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Abstrakt
Tato bakalářská práce se zabývá sestaveńım rozpoznávače izolovaných slov pro elektron-
ické slovńıky. Fonémový rozpoznavač je realizován pomoćı HTK (Hidden Markov Model
Toolkit). Na začátku tohoto dokumentu jsou stanoveny základńı ćıle práce. V následuj́ıćı
kapitole je teoretický rozbor, který se věnuje procesu rozpoznáváńı izolovaných slov pomoćı
skrytých Markovových model̊u. Daľśı kapitola se věnuje specifikaci řečových dat, která byla
použita pro testováńı rozpoznávače. Dále jsou zde popsány daľśı prostředky, které byly k
dispozici pro sestaveńı rozpoznavače, jako modely, slovńık a gramatika. Před sestaveńım
rozpoznávače bylo třeba vyřešit převod mezi sadou fonémů která byla použita ve slovńıku
a mezi sadou, kterou použ́ıvá rozpoznávač. Rozpoznavač byl nejprve sestaven s použit́ım
8 kHz model̊u, později 16 kHz. Byly použity normalizačńı techniky a technika adaptace na
mluvč́ıho. Źıskaná data byla zpracována a výsledky jsou zhodnoceny v samostatné kapitole.
V závěru je diskutováno, zda bylo dosaženo vytýčených ćıl̊u a jaké jsou daľśı plány vývoje
aplikace.

Kĺıčová slova
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Abstract
This work is concerned with creation of isolated word recognizer for electronic dictionaires,
testing its functionality on data sample and improvement by normalisation and speaker
adaptation techniques. Word recognizer is built on HTK (Hidden Markov Model Toolkit).
At the beginning of this document, the main aims of the work are set. In the next chapter
is theoretical analysis, which describes process of recognition of isolated words with hidden
Markov models. Next chapter specifies the speech data, which were used for testing. Other
resources for building recognizer, like models, dictionary and grammar are described in
next chapter. Before creation of recognizer, it was necessary to solve conversion between
the phonemes set which was used in dictionary and set, which uses the recognizer. The
recognizer was built with 8 kHz models first, than 16 kHz models were also used. Normal-
isation and speaker adaptation techniques were used. Obtained data were processed and
results are analyzed in separate chapter. Finally is discussed, if the goals of the work were
reached and what are the next steps of application development.
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České republiky pod projektem č. MSM0021630528.
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Chapter 1

Introduction

Nowadays, the study of foreign languages is very important. This trend must unavoidably
show itself in modern information technologies. Electronic dictionaries are able to search
big amount of entries in a short time.

The aim of this work is to eke out the classical dictionary control by keyboard and
mouse with control by human speech. This approach brings bigger comfort with searching
of isolated words. The user enters the searched word and the programme returns couple of
possibilities, from which he can choose. This can be also used in case, when the user don´t
know, how the word is written. He can choose the best variant and continue work with the
dictionary.

The main aim of this work is to adapt user data, which were provided by Lingea com-
pany, to existing models. Because only few data were provided, it is not possible to train
new models. Instead, provided data are adapted to models already trained on big amount
of speech data.

This bachelor work is divided into six chapters. In the next chapter, there are basics
of automatic speech recognition. The third chapter specifies dictionary, speech data and
models, which were used in experiments. Next chapter describes building of recognizer
in detail. First, creation of dictionary is analysed. Than downsampling of test data is
solved, where the best downsampling algorithm is discussed. After that follows extraction
of Perceptual Linear Prediction (PLP) features and creation of simple grammar. The fifth
chapter shows results of experiments with 8 kHz, 16 kHz and 16 kHz + vocal tract length
normalisation models in tables and diagrams. Last chapter resumes work done, and implies
possibilities of next work on the recognizer.
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Chapter 2

Basics of automatic speech
recognition

A typical isolated word recognizer is based on statistical pattern recognition and its goal is
to find the best word given a set of input patterns (observations) and modeling parameters.
Let X = x1, x2, . . . , xN be a sequence of N observation vectors, feature vectors. Let W be
a word. The ASR system output is such word W which maximizes equation:

W = arg max
W

P (W|X,Θ) (2.1)

where Θ is a set of all modeling parameters. Instead of building overall model P (W|X,Θ)
we can factor this into smaller models. First, we can split the words into a distinct sounds.
The phonemes 1 are most commonly used sub-word units.

Let Q = {Q1, Q2, . . . , QK} be a set of phonemes which can fully describe each word
W. Thus the word W in Eq. 2.1 can be replaced by a all possible sequences of phones Q
which together form word W:

W = arg max
W

∑
Q

P (W,Q|X,Θ) (2.2)

By using Bayes rule we can further obtain:

W = arg max
W

∑
Q

P (X|W,Q,Θ)P (W,Q|Θ)
P (X|Θ)

(2.3)

Note, that the term in the denominator P (X|Θ) is constant for all words. Thus we can
drop this term in maximization. Further we can factor the join probability P (W,Q|Θ) and
we obtain:

W = arg max
W

∑
Q

P (X|W,Q,Θ)P (Q|W,Θ)P (W|Θ) (2.4)

Finally, we assume conditional independence of observation sequence X on the word W
and we let it depend only on the phone sequence Q. We further divide the set of parameters

1 By the Wikipedia definition the phoneme is the conception of speech sound in the most neutral form
possible. It is also the smallest sound unit, which distinguishes between two different words. Cardinality of
phonemes differs per phonemic systems, but there is around forty-five of them for English.
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Θ into parts each of which will affect the probability term it is contained in:

W = arg max
W

∑
Q

P (X|Q,ΘAM )P (Q|W,ΘPM )P (W|ΘLM ) (2.5)

The three probability models in Eq. 2.5 are:
Acoustic model P (X|Q,ΘAM ) which models the probability of a observation sequence

given a phoneme sequence.
Pronunciation model P (Q|W,ΘPM ) which tells us how probable is a sequence of

phonemes of given word. The pronunciation model is also called ”pronunciation dictionary”
or only ”dictionary”.

Language model P (W|ΘLM ) which is not considered in isolated word recognition and
is replaced by simple parallel grammar network.

The direct estimation of the joint conditional probability P (x1, x2, . . . , xN |Q,ΘAM ) of
the spoken word is not practicable. A parametric model of word production such as a
Markov model is assumed.

2.1 Parametrisation

In Perceptual Linear Prediction (PLP) technique [4], several well known properties of hear-
ing are simulated by practical engineering approximations and the resulting auditory-like
spectrum of speech is approximated by the autoregressive all-pole model. A block diagram
of the PLP method is shown in 2.1.

• Spectral analysis

The speech segment is weighted by the Hamming window

W (n) = 0.54 + 0.46 cos(2πn/(N − 1)), (2.1)

where N is the length of the window.

The typical length of the window is about 20 ms. The Discrete Fourier Transform
DFT transforms the windowed speech segment into the frequency domain. Typically,
the Fast Fourier Transform FFT is used here. For a 10 kHz sampling frequency, a
256-point FFT is needed for transforming the 200 speech samples from the 20-ms
window padded by 56 zero-valued samples. The real and imaginary components of
the short-term speech spectrum are squared and added to get the short-term power
spectrum.

P (ω) = Re(S(ω))2 + Im(S(ω))2. (2.2)

• Critical-band spectral resolution

The spectrum P (ω) is warped along its frequency axis ω into the Bark frequency Ω
and integrated into filters.

• Equal-loudness preemphasis

The sampled Θ(Ω(ω)) is preemphasized by the simulated equal loudness curve.
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• Intensity-loudness power-law

The last operation prior to the all-pole modeling is the cubic-root amplitude com-
pression

Φ(Ω) = Ξ(Ω)0.33 (2.3)

This operation is an approximation to the power law of hearing and simulates the non-
linear relation between the intensity of sound and its perceived loudness. Together
with the psychophysical equal-loudness preemphasis, this operation also reduces the
spectral amplitude variation of the critical-band spectrum so that the following all-
pole modeling can be done with relatively low model order.

• Autoregressive modeling

In the final operation of the PLP analysis, Φ(Ω) is approximated by the spectrum of
an all-pole model using the autocorrelation method of an all-pole spectral modeling.
Details of the spectral all-pole modeling are sufficiently well described elsewhere and
we give here only a brief overview of its principle: The inverse DFT IDFT is applied to
Φ(Ω) to yield the autocorrelation function dual to Φ(Ω). Typically, a 34 point IDFT
is used. The IDFT is the better choice here than the inverse FFT, since only a few
autocorrelation values are needed. The rst M+1 autocorrelation values are used to
solve the Yule-Walker equations for the autoregressive coeffitcents of the M-th order
all-pole model. The autoregressive coefficients could be further transformed into some
other set of parameters of interest, as is the set of cepstral coeffcients of the all-pole
model.

Cepstral recursion

Solving of set of linear equations

Inverse Discrete Fourier Transform

Power law of hearing

Equal-loudness curve

Critical-band integration and re-sampling

Fast Fourier Transform

Speech

?

?

?

?

?

?

?

Figure 2.1: Steps in the computation of PLP [3]
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2.2 Hidden Markov models

In HMM based speech recognition, it is assumed that the sequence of observed speech
vectors corresponding to each word is generated by a Markov model as shown in Fig. 2.2.
A Markov model is a finite state machine which changes state once every time unit and
each time t that a state j is entered, a speech vector ot is generated from the probability
density bj(ot). Furthermore, the transition from state i to state j is also probabilistic and
is governed by the discrete probability aij . Fig. 2.2 shows an example of this process where
the six state model moves through the state sequence X = 1, 2, 2, 3, 4, 4, 5, 6 in order to
generate the sequence o1 to o6. Notice that in HTK, the entry and exit states of a HMM
are non-emitting. This is to facilitate the construction of composite models as explained in
more detail later. The joint probability that O is generated by the model M moving through
the state sequence X is calculated simply as the product of the transition probabilities and
the output probabilities. So for the state sequence X in Fig. 2.2

P (O,X|M) = a12b2(o1)a22b2(o2)a23b3(o3)... (2.1)

However, in practice, only the observation sequence O is known and the underlying
state sequence X is hidden. This is why it is called a Hidden Markov Model.

Figure 2.2: The Markov Generation Model

Given that X is unknown, the required likelihood is computed by summing over all
possible state sequences X = x(1), x(2), x(3), ..., x(T ) that is

P (O,X|M) =
∑
X

ax(0)x(1)

T∏
T=1

bx(t)(ot)ax(t)x(t+1) (2.2)

where x(0) is constrained to be the model entry state and x(T + 1) is constrained to be
the model exit state.
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2.3 Vocal tract length normalisation

Vocal tract length normalisation (VTLN) [6] aims to compensate for the fact that speakers
have vocal tracts of different sizes. VTLN can be implemented by warping the frequency
axis in the filterbank analysis. In HTK simple linear frequency warping is supported.
The warping factor α is controlled by the configuration variable WARPFREQ. Here values
of a < 1.0 correspond to a compression of the frequency axis. As the warping would
lead to some filters being placed outside the analysis frequency range, the simple linear
warping function is modified at the upper and lower boundaries. The result is that the
lower boundary frequency of the analysis (LOFREQ) and the upper boundary frequency
(HIFREQ) are always mapped to themselves. The regions in which the warping function
deviates from the linear warping with factor a are controlled with the two configuration
variables (WARPLCUTOFF – fL) and (WARPUCUTOFF – fU ). Figure 2.3 shows the
overall shape of the resulting piece-wise linear warping functions.

Figure 2.3: Frequency Warping

The warping factor α can for example be found using a search procedure that compares
likelihoods at different warping factors. A typical procedure would involve recognising
factors in the range 0.8 - 1.2. The factor that gives the highest likelihood is selected as the
final warping factor. Instead of estimating a separate warping factor for each utterance,
large units can be used by for example estimating only one α per speaker. Vocal tract
length normalisation can be applied in testing as well as in training the acoustic models.
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Chapter 3

Data specification

3.1 Test data

We received sets of records of 994 different words, each set was recorded by one of 12
speakers in office environment with various types of microphones. The words were saved
in wav format 44,1 kHz and named according to spoken word. In each set, long and short
words are included. There are 8 women and 4 men among speakers, one of them is native
speaker, the others are czech. By the listening to some speech samples, we summarise the
quality of the records in following table:

Set Gender Noise

01a Female overexcited microphone, power-line hum,
microphone blowing, background noises

01b Female power-line hum, background noises
02a Female power-line hum, few words cut incorrectly
03a Female power-line hum, weak signal, no background noises
04a Female hum, relatively good SNR
05a Male good SNR, some hiss
06a Female overexcited microphone, few records proper
07a Male perfect SNR, good set
08a Female weak hum, weak bg. noises
09a Male medium noise (middles, like PC fan), quiet speech
10a Male medium noise (middles, like PC fan)
11a Female power-line hum, background noises
12a Male strong noise (low-middles, like loud PC case fan)

Table 3.1: Speech sets characteristics
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3.2 Models

3.2.1 8 kHz models

Models are represented by context dependent phonemes. They were trained on 270 hours
of speech data (American English). Models were adapted by 70 hours of meeting speech
data, recorded in International Computer Science Institute (ICSI) in Berkeley.

3.2.2 16 kHz models

16 kHz models are trained on 100 hours of meeting speech data. There are 3 states per
phoneme and 29 935 context dependent phonemes. Two types of 16 kHz models were
available. 16 kHz PURE models are models without any speaker adaptation technique.
16 kHz + VTLN are 16 kHz models with Vocal tract length normalisation.

8 kHz 16 kHz PURE 16 kHz + VTLN

Feature size 39 39 39
Number of gaussian components 16 16 16
Number of states 3489 7595 4787
Total parameters 4 354 272 9 478 560 5 974 176

Table 3.2: Models description
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3.3 Dictionary

Dictionary was provided together with records, there are included the same words, which
were recorded by speakers. It contains the word in English and it´s phonetic transcription.
This transcription is realized by IPA (International Phonetic Alphabet) [2]

Figure 3.1: Example of IPA consonants

spacecraft: (’speIs,krA:ft)
aid: (eId)
Christ: (kraIst)
arc: (A:k)
controversial: (,kQntrE’vF:SEl)
usury: (’ju:ZErI)
railcard: (’reIl,kA:d)
fort: (fO:t)
overheat: (,EUvE’hi:t)
larva: (’lA:vE)
slowdown: (’slEU,daUn)

Figure 3.2: Part of dictionary
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Chapter 4

The recognizer

The recognizer is built on HTK (Hidden Markov Model Toolkit).
The Hidden Markov Model Toolkit (HTK) [1] is a portable toolkit for building and

manipulating hidden Markov models. HTK is primarily used for speech recognition research
although it has been used for numerous other applications including research into speech
synthesis, character recognition and DNA sequencing.

HTK consists of a set of library modules and tools available in C source form. The
tools provide sophisticated facilities for speech analysis, HMM training, testing and results
analysis. The software supports HMMs using both continuous density mixture Gaussians
and discrete distributions and can be used to build complex HMM systems.

4.1 Phonemes conversion

The recognizer uses different phonemes set than Lingea. This section describes creation of
converting table between these two sets. The difference between the phoneme notations is
shown in Fig. 4.1.

LINGEA RECOGNIZER
cognitive: (’kQgnItIv) COGNITIVE k aa g n ih t ih v
reap: (ri:p) REAP r iy p
hyperbole: (haI’pF:bElI) HYPERBOLE hh ay p er b ax l ih
sight: (saIt) SIGHT s ay t
crystallize: (’krIstE,laIz) CRYSTALLIZE k r ih s t ax l ay z
torn: (tO:n) TORN t ao r n
democracy: (dI’mQkrEsI) DEMOCRACY d ih m aa k r ax s ih
broil: (brOIl) BROIL b r oy l
madhouse: (’mHd,haUs) MADHOUSE m ae d hh aw s
juice: (dZu:s) JUICE jh uw s

Table 4.1: Words in different notations of IPA

In the process of creating converter between the sets, it was necessary to map individual
phonemes and eventually solve ambiguities.
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• IPA phonemes set (47 phonemes)

A:, H, Q, V, O:, aU, aI, E, i, I, Er, b, tS, d, D, Jl, Em, En, Jn, F:, eI, f, g, h, i:, dZ,
k, l, m, n, N, EU, OI, p, r, s, S, t, T, U, u:, ju:, v, w, j, z, Z

• AMI phonemes set (44 phonemes)

aa, ae, ah, ao, aw, ax, axr, ay, b, ch, d, dh, eh, el, em, en, er, ey, f, g, hh, ih, iy, jh, k,
l, m, n, ng, ow, oy, p, r, s, sh, t, th, uh, uw, v, w, y, z, zh,

Building conversion table

Conversion table between phoneme alphabets was created by comparison of both sets.
The table contains three columns: Lingea phoneme, recognizer phoneme and alternative
recognizer phonemes. According to this table, conversion script was made. To choose the
best variant from phoneme alternatives, comparison script and converting script were used.

LINGEA RECOGNIZER variants LINGEA RECOGNIZER variants
A: ae aa i: iy
H ae aa dZ jh
Q aa ao k k
V ah l l
O: ao r ao m m
aU aw n n
aI ay N ng
E ax axr, r EU ow
i eh ax OI oy
I ih ax, iy p p

Er axr r r r
b b s s
tS ch S sh
d d t t
D dh T th
Jl el U uh uw

Em em u: uw
En en ju: uw
Jn en v v
F: er w w
eI ey j y
f f z z
g g Z zh
h hh

Table 4.2: Phonemes conversion table

Components for testing

• Conversion script – Converts files from one IPA notation to another

• Big dictionary – 50 000 word dictionary with notation, that uses the recognizer

12



• Lingea dictionary – Dictionary to convert (Fig. 3.2)

• Recognizer – The base recognizer with 8 kHz models, used for testing purposes

Text testing

With help of conversion script, the sample file from Lingea was converted and compared
with big reference dictionary. The comparison script returned the difference between files
in %. After that mapping of one ambiguous phoneme in the conversion script was changed
and the whole procedure was repeated. By ambiguous phonemes, the highest value in % was
choosen. The result of this process was conversion table with theoretically best performance.

Testing with recognizer

After gaining better conversion table only with a few ambiguities, the recognition test was
done. The dictionary for the recognizer was converted by conversion script from Lingea
dictionary. The accuracy of the recognizer with different variants of the dictionary was
noted. The final conversion table was made from the dictionary variant giving the best
results.

reference I -> (IH -> IY) Er -> (r -> axr) O: -> (ao r -> ao)

01b 41.85 44.16 2.31 41.35 -0.50 41.75 -0.10
02a 34.61 33.70 -0.91 34.10 -0.51 33.90 -0.71
05a 66.40 67.10 0.70 65.50 0.10 64.59 -1.81
07a 65.39 66.10 0.71 65.19 -0.20 63.78 -1.61
08a 38.23 34.31 -3.92 38.13 -0.10 36.62 -1.61
09a 61.87 62.07 0.20 61.47 -0.40 60.06 -1.81
10a 73.24 71.33 -1.91 73.54 0.30 71.43 -1.81
11a 54.08 54.73 0.65 54.28 0.20 52.37 -1.71
12a 51.71 50.70 -1.01 51.91 0.20 49.20 -2.51

Table 4.3: Test results - recognizer accuracy in %

4.2 Downsampling

Because testing data were available only in CD quality (44.1 kHz) and the models were
trained with either 8 kHz or 16 kHz data, it was necessary to downsample the test data.
Sox (Sound eXchange) was used for downsampling. Sox contains three different sample-rate
conversion algorithms [5]:

1. Linear Interpolation: missing samples are linearly interpolated from existing samples.

2. Band-Limited Interpolation: missing samples are interpolated using a Kaiser-windowed
sinc function from existing samples.

3. Polyphase Filtering: traditional DSP interpolation and decimation mechanisms im-
plemented efficiently.
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The polyphase filter has the best interpolation performance [5], closely followed by the
bandlimited interpolation, both of them leaving linear interpolation far behind. Our only
concern was signal quality, that’s why the polyphase effect was chosen.

Files were downsampled with this command:

sox -t wav -r 44100 -s -w $in -w -r 8000 -s -t wav $out polyphase

• -t = filetype

• -r = rate

• -s = The sample data encoding is signed linear

• -w = The sample data size is in 16-bit words

• $in = Name of file, we want to downsample

• $out = Name of downsampled file

4.3 PLP features

PLP features are generated by this command:

HCopy -C $HCopyConfig -S $ScpName;

• -C $HCopyConfig = config for PLP

• -S $ScpName = path to wav files, we want to program

4.4 Grammar

Grammar provides word sequence, which can the recognizer recognize. For recognition of
isolated words it is in this form:

sil WORD sil

where WORD is parallel connection of all words in the dictionary.

Figure 4.1: Grammar network

14



4.5 Recognition

Recognition was done by this command:

HVite -i $mlf -S $list -p $WordInsertPenalty -s $GrammarScale

-H $models -w $gram -C $config -n 20 5 $dict $model_list;

• -i $mlf = File with results in MLF (Master Label File) format

• -S $list = List of PLP features

• -p $WordInsertPenalty = Word insert panalty -10.0

• -s $GrammarScale = Grammar scale 1.0

• -H $models = 8 kHz or 16 kHz models

• -w $gram = Grammar

• -C $config = Config for PLP and normalisation

• -n 20 5 = N-best recognition

• $dict = Dictionary

• $model list = Model list

4.6 Results of recognition

Results of recognition were obtained by this command:

HResults -d $X -I $reference $words $results

• -d $X = X-best recognition

• -I $reference = reference results file in mlf format (100% accuracy)

• $words = words to recognize

• $results = results file in mlf format
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Chapter 5

Experiments

After creating recognizer, it was experimented with various models (8 kHz , 16 kHz, 16 kHz
+ VTLN). Accuracies of particular systems were noted into tables.

Accuracy was analysed on several levels:

• 1-best: recognized word equals to reference word.

• X-best: recognized word occurs in list of X best variants. (X was 5, 10, 15 or 20 in
these experiments)

5.1 8 kHz results

The recognizer built with 8 kHz models was used as base system. It served for testing
purposes during evaluating of conversion table between phoneme sets and also for testing
executing scripts, which were with small modifications used further. 8 kHz models are
quality, trained on big amount of data.

SET 1-best 5-best 10-best

01a 30.28 48.39 56.34
01b 41.85 64.29 73.24
02a 34.61 54.43 61.07
04a 22.74 40.14 47.18
05a 66.40 84.51 89.13
06a 15.90 29.07 35.71
07a 65.39 80.68 86.12
08a 38.23 56.44 63.88
09a 61.87 80.58 84.81
10a 73.24 86.72 90.04
11a 54.08 76.13 82.18
12a 51.71 69.92 78.37

average 47.82 65.72 71.98

Table 5.1: 8 kHz results - accuracy in %, measured ratio of recognized words to all words
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Figure 5.1: 8 kHz results - accuracy in %, measured ratio of recognized words to all words

5.2 16 kHz results

The recognizer built with 16 kHz models has better results than the recognizer with 8 kHz
models. Higher sample rate leads to higher word accuracy. Difference between 8 kHz and
16 kHz 10-best accuracy average is 7%.

SET 1-best 5-best 10-best 15-best 20-best

01a 38.49 61.51 69.95 74.37 77.19
01b 57.39 78.09 84.22 87.44 89.85
02a 46.53 70.15 77.09 80.20 82.41
04a 26.43 47.44 55.58 60.40 62.61
05a 65.93 85.03 89.35 90.85 91.96
06a 28.04 44.72 52.06 56.98 60.90
07a 72.46 86.73 90.45 91.76 92.16
08a 42.01 63.92 70.35 73.57 75.48
09a 65.33 82.51 88.34 91.06 92.46
10a 78.47 91.95 94.27 94.97 95.57
11a 66.26 84.69 89.73 92.35 93.35
12a 61.21 80.50 86.13 89.35 91.76

average 54.05 73.10 78.96 81.94 83.81

Table 5.2: 16 kHz results - accuracy in %, measured ratio of recognized words to all words
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Figure 5.2: 16 kHz results - accuracy in %, measured ratio of recognized words to all words

5.3 VTLN results

For experiments with VTLN, it was necessary to find optimal normalisation factor for each
speaker. Normalisation factor was searched on interval between 0.8 and 1.2. This range
was divided in 100 segments of the same length. The forced alignment was done in each
factor and the log likelihood of models computed. The optimum normalisation factor for
given speaker is one giving the highest log likelihood. Table with optimum normalisation
factors:

SET WARPFREQ
01a 0.888
01b 0.864
02a 0.848
04a 0.848
05a 1.016
06a 0.876
07a 0.964
08a 0.912
09a 0.996
10a 1.048
11a 0.928
12a 0.996

Table 5.3: Best normalisation factors

Speaker adaptation techniques leads generally to higher accuracy rates. It may be
beneficial to use these techniques, if appropriate data are available. With this system, the
best results were reached.
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SET 1-best 5-best 10-best 15-best 20-best

01a 50.45 71.66 78.19 81.61 84.72
01b 68.04 88.34 92.66 94.57 95.18
02a 64.82 84.62 89.15 91.26 92.26
04a 35.38 56.58 63.72 67.14 69.85
05a 69.85 88.34 92.36 93.67 94.47
06a 31.06 48.94 56.98 62.21 65.73
07a 74.57 88.44 91.86 93.07 93.47
08a 39.80 59.20 65.33 69.95 73.27
09a 67.44 83.82 88.44 91.56 93.37
10a 82.49 93.16 95.47 96.18 96.78
11a 69.92 86.32 91.05 92.86 93.36
12a 64.72 82.51 87.94 90.85 93.07

average 59.88 77.66 82.76 85.41 87.13

Table 5.4: 16 kHz + VTLN results - accuracy in %, measured ratio of recognized words to
all words

Figure 5.3: 16 kHz results + VTLN - accuracy in %, measured ratio of recognized words
to all words
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Chapter 6

Conclusion

The main aim of this work was to find out, if it is possible to adapt user data to existing
models, which were trained in different environment. The base 8 kHz system has 65.7%
word accuracy with 5-best and 72% word accuracy with 10-best. These values are sufficient
for 8 kHz system. The recognizer with 16 kHz models reached 73% accuracy with 5-best
(which is more than 8 kHz accuracy with 10-best) and 79% with 10-best. In higher variants
of X-best, there are no such differences between accuracy results. 15-best and 20-best
results differs only by 2%. After using Vocal tract length normalisation (VTLN) speaker
adaptation techniques, the results were further improved. The system with 16 kHz models
and VTLN reached 78% accuracy with 5-best and 83% with 10-best. With this models
and 20-best, the best score 87% accuracy was reached. 83% accuracy with 16 kHz models
and VTLN is sufficient value for the recognizer of isolated words, this shows that user data
from office environment can be successfuly adapted to existing models.

Next work consists in use of 16 kHz models with VTLN + HLDA (Heteroscedastic Linear
Discriminant Analysis). The dictionary will be increased to thousands of words with a few
pronunciation variants. We also expect new datasets from the project partner. Thereby
recognizing will be more difficult and the accuracy of recognizing may slightly decrease.
N-best variants can contain the correct word, despite of occurrence of very similar words
in the dictionary.
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Appendix A

To this bachelor work belongs CD which contains:

• technical report of this bachelor work

• 8 kHz and 16 kHz models

• dictionary with phonetic notation

• executable scripts

• demo of the recognizer
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