
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
DEPARTMENT OF INTELLIGENT SYSTEMS

MODERNIZACE GIS SYSTÉMU GRASS
GRASS GIS MODERNIZATION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. RADEK BARTOŇ
AUTHOR

VEDOUCÍ PRÁCE Ing. MARTIN HRUBÝ, Ph.D.
SUPERVISOR

BRNO 2008

Abstrakt
Geografický informačńı systém GRASS se stal za 26 let své existence standardem na poli

modelováńı geografických jev̊u. Jeho vnitřńı struktura však odpov́ıdá době jeho vzniku.
Tato práce chce navrhnout možnou podobu modernizace interńıch část́ı zavedeńım kom-
ponentńı architektury a objektových návrhových vzor̊u, jakož i podporu distribuovaných
výpočt̊u a dynamických jazyk̊u, ale z uživatelského pohledu chce ovládáńı zachovat. Výsledek
návrhu je rozveden do prototypové implementace knihovny nazvané GAL Framework.

Kĺıčová slova
GIS, GRASS, modelováńı a simulace, komponentńı architektura, návrhové vzory, dynam-
ické jazyky, distribuované výpočty

Abstract
The geographical information system GRASS has become a standard on the field of ge-

ographical phenomenon modeling during its 26 years old lifetime. However, its internal
structure follows practices from the date of its creation. This thesis aims to design a
possible shape of internal parts modernization using a component architecture and object-
oriented design patterns with distributed computing and dynamic languages support in
mind. The designed system should stay identical from the user’s point-of-view. Design
results are proven on a prototype library implementation called the GAL Framework.

Keywords
GIS, GRASS, modelling and simulation, component architecture, design patterns, dynamic
languages, distributed computing

Citace
Radek Bartoň: Modernizace GIS systému GRASS, diplomová práce, Brno, FIT VUT
v Brně, 2008

GRASS GIS Modernization

Prohlášeńı
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedeńım pana Mar-
tina Hrubého. Úplný seznam použitých literárńıch pramen̊u jsem uvedl v zadńı části práce.

. .
Radek Bartoň
May 18, 2008

Poděkováńı
Poděkováńı za vznik této diplomové práce patř́ı panu Martinu Hrubému za četné konzultace,
přátelský př́ıstup a podporu na GRASS-dev e–mailovém fóru.

Acknowledgment
Thanks for this thesis creation belongs to Mr. Martin Hrubý for countless consultations,
friendly attitude and support at GRASS–dev e–mail forum.

c© Radek Bartoň, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contents . 3

2 GRASS GIS Architecture 4
2.1 Brief GRASS GIS History . 4
2.2 General Concepts . 5
2.3 Raster Architecture . 6
2.4 Vector Architecture . 6

3 Task Specification 8
3.1 Intended Objectives . 8
3.2 Obstacles . 8
3.3 Solved Objectives . 9

4 Component Architecture 10
4.1 Components and Interfaces . 10
4.2 Slots . 11
4.3 Component Manager . 11
4.4 Example . 12

5 Analytical Model 14
5.1 Use Cases . 14
5.2 Analytical Classes . 17

6 Applied Design Patterns 21
6.1 Singleton . 21
6.2 Prototype . 21
6.3 Abstract Factory . 22
6.4 Strategy . 22
6.5 Iterator . 22

7 Slot Implementations 23
7.1 Callback Slots . 24
7.2 D–Bus Slots . 24

1

8 GAL Framework Subsystems 27
8.1 Core Subsystem . 27
8.2 Exception Subsystem . 27
8.3 D-Bus Subsystem . 27

8.3.1 Classes . 27
8.4 General Subsystem . 28

8.4.1 Classes . 28
8.4.2 Interfaces . 28
8.4.3 Components . 29
8.4.4 Modules . 29

8.5 Display Subsystem . 29
8.5.1 Classes . 29
8.5.2 Interfaces . 30
8.5.3 Components . 30
8.5.4 Modules . 30

8.6 GIS Subsystem . 31
8.6.1 Classes . 32
8.6.2 Interfaces . 32
8.6.3 Components . 32
8.6.4 Modules . 32

8.7 Raster Subsystem . 33
8.7.1 Classes . 33
8.7.2 Interfaces . 34
8.7.3 Components . 34
8.7.4 Modules . 34

8.8 Vector Subsystem . 34

9 Dynamic Language Bindings 35
9.1 SWIG Utilization . 35
9.2 General Customizations . 35
9.3 Python Bindings . 35
9.4 Java Bindings . 36
9.5 Other Bindings . 37

10 Experimental Results 38

11 Conclusion 40

12 References 41

A Library Tutorial 44
A.1 Imaginary Interface . 44
A.2 Custom Object . 46
A.3 Custom Slot . 48
A.4 Custom Interfce . 49
A.5 Custom Component . 50
A.6 List of Raster Layers . 52

2

1 Introduction

1.1 Motivation

Geographic information systems (GIS) [1] are becoming more and more significant in
many aspects of human life such as industry, engineering, ecology, public administration,
sociology or nature sciences. Where people was previously deciding only by their personal
judgements, now relies on sophisticated and scientific analyses. Together with the vast
expansion of Internet services, Web based geographical information systems are spreading
too.

In Open Source domain, the best known and featured software for geographic analyses
is the GRASS GIS. Unfortunately, its development is stagnating because of small interest
from fresh and young developers. This is partially caused by the fact that its design and
concepts are overcomed by modern practices in a software development. This work tries to
propose one of many eventual ways of modernization and prepare soil for further feature
advancement.

1.2 Contents

The thesis is divided into eight main chapters which concerns in different aspects of
solved tasks. Analysis of the current GRASS GIS architecture is placed first. Problem
specification is discussed next, followed by explanation of component architecture concepts
which is main approach to solve confronted problems. Significant parts of the analytical
model are described next but full description of designed classes, interfaces and components
is available at [2]. Pinpoint of used design patterns in the design has its own chapter.
Explanation of slot execution mechanism implementations follows. The most extensive
chapter about each of GAL Framework’s subsystems is situated after. Then are notes from
implementation of dynamic languages bindings and thesis is concluded with experimental
performance results and their analysis.

The work proceeds from the semestral thesis of the same name, uses and extends its
results. Theoretical parts of the text (chapters 2, 3, 4, 5 and 7) are fully or partially
originated from this source. The master’s thesis appends practical results, experiences and
a more detailed documentation of a prototype implementation.

3

2 GRASS GIS Architecture

This chapter summarises GRASS evolvement during years of development and current
state of raster and vector subsystems (versions 6.x).

2.1 Brief GRASS GIS History

The Army Corps of Engineers’ Construction Engineering Research Laboratory (US-
A/CERL) in Champaign, Illinois, USA started in the 1980s work on an inexpensive raster
based GIS software for UNIX systems lately called the Geographic Resources Analysis
Support System (GRASS) as an opposite for the ESRI’s ARCINFO software. To better
understand acquisition tendencies of the GAL Framework and this paper, it is needed to
list brief history of GRASS development with architecture innovations of each GRASS
evolution step.

1982 [3] The Fort Hood Information System (FHIS) was developed. It was from today’s
measures a simple raster processing program running on the PDP-11 mainframe and
communicating with a remote terminal via a serial link. It used concepts of categories
and subcategories, an area of interest, overlapping 100 × 100 meters cell rasters and
a mask raster layer.

1983 [4] Due to slow communication with the terminal, the FHIS was ported to the SUN-1
microcomputer and called the Installation GIS (IGIS). It used a monochrome monitor
for command input, a color monitor for data visualization and it also separated data
from a program. These two innovations survided in form of monitors (d.mon) and
map locations.

1984 [4] The first GRASS called package of 20 programs was released. From this point the
project focused on public comunity development although only in a college area.

1990 [4] After six years of growth, current module organization to letter–dot format,
command–line argument parsing and module descriptions was introduced with the
GRASS 4.0. First attempts for a user interface fall to this period too. A source code
is organized to directories for general, miscellaneous, display, raster, imagery and sites
modules and core libraries sources. Vector data support is done by additional set of
tools for analog map digitization and conversion to rasters.

1997 [5] The GRASS 4.2.1 was released with new modules, code cleanup and a Tcl/Tk
user interface.

1999 [5] First GNU/GPL GRASS 5.0 version with floating point and NULL raster data
support added.

4

2002 [6] A new arc-based vector architecture with more likely modern approaches and
database support introduced.

2006 [7] Realization of need for dynamic language support with a SWIG interface prototype
for Python and Perl (GRASS 6.1.0).

2.2 General Concepts

From the users’ point–of–view, the GRASS GIS [8] is a collection of rather independent
command–line modules performing individual data transformation or analysis tasks. Some
functionality is done by coupling certain number of modules using Bourne shell scripting.
Lately, much effort to develop the comfortable graphical user interface which executes such
modules was done.

Although formerly was a GRASS GIS’s codebase mix of C and Fortran language and
shell scripts, Fortran was abandoned and replaced with C during years. An experimental
Python interface to core libraries was introduced recently. Nevertheless, its code purely
follows the functional programming paradigm.

Data storage is organized with the hierarchical directory structure of the operating sys-
tem. The root directory is referred to as GISDBASE and may contain locations which rep-
resent mapped areas. Each location is formed by mapsets that contains map layers of
common meaning. For example, one mapset could have map layers for hydrological analy-
ses and a second mapset could have layers for forestry models. Only one location and one
mapset is active in a single moment. There is a special mapset called PERMANENT which
must be present in every location. It holds unchanging map data as well as some additional
metadata.

The mapset directories may hold subdirectories and files with differently typed data and
information. Some of them could be:

cell/ – Integer data of 2D rasters.

fcell/ – Floating data of 2D rasters.

cellhd/ – Information about a projection, dimensions and a resolution.

cats/ – Names of categories assigned to data values.

colr/ – Color tables and rules for data visualization.

cell misc/ – Information about NULL valued data and other metadata.

hist/ – Metadata with history of commands that was used to create stored data.

grid3d/ – Data of 3D rasters.

vector/ – A vector data geometry.

dbf/ – Vector data attributes.

5

struct Cell_head

{

int format; /* max number of bytes per cell minus 1 */

int compressed; /* 0 = uncompressed , 1 = compressed , -1 pre 3.0 */

int rows; /* number of rows in the data 2D */

int rows3; /* number of rows in the data 3D */

int cols; /* number of columns in the data 2D */

int cols3; /* number of columns in the data 3D */

int depths; /* number of depths in data */

int proj; /* Projection (see #defines above) */

int zone; /* Projection zone */

double ew_res; /* East to West cell size 2D */

double ew_res3; /* East to West cell size 3D */

double ns_res; /* North to South cell size 2D */

double ns_res3; /* North to South cell size 3D */

double tb_res; /* Top to Bottom cell size */

double north; /* coordinates of layer */

double south;

double east;

double west;

double top;

double bottom;

};

Code 2.1: Structure describing raster layer.

2.3 Raster Architecture

2D raster layers data can be of three types: integer, float and double. 3D rasters can be
only float and double [9]. A layer is accessed as one big grid, row by row and when lower
resolution is required it is resampled with nearest neighbour method the same way.

Each raster layer is described with Cell_head structure [10] (see code 2.1). It is bounded
by a region in a specified cartographic projection. Its dimensions (number of rows and
columns) are precomputed from this region, north-south and east-west resolution. Sup-
ported compression algorithm is RLE.

The GRASS supports only a limited number of metadata for raster layers. If a special
raster layer called MASK is created, all raster operations are masked by NULL valued cells of
this layer.

2.4 Vector Architecture

Vector data are represented by composition of nodes and arcs [6]. The arcs are paths
created with multiple line segments and the nodes are boundary vertices (although interior
nodes are supported too). Multiple arcs forms a line. This structure is intended for modeling
of linear objects like streams or roads. Connected arcs with a centroid vertex form an area
which represents areal objects like forests or lakes. Option to insert interior holes and isles
in the areas is present too. Point objects are implemented in an own library and stored in
an internal file format.

6

Geometry, topology and attributes are stored separately. Geometry can be loaded from
a native format, shapefiles [11], or the PostgreSQL [12] database with the PostGIS [13]
extension. Loading from many other file formats with the OGR [14] library is available as
well. Topology is stored in a native format, the PostGIS database or constructed during
file loading. The attributes may be placed in the DBF, SQLite, PostgreSQL, MySQL or
ODBC database through a common DBMI [15] interface. Geometry of the objects have
two or three spatial coordinates and 3D objects like faces and volumes can be created too
but with limited topology.

The attributes are associated to geometry with category numbers and field numbers also
called layers. The field number determines a database table and the category number
determines a table row where look for attribute values. A special text file describes this
association of fields to databases and tables.

7

3 Task Specification

Follow brief listings of intentions, ideas and problems that occurred after the project
analysis and a summary of objectives that was or wasn’t solved during given time with an
explanation.

3.1 Intended Objectives

The next list of key objectives draws up desired intentions of the GAL Framework project
in the time of its formation:

• Design a flexible, platform independent and extensible environment for development
of new largely analytical modules for the GRASS GIS based on a component archi-
tecture.

• Design and implement an internal and external representation of raster and vector
data for use in the GAL Framework.

• Use present GRASS libraries beneath an abstraction interface for transient support
of the current raster and vector representation.

• Achieve compatibility with the GRASS GIS at module level so that any possible GUI
frontend for modules developed using the GRASSlib could be used with modules
developed using the GAL Framework as well.

• Prepare detailed documentation of the entire system design and possible usage before
and during the implementation.

• Provide as complete as reasonable bindings to dynamic languages, especially for
Python and Java.

• Implement an example implementation of certain data loading and processing modules
to show example usage of the GAL Framework as programming environment.

• Prepare set of tutorials showing aspects of possible usage of the GAL Framework.

• Publicize project’s aims and intentions on the Web and at meetings.

• Discuss all concepts and ideas with comunity to acquire wishes and needs of majority
of the people from the GIS domain.

3.2 Obstacles

After brief consideration of the previous list of intentions these restrains appeared:

• Restrictions emergent from C/C++ as statically typed compiled languages.

8

• Limitations of the SWIG automatic wrapper generator, especially with variable length
arguments functions and callbacks. This appears to be solvable with little effort.

• Lack of current GRASS libraries re-entrance safety since many of internal structures
are static. There is necessity of locks when executing a GRASS code in parallel
threads or processes which will affect performance and may lead to deadlocks.

• Overall scope and time requirements of the project. There is need to invite other
developers to make this project reasonable.

• Unpleasant attitude of GRASS developers to the object–oriented programming.

3.3 Solved Objectives

Sumarization of project status when this document was created and discussion of unre-
alized goals is following:

• The design of the core component management and communication system forms
content of this thesis, especially of the chapter 5 and it is also distributed to several
wiki pages at the project’s homepage [2]. The prototype implementation is stored in
a SVN source code management system and browsable through a web interface at the
same place.

• The external representation of raster data was shaped with RasterTile, ColorRules
and ColorTable classes and it is accessed with an IRasterLayerProvider interface
(see section 8.7). After further consideration, the internal representation was left in a
native GRASS format of the GRASSlib library and used in a GRASSRasterLayerComponent
component. The vector subsystem was kept to other person’s responsibility as were
consulted with the mentor of the thesis.

• Implemented example modules accepts the same command–line arguments as the
GRASS modules if they provides the same functionality.

• A comprehensive conceptual documentation as well as the GAL Framework library
reference is available at the project’s homepage [2] or on an attached CD.

• Bindings of the library was developed for Python and Java languages. More about
them in the chapter 9.

• GAL Framework tutorials are placed in the appendix A of this document.

• A full–featured Web site for the project management and propagation was established,
the project was introduced at the GRASS–dev mailing list and an article for the
Geoinformatics FCE CTU 2007 Workshop [16] was published.

• Unfortunately, no positive response was received from the comunity and no other
attention was given. Therefore, the proposed design is a product of a single mind (of
course, inspired from many sources) and not the product of a diverse group which the
system of such extent requires.

9

4 Component Architecture

To be as flexible and extensible as possible, the GAL Framework uses the component
architecture of software design similar to [17]. Here will be described what does this term
mean in a context of the project and how it influences a library structure and usage at the
level of individual GRASS modules development.

4.1 Components and Interfaces

Using UML [18] notation such an architecture can be shown as on the figure 4.1. There are
four components connected to one interface with different relationships. You may consider
that the components are groups of objects or classes which form compact sub-systems doing
some job. For example a raster component which loads raster data from different files to the
memory or an analytical component which performs some computation over loaded data.

<<reside >>
Component 1 Component 2Interface

Component 4
Component 3

Figure 4.1: The component diagram of the component architecture.

The components may own, use or implement certain interfaces which describes how these
components would like to communicate with the others. On the figure, it’s the Component 1
that declares (owns) an interface Interface which is indicated by a stereotype�reside�.
The Component 1 and the Component 2 use this interface (symbolized by dashed lines with
an arrow). The Component 3 and the Component 4 implement interface functions which is
represented by solid lines.

Owning an interface means that a component is responsible for its creation, destruction
and registration in the system, using an interface means that a component may call one or
more of the interface functions. In the most cases, a component which owns an interface is
using it at the same time but there is only single component owning single interface. On

10

the other side of the interface, stay components which implement them. They listen what
the components using the interface say and respond to their requests. This implies that
the communication is entirely directed by the components that use the interface but the
subsidiary components can use other interface which could be implemented by the superior
components to reverse this subordination.

4.2 Slots

There is an abstraction over the interface functions called a slot that may be configured
some way to specify which implementation will be executed. Sometimes you may want to
execute just the lastly registered implementation, sometimes you may want to call each of
them, etc. The slot is meant to be a functor class that forwards interface function calls
everytime it is evoked.

Components using the interface can pick which implementations should be used. A
question what the available implementations are chosen when the interface function is
evoked could be separated into three cases. It is a little analogy to the TCP/IP unicast,
multicast and broadcast:

1 to N - Only a single implementation is chosen among the others. It can be the first
idle component or the lastly registered one. An example of such interface may be the
component which loads data from certain file format.

M to N - A subset of the registered implementations is chosen. An example of this are
data processing components that are used to balance CPUs usage.

N to N - All the implementations are evoked and results (if any) are collected together.
An example could be two components that receives error or debug messages. One
displays them on the screen, a second logs them to a file but they are both notified.

Different slot implementations abstract a mechanism of interface function execution.
There is a static method callback and a D–Bus RPC library slot implementation currently
supported. More about the slot implementations is discussed in the chapter 7.

This layout brings flexibility to the framework because any component using a particular
interface can choose which implementation of the interface wants to utilize. Furthermore,
any component can engage to implement the interface and lately it can abandon its obli-
gation.

4.3 Component Manager

To allow public access to all the available components and interfaces in the system, a
common access point must be introduced. In this case, it is called a component manager
and it serves for a component or interface registration as long as the registration of the
interface implementations. The figure 4.2 shows a simplified class diagram of relationships
between the component manager, components, interfaces and slots.

11

Component

ComponentManager

Interface Slot

1

*

1

*

1

*

*

1

Figure 4.2: The class diagram of the component architecture.

Every component can then ask the component manager to receive a particular interface
and use it or commit to implement it. Interfaces, when they are used, contains capabilities
to manage all their implementing components so that the component using the interface
can decide which of them wants to use in a manner presented before.

This brings a powerful extensibility to the system since the components can be loaded
from dynamic libraries like plugins on the system start or even in runtime. Furthermore,
they can be spread over computer network or parallel environment and executed by a slot
mechanism implemented using some RPC library.

4.4 Example

A conceptual example of the component architecture applicability [16], [19] is shown on
the figure 4.3. There is a component ModuleComponent implementing some GRASS mod-
ule at the top which uses three different interfaces: the IVectrLayerProvider for retrieving
vector data, the IRasterLayerProvider for accessing raster data and the IMessageHandler
for message display and logging.

The IVectorLayerProvider interface is implemented by two different components reg-
istered in the system. One of them shelters vector layer data in the PostgreSQL database,
the other provides for example data from the MySQL database.

The raster related interface IRasterLayerProvider is implemented by two components
too. The first offers raster data from the PostgreSQL database and the second enwraps
raster data in ordinary data files. This diagram should demonstrate that using this approach
a module component can obtain GIS data and it don’t need to care where and how are
these data stored.

When the module does what it wants with retrieved data and it needs to output some
information to the console, logs or a GUI, it sends messages through a IMessageHandler
interface. In the discussed example is this interface implemented by two components which
forwards messages to the CLI, the GUI or write them the to log files. This again demon-
strates independence on outputted data presentation.

12

CLI/GUI Logs

IMessageHandler

PgSQL Files

IRasterLayerProviderIVectorLayerProvider

ModuleComponent

PgSQL MySQL

Figure 4.3: The component architecture practically.

13

5 Analytical Model

To realize deeper consequences between the GAL Framework core components, an ana-
lytical model was created. It consists of an use case diagram (fig. 5.1) and an analytical
class diagram (fig. 5.2). Detailed description of each use case and each analytical class is
available at [20] and [21] and updated continuously. Following lists are constrained to note
about the most important of them.

5.1 Use Cases

Intended behavior and usage of the GAL Framework is modeled in the use cases. Rela-
tions between the individual use cases are displayed on the use case diagram on figure 5.1.
Follows a list of some of them with an explanation. Only role present is a programmer who
develops new GRASS modules using the framework.

DefineInterfaceUseCase summarizes steps needed to define a new interface object. This
is done by the programmer and it includes definition and instantiation of all slot
objects of the interface which forms interface functions signatures. The custom slots
can be defined entirely or they can be renamed from pre–defined slots.

RegisterInterfaceUseCase registers the interface object instance in the component man-
ager with a given name. This identifier must be unique in the whole system or locally
if the interface is not intended to be used with a RPC based slot mechanism.

DefineComponentUseCase describes the course of actions needed to define a new com-
ponent by the programmer. Aggregated objects and interface objects with their slots
are instantiated and initialized first, interface function implementations are prepared
as methods of the components then.

RegisterInterfaceImplementationUseCase connects the interface function implemen-
tations of the component with an interface object prototype of the component man-
ager. This is done with the component manager method call.

ImplementInterfaceUseCase is performed during the component initialization at a mod-
ule start. The component registers the aggregated interface objects in the system if it
owns them and thus they aren’t known to the system yet. Afterwards, the interface
function implementations are registered by inclusion of the RegisterInterfaceIm-
plementationUseCase use case.

UseInterfaceUseCase retrieves an interface object clone from the component manager
by an interface name, gets a slot object of a desired interface function by its name
and then executes the slot object as a functor.

14

ExecuteModuleUseCase defines and executes a module for the GRASS GIS developed
in the GAL Framework. This use case contains: definition and initialization of all
needed components either a single–purpose for this module execution or a general–
purpose from GAL subsystems, request for needed slots to their interfaces which are
received from the component manager, intended module computation with slots as
functor or dynamically using their methods and finally release of the all obtained
resources.

15

R
e

g
is

te
rI

n
te

rf
a

c
e

Im
p

le
m

e
n

ta
tio

n
U

s
e

C
a

se

P
ro

g
ra

m
m

e
r

D
e

fin
e

In
te

rf
a

ce
U

se
C

a
se

R
e

g
is

te
rI

n
te

rf
a

ce
U

se
C

a
se

U
se

In
te

rf
a

ce
U

se
C

a
se

D
e

fin
e

C
o

m
p

o
n

e
n

tU
se

C
a

s
e

L
o

a
d

C
o

re
C

o
m

p
o

e
n

tU
se

C
a

s
e

L
o

a
d

P
lu

g
in

C
o

m
p

o
n

e
n

tU
se

C
a

s
e

E
x
e

c
u

te
M

o
d

u
le

U
se

C
a

se

U
n

re
g

is
te

rI
n

te
rf

a
ce

U
se

C
a

s
e

<
e

x
te

n
d

>
 (

L
o

a
d

C
o

m
p

o
n

e
n

tE
xt

e
n

s
io

n
)

<
e

x
te

n
d

>
 (

L
o

a
d

C
o

m
p

o
n

e
n

tE
xt

e
n

s
io

n
)

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

<
in

cl
u

d
e

>

Im
p

le
m

e
n

tI
n

te
rf

a
ce

U
se

C
a

s
e

U
n

re
g

is
te

rI
n

te
rf

a
ce

Im
p

le
m

e
n

ta
tio

n
U

s
e

C
a

s
e

<
in

cl
u

d
e

>

F
ig

ur
e

5.
1:

T
he

us
e

ca
se

di
ag

ra
m

of
th

e
G

A
L

Fr
am

ew
or

k
an

al
yt

ic
al

m
od

el
.

16

5.2 Analytical Classes

Analytical classes are the product of realization of the use cases. They can be viewed in
the analytical class diagram on the figure 5.2 as well as relationships between them. Here
is a list of them with brief description of some of their methods.

GAL is a static class for library initialization, deinitialization and component manager
instance retrieval. It also takes care of event loop based subsystems for modules
running as a daemon or as a tool with user interface. Some of its significant methods
are:

initialize initializes the GAL Framework. It must be called at the start of a module.

finalize deinitializes the framework. It must be called before module end.

demonize turns a program calling this method to a daemon that handles slot im-
plementation execution requests and other events.

quit exits the event processing loop started with the demonize method.

getComponentManager provides access to a publicly available component man-
ager.

ComponentManager is a singleton class that serves for components, interfaces and in-
terface implementations registration and retrieval.

getInterface returns a cloned interface object of a registered interface. This local
copy can be then configured and used in modules to execute interface functions.

getInterfacePrototype gives access to an internal prototype of a registered inter-
face. It can be used to create a clone for further usage but should not modified.

registerInterface registers a new interface to the system with an interface object
prototype.

registerImplementation assigns an interface with a component providing its im-
plementation. Implementing methods can be then called by components using
the interface.

registerObject registers a new object prototype in the system that can be then used
as a interface function argument or as a return value.

createObject returns a cloned and deserialized instance of an object prototype re-
quested by a class name.

Component is the superclass for all components that can be registered in a component
manager. All subclasses have to implement initialization and finalization methods
where specify which interface functions may implement.

initialize is a pure virtual method for the initialization of aggregated objects and
interfaces and registration of declared or implemented interfaces. Available in-
terface function implementations of the component should be published in this
method too using a setImplementation method.

finalize is a pure virtual method for deinitialization of aggregated objects and inter-
faces of the component.

17

getFunction allows the component manager ask for the interface function implemen-
tations of the component. This method is necessary for interconnection of the
component and the interface object prototype during interface implementation
registration.

setImplementation claims that there is a static method implementation of some
interface function in the component. It is used in initialization of the component
in a initialize method.

ConcreteComponent is the realization of the abstract Component class. This class is
just exemplary in the model and shows how concrete components could be derived in
practice.

Interface is a base class for interface objects. It contains slot object instances representing
its functions and it also have methods for their administration as well as methods for
a slot implementation registration and selection. Each interface has its own unique
identifier.

clone returns a cloned instance of the interface object and allows use this class as a
prototype design pattern.

setSlotType changes the way how slots of this interface will be executed, concretely
it exchanges used slot executor in all aggregated slot objects.

getSlot returns a slot object representing an interface function identified by its name.
This method is often used in modules when certain interface is used.

addSlot is used only in a derived concrete interface objects’ constructor to append
new functions to the interface.

registerComponent appends a component as an implementing component for the
local interface object instance. This function has global impact when applied on
an interface object prototype.

IConcreteInterface is again an exemplary realization of the abstract class Interface
showing what is needed to be done when deriving from its superclass in a custom
interface definition.

Slot is a base class that serves as an abstraction over interface functions and their execution
mechanisms. Each slot instance has its name which is similar to the interface function
name where the slot belongs to.

clone returns a cloned instance of the slot object similarly like the method with the
same name of the Interface class because interface objects are composed from
the slots.

addArgument defines a slot’s input signature by appending new arguments of the
interface function.

addReturnValue defines a slot’s output signature with appended return values.

execute executes a slot implementation with the previously setted arguments using
a configured slot executor and fills specified return value variables with result of
the called interface function.

18

call is a pure virtual call operator which may be implemented in descendant slots to
support a direct execution of the interface functions.

ConcreteSlot1, ConcreteSlot2 are custom slots extending the basic slot object with
a call operator implementation. This allows static execution of interface functions
with a defined signature in statically typed languages with a fixed number of function
arguments.

SlotExecutor is a simple abstraction class that allows configure slots to use different
execution mechanisms in runtime. New mechanisms are added to the system by
inheriting from this class and overriding a execute method.

getType returns a type of slots which execution the implemented slot executor sup-
ports.

execute accepts a slot object that interface function the slot executor will call with
its arguments and its return values.

EventHandler helps abstract different libraries and subsystems with event processing
loops and merge them into the single loop. Derived classes must implement both
variants of event processing methods.

waitEvent is a blocking variant of the event processing method. It serves at least
one pending event and returns the number of actually processed events. If no
event is available, it waits until some is.

processEvent is a non-blocking variant of the previous method. It does nothing
and returns zero, if no events are prepared in a queue for this event handler.

Object is a base class for objects that can be used as interface function arguments and
that can be transferred between processes or over network using a serialization.

getClassName gives the name of the class that acts for runtime object type identi-
fication of derived classes.

clone returns a copy of the object instace. The objects are also prototypes because
they must be created dynamically.

serialize method returns a string representation of a object state either in a text or
a binary form.

deserialize is an inverse operation for the previous. It accepts the string represen-
tation from which it builds a new object state.

19

P
ro
to
ty
p
e
F
a
c
to
ry

p
ro

to
ty

p
e
s

[0
..
*]

 :
 P

ro
to

ty
p
e

g
e
tP

ro
to

ty
p
e
()

(n
a
m

e
 :

 S
tr

in
g
)

:
P
ro

to
ty

p
e

re
g
is

te
rP

ro
to

ty
p
e
(n

a
m

e
 :

 S
tr

in
g
,
p
ro

to
ty

p
e
 :

 P
ro

to
ty

p
e
)

u
n
re

g
is

te
rP

ro
to

ty
p
e
(n

a
m

e
 :

 S
tr

in
g
)

In
te
rf
a
c
e
F
a
c
to
ry

O
b
je
c
tF
a
c
to
ry

O
b
je
c
t

cl
a
ss

N
a
m

e
 :

 S
tr

in
g

g
e
tC

la
ss

N
a
m

e
()

 :
 S

tr
in

g
se

tC
la

ss
N

a
m

e
(n

a
m

e
 :

 S
tr

in
g
)

cl
o
n
e
()

 :
 O

b
je

ct
se

ri
a
liz

e
()

 :
 S

tr
in

g
d
e
se

ri
a
liz

e
(d

a
ta

 :
 S

tr
in

g
)

D
B
u
s
E
v
e
n
tH
a
n
d
le
r

w
a
it

E
v
e
n
t(

)
:

In
te

g
e
r

p
ro

ce
ss

E
v
e
n
t(

)
:

In
te

g
e
r

co
n
n
e
ct

(b
u
sN

a
m

e
 :

 S
tr

in
g
)

d
is

co
n
n
e
ct

()

«
in
te
rf
a
c
e
»

P
ro
to
ty
p
e

cl
o
n
e
()

 :
 P

ro
to

ty
p
e

fr
e
e
()

«
in
te
rf
a
c
e
»

S
in
g
le
to
n

g
e
tI

n
st

a
n
ce

()
 :

 S
in

g
le

to
n

g
e
tC

o
n
st

In
st

a
n
ce

()
 :

 S
in

g
le

to
n

fr
e
e
In

st
a
n
ce

()

A
rg
u
m
e
n
t

ty
p
e
 :

 T
y
p
e

v
a
lu

e
 :

 V
a
lu

e

«
in
te
rf
a
c
e
»

S
lo
tE
x
e
c
u
to
r

g
e
tT

y
p
e
()

 :
 S

lo
tT

y
p
e

e
x
e
cu

te
(s

lo
t

:
S
lo

t)

«
e
n
u
m
»

T
y
p
e

IN
T
E
G

E
R

FL
O

A
T
IN

G
S
T
R

IN
G

O
B

JE
C

T

C
a
ll
b
a
c
k
S
lo
tE
x
e
c
u
to
r

g
e
tT

y
p
e
()

 :
 S

lo
tT

y
p
e

e
x
e
cu

te
(s

lo
t

:
S
lo

t)

D
B
u
s
S
lo
tE
x
e
c
u
to
r

g
e
tT

y
p
e
()

 :
 S

lo
tT

y
p
e

e
x
e
cu

te
(s

lo
t

:
S
lo

t)

«
e
n
u
m
»

S
lo
tT
y
p
e

A
N

Y
_S

LO
T

C
A

LL
B

A
C

K
_S

LO
T

D
B

U
S
_S

LO
T

C
o
m
p
o
n
e
n
t

n
a
m

e
 :

 S
tr

in
g

im
p
le

m
e
n
ta

ti
o
n
s

[0
..
*]

 :
 v

o
id

 *
in

it
ia

liz
e
()

fi
n
a
liz

e
()

g
e
tN

a
m

e
()

 :
 S

tr
in

g
se

tN
a
m

e
(n

a
m

e
 :

 S
tr

in
g
)

g
e
tF

u
n
ct

io
n
(n

a
m

e
 :

 S
tr

in
g
)

:
v
o
id

 *
se

tI
m

p
le

m
e
n
ta

ti
o
n
(n

a
m

e
 :

 S
tr

in
g
,
fu

n
ct

io
n
 :

 v
o
id

 *
)

u
n
se

tI
m

p
le

m
e
n
ta

ti
o
n
(n

a
m

e
 :

 S
tr

in
g
)

C
o
n
c
re
te
C
o
m
p
o
n
e
n
t

a
g
g
re

g
a
te

d
C

la
ss

1
 :

 C
la

ss
1

a
g
g
re

g
a
te

d
C

la
ss

2
 :

 C
la

ss
2

cr
e
a
te

()
d
e
st

ro
y
()

in
it

ia
liz

e
()

fi
n
a
liz

e
()

sl
o
tI

m
p
le

m
e
n
ta

ti
o
n
1

()
sl

o
tI

m
p
le

m
e
n
ta

ti
o
n
2

()

IC
o
n
c
re
te
In
te
rf
a
c
e

n
a
m

e
 :

 S
tr

in
g
 =

 "
IC

o
n
cr

e
te

In
te

rf
a
ce

"
co

n
cr

e
te

S
lo

t1
 :

 C
o
n
cr

e
te

S
lo

t1
co

n
cr

e
te

S
lo

t2
 :

 C
o
n
cr

e
te

S
lo

t2
cr

e
a
te

()
d
e
st

ro
y
()

cl
o
n
e
()

 :
 I
C

o
n
cr

e
te

In
te

rf
a
ce

«
s
ta
ti
c
»

G
A
L

co
m

p
o
n
e
n
tM

a
n
a
g
e
r

:
C

o
m

p
o
n
e
n
tM

a
n
a
g
e
r

e
v
e
n
tH

a
n
d
le

rs
 [

0
..
*]

 :
 E

v
e
n
tH

a
n
d
le

r
sl

o
tE

x
e
cu

to
rs

 [
0

..
*]

 :
 S

lo
tE

x
e
cu

to
r

in
it

ia
liz

e
(a

rg
c

:
In

te
g
e
r,

 a
rg

v
 [

0
..
*]

 :
 S

tr
in

g
)

fi
n
a
liz

e
()

d
a
e
m

o
n
iz

e
()

q
u
it

()
g
e
tC

o
m

p
o
n
e
n
tM

a
n
a
g
e
r(

)
:

C
o
m

p
o
n
e
n
tM

a
n
a
g
e
r

g
e
tE

v
e
n
tH

a
n
d
le

r(
id

 :
 u

n
d
e
f)

 :
 E

v
e
n
tH

a
n
d
le

r
a
d
d
E
v
e
n
tH

a
n
d
le

r(
id

 :
 S

tr
in

g
,
e
v
e
n
tH

a
n
d
le

r
:

E
v
e
n
tH

a
n
d
le

r)
re

m
o
v
e
E
v
e
n
tH

a
n
d
le

r(
id

 :
 S

tr
in

g
)

g
e
tS

lo
tE

x
e
cu

to
r(

ty
p
e
 :

 S
lo

tT
y
p
e
)

:
S
lo

tE
x
e
cu

to
r

C
o
n
c
re
te
S
lo
t1

cr
e
a
te

()
d
e
st

ro
y
()

cl
o
n
e
()

ca
ll(

)

In
te
rf
a
c
e

n
a
m

e
 :

 S
tr

in
g
 =

 "
"

sl
o
ts

 [
0

..
*]

 :
 S

lo
t

im
p
le

m
e
n
ti

n
g
C

o
m

p
o
n
e
n
ts

 [
0

..
*]

 :
 C

o
m

p
o
n
e
n
t

cr
e
a
te

()
d
e
st

ro
y
()

cl
o
n
e
()

 :
 I
n
te

rf
a
ce

g
e
tN

a
m

e
()

 :
 S

tr
in

g
se

tN
a
m

e
(n

a
m

e
 :

 S
tr

in
g
)

g
e
tS

lo
tT

y
p
e
()

 :
 S

lo
tT

y
p
e

se
tS

lo
tT

y
p
e
(s

lo
tT

y
p
e
 :

 S
lo

tT
y
p
e
)

g
e
tS

lo
t(

n
a
m

e
 :

 S
tr

in
g
)

:
S
lo

t
g
e
tS

lo
t(

n
a
m

e
 :

 S
tr

in
g
,
ty

p
e
 :

 S
lo

tT
y
p
e
)

:
S
lo

t
a
d
d
S
lo

t(
n
a
m

e
 :

 S
tr

in
g
,
sl

o
t

:
S
lo

t)
re

m
o
v
e
S
lo

t(
n
a
m

e
 :

 S
tr

in
g
)

re
g
is

te
rC

o
m

p
o
n
e
n
t(

co
m

p
o
n
e
n
t

:
C

o
m

p
o
n
e
n
t)

u
n
re

g
is

te
rC

o
m

p
o
n
e
n
t(

co
m

p
o
n
e
n
t

:
C

o
m

p
o
n
e
n
t)

S
lo
t

n
a
m

e
 :

 S
tr

in
g

a
rg

u
m

e
n
ts

 [
0

..
*]

 :
 A

rg
u
m

e
n
t

re
tu

rn
s

[0
..
*]

 :
 A

rg
u
m

e
n
t

e
x
e
cu

to
r

:
S
lo

tE
x
e
cu

to
r

cr
e
a
te

()
d
e
st

ro
y
()

cl
o
n
e
()

g
e
tN

a
m

e
()

 :
 S

tr
in

g
se

tN
a
m

e
(n

a
m

e
 :

 S
tr

in
g
)

g
e
tT

y
p
e
()

 :
 S

lo
tT

y
p
e

se
tT

y
p
e
(t

y
p
e
 :

 S
lo

tT
y
p
e
)

g
e
tA

rg
u
m

e
n
ts

 [
0

..
*]

()
 :

 A
rg

u
m

e
n
t

g
e
tR

e
tu

rn
V

a
lu

e
s

[0
..
*]

()
 :

 A
rg

u
m

e
n
t

a
d
d
A

rg
u
m

e
n
t(

ty
p
e
 :

 T
y
p
e
)

a
d
d
R

e
tu

rn
V

a
lu

e
(t

y
p
e
 :

 T
y
p
e
)

se
tA

rg
u
m

e
n
t(

in
d
e
x
 :

 I
n
te

g
e
r,

 v
a
lu

e
 :

 V
a
lu

e
)

se
tR

e
tu

rn
V

a
lu

e
(i

n
d
e
x
 :

 I
n
te

g
e
r,

 v
a
lu

e
 :

 V
a
lu

e
)

e
x
e
cu

te
()

ca
ll(

)

C
o
m
p
o
n
e
n
tM

a
n
a
g
e
r

in
te

rf
a
ce

s
:

In
te

rf
a
ce

Fa
ct

o
ry

o
b
je

ct
s

:
O

b
je

ct
Fa

ct
o
ry

g
e
tI

n
te

rf
a
ce

(n
a
m

e
 :

 S
tr

in
g
)

:
In

te
rf

a
ce

g
e
tI

n
te

rf
a
ce

P
ro

to
ty

p
e
(n

a
m

e
 :

 S
tr

in
g
)

:
In

te
rf

a
ce

re
g
is

te
rI

n
te

rf
a
ce

(i
n
te

rf
a
ce

 :
 I
n
te

rf
a
ce

)
u
n
re

g
is

te
rI

n
te

rf
a
ce

(i
n
te

rf
a
ce

 :
 I
n
te

rf
a
ce

)
re

g
is

te
rI

m
p
le

m
e
n
ta

ti
o
n
(i

n
te

rf
a
ce

 :
 I
n
te

rf
a
ce

,
co

m
p
o
n
e
n
t

:
C

o
m

p
o
n
e
n
t)

u
n
re

g
is

te
rI

m
p
le

m
e
n
ta

ti
o
n
(i

n
te

rf
a
ce

 :
 I
n
te

rf
a
ce

,
co

m
p
o
n
e
n
t

:
C

o
m

p
o
n
e
n
t)

cr
e
a
te

O
b
je

ct
(n

a
m

e
 :

 S
tr

in
g
,
d
a
ta

 :
 S

tr
in

g
)

re
g
is

te
rO

b
je

ct
(o

b
je

ct
 :

 O
b
je

ct
)

u
n
re

g
is

te
rO

b
je

ct
(o

b
je

ct
 :

 O
b
je

ct
)

C
o
n
c
re
te
S
lo
t2

cr
e
a
te

()
d
e
st

ro
y
()

cl
o
n
e
()

ca
ll(

)

C
la
s
s
1

C
la
s
s
2

«
in
te
rf
a
c
e
»

E
v
e
n
tH

a
n
d
le
r

w
a
it

E
v
e
n
t(

)
:

In
te

g
e
r

p
ro

ce
ss

E
v
e
n
t(

)
:

In
te

g
e
r

-s
lo

ts
 [

0
..
*]

-c
o
m

p
o
n
e
n
tM

a
n
a
g
e
r

-a
g
g
re

g
a
te

d
C

la
ss

1

-a
rg

u
m

e
n
ts

 [
0

..
*]

-i
m

p
le

m
e
n
ti

n
g
C

o
m

p
o
n
e
n
ts

 [
0

..
*]

-c
o
n
cr

e
te

S
lo

t2

-i
n
te

rf
a
ce

s

-s
lo

tE
x
e
cu

to
rs

 [
0

..
*]

-i
n
te

rf
a
ce

s
-o

b
je

ct
s

-a
g
g
re

g
a
te

d
C

la
ss

2

-r
e
tu

rn
s

[0
..
*]

-e
x
e
cu

to
r

-p
ro

to
ty

p
e
s

[0
..
*]

+
ty

p
e

-c
o
n
cr

e
te

S
lo

t1

-e
v
e
n
tH

a
n
d
le

rs
 [

0
..
*]

F
ig

ur
e

5.
2:

T
he

cl
as

s
di

ag
ra

m
of

th
e

G
A

L
Fr

am
ew

or
k

an
al

yt
ic

al
m

od
el

.
N

ot
e

th
at

th
e
cr

ea
te

()
an

d
d
es

tr
oy

()
m

et
ho

ds
de

no
te

s
a

re
gu

la
r

co
ns

tr
uc

to
r

an
d

a
de

st
ru

ct
or

an
d

th
e

ca
ll
()

is
a

ca
ll

op
er

at
or

.

20

6 Applied Design Patterns

Following sections of this chapter introspect deeper consequences in the designed and
implemented parts of the GAL Framework core system and emphasizes appliance of object-
oriented design patterns as were described in the well-known book Design Patterns: Ele-
ments of Reusable Object-Oriented Software [22]. They refer to a terminology used in the
book and explain differences between the patterns presented in the book and their usage
in the library. Mentioned class names are taken from the library prototype implementation
and you can see their detailed documentation at [23].

6.1 Singleton

The singleton design pattern ensures that classes following it have only a single instance
and offers public access to it.

Clear candidate for this pattern was a component manager ComponentManager class but
after further consideration components (Component), event handlers (EventHandler) and
slot executors (SlotExecutor) were assigned to the pattern too. All these classes are unique
in a process context and except of the SlotExecutor, which is an read-only element, need
a private structure locking when race conditions will occur. The singletons are realized by
a derivation from a Singleton C++ template where it is possible. This allows receiving
an instance of a final type directly instead of using casting.

6.2 Prototype

The prototype pattern allows for creation of a cloned instance of an object by a virtual
method defined in the base class and implemented in subclasses. It is not as restricted to
a concrete type as a regular copy constructor.

The GAL Framework uses the prototypes together with prototype managers implemented
in a PrototypeManager C++ template. They allows a registration, an unregistration and
an access to registered prototypes using methods parametrized with a string prototype
identifier. The returned reference to the prototype instance may be used to create the
clone but it must be dynamically casted to its end type before its use.

The pattern is concretely applied in an Interface and an Object class with prototype
managers in a InterfaceManager and a ObjectManager classes. A copy method of the
Interface class performs a deep copy of an interface with all its slots so a Slot class is a

21

prototype as well. Behavior of the copy method of the Object class is up to derived class
creator but it should be deep in most cases.

6.3 Abstract Factory

Offers a way how to create a concrete object instance without knowledge of its final type.
Only common base class type awareness is necessary for a complete class hierarchy. The
set of generated object instances can be dynamically reconfigured. The pattern is closely
related and cooperative with the prototype and a factory method design pattern.

As noted before, the abstract factories can be combined with the prototype design pattern
to create new instances of registered objects. We can say that from this perspective the
ComponentManager class serves as such factory to create the Interface and the Object
classed objects. The desired interface object instance is requested with an identifier of the
interface and cloned from the registered interface prototype.

6.4 Strategy

The strategy is a simple design pattern which detaches diverse algorithms operating on
single data from their storage. It supports a dynamically configurable exchange of behavior.
The pattern consists of a strategy class which specifies behavior and a context class that
describes data.

This is very suitable for various implementations of the slot execution mechanism. The
strategy object of the pattern, which defines a common interface of the algorithm, is rep-
resented by a SlotExecutor class in the framework. A Slot class represents the context
passed to a strategy method as long as a client that invokes the strategy algorithm method
when the slot is executed. Theoretically, this pattern can be changed to a command design
pattern to open a further possibilities if a future development imply.

6.5 Iterator

The iterator is certainly the most frequently used design pattern in many applications.
It provides sequential access to elements of a compound container object while it keeps its
internal structures hidden. It may carry an additional information about the traversal than
just an actual item or a position.

Since the library uses associative arrays implemented with STL maps at many places, the
iterator pattern is utilized even here. To simplify the STL iterator usage, a MapIterator
template was created. It basically enwraps the standard iterator received from the container
map and extends it with a direct access to a value part of an item and with a boolean
cast operator which allows test it in conditions directly. Few cases of the MapIterator
template utilization are a SlotIterator in the interface objects, a InterfaceIterator in
the component manager and a PrototypeMapIterator in the prototype managers.

22

7 Slot Implementations

The first primary aim of the GAL Framework is to bring a distributed or multiprocessor
computation of GIS related tasks into the GRASS. An efficient singleprocessor slot execution
is crucial too. To satisfy this contradiction, two mechanisms for the interface function
execution was chosen and the others may be introduced on demand. The first is a slot
abstracting usual callbacks and the second is a slot calling remote procedures with a D-Bus
library [24]. Other alternatives may be the ORBit2 [25], the High Performance Virtual
Machines (HPVM) [26], the XML-RPC [27] or the Open MPI [28]. The spirit of the slot
design should help incorporate these libraries into the framework.

The slot objects defined in a Slot class and belonging to some interface object of a class
Interface declare methods for an interface function signature management and a method
for a slot type setup. Change in the slot type replaces an assigned slot executor of a class
SlotExecutor which is responsible for an actual slot implementation invocation. An object
diagram of this is on figure the 7.1. It shows that the currently configured slot executor is
a D-Bus slot executor (the DBusSlotExecutor class).

firstSlot

returns [0..*]

arguments [0..*]

executor dbusExecutor

firstArgument secondArgument returnValue

interface

slots [0..*]

callbackExecutor

Figure 7.1: The object diagram of a slot execution mechanism selection.

From a module developer position, the communication mechanism for the slot execution is
selected by a configuration of the slot type in the interface. This configuration is performed
before the interface object is used in modules and may be changed during usage if it is
needed so. A called implementation is determined by an appropriate component loaded

23

locally in the case of a local execution mechanism or by a master process in the case of a
D-Bus mechanism. The master process is the one that have registered its name on a D-Bus
session bus as the first.

Because a new communication types of the slots are added to the system by a derivation
of the SlotExecutor base class, a derivation of the Interface and the Slot base class
may be utilized to extend more general behavior. An example of this may be composed
interfaces and composed slots implemented in a ComposedInterface and a ComposedSlot
class. The composed slots offers one additional string argument which identifies an affected
subelement of the target component and the composed interfaces has a method for selection
of this element and one implicit interface function which queries a list of available elements.
This interface can be used when the component hides many objects with the same behavior
and a selection of the concrete object is not too frequent.

For the demonstration of present abilities of the library the described configuration op-
tions are sufficient but for the future there could be for example configuration methods to
execute an implementation of a component specified by its name, a global last registered
component, all components with arguments and return values coupled to arrays, etc. A
load balancing is the next possible exploitation of these possibilities.

7.1 Callback Slots

The callback implementation of the slot executor in a CallbackSlotExecutor class sim-
ply returns execution to the slot object which holds a function pointer to a registered
component’s static method but due to a dynamic nature of a slot signature specification, a
foreign function interface library libffi [29] is used a for stack frame construction in runtime.
The static methods must be used because taking a function pointer to a regular method and
coverting it to a void pointer is illegal in C++. Arguments are passed to the static method
preppended with a pointer to the component instance to simulate the object method call.
Multiple return values are bound to a single structure returned by the method and then
unpacked to slot’s return values.

7.2 D–Bus Slots

The D-Bus library was used as a primary library for a remote procedure execution because
it is a desktop oriented, living and spread project which will soon become a standard on its
field as soon as the KDE 4 and the GNOME will utilize it more. Whole mechanism of the
D-Bus slot execution is slightly complex but a schema on the figure 7.2 tries to illustrate
it. It shows an example with one object argument and one object return value but basic
types like integers and strings are supported too.

24

M
od
ul
e

an
In
te
rf
ac
e1

aS
lo
t3 aS
lo
t2

aS
lo
t1

s
e
t
A
r
g
u
m
e
n
t
(
0
,

a
r
g
u
m
e
n
t
)
;

s
e
t
R
e
t
u
r
n
V
a
l
u
e
(
0
,

r
e
s
u
l
t
)
;

e
x
e
c
u
t
o
r
-
>
e
x
e
c
u
t
e
(
t
h
i
s
)
;

op
er
at
or
()

C
lie
nt

S
e
rv
e
r

C
om

po
ne
nt
M
an
ag
er

In
te
rf
ac
e1

In
te
rf
ac
e2

In
te
rf
ac
e3

D
-B
us

.
.
.

I
n
t
e
r
f
a
c
e

*

a
n
I
n
t
e
r
f
a
c
e
1

=

c
m
.
g
e
t
I
n
t
e
r
f
a
c
e
(

"
I
n
t
e
r
f
a
c
e
1
"
)
;

S
l
o
t

*

a
S
l
o
t
1

=

a
n
I
n
t
e
r
f
a
c
e
1
.
g
e
t
S
l
o
t
(

"
S
l
o
t
1
"
)
;

.
.
.

A
r
g
u
m
e
n
t

*

a
r
g
u
m
e
n
t

=

n
e
w

A
r
g
u
m
e
n
t
(
)
;

R
e
t
u
r
n

*

r
e
s
u
l
t

=

a
S
l
o
t
1
(
a
r
g
u
m
e
n
t
)
;

.
.
.

D
B
us
E
ve
nt
H
an
dl
er

a
r
g
u
m
e
n
t
.
s
e
r
i
a
l
i
z
e
(
)
;

.
.
.

d
b
u
s
_
c
o
n
n
e
c
t
i
o
n
_
s
e
n
d
_
w
i
t
h
_
r
e
p
l
y
(
.
.
.
)
;

.
.
.

r
e
s
u
l
t

=

c
m
.
c
r
e
a
t
e
O
b
j
e
c
t
(
"
R
e
t
u
r
n
"
,

d
a
t
a
)
;

r
e
s
u
l
t
.
d
e
s
e
r
i
a
l
i
z
e
(
)
;

ca
llM

et
ho
d(
)

D
B
us
E
ve
nt
H
an
dl
er

In
te
rf
ac
e1

S
lo
t3 S
lo
t2

S
lo
t1

ca
llI
m
pl
em

en
ta
tio
n(
)

.
.
.

A
r
g
u
m
e
n
t

*

a
r
g
u
m
e
n
t

=

c
m
.
c
r
e
a
t
e
O
b
j
e
c
t
(
"
A
r
g
u
m
e
n
t
"
,

d
a
t
a
)
;

a
r
g
u
m
e
n
t
.
d
e
s
e
r
i
a
l
i
z
e
(
)
;

s
l
o
t
1
.
c
a
l
l
I
m
p
l
e
m
e
n
t
a
t
i
o
n
(
.
.
.
)
;

r
e
s
u
l
t
.
s
e
r
i
a
l
i
z
e
(
)
;

.
.
.

d
b
u
s
_
c
o
n
n
e
c
t
i
o
n
_
s
e
n
d
(
.
.
.
)
;

.
.
.

pr
oc
es
sE

ve
nt
()

.
.
.

r
e
s
u
l
t

=

n
e
w

R
e
t
u
r
n
(
)
;

.
.
.

sl
ot
1I
m
pl
em

en
ta
tio
n(
)

C
om

po
ne
nt

D
B
us
S
lo
tE
xe
cu
to
r

.
.
.

e
v
e
n
t
H
a
n
d
l
e
r
-
>
c
a
l
l
M
e
t
h
o
d
(
.
.
.
)
;

.
.
.

ex
ec
ut
e(
)

C
om

po
ne
nt
M
an
ag
er

In
te
rf
ac
e1

In
te
rf
ac
e2

In
te
rf
ac
e3

.
.
.

f
f
i
_
c
a
l
l
(
.
.
.
)
;

.
.
.

F
ig

ur
e

7.
2:

T
he

in
te

rf
ac

e
fu

nc
ti

on
ex

ec
ut

io
n

sc
he

m
a

of
a

sl
ot

co
nfi

gu
re

d
to

a
D

-B
us

co
m

m
un

ic
at

io
n.

25

There are three main blocks: a Client and a Server written using the GAL Framework
library and a D-Bus library system block. The Client consists of a code of an implemented
GRASS module Module and a framework library code. If the module wants to use an
interface, it receives a cloned instance anInterface1 of an interface prototype Interface1
from a ComponentManager. To execute an interface function, the module asks a received
interface object for a reference to its slot aSlot1 by an interface function name. Then it
creates an instance of a function argument argument and calls the slot as a functor. All of
this denotes an unnamed block in the left part of the Module block.

The aSlot1 in a call operator operator() deposits the argument object and a variable
for the return value object within itself using a setArgument() and a setReturnValue()
method and tells the configured slot executor to execute it. In this case of the D-Bus com-
munication example, a DBusSlotExecutor in an execute() method calls an callMethod()
method of a DBusEventHandler object which serializes the input argument, sends a D-Bus
method call message and deserializes a received return value to the instance result created
in the component manager from an object prototype. A control flow than returns to the
main module code that executed the slot.

On the server side, the DBusEventHandler waits for the D-Bus method call messages.
When such arrives, a processEvent() method of this object gets an instance of the argu-
ment object class from the component manager and deserializes it with message data. Next
it finds a proper interface and a slot prototype and executes an interface function imple-
mentation using a callImplementation() method of the slot with the argument instance.
This calls a component’s static method in the same manner as in the callback communi-
cation. After the method returns an allocated return value object, the DBusEventHandler
serializes it for a D-Bus method call message reply.

26

8 GAL Framework Subsystems

A directory structure of a source code tree is publicly available at svn://gal-framework.
no-ip.org:3691 or browsable at http://gal-framework.no-ip.org/browser. It is cur-
rently divided into eight subsystems: core, exceptions, dbus, general, gis, display,
raster and vector. Each of them contains definitions of subsidiary classes as long as com-
ponent and interface object definitions. Here is listed only a content of the most important
of them. For a detailed description see the GAL Framework library reference [23] or the
commented source code.

8.1 Core Subsystem

The core subsystem comprise the same classes as mentioned in the section 5.2 about
the analytical model plus a composed slot base class ComposedSlot, a composed inter-
face base class ComposedInterface, derived basic slots and composed slots with pre-
defined interface function signatures and a callback implementation of the slot executor
in a CallbackSlotExecutor class. More about the composed slots, composed interfaces
and the callback slot executor can be read in the chapter 7.

8.2 Exception Subsystem

Exceptions are from the beginning intended to be a main mechanism for reporting of
errors occurred during the interface function execution or an invalid state or operation sig-
nalization when manipulating with objects. The exceptions forms a single inheritance tree
starting with an Exception superclass. Each exception bares a string message explaining
its meaning. They are currently defined in two files the first contains general purpose ex-
ceptions and the second declares exceptions related to the D-Bus subsystem. Few examples
are: EIOError, ENotFound, EArgumentError and EConnectionError.

8.3 D-Bus Subsystem

This subsystem implements remote interface function execution with the D-Bus RPC
library [24]. Details on this matter and a deeper explanation of this implementation is
present in the section 7.2.

8.3.1 Classes

DBusEventHandler is connected to a D-Bus system bus and ensures that a local interface
function implementation is found and executed when a D-Bus method call event from
another process arrives.

27

svn://gal-framework.no-ip.org:3691
svn://gal-framework.no-ip.org:3691
http://gal-framework.no-ip.org/browser

DBusSlotExecutor performs the opposite side of the communication — it produces the
D-Bus method call event of the slot’s interface function when the slot is executed.

8.4 General Subsystem

It comprehends some general purpose classes and interfaces that could be potentially
utilized even in non-GIS-related applications together with classes from the core, the ex-
ception, the D-Bus and partially the display subsystem.

8.4.1 Classes

ModuleOptions is a container class with boolean module arguments. Each option has a
name and a help description.

ModuleArguments class is a list of module arguments with an assigned value obtainend
from an IArgmentsProvider interface. Items of a ModuleArgument class are struc-
tures with a name, the value and a description.

Variable is a similar structure to the module argument used in IEnvironmentProvider
interface functions.

8.4.2 Interfaces

IArgmentsProvider interface can be used to get options and arguments which controls
module actions. It also builds a help string from given module arguments and options
descriptions.

getOptions method returns the module options formatted in the ModuleOptions
object.

setOptions sets the list of acceptable options of the module. If this function is not
used before the getOptions call, the module gets all arguments provided by a
implementing component.

getArguments gives the ModuleArguments object that contains a list of the re-
quested module arguments.

setAruments is an analogous method to the setOptions but for the module argu-
ments.

setDefaultArgument tells the implementing component what argument is a default
one.

getHelp creates a formatted help string for the module which can be printed to
the standard output or displayed in the user interface. It accepts a module
description as a parameter and employs the previously setted descriptions.

IEnvironmentProvider helps abstract foreign sources of environment variables. For ex-
ample, a GRASS GIS module g.env reads the varables from a global configuration
file or a local configuration file of a mapset. System-wide varables (an active monitor
for example) could be store using this interface too. This interface has a getVariable
and a setVariable function.

28

8.4.3 Components

DefaultArgumentsProvider returns from the IArgmentsProvider interface functions
formatted command-line arguments passed to the GAL Framework initialization method.

DefaultEnvironmentProvider implements the IEnvironmentProvider interface for a
GAL internal variables storage.

GRASSRCEnvironmentProvider also implements the IEnvironmentProvider interface but
for GRASS’s variables saved in the global configuration file.

GRASSMapsetEnvironementProvider is the same as the previous components but for the
variables of the mapset.

8.4.4 Modules

g.gald is a daemon module that loads all internal components of the GAL Framework
with their implementations and it waits for their interface functions execution over
the D-Bus. It is needed for example in cooperation with a d.mon and a d.rast
modules because it keeps a component with monitor windows available even after the
d.mon module finishes.

g.quit is an auxiliary module that terminates running master module which is in the most
cases the g.gald.

g.gisenv supplies some possibilities of the equally called GRASS module and operates
with the IEnvironmentProvider interface and its implementing components.

8.5 Display Subsystem

Classes, interfaces and components of the display subsystem provide a support for graph-
ical user interface or data visualization related modules. They are created with the help of
the Qt widget toolkit [30] version 4.x but there is a possibility to use any other GUI library
if it allows an individual event processing.

8.5.1 Classes

QtEventHanler implements the EventHandler base class and manages the Qt event pro-
cessing loop and a QApplication object. More on event handlers is in the section 5.2.

Area is a general rectangle region with x and y coordinates, a width and a height.

RasterImage is a class for a multichannel two dimensional raster image data storage and
manipulation. It’s used in a IRasterDisplayer interface. Pixels can be accessed as
raw data or as Color typed elements at chosen x and y cooordinates. The content or
the format can be described with a metadata attribute.

QtMonitorGLWidget inherits from a QGLWidget class and appends an internal image buffer
for widget canvas repaint everytime it’s needed. As the name may indicate, it uses
OpenGL for rendering.

29

QtMonitorWindow is derived from a QMainWindow class and contains the QtMonitorGLWidget
widget as a drawing area.

drawImage is the only method added to the base class. Method converts a RasterImage
to a QImage for drawing on the canvas.

8.5.2 Interfaces

IMonitorController serves for modules that controls size, position and appearance of
graphical windows. For example, modules like a d.mon module from the GRASS GIS
which controls monitors. It is the composed interface where the element identifies a
target monitor window. A list of provided interface functions would be too long and
it is rather unimportant to be listed here.

IRasterDisplayer is the composed interface that allows modules display raster images on
the monitor. Visualized data is just multichannel pixel pictures not raster GIS data
as name could insult. The element is a target monitor window name. An example
module that could use this interface is a d.rast.

getRasterImageArea returns an Area object with dimensions of canvas where the
raster images can be drawn. This means that any rendering request beyond the
borders will not be visible.

displayRasterImage displays a raster image of the RasterImage class at given
coordinates and with specified dimensions.

8.5.3 Components

DefaultMonitorController component implements the IMonitorController and the
IRasterDisplayer interfaces for eight monitors named x0 to x7. This respects prac-
tices from the GRASS GIS. As long as this component is resident in the memory and
initialized, it can accept interface functions implementation calls.

RoamerComponent is a base and only component that implements the IMonitorController
and the IRasterDisplayer interfaces for a d.roamer visualization tool. An element
name of the module window is a roamer for the identification in interface functions.

8.5.4 Modules

d.mon is a simple module that shows, hides or selects as active monitors provided by the
DefaultMonitorController component instantiated in the g.gald daemon. Raster
layers can be continuously displayed with the d.rast program. Such a monitor win-
dow can be seen on the figure 8.1.

d.move allows shift a monitor window from the command-line or a script. It uses one of
the IMonitorController interface functions to accomplish that.

d.resize is similar module to d.move but it resizes the monitor window instead.

d.roamer is a more complex 3D visualization tool for the GRASS GIS written using the
GAL Framework. The user can freely roam over the displayed terrain with this
tool and one of selectable level of detail algorithms for the rendering is the ROAM

30

Figure 8.1: The monitor window opened with the d.mon module with an elevation.10m
raster layer from the spearfish60 test mapset displayed by the d.rast module.

algorithm [31] from the SoTerrain library [32]. That’s where the module name comes
from.

The module displays a raster layer and it is controlled in the same way as the
DefaultMonitorController managed windows with the d.mon and the d.rast mod-
ules of the framework. The layer is interpreted as a texture but a terrain heightmap
can be selected with the d.rast module using the different argument during the
visualization too as can be seen on the figure 8.2.

The figure 8.3 demonstrates a communication begind the raster layer display. The
d.roamer module with its RoamerComponent is running as a daemon and accepts
D-Bus method call events. The d.rast module gets raster layer data from the
GRASSRasterLayerProvider component in the framework and sends them to the
listening RoamerComponent component which creates and shows a scene graph with
the terrain.

8.6 GIS Subsystem

Here in this subsystem, support instruments for performing GIS-specific computation
such as map projections or coordinate systems may be present. For the moment, there are
available only a rectangular region abstraction class representing an area of interest in the
map and an interface and components working with it.

31

Figure 8.2: The d.roamer module user interface with an aspect raster layer from the
spearfish60 test mapset displayed as a texture and an elevation.10m layer displayed as
a heightmap.

8.6.1 Classes

LayerRegion bounds cutout of a raster or a vector map layer with an east, a west, a north
and a south edge. It also describes number of rows and columns and a north-south
and a east-west resolution for convenience although one information can be computed
from another.

8.6.2 Interfaces

IRegionProvider presents an access point to components providing different areas of
interest on the map layers.

getRegion returns the requested LayerRegion region object.

8.6.3 Components

GRASSDefaultRegionProvider manages the default region of the GRASS GIS mapset
and offers it to any component or module that uses the IRegionProvider interface.

GRASSUserRegionProvider is analogous component but for the active region of the user.

8.6.4 Modules

g.region module allows read and modify the user region. It reimplements the same-called
module from the GRASS GIS package using the IRegionProvider interface.

32

GRASSRasterLayerProvider

IRasterLayerProvider

IMonitorContoller IRasterDisplayer

GUI

RoamerComponent

d.rast

d.roamer
GRASS data

GAL Framework

Figure 8.3: The internal architecture of the d.roamer module.

8.7 Raster Subsystem

Interaces and components that access or manipulate GIS raster data as well as modules
that implement such interfaces belong to this subsystem. A current implementation reads
raster data from the native GRASS format using its raster library in tiles.

8.7.1 Classes

ColorTable is a linear table which converts raster data values to corresponding colors. It’s
bounded by a minimal and a maximal value. It’s used for a raster layer visualization
where each value denotes an independent category.

getColor method returns a color of a Color class for a given integer value of a raster
cell.

ColorRules is a set of intervals with assigned boundary colors. The resulting color is
computed by their interpolation during the look up. This is more suitable for the
visualization of rasters that models continuous phenomenons.

addRule appends a new color rule to the set with the specified interval and the
boundary colors.

getRule provides access to the stored color rules of a type ColorRule which offers a
color look up method getColor.

RasterTile is a tile of raster data returned by a IRasterLayerProvider interface func-
tion. It support various cell data types. Currently it’s designed for two dimensional

33

rasters only but this should be changed for future practical applications of the library.
Some of its attributes are the color table, the color rules and metadata string.

getColorTable returns reference to the color table of the tile.
getColorRules gives reference to the object with color rules.
getMedatata returns the string with metadata attached to the tile. It is not decided

what form this metadata should take because they are not needed in example
modules.

getClolor performs a direct color look up for a raster tile cell at given coordinates.

8.7.2 Interfaces

IRasterLayerProvider is a composed interface that could be used in every raster pro-
cessing module because it could provide access to any raster data in a GRASS mapset
and location or any other external format. Source of data depends only on a selected
implementing component. Data are requested in tiles of specified position and dimen-
sions by the layer region.

getLayer returns a part of the raster layer represented by a RasterTile object
instance.

IRasterLayerDisplayer interface may be preferred in the cases where a raster data trans-
fer between components would be too expensive for the interactive visualization. An
interface function just passes request for layer display and an implementing compo-
nent reads the data by its own. Even this interface is the composed.

displayLayer tells what raster layer should be displayed.

8.7.3 Components

GRASSRasterLayerProvider implements the IRasterLayerProvider interface and pro-
vides raster layers from the GRASS locations with the libgrass gis library.

8.7.4 Modules

g.list module is able to print to the standard output a list of all available raster layers
provided by the GRASSRasterLayerProvider component.

d.rast is more related to the raster subsystem even if it serves for the raster layer display
on the active monitor. It reads raster data using the IRasterLayerProvider inter-
face and sends them to a visualization component in the g.gald process using the
IRasterDisplayer interface.

8.8 Vector Subsystem

The vector subsystem is not present in the library because an internal representation
of vector layers should have been elaborated in the Bc. Jan Kittler’s master’s project and
then interfaced to the framework’s practices. Unfortunately, he postponed his work to the
next academic year. Author can only hope that further cooperation with him will bring
outstanding implementation of vectors to the GAL Framework.

34

9 Dynamic Language Bindings

The second of the primary targets of the GAL Framework is to support an interface
function execution from various dynamic languages. This chapter discuss achievements
and obstructions of this objective.

9.1 SWIG Utilization

The Simplified Wrapper and Interface Generator (SWIG) [33] tool is suitable for an
automatic generation of C/C++ libraries bindings to many dynamic languages. This fully
applies for a C code which don’t use variable length arguments functions and callbacks.
Support of these programming techniques is not at all or at least hardly possible from
the principle. Some C++ constructs like nested classes, a new and a delete operator
overloading or an uncommon use of templates are not wrappable as well. Of course, a
set of transformed source language properties depends on a target language capabilities.
For this reason, a wrapper of the slot execution methods has to be thoroughly customized.
Fortunately, this could be done with advanced SWIG features or certain hacks.

9.2 General Customizations

As mentioned before, the nested C++ classes can’t be wrapped by the SWIG. To over-
come this limitation, nested slot declarations inside the interface object classes had to be re-
named to a global GAL namespace. For example, they are accessible under a GAL.SomeSlot
class in Python instead of a GAL::ISomeInterface::SomeSlot class in C++.

Even if wrapped object proxies can be thrown as exceptions in the target language, for
a more clearly readable exception backtrace it’s better to call a predefined SWIG excep-
tion evocation function in a throws typemap which transforms the C++ exception to an
appropriate target language exception of a specified type.

A minor limitation represents need of a template instantiation before their interfacing.
This means that there can’t be used the templates typed with types declared in the host
language.

9.3 Python Bindings

At the beginning, only the Python bindings were developed to prove a GAL Framework’s
core system possibilities in the dynamic language support. This language was chosen be-
cause of its simplicity, clearness, frequent usage and because it’s the best implemented

35

target language in the SWIG. This implies a good knowledge base available on the Inter-
net. The resulting wrapper is a dynamic library written using a Python/C API [34] and a
single Python script with all proxy classes.

The first needed modification to the wrapper interface for this language was a rename of
all used operator[] operators to getitem () methods for a read access and setitem ()
methods for a write access. Then, a in typemap converting a argc and a argv argument of
the GAL::initialize() method to a Python list of strings was created for a convenience
because Python stores the command-line arguments in a sys.argv list.

The slots obtained from the interface objects must be casted to their final type to allow
the interface function call with a defined signature in C++ as you can notice in a library
tutorial in the appendix A. The SWIG wraps an Interface::getSlot() method to return
a proxy object containing a pointer to a Slot but Python expects that an object reference
is always of its final type and thus it doesn’t offer any casting mechanism for this. To fix
this contradiction, C++ conversion functions would be needed to be written and wrapped
if there wasn’t other solution. The slots were designed for a dynamic signature specification
and execution. The overloaded call operators of derived slots are provided only for conve-
nience. So, only thing needed was extend the Python Slot class with a call () method
with variable length arguments which converts Python basic types to C++ basic types
and extracts an internal pointer from Python proxies when passing the slot arguments and
which converts the basic C++ types to the basic Python types and creates the appropriate
Python proxy object when dealing with the return values.

9.4 Java Bindings

The second selected dynamic language is Java for its vast usage although it is explicitly
compiled, with less dynamism and more language restrictions than Python. The SWIG
generates a dynamic library with bindings for this language using a Java Native Interface
(JNI) [35] and it creates Java proxy classes for all defined types in separate files.

Java doesn’t have operator overloading, that’s why an operator(), an operator[],
an operator++, an operator--, an operator+, an operator-, an operator* and an
operator/ operator had to be renamed to an call(), an get(), an inc(), an dec(),
an add(), an sub(), an mul() and an div() method. Even here, the in typemap was
written to allow pass a string array with arguments to the library initialization method.
Another trouble with Java was the fact that a name of the destructor collides with the name
of a framework deinitialization method therefore it was renamed to a GAL:: finalize().

For experimental and presentational reasons, a conversion using a out typemap of the
SWIG tool was picked as a solution to the slot type problem for this language. The
typemap determines a slot type with a Slot::getClassName() method, creates a proxy
for this type and the proxy can be then safely casted using native casting operator in a
Java code.

36

9.5 Other Bindings

Despite of the fact that only Python and Java was chosen from a long list of languages
that the SWIG supports, C#, Perl and Ruby was other candidates and presents a potential
field of evolvement of the GAL Framework. Tcl could be considered also because it’s widely
used in a GRASS GIS user interface.

37

10 Experimental Results

As you may point out, the performace will never be the strongest side of the slot execution
because of its dynamic nature. Expensive operations should be methods of objects returned
from the slots rather than the interface functions itself. The selected execution mechanism
affects an interface function call overhead significantly. To make a better image about its
impact on the performace, a set of tests was created and performed. Results are presented
and discussed in this chapter.

The testing machine was a Intel Core 2 Duo laptop at 1.8 GHz frequency with a 2 GB
RAM memory. There was defined an experimental interface with slots accepting differently
typed arguments and giving the same return values. That means for example that there
was a slot with a single integer argument and a single integer return value. Other tested
data types was double, string, object and a slot with no arguments or return values. A
string argument value was the “test“ word. The object argument was a simple Object
class derived instance with one integer attribute. Testing applications and scripts are in a
GAL/test/ directory of the root directory on the CD.

The measured results are listed in the table 10.1. Columns denote type of the slot
argument and the return value and rows represent used execution mechanism and language.
Values are time that costed one execution of an interface function implementation with an
empty body.

Table 10.1: The performace of the slot execution.
Type Void Integer Double String Object

C++ local 200 ns 287 ns 285 ns 296 ns 359 ns
C++ D-Bus 1.08 ms 1.10 ms 1.09 ms 1.09 ms 1.11 ms
Python local 2.07 µs 2.48 µs 2.53 µs 2.54 µs 24.4 µs

Python D-Bus 1.08 ms 1.10 ms 1.10 ms 1.10 ms 1.12 ms

The first and the fastest row is a callback implementation of the slot mechanism called
from a C++ testing module locally. The first cell should describe a raw overhead of execu-
tion, the others are the raw overhead plus an overhead per argument and return value of
the appropriate type. The integer, the double and the string slots are almost equal. Only
an object argument cost is a little bit higher because of an instance creation. Process ran
on a single core.

The next is a C++ module calling the implementation in a server process using the D-
Bus. It’s four orders slower because of the low bandwidth of the D-Bus. Although there

38

was enabled both cores during the testing, overall system usage was very low (about the
10% per core). This is caused by limitations of a D-Bus synchronization and implies that
there is a need to introduce another RPC based slot implementation which don’t suffer with
this problem. Using less messages in a single moment or bigger ones is more than advised
when using the D-Bus slots.

The Python bindings with a direct implementation have proven only one order slower
when using the basic types but the object arguments are more expensive than that. This
is probably caused by a proxy object creation and destruction.

The cost of Python interpretation has no visible influence comparing to the time losses
in the D-Bus synchronization which shows the last line of the table although both client
and server was written in Python.

39

11 Conclusion

Although many work on the design and the prototype implementation was done, there is
still much things that could or should be appended to the framework to be generally usable.
The author believes that the point of the project was to present an idea and prove it on a
pilot implementation not to create a final full–featured system. Future of the project now
depends on the intersest of the community.

Lastly, here is just mention about the support tools used during the project develop-
ment. The Trac [36] was picked up as a project management tool, the Subversion [37] as
a source code management system, the SCons [38] as a build system, the Doxygen [39] as
the library documentation generator and the many others that was noted previously in the
text. Thanks belongs to their developers for the help they have granted.

40

12 References

[1] The Wikimedia Foundation. Geographic Information System. http://en.wikipedia.
org/wiki/Geographic_information_system, March 2008.

[2] Radek Bartoň. GAL Framework Homepage. http://gal-framework.no-ip.org/,
July 2007.

[3] William D. Goran, William E. Dvorak, Lloyd Van Warren, and Ronald D. Webster.
Fort Hood Geographic Information System: Pilot System Development and User In-
structions. Technical Report N-154, USA Construction Engineering Research Labora-
tory, Champaign, IL., May 1983.

[4] James Westervelt. GRASS Roots. In Proceedings of the FOSS/GRASS Users Confer-
ence. FOSS/GRASS Users Conference, September 2004.

[5] GRASS Development Team. GRASS History. http://grass.itc.it/devel/
grasshist.html, September 2007.

[6] Radim Blažek, Markus Neteler, and Roberto Micarelli. The New GRASS 5.1 Vector
Architecture. In Proceedings of the Open source GIS – GRASS users conference 2002.
University of Trento, September 2002.

[7] GRASS Development Team. GRASS GIS 6.1.0 Released. http://grass.itc.it/
announces/announce_grass610.html, August 2006.

[8] GRASS Development Team and Markus Neteler. GRASS 5.0 Programmer’s Manual.
http://grass.itc.it/grass50/progmangrass50.pdf, January 2004.

[9] GRASS Development Team. Raster Data Processing in GRASS GIS. http://grass.
itc.it/grass63/manuals/html63_user/rasterintro.html, April 2008.

[10] GRASS Development Team. GRASS 6 Programmer’s Manual. http://download.
osgeo.org/grass/grass6_progman/, April 2008.

[11] The Wikimedia Foundation. Shapefile. http://en.wikipedia.org/wiki/Shapefile,
April 2008.

[12] PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.
org/.

[13] PostGIS Development Team. PostGIS. http://www.postgis.org/.

[14] GDAL Development Team. OGR. http://www.gdal.org/ogr/.

41

http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system
http://gal-framework.no-ip.org/
http://grass.itc.it/devel/grasshist.html
http://grass.itc.it/devel/grasshist.html
http://grass.itc.it/announces/announce_grass610.html
http://grass.itc.it/announces/announce_grass610.html
http://grass.itc.it/grass50/progmangrass50.pdf
http://grass.itc.it/grass63/manuals/html63_user/rasterintro.html
http://grass.itc.it/grass63/manuals/html63_user/rasterintro.html
http://download.osgeo.org/grass/grass6_progman/
http://download.osgeo.org/grass/grass6_progman/
http://en.wikipedia.org/wiki/Shapefile
http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgis.org/
http://www.gdal.org/ogr/

[15] GRASS Development Team. GRASS DBMI DataBase Management Interface. http:
//download.osgeo.org/grass/grass6_progman/dbmilib.html, March 2008.

[16] Radek Bartoň and Martin Hrubý. GAL Framework. In Proceedings of the workshop
Geoinformatics FCE CTU 2007. Czech Technical University in Prague, September
2007.

[17] Christopher Lenz, Dave Abrahams, and Christian Boos. Trac Component Architecture.
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture, July 2007.

[18] Jim Arlow and Ila Neustadt. UML and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[19] Radek Bartoň. Component Architecture. http://gal-framework.no-ip.org/wiki/
ComponentArchitecture, September 2007.

[20] Radek Bartoň. Use Cases. http://gal-framework.no-ip.org/wiki/UseCases, July
2007.

[21] Radek Bartoň. Analytical Classes. http://gal-framework.no-ip.org/wiki/
AnalyticalClasses, July 2007.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Read-
ing, MA, USA, 1995.

[23] Radek Bartoň. Analytical Classes. http://gal-framework.no-ip.org/doxygen/,
May 2008.

[24] freedesktop.org. D-Bus. http://www.freedesktop.org/wiki/Software/dbus.

[25] GNOME Foundation. ORBit2. http://www.gnome.org/projects/ORBit2/.

[26] Andrew A. Chien, Daniel Reed, and David Padua. High Performance Virtual Machines.
http://www-csag.ucsd.edu/projects/hpvm.html.

[27] XML-RPC Development Team. XML-RPC. http://www.xmlrpc.com/.

[28] Open MPI Development Team. Open MPI. http://www.open-mpi.org/.

[29] Anthony Green and Gianni Mariani. libffi. http://sourceware.org/libffi/.

[30] Trolltech ASA. Qt. http://trolltech.com/products/qt.

[31] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein. ROAMing terrain: Real-time optimally
adapting meshes. In IEEE Visualization, pages 81–88, 1997.

[32] Radek Bartoň. SoTerrain. http://blackhex.no-ip.org/wiki/SoTerrain, October
2007.

[33] SWIG Development Team. Simplified Wrapper and Interface Generator. http://www.
swig.org/.

42

http://download.osgeo.org/grass/grass6_progman/dbmilib.html
http://download.osgeo.org/grass/grass6_progman/dbmilib.html
http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture
http://gal-framework.no-ip.org/wiki/ComponentArchitecture
http://gal-framework.no-ip.org/wiki/ComponentArchitecture
http://gal-framework.no-ip.org/wiki/UseCases
http://gal-framework.no-ip.org/wiki/AnalyticalClasses
http://gal-framework.no-ip.org/wiki/AnalyticalClasses
http://gal-framework.no-ip.org/doxygen/
http://www.freedesktop.org/wiki/Software/dbus
http://www.gnome.org/projects/ORBit2/
http://www-csag.ucsd.edu/projects/hpvm.html
http://www.xmlrpc.com/
http://www.open-mpi.org/
http://sourceware.org/libffi/
http://trolltech.com/products/qt
http://blackhex.no-ip.org/wiki/SoTerrain
http://www.swig.org/
http://www.swig.org/

[34] Python Software Foundation and Fred L. Drake, Jr. Python/C API Reference Manual.
http://docs.python.org/api/api.html, February 2008.

[35] The Wikimedia Foundation. Java Native Interface. http://en.wikipedia.org/wiki/
Java_Native_Interface, February 2008.

[36] Edgewall. Trac. http://trac.edgewall.org/.

[37] Tigris.org. Subversion. http://subversion.tigris.org/.

[38] The SCons Foundation. SCons. http://www.scons.org/.

[39] Dimitri van Heesch et al. Doxygen – Source Code Documentation Generator Tool.
http://www.stack.nl/~dimitri/doxygen//, May 2008.

43

http://docs.python.org/api/api.html
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Interface
http://trac.edgewall.org/
http://subversion.tigris.org/
http://www.scons.org/
http://www.stack.nl/~dimitri/doxygen//

Appendix A

Library Tutorial

This appendix contains a tutorial of a GAL Framework library appliance in a GRASS GIS
module development. First we will show a basic utilization of a predefined functionality
in general on an imaginary interface. Then we will define the used object, the slot, the
interface and the component on our own which may be interesting for those who wants
extend framework’s features. Finally, we will create some more practical module that
simulates functionality of the g.list rast command. Complete source codes of these
examples are placed in a GAL/doc/Examples/ directory on an attached CD.

A.1 Imaginary Interface

We are going to write a client-side module which calls interface functions to get some
data or perform a computation over them and then exits. A structure of such module can
be reduced to the following code skeleton:

// GAL Framework includes.

#include <GAL/core/Basic.h>

// Local includes

int main(int argc , const char * argv [])

{

try

{

// Initialize GAL Framework.

GAL:: initialize(argc , argv);

// Create and initialize components.

...

// Get interface objects form component manager.

...

// Get slots from intefaces

...

// Do the job.

...

// Free recieved objects and interfaces.

...

44

// Deinitialize and free component.

...

// Deinitialize GAL Framework and exit.

GAL:: finalize ();

}

catch (Exception exception)

{

std::cerr << "Unexpected error: " << exception.getMessage ()

<< std::endl;

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

All significant code is enclosed in a try statement with an appropriate exception handler
and between a GAL::initialize() and a GAL::finalize() method. They prepare or free
internal structures of the GAL Framework so code that uses it should be within.

Let’s suppose that there is a ICustomInterface interface and a CustomComponent com-
ponent that implements it in the framework and we want to call this implementation to
set or get some data. First we must load the component with the required interface imple-
mentation.

// Create and initialize component with implementation.

CustomComponent * component = new CustomComponent ();

component ->initialize ();

Then we get a reference to a component manager and request for the interface object by
an interface name.

// Get interface object form component manager.

ComponentManager & cm = GAL:: getComponentManager ();

Interface * interface = cm.getInterface("ICustomInterface");

The ICustomInterface interface has three functions. The first, called a foo(), doesn’t
have any arguments or return values, the second function a bar() has a single integer
argument and the third a getPoint() function returns a point object of a class Point. To
call these functions, we must obtain slot objects representing them from the interface.

// Get slot of ICustomInterface inteface functions.

FooSlot & foo = reinterpret_cast <FooSlot &>(

interface ->getSlot("foo"));

BarSlot & bar = reinterpret_cast <BarSlot &>(

interface ->getSlot("bar"));

GetPointSlot & getPoint = reinterpret_cast <GetPointSlot &>(

interface ->getSlot("getPoint"));

// Call them.

foo ();

45

bar (99);

Point * point = getPoint ();

When the work is done we should free the received point object and the interface object.

// Free recieved object and interface.

point ->free ();

interface ->free ();

The component with an implementation is no longer needed so we can deinitialize and
release it too.

// Deinitialize and free component.

component ->finalize ();

delete component;

That’s all for this case, you can see the joint code snippets of this module example in a
file GAL/doc/Examples/core example.cpp on the CD.

A.2 Custom Object

We saw the point object of the class Point in the previous example. Now we will show
how can be such custom object declared and implemented. Every object that can be used
as an interface function argument or a return value must be derived from a Object base
class and override a clone(), a serialize() and a deserialize() method in order to be
be transferable between processes or hosts with remote procedure call libraries.

class Point: public Object

{

A default constructor and a constructor with point coordinates is defined next. Notice
that both constructors sets a name of the object’s class with a setClassName() method.
This is crucial for runtime determination of a object type.

public:

/* Constructors. */

Point()

{

this ->setClassName("Point");

};

Point(int _x , int _y):

x(_x), y(_y)

{

this ->setClassName("Point");

}

46

Every Object is a prototype (see chapter 6). That’s why we must override the clone()
method to get the right instance of the Point class. This can be done with the copy
constructor. Because we won’t define any pointer-linked internal attributes, we don’t need
to write the copy constructor and we use an implicit one.

/* Prototype methods. */

virtual Object * clone () const

{

// Clone with copy constructor.

return new Point(*this);

}

Override the serialization and the deserialization method is what is left. The serialization
method returns a string object with (in this case) a binary representation of a Point class
state and the deserialization takes that string and restores the state. In other words: they
must be complementary.

/* Serialization methods. */

virtual String serialize () const

{

// Serialize point to string.

String data;

data.append(reinterpret_cast <const char *>(&this ->x), sizeof(int));

data.append(reinterpret_cast <const char *>(&this ->y), sizeof(int));

return data;

}

virtual void deserialize(const String & data)

{

// Deserialize point from string.

const char * bytes = data.data ();

this ->x = *reinterpret_cast <const int *>(bytes);

bytes += sizeof(int);

this ->x = *reinterpret_cast <const int *>(bytes);

bytes += sizeof(int);

}

Now comes a definition of an actual behavior of the point object which is only a getString()
method returning a string with point’s coordinates and attribute access methods.

/* Attribute access methods. */

int getX() const { return this ->x; }

void setX(const int X) { this ->x = X; }

int getY() const { return this ->y; }

void setY(const int Y) { this ->y = Y; }

/* Object methods. */

String getString ()

{

// Return string with point coordinates.

std:: ostringstream stream;

stream << "[" << this ->getX() << ", " << this ->getY() << "]";

return stream.str ();

};

47

And finally a declaration of the internal attributes.

private:

/* Internal attributes. */

int x;

int y;

};

Complete source code of this part is in GAL/doc/Examples/custom object.h file on the
CD.

A.3 Custom Slot

Now we will define the custom slot GetPointSlot that returns our Point classed object.
It is the same that is used in the ICustomInterface from the first part of the tutorial and
derived from the basic slot object class Slot.

class GetPointSlot: public Slot

{

In a slot constructor, there is specified an interface function signature using a addArgument()
and a addReturnValue() methods. In this case, it is only a single return value of a OBJECT
type since the slot just returns a point object derived from the Object class. See the library
reference for further information about the methods and the other possible types.

public:

/* Constructor. */

GetPointSlot ():

Slot()

{

this ->addReturnValue(OBJECT);

}

The slot objects also honours the prototype design pattern thus the cloning method needs
to be implemented in the same way as in the Object derived classes.

/* Prototype methods. */

virtual Slot * clone () const

{

return new GetPointSlot (*this);

}

The most notable part of the custom slot implementation is their function call operator.
To allow a direct slot execution as a functor in C++ language, the call operator must
set pointers to variables that holds arguments or where is a space for return values with
a setArgument() and a setReturnValue() method and then call an execute() method.
Here is the way how to accomplish this for the GetPointSlot slot:

48

/* Call operator. */

Point * operator()()

{

Point * result = NULL;

this ->setReturnValue (0, &result);

this ->execute ();

return result;

}

};

That’s it. The point object will be allocated and returned from the library and when
it won’t be needed, it may be freed with a free() method by the module. A full slot
definition can be seen in a GAL/doc/Examples/custom slot.h file on the attached CD.

A.4 Custom Interfce

The next step is to create the ICustomInterface interface object. We will use the
GetPointSlot slot from the previous example and two slots a FooSlot and a BarSlot
predefined in a header file GAL/include/core/BasicSlots.h as a V V Slot and a V I Slot.
As you may notice, names of these slots contain a shortcut for their signature. For example,
the first V in the V V Slot name means a void return value and the second means that the
slot has no arguments. We just rename them according to the interface function name.

// Name predefined slots.

typedef V_V_Slot FooSlot;

typedef V_I_Slot BarSlot;

Then we inherit from the Interface base class of the interface objects.

// Custom component class.

class ICustomInterface: public Interface

{

In a default constructor, we first set an interface object class name for its identification
in the component manager at runtime and then we create and append the slot object
instances with an interface function names using a addSlot() method. This declares the
available functions of the ICustomInterface interface and every component that wants to
implement it must implement all of them.

public:

/* Constructor. */

ICustomInterface ():

Interface ()

{

// Set interface name.

this ->setName("ICustomInterface");

// Append predefined slot instances.

this ->addSlot("foo", new FooSlot ());

this ->addSlot("bar", new BarSlot ());

49

this ->addSlot("getPoint", new GetPointSlot ());

}

A copy constructor in this case must be defined even empty because there must bee called
an Interface’s copy constructor which makes a copy of all aggregated slot objects.

/* Copy constructor. */

ICustomInterface(const ICustomInterface & interface):

Interface(interface)

{

// Nothing more since interface doesn’t have internal attributes.

}

A destructor does the inverse action to the default constructor. That is remove and deal-
locate the previously appended slots with a removeSlot() counterpart of the addSlot()
method.

/* Destructor. */

virtual ~ICustomInterface ()

{

// Remove and free slots.

Slot * fooSlot = &(this ->getSlot("foo"));

Slot * barSlot = &(this ->getSlot("bar"));

Slot * getPointSlot = &(this ->getSlot("getPoint"));

this ->removeSlot("foo");

this ->removeSlot("bar");

this ->removeSlot("getPoint");

delete fooSlot;

delete barSlot;

delete getPointSlot;

}

Finally and again, the prototype cloning method have to be defined.

/* Prototype methods. */

virtual Interface * clone()

{

// Redefine prototype clonning method using copy constructor.

return new ICustomInterface (*this);

}

};

A file with this part is a GAL/doc/Examples/custom interface.h

A.5 Custom Component

Now we have gotten through all preparation steps to bring the new functionality to the
GAL Framework. In reality, the previous three steps won’t be so often necessary because
in the most cases we implement already defined interfaces. Only left is to specify the own
component with the interface implementation. We start deriving from a Component class.

50

class CustomComponent: public Component

{

Then we set a component’s name and tell what static methods of the component im-
plement what interface functions to the base class in a copy constructor. The component
manager will ask for this information during an implementation registration. A destructor
of this component is empty.

public:

/* Constructor and destructor.*/

CustomComponent ():

Component ()

{

// Set unique component name.

this ->setName("CustomComponent");

// Add implementation methods in Component class.

this ->setImplementation("ICustomInterface ::foo",

(void *) &(this ->foo));

this ->setImplementation("ICustomInterface ::bar",

(void *) &(this ->bar));

this ->setImplementation("ICustomInterface :: getPoint",

(void *) &(this ->getPoint));

}

virtual ~CustomComponent () {}

In an initialization method of the component, we create and register in the component
manager an owned interface object, a point object prototypes as well as an interface imple-
mentation.

/* Component methods that have to be implemented. */

void initialize ()

{

ComponentManager & cm = GAL:: getComponentManager ();

// Register Point object.

this ->objectPrototype = new Point ();

cm.registerObject (*this ->objectPrototype);

// Register CustomInterface.

this ->interfacePrototype = new ICustomInterface ();

cm.registerInterface (*this ->interfacePrototype);

// Register CustomInterface interface implementation.

cm.registerImplementation (*this ->interfacePrototype , *this);

}

A finalization method unregisters the prior registrations and deletes the allocated in-
stances of the prototypes.

void finalize ()

{

51

ComponentManager & cm = GAL:: getComponentManager ();

// Unregister interface implementation.

cm.unregisterImplementation (*this ->interfacePrototype , *this);

// Unregister and free interfae.

cm.unregisterInterface (*this ->interfacePrototype);

delete this ->interfacePrototype;

// Unregister object.

cm.unregisterObject (*this ->objectPrototype);

delete this ->objectPrototype;

}

Now it comes actual interface function implementations. In this example, they just prints
that the interface function was called and with what arguments but you may fill them with
whatever you want to do. They are static methods with a component instance as the first
argument because taking a pointer to a C++ object method and converting it to a void
pointer is illegal.

private:

/* Inteface functions implementations. */

static void foo(Component * self)

{

std::cout << "ICustomInterface ::foo()" << std::endl;

}

static void bar(Component * self , int argument)

{

std::cout << "ICustomInterface ::bar(" << argument << ")" << std::endl;

}

static Point * getPoint(Component * self)

{

Point * result = new Point(15, 33);

std::cout << "ICustomInterface :: getPoint (): " << result ->getString ()

<< std::endl;

return result;

}

Attributes serves only for a pointer to the registered prototypes storage.

/* Internal attributes. */

Point * objectPrototype;

ICustomInterface * interfacePrototype;

};

We have finished rather imaginary but significant serie of tutorials. This part may be
viewed in a file GAL/doc/Examples/custom component.h on the attached CD.

A.6 List of Raster Layers

The final tutorial presents possibility write simple GRASS modules using the GAL
Framework in Python programming language. In this case its a module which gets list

52

of available raster layers in the GRASS and prints them to the standard output. Displayed
constructs are almost identical to that presented in the first tutorial except there is no
deallocation and the GAL.initialize() method accepts a list of module arguments in-
stead of the C–like arguments of a main function due to nature of Python. It’s also in a
GAL/doc/Examples/list rasters.py file.

1 #!/bin/env python

2
3 # Standard imports.

4 import sys

5
6 # GAL Framework imports.

7 from GAL import *

8
9 # Initialize GAL Framework.

10 GAL.initialize(sys.argv)

11
12 # Initialize component with asscess to GRASS rasters.

13 raster_layer_provider = GRASSRasterLayerProvider ()

14 raster_layer_provider.initialize ()

15
16 # Get IRasterLayerProvider interface from component manager.

17 cm = GAL.getComponentManager ()

18 i_raster_layer_provider = cm.getInterface(’IRasterLayerProvider ’)

19 getElements = i_raster_layer_provider.getSlot(’getElements ’)

20
21 # Get list of available raster layers.

22 layers = getElements ()

23
24 # Print them.

25 for layer in layers:

26 print layer ,

27 print

28
29 # Deinitialize component.

30 raster_layer_provider.finalize ()

31
32 # Deinitialize GAL Framework.

33 GAL.finalize ()

53

	Introduction
	Motivation
	Contents

	GRASS GIS Architecture
	Brief GRASS GIS History
	General Concepts
	Raster Architecture
	Vector Architecture

	Task Specification
	Intended Objectives
	Obstacles
	Solved Objectives

	Component Architecture
	Components and Interfaces
	Slots
	Component Manager
	Example

	Analytical Model
	Use Cases
	Analytical Classes

	Applied Design Patterns
	Singleton
	Prototype
	Abstract Factory
	Strategy
	Iterator

	Slot Implementations
	Callback Slots
	D--Bus Slots

	GAL Framework Subsystems
	Core Subsystem
	Exception Subsystem
	D-Bus Subsystem
	Classes

	General Subsystem
	Classes
	Interfaces
	Components
	Modules

	Display Subsystem
	Classes
	Interfaces
	Components
	Modules

	GIS Subsystem
	Classes
	Interfaces
	Components
	Modules

	Raster Subsystem
	Classes
	Interfaces
	Components
	Modules

	Vector Subsystem

	Dynamic Language Bindings
	SWIG Utilization
	General Customizations
	Python Bindings
	Java Bindings
	Other Bindings

	Experimental Results
	Conclusion
	References
	Library Tutorial
	Imaginary Interface
	Custom Object
	Custom Slot
	Custom Interfce
	Custom Component
	List of Raster Layers

