
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ASISTENČNÍ A INFORMAČNÍ SYSTÉM PRO ZRAKOVĚ
POSTIŽENÉ
ASSISTANCE AND INFORMATION SYSTEM FOR BLIND PEOPLE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE DAVID HNILICA
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. JAN ČERNOCKÝ,
SUPERVISOR

BRNO 2007

Abstrakt
Tato práce řeš́ı problém implementace asistenčńıho systému pro podporu zrakově postižených
osob v prostředćıch hromadné dopravy. Jelikož se jedná pouze o část větš́ıho celku (pro-
jektu RAMPE), neńı v této práci pokryta celá problematika, nýbrž pouze jej́ı část. Práce
je psána z pohledu vývojáře a softwarového architekta. Zlepšuje architekturu dř́ıve vyv-
inutého projektu, navrhuje nové metody a techniky a přidává do výsledné aplikace nové
funkce. Toto však plat́ı pouze pro př́ıslušnou část - práce nemůže a ani si neklade za ćıl
změnit nebo navrhnout celý systém. To už bylo provedeno jinými autory v minulosti a tato
práce je na těchto předchoźıch výsledćıch postavena.

Kĺıčová slova
RAMPE, zrakově postižeńı, hromadná doprava

Abstract
This work deals with the problem of implementation of the assistance system to support the
orientation of blind people in the means of public transportation. Since it is only one part
of larger unit (the RAMPE project), it doesn’t cover the whole topic, yet only implements
one part of it. It is written from the point of view of a developer and code architect. It
improves the software architecture of existing project, suggests new methods and techniques
and adds new functions to the application. This is done only at the respective part - the
work is neither capable, nor takes any ambition to design or modify the whole system.
That has been done already by other people and parties in the past and this work merely
continues those done in the past.

Keywords
RAMPE project, visualy impaired people support, public transportation

Citace
David Hnilica: Assistance and Information System for Blind People, diplomová práce, Brno,
FIT VUT v Brně, 2007

Assistance and Information System for Blind Peo-
ple

Prohlášeńı
I hereby declare, that I have created this work by myself under supervision of prof. Genevieve
Baudoin, Olivier Venard and doc. Dr. Ing. Jan Cernocky. I have also provided all reference,
that has been used.

. .
David Hnilica
May 18, 2007

c© David Hnilica, 2007.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 4
1.1 Description of RAMPE project . 4

1.1.1 Introduction into the topic . 4
1.1.2 Parts of RAMPE . 4
1.1.3 Key features of RAMPE . 5

1.2 Position of this work within RAMPE project 5
1.3 The role of the author and this work . 6
1.4 Parts taken from the previous phases of the project 6
1.5 Structure of this work . 7
1.6 Links to any previous author’s work . 7

2 Specification and requirements 8
2.1 Hardware platform . 8

2.1.1 PDAs . 8
2.1.2 Network equipment . 8

2.2 Software platform . 8
2.2.1 Operating system . 8
2.2.2 Programming language and environment 9

3 Goals and priorities 10
3.1 Low coupling . 10
3.2 Definition of interfaces for important modules 10
3.3 One responsability per module . 10
3.4 Complexity through simplicity . 11
3.5 Ease over effectivity . 11
3.6 Preserving the original man-machine interface 11
3.7 Documentation . 11

4 Main modules of the project 12
4.1 Man-machine interface . 12

4.1.1 Output methods . 12
4.1.2 Input methods . 13

4.2 Behavior controller of the Man-Machine Interface 14
4.2.1 Discovery of the stops . 16
4.2.2 Stops survey . 17
4.2.3 Guidance . 18
4.2.4 Start of navigation . 19
4.2.5 Navigation through available lines 19

1

4.2.6 Navigation through available stops 20
4.3 Processing of XML . 21
4.4 Text to speech synthetizer (TTS) . 21

4.4.1 Integration of the TTS into RAMPE 21
4.5 Network (low level) controller . 22

4.5.1 Network adapters in RAMPE . 22
4.6 Network (high level) services controller . 22

5 Supporting parts 24
5.1 Parallelism and multithreading . 24

5.1.1 Problems . 24
5.1.2 Implemented solution . 25

5.2 Data distribution inside the project . 25
5.2.1 Design of data structures . 26

5.3 Logging facility . 26

6 Open issues 27
6.1 Processing of errors . 27
6.2 Security . 27

6.2.1 Current state . 27
6.2.2 Possible targets . 28
6.2.3 Real possibility of attack . 28

7 Conclusions 29
7.1 Current state of the project . 29
7.2 Possible functional improvements for future 29

7.2.1 Extending of the configurability . 29
7.2.2 Internationalization . 29
7.2.3 Availability for different platforms 29
7.2.4 Additional improvements in man-machine interface 30
7.2.5 Navigation techniques . 30

7.3 Licensing issues . 30
7.3.1 External dependencies . 31
7.3.2 Internal restrictions . 31

7.4 Related works . 31
7.4.1 Projects running on ESIEE . 31
7.4.2 External projects . 31

7.5 Summary of results . 32
7.5.1 Achieved goals . 32

7.6 Contributions of this work . 32

8 Appendixes 33
8.1 Appendix 1. Multithreading in RAMPE . 33

8.1.1 Implementation and usage . 33
8.1.2 Sharing data amongst the threads 34
8.1.3 Using the CThread class as a general interface 34
8.1.4 Possible improvements . 35

8.2 Appendix 2. Network adapter and WiFi structure 37
8.2.1 WiFi controller implementation . 37

2

8.2.2 Possible future improvements . 37
8.3 Appendix 3. TCP/IP connections management 40

8.3.1 Possible improvements . 41
8.4 Appendix 4. XML Parser structure . 42
8.5 Appendix 5. Examples of the XML Files used in RAMPE 44

8.5.1 Configuration file . 44
8.5.2 Language file . 45
8.5.3 Borne informations . 48

3

Chapter 1

Introduction

This work is part of the RAMPE project and has been done under the terms of Socrates/Erasmus
programme at the ESIEE Paris under the supervision and with kind help from prof. G. Bau-
dion and Mr. O. Venard from ESIEE Paris and pedagogical lead of doc. J. Černocký from
FIT VUT. Whole RAMPE project is being developed by multiple companies and institu-
tions in France. Students work (this work) is supposed to improve and extend the work
done before at ESIEE (precise goals are specified further).

1.1 Description of RAMPE project

As described in [5] and [3], the RAMPE project aims to design, realize and experiment a
system for the assistance and information of blind people so that they can increase their
mobility and autonomy in public transport. It is intended to be deployed in bus or tramway
stops or to be installed around the nodes of transport interactions. It is based on smart
hand-held Personal Digital Assistant (PDA) with embedded speech synthesis and it is able
to communicate primarily via a wireless WiFi connection (other types are considered for
future) with fixed equipment in the bus or tram stations.

1.1.1 Introduction into the topic

Orientation in the means of public transportation may prove to be difficult for blind people,
as most of the informations given to the passengers relies heavily on the visual information
channels.

In the past there had been several approaches taken in order to solve this problem, yet
each of them had certain necessary flaws. In France it was mainly the project PREDIT
(more in [7]), that had been taken in order to test and evaluate of various systems related
to the problem. Amongst other things, it had been found, that one of the main problems
is the the lack of interactivity and adaptation of the assisting system to the user and the
environment. RAMPE has the ambition to fill such a hole.

1.1.2 Parts of RAMPE

RAMPE project may be separated into three main parts:

A mobile device (client) carried by the user. The device needs to have a WiFi adapter
and must be running the the RAMPE application software.

4

Base stations (a.k.a. “Bornes”) installed at the bus stops. Those act as servers providing
information to the client applications via WiFi link (so far - may change in the future)
and are also equiped with a loudspeaker to reveal their position to the blind persons.
They also need to have a link to the central system.

A central system synchronizing the vehicles, base stations and the information system
of the transportation company. The provided informations may change as the project
will grow, but so far it is mainly informations about the available lines, their schedules
and certain exceptional events (e.g. delays, repairs, etc.).

1.1.3 Key features of RAMPE

RAMPE introduces an exceptional adaptability by allowing a dynamic change of presented
informations instantly. By periodic updates of the available informations it attempts to
match the difference in amount of informations (related to the transportation), that is lost
by the visual impairment of the user.

While designing the application, special care has been given to the accessibility design
of the man-machine interface and to the priorities management of informations provided to
the user in the real-time. The main characteristics of the (client) application on the PDA
are:

• it can present vocal messages

• it is able to adapt itself to the type of information system available at the particular
station (if there are multiple types available)

• it acts upon the actual informations sent by the station

The equipment installed at the stop point has data (in form of a XML file) stored inside.
Those data are downloaded to the PDA and provide following informations to the user :

• destinations of the lines at this stop

• waiting time for the bus arrival

• names of bus-stations on a line

• possible disturbances (repairs, temporary changes in schedule, etc.)

The typical use of RAMPE can be demonstrated on picture 1.1.

1.2 Position of this work within RAMPE project

RAMPE is a rather large project (as described further), where many parties contribute.
Role of the work on ESIEE in the whole project is the implementation of the client ap-
plication - the part, that is actualy being used by the blind person directly. Other parts
of RAMPE (like the structure of the whole network, details of the equipment used at the
stops or reasons and aims of the system specification) are at this work taken mostly as fixed
inputs to this work, and as such should not be affected (at least not directly in this work),
therefore any mention of those parts, that is made here, is done only for the purpose of the
description of the larger context and to help the reader to understand the topic easier.

5

Figure 1.1: RAMPE project

1.3 The role of the author and this work

This particular work was supposed to be improving existing code as follows (quoting infor-
mations given before the start of internship):

• improving the software architecture (priority)

• extending application reliability

• adding new features and functionality

On the place after determining the actual state of project, minor changes in the ob-
jectives took place. As the point “improving the architecture” would prove to be difficult,
while preserving the given code, it was decided, that as a first priority, the application needs
to be redesigned (and the code refactored), reaching the other goals either while doing so,
or later if possible.

The first thing to do was redesigning the original concept (described further) and im-
plementing the design, so that the resulting application would be functionaly equivalent (or
better) to the original one.

1.4 Parts taken from the previous phases of the project

Due to the reasons stated further in the respective chapters, it was difficult to reuse the
code from previous phases of the project.

It has been decided instead that the source code of the whole application should be
refactored according to the original specifications, written in the [4]. Therefore the only
things taken from the original code are ideas - not the code itself.

It has been discovered later during development, that previous author’s had sometimes
used the same sources of informations, as had the author now (e.g. code examples from

6

MSDN -[2] and various other websites). Wherever such a code is used in larger scale (namely
XML processing and WiFi driver handling), it is stated in the code in the appropriate form
- usually a comment at the begining of the header (if whole class had been used), or at the
begining of the used part (if inside a function definition). It is not stated further in this
document, since it is trying rather to describe general ideas, than the code that implements
them.

1.5 Structure of this work

The structure of this work is keeping the standard defined for the Master Thesis at FIT
VUT.

Description of the chapters follows.

Specification and requirements gives closer specification (software and hardware) of
the platform and development environment is given in this chapter.

Goals and priorities is trying to specify the goals of development and describe the re-
quirements for the application, its code and design. It also attempts to describe the
different priorities (from the common “professional” ones), that had to be kept, given
the possible varieties future developing community.

Main modules of the project is a brief description of the most vital parts of project.
Given the size of this work, this is done only in a very general matter, merely describing
what the particular module does (skipping any more precise, yet overly too long
mentions about implementation).

Supporting parts is very similar to the previous chapter. The only difference is, that
this chapter covers those modules, that yet they do not have much influence on the
functionality, they are vital from the developers point of view.

Open issues is trying to summarize the biggest flaws of the project design.

Conclusions is the final chapter of this work. It summarizes the results reached and the
possibilities for future.

1.6 Links to any previous author’s work

This work is a direct continuation of the previous semester project of the same name. There
is no other link between this work and any other previous work of the same author.

7

Chapter 2

Specification and requirements

2.1 Hardware platform

2.1.1 PDAs

RAMPE project (precisely - the client part developed at ESIEE) is supposed to able to be
used on as many kinds of PDAs and smartphones as possible. At this phase however, the
only hardware available so far is a some small range of HP IPAQ (Pocket PC platform)
products (originaly 41xx line, nowadays 24xx and newer).

Although all the PDAs used in the project so far have different characteristics, they
have to have some things in common (necessary for the successful usage in the RAMPE).
They all have:

• WiFi connectivity

• Bluetooth connectivity (not used so far, usage is planned)

• Audio output

• OS: MS Windows CE (ver. 4.2 or higher) or Windows Mobile (ver. 5.0 or higher)

2.1.2 Network equipment

For simulation of the running RAMPE network the project uses commonly accessible WiFi
routers (namely those of Linksys WRT 54 XX series), connected to a PC that simulates
the software running at the stop point. So far it means tuning the HTTP server with the
XML datasheet and a simulator for sending/receiving RAMPE-specific data (navigation of
the blind person to the stop, sending urgent messages, ...).

2.2 Software platform

2.2.1 Operating system

As the only PDAs available in the project so far are those made by HP, the selection of
used software is delimited by this fact. Although HP as a company is known for supporting
alternative operating systems (in the past even having its own UNIX-like OS), this applies
almost exclusively on their server (and applications) branch. In the hardware they sell to

8

the end customer, the situation is quite different. Specially in the PDA product portfolio,
the only (officially) supported OS is the one provided by Microsoft.

In spite of the existence of an open-source project trying to replace the proprietary OS
in the PDA with something based on a free license (namely Linux under GPL), it has not
been chosen to be used (at the moment). So far it has too many drawbacks that effectively
prevent its deployment in RAMPE - namely that its considered reasonably stable only on
older PDA models and the newer PDAs (those used in the RAMPE project) are not yet
supported at all.

2.2.2 Programming language and environment

So far the project has been implemented in Microsoft embedded Visual C++ with MFC
(Microsoft foundation class) extensions. It was chosen primarily for its good integration
with different versions of Windows CE - an operating system, that all the PDAs available
at ESIEE support (mostly the only OS they support).

As MFC is not being developed anymore, there will probably arise the need to switch
for some other environment in the future. It cannot be solved immediately, since it needs
to be approved by other parties of the project

9

Chapter 3

Goals and priorities

The main goal of this work has been determined by the fact, that the project is being devel-
oped at the university mostly by undergraduate students. Those can have different degree
of experience and understanding of programming techniques and the project managers may
not be able to review each and every piece of work done by the students.

That determined a lot about the work, that had to be done. Given the fact, that the
original code had literally lacked any deeper thoughts of design, new design had to be done.
This also allowed to set some new goals. They had been set to correspond not just with the
immediate needs of project, but also with the (however relatively small) experience of the
author and according to available sources on the internet (for example at [9]) and literature
([6] or [1]). The description of goals follows in order of importance.

3.1 Low coupling

A modification in one part (module) has not to affect (if possible) any other parts.
This was a vital rule - and the highest priority one. This (together with some derived

sideeffects) allows distributing the work between multiple students without a need for each
of them to consult every change with their peers and supervisors.

3.2 Definition of interfaces for important modules

This is tightly derived from previous “low coupling”. Since the modules have to coexist
while hiding as much of internal informations as possible, the definition of their interfaces
needs to be done and kept.

As a side effect, it also allows interchangeability between two modules with same re-
sponsability - e.g. network adapter interface, when implemented for two different physical
devices (e.g. WiFi and Bluetooth) may be used the very same way by the application
without any knowledge of its precise type whatsoever.

3.3 One responsability per module

Rule, that had perhaps became a mantra of every software designer from the very beginning
of this profession. To keep the design simple and easily understandable, it was necessary to
strictly set the responsability and scope of a module. No module should do neither more,
nor less, than its interface says.

10

3.4 Complexity through simplicity

Again, motivated by the struggle to provide as easily understandable design as possible,
it was decided to separate more complex objects into simple parts (while still keeping the
previous rules), rather than trying to build complex things at once. Things are done in the
manner, so that if there is no need to keep a large quantity of functions in one module, it
is rather splitted to multiple modules, that are simple inside - though put together, they
provide the desired complex functionality.

3.5 Ease over effectivity

“premature optimization is the root of all evil”
As it might have been noticed already by the reader, none of those rules yields any

gain in getting a fast-running code. This is (again) determined by what was said at the
beginning of this chapter - the project is in its early stage and it is more of a “proof of
concept” and a testbench for implementing new functions, rather than an “ready to use”
application for commercial (or simply public) release.

In that case, famous Hoares quote from above can be effectively applied. The author
is not saying, that the code should not be optimized at all - just that the optimalization
needs to come only when the project is mature enough and its behavior and functions don
not change too often.

3.6 Preserving the original man-machine interface

Since the original application had been tested already, it was crucial to start improving
the functionality at the point, where the original application ended. This determined most
of the work, that had to be done (from the functional point of view). Therefore the old
application was used as a specification of the behavior for the new one.

3.7 Documentation

Since the developers are likely to be changing often on the project, the good documentation
is a must in the form of code comments (possibly improved by doxygen), as well as an
accompanying texts and reports.

11

Chapter 4

Main modules of the project

Since the old application has been used as a specification, lots of things had been determined
in advance. From the functional point of view, the application could be splitted into a small
number of (relatively) independent parts, that cooperate together.

• Man-machine interface

• XML Parser

• Text to speech synthetizer (TTS)

• Network control

For easier understanding of parts and their communication with others the block dia-
gram had been made and is presented in 4.1.

The description of parts follows in the respective sections.

4.1 Man-machine interface

As RAMPE is not supposed to be used by other than blind people, usage of a classical
ordinary “GUI” would be pointless. RAMPE however has a GUI dialog of its own, but it
does not display other than testing informations and its usage is very limited (practicaly
only for catching the keypress events and movement on the touchscreen).

Since the means of communication with the user are greatly reduced in this case, the
design of man-machine interface had to be very thoroughful and had been done by a special
“ergonomy group”, that worked only on the design of such interface (results can be found
in [4]).

That is also the reason why this topic will be covered only very briefly just to provide
an overview of how the system appears to the user (even though the usage of that word is
somehow inappropriate, since “appearance” may resemble something connected with vision
- sense that is not available for the user at all).

4.1.1 Output methods

As the aim of the project is to design an application for widely available hardware, perhaps
the only method for presenting output to the blind user remains the audio output.

At the moment the sound in RAMPE is being used in two ways.

12

Figure 4.1: Block diagram of RAMPE

• playback of short sounds (beeps, rings, etc.)

• text to speech synthetizer (TTS)

Short sounds are used for presenting to the user common events, that happen often and
do not require further specification (e.g. button press acknowledgement, discovering of a
new host for connection, error, etc.).

Text-to-speech synthesis (further referred as TTS) is then used for providing deeper
and more precise informations - e.g. names of lines, names of stops, urgent messages, etc.

4.1.2 Input methods

Since the application runs on a common PDA, it has no other methods for taking users
input than a few function keys, touchscreen (for gestures) and audio input.

Out of these, audio input is not used at all at the moment. It is planned for future, but
for now no suitable speech recognizing software had been found.

Touchscreen (however it may not seem so) has a great potential, since it can provide
the possibility of “gesturing” the required action. It is not easy though, since blind people

13

are very special group of users and the design of such gestures can not be done in a generic
way. Therefore the only usage of gestures at the moment is turning up/down the volume
by straight movement up/down. At this part, there is a good potential to be revealed, yet
it still requires further research by other participants (the “design group”) in the project.

The most widely used input method so far are the hotkeys. Since there is only a very
limited number of them and the ergonomy has to be taken into sight (which limits the
number of possibilities even more), the design of their usage had to be very careful. Deeper
explanation can be found in [4], but for a brief description it is enough to say, that their
behavior depends on the current state of the application (based on the motto:“Apple made it
possible to control the whole OS using a mouse with only one button. So we still have about
3 spare buttons...”). Picture 4.2 shows currently available (and used) scheme of keyboard.

Figure 4.2: usage of PDA hotkeys

4.2 Behavior controller of the Man-Machine Interface

The most popular model of today for a user oriented application is without any doubt some
form of visual dialog window. Using a window with all its components (i.e. menu, buttons,
lists, etc.) the developers are able to model the control of any kind of process.

However this approach works well for most of the cases, it fails in the case of inability
of using any kind of visual informational channel. Not just that in this case we can not use
any windows, we can not even display any other information.

Therefore the design of the behavior of man-machine interface had to take a completely
different approach. It relies heavily on the fact, that all the RAMPE behavior can be
described by a simple finite state machine.

It acts upon the user actions (pressed keys) and internal events (messages from subsys-
tems) and depending on the state it is actually in, it does the required action.

The design of such a machine however had to be done and tested by a third-party
designing group.

14

Instead of dialog windows, the interface can be modelled by different stages, that the
application assumes. Different stages have different goals and different actions can be
performed. The stages can be described as follows:

Stop points survey - at this point the interface provides only informations about avail-
able stops (hosts to connect to - in RAMPE, they are called “bornes”). At first state
only an information about the number of the available stops is provided, later (after
users demand) the browsing of detailed list is allowed.

Navigation to the stop follows the survey. The user had now chosen one stop and the
application had made the connection. PDA is now connected to “Borne” and the user
can make the stop play sounds. This allows the blind person to get an idea of the
stops whereabouts. User can also decide to stay at this stage (if he already knows
the stop) and is already presented with actual urgent messages, broadcasted from the
Borne (e.g. bus arrivals, departs, delays, etc.)

Stop data browsing - As the user is connected and physicaly present at the stop, the
application can provide him all the detailed informations (those, that are usually
available to visually non-impaired person at a first glance - type of stop, available
lines, timetables, etc.). Browsing through the informations is also separated in more
than one level (is modeled by different states).

All the stages consist of multiple states. The most important ones (those, that are vital
for description of behavior) are described further.

15

4.2.1 Discovery of the stops

This is a default initial state of RAMPE. In here the user is not presented with anything
else, but an periodic information (in form of a short sound) of how many stops are available
around. The precise number is not given, yet only three states are distinguished - no stops,
one stop and multiple stops.

In case of a further interest, the user (by pressing a key) may get further informations
in the next state.

Pattern of behavior is described in the diagram 4.3.

Figure 4.3: State: Discovery of the stops

16

4.2.2 Stops survey

Right after the user acknowledges his/her interest in more information about the available
stops, this state is assumed.

In here the vocal synthesis comes to play its part. The stops are presented to the user
one by one by the name and direction periodicaly. This is done several times (defined by
the configuration) and the user either acknowledges one of the stops as the one, that he has
an imminent interest in, or doesnt do so and then the previous state is assumed.

The graphical description is given on picture 4.4:

Figure 4.4: State: Stops survey

17

4.2.3 Guidance

If the connection to the desired stop is successful, the state of guidance is assumed.
Here the user can either demand the Borne to play the sound (to reveal its position),

wait for messages coming from the Borne, or go further to the detailed informations - all
of that is described at the picture 4.5.

Figure 4.5: State: Guidance

18

4.2.4 Start of navigation

As the user has expressed a wish to be presented with more informations, the navigation
through the main data file is started.

At the beginning only the presentation of the name of the stops is done. As the Borne
data provide more informations (type of stop, presence of other blind persons, etc.), pre-
sentation of such informations is likely to be done here.

Proceeding from this state is automatic and no user action is required - therefore no
diagram is given.

4.2.5 Navigation through available lines

As at one stop there may be several transportation lines available, a process similar to the
survey of stops is started - with the difference, that not stops, but the available lines are
presented (by their identifier, direction and time to wait for the next one according to the
timetable).

User may either acknowledge one line to get more informations, wait until the presenta-
tion is over (it is repeated several times - again, it is configurable), or stop it and get back
to the guidance.

Diagram of behavior in this state is at the picture 4.6.

Figure 4.6: State: Navigation through lines

19

4.2.6 Navigation through available stops

This is so far the deepest state available. Here the presentation of the stops starts. It has
two stages.

First, only the so called “skeleton” stops are presented from the current stop further.
The “skeleton” stops are defined by the transportation company as somehow important
(they may have intersections, they are near some popular place, etc.).

If the user acknowledges, the mode is switched to presentation of all the stops.
Diagram is given at the picture 4.7.

Figure 4.7: State: Navigation through stops

20

4.3 Processing of XML

XML is a very important part of RAMPE. Most of the data (not related to user actions)
is acquired into the running application in this format. So far it means a need to process 3
types of files :

data acquired from Borne - the application gets the data from Borne by downloading
the file rampe.xml. In this file there is everything, that can be presented to the user
(bus timetables, informations about stop, etc.)

configuration data - all the configuration of RAMPE is stored locally in the file Config.xml.
Anything, that affects the behavior of the application and can be changed is placed
here.

language dependent data - although for now, RAMPE is developed only for franco-
phone environment, this may change in future. Therefore all the messages, that are
presented to the user (via TTS) are stored in a local file Lang-XX.xml (where XX is
the name of language) and can be easily changed by third party.

As for now, XML processing in RAMPE is based on MS XML Parser, running in DOM
mode. Since working with MS XML parser directly may prove to be tricky for inexperienced
users, there is a wrapping mechanism built around that. That mechanism takes care of all
possible issues (i.e. memory management, initialization, loading of the data, etc.) and
provides the user only those functions, that are necessary for successful processing and
traversing through the XML tree.

Processing of each particular file then becomes only a straight-forward “mechanical”
work, not likely to introduce memory leaks or exceptions - exactly in accord with the goals
specified above.

4.4 Text to speech synthetizer (TTS)

As the RAMPE project is supposed to provide informations to blind people using widely-
available equipment (PDAs, smartphones, etc.), it is unlikely to provide other output than
sound (since special equipment may not be available).

For the quality and easiness of use, it has been decided (in the previous phases of project)
to use a commercial Text-to-Speech synthetizer, provided by the company “Acapela group”
(enterprise created by fusion of three former companies - Elan speech, Infovox and Babel
Technologies).

The qualities of the product in terms of functionality and provided user-experience are
excellent, but there is one major flaw - licensing. Since RAMPE is meant to be widely
available (possibly for free), this might be an issue (is discussed later).

4.4.1 Integration of the TTS into RAMPE

For RAMPE to keep the priorities (mentioned above), building a general TTS module (as
a wrapper around Acapela API) was necessary.

Also although Acapela software has a very well designed interface, there is a good reason
not to use it directly. Since it is planned for the future to switch to (or just being able to use)
some other (possibly free) speech synthetizer, it would be unwise to bind the application
too tightly with only a commercial API.

21

4.5 Network (low level) controller

Networking is the crucial part of RAMPE. Without the ability to connect to some sort of
network, there is not much sense in running the application (at least at the current state
of project).

4.5.1 Network adapters in RAMPE

As for now there is only one type of network adapter available and used (WiFi), but in the
future developement, this will be one of the first things to change. Therefore the design of
architecture had to be very careful and thoroughful.

The whole interface of a general adapter (in this case called CNetworkAdapter) is
concentrated into one class. Such a class provides interface (but only interface, via its
virtual members) for each and every function, that possibly may be required. Some of its
member functions are purely virtual, since they calls are considered to be necessary for every
adapter (e.g. enabling, disabling, connecting, etc.), while others are kept only as virtual,
since some functions may be optional and possible to realize only at special hardware (e.g.
list of available hosts is likely to be used by WiFi or Bluetooth, but not by Ethernet or
USB cable).

Distinguishing between different types of interfaces is possible via provided data struc-
ture, but because there is no behavior defined in the specifications for such a scenario, the
implementation of such behavior is left to be done in future.

4.6 Network (high level) services controller

There is a need for the RAMPE to be able to exchange data with the Borne (other than
the main XML file).

So far the communication is based on the special protocol, created for this purpose over
normal TCP/UDP. Development and testing of such a protocol is again done in different
project (done by Mr. A. Sirk so far), therefore will be mentioned only briefly.

The protocol at the moment uses a simple ASCII encoding to transfer a data structure
called FRAME. There are generally 3 types of FRAMEs:

Type U TCP connections from PDA to Borne, in order to make the Borne to play the
“ring” sound, necessary for the blind person to be able to locate the position of the
Borne.

Type V UDP datagram, broadcasted from Borne to all the PDAs in the range. It carries
inside some “urgent message” (e.g. informations about a bus arrival / departure,
delay, etc.).

Type R UDP datagram, broadcasted from Borne as a information for its client, saying
that the XML data in the Borne have changed and the clients should refresh their
informations.

The underlying implementation is done at two places - class CRampePacket creates /
parses the FRAME structure, while CRampeSocket is a wrapper around WINSOCK socket.

As the connections are inbound as well as outbound, RAMPE needs to behave as a
server, as well as a client. Therefore the “network services manager” had been created,

22

allowing the application to manage its connections and providing the higher level of ab-
straction.

23

Chapter 5

Supporting parts

In addition to the parts, that are apparent at the first glance, there are some hidden, yet
still important parts, that are worth mentioning.

5.1 Parallelism and multithreading

In this kind of project there is always need for multiple processes (threads) to run at the
same time.

In the code taken over from the earlier phases one could easily see quite extensive usage
of multithreading (necessary for keeping the delays of user actions reasonably low).

The original implementation however had its drawbacks. Mainly it was uncoordinated
spawning of the threads in different parts of code, which made the code a bit harder
to understand and therefore prone to various kind of mistakes, either caused by possible
false assumption of which code is part of which thread, or simply unconsciously breaking
synchronization or sharing .

5.1.1 Problems

While designing a new mechanism for multithreading in the project, the biggest problem
has been found in the MFC.

In the MFC, there are two types of threads (called worker and UI thread). Difference
between them is, that the worker thread is supposed to be spawned for doing one time-
consuming action and then returning almost the same way as a regular function. It is just
executed on background in different thread from the main application. UI thread on the
other hand is supposed to spend most of its time waiting for user actions (passed into the
thread as messages) and reacting accordingly.

Although both seem to be sufficient for deployment “out of the box”, they both have
common pain - they need to be called upon global or static functions. UI threads even
require hard-coded definitions of accepted messages. Those limitations are OK for one-
time generic solution (such as the one, that had been used in the past), but effectively
prevents the whole mechanisms from being used directly in a class hierarchy.

In the refactored code, there have been steps taken to provide secure parallel envi-
ronment where necessary, while keeping the resulting code as simple (and close to the
non-parallel programing style) as possible

24

5.1.2 Implemented solution

While designing, generic MFC calls had to be wrapped inside (dynamicaly created) classes
to allow them to fit inside the designed class hierarchy. Doing so also allowed further
improvements in the messaging system (namely adding the possibility of using any type as
a message for a thread).

Both original types of threads were preserved, while some additional features had been
added.

CThread replaces UI thread. It is able to send and receive messages (of user-defined type)
and ensures, that inside the inherited class the messages will be processed sequentially
- therefore allowing the user to write a classical linear code, without having to care
about its parallel execution.

CWorkerThread replaces worker thread. It can be used in the same fashion, as the
original (only with an obligation to inherit it as class, rather than call it as a function),
when by overriding provided virtual function Execute() it behaves the same way as
the original implementation. There is also another option - although it does not use
its own messaging system for accepting messages, it is still able to send - therefore a
message about successful finish or failure can be sent.

Since mandatory hard-coded definitions of messages had been taken as undesirable, new
mechanism had been created to replace it. The design of all the classes for multithreading
is based on templates, thus allowing the user to send any arbitrary message type (that has
the semantics of a value and can be fitted into STL containers).

Whole mechanism is reasonably simple (about 500 lines of commented code) and easy
to understand (and use). This is a must under the presumptions, given at the beginning.

Also by hidding the actual details of parallelism inside the implementation, it simplifies
the parallel-based environment into the linear execution, thus considerably lowering the
requirements to the future developers.

5.2 Data distribution inside the project

Since there is a great deal of informations, taken from outside (mostly XML files), there is
also a need to distribute those informations around the application.

Doing so can be done in a generic way (e.g. by global variables), as it was done in the
previous code. Although it is very simple, this approach however has its drawback.

High coupling - in case of high number of variables, their usage in the modules is prone to
become chaotic and not easy to understand. Modules might then depend on variables
defined in different modules, which adds additional level of dependency into the code.

Constant incorrectness - since (if not wrapped by a careful abstraction - case of the
previous code) all the data have to be accessible for writing at one point (at least
while parsing the data files), it is tempting to keep them writeable all the time and
possibly allowing modification (which might be sometimes desirable). This leaves the
fellow developers the obligation to take care of using the data properly.

Strong naming standards - if naming standards are not established and kept strictly
through all the process of development, reading of such a code will soon turn into
searching for definitions of variables and their meanings

25

Being presented with such risks, it is clear, that however sharing the data through
putting them into global variables is an easy solution, it is a very tricky one too (specially
under the premises given in the Goals and Priorities specification).

5.2.1 Design of data structures

The shared data (regardless of the type - language, configuration, downloaded XML, etc.)
do always fit into following criteria:

• if it is not just one stand-alone variable, it is possible to structure it into a tree.

• most of the access will be read-only (although write is sometimes also necessary, it
will be done far less, than reading)

• they allways will have (or it will be possible to give them) a semantic of value (given
by the nature of what is about to be shared)

Those criteria give us some clue about the problems - they can be splitted into two
types:

• Creating a reliable structure for storing data

• Creating an abstraction for protecting data

It can be clearly seen, that an ideal structure for storing such a kind of data would be
either structured type, or STL containers (in case of a need for more dynamic behavior).
However the data may be stored in different structures, the protecting mechanism may stay
the same.

The general encapsulating class had been created, that contains the write-accessible
data. For protection, the C++ const mechanism had been chosen. By giving the user a
default access, that returns constants, we can prevent a unintentional change, while still
keeping the possibility to get write access explicitly (by enforcing the user to explicitly ask
for permission to write we can safely suppose, that the user is aware of what is he doing).

5.3 Logging facility

As the project is in the development, there is a vital need for a powerfull logging service.
Such a service is provided.

In the PDA, there are two means of logging output - either screen, or a logfile. Both
may be used under different circumstances for different types of messages. Therefore any
call for logging a text may be assigned with a priority (or type, if preferred).

This not only reduces the amount of information outputted to the screen for purpose of
supervision (e.g. while training the user, or testing the application), but since each priority
might define its own prefix (making it easier to find by means ouf automated processing),
it also improves readability of the resulting logfile.

26

Chapter 6

Open issues

As the code is still in the beta stage, there are still some features (and enhancements)
missing. A brief list of such “TODOs” follows.

6.1 Processing of errors

This problem is closely related to the nature of the project (and its code). As it was
said earlier, the simplicity of the code is a very important goal. Although C++ provides
exceptions as a very strong tool for handling various kinds of errors, the usage of such a
tool might be tricky for unexperienced users.

To keep the design simple, the exceptions (if used) need to be kept within the module,
that had thrown them. So far there is no global policy on handling the exceptions (and
there is not likely to be one in this phase).

For now the goal of error processing is only to report the error into the debug file, so
that the developer can reveal what went wrong in the application. Some parts of the code
are checked only with assertions - although these are being used only for the conditions
that should never occur under normal circumstances, it would be better for the stability of
the application to catch those errors with other means (e.g. exceptions).

6.2 Security

The whole design so far does not seem to take the security in account, so the following
section just summarizes author’s opinions and suggestions.

The RAMPE project so far doesnt neither store, nor transfer any significant data (mean-
ing - nothing, that could cause any losses on finances or health). Therefore security is defi-
nitely not one of the top priorities. Nevertheless, as it is suggested to become a widespread
network, the security should be taken in account in the future.

6.2.1 Current state

As for now, the only mechanism of security is WEP encryption of the WiFi communication
between the client and the Borne. In the opinion of the author, this is insufficient. The
only thing WEP is supposed to provide is privacy on the WiFi network, and even that is
done in a very poor manner (it is not even close to the topic of this work - more can be
found at [8]).

27

6.2.2 Possible targets

The network so far has two possible objects of attack - the client PDAs and the network
infrastructure (Bornes and its controling mechanisms).

Network infrastructure - as is not a topic of this work, it will not be covered in-depth.
Briefly said, the possible attacks may target either the availability of service (multi-
ple types of “Denial of Service” attacks), or placing a counterfeited Borne into the
network. Neither of them is covered by the specifications so far.

Clients At the client side, the attackers options are quite small. The exchange of data
between Borne and PDA is so far limited only to sending XML files (may be prone
to errors in XML parser) and sending RAMPE frames (may be used for misguiding
the user).

6.2.3 Real possibility of attack

As it has been said - RAMPE is not a vital service and due to its nature (public service for
a small minority in the society), the motivation of possible attacker is a question to ask.
Also the possible impact of an attack is (at the current scenario of usage) very limited.

The security issues however will need to be resolved, if the project will be deployed in
mass scale, or for general public (or commercial) usage.

28

Chapter 7

Conclusions

7.1 Current state of the project

Right now the whole RAMPE project is in its second phase - meaning, that it should have
a working implementation and should be only extended functionaly.

Due to the steps taken (refactoring, changes in the architecture), this is true only partly.
The progress in terms of functionality was only minor.

In the common terms of software release cycle, the state of project might be marked as
“beta”. There is no known major bug, that would cause the application to crash repeatedly
or prevent the usage in most cases, yet the testing has not been finished yet and minor bugs
are expected.

The original functionality had been achieved and improved. The implementation is
working and tested 16th-27th of April, 2007 in Lyon. Written report and official conclusions
from the testing are not known at the time of writing this report, but preliminary results
show only minor bugs (typical for the “beta” stage),

7.2 Possible functional improvements for future

7.2.1 Extending of the configurability

As for now, the configuration relies on one locally stored XML file. Just like everywhere,
the possibilities of configuration are usually endless.

7.2.2 Internationalization

However the project is developed in France and by French institutions, it is possible that
more parties will be interested to contribute.

The project so far includes a separate local XML file for storing language dependent
data, but the TTS software is so far available only in French.

7.2.3 Availability for different platforms

Multiplatformnes had been asked by the supervisors to be one of the major concerns, the
environment chosen for development does not make it too easy.

As the mobile devices market is notoriously known for neither having a leading player,
nor being well standardized, it will be difficult to assure the portability of the applications.

29

Also as the market is changing rapidly, it remains unsure what platform will be the best
one for future.

7.2.4 Additional improvements in man-machine interface

As for now, the only way of taking user input is the keyboard of the PDA and a limited usage
of gestures. This is surely enough for the application to perform its functions correctly, but
it can still be improved.

Improvements may focus on following topics:

Improvements of the statemachine, using the available means. However improving
the coordination between gestures on the touchscreen and keypresses may always take
place, the author personaly does not see much potential in this field (or more pre-
cisely - the potential may soon reach the point, where further improvements bring
only doubtful value, while introducing costs on the developers time).

Introducing new input hardware. This may likely consist of modified external key-
board, that would be easier to use for the blind person. Such an action may greatly
simplify the usage of the application. Actions, that are now bound onto a combination
(or a special mode) of keypresses may take bindings with only a single key.

Introducing voice recognition software. Last but not least - this option is in author’s
opinion the most promissing one, although it is also likely to come with the greatest
cost. The voice recognition may in practice remove all the problems, that the man-
machine interface may have now (e.g. ambiguity of actions). The problem is in this
case likely to be the cost. Not only the implementation of such a software on given
platform is likely to be more complex (due to problems with very noisy environment
and low compuitation power of the machine), than the main project itself so far
(no freely available alternative is known at the moment), but also the performance
requirements may be too high to bear.

7.2.5 Navigation techniques

Since the users of the application are likely to have problems with orientation, while at
public (or unknown) space, increasing (at least partly) their possibilities is highly desirable.

As all the application is biased towards public transportation, the navigation possibilities
might be very well delimited by that fact. It does not have to use only global navigation
techniques (e.g. GPS), but can also profit of a limited-range means. At the moment, there
is a students project running, that is aimed to determine possibilities of localization of the
person using WiFi (as this is already available). Further experiments are planned with
other means too.

7.3 Licensing issues

Although it might not seem so at the first sight, RAMPE at the future phases might
encounter some troubles from the legal side. Main reason for that would be licensing of its
code and supporting parts.

30

7.3.1 External dependencies

Probably the major concern for future will be an attempt to free the project of all the
unnecessary licensing fees and restrictions. For now the major issues are the usage of
proprietary text-to-speech synthetizer and proprietary development platform.

Although both of these will be painful to replace, both issues will have to be settled
before the project is released for public usage. If it does not happen, the burden of the
licensing fees and legal problems might prove to be too difficult to cope with.

7.3.2 Internal restrictions

Problems might also arise from the cooperation of different parties inside the project. Al-
though considerable part of work is being done by public institutions (universities and
technical university), major part is still being done by a private company. This might
prove to be limiting factor in the case, that the directors of the project would like to open
the development model.

7.4 Related works

Currently, there is only author working on the RAMPE code itself. There are nevertheless
several projects, that might be used in RAMPE development later.

7.4.1 Projects running on ESIEE

First one is a teamwork of ESIEE students, that is trying to build a database of the city
environment sounds, recorded via the PDA. This should help later for possible development
of a speech recognizing system.

Second one is the work of Mr. Andrej Sirk, who is at the moment working on testing
and development of a custom network protocol for the usage in the RAMPE project (for
communication between different devices - stops, clients, etc.).

Next one is a students internship on ESIEE, whose main object is to explore the possibil-
ities of using WiFi as a mean of navigation. This should include exploring the possibilities
of available hardware, building a test environment and measurements of the possibilities.
Out of the results of this work the potential of using localization through WiFi should be
determined and the next heading of the project (merging into the RAMPE) should be set.

Last one is another ESIEE internship, that aims to implement module into the RAMPE
code, that could be used for controlling the Bluetooth adapter. The code is prepared for
such an options and a general interface for a network adapter is implemented and used.
There is however lack of agreement on how precisely should such an adapter be used.
Meanwhile the possibilities of Bluetooth should be also explored.

None of those however had provided a publicly available report, therefore their results
will have to be incorporated into the project later.

7.4.2 External projects

This work is being done in cooperation with external institutions. It is however out of
author’s competence and authority so far to interview such parties. Their complete list and
roles can be found in [4]

31

7.5 Summary of results

7.5.1 Achieved goals

As for the goals set in the beginning, it can be said that they were (more or less) achieved.

Well structured code - although the word “well” might be a matter of debate and is
very relative, the code now has an architecture and is separated into modules.

Interfaces for modules - done.

Independence of modules - there are always dependencies, but they have been mini-
malized.

No overcomplex design - although it had been considered to design the structure ac-
cording to the established trends in modern object-oriented design, it had been re-
linquished. Although there are perhaps more effective design approaches (generic
design, design patterns, etc.), their usage would make the code hard to understand
for unexperienced programmer, hence limit the impact of the work of short-term
developers.

Better functionality than the previous version

The parallel work of multiple developers - had been made possible

7.6 Contributions of this work

As the original suggested description said, this work was supposed to “improve the design”,
“add new functions”, and possibly “add new hardware or software modules”.

Out of those, the completing of the first one was more complicated, than originaly
expected, therefore somehow limitting the remaining two (the improvements from the func-
tional point of view can be said to be only minor).

The redesigning and refactoring of the original code, although painful and time con-
suming, was necessary and doing so had allowed adding some extra possibilities at almost
no additional cost.

The main contribution therefore is improving the original flawed design and structuring
the refactored code accordingly. As a side effect, the whole code had moved from the
original generic mixture of C and C++ into a object-oriented pure C++.

Additionaly, the readability had been improved and the new code had been written so
that it takes the ease of modification in account.

By introducing the relatively independent modules splitting the work amongst several
developers became quite a simple task (as long as each developer will keep modifying just
his module, while preserving its interface).

Also a general toolset had been created, that encapsulates the platform-dependent code
(e.g. XML parser, network driver, threading model, etc.). This might greatly reduce the
problems with possible portability of the code to different platform (however the restrictions
caused by the usage of MFC and Microsoft Visual C++ compiler might still cause troubles).

32

Chapter 8

Appendixes

8.1 Appendix 1. Multithreading in RAMPE

Since threads are used extensively through all the application (stated in the main text),
their usage had to be unified.

Since the recommended way of usage in MFC is complex and not always clear to un-
derstand, the wrapping mechanism had been used. The main idea follows the MFC. There
are two types of threads (worker and UI). Each has its respective class, designed as an
interface to be inherited (spawning them empty does not make much sense, although it is
not explicitly prohibited).

The main ideas during the design followed the policies set in chapter “Specification and
requirements”. The mechanism does not try to replace all the options, provided by MFC
classes. It rather provides an environment, that (although it is run as thread in a parallel
with others) behaves as a normal “serial” code. If there is a need to share data with the
outer world, either the implemented messaging, or provided template for sharing variable
can be used.

8.1.1 Implementation and usage

Both classes (CThread and CWorkerThread) are designed as template base classes, yet
both are supposed to be used in different scenarios.

CThread is a template class with a parameter representing the type of message, that the
thread accepts.

Mainly it provides purely virtual function OnMessage(CMyMessageMsg). This func-
tion needs to be defined by the user and represents the actions done after receiving
message. It also works as the main thread loop (any code that needs to be done in
the parallel mode belongs here).

Messages are sent by provided function SendMessage(CMyMessageMsg), that is called
in the execution time of the calling thread (reason for this behavior being the possi-
bility of sendig the message into the queue even if the called thread is busy).

CWorkerThread is mainly simplification of the function above.

It doesnt accept any messages at all and provides one function to be overriden
Execute(). This function works as a main thread loop. Optionaly it provides the

33

user with the function Done(), that may be called after the thread work is finished
to send a message about the result of a performed operation.

For deciding which class to inherit, a simple “rule of thumb” can be summarized:

• If there is a large part of a code (typicaly encapsulating one whole functionality -
networking, or speech synthesis for example), that needs interaction with the user or
other parts of application, it is to be encapsulated in a class, that (amongst others)
inherits the CThread class.

• If one only needs to perform one time consuming action that doesnt need any in-
teraction, but one can not allow the main thread to be blocked by it (for example
downloading and and parsing of an XML file), usage of the CWorkerThread should
be considered.

8.1.2 Sharing data amongst the threads

For sharing variables for the outer world (other threads), there is a template class CSerial-
izer provided. Every shared variale is then accessed using Get and Set method. Protection
of the access (using mutexes) is then done by the template itself.

8.1.3 Using the CThread class as a general interface

Since the provided CThread class is a template, it may be well used as a interface to any
general module (the type of module is defined by the type of message, that is passed). It
is in fact used so in the main state-machine, where only the pointers to the base CThread
class (with an appropriate parameter for the template) may be stored. While initialized
by the particular implementation, the C++ polymorphism allows (and encourages) such a
behavior.

34

Figure 8.1: Parallel processing structures - class diagram

8.1.4 Possible improvements

The mechanism had been implemented as a sort of “naive” and easy wrapper. It does not
handle more complicated issues. Some possible improvements for future (if needed) are
described here.

Threads manager may be added. So far every thread is very autonomous and it’s only
up to the author of the code how will he handle some exceptional situations (timeouts,
stalls, etc.).

The instance of general thread manager may be added, for possibilities such as check-
ing the state of thread (running, responding, blocked) and managing errors (e.g.
restart of the thread, that is blocked).

Improved messaging system Again, the messaging is only very basic. There is a queue
of messages, that are processed in the same order, as they have been received.

35

There is no code for handling things like message priorities, or messages filtering (both
can be avoided so far, but both may be useful for more complex scenarios).

Improved template for sharing The template for data sharing (CSerializer) has only
two operations defined - Set() and Get(). That may be extended to the “value
semantics” (either for usage inside STL containers, or for easier usage).

36

8.2 Appendix 2. Network adapter and WiFi structure

General introduction about the network adapters and WiFi usage had been given above.
This appendix is therefore meant to give a bit closer insight into the implementation.

The need for a general interface for the network adapter control had demanded creating
of the CNetworkAdapter class. It has two main functions:

Definition of base class interface , which is motivated by the demand stated above.

Definition of general behavior , which is done using the parrent CThread class by defin-
ing reactions for defined messages.

For future developers an example is given in the implementation of the WiFi adapter
control. The easiest way to fit any new adapter (that can roughly fit into the control
scheme, given in CNetworkAdapter) into RAMPE is simply inheriting the interface in the
desired class.

Defining appropriate new behavior in the state-machine may be necessary, if such an
adapter should be controlled while preserving the original WiFi possibilities (otherwise it
can simply take its place without any modifications).

8.2.1 WiFi controller implementation

The WiFi controller is built upon the sample code, delivered by HP for the developers for
the IPAQ product line. The code itself is not public (at least not as far, as author of this
work is informed), therefore no quotation is made (except of an appropriate place in the
code comments and doxygen generated documentation).

It relies upon two mechanisms - IPAQUtil library from HP, and NDIS API, provided
by Microsoft. However the IPAQUtil library provides (for the WiFi adapter) some similar
functions (subset, mainly for hardware control) as NDIS, it is supposed to be far more
reliable (given to the nature of variations in the available hardware, those informations are
easy to belive).

The main burden of functionality lies on NDIS - or, more precisely, the NDISUIO
layer. The available (meaning freely available) vendor informations about that are sparse
- the operations and abilities of the API is described well at [2], meanwhile the reasons for
redundancy (compared with the NDIS, it brings similar functions) and the overall structure
of this part seems to be (specially in the Windows Mobile part) not documented by vendor
at all.

The NDIS / NDISUIO wrapping mechanism is implemented in the CNdisuioWrapper
class. Although the NDIS mechanism is wrapped into abstraction, it still keeps the NDIS ap-
proach. There are three main methods - SetValue(), QuerryValue() and GetLastError(),
that use a general (void pointer) parameters to set or get a specific structures. This ap-
proach, however functional and effective in practice, would not be much worth as an exam-
ple, therefore HP provided another wrapper (called CWiFiHelper) to implement commonly
used functions (e.g. connect, disconnect, scan, etc.), using the primitives of NDIS.

The functions from the provided CWiFiHelper class are then used in the implementation
of the WiFi adapter controller.

8.2.2 Possible future improvements

The WiFi adapter controller itself should be stable and not require any future change (apart
of those, resulting from adaptations to new hardware functions or software APIs).

37

What may be subject of change however is the general handling of the adapter in the
main state-machine. So far it relies on maintaining one pointer to the base interface class,
that is initialized by the particular implementation instance. If there is more controlers
implemented, this provides control only over one of them at the given time.

It may be easily enhanced by adding one variable for each new type of adapter (pre-
suming, that each will result in slightly different behavior in the state-machine), but it is
real only for reasonably small amount of the adapter types (over three it may become too
complex to deal with).

Such an approach may be sufficient for testing (and given the absence of the definition
of behavior for the other, it is the only one possible), but in the case of a need to keep
control over multiple adapters, this might prove insufficient. In such a case, a general
implementation for the managing object for network adapter controlers may be required
(in similar fashion, as the one implemented already for network sockets, or the one suggested
for threads).

38

Figure 8.2: Network adapter and WiFi structure

39

8.3 Appendix 3. TCP/IP connections management

As the previous section handled the low-level control of network adapters (in ISO/OSI
model it would be layers 1 and two - “Physical” and “Data/Link” layers), the sending of
the data itself is handled by a higher-level mechanism, described here.

As the RAMPE data communication is completely realized on TCP/IP (either using
HTTP protocol, or the RAMPE-defined frames), Winsock had been used for implementa-
tion of such a system.

Scheme of the position of Winsock in the ISO/OSI model is given below (as taken from
the official manufacturers documentation at [2]).

Figure 8.3: Winsock (official documentation from [2])

40

As the crucial structure in the Winsock is the SOCKET, the application encapsulates
each such a resource in an appropriate object (there are only CTCPClientSocket and
CUDPServerSocket defined, since those are the only ones used so far). Those object handle
the management of their respective resources.

As those objects require raw data to be sent, the RAMPE frames need transformation
to and from the ASCII stream. This is done inside the CRampePacket class.

For working with HTTP, there is another separate component in the Windows Mobile
environment, therefore it is handled separately by a CHttp class (not described here - the
techniques used there are on yet a different layer of ISO/OSI - level 7, “Application layer”).

8.3.1 Possible improvements

As for the sockets infrastructure, things are working fine. The possible improvements may
rely mainly on adding new sockets (missing are TCP server and UDP client) if necessary,
or developing new protocol, since the ASCII frames are neither the most effective, nor most
reliable way.

Figure 8.4: Sockets management

41

8.4 Appendix 4. XML Parser structure

XML is used as a main format of data transfer in RAMPE, therefore the XML parsing
is used extensively through the code. Since there is plenty of available XML parsers, the
implementation of the parser is relying on wrapping one engine with an abstraction, hence
allowing possible future change of the engine itself.

So far the MS XML parser that is shipped with the system is used. The general parser
structure relies on two main classes [10].

CXMLElement is the abstraction of one XML element node. Its functions allow all nec-
essary operations inside the parsed XML tree (e.g. getting the values and attributes,
iterating through the children nodes, basic types conversion, etc.). The main idea for
such an abstraction had been taken from .

CXMLDocument is the basic class, that handles the initialization of the parser and
parsing given input data. The browsed tree is saved in a form of its root element
(CXMLElement).

While implementing a particular tool to retrieve desired data from the parsed XML tree,
one needs to inherit the CXMLDocument class. By loading it with data the XML parsing
is started and the result is stored in the CXMLElement object. Using the methods of that
object yields the desired data, that are then processed as the author pleases.

While implementing such a tool, one may desire to separate it into different thread,
for its consumption of time. This may be done easily by inheriting the appropriate class
(since such a process does not usually require more interaction, than sending a message to its
owner about the result of its operation, usage of the CWorkerThread class is recommended).

An example diagram of such a tool is given below. Note the usage of CHttp class. It
is used for retrieving the remote file. Such an action in general (retrieving of the data) is
fully up to the newly created tool (or its owner).

42

Figure 8.5: XML

43

8.5 Appendix 5. Examples of the XML Files used in RAMPE

8.5.1 Configuration file

This file stores those values in the application, that can be changed by user. Through this
file all the configuration is made possible.

<?xml version=‘‘1.0’’ standalone=‘‘no’’?>
<RAMPEConfig Lang=‘‘Francais’’Version=‘‘1.0’’>
<Global>
<IPAQVersion>2410</IPAQVersion>
<AckOnRight Value=‘‘TRUE’’/>
</Global>

<Languages DefaultLang=‘‘FR’’>
<FR Path=‘‘\\RAMPE\\Lang-FR.xml’’/>
</Languages>

<Network>
<HTTPTimeout>3000</HTTPTimeout>
<WEPKey UseWEP=‘‘TRUE’’>
CC74B5BE2BD30A533385339335
</WEPKey>
<RampeSSID Prefix=‘‘RAMPE’’ Separator=‘‘/’’
MinSignal=‘‘-10’’ MaxSignal=‘‘-90’’/>

<BSSIDList MaxReferences=‘‘5’’ UpdateInterval=‘‘5’’
MinReferences=‘‘1’’/>
<HTTPServer Hostname=‘‘192.168.0.169’’
Path=‘‘/rampe.xml’’ Port=‘‘80’’/>
<TCPServer IP=‘‘192.168.0.168’’/>
</Network>

<FSM>
<S_Discovery WatchdogTimeout=‘‘5’’ PauseTimeout=‘‘60’’/>
<S_AP_Survey ShortWait=‘‘2’’ AssociationTimeout=‘‘30’’
Repetitions=‘‘3’’/>
<S_Navigation EnumerationWait=‘‘3’’ StandartWait=‘‘3’’/>
<S_Guidance Beacons=‘‘5’’ BeaconTimeout=‘‘10’’>
<!--The ‘‘beacon timeout’’ attribute is not timeout for
the state as whole, yet only a period of time, that
each beacon gives to the user (is not added - only
the last one counts) -->
</S_Guidance>
</FSM>
</RAMPEConfig>

44

8.5.2 Language file

This file should theoreticaly store all the language-dependent data, that might be presented
to the user. In practice hovewer only the vocal messages are made translatable. The error
messages are printed only into the logfile and/or to the screen, therefore are not accessible
by the (blind) user.

<RampeLang Version=‘‘1.0’’ Name=‘‘FR’’>
<Errors>
<No_Bornes_Available>
Pas de Bornes disponible!
</No_Bornes_Available>

<No_Bornes_Available>
Pas d’arret disponible!
</No_Bornes_Available>

<No_Bornes_Available>
Il n’y a pas d’arret ici!
</No_Bornes_Available>

<No_Bornes_Available>
Aucun arret en vue!
</No_Bornes_Available>

<Connection_Retry>
l’arret ne repond pas, je réessaye
</Connection_Retry>

<Connection_Retry>
l’arret ne répond pas, patientez
</Connection_Retry>

<Error_Back_To_Discovery>
Je recommence.
</Error_Back_To_Discovery>

<Error_Getting_XML>
les informations de l’arret sont défectueus
</Error_Getting_XML>

<Error_Getting_XML>
les informations de l’arret sont inutilisables
</Error_Getting_XML>

<Error_Getting_XML>
l’arret ne me donne pas d’informations.
</Error_Getting_XML>

45

<Error_No_Bus_Going_Today>
Fin de service
</Error_No_Bus_Going_Today>
</Errors>

<Messages>
<Stop_Direction_2s>
Arret %s. vers, %s
</Stop_Direction_2s>

<Wellcome_at_Rampe>
Bienvenue a RAMPE
</Wellcome_at_Rampe>

<Wellcome_at_Rampe>
Bienvenue
</Wellcome_at_Rampe>

<Goodbye>
Au revoir
</Goodbye>

<Verlaine>
<!-- message for testing the TTS -->
A vous ces vers, de par la grace consolante.
De vos grands yeux ou rit et pleure un reve doux...
De par votre ame, pure et toute bonne, a vous...
C es vers du fond de ma détresse violente
</Verlaine>

<XML_OK>
les informations de l’arret sont disponibles.
</XML_OK>

<Skeleton_List_Done>
Liste des arrets principaux.
</Skeleton_List_Done>

<All_Stops_List_Done>.
C’est tout.
</All_Stops_List_Done>

<All_Stops_Prefix_1s>
%s
</All_Stops_Prefix_1s>

<Skeleton_Prefix_1s>
%s

46

</Skeleton_Prefix_1s>
<Stop_Name_Street_2s>
%s, %s.
</Stop_Name_Street_2s>

<Line_Direction_2s>
ligne %s, vers %s
</Line_Direction_2s>

<Going_To_Discovery>
je recommence.
</Going_To_Discovery>

<Going_In_Time_1d>
<!-- message, that is appended behind the
line number/direction. States in how many
minutes (%d parameter) the line goes -->
dans %d minutes
</Going_In_Time_1d>

<All_Stops_List_Starting>
Je commence tout les arrets.
</All_Stops_List_Starting>

<Skeleton_List_Starting>
Je commence skeleton.
</Skeleton_List_Starting>
</Messages>

<StateNames>
<Discovery>Découverte des arrets</Discovery>
<Discovery>Recherche des bornes</Discovery>
<Guidance>Navigation vers borne</Guidance>
<AP_Survey>Découverte des arrets.</AP_Survey>
<Nav_Root>Navigation</Nav_Root>
<Nav_Lines>Navigation</Nav_Lines>
<Nav_Stops>Navigation</Nav_Stops>
<Silent_Mode>Silencio</Silent_Mode>

<State_Message_1s1d>
Vous etes a %s et vous avez %d bornes disponible.
</State_Message_1s1d>
</StateNames>
</RampeLang>

47

8.5.3 Borne informations

This file is downloaded each time the user tries to retrieve detailed informations from the
stop. It includes global informations about the stop and all the lines, that belong to the
stop with their appropriate details.

<?xml version=‘‘1.0’’ encoding=‘‘ISO-8859-1’’?>
<arret update_time=‘‘300307182847’’ valid_period=‘‘10 mois’’ etat_borne=‘‘ok’’ amenagement_arret=‘‘abribus’’ nom=‘‘A.PARE LAENNEC’’ type_vehicule=‘‘bus’’ rue=‘‘Bvd Gambetta’’ autre_malvoyants=‘‘non’’>

<lignes_habituelles>
<ligne_hab desservie=‘‘oui’’ numero=‘‘9’’ direction=‘‘SAXE GAMBETTA’’ valid_time=‘‘06 avril 2006’’ arret_provisoire=‘‘non’’ position_arret_dans_ligne=‘‘10’’>
<horaire_hab update_time=‘‘300307182847’’ valid_time=‘‘06 avril 2006’’ dernier_bus=‘‘16 juillet 2007’’>
<semaine>
<morning>6h33 7h05 7h23 7h41 8h04 8h20 8h37 8h50 9h03 9h18 9h36 9h54 10h03 10h18 10h36 11h06 11h24 11h42 12h00 12h18 12h36 12h54 </morning>
<afternoon>13h12 13h30 13h48 14h06 14h06 14h24 14h44 15h03 15h21 15h39 15h57 16h15 16h34 16h52 17h11 17h31 17h49 </afternoon>
<evening>18h07 18h30 18h53 19h24 19h58 20h28 </evening>

</semaine>
<WE>aucun bus</WE>

</horaire_hab>
<stations>
<station nom_station=‘‘BRON HOTEL DE VILLE’’ squelette=‘‘oui’’/>
<station nom_station=‘‘BRON SALENGRO’’ squelette=‘‘non’’/>
<station nom_station=‘‘BRON JEAN JAURES’’ squelette=‘‘non’’>
<correspondance numero_correspondance=‘‘25’’>SEPT CHEMINS</correspondance>
<correspondance numero_correspondance=‘‘79’’>CHASSIEU COLLEGE</correspondance>
<correspondance numero_correspondance=‘‘28’’>LAURENT BONNEVAY</correspondance>
<correspondance numero_correspondance=‘‘34’’>CHARPENNES</correspondance>
<correspondance numero_correspondance=‘‘9’’>BRON HOTEL DE VILLE</correspondance>

</station>
<station nom_station=‘‘BRON LIBERATION’’ squelette=‘‘non’’/>
<station nom_station=‘‘LUTHER KING’’ squelette=‘‘non’’/>
<station nom_station=‘‘LES ESSARTS’’ squelette=‘‘oui’’/>
<station nom_station=‘‘BRON JULES FERRY’’ squelette=‘‘non’’>
<correspondance numero_correspondance=‘‘79’’>CHASSIEU COLLEGE</correspondance>
<correspondance numero_correspondance=‘‘9’’>BRON HOTEL DE VILLE</correspondance>
<correspondance numero_correspondance=‘‘38’’>CLINIQUE DU TONKIN</correspondance>

</station>
<station nom_station=‘‘BERNARD VALLOT’’ squelette=‘‘non’’/>
<station nom_station=‘‘PINEL-LAENNEC’’ squelette=‘‘non’’/>
<station nom_station=‘‘A.PARE LAENNEC’’ squelette=‘‘oui’’/>
<station nom_station=‘‘LONGEFER’’ squelette=‘‘oui’’/>
<station nom_station=‘‘GRANGE BLANCHE’’ squelette=‘‘oui’’/>
<station nom_station=‘‘FEUILLAT FRERES LUMIERES’’ squelette=‘‘non’’/>
<station nom_station=‘‘PLACE AMBROISE COURTOIS’’ squelette=‘‘non’’/>
<station nom_station=‘‘ST MAURICE’’ squelette=‘‘non’’/>
<station nom_station=‘‘ST GERVAIS’’ squelette=‘‘non’’/>
<station nom_station=‘‘TCHECOSLOVAQUES’’ squelette=‘‘oui’’/>
<station nom_station=‘‘MANUFACTURE DES TABACS’’ squelette=‘‘non’’/>

48

<station nom_station=‘‘GARIBALDI GAMBETTA’’ squelette=‘‘oui’’/>
<station nom_station=‘‘ABONDANCE’’ squelette=‘‘non’’/>
<station nom_station=‘‘SAXE-GAMBETTA’’ squelette=‘‘oui’’/>

</stations>
</ligne_hab>

</lignes_habituelles>
</arret>

49

Bibliography

[1] Andrei Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.
ISBN 0-201-70431-5.

[2] Microsoft Corporation. Msdn library. http://msdn.microsoft.com.

[3] ESIEE. Rampe project homepage. http://www.esiee.fr/~rampe.

[4] O. Venard G. Baudoin. Rampe project - phase 1 final report.
http://www.esiee.fr/~rampe/.

[5] G.Uzan G.Baudoin, O.Venard. How can blinds get information in public transports
using pda? the rampe auditive man machine interface.
http://www.esiee.fr/~rampe/05-05-16-rampe-aaate.pdf.

[6] Andrei Alexandrescu Herb Sutter. C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices. Addison-Wesley Publishing Company, 2004.
ISBN-10: 0321113586.

[7] C. Marin-Lamellet. Final Report of the BIOVAM project phase 1 (april 1999) and
phase 2 (january 2003). PREDIT, 2003.

[8] D. Wagner N. Borisov, I. Goldberg. Security of the wep algorithm.
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html.

[9] various authors. C++ tips. http://cpptips.hyperformix.com/cpptips.html.

[10] Lucian Wischik. Using msxml to read xml documents.
http://www.codeproject.com/soap/ce xml.asp.

50

	Introduction
	Description of RAMPE project
	Introduction into the topic
	Parts of RAMPE
	Key features of RAMPE

	Position of this work within RAMPE project
	The role of the author and this work
	Parts taken from the previous phases of the project
	Structure of this work
	Links to any previous author's work

	Specification and requirements
	Hardware platform
	PDAs
	Network equipment

	Software platform
	Operating system
	Programming language and environment

	Goals and priorities
	Low coupling
	Definition of interfaces for important modules
	One responsability per module
	Complexity through simplicity
	Ease over effectivity
	Preserving the original man-machine interface
	Documentation

	Main modules of the project
	Man-machine interface
	Output methods
	Input methods

	Behavior controller of the Man-Machine Interface
	Discovery of the stops
	Stops survey
	Guidance
	Start of navigation
	Navigation through available lines
	Navigation through available stops

	Processing of XML
	Text to speech synthetizer (TTS)
	Integration of the TTS into RAMPE

	Network (low level) controller
	Network adapters in RAMPE

	Network (high level) services controller

	Supporting parts
	Parallelism and multithreading
	Problems
	Implemented solution

	Data distribution inside the project
	Design of data structures

	Logging facility

	Open issues
	Processing of errors
	Security
	Current state
	Possible targets
	Real possibility of attack

	Conclusions
	Current state of the project
	Possible functional improvements for future
	Extending of the configurability
	Internationalization
	Availability for different platforms
	Additional improvements in man-machine interface
	Navigation techniques

	Licensing issues
	External dependencies
	Internal restrictions

	Related works
	Projects running on ESIEE
	External projects

	Summary of results
	Achieved goals

	Contributions of this work

	Appendixes
	Appendix 1. Multithreading in RAMPE
	Implementation and usage
	Sharing data amongst the threads
	Using the CThread class as a general interface
	Possible improvements

	Appendix 2. Network adapter and WiFi structure
	WiFi controller implementation
	Possible future improvements

	Appendix 3. TCP/IP connections management
	Possible improvements

	Appendix 4. XML Parser structure
	Appendix 5. Examples of the XML Files used in RAMPE
	Configuration file
	Language file
	Borne informations

