
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

UBIQUITOUS LEARNING

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE MIROSLAV SOBOTKA
AUTHOR

BRNO 2007

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

UBIQUITOUS LEARNING
UBIQUITOUS LEARNING

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE MIROSLAV SOBOTKA
AUTHOR

VEDOUCÍ PRÁCE Ing. BOHUSLAV KŘENA, Ph.D.
SUPERVISOR

BRNO 2007

Abstrakt
Tato práce se věnuje všudypř́ıtomnému vzděláváńı (u-learning) a mapováńı ontologíı, je
součást́ı dlouhodobého projektu MAPLE a vypracoval jsem ji během studijńıho pobytu
na francouzské univerzitě v La Rochelle, v rámci mezinárodńıho výměnného programu
Socrates-Erasmus. Hlavńı ćıle práce lze rozdělit na dvě souvisej́ıćı části. Prvńı část má za
úkol seznámit čtenáře s prostřed́ım pro všudypř́ıtomné vzděláváńı a s vhodnými dostupnými
nástroji. Jedńım z těchto nástroj̊u je i komerčńı program LMA, který je určený pro tvorbu
mobilńıch prezentaćı a kurz̊u, d̊uraz je kladen na jejich přenositelnost mezi jednotlivými mo-
bilńımi platformami. Ćılem je demonstrace jeho funkčnosti a vytvořeńı zkušebńı mobilńı
prezentace. Daľśım krokem je seznámeńı čtenáře s virtuálńım výukovým prostřed́ım (VLE)
a systémy pro správu a ř́ızeńı výukových kurz̊u (CMS). Vybraný, volně dostupný CMS se
jménem Moodle jsem nainstaloval, nakonfiguroval a vytvořeńım fiktivńıho kurzu otestoval
a vyzkoušel jeho vlastnosti a funkčnost. Druhá část práce se zabývá ontologiemi, dos-
tupnými nástroji pro práci s nimi a mapovaćımi algoritmy. Čtenář je seznámen s patřičnou
teoríı a s motivacemi pro využit́ı ontologíı v projektu MAPLE, větš́ı prostor je věnován
volně dostupnému programu Protégé, který slouž́ı hlavně jako editor ontologíı, ale d́ıky
jeho rozšǐritelné architektuře může být využit k nejr̊uzněǰśım účel̊um. Důležitým bodem
práce je analýza a realizace doporučeného mapovaćıho algoritmu, který jsem implementoval
jako zásuvný modul pro program Protégé. Ćılem projektu MAPLE je návrh a realizace
pedagogického systému pro mobilńı, aktivńı a participativńı výukové prostřed́ı, které obo-
hat́ı tradičńı model prezenčńı formy výuky. Dı́ky mobilńım zař́ızeńım, spolupracuj́ıćım s
pracovńı stanićı vyučuj́ıćıho, budou mı́t studenti možnost okamžité zpětné vazby. Daľśımi
záměry projektu jsou mobilńı př́ıstup k dat̊um a výukovým kurz̊um, online komunikace a
spolupráce zúčastněných osob, efektivńı vedeńı a administrace kurz̊u pro vyučuj́ıćı a také
spolupráce a propojeńı již existuj́ıćıch systémů v jeden funkčńı celek. Motivaćı pro využit́ı
ontologíı v projektu MAPLE je správa výukových modul̊u a prezentaćı, jejich efektivńı
katalogizace, znázorněńı závislost́ı a vztah̊u mezi uloženými daty a jejich rychlé a přesné
vyhledáńı. Mapovaćı algoritmus umožńı spolupráci mezi moduly a ostatńımi databázemi,
které použ́ıvaj́ı rozd́ılné ontologie pro popis a charakterizaci uložených dat.

Kĺıčová slova
Všudypř́ıtomné vzděláváńı, ontologie, mapováńı ontologíı, mobilńı vzděláváńı, MAPLE
projekt, Protégé, LMA, systémy pro správu kurz̊u, virtuálńı výukové prostřed́ı

4

Abstract
This work is devoted to the ubiquitous learning and the ontology mapping. The former
part presents the environment of ubiquitous learning and available tools. The aim is to
show the way to the mobile content creation, using the LMA software and the realization
of the virtual learning environment – installation, testing and setting up of the Moodle
open source course management system. The ontology mapping part acquaints readers
with ontologies and ontology mapping, the aim is to analyze available resources, to choose
suitable tools and finally to realize own implementation of ontology mapping algorithm.
This work is a part of the MAPLE project, the overall objective is to enable realization of
pedagogical framework for a mobile, active and participative learning environment.

Keywords
Ubiquitous learning, ontology mapping, m-learning, MAPLE classroom, Moodle, Protégé,
Virtual Learning Environment, Course Management System, Learning Mobile Agent

Citace
Miroslav SOBOTKA: Ubiquitous Learning, diplomová práce, Brno, FIT VUT v Brně, 2007

Ubiquitous Learning

Prohlášeńı
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedeńım pana Ing.
Bohuslava Křeny, Ph.D., daľśı informace a pomoc mi poskytl pan Dr. Michel Eboueya.
Uvedl jsem všechny literárńı prameny a publikace, ze kterých jsem čerpal.

. .
Miroslav SOBOTKA

21st May 2007

Poděkováńı
Chtěl bych poděkovat mému vedoućımu práce panu Ing. Bohuslavu Křenovi, Ph.D., za
pomoc, rady a konzultace, panu Dr. Michel Eboueya, který byl mým vedoućım a zároveň
zadavatelem diplomové práce během mé zahraničńı stáže, a také pańı Michaele Studené,
která mi pomohla zahraničńı výjezd realizovat.

c© Miroslav SOBOTKA, 2007.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 3
1.1 Context of the work . 3
1.2 Aim of the work . 4

2 Ubiquitous learning 6
2.1 Basic definitions . 6

2.1.1 Ubiquitous learning environment . 7
2.1.2 Course Management System . 8
2.1.3 Virtual learning environment . 9
2.1.4 Mobile content . 9

2.2 Available tools . 10
2.2.1 Learning Mobile Agent . 10
2.2.2 Moodle Course Management System 13

2.3 Pilot mobile presentation . 16
2.3.1 Using Learning Mobile Agent . 17
2.3.2 Possible drawbacks . 17

2.4 Moodle installation and testing . 18
2.4.1 The Microsoft Virtual PC . 18
2.4.2 Moodle on virtual server . 19
2.4.3 Moodle in practise . 20

3 Ontology mapping 22
3.1 Introduction to ontologies and ontology mapping 22

3.1.1 Ontologies . 22
3.1.2 Ontology mapping . 26

3.2 Working with ontologies . 27
3.2.1 RDF . 28
3.2.2 OWL . 29
3.2.3 Frameworks . 30
3.2.4 Methods and tools . 31
3.2.5 Protégé . 32
3.2.6 Summary . 34

3.3 Protégé & OWL . 35
3.3.1 Protégé-OWL API . 35
3.3.2 Protégé Plug-in Development . 36
3.3.3 Summary . 37

3.4 Ontology mapping algorithm . 38
3.4.1 Proposed design . 38

1

CONTENTS 2

3.4.2 Proposed improvements . 47
3.5 Implementation of Protégé plug-in . 48

3.5.1 Implementation details . 48
3.5.2 Plug-in interface and control . 49

4 Conclusion 52
4.1 Achieved results . 52
4.2 Future work . 52

Chapter 1

Introduction

This diploma thesis evolved during an international scholarship (Socrates-Erasmus an ex-
change program) at the University of La Rochelle, Faculty of Science (Laboratory L3i),
where I spent a winter semester and a month (total duration of my stay was 5,5 months).

The main purpose of my stay was to elaborate my final project, but I have also com-
pleted courses on computer networks and security – Administration Systèmes et Réseaux
Sécurité, an English course – Cours d’anglais and a French language course CUFLE (
Cours de français pour les étudiantes étrangères). Studying these courses was very inter-
esting experience and also a strong improvement for my French language skills.

This thesis was created under supervision of Dr. Michel EBOUEYA (taskmaster) and
Ing. Bohuslav Křena and is a part of the MAPLE research project (Mobile Active Par-
ticipative Learning Environment). The closest predecessor is a work of S. Niwattanakul
(presented at conferences viz. [17] and [18]) and work of Jǐŕı Špička ([22], elaborated during
an internship in the summer semester 2006).

During my stay, I attended the conference Assises du GDR CNRS I3 organized in La
Rochelle (15.-17. January 2007) by research group Laboratory L3i. I also participated in
the two-day L3i séminaire Île de Ré (1.-2. February 2007), organized by the same research
group. This was a great opportunity to meet other researchers in the L3i group and to find
out how this laboratory works.

1.1 Context of the work

The aim of the MAPLE (Mobile Active Participative Learning Environment) project is
to establish lightweight effective systems for future classrooms using advanced tools and
combining advantages of face-to-face teaching processes with e-learning (m-learning) edu-
cational methods. My goal is to maximize utilization of existing tools, adapt them to set
up co-operation, and to create purposive systems.

The basic principle is to create an online learning community and knowledge database,
using an open source Course Management System (Moodle), following the ideas of grid
computing. All services are easily accessible through the WiFi network. The content of
a knowledge database is designated to mobile devices and PDA’s, created with LMA30
(Learning Mobile Author).

Concerned elements are classified by ontologies, using a Protégé ontology editor and
knowledge-base framework, thus desired materials should be effectively traced. To allow
cooperation with a different technique of data description, ontology mapping algorithm

3

CHAPTER 1. INTRODUCTION 4

have been implemented like a Protégé plug-in.

The objective of the MAPLE project is to design and implement a pedagogical
framework for a mobile, active and participative learning environment. A MAPLE class-
room enhances the traditional face-to-face delivery mode – all learners can provide im-
mediate feedback to the teacher through a ubiquitous mobile device which is summarised
in real-time on the teacher workstation. MAPLE can be used for immediate feedback,
real-time assessment, collaborative problem-solving, building learning communities, partic-
ipative simulations and peer-directed learning, and in teacher training. MAPLE is also
a resource of training courses and learning materials, which can be easily traced up by
advanced searching algorithms.

A MAPLE classroom is applicable in most educational contexts but the target group
for this project is learners in higher education. A taxonomy of learner cohorts will be de-
veloped to permit holistic comparisons of the effectiveness of MAPLE which will include:
minority groups (gender imbalance, races/cultures, disadvantaged, special needs); under-
graduate and postgraduate levels.

1.2 Aim of the work

The aim of this work can be divided into two parts – Ubiquitous Learning and Ontology
Mapping.

Ubiquitous Learning

The main objective of the first part is to be familiarized with the ubiquitous learning
environment and available applications and tools. The next step is the creation of a pilot
mobile presentation in LMA and summarization of LMA’s functionality and principles of
work.

The last part of this section is work with course management system (CMS), to acquaint
and to set up Moodle, and to test its configuration.

Ontology Mapping

The objective of this section is to learn why and how to use ontologies, how to work with
them and to understand this issue. The next step is to analyze available applications and
environments, to choose suitable tools and to decide which techniques will be the best for
mapping algorithm realization.

The final part is devoted to mapping algorithm – firstly an introduction and proposed
design, followed by own improvements and suggestions and finally the realization of this
mapping algorithm in the chosen environment.

Semestral and annual projects

There is no connection between my semestral and annual projects and this diploma thesis.
The reason is established practice in the Erasmus exchange program – student have to
accept arranged assignment proposed by foreign university.

CHAPTER 1. INTRODUCTION 5

I have passed through the same procedure, so I did not have the possibility of con-
tinuation in my annual project. I have changed completely the course of study, from the
system for automatized generation of documentation I have moved to the proposed theme
– ubiquitous learning and ontology mapping.

Chapter 2

Ubiquitous learning

Ubiquitous can be defined as “existing or being everywhere at the same time”, “constantly
encountered” and “widespread”. Ubiquitous computing (a.k.a. pervasive computing) inte-
grates computation into the environment, rather than having computers which are distinct
objects so we can say that technology is everywhere and we use it all the time.

2.1 Basic definitions

Ubiquitous learning (u-learning) can be understand like an equivalent of mobile learning,
e.g. that learning environments can be accessed in various contexts and situations, but the
objectives of ubiquitous learning can be characterized as the following list [25]:

Permanency: Learners never lose their work unless it is purposefully deleted. In addition,
all the learning processes are recorded continuously everyday.

Accessibility: Learners have access to their documents, data, or videos from anywhere.
That information is provided based on their requests. Therefore, the learning involved
is self-directed.

Immediacy: Wherever learners are, they can get any information immediately. Thus,
learners can solve problems quickly. Otherwise, the learner can record the questions
and look for the answer later.

Interactivity: Learners can interact with experts, teachers, or peers in the form of syn-
chronous or asynchronous communication. Hence, the experts are more reachable and
the knowledge becomes more available.

Situating of instructional activities: The learning could be embedded in our daily life.
The problems encountered as well as the knowledge required are all presented in
their natural and authentic forms. This helps learners notice the features of problem
situations that make particular actions relevant.

Adaptability: Learners can get the right information at the right place with the right
way.

The learning process can be divided into two main branches – face-to-face (present)
learning and distance learning (d-learning). Face-to-face learning represents classical pres-
ence teaching in classrooms whereas the d-learning branch stands for distance education –
learners and teacher do not have to be on the same place in the same time.

6

CHAPTER 2. UBIQUITOUS LEARNING 7

Figure 2.1: Relationship between d-learning, e-learning, and u-learning

As can be seen on the figure 2.1, the subset of d-learning is e-learning. E-learning is an
approach to facilitate and enhance learning through both computer and communications
technology (personal computers, CDROM’s or television, Internet, email, discussion forums,
collaborative software, etc.).

Ubiquitous learning (u-learning), also denoted like a mobile learning (m-learning) is the
subset of e-learning. Difference between e-learning and m-learning can be seen on the table
2.1.

2.1.1 Ubiquitous learning environment

Ubiquitous = pervasive, omnipresent, ever present,everywhere

Learning = educational, instructive, didactic, pedagogical

Environment = surroundings, setting, situation, atmosphere

Ubiquitous learning environment (ULE) is an adaptive teaching system using ubiquitous
technology (ubiquitous computing). The aim of ULE is to enable an easy access to learning
resources and to grant ubiquitous education for all learners.

The requirements of the MAPLE project are specific and should also be slightly modified
during future evolution. Practical testing and real service will affect numerous groups of
people and will take a considerable amount of resources, thus the selection of an appropriate
learning environment is an important part of the project.

Requirements of u-learning

Many students are moving around and their nature is becoming increasingly nomadic. Thus,
the question presents itself as how do these students access a flexible learning environment
when the methods of access are restricted to a desktop computer?

The answer is to enable our learning environment from accessible and more portable
devices, such as personal digital assistants (PDA) that can be physically carried by students
and is not as cumbersome as a laptop computer. This is known as ubiquitous access and
is a common foundation of what is known as u-learning. The remainder of this research

CHAPTER 2. UBIQUITOUS LEARNING 8

Figure 2.2: Ubiquitous Learning Environment

paper will concentrate on the implementation details of enabling ubiquitous access to the
Course Management System (CMS) unit [15].

2.1.2 Course Management System

A Course Management System (CMS) represents a new form of educational technology.
CMS is a set of teaching and learning tools designed to enhance a student’s learning ex-
perience by including computers and the Internet in the learning process. Learners and
teachers may work closely together while not being active at the same time and space –
asynchronous learning.

CMS is a software package that provides support for managing student access to courses,
monitoring student activity, administering and scoring student progress and performance
tests, storing student records, managing access to student and course records, and reporting
on student and course activity.

Principal components of CMS are:

• mapping of the curriculum into course topics that can be assessed and recorded

• tracking of student activity and achievement within the curriculum presented online

• support of online learning, including access to learning resources, assessment and
guidance

• online tutor support

• peer group support

CHAPTER 2. UBIQUITOUS LEARNING 9

• general communications, including email, group discussion and web access

• links to other systems, both in-house and externally

A CMS allows active teacher management of classroom participation, to provide in-
formation of student learning progress, serve as a basis for student feedback, allow real
time adjustments to instructional presentations, and allow the teacher to focus on the in-
structional needs of specific students. A course management system allows the teacher to
implement various video, audio, graphics, text, and programs without regard to their data
format which enables teachers to electronically present instructional materials from differ-
ent source formats in automated classrooms. As well, a CMS provides computer mediated
support for course development and revision, either through built-in functions within the
software of the CMS, or through integration with other curriculum development tools [5,
p.10].

Advanced CMS provides synchronous and asynchronous tools for both teacher and
students such as e-mail, threaded discussions, chat rooms, white boards, video conferencing,
online testing and evaluation, bulletin boards, and teleconferencing.

2.1.3 Virtual learning environment

The education using computers, networks and new technology is topical problem and lot of
people are involved in development and usage. That is why we can find many abbreviations
and terms with similar meanings or very small differences.

As mentioned in [28], computerised learning, mostly called e-learning is facilitated
by e-learning systems. These e-learning systems are called Course Management System
(CMS) or also Learning Management System (LMS), Learning Content Management Sys-
tem (LCMS), Managed Learning Environment (MLE), Learning Support System (LSS) or
Learning Platform (LP); it is education via Computer-Mediated Communication (CMC)
or Online Education (OE).

A more correct term may be a virtual environment for learning, rather than virtual
learning environment. This removes any ambiguities and identifies that it is the environment
which is virtual and not the learning.

In the United States, CMS and LMS are the more common terms, however LMS is more
frequently associated with software for managing corporate training programs rather than
courses in traditional education institutions.

In the United Kingdom and many European countries the terms VLE and MLE are
favoured, however it is important to realize that these are two very different things. A VLE
can be considered a sub system of a MLE, whereas MLE refers to the wider infrastructure
of information systems.

I do not want to confuse readers of my work, I have mentioned these abbreviations and
terms, but I use only the CMS which can be considered like a tool for VLE realization or
in a simplified way CMS and VLE are synonyms.

2.1.4 Mobile content

Mobile content accessible through CMS (courses, presentations, tests, multimedias) should
be adjusted to the environment of mobile devices.

CHAPTER 2. UBIQUITOUS LEARNING 10

Small screen problems

One of the biggest challenges concerning the mobile devices is to find acceptable solutions
adapted to the small screen size. There is simply not enough space for all the information
found on a traditional web page on the small screen. Another problem is the limited data
transfer rate and processing power found in mobile devices. We might want to serve the
mobile users an alternative page compared to that of which is served to our traditional
clients. There are some mobile browsers that could reduce the need of developing specific
pages for the mobile client. This is not standard at the time of writing.

Possible solutions

Possible solutions presented in [22]:

• Using browsers – web browsers for mobile devices, for example Pocket Internet Ex-
plorer for the Pocket PC Mobile operation system. However, PIE is limited by both
the device on which it runs and in functionality.

• Identifying target devices – the solution is to implement a facility where the request-
ing web browser is firstly identified and decisions regarding content and its display
format are made accordingly. This is done because of differences between desktop web
browsers and browsers for small devices, for example Internet Explorer and Pocket
Internet Explorer.

• Cascading style sheets – Cascading Style Sheets (CSS) are used to add screen prop-
erties such as colour and text sizes. A CSS file is used to set these properties for
the whole web site, avoiding the need of setting these properties for each individual
HTML page.

• Themes in Moodle CMS (see the section 2.2.2) – another possible solution how to
enhance the learning content readability in Moodle is changing the theme (for example
applying the PDA theme called “orangewhitepda”).

FUNCTIONALITY MOBILITY
Computers PDAs, Handhelds, Palmtops

Laptop computers Smartphones, Mobile phones
E-learning M-learning
←→ ←→

Table 2.1: Displaying e-learning content on small displays ([22])

2.2 Available tools

2.2.1 Learning Mobile Agent

Mobile content accessible through CMS (courses, presentations, tests, multimedias) should
be adjusted to the environment of mobile devices. One of the possible solutions is to use
LMA30 (Learning Mobile Agent) from Hot Lava Software, Inc (www.hotlavasoftware.com).

CHAPTER 2. UBIQUITOUS LEARNING 11

Learning Mobile Agent (LMA) is a user friendly proprietary software, which allows you
to generate, customize, design, deploy, edit, and interact mobile content – an electronic
document designated for mobile devices:

• Text, HTML

• Multimedia
Image, Video, Sound

• Interaction
Test, Quiz

Working with LMA

The main screen of LMA is divided into three parts (viz. figure 2.3):

Structure window contains a hierarchical structure tree of whole module, where each
entry represents one module item. The top level item in the list
is the module itself, than all pages are lined up in the order they
will be shown during presentation. By a simple click of mouse on
the + icon beside the page entry, the content of each page can
be expanded thus we can graphically see what is inside the page.
With a right click of mouse various actions can be executed (add
a new item, delete or modify existing item).

Preview window displays view of the selected page (selected page in the structure
window). The preview represents final appearance of the page –
how the page will be displayed during the module presentation,
so the content and visual aspect of that page can be continuously
checked and promptly modified.

Edit window enables editing of selected components. When we select an ed-
itable item in the Structure window (an item with content which
can be changed) the content of the selected item is shown in the
Edit window and there can be edited (added, changed, modified).

Projects in LMA are called Modules. Every module has Name, Creator (max. 4
characters) and Contents (various elements).

Content elements :

Page (basic element) – page can contain all other elements which are marked like
page element.

Test (basic element) – the test is not a page element, its standalone item which is
on the same level as page, test can contain many partial quiz elements which will
be evaluated and summarized in the end of Test. The user will pass all quizzes and
no matter how he responds, the result page can be shown at the end of the Test,
depending on the administrator’s decision.

CHAPTER 2. UBIQUITOUS LEARNING 12

Figure 2.3: LMA main screen

Heading1, heading2 (page element) – There are two types of headings, all headings
will be shown in the table of content (TOC).

Paragraph (page element) – contains plain text.

List (page element) – represents the list of items.

Image (page element) – it is necessary to add the image to the Resource list, then
it is possible to add that image like a picture to a page. The required color depth is
8 bit per pixel, a good standard for an image size is 100x75 pixels (depending on the
target platform).

Quiz (page element) – represents a set of questions, during the presentation, users
cannot pass Quiz until the correct answer is selected. If the wrong answers is chosen,
an extra attempt to select right ones will be given.

TOC (Table Of Content) (page element) – summary of the whole module (Heading1
and Heading2), each item in the TOC works in reference to the item in the content

Link (page element) link has 3 parameters – Link text, Link type (external or
internal) and Link to (reference to desired page, depends on link type). Link type:

• External – reference external website (URL).

• Internal – reference to any page in module which has header (Heading1 or
Heading2).

LMA output

-Palm – exports the module to an executable file format under the Palm platform.

-PocketPC – exports the module to an executable file format under the PocketPC plat-
form.

-HTML – generates the HTML version of presentation to a local repository. HTML does
not have the capability for the right function of tests and quizzes, displaying only
questions and correct answers.

CHAPTER 2. UBIQUITOUS LEARNING 13

-Web / WAP – 2 possibilities:

• Direct upload to server – modules can be exported into desired format and
directly deployed to Hot Lava server 1, login, password and a correct address of
the server is required.

• Export to a local repository – modules can be manually uploaded to the Hot
Lava server (using web portal).

-Windows (PC) – exports the module to the .exe file format. This module is bound to
LMA viewer (a small application which interprets module functionality to Windows
OS). This output possibility is dependent on a current license policy, e.g. in the trial
beta version of LMA option was not accessible.

2.2.2 Moodle Course Management System

Purchased proprietary course management systems come with features that are necessary
for the implementation of constructivism 2 in the classroom, depending on conditions.
Generally all upgrades and updates, extra features, and each user will incur extra costs, so
the purchase of software is not the only expense.

For our puproses, if we found that existing Open Source CMS was spread world wide,
with a wide community of users and developers which ensures needful updates and future
development, it should answer our needs better than closed and expensive proprietary tools.
We have decided to use open source course management system called Moodle.

MOODLE – Modular Object Oriented Dynamic Learning Environment is a free, open
source course management system for online learning. Moodle is an active and evolving
open source course management system which fulfills the majority of our requirements.

Moodle promotes a social constructionist pedagogy – it promotes collaboration activ-
ities and critical reflection within a group. It is suitable for 100% online classes as well as
supplementing face-to-face learning. Moodle installs a simple, lightweight, efficient, com-
patible, low-tech browser interface that is easy to use and intuitive to the student’s needs.
Moodle is easy to install on almost any platform that supports PHP, moreover it requires
only one database.

The course listing shows descriptions for every course on the server, including accessi-
bility to guests. Courses can be categorized and searched – one Moodle site can support
thousands of courses. There is an emphasis on strong security throughout; forms are all
checked, data validated, and cookies are encrypted. Also, text entry areas (resources, forum
postings, journal entries etc.) can be edited using an embedded WYSIWYG HTML editor
as long as the browser that is used can support it.

Moodle has more than 150,000 registered users and wide community of developers.
Moodle is modular and can be enriched by numerous additional modules and plugins.

1Clients of Hot Lava Software have the possibility to create an account on the Hot Lava server, where
modules can be stored and presented.

2Constructivism is a set of assumptions about the nature of human learning that guide constructivist
learning theories and teaching methods of education. Constructivism values developmentally appropriate
teacher-supported learning that is initiated and directed by the student [26].

CHAPTER 2. UBIQUITOUS LEARNING 14

Requirements

Moodle installation is well documented on the official web site and the process is more or
less user-friendly. In case of any trouble, help or additional information can be found easily
thanks to the wide user community.

The idea of this section is not to copy instructions from Moodle documentation and
web site, I only want to give a brief resume which will explain the issue. The majority of
information originates from the official Moodle website [16].

The first rule by Moodle is Firstly don’t panic!

Hardware requirements depends on the mode of application – the total number of
users and size of stored data. Minimal configuration is 160MB of free space on hard disk
and 256MB of RAM.

Estimation of users number

Browsing users is the maximum number of users able to browse your Moodle site
(number of computers in organization or on course).

Concurrent database users is the maximum number of concurrent database users
(number of users who will be using Moodle at the same time).

The general approximate rule based on experience is:

Max concurrent users = RAM(in GB) ∗ 50
Max browsing users = Max concurrent users ∗ 5

Software requirements

- Web server software – most common is use of Apache, but Moodle should work fine
under any web server that supports PHP, such as IIS on Windows platforms.

- PHP scripting language – for Moodle version 1.6 or later, the minimum version of
PHP is 4.3.0 (or 5.1.0).

- Working database server – MySQL or PostgreSQL are completely supported and rec-
ommended for use with any version of Moodle (support for Microsoft SQL Server and
Oracle has been added in Moodle 1.7). For larger deployment, PostgreSQL is more
suitable than MySQL, although MySQL is very popular. Moodle 1.6 or later requires
MySQL 4.1.16 and the minimum version of PostgreSQL is 7.4.

Download of Moodle can be realized in two ways, like a compressed package or via CVS.

• From the official web site of Moodle, two types of compressed packages can be down-
loaded:

– Standard distribution (only Moodle files) – latest stable release (1.7.1) has about
10MB (zip archive).

– Complete install (also programs to operate Moodle in a web environment) –
latest release of Moodle packages for Windows, built using XAMPP, has about
53MB (zip archive). Binaries for Mac OS X have 87MB.

• From Moodle Sourceforge CVS repository.

CHAPTER 2. UBIQUITOUS LEARNING 15

Installation

Depends on number of users on desired Moodle server

Smaller sites installation (less than 30 users) simple installation, using complete install
packages, can be done.

Because it is not easy to install an Apache web server and to add MySQL, PHP and
Perl, all prerequisite software can be installed using XAMPP. XAMPP is an easy to install
Apache distribution containing MySQL, PHP and also Perl.

The process of complete package installation is user friendly and fast and more infor-
mation can be easily found on the web site.

XAMPP security notice for safety’s sake :
XAMPP is not meant for production use but only for developers in a development envi-

ronment. The way XAMPP is configured is to be open as possible and to allow the developer
anything he/she wants. For development environments, this is great. However in a produc-
tion environment, it could be fatal. A list of missing security in XAMPP:

-The MySQL administrator (root) has no password.
-The MySQL daemon is accessible via network.
-phpMyAdmin is accessible via network.
-Examples are accessible via network.

Medium to large installations – manual installation is recommended, all following
steps have to be done.

1. Plan your system capacity – depends on the number of users in your organisation.

2. Install your database server – MySQL (recommended), Microsoft SQL Server
2005 (Moodle 1.7 or later) or Oracle.

3. Install PHP – instructions in How to install PHP 5.x on Windows Server 2003 with
IIS 6.

4. Install your web server – Apache 2 (recommended), IIS or other web servers
(Lighttpd).

5. Install Moodle – detailed information on the Moodle website.

6. Setup backups – full site backup, course backup or system state backup.

7. Check your server security and performance – RTM.

8. Set-up Active Directory authentication – LDAP authentication or integrated
NTLM authentication .

“Real world” Moodle installation

Proposed “real world” Moodle installation can be realized on the basis of the figure 2.4.
Evidently this model is more hardware resource demanding, but the apparently complicated
connection enables higher security of the system.

CHAPTER 2. UBIQUITOUS LEARNING 16

Figure 2.4: Proposed Moodle environment [22]

This environment contains 2 firewalls for security reasons, separating external wireless
network (wireless access point) from local area network. The MySQL database, a part of
the Moodle system, is presented by standalone database server.

Network schema recommendations [22]:

1. Install at least one firewall between internal Moodle/MySQL server and the wireless
access point. With two firewalls, an Apache server can be placed between them in
the perimeter network and achieve greater security.

2. At the external firewall (or router acting as a firewall) allow only traffic destined for
the Apache server at TCP port 80.

3. At the internal firewall (or router acting as a firewall) allow ingress traffic from the
Apache server to the Moodle/MySQL server only.

4. Be sure to mirror the traffic on the firewalls (or routers acting as firewalls).

5. Recommendation: install only one major service on a server. This will require more
hardware, but will be easier to configure for security and backup purposes.

2.3 Pilot mobile presentation

One of aims of my work is to test discussed tools (LMA) and to create a pilot mobile
presentation called “What Is Grid Computing?”

CHAPTER 2. UBIQUITOUS LEARNING 17

Figure 2.5: The LMA module “What is Grid Computing?” in the HTML format

2.3.1 Using Learning Mobile Agent

I have described main characteristics and features of LMA in the section 2.2.1. I have used
successfully all available module elements and functions, thus I can claim the LMA software
is working satisfactory.

Unfortunately I have not received promised PDA from my French director, so my pos-
sibilities of module testing were limited.

I have exported my module to all mentioned formats successfully, but the only for-
mat accessible for functionality testing was the HTML and the Web/WAP version. As
mentioned in 2.2.1, in HTML version quiz and tests are not working properly (because
of missing logic behind the HTML code), questions are displayed with highlighted right
answers. The Web/WAP format was well working, I have utilized the Hot Lava server with
mobile delivery and tracking system (MDTS), I have uploaded the module (using LMA and
manually too) and I have tested successfully the functionality of uploaded modules.

Another problem came up with license policy of LMA software. University of La
Rochelle bought the software, but the time of use was limited and my director econo-
mized it, so I was working with the trial version of LMA and some features were restricted.
I came together with modules exported for desktop platform (Windows XP) like an .exe
files, but my version of LMA was not able to make this conversion, so as I mentioned above,
the only format accessible for me was the HTML and the Web/WAP. The representation
(by Mozilla Firefox) of my module in HTML version can be seen on the figure 2.5.

2.3.2 Possible drawbacks

During the use of LMA, I ran into a few difficulties caused by non-logic control of some
LMA functions, especially if someone is used to work with mainstream applications and
their unwritten conventions. For instance, different responses during actions on elements
with equivalent priority (deleting list item/paragraph), lack of “undo” and “redo” functions

CHAPTER 2. UBIQUITOUS LEARNING 18

– after deleting a paragraph it is necessary to rewrite it (unless there’s a backup copy).
Another possible disadvantage is the license policy.

Finding suitable images or adapting the existing ones to avoid horizontal scrolling is also
time consuming, but it is not the drawback of this software but a disadvantage in creating
mobile presentations.

On the other side, the LMA seemed to be intuitive and familiar to use. The creation of
modules was straightforward and the majority of requirements were satisfied.

2.4 Moodle installation and testing

For my testing purposes, I have decided to use a complete package installation on the
Windows platform. Because of security reasons and for simulation of real server application,
I have placed the Moodle server to the Microsoft Virtual PC environment (running on
Windows XP) and I have established a virtual network connection between Host PC and a
virtual Moodle server, as can be seen on the figure 2.6.

Reasons why I choose to realize this virtual model instead of the installation of a “real”
Moodle server are the following:

• Security – in school laboratory conditions, it was a problem to integrate my server
into the existing computer network – network administrators were not looking with
favor on my attempt. Also as mentioned in the section 2.2.2, the XAMPP package is
not configured securely, thus, these experiments with settings should be applied in a
separate environment than in an existing network.

• Portability and practicality – especially for my purposes and manner of work, the
portability of a realized solution is a very important attribute – the virtual Moodle
server should be presented and discussed within range of my laptop – thus anywhere.

The installation of Moodle is briefly described in the section 2.2.2, I have followed
instructions and I succeeded in the whole process of installation. As written above, for my
purpose I chose the complete package installation using XAMPP, thus the whole process
was pleasantly brisk.

2.4.1 The Microsoft Virtual PC

The installation of Microsoft Virtual PC is similar to the installation of a standard desktop
computer, I have to set up a desired operation system and all necessary components. In my
case, I have only installed the Windows XP operation system and set the virtual network
between Host and Virtual PC, then the virtual machine was ready for the Moodle server
installation.

To set up the virtual network, it is necessary to configure the Host PC:

- Install Microsoft Loopback adapter – a detailed guide is available on the Microsoft
web site.

- Allow and set up a virtual network – in Network Connections, properties of Microsoft
Loopback Adapter, TCP/IP settings, set the netmask (255.255.255.0) and IP address
value – the best option is to use one from a range of non-routable TCP/IP addresses
– for example an address of the form 192.168.x.y, where x ∈ 〈0, 255〉 and y ∈ 〈1, 254〉

CHAPTER 2. UBIQUITOUS LEARNING 19

Figure 2.6: Testing configuration

(e.g., 192.168.0.2) . The value of x must be the same on the Host operating system
and each guest operating system that is to be part of the virtual network.

and also configure the Virtual PC:

- allow and set up a virtual network – in networking options of Virtual PC configu-
ration, the Microsoft Loopback adapter has to be enabled in the network adapter.
Then the same settings for the IP address as mentioned above (same format of IP
address – 192.168.x.y where x is the same but the y value must be different from the
Host PC configuration, for example 192.168.0.1).

Configuration of Moodle and related software is described in the documentation, I will
emphasize only few points – to avoid problems it is good to set up :

ServerName 192.168.0.1:80 in /apache/conf/httpd.conf
and check whether the value of $CFG->wwwroot corresponds with the IP address of Virtual
PC in the virtual network :

$CFG->wwwroot = ’http://192.168.0.1’; in /moodle/config.php

2.4.2 Moodle on virtual server

If the virtual network between Host PC and Virtual PC works fine (it can be tested with
ping command) and if the Moodle server was installed successfully, the Moodle site can

CHAPTER 2. UBIQUITOUS LEARNING 20

be accessed from the Host PC by typing the IP address of Virtual PC (192.168.0.1 in my
example) into the web browser.

So, after successful installation and configuration, we have a working model with the
Moodle server on the Virtual PC and a client who is connecting through a virtual network
from the Host PC (through HTTP and HTTPS) or from other PCs which can be connected
to the Host PC through wireless ad-hoc network.

Figure 2.7: Login (HTTPS) from Host PC to Moodle site, server runs on Virtual PC

Now the Moodle functionality can be easily tested and the model corresponds with a
“real life” application – network traffic goes through a firewall. The security of the web
and SQL server can thus be tested without risk.

2.4.3 Moodle in practise

To test Moodle features, I have created a pilot course with a small database of uploaded
study materials (LMA modules, see the figure 2.8) and I have done administrative tasks
over this course and whole site. I must note that all proclaimed functions and features were
working satisfactory.

Administrative (not only) functions can be extended by various plug-ins, so Moodle can
suit different needs and requirements.

CHAPTER 2. UBIQUITOUS LEARNING 21

Figure 2.8: Uploaded LMA modules – study materials in demonstrative course

Chapter 3

Ontology mapping

An ontology defines a common vocabulary for concerned persons who need to share in-
formation in a domain. It includes machine-interpretable definitions of basic concepts in
the domain and relations among them [19]. The use of ontologies enables the knowledge
sharing and the explicit data description. Some of the reasons for using ontology:

• To share common understanding of the structure of information among people or
software agents.

• To enable reuse of domain knowledge.

• To make domain assumptions explicit.

• To separate domain knowledge from the operational knowledge.

• To analyze domain knowledge.

In the MAPLE project, the motivation for ontology use is to enable an effective data
retrieval and management of learning modules. In case of a huge database of learning
courses and materials, it is hardly possible to find desired data only using a primitive
methods for searching and data description, so I will use an advanced method.

Ontologies allow to establish a structural network which will represent dependencies and
bindings between stored materials and enables an exact description of each database item.
The mapping algorithm will enable cooperation between stored data described by different
ontologies, or with an another database of learning modules using different ontology for
data characterization and description.

3.1 Introduction to ontologies and ontology mapping

3.1.1 Ontologies

The term “ontology” has its origin in philosophy, where it is the name of one fundamental
branch of metaphysics, concerned with analyzing various types or modes of existence, often
with special attention to the relations between particulars and universals, between intrinsic
and extrinsic properties, and between essence and existence, it is the study of being or
existence. It seeks to describe the basic categories and relationships of being or existence
to define entities and types of entities within its framework.

22

CHAPTER 3. ONTOLOGY MAPPING 23

Ontology can be said to study conceptions of reality, ontology investigates both the
question of what actually exist and the question of the meaning of the word existence.
Information in this section are mainly borrowed from [27].

Ontology has one basic question: “What is there?” Different philosophers provide dif-
ferent answers to this question. One common approach is to divide the extant entities into
groups called “categories”. However, these lists of categories are also quite different from
one another. It is in this latter sense that ontology is applied to such fields as theology,
information science and artificial intelligence.

Ontology in computer science and in philosophy has in common the representation
of entities, ideas, and events, along with their properties and relations, according to a system
of categories. Differences between the two are largely matters of focus. Philosophers are less
concerned with establishing fixed, controlled vocabularies than are researchers in computer
science, while computer scientists are less involved in discussions of first principles (such
as debating whether there are such things as fixed essences, or whether entities must be
ontologically more primary than processes).

Metaphysics

Metaphysics is very related to ontology, it investigates the most general principles about
the nature of reality. The term originates from the work of Aristotle called “Metaphysics”,
which was divided into three parts, which are now regarded as the proper branches of
traditional Western metaphysics:

• Ontology – the study of Being and existence; includes the definition and classification
of entities, physical or mental, the nature of their properties, and the nature of change.

• Theology – the study of God; involves many topics, including among others the
nature of religion and the world, existence of the divine, questions about Creation,
and the numerous religious or spiritual issues that concern humankind in general.

• Universal science – the study of first principles, which Aristotle believed to be the
foundation of all other inquiries. An example of such a principle is the law of non-
contradiction and the status it holds in non-paraconsistent logics.

The work of Aristotle related to ontologies was described as “the science of being qua1

being”. According to this theory, then, ontology is the science of being inasmuch as it is
being, or the study of beings insofar as they exist.

The metaphysician also attempts to clarify the notions by which people understand
the world, including existence, objecthood, property, space, time, causality, and possibility.
More recently, the term “metaphysics” has also been used more to refer to “subjects that
are beyond the physical world”.

Ontology concerns determining what categories of being are fundamental and asks
whether, and in what sense, the items in those categories can be said to “be”.

1The word “qua” means “in the capacity of”.

CHAPTER 3. ONTOLOGY MAPPING 24

Ontologies in informatics

In the context of computer science, an ontology is a data model that represents a set of
concepts within a domain and the relationships between those concepts – “a description
of the concepts and relationships that can exist for an agent or a community of agents”. It
is used to reason about the objects within that domain. Ontology is generally written, “as
a set of definitions of formal vocabulary” [27, 2].

Ontology consists of (see the figure 3.1):

• Individuals – the basic objects.

• Classes (Concepts) – sets, collections or types of objects.

• Attributes – properties, features, characteristics or parameters that objects can
have and share.

• Relations (Relationships) – objects can be related mutually.

Figure 3.1: Ontology schema

Individuals or also “instances”, are the basic elements (objects) of ontologies. Individ-
uals may represent concrete objects (e.g. people, animals etc. – depends on the ontology
domain) or also abstract items (numbers, words). There are not any restrictions that the
ontology has to include some individuals, but one of the main purpose of ontology use is
to classify individuals even if those individuals are not explicitly a part of the ontology.
Individuals are members of classes (individual can be a member of multiple classes).

CHAPTER 3. ONTOLOGY MAPPING 25

Classes (concepts) are abstract groups, sets, or collections of objects. The membership
of a class is dependent on its logical description, not on its name. Classes may contain
individuals, other classes, or a combination of both. A class can subsume or be subsumed
by other classes – if a class contains other classes, these can be denoted like sub-classes or
children, a superordinate class should be denoted like a super class or a parent.

For example, Vehicle subsumes Car, since (necessarily) anything that is a member of
the latter class is a member of the former. The subsumption relation is used to create a
hierarchy of classes, typically with a maximally general class like Thing at the top, and
very specific classes at the bottom (see the figure 3.2).

Figure 3.2: Hierarchy of classes in the partial ontology diagram [27]

A partition is a set of related classes and associated rules that allow objects to be placed
into the appropriate class. In the scope of the figure 3.2 there is a partition of the Car class
into the classes 2-Wheel Drive and 4-Wheel Drive. The partition rule determines in which
class the particular car is placed.

If the partition rule(s) guarantee that a single Car object cannot be in both classes,
then the partition is called a Disjoint Partition. If the partition rules ensure that every
concrete object in the super-class is an instance of at least one of the partition classes, then
the partition is called an Exhaustive Partition.

Attributes – individuals in the ontology can be described by assigned attributes. Each
attribute has a name and a value (furthermore can be specified by e.g. datatype, maxi-
malminimal value, . . .) and is used to store specific information which is attached to the
individual. Each attribute has at least a name and a value.

An ontology with concepts which does not have defined attributes is not considered to
be the true ontology, is described as a taxonomy (if hyponym relationships exist between
concepts) or a controlled vocabulary.

Relations represents relationships between objects in the ontology. Typically the relation
is realized by an attribute, whose value is an another (related) object in the ontology. Much
of the power of ontologies comes from the ability to describe these relations. Together, the
set of relations describes the semantics of the domain.

The most important type of relations is the subsumption relation which defines mem-
bership of classes (subclass, superclass, . . .).

CHAPTER 3. ONTOLOGY MAPPING 26

Another type of relation is the meronymy relation (means part-of) which describes the
combination of objects, how are combined to form composite objects.

3.1.2 Ontology mapping

Ontology Mapping is the process whereby two ontologies are semantically related at a
conceptual level, and the source ontology instances are transformed into the target ontology
entities according to those semantic relations[20].

Thus, ontology mapping allows cooperation between different ontologies which are clas-
sifying (describing) objects in the same (similar) domain. The aim is to find corresponding
concepts and objects between the source ontology and the second one, which is needed to
be mapped, if it is possible. See the example on the figure 3.4.

Figure 3.3: Ontology mapping example no.1

Algebraic definition of ontology and ontology mapping [8]

represents ontologies as logical theories. An ontology is a pair O = (S, A) where S is the
(ontological) signature describing the vocabulary and A is a set of (ontological) axioms
specifying the intended interpretation of the vocabulary in some domain of discourse.

Typically, an ontological signature will be modeled by some mathematical structure,
it could consist of a hierarchy of concept or class symbols modeled as a partial ordered
set (poset), together with a set of relations symbols whose arguments are defined over the
concepts of the concept hierarchy. The relations themselves might also be structured into
a poset.

Ontological signature morphisms. We understand ontology mapping as the task of relat-
ing the vocabulary of two ontologies that share the same domain of discourse in such a way
that the mathematical structure of ontological signatures and their intended interpreta-
tions, as specified by the ontological axioms, are respected. Structure-preserving mappings
between mathematical structures are called morphisms; for instance, a function f between
two posets that preserves the partial order (a ≤ b implies f(a) ≤ f(b)) is a morphism
of posets. Hence, we shall characterise ontology mappings as morphisms of ontological
signatures as follows.

A total ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) is a morphism f : S1 →
S2 of ontological signatures, such that, A2 ` f(A1), i.e., all interpretations that satisfy

CHAPTER 3. ONTOLOGY MAPPING 27

O2’s axioms also satisfy O1’s translated axioms. This makes an ontology mapping a theory
morphism as it is usually defined in the field of algebraic specification.

In order to accommodate a weaker notion of ontology mapping, we will say that there
is a partial ontology mapping form O1 = (S1, A1) to O2 = (S2, A2) if there exists a sub-
ontology O′

1 = (S′1, A
′
1) (S′1 ⊆ S1 and A′

1 ⊆ A1) such that there is a total mapping from O′
1

to O2.

Types of ontology mapping

There are many various methods and algorithms for ontology mapping, this subject area is
very wide and many engaged groups have developed sophisticated techniques.

But also, as written in [8] the interested practitioner in ontology mapping, is often faced
with a knotty problem: there is an enormous amount of diverse work originating from differ-
ent communities who claim some sort of relevance to ontology mapping.For example, terms
and works encountered in the literature which claimed to be relevant, include: alignment,
merging, articulation, fusion, integration, morphism,and so on. Given this diversity, it is
difficult to identify problem areas and comprehend solutions provided.

Figure 3.4: Ontology mapping example

3.2 Working with ontologies

Working with ontologies is a particularly topical problem, so not only a considerable quan-
tity of various mapping methods (as mentioned above), but also lots of related software
is available. My interests were concentrated on an open source tools because advantages
resulting from this license were important for my following work.

This section contains an overview of available tools, frameworks and methods concerning
the ontology mapping problem and ontology problematics. The aim is to put my work into
the context of existing tools and to discus the possibility of cooperation and utilization,
eventually to find proper tool/framework/method suitable for my purposes.

CHAPTER 3. ONTOLOGY MAPPING 28

Open source software for an ontology development, management and visualization is
easily accessible from the World Wide Web. Each product has advantages and also disad-
vantages, viz. the comparative study [3].

Name Type&description Author Updated Lang.
Protégé ontology editor&framework Stanford Univ. 2006/11 Java
Eclipse open development platform Eclipse team 2006/11 Java
- IBM IODT Eclipse plug-in Java
- Ontology Editor Eclipse Ontology Editor S. Deshpande 2003/05 Java
- CEV CoBrA Eclipse Viewer Harry Chen 2004/07 Java
Ontolingua www app www environment Stanford Univ. 2003/07 Java
WebOnto applet online editor John Domingue 1999/01 Java
Ontosaurus www app Loom web browser Ramesh Patil 2005/09 Java

Table 3.1: Software for ontology development, management and visualization

3.2.1 RDF

The Resource Description Framework (RDF) is a W3C specification of general-purpose
language for representing information in the Web. Originally designed as a metadata model,
bur has come to be used as a general method of modeling information, through a variety
of syntax formats.

RDF Schema (RDF-S) is a standard which describes how to use RDF to describe RDF
vocabularies on the Web (example of use: – major component in W3C’s Semantic Web
activity, – DAML Ontology Library which organizes hundreds of ontologies in a variety of
different ways (keyword, organization, submission date, etc).

Figure 3.5: Layer cake

The RDF metadata model is based upon the idea of making statements about re-
sources in the form of subject-predicate-object expressions, called triples in RDF terminol-
ogy. The subject denotes the resource, and the predicate denotes traits or aspects of the
resource and expresses a relationship between the subject and the object. For example, one

http://protege.stanford.edu/
http://www.eclipse.org/
http://www.alphaworks.ibm.com/tech/semanticstk
http://ebiquity.umbc.edu/project/html/id/26/Ontology-Editor-for-Eclipse
http://cobra.umbc.edu/eclipse/
http://www.ksl.stanford.edu/software/ontolingua/
http://kmi.open.ac.uk/projects/webonto/
http://www.isi.edu/isd/ontosaurus.html

CHAPTER 3. ONTOLOGY MAPPING 29

way to represent the notion “The sky has the color blue” in RDF is as a triple of specially
formatted strings: a subject denoting “the sky”, a predicate denoting “has the color”, and
an object denoting “blue”.

RDF and ontologies: A collection of RDF statements intrinsically represents a labeled,
directed pseudo-graph. As such, an RDF-based data model is more naturally suited to
certain kinds of knowledge representation than the relational model and other ontological
models traditionally used in computing today. However, in practice, RDF data is often
stored in relational database representations sometimes also called triple stores. As RDFS
and OWL demonstrate, additional ontology languages can be built upon RDF.

3.2.2 OWL

The Web Ontology Language (OWL) is a language for defining and instantiating Web
ontologies. An OWL ontology may include descriptions of classes, along with their related
properties and instances. OWL is designed for use by an applications that needs to process
the content of information instead of presenting information to humans. It facilitates greater
machine interpretability of the Web content than that supported by XML, RDF, and RDF
Schema (RDF-S) by providing additional vocabulary along with a formal semantics (= OWL
semantically extends RDF-S). OWL is based on earlier languages OIL and DAML+OIL,
and is now a W3C recommendation (i.e., standard) [27].

The OWL language provides three increasingly expressive sub languages designed for
a use by specific communities of implementers and users.

OWL Lite supports those users primarily needing a classification hierarchy and simple
constraint features. For example, while OWL Lite supports cardinality constraints, it
only permits cardinality values of 0 or 1. It should be simpler to provide tool support
for OWL Lite than its more expressive relatives, and provide a quick migration path
for thesauri and other taxonomies.

OWL DL supports those users who want the maximum expressiveness without losing
computational completeness (all entailments are guaranteed to be computed) and
decidability (all computations will finish in finite time) of reasoning systems. OWL
DL includes all OWL language constructs with restrictions such as type separation
(a class can not also be an individual or property, a property can not also be an
individual or class). OWL DL is so named due to its correspondence with description
logics [Description Logics], a field of research that has studied a particular decidable
fragment of first order logic. OWL DL was designed to support the existing Descrip-
tion Logic business segment and has desirable computational properties for reasoning
systems.

OWL Full is meant for users who want maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees. For example, in OWL Full a class can
be treated simultaneously as a collection of individuals and as an individual in its
own right. OWL Full allows an ontology to augment the meaning of the predefined
(RDF or OWL) vocabulary. It is unlikely that any reasoning software will be able to
support every feature of OWL Full.

CHAPTER 3. ONTOLOGY MAPPING 30

3.2.3 Frameworks

Frameworks are mostly a combination of tools, provide a methodological approach to map-
ping, and some of them are also based on theoretical work [8]. Undermentioned brief
description will acquaint readers with available frameworks.

MAFRA framework for distributed ontologies in the Semantic Web is part of a multi-
ontology system, and it aims to automatically detect similarities of entities contained
in two different department ontologies.

MAFRA framework also defines semantic bridge, it is a module that establishes corre-
spondences between entities from the source and target ontology based on similarities
found between them. All the information regarding the mapping process is accumu-
lated, and populate an ontology of mapping constructs, the Semantic Bridge Ontology
(SBO).

OntoMapO framework for accessing and integrating upper level ontologies, provides also
a service that allows a user to import linguistic ontologies onto a Web server, which
will then be mapped onto other ontologies.

Apart from the OntoMapO primitives and design style, also a set of primitives that
OntoMapO offers for mapping was elaborated. Two sets are defined – InterOn-
tologyRel and IntraOntologyRel, each of them has a number of relations that aim
to capture the correspondence of concepts originating from different ontologies (i.e.,
equivalent, more-specific, meta-concept), a typology of these relations is given in the
form of a hierarchy.

IFF framework for ontological structures to support ontology sharing, it is based on the
Barwise-Seligman theory of information flow [1].

The author argues that IFF represents the dynamism and stability of knowledge.
The former refers to instance collections, their classification relations, and links be-
tween ontologies specified by ontological extension and synonymy (type equivalence);
it is formalized with Barwise-Seligman’s local logics and their structure-preserving
transformations-logic infomorphisms. Stability refers to concept/relation symbols and
to constraints specified within ontologies; it is formalized with Barwise-Seligman’s reg-
ular theories and their structure-preserving transformations-theory interpretations.
IFF represents ontologies as logics; and ontology sharing as a specifiable ontology
extension hierarchy.

generic ontologies are also consensual agreements but across communities.

Madhavan and colleagues framework and language for ontology mapping enables map-
ping between models in different representation languages without first translating
the models into a common language.

The framework uses a helper model when it is not possible to map directly between
a pair of models, and it also enables representing mappings that are either incom-
plete or involve loose information. The models represented in their framework are
representations of a domain in a formal language, and the mapping between models
consists of a set of relationships between expressions over the given models.

Also a typology of mapping properties is defined: query answerability, mapping in-
ference, and mapping composition.

CHAPTER 3. ONTOLOGY MAPPING 31

Fernández-Breis and Maŕınez-Béjar’s cooperative framework for ontology integration,
they present a system that could serve as a framework for cooperatively built, integration-
derived (i.e., global) ontologies.

This system is aimed towards ontology integration and is intended for use by normal
and expert users. The former are seeking information and provide specific infor-
mation with regard to their concepts, whereas the latter are “integration-derived”
ontology constructors. As the normal users enter information regarding the concepts’
attributes, taxonomic relation, and associated terms in the the system, the expert
users process this information, and the system helps them to derive the integrated
ontology.

3.2.4 Methods and tools

This section contains overview of tools, either stand-alone or embedded in ontology devel-
opment environments, and methods used in ontology mapping.

FCA-Merge method for ontology merging is based on Ganter and Wille’s work on Formal
Concept Analysis ([6]) and lattice exploration.

Natural language techniques are incorporated in FCA-Merge, to derive a lattice of
concepts which is then explored manually by a knowledge engineer who builds the
merged ontology with semi-automatic guidance from FCA-Merge.

IF-Map automatic method for ontology mapping, based on Barwise-Seligman theory of
information flow [1].

The method provides a systematic and mechanized way for deploying it on a dis-
tributed environment to perform ontology mapping among a variety of different on-
tologies. The process consists four major steps: ontology harvesting, translation,
infomorphism generation, and display of results.

Ontology harvesting (acquisition)⇒ Translation⇒ IF-Map (infomorphism gen-
eration) ⇒ Display results (project mappings)

SMART, PROMPT and PROMPTDIFF tools for the Protégé ontology development
environment, using linguistic similarity matches between concepts for initiating the
merging or alignment process. Then use the underlying ontological structures of
the Protégé-2000 environment (classes, slots, facets) to inform a set of heuristics for
identifying further matches between the ontologies.

The notions of merging and alignment are distinguished, where merging is the creation
of a single coherent ontology and alignment is establishing links between ontologies
and allowing the aligned ontologies to reuse information from one another.

The SMART tool is an algorithm that goes beyond class name matches and looks
for linguistically similar class names, studies the structure of relations in the vicinity
of recently merged concepts, and matches slot names and slot value types.

PROMPT is a (semi-)automatic tool and provides guidance for the engineer through-
out the steps performed during merging or alignment, where an automatic decision
is not possible, the algorithm guides the user to the places in the ontology where his
intervention is necessary, suggests possible actions, and determines the conflicts in
the ontology and proposes solutions for these conflicts.

CHAPTER 3. ONTOLOGY MAPPING 32

PROMPTDIFF is an algorithm which integrates different heuristic matchers for
comparing ontology versions. These matchers are combined in a fixed-point manner,
using the results of one matcher as input for others until the matcher produces no
more changes. PROMPTDIFF addresses structure-based comparison of ontologies as
its comparisons are based on the ontology structure and not their text serialization.

GLUE system employs machine learning techniques to find mappings. Given two on-
tologies, for each concept in one ontology, GLUE finds the most similar concept in
the other ontology using probabilistic definitions of several practical similarity mea-
sures. GLUE also uses multiple learning strategies, each of which exploits a different
type of information either in the data instances or in the taxonomic structure of the
ontologies.

GLUE uses a multi-learning strategy, it can exploit the frequencies of words in the
text value of instances, the instance names, the value formats, or the characteristics
of value distributions. Two types of learners were developed, a content learner which
uses a text classification method called Naive Bayes learning and a name learner which
uses the full name of the instance instead of hits content.

CAIMAN system uses machine-learning for ontology mapping, elaborated on a scenario
where members of a community would like to keep their own perspective on a com-
munity repository, each member in a community of interest organizes her documents
according to her own categorization scheme (ontology). This is extended by the use of
a user’s bookmark folder as a “personal” ontology. The mapping task is then to align
this ontology with the directory structure of CiteSeer 2 (also known as ResearchIn-
dex).

ONION (ONtology compositION) system for resolving heterogeneity in ontologies, which
provides an articulation generator for resolving heterogeneity in different ontologies.
The semantic heterogeneity can be resolved by using articulation rules which express
the relationship between two (or more) concepts belonging to the ontologies, but these
relationships are limited to subclass of, part of, attribute of,instance of, and value of.

ConcepTool adopts a description logic approach to formalize a class-centered, enhanced
entity relationship model. ConcepTool is an interactive analysis tool that guides the
analyst in aligning two ontologies, represented as enhanced entity-relationship mod-
els augmented with a description logic reasoner. Linguistic and heuristic inferences
to compare attributes of concepts in both models are also used,and the analyst is
prompted with relevant information to resolve conflicts between overlapping concepts.

3.2.5 Protégé

Protégé is a free, open source Java-based ontology editor and knowledge-base framework,
is flexible and modular. Protégé implements a rich set of knowledge-modeling structures
and actions that support creation, visualization, and manipulation of ontologies in various
formats. Protégé can be extended by way of a plug-in architecture and a Java-based API
for building knowledge-based tools and applications – easy use of plug-ins (87 existing
plug-ins [2006-11-07]) [23].

2Accessible at citeseer.nj.nec.com.

CHAPTER 3. ONTOLOGY MAPPING 33

Ontologies can be exported into different formats (RDF(S), OWL, XML). Supported
by the strong community of developers, academics and users (60 000). Protégé enables two
different ways of ontology modeling, each with it’s own user interface and editor:

1. Protégé-Frames editor enables to build and populate frame-based ontologies – in
accordance with the OKBC protocol (Open Knowledge Base Connectivity). The
frame-based ontology consists of a set of classes organized in a subsumption hierarchy
to represent a domain’s salient concepts, a set of slots associated to classes to describe
their properties and relationships, and a set of instances of those classes – individual
exemplars of the concepts that hold specific values for their properties.

2. Protégé-OWL editor enables to build OWL (see the section 3.3) ontologies for the
Semantic Web. “An OWL ontology may include descriptions of classes, properties
and their instances. Given such an ontology, the OWL formal semantics specifies
how to derive its logical consequences, i.e. facts not literally present in the ontology,
but entailed by the semantics. These entailments may be based on a single docu-
ment or multiple distributed documents that have been combined using defined OWL
mechanisms [21]”.

Potentially helpful plug-ins

List of potentially helpful plug-ins which can facilitate my endeavor:

Name Type Description Author Updated Lang.
Prompt plug-in Natasha Noy 2006/8 Java
-Jambalaya plug-in Java
-FOAM plug-in F. dos Santos 2006/07 Java
-FOAM framework frame Marc Ehrig 2005/12 Java
Search API plug-in API search Eric Xu 2006/09 Java
*String Search Tab plug-in string search K. Ahsan 2005/6 Java
Protege Server plug-in CORBA server M. Chisholm 2006/11 Java
ProtegeWebBrowser plug-in web browser Kamran Ahsan 2006/4 Java
XML Backend plug-in ontology2XML Eric Xu 2004/12 Java
XMLTab plug-in XML in/out M. Sintek 2005/03 Java
protegeDocgen plug-in documentation B. Gregoire 2005/6 Java

Jambalaya plug-in visualization CHISEL 2006/11 Java
OWLViz plug-in visualization M. Horridge 2005/03 Java
PromptViz plug-in visualization D. Perrin 2005/4 Java
TGVizTab plug-in visualization H. Alani 2005/11 Java

Table 3.2: Potentially helpful plug-ins of Protégé

Prompt plug-in

allows to manage multiple ontologies in Protégé and also:

• Compare ontology’s versions, Map one ontology to another

• Move frames between included and including project, Merge two ontologies into one

http://protege.cim3.net/cgi-bin/wiki.pl?Prompt
http://www.moemais.ufam.edu.br/plugin.php
http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
http://protege.cim3.net/cgi-bin/wiki.pl?SearchAPI
http://protege.stanford.edu/plugins/string_search/index.html
http://www.mitre.org/work/tech_transfer/protegeserver/index.html
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeWebBrowser
http://protege.stanford.edu/plugins/xmlbackend_xu/index.html
http://protege.cim3.net/cgi-bin/wiki.pl?XMLTab
http://protege-docgen.sourceforge.net/
http://www.thechiselgroup.org/jambalaya/
http://www.co-ode.org/downloads/owlviz/co-ode-index.php
http://www.thechiselgroup.org/%7Echisel/projects/promptviz/promptviz.html
http://www.ecs.soton.ac.uk/%7Eha/TGVizTab/TGVizTab.htm

CHAPTER 3. ONTOLOGY MAPPING 34

• Extract a part of an ontology, Mapping mode creates and executes mappings

• Plug-in architecture supports plug-in framework (like Protégé), you can add in
your own merge/mapping algorithms or user interface components. Prompt plug-ins
installed by default:

Jambalaya – style visualizations for mappings
FOAM – algorithm for mapping
Synonyms – enables use of synonym lexical mappings

FOAM

FOAM is the Framework for Ontology Alignment and Mapping tool, which allows fully
or semi-automatical alignment of two or more ontologies. The FOAM algorithm is based
on heuristics (similarity) of the individual entities – concepts, relations, and instances.

3.2.6 Summary

Comparison is difficult cause each tool and application has different qualities and advantages
and better suits for various purposes. The problem was that in this point of development I
could not exactly determined which attributes will be the most important in my following
quest. Due to these circumstances, I have designated following priorities:

• Availability of documentation and add-ons

• Difficulty of learning

• Modularity – plug-in architecture

• Network support

• Platform independent

• Up-to-date

• User-friendly interface

• Wide users community

Regarding these requirements, I have decided to use an open source ontology editor and
a framework – Protégé (and Eclipse IDE for plug-in development).

Thus a logic question appears: why I want to contribute to the “ocean” of mapping
methods with my “drop”, rather than to use an existing one?

As mentioned above, the motivation for ontology use in the MAPLE project is clear,
my own realization of mapping algorithm should be the best way how to enhance the whole
project, to enable knowledge sharing and cooperation with different ontologies, because I
can flexibly react on project’s requirements and modify the code of my program easily to
suit and satisfy the needs. Not only from my own experiences I can say that modification
of somebody else’s wide code should cause several problems.

Another main reason was to deeper understand the issue and to gain experiences with
development of my own application, to work with ontologies on a lower level and to push
my thesis from the theory into the practice.

CHAPTER 3. ONTOLOGY MAPPING 35

3.3 Protégé & OWL

As mentioned in the section 3.2.5, Protégé supports two different types of ontologies –
Frame-based and OWL ontologies. Web Ontology Language (OWL) is convenient for my
purpose, thus part of the following text will devote to OWL. The primary source of infor-
mation for this section were the official Protégé site – Protégé-owl api programmer’s guide
[9] and W3C’s OWL Web Ontology Language Guide [21], partially also Wikipedia, the free
encyclopedia.

3.3.1 Protégé-OWL API

Protégé-OWL API is an open-source Java library for the OWL and RDF(S). The API
provides classes and methods to load and save OWL files, to query and manipulate OWL
data models, and to perform reasoning based on Description Logic engines. Furthermore,
the API is optimized for the implementation of graphical user interfaces.

The API is designed to be used in two contexts:

• For the development of components that are executed inside of the Protégé-OWL
editor’s user interface

• For the development of stand-alone applications (e.g., Swing applications, Servlets,
or Eclipse plug-ins)

Protégé-OWL API extends the Protégé core API to provide access to OWL ontologies.
The Protégé API can be used directly by external applications to access Protégé knowledge
bases and make use of Protégé forms without running the Protégé application.

Protégé is a flexible, configurable platform for the development of arbitrary model-driven
applications and components. Protégé has an open architecture that allows programmers
to integrate plug-ins, which can appear as separate tabs, specific user interface components
(widgets), or perform any other task on the current model. The Protégé-OWL editor
provides many editing and browsing facilities for OWL models, and therefore can serve
as an attractive starting point for a rapid application development. Components can be
wrapped initially into a Protégé tab widget and later extracted, to be distributed as part
of a stand-alone application.

Working with OWL Models

The Protégé-OWL API is centered around the collection of Java interfaces from the model
package. These interfaces provide access to the OWL model and its elements like classes,
properties, and individuals. The implementation of these interfaces should not be accessed
directly, but only operated on the interfaces. Thanks to these interfaces,internal details
of how Protégé stores ontologies are hidden, so these internals should not be considered.
Everything is abstracted into interfaces and a new code should not make any assumptions
about the specific implementation.

Working with Jena Models

Protégé-OWL uses the popular Jena API (http://jena.sourceforge.net/) for various tasks, in
particular for parsing of OWL/RDF files. Furthermore, the Protégé-OWL API can be used

CHAPTER 3. ONTOLOGY MAPPING 36

Figure 3.6: Part of Protégé API diagram [7]

to generate a Jena OntModel at any time. Both JenaOWLModel and OWLDatabaseModel
implement the OntModelProvider interface, which has a getOntModel() method to create
an OntModel from the current ontology.

3.3.2 Protégé Plug-in Development

T - Tab widget plug-ins (Core Protégé feature) appears as one of the main tabs on the
screen, in order to activate this plug-in in the user interface, a user has to select the
Project‖Configure... menu item.

S - Slot widget plug-ins (Core Protégé feature) can display and edit a property value
on a form. You can create your own slot widgets and add them to the forms using
the Forms tab.

P - Project plug-ins (Core Protégé feature) allow programmers to execute arbitrary
code when a project is created, loaded, or closed, they can be used to add menus
or toolbar buttons or also to attach arbitrary listeners to a knowledge base (agents).

F - Resource action plug-ins can appear in the right-click menu of a selected class,
property, or individual, or in the lower left corner of a form.

I - Resource display plug-ins can be used to add arbitrary components to the lower
right corner of each form.

O - Ontology test plug-ins are plug-ins that will be executed when the user presses the
test ontology buttons, the tests can return a test result object, which is then used to

CHAPTER 3. ONTOLOGY MAPPING 37

Figure 3.7: Protégé Plug-in Development [9]

display results to the user.

R - Result panel plug-ins are arbitrary components that can be displayed as a tab at
the bottom of the screen, they can be added or removed from result panels as a result
of some action.

C - Conditions widget extension plug-ins can be installed by a project plug-in to add
additional tabs to the conditions widget [9].

3.3.3 Summary

My initial intention was to implement a mapping plug-in into Prompt (see the section
3.2.5) plug-in architecture – because of the similar functionality (management of multiple
ontologies, ontology mapping). Based on the figure 3.7, Prompt can be classified like a “tab
widget plug-in”, so my intention was to create the plug-in bounded on another tab widget
plug-in.

But after the careful consideration I have changed my opinion, not to create a dependent
tool on another plug-in bounded with its framework, I have decided to create a Core Protégé
tab widget plug-in bounded directly with Protégé and Protégé (OWL) API, so I can take
the advantage of all Protégé features, but also (as written in the section 3.3.1) I can easily
extract my component and create a stand-alone application.

CHAPTER 3. ONTOLOGY MAPPING 38

Tab widget plug-in was as well recommended by authors of Protégé as a good way of
starting with Protégé plug-in development.

3.4 Ontology mapping algorithm

The ground of the algorithm is from Kong Choi Yu’s diploma thesis 3 [10], on my super-
visor’s (Dr. Michel Eboueya) recommendation I continued in his work. I tried to contact
Kong Choi Yu, because of some inconsistencies and also for the demand of authorization,
but I was not successful.

I took his proposed design, I have corrected errors and I have proposed on my opinion
better solutions in partial comparisons and computations. Unfortunately, thanks to wrong
references between formulas and missing facts in the Kong Choi Yu’s diploma thesis, the
process of understanding and realization was extensively time-consuming.

Notation Meaning
O1 The source ontology which is primary loaded in the Protégé

project.
O2 The second ontology which we’re trying to map.
Un The set of instances of ontology On.
In An instance of ontology On.
Cn A concept presents in ontology On.
wi Weight.
Sim(A,B) The similarity between element A and element B.

Table 3.3: Notations

3.4.1 Proposed design

As mentioned above, the proposed mapping algorithm is taken from Kong Choi Yu’s
diploma thesis, the initial impulse was the strong recommendation of my French supervisor,
so I have analyzed this algorithm and after necessary modifications I have implemented the
proposed design.

I want to distinguish the description of the algorithm from work of Kong Choi Yu and
my changes and commentaries, so in this “Proposed design” section all my comments are
written in italics. Note that I made changes in references between equations and in some
formulas which are not mentioned, because I wanted to make the text more transparent
without doubled sections (his version with mistake + corrected version).

Mapping process overview

Three procedures have been designed for the mapping process: pre-fetching; similarity
calculation and recording results.

Pre-fetching phase is designed to minimize the number of concepts which will be mapped
between two ontologies (so the online ontology mapping can be efficient), especially impor-
tant for large ontologies.

3The original document I got was a study Ontology Mapping in Pervasive Computing Environment
written by C. Y. Kong, C. L. Wang and F. C. M. Lau [11], the diploma thesis I refer above is extension of
this study (which I found on the web) and which enlarges the theory of mapping algorithm, even though
there are some inconsistencies.

CHAPTER 3. ONTOLOGY MAPPING 39

Pre-fetching estimates the similarity between two concepts by comparing their names
(concept name is unique key in OWL ontology) and filters concepts which are highly possibly
unrelated to save mapping efforts. The philosophy is that concepts with totally different
meanings in their names are unlikely to refer to the same thing.

This idea is right, the problem is that the semantical comparison was not in the scope
of Kong Choi Yu’s work, thus the similarities between concept names are calculated only on
the lexical level, the semantic meaning is not considered. This limitation is a big weakness,
because the mapping process is done only with concepts which are not filtrated in the pre-fetch
phase, it means that concepts with completely different names are excluded from following
computations even though they can be possible candidates – results of semantical and lexical
comparison are completely different.

A concept definition in an ontology contains a concept’s name/identifier, its properties
and relationships with other concepts. The design makes use of them in the similarity
calculation process. K-nearest neighbour is used to calculate the semantic distance between
concepts C1 and C2 by converting relationships in C1 into vector space. Each relationship
in C1 is a dimension in the vector space and C1 is located at the coordinate (1, 1, . . . , 1)
where there are n “1”s if there are n relationship dimensions. Recall that the dynamic
nature, the large number of dimensions and scaling for each dimension are the problems of
using k-nearest neighbour in pervasive computing environment. This have been overcame by
limiting the number of dimensions and having a dimension scale from 0 to 1. The number of
dimensions are fixed to be the number of relationships in concept C1. K-nearest neighbour
locates C2 in the vector lattice by calculating the similarity between each dimension and
each relationship in C2. The similarity formula uses the names of the relationships and
their related concepts for calculations and outputs a value between 0 and 1 which limits
the scale of the dimension. The smaller the distance between the concepts C1 and concept
C2 in the vector space, the larger their relationships similarity is.

There are different types of properties: constraints (or restrictions) and datatype prop-
erties. Constraints are the restrictions on the concepts such as the datatype range of a
property or the maximum appearance of a concept in an instance. For example, a concept
“person” should have maximum one “gender” property. Datatype properties describe the
property types of the data content. For instance, string type or integer type. In traditional
ontology mapping tools, all data contents are converted into strings and the similarity be-
tween the properties equal to the similarity between the strings. String “123456” is similar
to string “12345”. On the other hand, there is big difference between the values 123456 and
12345. The design, therefore, recognizes the datatypes of the properties and handles them
differently. For string datatype properties, the Näıve Bayes rule is used to calculate the
similarities. For integer datatype properties, mathematical calculations such as addition
and subtractions are used. The similarity formula is automatically chosen by the proposed
mechanism at execution time based on the datatype of the properties.

These computations on the theoretical level make sense, but when I have tried to put
this into practice, using proposed formulas, I ran up against problems. Iterative compar-
ison of all involved values and parameters is extremely resource-demanding (Näıve Bayes
rule for each string value), proposed formula for numeric value comparison gives absolutely
nonsensical results and finally all computed values are multiplied by small weight variable,
so the whole effect of this demanding computations on the concept similarity result is in-
significant. One question appears: why is it important to compare values of properties at
all cost, when the important fact during ontology mapping is, whether two concepts from
different ontologies represent the corresponding “type of object” not exactly the same value?

CHAPTER 3. ONTOLOGY MAPPING 40

The overall similarity calculation process is based on the Jaccard coefficient. Jaccard
coefficient determines the ratio of the overlapping data between two sets of data. Jaccard
coefficient is defined as:

P (C1 ∩ C2)
P (C1 ∪ C2)

=
P (C1, C2)

P (C1, C2) + P (∼ C1, C2) + P (C1,∼ C2)

Jaccard coefficient is a commonly used similarity measure which is based on the joint
probability distribution. It is adopted in the design because data instances should be taken
into consideration during mapping because the research goal is to provide a service and
resource instance to the requester. Jaccard coefficient outputs similarity measure between
zero and one. A “1” means the two concepts are identical and a “0” means the two concepts
are totally different. P (C1, C2), P (C1,∼ C2) and P (∼ C1, C2) in the formula are computed
based on the definition of the concepts (i.e. the name, relationships and properties of the
concept) and their instances.

Pre-fetch phase

To increase the efficiency of mapping a concept C1 in O1 to a concept C2 in O2, the highly
unrelated concepts are filtered out by examining the names of C1 and C2 and generate a set
of possible candidates of Cn from O2. Many mechanisms are proposed to compare similarity
between two strings, for example, longest common substring, longest common subsequence
and hamming distance. These mechanisms are based on the syntactic meaning (i.e. the
spellings) of the two strings. But for example, concept “SendTo” and concept “Recipient”
are not similar as their syntactic meanings are greatly difference. However, “SendTo” and
“Recipient” have similar meanings in English that reflects that semantic meanings of the
concept names are more important than their syntactic meanings.

The term Semantic Distance is introduced as the smallest number of intermediate con-
cepts to connect the meanings of two concepts. For example, “Send” is related to “Sendee”
and the hyponym of “Recipient” is “Sendee”. As a result, “SendTo” and “Recipient” are
semantically related and their Semantic Distance (SendTo, Recipient) = 1 as there is one
intermediate concept “sendee” that connects between “SendTo” and “Recipient”.

To filter un-related concepts, the semantic distance of their concept names, which is
smaller than or equal to the semantic distance threshold for each pair of concepts between
C defined in O1 and C ′ defined in O2 is retrieved.

Semantic Distance(C,C ′) ≤ Threshold

For common similarity measures, similarity is ranged from 0 to 1. A “0” means the
compared items are totally different and a “1” means they are identical. Our design follows
this rule by normalizing each semantic distance that is smaller than the threshold as:

Sim(Cname, C
′
name) =

Threshold− Semantic Distance(C,C ′)
Threshold

In the first paper [11] presented by Kong Choi Yu the comparison between concept names
was calculated using the following formula:

Sim(Cname, C
′
name) =

N(longest substring)
N(Cname) + N(C ′

name)
(3.1)

CHAPTER 3. ONTOLOGY MAPPING 41

Where the function N(Cname) returns length of Cname and function N(longest substring)
denotes, I suppose, the length of the longest common substring (this fact was not mentioned).
But even if we compare two similar names, the similarity will be at most 0, 5, so I changed
the formula to the following form (when we compare similar values the result will be 1):

Sim(Cname, C
′
name) =

2 ∗N(longest common substring)
N(Cname) + N(C ′

name)
(3.2)

This name similarity computation is in comparison with semantic distance computa-
tion considerably simplified, but the calculation of semantic distance is only proposed and
realization will follow (see the section 3.4.2).

For the set of the first k concepts with the highest similarity degree (i.e. the k-highest
Sim(Cname, C

′
name) denoted by Sk−high, the possible candidates set is formed:

Possible candidates set

= Sk−high ∪ ∀Ci ∈ Sk−high concepts that has relationship with Ci (3.3)
∪ ∀Ci ∈ Sk−high merged concepts of Ci with each of its neighbor

∪ ∀Ci ∈ Sk−high parent (super class) ofCi

∪ ∀Ci ∈ Sk−high children (sub− class) ofCi

In ontology mapping, a concept in O1 may be split into two concepts. For instance,
a concept “name” in ontology O1 may be split into two concepts, “first name” and “last
name” in ontology O2. To handle the splitting problem, the proposed mechanism merges
concepts with their neighborhood concepts, parent concepts and children concepts. Merg-
ing concepts C ′

1 and C ′
2 of the same ontology is done by merging their concept names,

attributes and relationships. To resolve naming conflict of attributes and relationships,
attributes and relationships are renamed as C ′

1.attributename and C ′
2.attributename and

C ′
1.relationshipname and C ′

2.relationshipname respectively. Duplicated relationships are
removed during merging. A relationship between C ′

1 and C ′
2 is converted as attribute with

the name of the relationship as the attribute name.

Similarity calculation

The overall similarity calculation process is based on the Jaccard coefficient which deter-
mines the ratio of the overlapping data between two sets of data.

Jaccard coefficient:

P (C1 ∩ C2)
P (C1 ∪ C2)

=
P (C1, C2)

P (C1, C2) + P (∼ C1, C2) + P (C1,∼ C2)
(3.4)

P (C1, C2) is defined as the equation 3.5 where U1 and U2 are the instance sets of O1

and O2 respectively. N(UC1,C2
1) is the number of instances of O1 that contain concept C1

and also concept C2. N(UC1,C2
2) is the number of instances of O2 that contain concept C1

and concept C2, N(U1) and N(U2) are the number of instances of O1 and the number of
instances of O2 respectively.

P (C1, C2) =
N

(
UC1,C2

1

)
+ N

(
UC1,C2

2

)
N (U1) + N (U2)

(3.5)

CHAPTER 3. ONTOLOGY MAPPING 42

The formula P (∼ C1, C2) and P (C1,∼ C2) is not explained, so I have supplemented the
work with the equation 3.6 and the equation 3.7. N(UC1,∼C2

n) is the number of instances
of On that contain concept C1 and do not contain concept C2, N(U∼C1,C2

n) is the number
of instances of On that do not contain concept C1 and contain concept C2. N(UC1

n is the
number of instances of On that contain concept C1, N(U∼C1

n represents the number of
instances of On that do not contain concept C1.

P (∼ C1, C2) =
N

(
U∼C1,C2

1

)
+ N

(
U∼C1,C2

2

)
N (U1) + N (U2)

(3.6)

P (C1,∼ C2) =
N

(
UC1,∼C2

1

)
+ N

(
UC1,∼C2

2

)
N (U1) + N (U2)

(3.7)

These formulas are adopted when computing similarity between concepts C1 and C2 so
that instances are considered when mappings are performed. To calculate P (C1, C2), we
should have two instance sets U1 and U2. As discussed in the above section, it is difficult
to locate the instances of partial user ontologies and to store the instances. As a result,
history records to determine the instance sets U1 and U2 are used.

The number of concepts appearing in each mapping instance is counted. For example,
an ontology OA contains concepts Ca, Cb, Cc and Cd and a request instance contains
concepts Ca and Cb. After mapping, the total number of instances of OA and the numbers
of instances that contain Ca and Cb are incremented by 1 while the numbers of instances
that contain Cc and Cd remains unchanged. N(U1) and N(U2), therefore, are recorded.
To get N(UC1,C2

1), it is necessary to estimate the number of instances of O1 that contain
concept C1 and concept C2. The number of instances of that contain concept C1 in U1 can
be found from the history records. The number of concepts that contain both concept C1

and concept C2 in U1 is estimated by calculating the similarity degree of the properties and
relationships between concept C1 and concept C2. If the properties and relationships of the
concepts are similar, it is likely that the instance of concept C1 is an instance of concept
C2. For numerical property such as memory size, it is important that a mapping is found
to another concept whose property contains also a numerical value, weights are added when
calculating property similarity.

The proposed mechanism also matches instances content when comparing two concepts.
When a concept of the request instance matches a concept of a resource instance or a
function instance, it is likely that these concepts are matched. All the present instances of
O1 and O2 are used to compare with the request instance.

Before looking at the details of our ontology mapping mechanism, the Property Sim-
ilarity and the Relationship Similarity are discussed. Property similarity calculates how
similar of the properties of the two concepts are and relationship similarity calculates how
similar of the relationships of the two concepts are. Property similarity and relationship
similarity compares all the properties and relationships exist in concept C1 and C2.

Property Similarity

There are three elements compose a property in ontology: name, datatype and cardinality.
Name is the name of the property such as “colour” and “size”. Datatype is the type of

CHAPTER 3. ONTOLOGY MAPPING 43

the content data. For example, property “colour” is string type. “Size” is integer type.
Cardinality refers to the restrictions of the properties such as the range of the datatype,
the maximum value of the datatype and the number of appearances of the property in a
concept. For example, the minimum cardinality of property “Size′′ = 0 means “Size” must
be a positive integer. As there are many different types, they are handled separately.

For each pair of property/attribute in C1 (denoted by PC1) and property/attribute in
C2 (denoted by PC2), compute their property similarity. The similarity of the property
names are calculated using their meanings which is similar to computing the concept name
similarity.

property similarity, ps (3.8)

=
P

frequency of property i in C2 ∗ Equation[3.10]P
frequency of property i in C2

for i = 1 to number of property in C2

Sim(PC1, PC2) = w1 ∗ Sim(PC1name, PC2name) + (3.9)
w2 ∗ Sim(PC1cardinality, PC2cardinality)4 +
w3 ∗ Sim(PC1data type, PC2data type) +
w4 ∗ property instance similarity

Property instance similarity is calculated by counting the number of instances of C2

whose property has similar content as the corresponding property of the instances of C1.
In the first paper [11] presented by Kong Choi Yu the comparison between property

instances was calculated only when these values were in the text format, the formula was
same like the equation 3.1, so after an extension of the output value (between 0 and 1) I
got the following formula:

Sim(instance of p1, instance of p2)

=
2 ∗N(longest common substring)

N(value of instancep1) + N(value of instance p2)
(3.10)

In the later work [10] the property instance similarity computation was extended also to
compare numerical values:

Sim (instance of p1, instance of p2) =
value of instance p1

value of instance p2
(3.11)

But this equation has meaningful output only when the value of instance p1 is smaller
(or equal) than the value of instance p2. And the function also does not work with zero
values.

For text (string datatype) values Kong Choi Yu in his later work proposed the comparison
based on Näıve Bayes rule. For similarity computation of the data content of property
instances p1 and p2, the content is divided into words as {w1, w2, . . . , wn}. When we assume

4In the OWL ontology representation methods connected with cardinalities are now deprecated, so
Sim(PC1cardinality, PC2cardinality) cannot be realized and is leaved out.

CHAPTER 3. ONTOLOGY MAPPING 44

that each world is independent, the Näıve Bayes rule can be written like following equation
(where P (p1) is the usage frequency of the property p1 in the data instance set):

P (p1|w1, w2, . . . , wn) = P (p1)×
n∏

i=1

P (wi|n) (3.12)

The question is whether this complicatedness of computation brings the coveted result,
whether the simple string comparison or the computation of semantic distance are not better
solutions.

Relationship Similarity

Relationship similarity is calculated using k-nearest neighbours. For each relationship be-
tween C1 and C2, similarity between relationship RC1 and RC2 is computed as below.
Equation(3.14) is used to locate the concept C2 in the concept lattice of C1 in dimension
RC1. Similarity of relationship names are calculated using their meanings which is similar
to compute concept name similarity.

Sim(RC1, RC2) = w1 ∗ Sim(RC1name, RC2name) + (3.13)
w2 ∗ Sim(RC1cardinality,RC2cardinality) +
w3 ∗ Sim(RC1data type, RC2data type) +

The relationship similarity is calculated as the distance between the origin and the
concept C2 in the concept lattice. The longer the distance from the origin means the closer
to the concept C1. It is the distance between the origin instead of the distance between the
concept C1 because to make the formula consistent with the similarity calculations with
less similar having smaller value and a equal totally identical having value “1”.

relationship similarity degree (3.14)

=
√P

similarity of relationship i in concept C1and C2

3

for i = 1 to number of relationships in C2

Calculation of P (C1, C2)

After knowing the property similarity and relationship similarity, we can use of them to
compute the P (C1, C2) defined in the equation (3.5). The following shows the procedures.

1. U1 is partitioned into two sets. One set contains concept C1 (denoted as UC1
1) while

the other set does not contain concept C1 (denoted as U∼C1
1) based on the history

records.

2. U2 is partitioned into two sets. One set contains concept C2 (denoted as UC2
2) while

the other set does not contain concept C2 (denoted as U∼C2
2) based on the history

record.

CHAPTER 3. ONTOLOGY MAPPING 45

3. Estimate the similarity between O1 and O2 with the equation 3 where the denomina-
tors N(O1) and N(O2) are the total numbers of concepts in O1 and O2 respectively.
Total number of similar concepts can be computed at pre-fectching when calculating
maximum concept name similarity between each concept in O1 and in O2. If the
maximum concept name similarity is larger than the threshold, the total number of
similar concepts is incremented.

Sim(O1, O2) =
total number of similar concepts× 2

N(O1) + N(O2)

4. N(UC1,C2
1) is found.

Number of instance in U1 that contains concept C2

= Property similarity×N(UC2
2)

= Equation(3.9)×N(UC2
2)

5. Similarly, calculate N(UC1,C2
2),N(U∼C1,C2

2) and N(UC1,∼C2
2) in P (C1, C2).

N(UC1,C2
2) = N(UC1

1) ∗ ps

N(UC1,C2
2) = N(UC1

1) ∗ Equation[3.9]

N(UC1,∼C2
2) = N(UC1

1)−N(UC1,C2
1)

N(U∼C1,C2
2)5 = N(U∼C1

1)−N(UC1,C2
1)

6. P (C1, C2), P (∼ C1, C2) and P (C1,∼ C2) are computed using equations 3.5, 3.6 and
3.6.

7. The similarity degree using the equation 3.4 is computed. This similarity degree is
called instance similarity degree as we use instances to calculate.

8. The relationship similarity degree for C1 and C2 is computed using the equation 3.14.

9. The similarity between concept C1 and concept C2 is finally computed using the below
equation.

Sim(C1, C2) = w1∗instance similarity degree+w2∗relationship similarity

Comparison between ontologies O1 and O2

The detailed formula for calculating the similarities are introduced. The overall working
mechanism is discussed in this section. Below is the methodology to compare two ontologies;
OntologyMapping() is the mapping function and NewMapping() is a procedure call that is
invoked when the mapping is performed from scratch.

5This formula was presented with wrong reference to another equation, so the result was always 0. I
have changed the equation .

CHAPTER 3. ONTOLOGY MAPPING 46

NewMapping(Ci)
{

Pre-fetch the candidate concepts for Ci.
For each candidate Ck found,

Computer the Jaccard coefficient P (C1∩C2)
P (C1∪C2) for Ci and Ck

If the highest similarity degree > threshold,
Mapping is found.

Else
Mapping is failed.

}

Table 3.4: NewMapping method

Ontology Mapping (Ontology O1, Ontology O2)
{

Search history mapping record.
If O1 and O2 have been mapped,

If O1 and O2 have the same last modified date (i.e. the same
version number) as the history record,

For each concept Ci in the request instance,
If Ci is mapped to a concept in O2 in the record,

Mapping is found.
Else

Invoke NewMapping(Ci).
Else

For each concept Ci in the request instance,
If Ci is mapping to a concept,Cp in O2 in the record,

Compute :
P (Ci ∩ Cp)
P (Ci ∪ Cp)

for Ci and Cp

If similarity degree > threshold,
Existing mapping is reused.

Else Invoke NewMapping(Ci).
Else Invoke NewMapping(Ci).

Else
For each concept Ci in the request instance,

Invoke NewMapping(Ci).
Update number of instances and concepts encountered.
For each new mapping found, add in history record:

< concept in O1, concept in O2, similarity degree, instance count >
}

Table 3.5: Ontology Mapping method

CHAPTER 3. ONTOLOGY MAPPING 47

3.4.2 Proposed improvements

As I wrote in the section 3.4.1, the weakness of this design 6 is in the lexical comparison of
concept names in the pre-fetch phase.

If the lexical comparison in the pre-fetch phase is used, the highly possible scenario
of the computation is, that the corresponding counterpart from the second ontology will
be eliminated in the first step of computation, because the name of that concept can be
lexically different, but with the same significance. Than the whole process loses sense,
because the mapping cannot be found.

The full-functional semantic comparator is the outstanding problem and the solution
for my purpose should be use of an external web service.

Semantic mapping extension for “(1 : n mapping)”

For a partially specific case I have proposed the modification which eliminates strong dis-
advantage of the lexical comparison and allows the algorithm to be more precise, but on
the other hand a manual interference during ontology creation or loading is required.

The particular scenario is when we are using one (or only few) source (O1) ontologies
which is wanted to be mapped to unbounded n number of other ontologies – 1 : n map-
ping. (For example an university uses one ontology for a subject description and want’s to
cooperate with other universities, thus a precise mapping is needed.)

The main idea is that for each concept name in the principal ontology a set of synonyms
(more precisely a set of words with the same meaning for the particular case) will be created
manually. This step eliminates the necessity of use of the external tool for semantic string
comparison, the another advantage is that the “meaning” of each concept can be denoted
exactly by the set of words with the same signification, because for each particular case a
mechanically created set of synonyms can contain words which does not suit the concrete
situation, thus a manual creation should be much more precise.

As the manual creation (of the set of related words) is a big advantage, at the same
time it is also a great disadvantage of this design, because it requires a manual intervention
of an authorized person.

Semantic mapping using WordNet

is a semantic lexicon for the English language. It groups English words into sets of syn-
onyms called synsets, provides short, general definitions, and records the various semantic
relations between these synonym sets. The purpose is twofold: to produce a combination
of dictionary and thesaurus that is more intuitively usable, and to support automatic text
analysis and artificial intelligence applications. The database and software tools have been
released under a BSD style license and can be downloaded and used freely. The database
can also be browsed online.

The hypernym/hyponym relationships among the noun synsets can be interpreted as
specialization relations between conceptual categories. In other words, WordNet can be
interpreted and used as a lexical ontology.

A prominent example of using WordNet,as an ontology is to determine the similarity
between words. Various algorithms have been proposed, and these include considering
the distance between the conceptual categories of these words, as well as considering the

6Originally the lexical comparison was proposed in the study (see the section 3.4), in the thesis I refer
the design was changed to proposed semantic comparison, I’ll devote to this issue later.

CHAPTER 3. ONTOLOGY MAPPING 48

hierarchical structure of the WordNet ontology. A number of these WordNet-based word
similarity algorithms are implemented in a Perl package called WordNet::Similarity [27].

Querying WordNet can be done by two ways – offline and online query to RDF/OWL
WordNet.

• - offline – download of the appropriate WordNet version is necessary and load it into
local processing software, then query languages (SPARQL, Prolog) can be used to
query the data.

• - online – query the on-line version by doing an HTTP GET on WordNet URI (such
as http://www.w3.org/2006/03/wn/wn20/instances/wordsense-bank-noun-1). HTTP
GET request returns the Concise Bounded Description of the requested URI, which is
an RDF graph that includes all statements in the whole WordNet RDF/OWL which
have that URI as its subject. This is a far less flexible approach because it is not
possible to pose queries (e.g. a query for all synsets which contain the word “bank”).
However, it does give a sensible set of triples to answer the question “tell me about
this resource” if the user has no prior knowledge of this resource [24].

3.5 Implementation of Protégé plug-in

The algorithm was successfully implemented like a Protégé tab-widget plug-in, using the
Java programming language, the Protégé (OWL) API and the Eclipse IDE for development.
The source code is well documented (using JavaDoc) so it is easily readable by others and
thanks to OO programming the program can be modified easily. All together it has about
4000 of lines, (involving the JavaDoc documentation).

3.5.1 Implementation details

The understanding of various API’s and the cooperation with existing software, in combi-
nation with wrong references between formulas in the proposed algorithm and some missing
facts and errors, proved to be an extensively time-consuming. The whole process of plug-in
realization exceeded my timing estimate severalfold.

Implemented classes

To achieve structured and transparent source code, I have separated classes with completely
different functionality into standalone modules, brief description of involved modules fol-
lows.

OntoPlugin – extends AbstractTabWidget and represents the main class which creates
Protege tab widget plugin and enables the communication between plugin and Protege
application. In Ontology Mapping Algorithm class OntoPlugin represents top level
class (70 lines of code).

MyLogging – contains methods and resources for login creation and also stores informa-
tion which are displayed in GUI of mapping algorithm in the text area (400 lines of
code).
Subclasses: MyInfo.

CHAPTER 3. ONTOLOGY MAPPING 49

MyOWL – contains methods for loading ontologies from file into JenaOWLModel (300
lines of code).

MyPanel – represents graphical user interface of my mapping algorithm. Part of the
code was generated using JFormDesigner and the rest written manualy (1000 lines of
code).
Subclasses: MyFilter.

OntologyMappingAlgorithm – implements algorithm for ontology mapping. Algo-
rithm is realized on Protege-OWL API Interface and together with other involved
classes it forms Protege tab widget plugin (2300 lines of code).
Subclasses: Compare, ComparisonOfConcepts, Concept, ConceptsDatabase, Config,
HistoryRecords, InstanceSet, OntoModel, PreFetch, Property, PropertyComputation.

3.5.2 Plug-in interface and control

In the algorithm, there are thresholds which affect the whole computation, some of them
are set in the source code, but two of them can be regulated through the plug-in interface.
But these thresholds are not the only one options, the interface on the first look should be
little bit confusing, so I will shortly describe main controls and options.

Load Ontologies area enables the choice of ontologies which will be mapped. Working
with Protégé normally begins with opening of an existing project (= ontology) or creation
of a new one, thus with the option

• Use project ontology can be decided whether the first ontology for mapping will
be taken from the actual project, or if another ontology should be loaded.

• First ontology field represents the first ontology for the ontology mapping process,
depends on the option above whether this ontology corresponds with the ontology in
the actual project.

• Second ontology field represents the second ontology for the ontology mapping
process.

Settings area enables detailed adjustment of logs and thresholds.

• Enable logging option determine whether the logging information will be stored into
the external file. Note that the logging process should slow down whole computation
markedly (especially when the log level is set to a lower priority).

• Use history records option determines whether the plug-in will try to load results
from previous mapping (only if ontologies and options are unchanged). This feature
is not yet implemented.

• Select log level choice influences the quantity of logging messages which will be
stored.

• Current log file field informs which file will contain log messages.

CHAPTER 3. ONTOLOGY MAPPING 50

Figure 3.8: Realized tab widget plug-in – Ontology Mapping Algorithm

• Name similarity records spinner denotes the required similarity between concept
names in the pre-fetch phase. Higher the threshold is, less concepts are taken into
the set of possible candidates for each concept from first ontology. Problem is if the
threshold is too small, the set of possible candidates will be very large and the whole
computation becomes extremely time-consuming.

This part is a big weakness, because as mentioned in the section 3.4.2 the comparison
between concept names is only lexical, so the corresponding counterpart from the
second ontology can be eliminated in the first step of computation.

• Concept similarity threshold spinner denotes the minimal similarity (after the
computation) between two concepts, which determine whether the matching coun-
terpart was or was not found. It means this value determines the minimal required
similarity for the mapping acceptance.

Run Mapping area starts up the computation, informs users about the progress and
displays achieved results and debug information. Displayed information are intentionally
detailed and the content can be easily changed in the source code, this possibility is impor-
tant for the debugging of mapping algorithm.

CHAPTER 3. ONTOLOGY MAPPING 51

• Step by step option stops the computation after every important step in the al-
gorithm (for example after the pre-fetch phase). To continue the computation it is
necessary to press the button “Continue”.

• Start button starts the computation.

• Info displays achieved results and debug information, these information are divided
into following categories: General info, Pre-fetch phase, Info, Ontology no.1, Ontology
no.2, Property comparison, Relationship comparison, Result.

• Save result button saves achieved results into the specified file. This feature is not
yet implemented.

I must admit that the functionality of implemented Protégé plug-in is limited and that
the results of realized mapping algorithm are not satisfactory.

Despite these facts I claim that primary aims have been fulfilled – my program was
successfully attached to Protégé application like a plug-in, I have implemented all neces-
sary methods for working with ontologies and all individual elements, all comparisons and
computations proposed in the algorithm were also implemented, everything is written us-
ing principles of object oriented programming, thus all formulas and computations can be
easily changed or modified during future development and algorithm debugging.

Chapter 4

Conclusion

4.1 Achieved results

In the beginning I had divided the objective of my work into two sections so in the final
conclusion I will follow this distribution.

Ubiquitous Learning

I was familiarized with the ubiquitous learning environment and with the recommended
commercial tool LMA. I had created a pilot mobile presentation and brief guide about the
handling of this application and I summarized its functionality, advantages and disadvan-
tages.

Then, I acquainted myself with Course Management Systems and Virtual Learning
Environments. The Moodle CMS was chosen (based on conclusion from work [22] of my
predecessor in the MAPLE project) from a variety of tools as the most suitable. I created
a virtual Moodle server, set up the system and filled the pilot course database with sample
learning modules. The features of Moodle were successfully tested and the whole process
of testing and configuration described.

Ontology Mapping

The domain of ontologies is nowadays discussed and a particularly topical problem. It was
necessary to make an introduction to this issue and to explain how we can use and work
with ontologies.

The next step was also completed with success by analyzing the available tools and
to choose the appropriate and suitable tool or manner which will satisfy our needs. The
result of my analysis was to implement the Protégé plug-in, using Protégé (OWL) API
and Java programming language. All used resources are properly presented and their use
substantiated.

The final part of this section is devoted to ontology mapping algorithm, description of
proposed design, implementation details and demonstration of achieved result.

4.2 Future work

As I wrote in 3.4.2, the extension of semantic comparison in the mapping algorithm is highly
suitable, so one part of the future work is to implement semantic comparison (online/offline

52

CHAPTER 4. CONCLUSION 53

Wordnet, manual specification).
The next step should be cooperation with a visualization tool to represent the achieved

mapping result. From possible alternatives, I found most suitable the TGVizTab Protégé
plug-in, but the cooperation means understanding and modifying the source code of this
plug-in. Originally it is designated for the representation of one ontology tree and for my
purpose I need to represent two ontology trees connected with the appropriate relations.

After elaborating these extensions, it is obvious to make the evaluation of this algorithm
and comparison with rivalrous algorithms and mapping methods. It is then possible to
decide whether this mapping technique is suitable for our purposes.

The individual components were successfully tested and the next step is to make the
working system and to put it into practice. Concretely it means to establish an independent
Moodle server for a wide group of students, fill up the database with learning objects, create
ontology (or use existing one) for learning objects and course description. Finally, thanks
to the ontology mapping algorithm, cooperation is allowed between other institutions and
systems.

Bibliography

[1] Barwise, J., Seligman, J. Information flow: The logic of distributed systems, 1997.

[2] Drummond, Nick, Horridge, Matthew, Rogers, Jeremy. A Practical Introduction to
Ontologies & OWL. Ontology tutorial, The University of Manchester, 6 2005.

[3] Duineveld, A. J., Stoter, R. WonderTools - A comparative study of ontological
engineering tools [online]. Last revision 2005-01-01 [cite 2006-11-10].

[4] Eboueya, M., Lillis, D., Jo, J., Cranitch, G., Martin, Ph. Mobile Active Participative
Learning Environments for the 21st Century Classroom : THE MAPLE PROJECT.
European conference on european models of synergy between teaching and research
in higher education, University of La Rochelle, 2006.

[5] Entremont, Corey. VLE: Using Online CMS to Implement Constructivism in
Learning at the Secondary Level [online]. Last revision 2004-06-31 [cite 2006-11-10].
<http://moodle.org/other/dEntremont Final Paper.pdf>.

[6] Ganter, B., Wille, R. Formal concept analysis: Mathematical foundations, 1999.

[7] Horridge, Matthew. An overview of the available interfaces - API diagram [online].
Last revision 2007-02-11 [cite 2007-02-10].
<http://protege.stanford.edu/plugins/owl/api/ProtegeOWLModel.pdf>.

[8] Kalfoglou, Yannis, Schorlemmer, Marco. Ontology mapping: The state of the art. In
Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M., editoři, Semantic
Interoperability and Integration, number 04391 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005. <http://drops.dagstuhl.de/opus/volltexte/2005/40> [date
of citation: 2005-01-01].

[9] Knublauch, Holger. Protégé-owl api programmer’s guide [online]. Last revision
2006-08-21 [cite 2007-02-10]. <http://protege.stanford.edu/web/guide.html>.

[10] Kong, C. Y. Effective Partial Ontology Mapping in a Pervasive Computing
Environment. Diploma thesis, The University of Hong Kong, cykong@cs.hku.hk, 11
2004.

[11] Kong, C. Y., Wang, Lau, F. C. M. Ontology Mapping in Pervasive Computing
Environment. Technical report, The University of Hong Kong,Department of
Computer Science, cykong@cs.hku.hk, 11 2003.

54

BIBLIOGRAPHY 55

[12] Martin, Ph., Eboueya, M. Toward a Cooperatively Built Ontology of Knowledge
Engineering. Conference on computer engineering and applications, University of La
Rochelle, 2007.

[13] Martin, Ph., Eboueya, M., Blumenstein, M., Deer, P. A Network of Semantically
Structured Wikipedia to Bind Information. Aace conference on e-learning in
corporate, University of La Rochelle, 2006.

[14] Martin, Ph., Eboueya, M., J., J. Jo, Uden, L. Between too informal and too formal.
International conference on knowledge management in organizations, University of La
Rochelle, 2006.

[15] Mifsud Trent, Dr., Casey Des, Dr. E-learning to u-learning, adapting learning
environments to mobile devices. report, Monash University, Faculty of Information
Technology, 2005.

[16] Moodle, Team. Moodle - A Free, Open Source CMS for Online Learning [online].
Last revision 2007-02-01 [cite 2007-02-01]. <http://moodle.org/>.

[17] Niwattanakul, S., Eboueya, M., Lillis, D. Describing and Researching of Learning
Resources with Ontology Model. John vincent atanasoff international symposium on
modern computing, University of La Rochelle, 2006.

[18] Niwattanakul, S., Eboueya, M., Lillis, D. Research and Description of Learning
Resources on Ontology Model. The first international conference on knowledge,
University of La Rochelle, 2006.

[19] Noy, Natalya F., McGuinness, Deborah L. A Guide to Creating Your First Ontology
[online]. Last revision 2005–01 [cite 2006-11-10].
<http://protege.stanford.edu/publications/ontology development/ontology101-noy-
mcguinness.html>.

[20] Sinir, Siyamed Seyhmus. Ontology Mapping Survey [online]. Last revision 2007-02-10
[cite 2007-02-10].
<www.srdc.metu.edu.tr/webpage/seminars/Ontology/Ontology%20Mapping%20Survey.ppt>.

[21] Smith, Michael K., Welty, Chris. OWL Web Ontology Language Guide [online]. Last
revision 2007-01-01 [cite 2007-02-10]. <http://www.w3.org/TR/owl-guide/>.

[22] Spicka, Jiri. Mobile Active Participative Learning Environment. Diploma thesis, Brno
University of Technology, jirispicka@seznam.cz, 6 2006.

[23] Stanford, University. Protégé [online]. Last revision 2006-11-10 [cite 2006-11-10].

[24] van Assem, Mark, Gangemi, Aldo, Schreiber, Guus. RDFOWL Representation of
WordNet [online]. Last revision 2007-02-11 [cite 2007-02-11].
<http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html>.

[25] Wiki, Edutech. Edutech Wiki: Ubiquitous learning [online]. Last revision 2007-03-01
[cite 2007-03-01]. <http://edutechwiki.unige.ch/en/Ubiquitous learning>.

[26] Wikipedia, the free encyclopedia. Constructivism (learning theory) [online]. Last
revision 2007-04-27 [cite 2007-04-29].
<http://en.wikipedia.org/wiki/Constructivism>.

BIBLIOGRAPHY 56

[27] Wikipedia, the free encyclopedia. Ontology [online]. Last revision 2007-02-10 [cite
2007-2-10]. <http://en.wikipedia.org/wiki/>.

[28] Wikipedia, the free encyclopedia. Virtual learning environment [online]. Last
revision 2007-02-10 [cite 2007-2-10].
<http://en.wikipedia.org/wiki/Course management system/>.

Glossary

API Application programming interface
CMS Course Management System
CVS Concurrent Versions System
DAML DARPA Agent Markup Language
DL Description Logic
DTD Document Type Definition
IDE Integrated development environment
OIL Ontology Integration Language
FOAM Framework for Ontology Alignment and Mapping
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Security
L3i Laboratory Information-Interaction-Intelligence
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LMA Learning Mobile Agent
LMS Learning Management System
MDTS Mobile Delivery and Tracking System
MOODLE Modular Object Oriented Dynamic Learning Environment
NTLM New Technology LAN Manager
OISs Ontology Integration Systems
OO Object-Oriented
OKBC Open Knowledge Base Connectivity
OWL Web Ontology Language
PC Personal Computer
PDA Personal Digital Assistant
PHP Hypertext Pre-processor
RDF Resource Description Framework
RDF-S Resource Description Framework Schema
RTM Read The Manual
SBO Semantic Bridge Ontology
SPARQL Simple Protocol And RDF Query Language
SQL Structured Query Language
SSL Secure Sockets Layer
ULE Ubiquitous Learning Environment
URI Uniform Resource Identifier
URL Uniform Resource Locator
VLE Virtual Learning Environment
TCP/IP Transmission Control Protocol/ Internet Protocol
TOC Table Of Content
WAP Wireless Application Protocol
WWW World Wide Web
WYSIWYG What You See Is What You Get
XAMPP Apache & MySQL & PHP & Perl
XML eXtensible Markup Language

	Introduction
	Context of the work
	Aim of the work

	Ubiquitous learning
	Basic definitions
	Ubiquitous learning environment
	Course Management System
	Virtual learning environment
	Mobile content

	Available tools
	Learning Mobile Agent
	Moodle Course Management System

	Pilot mobile presentation
	Using Learning Mobile Agent
	Possible drawbacks

	Moodle installation and testing
	The Microsoft Virtual PC
	Moodle on virtual server
	Moodle in practise

	Ontology mapping
	Introduction to ontologies and ontology mapping
	Ontologies
	Ontology mapping

	Working with ontologies
	RDF
	OWL
	Frameworks
	Methods and tools
	Protégé
	Summary

	Protégé & OWL
	Protégé-OWL API
	Protégé Plug-in Development
	Summary

	Ontology mapping algorithm
	Proposed design
	Proposed improvements

	Implementation of Protégé plug-in
	Implementation details
	Plug-in interface and control

	Conclusion
	Achieved results
	Future work

