangentSpace(mesh)

particleSystem

struct sParticle
struct sQuadEmitter
init()
allocEmitter(emitter, size)
updateEmitter(emitter)

font

create(type, family, size, bold, italic)
write(font, text)

Figure 3.7: Namespaces in DemoBasic.
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Chapter 4

DemoTool

DemoTool is a demo authoring tool providing convenient and intuitive approach to adjusting
values of the scene design and animation. There is a range of these tools already developed
by various demogroups and given for free-use to the public. Some of them are advanced all-
in-one editors able to output the final executable code of the animation, others are rather
simple tools to help with this or that in the animation making.

4.1 User interface

In the early stage of development, DemoTool was designed as a simple tool providing a
friendly view on the internal data of the animation only. Eventually, it became a major part
of the project and evolved into a complex set of tools with a graphic user interface. The
aim was to allow interactive editing straight in the animation itself, thus, let the user view
and change various properties while the animation is running. The demo tool is designed
as a static library to be linked to the animation. Once the animation is finished, this tool
is removed completely.
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The user interface is divided into several parts. Firstly, it is an area of selection of
defined contexts (scenes). For each context there is a list of currently bound variables.
Generic arrays of data types (such as an array of floats) can be edited directly, working
on other structures (as lights or materials) employs appropriate dialog boxes for intuitive
editing. Furthermore, each scene can be arranged and animated using an in-place Modeller
and IPO editor. Finally, the overall layout including scene cuts and sound is tailored
using the Layouter tool. Read the section 4.3 for detailed description of these tools. Each
tool operates directly on data of the animation, allowing to see the result in a real time.
Following sections describe this mechanism.

4.2 Connecting to the DemoBasic library

Before we speak about the DemoTool, let’s recapitulate the essential facts about the
DemoBasic library. It consists of structures designed to hold data of objects that appear in
the animation. Furthermore, it implements functions that operates on this data. For more
information about the DemoBasic library see chapter 3.

DemoTool is primarily designed as a mechanism that allows watching and editing values
of these structures in an intuitive and user-friendly way. The whole mechanism is then
integrated in the animation itself, therefore, while the animation runs, it is possible to see
and change values interactively. Basically, there are two types of data structures in the
DemoBasic library. Firstly, it is elementary structures, with fixed length, used for defining
a light source, material properties and others. Secondly, there are variable-length complex
structures used for example to hold data of a parametric curve or surface.

The data of the animation and of the rendering system is available to the DemoTool
through a mechanism internally called data binding. The principle is to provide a pointer
to the data structure defined in the animation code and an information on the type of the
structure. The DemoTool then classifies the information and places appropriate controls in
the graphic user interface to allow interactive and friendly editing. After editing, the data
can be saved in a C source code syntax and included in the code of the animation.

DemoTool is currently able to bind and provide interactive editing of the following.

• Generic homogeneous arrays of floating-point and integer data.

• Elementary structures of DemoBasic library including sLight, sMaterial and sFog.
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• Procedural-generated texture definition.

• Texture state definition.

• Bézier curves and surfaces, meshes and point clouds in the Modeller tool.

• Interpolated values in the IPO editor.

4.2.1 Basic editing

The very basic functionality of DemoTool is to allow to watch end edit generic data arrays.
Eventually, specific dialog boxes were employed for more complex data including light
sources, materials or fog definition.

Figure 4.1: An example how various data are bound to help to control procedural generation
of a tree.

4.2.2 Custom tools for complex data structures

Modeller

In the very beginning, modeller has been designed as a tool allowing to inspect the process
of geometry procedural generation. Since Bézier surfaces became the main intended mean
of representing geometry, it evolved into a modest modeling apparatus. Primarily, it is
not intended to stand as a fully featured modeling and animating tool. It is proposed to
import complex models from a third-party modeling solution. Modeller handles editing
Bézier curves and surfaces, inspecting meshes and placing and editing light sources.

34



Figure 4.2: Modeller.

IPO editor

IPO editor has been developed in order to provide interactive control of variables which
value is interpolated based upon the internal animation time.

Figure 4.3: A view on IPO editor showing currently bound data. See how sky colors and
fog range can be edited with cubic splines.

Texture-generation procedure

Texture procedural generation is realized through a sequence of operators. A specific tool
helps us to edit the texture procedure. Preview is provided for each operator for more
intuitive work.
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Figure 4.4: An example of proceduraly generated ground texture. A normal map is also
generated for per-pixel operations.

4.3 Animating with DemoTool

DemoTool currently offers some simple animating mechanisms. Let’s remind that it is
primarily designed to help with intuitive editing animation data structures. The rendering
loop is realized through a rendering function embedded in the animation source code.
DemoTool does not provide any mean of automation to rendering functions. The reason for
that is to keep maximum freedom for the animation itself. See section 2.5 on the principal
concept of scenes and their rendering.
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Chapter 5

Conclusion and future work

We studied the topic of short size restricted animations, finally resulting in a selection of
techniques used. The major focus was put on constructing a functional base for further
animation development. Eventually, two components came out. Firstly, it is DemoBasic li-
brary, which provides automation to selected graphic techniques and routines. The essential
attributes of DemoBasic library were considered:

• The smallest code size possible. The library is written in C++, however, without
complex constructions such as templates or classes. In contrary, namespaces and
defined operators were used for better readability. That does not make the code size
grow.

• Good readability and ease of use. The library is logically separated into names-
paces, each covering specific functionality.

• Automation of techniques frequently used in an intro. The whole library is
designed as an automation tool for various techniques of computer graphics or data
coding. Then, we can employ complex mechanisms just with few lines of code.

• Compatibility. The library is designed to allow to use hot features of new graphic
hardware. However, it provides fallback in case the current implementation does not
support the requested functionality.

• Performance. Performance was not considered the vital aspect of the library. Nev-
ertheless, methods were generally optimized. A significant loading time speed-up was
accomplished.

The second product is DemoTool application, an visual authoring tool providing con-
venient and intuitive way to the making of the animation. Its graphic interface allows to
watch and edit data structures bound from the animation code, inspect generated geometry
or texture data, layout and animate scenes or synchronize with sound. The main features
are:

• Intuitive use. Scene editing is definitelly better with mouse clicks rather than typing
data directly to the structures of DemoBasic library.

• Synchronization. With DemoTool, we can insert MIDI patterns which will be
eventually mixed together and played. A proper location in time can be fine-tuned
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for each pattern to start exactly where we need. The same can be done with scenes
present in the animation. This way, one can make the music and graphics play along.

• All in real-time. Changes to the animation data bound to DemoTool are reflected
in real-time. Thus, we can immediately see how our change affect the animation.

• Export the data. Naturally, we wish to join the edited data with the animation
again. DemoTool saves the data in C header files (.h) in a format of DemoBasic
library structures.

5.1 Image quality

We tried to enhance the rendering quality and move the animation out of the bounds of com-
mon real-time rendered graphics. The image quality commonly suffers from jagged edges
due to aliasing of neighboring samples. Also, we all know already the ordinary look of fixed-
function pipeline rendering. The situation is, however, rapidly changing with the power of
custom vertex and fragment programming. Custom per-pixel lighting, implemented with
ARB vertex program and ARB fragment program, brings further detail and atmosphere to
the rendering. The animation employs per-pixel lighting with bump-mapping for a single
light source.

Furthermore, we apply various filters to enhance the final look. Firstly, it is blur filter
for scenes under water, bringing a bit of the underwater feeling. A specially tailored form
of blur is used for glow filter used to make selected objects appear as intensive light sources
or very shiny.

5.2 Future work

At last we propose possible future work, improvements and additions. Firstly, DemoBa-
sic library can be extended to implement other interesting mechanisms including skeletal
animation, optionally with inverse kinematics. It is a powerful instrument for flexible ge-
ometry animation. The library is prepared to hold geometry with bones. Further proposal
on enhancement of the geometry animation is to implement Vertex key-framing. The idea
is to store multiple vertex arrays within one geometry object, each representing desired
shape. Those can be eventually blended together with custom weights. It is a technique
used for example in Blender for advanced animation such as facial expressions [6]. This
technique is relatively simple to implement and optimize using vertex programs.

Also, some optimizations would be beneficiary. Namely, rendering of geometry can be
done through compiled vertex arrays or vertex buffer objects. These techniques are relatively
short to implement, however, are not supported on older hardware. Generally, we should
be careful to implement the necessary functionality only.
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