
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

A RESTRICTION OF SENTETIAL FORMS OF
SCATTERED CONTEXT GRAMMARS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE JIŘÍ ŠIMÁČEK
AUTHOR

BRNO 2008

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

OMEZENÍ VĚTNÝCH FOREM GRAMATIK
S ROZPTÝLENÝM KONTEXTEM
A RESTRICTION OF SENTETIAL FORMS OF SCATTERED CONTEXT GRAMMARS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE JIŘÍ ŠIMÁČEK
AUTHOR

VEDOUCÍ PRÁCE prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2008

Abstrakt
Tato práce zavád́ı pojem zobecněných gramatik s rozptýleným kontextem, které se od
tradičńıch lǐśı t́ım, že levé strany pravidel mohou obecně obsahovat řetězec neterminálńıch
symbol̊u namı́sto jediného neterminálu. Dále jsou studovány dva typy omezeńı při větné
derivaci v těchto gramatikách. Necht’ k je konstanta. Prvńı omezeńı požaduje, aby přepsáńı
všech symbol̊u nastalo mezi prvńımi k symboly v prvńım souvislém bloku neterminál̊u
ve větné formě v každém derivačńım kroku. Druhé omezeńı definuje derivaci pouze nad
větnými formami, které obsahuj́ı nejvýše k výskyt̊u neterminál̊u. Jako hlavńı výsledek
práce demonstruje, že oba typy omezeńı snižuj́ı vyjadřovaćı śılu na úroveň bezkontextových
gramatik.

Kĺıčová slova
gramatiky s rozptýleným kontextem, zobecněńı gramatik, omezeńı větné derivace, vy-
jadřovaćı śıla

Abstract
This work introduces and discusses generalized scattered context grammars that are based
upon sequences of productions whose left-hand sides are formed by nonterminal strings, not
just single nonterminals. It places two restrictions on the derivations in these grammars.
More specifically, let k be a constant. The first restriction requires that rewriting all
symbols occurs within the first k symbols of the first continuous block of nonterminals in the
sentential form during every derivation step. The other restriction defines the derivations
over sentential forms containing no more than k occurrences of nonterminals. As its main
result, the thesis demonstrates that both restrictions decrease the generative power of these
grammars to the power of context-free grammars.

Keywords
scattered context grammars, grammatical generalization, derivation restriction, generative
power

Citace
Jǐŕı Šimáček: A Restriction of Sentetial Forms of Scattered Context Grammars, diplomová
práce, Brno, FIT VUT v Brně, 2008

A Restriction of Sentetial Forms of Scattered Con-
text Grammars

Declaration
I hereby declare that this thesis is my own work and effort and that it has not been submitted
anywhere for any award. Where other sources of information have been used, they have
been acknowledged. The thesis has been created under the supervision of prof. RNDr.
Alexander Meduna, CSc.

. .
Jǐŕı Šimáček
May 7, 2008

Acknowlegement
Author wishes to thank prof. RNDr. Alexander Meduna, CSc. and Mgr. Tomáš Masopust,
Ph.D. for their contributions to this work.

c© Jǐŕı Šimáček, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

Contents 1

1 Introduction 2

2 Definitions 4
2.1 Basic Definitions . 5

2.1.1 Sets . 5
2.1.2 Relations . 8

2.2 Basic Concepts of the Theory of Formal Languages 11
2.2.1 Alphabet and Strings . 11
2.2.2 Language . 13

2.3 Standard Language Models and Language Classification 15
2.3.1 Phrase-structure Grammars . 15
2.3.2 Chomsky Hierarchy . 17
2.3.3 Pushdown Automata . 18

2.4 Advanced Definitions . 22
2.4.1 Generalized Scattered Context Grammar 22
2.4.2 Post Correspondence Problem . 24
2.4.3 Derivation Restrictions . 25
2.4.4 Language Families . 29

3 Results 30
3.1 Restriction on the Finite Prefix . 31

3.1.1 Short Description . 31
3.1.2 Formal Proof . 31

3.2 Restriction on the Finite Number of Blocks 34
3.2.1 Short Description . 34
3.2.2 Formal Proof . 34

3.3 Restriction on the Blocks of the Finite Length 37
3.3.1 Short Description . 37
3.3.2 Formal Proof . 37

4 Conclusion 40
4.1 Open problems . 41

Bibliography 42

1

Chapter 1

Introduction

Scattered context grammars are based upon finite sets of sequences of context-free pro-
ductions having a single nonterminal on the left-hand side of every production (see [5]).
According to a sequence of n context-free productions, these grammars simultaneously
rewrites n nonterminals in the current sentential form according to the n productions in
the order corresponding to the appearance of these productions in the sequence. It is
well-known that they characterize the family of recursively enumerable languages (see [9]).

In this work, we generalize these grammars so that the left-hand side of every production
may consist of a string of several nonterminals rather than a single nonterminal. Specifically,
we discuss two derivation restrictions in scattered context grammars generalized in this
way. To explain these restrictions, let k be a constant. The first restriction requires that all
simultaneously rewritten symbols occur within the first k symbols of the first continuous
block of nonterminals in the current sentential form during every derivation step. The
other restriction defines the grammatical derivations over sentential forms containing no
more than k occurrences of nonterminals.

As the main result, we demonstrate that both restrictions decrease the generative power
of generalized scattered context grammars to the generative power of context-free grammars.
As ordinary scattered context grammars represent special cases of their generalized versions,
they also characterize only the family of context-free languages if they are restricted in this
way.

This result concerning the derivation restrictions is of some interest when compared
to analogical restrictions in terms of other grammars working in a context-sensitive way.
Over its history, formal language theory has studied many restrictions placed on the way
grammars derive sentential forms and on the forms of productions. In [7], Matthews studied
derivations of grammars in the strictly leftmost (rightmost) way—that is, rewritten symbols
are preceded (succeeded) only by terminals in the sentential form during the derivation.
Later, in [8], he combined both approaches—leftmost and rightmost derivations—so that
any sentential form during the derivation is of the form xWy, where x and y are termi-
nal strings, W is a nonterminal string, and a production is applicable only to a leftmost
or rightmost substring of W . In both cases, these restrictions result into decreasing the
generative power of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other authors
studied the forms of productions. In [2], Book proved that if the left-hand side of any non-
context-free production contains besides exactly one nonterminal only terminals, then the
generative power of type-0 grammars decreases to the power of context-free grammars. He
also proved that if the left-hand side of any non-context-free production has as its left

2

context a terminal string and the left context is at least as long as the right context, then
the generative power of type-0 grammars decreases to the power of context-free grammars,
too. In [4], Ginsburg and Greibach proved that if the left-hand side of any production
is a nonterminal string and the right-hand side contains at least one terminal, then the
generated language is context-free. Finally, in [1], Baker proved a stronger result. This
result says that if any left-hand side of a production either has, besides terminals, only one
nonterminal, or there is a terminal substring, β, on the right-hand side of the production
such that the length of β is greater than the length of any terminal substring of the left-
hand side of the production, then the generative power of type-0 grammars decreases to the
power of context-free grammars. For more details, see page 198 in [11] and the literature
cited there.

This work is based on the paper Two Power-Decreasing Derivation Restrictions in
Generalized Scattered Context Grammars [6], which was written in cooperation with Mgr.
Tomáš Masopust, Ph.D. and prof. RNDr. Alexander Meduna, CSc.

3

Chapter 2

Definitions

This chapter presents definitions of the terms which are used in this work. Although it is
brief in some cases, it aims to be a complete reference. Depending on the reader, it can be
necessary to consult additional sources.

4

2.1 Basic Definitions

This section provides the mathematical background which serves as the basis for the ad-
vanced formalisms.

2.1.1 Sets

A set is one of the most fundamental mathematical concept, which was developed by a
German mathematician Georg Cantor in 19th century. Originally, he gave the following
definition:

By a set we mean any collection M into a whole of definite, distinct objects
m (which are called the elements of M) of our perception (Anschauung in the
original) or of our thought.

Unfortunately, informal definitions of this kind suffers from certain issues, such as Rus-
sell’s paradox. Consider a set

R = {x : x is a set and x doesn’t contain x},

which is the set of all sets which do not contain themselves as members. By the definition
of R, one can rule out these consequences:

1. R contains R implies R doesn’t contain R,

2. R doesn’t contain R implies R contains R.

Although precisely stated, R doesn’t appear to be well defined set.
Since then, there was an effort to solve these problems such as the formulation of

axiomatic set theory ; however, when we deal with issues concerning theoretical computer
science, these problems usually don’t arise and we will use the following definition, which
is very similar to Cantor’s one.

Definition 1. A set is a group of distinct objects considered as a whole. These objects are
called elements of the set.

The set can be described in two ways. Either by specifying members of the set explicitly
(S = {3, 5, 7, 11}) or by defining properties of the elements in the set (S = {x : x is even }).
The latter way is usual in cases, in which the set contains infinitely many elements.

To express that a set S contains an element a, we write

a ∈ S.

Subsets

If B contains all elements contained in A, then A is said to be a subset of B, symbolically

A ⊆ B.

Also B is said to be a superset of A (B ⊇ A). Additionally A is a proper subset of B
(A ⊂ B) if A ⊆ B and there exists an element x, such that x /∈ A and x ∈ B. We define
B ⊃ A analogously. In cases, where A ⊆ B and B ⊆ A at the same time, A and B contains
exactly the same elements and we write

A = B.

5

Cardinality

The cardinality of a set S is the number of elements in S, written as

|S|.

If S contains no elements (|S| = 0), then S is called empty set and denoted by the symbol ∅.
Moreover,

A = B implies |A| = |B|,
which means that

|A| 6= |B| implies A 6= B.

Note that there are infinite sets which have infinite cardinalities, but these cardinalities
can differ (for example cardinality of the set of all natural numbers is different from the
cardinality of the set of all real numbers).

Power Sets

Often we want to refer to a set of all subsets of A. This is denoted as power set. To express
that B is power set of A, we write B = 2A. If |A| is finite, then |B| = 2|A|. If B = 2A, then
∅ ∈ B and A ∈ B. Note that

2∅ = {∅} 6= ∅.

Fundamental Set Operations

Given a group of sets, one can construct a new set using certain operations over sets. We
can take two sets (A and B) and ”add” them together, effectively creating a new set which
contains all elements of the original sets. This operation is called union, written as

A ∪B,

and the resulting set is defined as

A ∪B = {x : x ∈ A or x ∈ B}.

Unions have the following properties:

• A ∪B = B ∪A,

• A ⊆ (A ∪B),

• A ∪A = A,

• A ∪ ∅ = A,

• A ⊆ B if and only if A ∪B = B.

Also we can introduce intersection which creates the set that contains only those ele-
ments contained in both sets. To denote this fact, we write

A ∩B.

The resulting set is defined as

A ∩B = {x : x ∈ A and x ∈ B}.

Intersections have the following properties:

6

• A ∩B = B ∩A,

• (A ∩B) ⊆ A,

• A ∩A = A,

• A ∩ ∅ = ∅,

• A ⊆ B if and only if A ∩B = A.

The two sets can be ”subtracted”. This operation is called set difference (or relative
complement) and creates a new set that contains only those elements which are in the first
set, but not in the second one. The set difference is denoted by

A \B or by A−B

and defined as
A \B = {x : x ∈ A and x /∈ B}.

If there is some set U which represents the universe that contains all elements we are
dealing with, we can introduce complement (or absolute complement) of a set, written as

A′.

The complement is defined as
A′ = U \A.

Complement operations have the following properties:

• A ∪A′ = U ,

• A ∩A′ = ∅,

• (A′)′ = A,

• A \A = ∅,

• A \B = A ∩B′.

An ordered pair is a collection of two elements a and b denoted by (a, b) such that (a, b)
is different from (b, a), unless a = b. In other words, let (a, b) and (c, d) be two ordered
pairs. Then,

(a, b) = (c, d) if and only if a = c and b = d.

An ordered pair can contain other ordered pairs as the components, so it is possible to
define n-tuple in the following way:

(x1, x2, . . . , xn) = (x1, (x2, . . . , xn)).

A×B denotes the Cartesian product which is set of all ordered pairs, such that the first
component is the element of A and the second one is the element of B, formally

A×B = {(a, b) : a ∈ A and b ∈ B}.

The Cartesian product has these properties:

• A× ∅ = ∅,

• A× (B ∪ C) = (A×B) ∪ (A× C),

• |A×B| = |A| · |B|.

7

2.1.2 Relations

Another very important mathematical concept, which is also crucial for the theory of formal
languages, is relation.

Definition 2. A n-ary relation ρ over the sets A1, . . . , An is a subset of the Cartesian
product of these sets:

ρ ⊆ A1 × · · · ×An.

If A1 = A2 = · · · = An = A, we can write

ρ ⊆ An

instead of ρ ⊆ A1 × · · · ×An.

Example 1. Consider a binary operation ∧ (logical and) defined over A = {true, false}.
∧ ⊆ A3 can be represented by the ternary relation:

∧ = {(false, false, false), (false, true, false), (true, false, false), (true, true, true)}.

Binary Relations

The case, where n = 2, is very common and in such situations we use the term binary
relation. Let ρ ⊆ A×B be a binary relation. A is called domain of ρ, B is called range. In
cases, where A = B, ρ is said to be relation on A (B). The inverse of ρ is defined as

ρ−1 = {(b, a) : (a, b) ∈ ρ}.

To denote that (a, b) ∈ ρ, we can write aρb, and ¬(aρb) or, sometimes, a6ρb to denote that
(a, b) /∈ ρ.

Example 2. Let A = {1, 2, . . . , 5}. We can define property ”being a divisor of” (which is
denoted by |) over the set A in the following way:

| = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)}.

Note that such relations are often defined over infinite sets, where listing each member
of the set becomes impractical, so these relations are better specified by their properties.
The general definition of relation | ⊆ N2 (N refers to the set of all natural numbers) can be
following:

| = {(a, b) ∈ N2 : b = ka for some k ∈ N}.

When dealing with the binary relations, we can investigate various properties. Assume
ρ ∈ A×A, then:

• ρ is reflexive if aρa for each a ∈ A,

• ρ is irreflexive if ¬(aρa) for each a ∈ A,

• ρ is symmetric if aρb implies bρa for each a, b ∈ A,

8

• ρ is asymmetric if aρb implies ¬(bρa) for each a, b ∈ A,

• ρ is antisymmetric if aρb and bρa implies a = b for each a, b ∈ A,

• ρ is transitive if aρb and bρc implies aρc for each a, b, c ∈ A.

There are two important classes of relations:

• equivalence relations—these are reflexive, symmetric and transitive. A typical repre-
sentative of this class is equality relation (=) defined over natural numbers. Note that
there also exists identity relation, which is somewhat stronger than general equality.
a and b are said to be equal, if they share the same properties, but they are identical
if they refer to the same entity; however, the identity and the equality actually refer
to the same relation in most cases.

• order relations—these are reflexive, antisymmetric and transitive. A typical repre-
sentative of this class is order ≤ of natural numbers.

Fundamental Relation Operations

Given a group of relations, one can construct new relations using operations over these
relations. Besides the set operations such as the union, there are certain operations which
are unique to relations. One of these is the operation of a composition.

Definition 3. Let φ ∈ A×B, ψ ∈ B ×C be two binary relations. Then, composition of φ
and ψ, denoted

ψ ◦ φ,

is defined as

ψ ◦ φ = {(a, c) ∈ A× C : (a, b) ∈ φ and (b, c) ∈ ψ for some b ∈ B}.

The composition has following properties:

• T ◦ (S ◦R) = (T ◦ S) ◦R,

• (S ◦R)−1 = R−1 ◦ S−1.

Closures of Relations

Other interesting operations are closures of relations. Closure is a new relation that contains
the original relation and possesses some additional property, for example transitivity, at the
same time.

Definition 4. Let ρ be a relation on a set A and k be a natural number. The k-fold product
of ρ, written as

ρk,

is defined as

ρk =
k︷ ︸︸ ︷

ρ ◦ ρ ◦ · · · ◦ ρ .

9

Definition 5. The transitive closure of ρ, denoted as

ρ+,

is defined in the following way:

aρ+b if and only if aρib

for some i ≥ 1. This means that there exists c1, . . . , cn ∈ A for some n ≥ 0, such that

aρc1, c1ρc2, . . . , cnρb.

Alternatively, transitive closure can be defined as

ρ+ =
⋃
i≥1

ρi.

Definition 6. The reflexive and transitive closure of ρ, denoted as

ρ∗,

is defined as
aρ∗b if and only if aρib

for some i ≥ 0, where aρ0b is identity relation over A. Alternatively,

ρ∗ =
⋃
i≥0

ρi.

10

2.2 Basic Concepts of the Theory of Formal Languages

This section introduces fundamental terms which are used throughout the rest of this work.

2.2.1 Alphabet and Strings

The following part is adapted from the chapter 1 of [10].

Definition 7. An alphabet is a finite, nonempty set of elements, which are called symbols.

Example 3. Let

ΣEng = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}.

Then, ΣEng is an alphabet; moreover, ΣEng contains all lowercase letters of English alpha-
bet.

A string is a sequence of symbols, sometimes denoted also as word. The string that
contains no symbols, denoted by ε, is called empty string. By using recursive definition,
one can define string in the following way:

Definition 8. Let Σ be an alphabet:

1. ε is a string over Σ,

2. if x is a string over Σ and a ∈ Σ, then xa is a string over Σ.

Example 4. Consider the alphabet ΣEng. Then,

article, author

are strings over ΣEng.

The length of x is the number of all symbols in x.

Definition 9. Let x be a string over Σ. The length of x, denoted as |x|, is defined as
follows:

1. if x = ε, then |x| = 0,

2. if x = ay, where a ∈ Σ and y is a string over Σ, then |x| = 1 + |y|.

Note that length of a string has similar properties to those of cardinality of a set, particularly

(x = y implies |x| = |y|)⇔ (|x| 6= |y| implies x 6= y).

We use occur(W,x) to denote the number of occurrences of symbols from some prede-
fined set W .

Definition 10. Let x be a string over Σ and W ⊆ Σ. occur(W,x) is defined in the following
way:

11

1. occur(W, ε) = 0,

2. occur(W,ax) = 1 + occur(W,x), if a ∈W ,

3. occur(W,ax) = occur(W,x), if a /∈W .

Then, #ax denotes the number of occurrences of the symbol a in x:

#ax = occur({a}, x).

Additionally, alph(x) denotes the set of all symbols appearing in x:

a ∈ alph(x)⇔ #ax ≥ 1

Operations on Strings

Definition 11. Let x and y be two strings over Σ. Then, xy denotes the concatenation of
x and y.

The concatenation has the following properties:

• xε = εx = x,

• x(yz) = (xy)z,

• |xy| = |x|+ |y|.

Definition 12. Let x and y be two strings over Σ. For i ≥ 0, the ith power of x, denoted
as xi, is defined in following way:

1. x0 = ε,

2. xi = xxi−1, for i ≥ 1.

The power of a string has these properties:

• xixj = xjxi,

• xixj = xi+j ,

• (xi)j = xij ,

where i, j ≥ 0.
The reversal of a string is the string, where the symbols of the original string appear in

the reverse order.

Definition 13. Let x be a string over Σ. The reversal of x, denoted as (x)R, is defined in
this way:

1. if x = ε, then (x)R = ε,

2. if x = ay, where a ∈ Σ and y is a string over Σ, then (x)R = (y)Ra.

12

The reversal of a string has the following properties:

• x = y if and only if (x)R = (y)R,

• ((x)R)R = x,

• (xy)R = (y)R(x)R.

Definition 14. Let x and y be two words over Σ. Then, x is a prefix of y if there exists a
string, z, over Σ, such that xz = y; moreover, if x /∈ {ε, y}, then x is a proper prefix of y.

For a string y, prefix(y) denotes the set of all prefixes of y:

prefix(y) = {x : x is a prefix of y}.

Definition 15. Let x and y be two words over Σ. Then, x is a suffix of y if there exists a
string, z, over Σ, such that zx = y; moreover, if x /∈ {ε, y}, then x is a proper suffix of y.

For a string y, suffix(y) denotes the set of all suffixes of y:

suffix(y) = {x : x is a suffix of y}.

Definition 16. Let x and y be two words over Σ. Then, x is a substring of y if there exists
two strings, z and z′, over Σ, such that zxz′ = y; moreover, if x /∈ {ε, y}, then x is a proper
substring of y.

For a string y, substring(y) denotes the set of all substrings of y:

substring(y) = {x : x is a substring of y}.

The prefix, suffix and substring have the following properties:

• prefix(x) ⊆ substring(x),

• suffix(x) ⊆ substring(x),

• {ε, x} ⊆ prefix(x) ∩ suffix(x) ∩ substring(x).

2.2.2 Language

Let Σ be an alphabet. Then,
Σ∗

denotes the set of all strings over Σ. Set

Σ+ = Σ∗ − {ε}.

In other words, Σ+ denotes the set of all nonempty strings over Σ. Now, we can define a
language as a set of strings over Σ.

Definition 17. Let Σ be an alphabet, and let L ⊆ Σ∗. Then, L is a language over Σ.

13

For every alphabet, Σ, Σ∗ represents a language over Σ. Σ∗ contains all strings over Σ and
it is called universal language. By the above definition ∅ and {ε} are languages over any
alphabet. Note that

∅ 6= {ε}.

Example 5. Let

Ltitle = {a, context, forms, grammars, of, restriction, scattered, sentential}.

Then, L is a language over ΣEng which contains all words (strings) that appear in the title
of this work.

Definition 18. Let L be a language. L is finite if |L| = n, for some n ≥ 0; otherwise, L is
infinite.

Example 6. Consider a language of all sentences which appear in this thesis. This lan-
guage is finite; however, the language of all meaningful English sentences is infinite (with
assumption that there is no limit on the length of the sentences).

While a finite language can be fully specified by enumerating all strings the language
contains, this is not possible for infinite languages. In such cases, we require models which
can describe an infinite language by the finite way. Some of these models are described in
the next section.

14

2.3 Standard Language Models and Language Classification

This section describes some of the basic models of languages.

2.3.1 Phrase-structure Grammars

A phrase-structure grammar is one of the fundamental models of formal languages. It
comprises of a set of working symbols called total alphabet, a set of symbols that appear
in the strings of a given language, called terminals, a set of rules, which controls, how the
words of that language are generated, and a starting symbol.

Definition 19. A phrase-structure grammar or, simply, a grammar is a quadruple G =
(V, T, P, S), where

1. V is a total alphabet,

2. T ⊆ V is an alphabet of terminals,

3. S ∈ (V − T) is the starting symbol,

4. P ∈ (V ∗(V − T)V ∗ × V ∗) is a finite relation.

N = V − T is the alphabet of nonterminals. Elements of P are called productions, so
P is referred to as the set of productions. Instead of (u, v) ∈ P , we can write

u→ v ∈ P

or
u→ v,

if P is grounded. u is called left-hand side of the production, v is called right-hand side.
Note that according to the definition, each production contains at least one nonterminal on
its left-hand side.

Definition 20. Let G = (V, T, P, S) be a phrase-structure grammar, α→ β ∈ P , x, y ∈ V ∗.
Then, xαy directly derives xβy in G, denoted as

xαy ⇒ xβy [α→ β],

or
xαy ⇒ xβy.

A relation ⇒∈ V ∗ × V ∗ is called a direct derivation. In other words, G makes a derivation
step from xαy to xβy according to α→ β.

To denote that the derivation step was performed by G, we write

xαy ⇒G xβy.

To generate certain string, we start with the starting symbol, S, of the grammar, G, as
the current sentential form. Then, we attempt to rewrite it according to some production
from P . This succeeds, if there exists some production with S on its left-hand side. By
rewriting S by the right-hand side of the selected production, we obtain new sentential

15

form. The corresponding string can be further processed in the same way, until there is no
rule with the left-hand side that appears somewhere within the sentential form. Note that
the choice of the productions as well as the selection of the substring in the sentential form,
which is being rewritten, is strictly nondeterministic. In fact, such choice affects, what (if
any) terminal string is being generated.

Definition 21. Let G = (V, T, P, S) be a phrase-structure grammar. Then,

⇒n

denotes n-fold product (recall previous definitions) of ⇒. Moreover,

⇒+ and ⇒∗

denote the transitive closure of ⇒ and transitive and reflexive closure of ⇒, respectively.

Now, we can specify the language generated by G (the language that G models) by the
following definition.

Definition 22. Let G = (V, T, P, S) be a phrase-structure grammar. The language of G,
symbolically

L(G),

is defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}.

In other words, whenever G finishes derivation of the sentential form with a string that
comprises of the symbols from T exclusively, then that string belongs to the language
described by G.

The following example shows the possible process of generating of the single string in
detail.

Example 7. Let G = ({S, a, b}, {a, b}, P, S), where

P = {S → aSb, S → ε}.

Grammar G generates the string aaaaabbbbb by the following sequence of productions:

S ⇒ aSb [S → aSb]
⇒ aaSbb [S → aSb]
⇒ aaaSbbb [S → aSb]
⇒ aaaaSbbbb [S → aSb]
⇒ aaaaaSbbbbb [S → aSb]
⇒ aaaaabbbbb [S → ε]

It can be easily observed that L(G) = {anbn : n ≥ 0}.

Note that this language is typical representative for the class of context-free languages,
which is discussed later.

16

2.3.2 Chomsky Hierarchy

A phrase-structure grammar, as defined above, describes a broad range of languages. Ac-
cording to different restrictions, which can be placed on such grammar, one can obtain
system of several classes of languages called Chomsky hierarchy (see [11]). There are 4
language families altogether:

1. recursively enumerable or type-0 languages

2. context-sensitive or type-1 languages

3. context-free or type-2 languages

4. regular or type-3 languages

A language is of type-0, if it can be generated by an unrestricted phrase-structure
grammar. This class contains all languages that can be described by some finite model.
Another formalism, which can describe all recursively enumerable languages, is Turing
machine (see [10]). Because the knowledge of this concept is not related to the results, which
are discussed in this work, the details of Turing machines are omitted. Note that there are
also languages beyond the class of type-0 languages. An example of such language is a
language of all programs that halts for a given input. The family of recursively enumerable
languages is denoted as RE.

The class of context-sensitive languages contains any language which can be generated
by a grammar G = (V, T, P, S), where all productions of P are of the form

αAβ → αγβ,

where α, β ∈ V ∗, A ∈ (V − T), γ ∈ V + or, alternatively, all productions

α→ β

satisfies
|α| ≤ |β|.

This type of grammar is called a context-sensitive grammar.

Example 8. Let G = ({B,C, S}, {a, b, c, d}, P, S), where

P = {S → aBSCd,Ba→ aB, dC → Cd, S → abcd,Bb→ bb, cC → cc}.

The following lines demonstrate derivation of the string aabbccdd in G:

S ⇒ aBSCd [S → aBSCd]
⇒ aBabcdCd [S → abcd]
⇒ aaBbcdCd [Ba → aB]
⇒ aabbcdCd [Bb → bb]
⇒ aabbcCdd [dC → Cd]
⇒ aabbccdd [cC → cc]

By analysing G, one can rule out that L(G) = {anbncndn : n ≥ 1}.

The abovementioned example shows, what the context means in the terms of phrase-
structure grammar. In this case, the single derivation step is affected by more than one

17

symbol in the sentential form at a time. By using context-sensitive productions, we can,
for example, shift the given symbol to the left or to the right within the sentential form,
which would be otherwise impossible. The family of context-sensitive languages is denoted
as CS.

By restricting productions in P of a grammar G = (V, T, P, S) to the form:

A→ α,

where A ∈ (V − T), α ∈ V ∗, we obtain a context-free grammar, which is a model of any
language that belongs to the family of context-free languages. A context-free language can
also be described by a pushdown automaton, which is discussed later. This family is very
interesting from the practical point of view, because certain subclass of type-2 languages
(deterministic context-free languages—see [10]) can be analysed very effectively. This is the
reason, why the most programming languages are described by a context-free grammar at
the syntax level. The family of context-free languages is denoted as CF.

Any type-3 language can be generated by a phrase-structure grammar G = (V, T, P, S),
where P contains only productions of the form

A→ aB

or
A→ a,

where A,B ∈ (V −T), a ∈ T . Such grammar is sometimes denoted as right-linear grammar.
There also exists left-linear grammar which is defined in similar way and it has the same
generative power. A regular languages can be described by a finite state automaton or by a
regular expression (see [10]). Both models are omitted here, because of they are not related
to this work as well. The family of regular languages is denoted as REG.

Besides the 4 classes mentioned above, there is a family of recursive languages. These
are languages that can be described by a Turing machine which always halts for any given
input (see [10]). Although the Chomsky hierarchy is very often used to classify languages
and their models, it is not always the most suitable one. For example L-systems (see [11]),
which always rewrites all symbols in the sentential form in the single derivation step (in
parallel), create the completely different hierarchy of languages and such hierarchy is not
comparable to the Chomsky one.

2.3.3 Pushdown Automata

Another possible model for context-free languages is a pushdown automaton (see [10]). A
pushdown automaton comprises of a finite state control, additional memory called a stack
or a pushdown and a set of rules which defines, how the state of the automaton and its
stack are modified during the computation over an input string.

Definition 23. A pushdown automaton, M , is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F), where

1. Q is a finite set of states,

2. Σ is a finite alphabet,

3. q0 ∈ Q is the initial state,

4. Γ is a finite pushdown alphabet,

18

5. δ ∈ (ΓQ(Σ ∪ {ε})× (Γ∗Q) is a finite relation,

6. Z0 ∈ Γ is the initial pushdown symbol, and

7. F ⊆ Q is a set of final states.

Elements of δ are called rules and δ is referred to as the set of rules. Instead of (u, v) ∈ δ,
we can write

u→ v ∈ δ

or
u→ v,

if δ is grounded. u is called left-hand side of the rule, v is called right-hand side.

Definition 24. A configuration of a pushdown automaton M is any string of the form

γqs,

where γ ∈ Γ∗ holds the content of the stack, q ∈ Q describes the current state and s ∈ Σ∗

is the remaining (unread) part of the input string.

Definition 25. Let xAqay be a configuration of M , where x ∈ Γ∗, A ∈ Γ, q ∈ Q, a ∈ Σ
and y ∈ Σ∗, and Aqa → γp ∈ δ be a rule. Then, M makes a move from xAqay to xγpy
according to Aqa→ γp, written as

xAqay ⇒ xγpy [Aqa→ γp]

or
xAqay ⇒ xγpy.

A relation ⇒∈ (Γ∗QΣ∗)2 is called a transition relation and it is sometimes denoted also by
the symbol `.

To denote that the move was performed by M , we write

xAqay ⇒M xγpy.

For a given input string, s, M starts the computation in the configuration Z0q0s. Then,
M subsequently selects rules from δ (one at a time) according to the topmost pushdown
symbol, current state and the first symbol in the remaining part of the input string. Alter-
natively, it can make a move by modifying the current state or the stack without reading a
symbol from the input. To apply the rule Aqa → γp ∈ δ, the topmost pushdown symbol,
A, is replaced by γ and the current state, q, is changed to p, while a is removed from the
input. M continues processing until it reaches the configuration, in which no next move is
possible.

Definition 26. Let M = (Q,Σ,Γ, δ, q0, Z0, F) be a pushdown automaton. Then,

⇒n

19

denotes n-fold product (recall previous definitions) of ⇒. Moreover,

⇒+ and ⇒∗

denote the transitive closure of ⇒ and transitive and reflexive closure of ⇒, respectively.

Definition 27. Let M = (Q,Σ,Γ, δ, q0, Z0, F) be a pushdown automaton. The language
of M , symbolically

L(M),

is defined as
L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f, f ∈ F}.

In other words, whenever M finishes computation for a given string in one of the final
states, its stack is empty and the whole input is processed, then that string belongs to the
language described by M . Note that there is no need to require final state and empty stack
at the same time, because all variants have the same generative power (see [10]).

The following example shows the possible computation over the single string in detail.

Example 9. Consider an automaton M = ({q, r, f}, {a, b}, {⊥, A}, δ, q,⊥, {f}), where

δ = {
⊥qa → ⊥Aq,
Aqa → AAq,
⊥q → ⊥r,
Aq → Ar,
Arb → r,
⊥r → f

}.

The following part shows the computation of M over the string aaaaabbbbb:

(q, aaaaabbbbb,⊥) ⇒ (q, aaaaabbbbb, A⊥) [⊥qa → ⊥Aq]
⇒ (q, aaaabbbbb, AA⊥) [Aqa → AAq]
⇒ (q, aaabbbbb, AAA⊥) [Aqa → AAq]
⇒ (q, aabbbbb, AAAA⊥) [Aqa → AAq]
⇒ (q, abbbbb, AAAA⊥) [Aqa → AAq]
⇒ (q, bbbbb, AAAAA⊥) [Aqa → AAq]
⇒ (r, bbbbb, AAAAA⊥) [Aq → Ar]
⇒ (r, bbbb, AAAA⊥) [Arb → r]
⇒ (r, bbb, AAA⊥) [Arb → r]
⇒ (r, bb, AA⊥) [Arb → r]
⇒ (r, b, A⊥) [Arb → r]
⇒ (r, ε,⊥) [Arb → r]
⇒ (f, ε, ε) [⊥r → f]

It can be observed that L(M) = {anbn : n ≥ 0}.

20

Extended Pushdown Automata

An extended pushdown automaton is a variant of pushdown automaton, where the rules in
δ are generalized to the form

(Γ∗Q(Σ ∪ {ε})× (Γ∗Q).

In other words, instead of reading just the topmost symbol on the pushdown in a single
move, extended pushdown automaton can read any finite string which is on the top of the
stack. This modification has the same generative power as ordinary pushdown automata
(see [10]), but the usage of this model is more comfortable in many cases.

21

2.4 Advanced Definitions

This section defines the new notion of generalized scattered context grammars. Then, it
introduces Post correspondence problem and its variants. Finally, it formalizes the two
derivation restrictions studied in this paper.

2.4.1 Generalized Scattered Context Grammar

In 1969, Greibach and Hopcroft proposed scattered context grammars (see [5]). This type
of grammar can rewrite several nonterminals appearing in the sentential form at the same
time. In fact, this is achieved by applying the sequence of context-free productions. We
generalize this by extending the left-hand sides of the productions to any nonterminal string.
Such grammar is called the generalized scattered context grammar.

Definition 28. A generalized scattered context grammar, a SCG for short, is a quadruple,
G = (V, T, P, S), where

1. V is a total alphabet,

2. T ⊆ V is an alphabet of terminals,

3. S ∈ (V − T) is the starting symbol, and

4. P ∈ ((V − T)+)i × (V ∗)i, where 1 ≤ i ≤ k for some k ≥ 1, is a finite relation.

N = V −T is the alphabet of nonterminals. Elements of P are called productions, so P
is referred to as the set of productions. Instead of ((u1, . . . , un), (v1, . . . , vn)) ∈ P , we can
write

(u1, . . . , un)→ (v1, . . . , vn) ∈ P

or
(u1, . . . , un)→ (v1, . . . , vn),

if P is grounded. If each production p = (u1, . . . , un) → (v1, . . . , vn) ∈ P satisfies |ui| = 1,
for all 1 ≤ i ≤ n, then G is an ordinary scattered context grammar. Set π(p) = n. If
π(p) ≥ 2, then p is said to be a context-sensitive production. If π(p) = 1, then p is said to
be context-free. (u1, . . . , un) is called left-hand side of the production, (v1, . . . , vn) is called
right-hand side.

Definition 29. Let G = (V, T, P, S) be a generalized scattered context grammar and
(α1, . . . , αn)→ (β1, . . . , βn) ∈ P , xi ∈ V ∗, for all 1 ≤ i ≤ n. Then, x0α1x1 . . . αnxn directly
derives x0β1x1 . . . βnxn in G, denoted as

x0α1x1 . . . αnxn ⇒ x0β1x1 . . . βnxn [(α1, . . . , αn)→ (β1, . . . , βn)],

or
x0α1x1 . . . αnxn ⇒ x0β1x1 . . . βnxn.

A relation ⇒∈ V ∗ × V ∗ is called a direct derivation. In other words, G makes a derivation
step from x0α1x1 . . . αnxn to x0β1x1 . . . βnxn according to (α1, . . . , αn)→ (β1, . . . , βn).

22

To denote that the derivation step was performed by G, we write

x0α1x1 . . . αnxn ⇒G x0β1x1 . . . βnxn.

A generalized scattered context grammar works in a similar way as a phrase-structure
grammar does. It takes its starting symbol as the current sentential form. Then, it subse-
quently selects productions which match the string being rewritten. This time, all strings
on the left-hand side of the production have to appear (non-overlapped and in the specified
order) in the current sentential form. The process finishes, when there is no production
available for application.

Definition 30. Let G = (V, T, P, S) be a generalized scattered context grammar. Then,

⇒n

denotes n-fold product (recall previous definitions) of ⇒. Moreover,

⇒+ and ⇒∗

denote the transitive closure of ⇒ and transitive and reflexive closure of ⇒, respectively.

We define the language generated by a generalized scattered context grammar in the
same way as in case of a phrase-structure grammar.

Definition 31. Let G = (V, T, P, S) be a generalized scattered context grammar. The
language of G, symbolically

L(G),

is defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}.

The following example demonstrates possible derivation of a single string in the gener-
alized scattered context grammar.

Example 10. Consider a generalized scattered context grammar, G = (V, {a, b, c}, P, S),
where

P = {S → ABC, (A,B,C)→ (aA, bB, cC), (A,B,C)→ (ε, ε, ε)}.

G generates the string aaaaabbbbbccccc by the following sequence of productions:

S ⇒ ABC [S → ABC]
⇒ aAbBcC [(A,B,C) → (aA, bB, cC)]
⇒ aaAbbBccC [(A,B,C) → (aA, bB, cC)]
⇒ aaaAbbbBcccC [(A,B,C) → (aA, bB, cC)]
⇒ aaaaAbbbbBccccC [(A,B,C) → (aA, bB, cC)]
⇒ aaaaaAbbbbbBcccccC [(A,B,C) → (aA, bB, cC)]
⇒ aaaaabbbbbccccc [(A,B,C) → (ε, ε, ε)]

If we examine G further, then L(G) = {anbncn : n ≥ 0}.

Generalized scattered context grammars, as well as ordinary scattered context gram-
mars, characterize the family of recursively enumerable languages, unless some additional
restriction is placed on the derivation of the sentential form.

23

2.4.2 Post Correspondence Problem

In 1946, Emil Post formulated an interesting undecidable problem in the field of formal
languages known as Post correspondence problem (see [11]).

Definition 32. Let E = {(u1, v1), . . . , (un, vn)}, where ui, vi ∈ T ∗, for all 1 ≤ i ≤ n. Then
E is an instance of Post correspondence problem. The solution to this problem is a sequence
of indices i1 . . . ik ∈ {1, . . . , n}∗, where 1 ≤ k ≤ K (K ≥ 1), such that

ui1 . . . uik = vi1 . . . vik .

The next example shows the solution of a simple instance of this problem.

Example 11. Let E = {(aba, a), (bbb, aaa), (aab, abab), (bb, babba)}. Then, the solution of
E is

x = 1431,

because
aba bb aab aba = ababbaababa = a babba abab a.

On the other side, if the instance didn’t contain the pair (bb, babba), then there would be
no solution at all.

Extended Post Correspondence Problem

Definition 33. For an alphabet T = {a1, . . . , an}, there is an extended Post correspondence
problem, E, defined as

E = ({(u1, v1), . . . , (ur, vr)}, (za1 , . . . , zan)),

where ui, vi, zaj ∈ {0, 1}∗, for each 1 ≤ i ≤ r, 1 ≤ j ≤ n. The solution of the extended
Post correspondence problem is a sequence s1 . . . slb1 . . . bk, where s1, . . . , sl ∈ {1, . . . , r},
b1, . . . , bk ∈ T and k, l ≥ 1, such that

vs1 . . . vsl
= us1 . . . usl

zb1 . . . zbk .

Now we define language of the extended Post correspondence problem.

Definition 34. Let E = ({(u1, v1), . . . , (ur, vr)}, (za1 , . . . , zan)) be an instance of extended
Post correspondence problem. The language represented by E is the set

L(E) = {b1 . . . bk ∈ T ∗ : exists s1, . . . , sl ∈ {1, . . . , r}, l ≥ 1,
vs1 . . . vsl

= us1 . . . usl
zb1 . . . zbk for some k ≥ 0}.

It is well known that for each recursively enumerable language, L, there is an extended
Post correspondence problem, E, such that L(E) = L (see Theorem 1 in [3]).

24

Example 12. Let E = ({(01, 0), (1, 1)}, (0a, 1b)) for an alphabet {a, b}. Then, the solution
of E is

x = 12b,

because
01 1 = 011 = 0 1 1b.

The language defined by E is
L(E) = {ε, b}.

2.4.3 Derivation Restrictions

The previous parts consider only the basic variants of a derivation, where it is sufficient to
match certain substrings in the sentential form against the left-hand side of the production.
Additionally, we can refine the relation (of the direct derivation) by proposing new criteria
which the sentential form has to satisfy.

Restriction on the Number of Occurrences (Context-free Grammars)

A restriction on the number of occurrences requires that all sentential forms contain at
most k nonterminals (for some k ≥ 1).

Definition 35. Let G = (V, T, P, S) be a context-free grammar, A → α ∈ P , x, y ∈ V ∗,
occur(V − T, xAy) ≤ m and occur(V − T, xαy) ≤ m, where m ≥ 1. Then, xAy directly
derives xαy with respect to the number of occurrences in G, denoted as

xAy m⇒ xαy [A→ α]

or
xAy m⇒ xαy.

In other words, G makes a derivation step from xAy to xαy according to A → α with
respect to m⇒.

Definition 36. Let G = (V, T, P, S) be a context-free grammar. Then,

m⇒k

denotes k-fold product (recall previous definitions) of m⇒. Moreover,

m⇒+ and m⇒∗

denote the transitive closure of m⇒ and transitive and reflexive closure of m⇒, respectively.

Definition 37. Let G = (V, T, P, S) be a context-free grammar. The language generated
by G in a m-limited way, symbolically

L(G,m),

is defined as
L(G,m) = {w ∈ T ∗ : S m⇒∗ w}.

Next, we define the two derivation restrictions discussed in this thesis.

25

Restriction on the Depth of Rewriting (SCG)

A restriction on the depth of rewriting requires that all productions are applied within the
finite prefix of the first continuous sequence of nonterminals in the sentential form.

Definition 38. Let G = (V, T, P, S) be a generalized scattered context grammar and k ≥ 1.
If there is (α1, . . . , αn) → (β1, . . . , βn) ∈ P , u = x0α1x1 . . . αnxn, and v = x0β1x1 . . . βnxn,
where

1. x0 ∈ T ∗N∗,

2. xi ∈ N∗, for all 0 < i < n,

3. xn ∈ V ∗ and

4. occur(x0α1x1 . . . αn, N) ≤ k.

Then, u directly derives v with respect to the depth of rewriting in G, denoted as

u k�⇒ v [(α1, . . . , αn)→ (β1, . . . , βn)]

or
u k�⇒ v.

In other words, G makes a derivation step from u to v according to (α1, . . . , αn) →
(β1, . . . , βn) with respect to k�⇒.

Definition 39. Let G = (V, T, P, S) be a generalized scattered context grammar. Then,

k�⇒n

denotes n-fold product (recall previous definitions) of k�⇒. Moreover,

k�⇒+ and k�⇒∗

denote the transitive closure of k�⇒ and transitive and reflexive closure of k�⇒, respectively.

Definition 40. Let G = (V, T, P, S) be a generalized scattered context grammar. The
language generated by G with respect to the depth of rewriting (k�⇒), symbolically

k−leftL(G,m),

is defined as
k−leftL(G,m) = {w ∈ T ∗ : S k�⇒∗ w}.

26

Restriction on the Number of Occurrences (SCG)

A restriction on the number of occurrences requires that all sentential forms produced
during the derivation of a string contain no more than k ≥ 1 blocks of nonterminals.
Optionally, the length of all blocks can be limited at the same time.

Definition 41. Let G = (V, T, P, S) be a generalized scattered context grammar and
m,h ≥ 1. W (m) denotes the set of all strings x ∈ V ∗ satisfying 1 given next. W (m,h)
denotes the set of all strings x ∈ V ∗ satisfying 1 and 2 given next.

1. x ∈ (T ∗(V − T)∗)mT ∗;

2. (y ∈ substring(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Definition 42. Consider a generalized scattered context grammar G = (V, T, P, S). Let
(α1, . . . , αn)→ (β1, . . . , βn) ∈ P , u = x0α1x1 . . . αnxn, and v = x0β1x1 . . . βnxn, where

1. x0 ∈ V ∗,

2. xi ∈ N∗, for all 0 < i < n, and

3. xn ∈ V ∗.

Then, u directly derives v with respect to the block of nonterminals in G, denoted as

u ◦⇒ v [(α1, . . . , αn)→ (β1, . . . , βn)]

or
u ◦⇒ v.

In other words, G makes a derivation step from u to v according to (α1, . . . , αn) →
(β1, . . . , βn) with respect to ◦⇒.

Definition 43. Let G = (V, T, P, S) be a generalized scattered context grammar, u, v ∈ V ∗,
and u ◦⇒ v in G. Then,

u m◦⇒ v if and only if u, v ∈W (m)

and
u h
m◦⇒ v if and only if u, v ∈W (m,h).

In other words, G makes a derivation step from u to v with respect to m◦⇒ (hm◦⇒).

Definition 44. Let G = (V, T, P, S) be a generalized scattered context grammar. Then,

◦⇒n (m◦⇒n, hm◦⇒n)

denotes n-fold product (recall previous definitions) of ◦⇒ (m◦⇒, h
m◦⇒). Moreover,

◦⇒+ (m◦⇒+, hm◦⇒+) and ◦⇒∗ (m◦⇒∗, hm◦⇒∗)

27

denote the transitive closure of ◦⇒ (m◦⇒, h
m◦⇒) and transitive and reflexive closure of ◦⇒

(m◦⇒, h
m◦⇒), respectively.

Definition 45. Let G = (V, T, P, S) be a generalized scattered context grammar. The
languages generated by G with respect to the number of occurrences (m◦⇒, h

m◦⇒), sym-
bolically

nonterL(G,m) and nonterL(G,m, h),

are defined as

nonterL(G,m) = {w ∈ T ∗ : S m◦⇒∗ w}
nonterL(G,m, h) = {w ∈ T ∗ : S h

m◦⇒∗ w}

Example Derivations

It is important to understand the derivation restrictions well in order to verify the results
presented in this work. That is the reason, why we present several examples of how the
derivation restrictions work ”in practice”.

Example 13. Consider the generalized scattered context grammar,

G = ({S,A,B,C}, {a, b, c}, P, S),

where
P = {S → ABC, (A,B,C)→ (AA,BB,CC), A→ a,B → b, C → c},

which generates language L(G) = {anbncn : n ≥ 1}.
An unrestricted derivation can produce

ABC ⇒ AABBCC,

while
ABC 2�6⇒ AABBCC,

because nonterminal C appears beyond the specified prefix length (2). Note that we can’t
improve the generative power by increasing the limit, because we always reach this limit
by applying the production (A,B,C)→ (AA,BB,CC) by a finite number of times.

An unrestricted derivation can also produce

AABBCC ⇒ AAbBCC,

but in the case of the restriction on the number of occurrences

AABBCC 1◦6⇒ AAbBCC,

because the maximum number of nonterminal blocks, which are allowed in the sentential
form at the same time, is 1, while the modified sentential form would contain 2 such blocks.
Note that this restriction doesn’t actually change the language generated by G.

Additionally,
ABC 3

1◦6⇒ AABBCC,

28

because the new sentential form contain a block of nonterminals which exceeds the specified
length (3).

Finally,
aAbBcC ◦6⇒ aAAbBBcCC,

because the symbols, which are being rewritten, do not appear in the same block of non-
terminals.

2.4.4 Language Families

The following definition introduces new language families which are related to the results
studied in this work.

Definition 46. Let CFGs denote the set of all context-free grammars and SCGs denote
the family of generalized scattered context grammars. We define these language families:

mCF = {L : L = L(G,m), G ∈ CFGs} for all m ≥ 0

k−leftSC = {L : L = k−leftL(G), G ∈ SCGs} for all k ≥ 0

nonterSC(m) = {L : L = nonterL(G,m), G ∈ SCGs} for all m ≥ 1

nonterSC(m,h) = {L : L = nonterL(G,m, h), G ∈ SCGs} for all m,h ≥ 1

29

Chapter 3

Results

This chapter presents the main results of this work. First, we prove that restricting the
derivation in a generalized scattered context grammar to the finite prefix decreases the
generative power of this model to the family of context-free languages.

Then, we investigate the case, in which a generalized scattered context grammar is
restricted on the finite number of blocks of nonterminals. We show that this restriction
leads to the family of recursively enumerable languages and thus it doesn’t reduce the
generative power at all.

Finally, we demonstrate that restricting a scattered context grammar to the sentential
forms with only the finite number of finite blocks of nonterminals reduces the generative
power to the family of context-free languages again.

30

3.1 Restriction on the Finite Prefix

This section proves that restricting all possible derivations to those, which occurs within
the first k (k ≥ 1) symbols of the first continuous block of nonterminals, decreases the
generative power of the generalized scattered context grammars to the family of context-
free languages.

3.1.1 Short Description

For a given k (k ≥ 1), we can see each sentential form as the string of the form

xαy,

where x ∈ T ∗, α ∈ (V − T)∗, y ∈ V ∗ and |α| ≤ k. Moreover, y starts with nonterminal in
those cases, where |α| = k, only. If k is a constant, which limits the length of the prefix,
then all possible productions can occur within α. This means that

xαy ⇒ xβy,

where β ∈ V ∗. Now, we can rewrite xβy as x′α′y′, where x′ ∈ T ∗ (x ∈ prefix(x′)),
α′ ∈ (V − T)∗, y′ ∈ V ∗ and |α′| ≤ k. Hence, we can rewrite α′ in the next step, and so on.

This process can be effectively simulated by an extended pushdown automaton, M ,
which works in the following way:

1. M pushes the starting symbol to its pushdown.

2. M matches all terminal symbols, which appear on the top of the stack, against the
input string until it reaches the first nonterminal.

3. M accepts, if the stack contains only the initial symbol.

4. M subsequently reads (at most k) nonterminals from the stack and records them in
its state.

5. M simulates the derivation in the generalized scattered context grammar on the
limited prefix using information in its state

6. M continues with 2.

The next part contains the formal proof of the statement that uses the idea mentioned
above.

3.1.2 Formal Proof

Theorem 1 Let k be a positive integer. Then, CF = k−leftSC.

Proof. Let G = (V, T, P, S) be a generalized scattered context grammar. Consider the
following pushdown automaton

M = ({q, r, f} ∪ {[γ, s] : γ ∈ N∗, |γ| ≤ k, s ∈ {q, r}}, T, V ∪ {Z}, δ, [S, q], Z, {f}),

where Z 6∈ V , and δ contains rules of the following forms:

31

1. [β0A1β1 . . . Anβn, q] → (β0α1β1 . . . αnβn)R[ε, r]
if (A1, . . . , An)→ (α1, . . . , αn) ∈ P ; βi ∈ N∗, 0 ≤ i ≤ n;

2. A[A1 . . . An, r] → [A1 . . . AnA, r] if n < k, A ∈ N ;
3. [A1 . . . Ak, r] → [A1 . . . Ak, q];
4. a[A1 . . . An, r] → a[A1 . . . An, q] if n < k, a ∈ T ;
5. Z[A1 . . . An, r] → Z[A1 . . . An, q] if n < k;
6. a[ε, r]a → [ε, r] if a ∈ T ;
7. Z[ε, r] → f .

We prove that L(M) = k−leftL(G).

(⊆:) By induction on the number of rules constructed in 1 used in a sequence of moves, we
prove the following claim.

Claim 1.1 If ZαR[β0A1β1 . . . Anβn, q]w ⇒∗ f , then β0A1β1 . . . Anβnα k�⇒∗ w.

Proof. Basis: Only one rule constructed in 1 is used. Then,

ZαR[β0A1β1 . . . Anβn, q]uw ⇒ Z(β0α1β1 . . . αnβnα)R[ε, r]uw ⇒∗ f ,

where (A1, . . . , An) → (α1, . . . , αn) ∈ P , n ≤ k, and β0α1β1 . . . αnβnα ∈ T ∗. Therefore,
β0 = · · · = βn = ε, and α1 . . . αnα = uw. Then,

A1 . . . Anw k�⇒ uw.

Induction hypothesis: Suppose that the claim holds for all sequences of moves containing
no more than i rules constructed in 1.

Induction step: Consider a sequence of moves containing i+1 rules constructed in 1. Then,

ZαR[β0A1β1 . . . Alβl, q]w
⇒ ZαR(β0α1β1 . . . αlβl)R[ε, r]w (by a rule constructed in 1)
⇒∗ Zα′[ε, r]w′ (by rule constructed in 6)
⇒∗ Zα′′[β′0B1β

′
1 . . . Bmβ

′
m, r]w

′ (by rule constructed in 2)
⇒ Zα′′[β′0B1β

′
1 . . . Bmβ

′
m, q]w

′ (by a rule constructed in 3, 4, or 5)
⇒∗ f

where α′ ∈ V ∗N ∪ {ε}, v ∈ T ∗, α′vR = αR(β0α1β1 . . . αlβl)R, and vw′ = w. Then, by the
production (A1, . . . , Al)→ (α1, . . . , αl),

β0A1β1 . . . Alβlα k�⇒ β0α1β1 . . . αlβlα,

where |β0A1β1 . . . Alβl| ≤ k,

β0α1β1 . . . αlβlα = v(α′)R = vβ′0B1β
′
1 . . . Bmβ

′
m(α′′)R,

and, by the induction hypothesis,

vβ′0B1β
′
1 . . . Bmβ

′
m(α′′)R k�⇒∗ vw′.

Hence, the inclusion holds. M

(⊇:) Next, we prove the following claim.

32

Claim 1.2 If β k�⇒∗ w, where β ∈ NV ∗, then ZβR[ε, r]w ⇒∗ f .

Proof. By induction on the length of derivations.

Basis: Let A1 . . . Anw k�⇒ α1 . . . αnw (α1 . . . αn = α), where αw ∈ k−leftL(G), and
(A1, . . . , An) → (α1, . . . , αn) ∈ P , 1 ≤ n ≤ k. M simulates this derivation step as fol-
lows.

ZwRAn . . . A1[ε, r]αw
⇒n ZwR[A1 . . . An, r]αw (by rule constructed in 2)
⇒ ZwR[A1 . . . An, q]αw (by a rule constructed in 4 or 5)
⇒ ZwRαR[ε, r]αw (by a rule constructed in 1)
⇒|αw| Z[ε, r] (by rule constructed in 6)
⇒ f (by the rule constructed in 7)

Induction hypothesis: Suppose that the claim holds for all derivations of length i or less.

Induction step: Consider a derivation of length i+ 1. Let

β0B1β1 . . . Blβlγ k�⇒ β0α1β1 . . . αlβlγ k�⇒i ϕw,

where ϕw ∈ k−leftL(G), β0B1β1 . . . Blβl ∈ N+, and either |β0B1β1 . . . Blβl| = k, or
|β0B1 . . . Blβl| < k, β0α1β1 . . . αlβlγ = ϕψ, where ϕ ∈ T ∗, ψ ∈ NV ∗ ∪ {ε}, and γ ∈
TV ∗ ∪ {ε}. Then,

Z(β0B1β1 . . . Blβlγ)R[ε, r]ϕw
⇒∗ ZγR[β0B1β1 . . . Blβl, r]ϕw (by rule constructed in 2)
⇒ ZγR[β0B1β1 . . . Blβl, q]ϕw (by a rule constructed in 3 or 4)
⇒ Z(ϕψγ)R[ε, r]ϕw (by a rule constructed in 1)
⇒∗ Z(ψγ)R[ε, r]w (by a rule constructed in 6)
⇒∗ f (by the induction hypothesis)

Hence, the claim holds. M

Now, if
S ⇒ uα⇒∗ uw,

where u ∈ T ∗ and α ∈ NV ∗, then

Z[S, q]uw ⇒ Z(uα)R[ε, r]uw ⇒∗ ZαR[ε, r]w ⇒∗ f ,

by rules constructed in 1 and 6 and the previous claim. For α = ε,

Z[S, q]u⇒ ZuR[ε, r]u⇒∗ f .

Hence, the other inclusion holds. �

33

3.2 Restriction on the Finite Number of Blocks

This section demonstrates that by restricting the sentential forms (which appear during the
derivation in the generalized scattered context grammars) on the strings that contain only
the finite number ob nonterminal blocks, the generative power remains unchanged.

Additionally, we show that it is enough to consider only the derivations which contain
no more than one such block to generate the family of recursively enumerable languages as
well.

3.2.1 Short Description

We can prove that RE = nonterSC(1) by using results achieved in [3]. First, the problem
is formulated by means of extended Post correspondence problem, which also characterize
type-0 languages. Now, consider the instance E (of the problem) over the alphabet Σ:

E = ({(u1, v1), . . . , (ur, vr)}, (za1 , . . . , zan)),

which has the solution of the form

s1 . . . slb1 . . . bk.

We create a scattered context grammar, G, which, in the first phase, generates the string

x = α$$βγ,

where α, β ∈ {0, 1}∗, γ ∈ Σ∗. Then, it verifies that x is of the form

zbk . . . zb1usl
. . . us1$$vs1 . . . vsl

b1 . . . bk

and that
us1 . . . usl

zb1 . . . zbk = vs1 . . . vsl
.

During the verification of the generated string, G erases all nonterminals and if the verifi-
cation succeeds, it generates the string

b1 . . . bk.

All sentential forms in such derivation contain only a single continuous block of nonterminals
which confirms the validity of the statement in question.

3.2.2 Formal Proof

Theorem 2 RE = nonterSC(1).

Proof. Let L ⊆ {a1, . . . , an}∗ be a recursively enumerable language. There is an extended
Post correspondence problem,

E = ({(u1, v1), . . . , (ur, vr)}, (za1 , . . . , zan)),

where ui, vi, zaj ∈ {0, 1}∗, for each 1 ≤ i ≤ r, 1 ≤ j ≤ n, such that L(E) = L; that is,
w = b1 . . . bk ∈ L if and only if w ∈ L(E). Set V = {S,A, 0, 1, $} ∪ T . Define the SCG
G = (V, T, P, S) with P constructed as follows:

34

1. For every a ∈ T , add

(a) (S)→ ((za)RSa), and

(b) (S)→ ((za)RAa) to P ;

2. (a) For every (ui, vi) ∈ E, 1 ≤ i ≤ r, add (A)→ ((ui)RAvi) to P ;

(b) Add (A)→ ($$) to P ;

3. Add

(a) (0, $, $, 0)→ ($, ε, ε, $),

(b) (1, $, $, 1)→ ($, ε, ε, $), and

(c) ($)→ (ε) to P .

Claim 2.1 Let w1, w2 ∈ {0, 1}∗. Then, w1$$w2 ⇒∗G ε if and only if w1 = (w2)R.

Proof. If: Let w1 = (w2)R = b1 . . . bk, for some k ≥ 0. By productions (3a) and (3b)
followed by two applications of (3c), we obtain

bk . . . b2b1$$b1b2 . . . bk ⇒ bk . . . b2$$b2 . . . bk
⇒∗ bk$$bk
⇒ $$⇒ $⇒ ε.

Therefore the if-part of the claim holds.

Only if: Suppose that |w1| ≤ |w2|. We demonstrate that

w1$$w2 ⇒∗G ε implies w1 = (w2)R

by induction on k = |w1|.

Basis: Let k = 0. Then, w1 = ε and the only possible derivation is

$$w2 ⇒ $w2 [(3c)]⇒ w2 [(3c)].

Hence, we can derive ε only if w1 = (w2)R = ε.

Induction Hypothesis: Suppose that the claim holds for all w1 satisfying |w1| < k for some
k ≥ 0.

Induction Step: Consider w1a$$bw2 with a 6= b, a, b ∈ {0, 1}. If w1 = w11bw12, w11, w12 ∈
{0, 1}∗, then either (3a) or (3b) can be used. In either case, we obtain

w1a$$bw2 ⇒ w11$w12aw21$w22,

where bw2 = w21bw22, w21, w22 ∈ {0, 1}∗, and w12aw21 ∈ N+ cannot be removed by any
production from the sentential form. The same is true when w2 = w′21aw

′
22, w′21, w

′
22 ∈

{0, 1}∗. Therefore, the derivation proceeds successfully only if a = b. Thus,

w1a$$bw2 ⇒ w1$$w2 ⇒∗ ε,

and from the induction hypothesis,

w1 = (w2)R.

35

Analogously, the same result can be proved for |w1| ≥ |w2| which implies that the only-if
part of the claim holds.

Therefore, the claim holds. M

Examine the introduced productions to see that G always generates b1 . . . bk ∈ L(E) by
a derivation of this form:

S ⇒ (zbk)RSbk
⇒ (zbk)R(zbk−1

)RSbk−1bk
⇒∗ (zbk)R . . . (zb2)RSb2 . . . bk
⇒ (zbk)R . . . (zb2)R(zb1)RAb1b2 . . . bk
⇒ (zbk)R . . . (zb1)R(usl

)RAvsl
b1 . . . bk

⇒∗ (zbk)R . . . (zb1)R(usl
)R . . . (us1)RAvs1 . . . vsl

b1 . . . bk
⇒ (zbk)R . . . (zb1)R(usl

)R . . . (us1)R$$vs1 . . . vsl
b1 . . . bk

= (us1 . . . usl
zb1 . . . zbk)R$$vs1 . . . vsl

b1 . . . bk
⇒∗ b1 . . . bk.

Productions introduced in steps 1 and 2 of the construction find nondeterministically the
solution of the extended Post correspondence problem which is subsequently verified by
productions from step 3. Therefore, w ∈ L if and only if w ∈ L(G) and the theorem holds.
�

36

3.3 Restriction on the Blocks of the Finite Length

At last, we prove that by permitting only the sentential forms, which contain only non-
terminal blocks of finite length, the generative power of the generalized scattered context
grammars decreases (unlike previous result) to the family of context-free languages.

Moreover, if we limit the number of these blocks at the same time, we obtain a hierarchy
on the class of context-free languages.

3.3.1 Short Description

To show that mCF = nonterSC(m,h), we can encode each block of nonterminals into the
single nonterminal:

xαy x〈α〉y,

where x, y ∈ V ∗, α ∈ (V − T)+. Then, we can simulate the derivation of the generalized
scattered context grammar by the productions performed using a context-free grammar.

Note that the number of nonterminal blocks in the sentential forms generated by the
generalized scattered context grammar is equal to the number of nonterminals appearing
in the corresponding sentential forms generated by the equivalent context-free grammar.

3.3.2 Formal Proof

Theorem 3 Let m and h be positive integers. Then, mCF = nonterSC(m,h).

Proof. mCF ⊆ nonterSC(m,h), because each context-free grammar is the special case of the
generalized scattered context grammar. This is true even in the case, where such restriction
applies.

We prove that nonterSC(m,h) ⊆ mCF . For the purpose of this part, we propose an
additional definition.

Definition 47. Let α = x0y1x1. . .ynxn, where xi ∈ T ∗, yi ∈ N+, for 0 ≤ i ≤ n, and for all
0 < i < n, xi 6= ε. Then,

f(α) = x0〈y1〉x1 . . . 〈yn〉xn,

where 〈yi〉 is a new nonterminal, for all 0 ≤ i ≤ n.

LetGSC = (V, T, P, S) be a generalized scattered context grammar. Introduce a context-
free grammar GCF = (V ′, T, P ′, 〈S〉), where V ′ = {〈γ〉 : γ ∈ N∗, 1 ≤ |γ| ≤ h} ∪ T and P ′

is constructed as follows:

1. for each γ = x0α1x1 . . . αnxn, where xi ∈ N∗, αi ∈ N+, 1 ≤ |γ| ≤ h, and

(α1, . . . , αn)→ (β1, . . . , βn) ∈ P ,

add
〈γ〉 → f(x0β1x1 . . . βnxn)

to P ′.

37

Claim 3.1 Let S h
m◦⇒k ω in GSC , where ω ∈ V ∗, k ≥ 0. Then, 〈S〉 m⇒k f(ω) in GCF .

Proof. By induction on k = 0, 1,

Basis: Let k = 0, thus S h
m◦⇒0 S in GSC . Then, 〈S〉 m⇒0 〈S〉 in GCF . As f(S) = 〈S〉, the

basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 ≤ m ≤ k, where k is a non-
negative integer.

Induction step: Let
S h
m◦⇒k φγψ h

m◦⇒ φγ′ψ

in GSC , and the last production applied during the derivation is

(α1, . . . , αn)→ (β1, . . . , βn),

where φ ∈ V ∗T∪{ε}, γ = x0α1x1 . . . αnxn, ψ ∈ TV ∗∪{ε}, γ′ = x0β1x1 . . . βnxn, αi, xi ∈ N∗,
and βi ∈ V ∗. By the induction hypothesis,

〈S〉 m⇒k f(φγψ).

By the definition of f , φ, and ψ, f(φγψ) = f(φ)〈γ〉f(ψ). Hence, we can use the production

〈γ〉 → f(γ′) ∈ P ′

introduced in 1 in the construction to obtain

f(φ)〈γ〉f(ψ) m⇒ f(φ)f(γ′)f(ψ).

By the definition of f , φ, and ψ, f(φ)f(γ′)f(ψ) = f(φγ′ψ). As a result,

〈S〉 m⇒k f(φ)〈γ〉f(ψ) m⇒ f(φγ′ψ)

and, therefore, 〈S〉 m⇒k+1 f(φγ′ψ) and the claim holds for k + 1. M

Claim 3.2 Let 〈S〉 m⇒k ω in GCF , where ω ∈ V ′∗, k ≥ 0. Then, S h
m◦⇒k f−1(ω) in GSC .

Proof. By induction on k = 0, 1,

Basis: Let k = 0, thus 〈S〉 m⇒0 〈S〉 in GCF . Then S h
m◦⇒0 S in GSC . As f−1(〈S〉) = S,

the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 ≤ m ≤ k, where k is a non-
negative integer.

Induction step: Let
〈S〉 m⇒k φ〈γ〉ψ m⇒ φγ′ψ

in GCF , and the last production applied during the derivation is

〈γ〉 → γ′,

38

where φ ∈ V ∗T ∪ {ε}, γ = x0α1x1 . . . αnxn, ψ ∈ TV ∗ ∪ {ε}, γ′ = f(x0β1x1 . . . βnxn),
αi, xi ∈ N∗, and βi ∈ V ∗. By the induction hypothesis,

S h
m◦⇒k f−1(φ〈γ〉ψ).

By the definition of f , φ, and ψ, f−1(φ〈γ〉ψ) = f−1(φ)γf−1(ψ). There exists

(α1, . . . , αn)→ (β1, . . . , βn) ∈ P

by 1, thus
f−1(φ)γf−1(ψ) h

m◦⇒ f−1(φ)f−1(γ′)f−1(ψ).

By the definition of f , φ, and ψ, f−1(φ)f−1(γ′)f−1(ψ) = f−1(φγ′ψ). As a result

S h
m◦⇒k f−1(φ)γf−1(ψ) h

m◦⇒ f−1(φγ′ψ)

and, therefore, S h
m◦⇒k+1 f−1(φγ′ψ) and the claim holds for k + 1. M

Hence, the theorem holds. �

39

Chapter 4

Conclusion

This work extends the notion of scattered context grammars by the productions containing
the string of several nonterminals on their left-hand sides instead of a single nonterminal.
Next, we study two types of derivation restrictions, which are placed on the sentential forms
during the derivation.

By restricting a generalized scattered context grammar to the productions, which are
applied in the finite prefix of the first block of nonterminals appearing in the sentential
form, we decrease the generative power of this model to the family of context-free languages.
This fact is demonstrated using a constructive proof (section 3.1), which shows that it is
possible to simulate a restricted derivation in a scattered context grammar by an equivalent
pushdown automaton.

On the other hand, the proof in the section 3.2 shows that any recursively enumerable
language can be generated by a scattered context grammar which is restricted only to the
sentential forms which contain no more than one continuous block of nonterminals. The
previous result, presented by Geffert (see [3]), places an equivalence between the class of
recursively enumerable languages and the class of languages that can be generated by an
extended Post correspondence problem. Additionally, we show that it is possible to create a
scattered context grammar, which can find any solution to a given instance of such problem
(in a restricted way), thus it generates the same language. Hence, this restriction doesn’t
modify the generative power at all.

The last result (section 3.3) proves that by permitting the sentential forms containing
nonterminal blocks of a finite length only, the generative power of the generalized scat-
tered context grammars decreases to the family of context-free languages. This fact is
demonstrated by a construction of an equivalent context-free grammar, which simulates
the restricted derivation in a scattered context grammar. Moreover, if we allow only the
finite number of these blocks, we obtain an infinite hierarchy on the family of context free
languages.

The thesis, as a whole, presents some of the possible restrictions of the sentential forms
and shows certain techniques which are useful for establishing the generative power of
the restricted models. We show that by using these restrictions the generative power of
scattered context grammars decreases to the family of context-free languages or it remains
the same in some cases.

40

4.1 Open problems

This work shows that the restricted versions of scattered context grammars characterize
languages, which are strictly context-free, or they fall into the family of recursively enu-
merable languages. Are there other restrictions, which lead to the class of languages that
lies between the families of recursively enumerable and context-free languages?

On the other hand, these restrictions can be placed on the different models. What is
the generative power of the grammar systems (see [11]) restricted in this way? Is it the
same as in the case of generalized scattered context grammars?

41

Bibliography

[1] B. S. Baker. Context-sensitive grammars generating context-free languages. In
M. Nivat, editor, Automata, Languages and Programming, pages 501–506.
North-Holland, Amsterdam, 1972.

[2] R. V. Book. Terminal context in context-sensitive grammars. SIAM Journal of
Computing, 1:20–30, 1972.

[3] V. Geffert. Context-free-like forms for the phrase-structure grammars. In M. Chytil,
L. Janiga, and V. Koubek, editors, Mathematical Foundations of Computer Science,
volume 324 of Lecture Notes in Computer Science, pages 309–317. Springer-Verlag,
1988.

[4] S. Ginsburg and S. Greibach. Mappings which preserve context-sensitive languages.
Information and Control, 9:563–582, 1966.

[5] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Computer and
System Sciences, 3:233–247, 1969.

[6] T. Masopust, A. Meduna, and J. Šimáček. Two power-decreasing derivation
restrictions in generalized scattered context grammars (to appear). Acta Cybernetica,
2008(1):1–11, 2008.

[7] G. Matthews. A note on symmetry in phrase structure grammars. Information and
Control, 7:360–365, 1964.

[8] G. Matthews. Two-way languages. Information and Control, 10:111–119, 1967.

[9] A. Meduna. A trivial method of characterizing the family of recursively enumerable
languages by scattered context grammars. EATCS Bulletin, pages 104–106, 1995.

[10] A. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag,
London, 2000.

[11] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1.
Springer-Verlag, Berlin, 1997.

42

