
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

PREFIX RESTRICTION OF REGULATED GRAMMAR
SYSTEMS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE FILIP KONEČNÝ
AUTHOR

BRNO 2008

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

PREFIXOVÉ OMEZENÍ ŘÍZENÝCH GRAMATICKÝCH
SYSTÉMŮ
PREFIX RESTRICTION OF REGULATED GRAMMAR SYSTEMS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE FILIP KONEČNÝ
AUTHOR

VEDOUCÍ PRÁCE prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2008

Abstrakt
Tato práce studuje gramatické systémy, jejichž komponenty použ́ıvaj́ı pravidla, která maj́ı
na levé straně ne jeden neterminál, ale řetězec neterminál̊u. Práce u těchto gramatických
systémů zavád́ı tři omezeńı derivace. Prvńı vyžaduje, aby k derivaci v každé větné formě
došlo v rámci prvńıch l symbol̊u v prvńım spojitém bloku neterminál̊u. Druhé omezeńı
definuje derivaci pro větné formy, které obsahuj́ı nejvýše m spojitých blok̊u neterminál̊u.
Třet́ı omezeńı rozšǐruje druhé o podmı́nku, že každý takový blok může být nejvýše délky
h. Hlavńım výsledkem této práce jsou d̊ukazy o zmenšeńı generativńı śıly gramatických
systémů u dvou z těchto omezeńı.

Kĺıčová slova
ř́ızené gramatické systémy, omezeńı derivace, prefixové omezeńı, generativńı śıla

Abstract
This thesis studies grammar systems whose components use sequences of productions whose
left-hand sides are formed by nonterminal strings, not just single nonterminals. It introduces
three restrictions on the derivations in these grammar systems. The first restriction requires
that all rewritten symbols occur within the first l symbols of the first continuous block of
nonterminals in the sentential form during every derivation step. The second restriction
defines derivations over sentential forms containing no more than m continuous blocks of
nonterminals. The third restriction extends the second in the way that each sequence of
nonterminals must be of length h or less. As its main result, the thesis demonstrates that
two of these restrictions decrease the generative power of grammar systems.

Keywords
regulated grammar systems, derivation restriction, prefix restriction, generative power

Citace
Filip Konečný: Prefix Restriction of Regulated Grammar Systems, diplomová práce, Brno,
FIT VUT v Brně, 2008

Prefix Restriction of Regulated Grammar Systems

Declaration
I hereby declare that this thesis, apart from the help recognised, is my own work. Informa-
tion taken from other sources and assistance received are duly acknowledged.

. .
Filip Konečný
May 15, 2008

Acknowlegements
This thesis is based on an upcoming paper which has been written jointly with prof. RNDr.
Alexander Meduna, CSc., Mgr. Tomáš Masopust, Ph.D. and Jǐŕı Šimáček, and from whose
advices and recommendations I have benefited greatly. In particular, I thank prof. RNDr.
Alexander Meduna, CSc. for his support during his supervision of this thesis.

c© Filip Konečný, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Formal Languages Theory . 4

2.1.1 Basic Definitions . 4
2.1.2 Chomsky Hierarchy . 6
2.1.3 State Languages . 10

2.2 Selected Proof Techniques . 13
2.2.1 Mathematical Induction . 13
2.2.2 Proving Sets Equivalences . 13
2.2.3 Proofs of Equal Descriptional Power 14

3 Derivation Restrictions of Ginsburg Grammars 15
3.1 Prefix Restriction . 15
3.2 Restrictions on Number of Nonterminal Blocks 15
3.3 Further Definitions . 16

4 Grammar Systems 17
4.1 Grammar Systems . 17
4.2 Unregulated Grammar Systems . 19
4.3 Regulated Grammar Systems . 19
4.4 Language Families . 20

5 Results 21
5.1 Prefix Restriction . 21

5.1.1 Study of the t-mode . 21
5.1.2 Study of Other Derivation Modes . 27

5.2 Restriction on Number of Nonterminal Blocks 29
5.3 Restriction on Number of Nonterminal Blocks of Limited Length 30

6 Conclusion 34

1

Chapter 1

Introduction

Grammar systems which use type-0 components have the generative power of recursively
enumerable languages. In this thesis, three closely related derivation restrictions of grammar
systems are discussed. To explain these restrictions, let l be a constant. The first restriction
requires that all rewritten symbols occur within the first l symbols of the first continuous
block of nonterminals in the current sentential form during every derivation step. The
second restriction defines derivations over sentential forms containing no more than m
continuous blocks of nonterminals. The third restriction extends the second in the way
that each sequence of nonterminals must be of length h or less.

As its main result, this thesis demonstrates that the first and the third restrictions decrease
the generative power of grammar systems to the generative power of context-free grammars
and state grammars, respectively.

This result concerning the derivation restrictions is of some interest when compared to ana-
logical restrictions in terms of other grammars working in a context-sensitive way. Over its
history, formal language theory has studied many restrictions placed on the way grammars
derive sentential forms and on the forms of productions. In [9], Matthews studied deriva-
tions of grammars in the strictly leftmost (rightmost) way—that is, rewritten symbols are
preceded (succeeded) only by terminals in the sentential form during the derivation. Later,
in [10], he combined both approaches—leftmost and rightmost derivations—so that any sen-
tential form during the derivation is of the form xWy, where x and y are terminal strings,
W is a nonterminal string, and a production is applicable only to a leftmost or rightmost
substring of W . In both cases, these restrictions result into decreasing the generative power
of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other authors
studied the forms of productions. In [2], Book proved that if the left-hand side of any
non-context-free production contains besides exactly one nonterminal only terminals, then
the generative power of type-0 grammars decreases to the power of context-free grammars.
He also proved that if the left-hand side of any non-context-free production has as its left
context a terminal string and the left context is at least as long as the right context, then
the generative power of type-0 grammars decreases to the power of context-free grammars,
too. In [6], Ginsburg and Greibach proved that if the left-hand side of any production
is a nonterminal string and the right-hand side contains at least one terminal, then the

2

generated language is context-free. Finally, in [1], Baker proved a stronger result. This
result says that if any left-hand side of a production either has, besides terminals, only one
nonterminal, or there is a terminal substring, β, on the right-hand side of the production
such that the length of β is greater than the length of any terminal substring of the left-
hand side of the production, then the generative power of type-0 grammars decreases to the
power of context-free grammars. For more details, see page 198 in [12] and the literature
cited there.

This thesis is structured as follows. In the second chapter, we begin with definitions of
concepts of formal languages theory. In the third chapter, we formally introduce derivation
restrictions studied in the thesis. The fourth chapter deals with notions related to grammar
systems. In chapter five, we present the main results of study of the generative power of
restricted grammar systems. In chapter six, the thesis concludes by a discussion of its
findings.

3

Chapter 2

Preliminaries

In this chapter, definitions of formal concepts which are used in subsequent chapters are
given.

2.1 Formal Languages Theory

This section introduces basic notions of formal language theory. Definitions and the notation
are based on [11] where more information can be found.

2.1.1 Basic Definitions

As the first concept, an alphabet is defined. Informally, it is a collection of symbols.

Definition 2.1. An alphabet is a finite, non-empty set of elements called symbols.

Cardinality of an alphabet denotes the number of elements in it.

Definition 2.2. For an alphabet, Σ, |Σ| denotes the cardinality of Σ. The cardinality of
an alphabet is the number of symbols in Σ.

A sequence of symbols forms a word. The empty word, denoted by ε, is the word that
contains no symbols. The inductive definition of a word follows.

Definition 2.3. Let Σ be an alphabet.

1. ε is a word over Σ

2. if x is a word over Σ and a ∈ Σ, then xa is a word over Σ

The length of a word is the number of all symbols in the word. Formal definition follows.

Definition 2.4. Let x be a word over an alphabet Σ. The length of x, |x|, is defined as
follows.

4

1. if x = ε then |x| = 0

2. if x = a1 . . . an for some n ≥ 1, then |x| = n

The reversal of a word is a word written in the reverse order.

Definition 2.5. Let x be a word over an alphabet Σ. The reversal of x, xR, is defined as
follows.

1. if x = ε then xR = ε

2. if x = a1 . . . an for some n ≥ 1, then xR = an . . . a1

Next, notions of prefix, suffix and subword are defined.

Definition 2.6. Let x and y be two words over an alphabet Σ. Then, x is a prefix of y if
there exists a word, z, over Σ such that xz = y. Moreover, if x 6∈ {ε, y}, then x is a proper
prefix of y. Analogically, x is a suffix of y if there exists a word, z, over Σ such that zx = y.
If x 6∈ {ε, y}, then x is a proper suffix of y. Finally, x is a subword of y if there exist words,
z and z′, over Σ such that zxz′ = y. If x 6∈ {ε, y}, then x is a proper subword of y.

Now, sets of all prefixes, suffixes and subwords of a given word are defined.

Definition 2.7. Let y be a word. Then,

• pref(y) = {x : x is a prefix of y}

• suf(y) = {x : x is a suffix of y}

• sub(y) = {x : x is a subword of y}

Next, we define the occur function.

Definition 2.8. Let Σ be an alphabet. For a string w ∈ Σ∗ and W ⊆ Σ,

• occur(w,W) denotes the number of occurrences of symbols from W in w

As a next notion, a language is defined. For this purpose, the set of all words over an
alphabet has to be defined. Informally, a language is an arbitrary set of words over a given
alphabet.

Definition 2.9. For an alphabet, Σ, Σ∗ denotes the set of all words over Σ. Algebraically,
Σ∗ represents the free monoid generated by Σ under the operation of concatenation. The
identity of Σ∗ is denoted by ε. Set Σ+ = Σ∗ − {ε}. Algebraically, Σ+ is thus the free
semigroup generated by Σ.

Definition 2.10. Let Σ be an alphabet. Every subset L ⊆ Σ∗ is a language over Σ.

Next, basic operations on languages are defined, namely union, intersection, difference and
complement.

5

Definition 2.11. Let L1 and L2 be languages. Then,

• L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}

• L1 ∩ L2 = {x : x ∈ L1 and x ∈ L2}

• L1 \ L2 = {x : x ∈ L1 and x 6∈ L2}

Definition 2.12. Let L be a language over an alphabet Σ. Its complement, L̄, is

• L̄ = Σ∗ \ L

Now, we generalize notions of prefix, suffix and subword to languages:

Definition 2.13. Let Σ be an alphabet. For Λ ⊆ Σ∗,

• pref(Λ) = {w ∈ pref(w′) : w′ ∈ Λ}

• suf(Λ) = {w ∈ suf(w′) : w′ ∈ Λ}

• sub(Λ) = {w ∈ sub(w′) : w′ ∈ Λ}

2.1.2 Chomsky Hierarchy

This section describes some models related to the most famous classification of languages,
Chomsky hierarchy. All models that generate languages of Chomsky language classes and
some models that recognize languages of Chomsky language classes are defined.

Grammars of Chomsky Hierarchy

Firstly, definitions of a Chomsky grammar, a derivation relation and a language generated
by a Chomsky grammar are given.

Definition 2.14. A Chomsky grammar is a quadruple G = (N,T, S, P), where

• N is an alphabet of nonterminals,

• T is an alphabet of terminals such that T ∩N = ∅,

• S ∈ N is the start nonterminal,

• P ⊆ (N ∪ T)+ × (N ∪ T)∗ is a finite set of productions.

Usually, we write α→ β instead of (α, β) ∈ P .

Definition 2.15. LetG be a Chomsky grammar. If α→ β ∈ P , u = x0αx1, and v = x0βx1,
where x0, x1 ∈ (N ∪ T)∗, then

u⇒ v [α→ β]

in G or, simply, u⇒ v. We say that G makes a derivation step from u to v.

6

Definition 2.16. Let G be a Chomsky grammar. The language of G is denoted by L(G)
and defined as

L(G) = {w ∈ T ∗ : S ⇒∗ w}.

Chomsky grammars can be classified into four basic groups by restrictions placed on their
productions:

• Any Chomsky grammar is a type-0 (or phrase-structure) grammar.

• A grammar is a type-1 (or context-sensitive) grammar if all its productions are of the
form α → β where |α| ≥ |β|; with the exception of a rule S → ε, where S does not
appear on the right-hand side of any production.

• A grammar is a type-2 (or context-free) grammar if all its productions are of the form
α→ β where α ∈ N .

• A grammar is a type-3 (or regular) grammar if all its productions are of the form
α→ β where α ∈ N and β ∈ TN ∪ T ∪ {ε}.

Notions of recursively enumerable, context-sensitive, context-free and regular languages are
presented in the following definition:

Definition 2.17.

• A language, L, is a recursively enumerable language if and only if L = L(G), where G
is a phrase structure grammar. Let RE denote the family of recursively enumerable
languages.

• A language, L, is a context-sensitive language if and only if L = L(G), where G is a
context-sensitive grammar. CS denote the family of context-sensitive languages.

• A language, L, is a context-free language if and only if L = L(G), where G is a
context-free grammar. CF denote the family of context-free languages.

• A language, L, is a regular language if and only if L = L(G), where G is a regular
grammar. REG denote the family of regular languages.

The following theorem shows inclusions among REG, CF, CS and RE language families.
Proof can be found e.g. in [11].

Theorem 2.18.
REG ⊂ CF ⊂ CS ⊂ RE

This thesis deals with various restrictions which study derivations within continuous blocks
of nonterminal symbols. For these purposes, we use a modified type of grammars, Ginsburg
grammars, which have been proved to have the same generative power as phrase-structure
grammars [5]. Formal definition of a Ginsburg grammar follows:

Definition 2.19. A Chomsky grammar is a Ginsburg grammar if each production α→ β
satisfies α ∈ N+.

7

Automata of Chomsky Hierarchy

Now, we present some models for recognition of words of a given language.

Firstly, a finite automaton, which is a recognizer of regular languages, is defined.

Definition 2.20. A finite automaton is a quintuple M = (Q,Σ, δ, q0, F), where

• Q is a finite set of states,

• Σ is an alphabet,

• q0 ∈ Q is the initial state,

• δ ⊆ Q× Σ ∪ {ε} ×Q is a finite set of rules,

• F ⊆ Q is a set of final states.

Usually, we write pa→ q ∈ δ instead of (p, a, q) ∈ δ.

Definition 2.21. Let M be a finite automaton. A configuration of M is any word from
QΣ∗. For any configuration qay, where q ∈ Q, y ∈ Σ∗ and any qa → p ∈ δ, M makes
a move from configuration qay to configuration py according to qa→ p, written as

qay ⇒ py [qa→ p],

or, simply, qay ⇒ py.

Definition 2.22. Let M be a finite automaton. If w ∈ Σ∗ and q0w ⇒∗ f , where f ∈ F ,
then w is accepted by M , and q0w ⇒∗ f is an acceptance of w in M . The language of M
is defined as

L(M) = {w ∈ Σ∗ : q0w ⇒∗ f is an acceptance of w}.

Secondly, a pushdown automaton, which is a recognizer of context-free languages, is defined.

Definition 2.23. A pushdown automaton is a septuple M = (Q,Σ,Ω, δ, q0, Z0, F), where

• Q is a finite set of states,

• Σ ⊆ Ω is an alphabet,

• Ω is a pushdown alphabet,

• δ ⊆ Ω×Q× Σ ∪ {ε} × Ω∗ ×Q is a finite set of rules,

• q0 ∈ Q is the initial state,

• Z0 ∈ Ω is the initial pushdown symbol.

• F ∈ Q is a set of final states,

Usually, we write Zqa→ γp instead of (Z, q, a, γ, p) ∈ δ.

8

Definition 2.24. Let M be a pushdown automaton. A configuration of M is any word from
Ω∗QΣ∗. For any configuration xAqay, where x ∈ Ω∗, y ∈ Σ∗, q ∈ Q, and any Aqa→ γp ∈ δ,
M makes a move from configuration xAqay to configuration xγpy according to Aqa→ γp,
written as

xAqay ⇒ xγpy [Aqa→ γp],

or, simply, xAqay ⇒ xγpy.

Definition 2.25. Let M be a pushdown automaton. If w ∈ Σ∗ and Z0q0w ⇒∗ f , where
f ∈ F , then w is accepted by M , and Z0q0w ⇒∗ f is an acceptance of w in M . The language
of M is defined as

L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f is an acceptance of w}.

Lastly, a Turing machine, which is a recognizer of recursively enumerable languages, is
defined.

Definition 2.26. A Turing machine is n-tuple M = (Q,Σ,Γ, R, s, F), where

• Q is a finite set of states,

• Σ ⊆ Γ is an input alphabet,

• Γ is a tape alphabet; ∆ ∈ Γ,

• R ⊆ Q× Γ×Q× Γ is a relation of rules; R = Rs ∪Rr ∪Rl,

• s ∈ Q is the start state,

• F ⊆ Q is a set of final states.

Definition 2.27. Let M be a Turing machine. A configuration of M is any word χ
satisfying

χ ∈ Γ∗QΓ∗∆ω

Next, let χ and χ′ be configurations of M . M makes a move from χ to χ′ according to r,
written as

χ ` χ′[r]

if at least one of the following conditions holds:

• Stationary move

χ = xpUy∆ω, χ′ = xqV y∆ω, and r : (p, U, q, V) ∈ Rs

• Right move

χ = xpUy∆ω, χ′ = xV qy∆ω, and r : (p, U, q, V) ∈ Rr

• Left move

χ = xXpUy∆ω, χ′ = xqXV y∆ω, and r : (p, U, q, V) ∈ Rl

9

where x, y ∈ Γ∗, U, V,X ∈ Γ, p, q ∈ Q.

Definition 2.28. Let M = (Q,Σ,Γ, R, s, F) be a Turing machine. M accepts w ∈ Σ∗ if

sw∆ω `∗ ufv∆ω

in M , where f ∈ F and u, v ∈ Γ∗.

The language accepted by M is defined as

L(M) = {w ∈ Σ∗ : M accepts w }.

2.1.3 State Languages

In this section, the concept of a state grammar is described. Informally, a state grammar
is a context-free grammar enriched by states which make its derivations more controllable
than in the case of traditional context-free grammars. Therefore, the generative power of
state grammars is greater.

Definition 2.29. A state grammar (see [8]) is a quintuple G = (V,W, T, P, S), where

• V is a total alphabet,

• W is a finite set of states,

• T ⊆ V is an alphabet of terminals,

• S ∈ (V \ T) is the start symbol, and

• P ⊆W × (V \ T)×W × V + is a finite set of productions.

Usually, we write (q, A)→ (p, v) ∈ P instead of (q, A, p, v) ∈ P .

Definition 2.30. Let G = (V,W, T, P, S) be a state grammar. For every z ∈ V ∗, set
Gstates(z) = {q : (q,B)→ (p, v) ∈ P , where B ∈ (V \ T) ∩ alph(z), v ∈ V +, q, p ∈W}.

Informally, given a state grammar G = (V,W, T, P, S), Gstates(z) is a set of states. A state
q is in that set if there is a left hand-side of a rule for the state q and some nonterminal
symbol which is contained in a string z. The reason behind the definition of this set is
following: if a state grammar G wants to make a derivation step by rewriting some symbol
in a prefix of a sentential form, G has to be in some state which is an element of Gstates(z).

Definition 2.31. Let G = (V,W, T, P, S) be a state grammar. If (q, A) → (p, v) ∈ P ,
x, y ∈ V ∗, Gstates(x) ∩ {q} = ∅, then G makes a derivation step from (q, xAy) to (p, xvy)
in G, symbolically written as

(q, xAy)⇒ (p, xvy) [(q,X)→ (p, v)].

In addition, if k is a positive integer such that occur(xAy, V \T) ≤ k, we say that (q, xAy)⇒
(p, xvy)[(q, A)→ (p, v)] is of index k, symbolically written as

(q, xAy) k⇒ (p, xvy) [(q,X)→ (p, v)].

10

If k is a positive integer such that occur(xA, V \ T) ≤ k, we say that (q, xAy) ⇒ (p, xvy)
[(q, A)→ (p, v)] is of degree k, symbolically written as

(q, xAy) k⇒ (p, xvy) [(q,X)→ (p, v)].

To express that every derivation step in υ ⇒m $ (υ ⇒+ $ or υ ⇒∗ $) is of index k, we
write υ k⇒m $ (υ k⇒+ $ or υ k⇒∗ $).
Analogically, to express that every derivation step in υ ⇒m $ (υ ⇒+ $ or υ ⇒∗ $) is of
degree k, we write υ k⇒m $ (υ k⇒+ $ or υ k⇒∗ $).

Informally, each derivation step has to be leftmost applicable which means that if a nonter-
minal A is rewritten (under a state s) in a sentential form, there is no other nonterminal
B on A’s left which is rewritable under the state s, i.e. there is no rule with (s,B) as a left
hand-side for every B on A’s left. The set Gstates(z) perfectly suits for a definition of this
restriction.

A derivation step must be made by rewriting a nonterminal which is the leftmost applica-
ble but which does not have to be the very leftmost. The previous definition also defines
a derivation relation of degree k. Informally, this means that a nonterminal being rewrit-
ten is at most k-th nonterminal from the left during every derivation step. We say that
a derivation step is of index k if the sentential form which is to be rewritten contains at
most k nonterminals. It clearly follows that if a derivation is of index k, it is also of degree
k.

Next, a state language and a state grammar of index k and of degree k are defined.

Definition 2.32. Let G = (V,W, T, P, S) be a state grammar. The set

L(G) = {w ∈ T ∗ : (q, S)⇒∗ (p, w), q, p ∈W}

is called a state language. Furthermore, we define for every k ≥ 1,

L(G, index k) = {w ∈ T ∗ : (q, S) k⇒∗ (p, w), q, p ∈W} and

L(G,degree k) = {w ∈ T ∗ : (q, S) k⇒∗ (p, w), q, p ∈W}.

Definition 2.33. A state grammar G is of index k (k ≥ 1) if

L(G) = L(G, index k).

A state grammar G is of degree k (k ≥ 1) if

L(G) = L(G, degree k).

A state language L is said to be of index k if there is a state grammar G of index k such
that L = L(G). A state language L is said to be of degree k if there is a state grammar G
of degree k such that L = L(G).

11

Families of State Grammars

Definition 2.34. Let SG denote the family of state languages. For all k ≥ 1, SGk denotes
the family of state languages of index k and SGk denotes the family of state languages of
degree k.

The generative power of any family of state languages of some degree is between families
of context-free and context-sensitive languages. Moreover, the following inclusions among
families of state languages has been established in [8].

Theorem 2.35.
CF = SG1 ⊂ SG2 ⊂ SG3 ⊂ · · · ⊂ SG∞ ⊂ CS

The following inclusion is a corollary of theorem 2.35.

Corollary 2.36.
SG1 ⊂ SG2 ⊂ SG3 ⊂ · · · ⊂ SG∞ ⊂ CS

12

2.2 Selected Proof Techniques

This section contains descriptions of standard proof techniques which are relevant for the
formal languages theory.

2.2.1 Mathematical Induction

Mathematical induction is one of the most common proof techniques. It is typically used to
establish that a given statement is true for all non-negative integers or any infinite sequence
starting with a number n0 ∈ N∪{0} (therefore called induction on integers). Another type
of induction is structural induction which can be performed on any recursively defined
concepts such as trees [7].

Standard Mathematical Induction

A proof by standard mathematical induction is done by proving that the first statement in
the infinite sequence of statements is true, and then proving that if any one statement in
that sequence is true, then so is the next one.

This can be expressed formally by the axiom of induction:

∀ predicates P, (P (n0) ∧ ∀m[P (m)⇒ P (m+ 1)])⇒ ∀nP (n)

where P is the proposition in question and n0,m, n are numbers from the considered infinite
sequence {n0, n0 + 1, n0 + 2, . . . }.

A proof by mathematical induction involves two steps:

• The basis—shows that P (n0) (the proposition is true for a particular integer n0).

• Induction step—shows that if the proposition holds for m, then the same proposition
also holds for m+ 1.

After performing these two steps, we can conclude that the proposition holds for the whole
sequence.

Complete Mathematical Induction

Complete induction (or strong induction) is a generalization of standard induction. It differs
in the induction step—we may assume not only that the proposition holds for m but also
that it is true for all m′ ≤ m.

2.2.2 Proving Sets Equivalences

In formal language theory, one frequently needs to prove that a theorem which says that
the sets constructed in two different ways are the same sets [7]. If S1 and S2 are two

13

expressions representing sets, proving that these sets are same (showing that s ∈ S1 if and
only if s ∈ S2, formally s ∈ S1 ⇔ s ∈ S2), is equivalent to proving

• if s ∈ S1, then s ∈ S2 (s ∈ S1 ⇒ s ∈ S2) and

• if s ∈ S2, then s ∈ S1 (s ∈ S2 ⇒ s ∈ S1)

In formal language theory, elements of S1 and S2 are often languages. Then, S1 and S2 are
called families (or classes) of languages.

2.2.3 Proofs of Equal Descriptional Power

It the formal languages theory, one often needs to prove that two types of models (such as
grammars, automata) are equivalent in terms of their descriptional power.

In terms of previous section, it is possible to perceive these models as expressions repre-
senting sets (sets of strings, languages). To prove that the set of languages described by the
first type of model is the same as the set of languages described by second type of model
(that families of languages of these two models are equivalent), a constructive proof in
combination with mathematical induction may be used. This may be done in the following
manner.

Firstly, one provides general rules for the construction of an instance of second model for
an arbitrary instance of the first model. To show that the constructed instance has the
same descriptional power, one needs to prove two things:

• that any derivation in the instance of the second model has its counterpart in the
instance of the first model

• that any derivation in the instance of the first model has its counterpart in the instance
of the second model

These two proofs may be done by using mathematical induction on the length of derivation.

Secondly, one has to provide a description of the construction of an instance of first model
for any instance of a second model. This is done analogically.

14

Chapter 3

Derivation Restrictions of
Ginsburg Grammars

Derivation restrictions studied in this thesis are placed on components of grammar systems
which themselves are Ginsburg grammars. This chapter introduces these restrictions.

3.1 Prefix Restriction

This section introduces the prefix restriction which enforces each derivation step to be
performed within the first l symbols of the first continuous block of nonterminals in the
sentential form. Definition of derivation relation l�⇒ which reflects the prefix restriction is
given next.

Definition 3.1. Let G = (N,T, S, P) be a Ginsburg grammar. Let V = N ∪ T be the
total alphabet of G and let l ≥ 1. If there is α→ β ∈ P , u = x0αx1, and v = x0βx1, where
x0 ∈ T ∗N∗, x1 ∈ V ∗, and occur(x0α,N) ≤ l, then

u l�⇒ v [α→ β]

in G or, simply, u l�⇒ v. Let l�⇒k denote the k-fold product of l�⇒, where k ≥ 0.
Furthermore, let l�⇒∗ denote the transitive-reflexive closure of l�⇒.

3.2 Restrictions on Number of Nonterminal Blocks

This section introduces another derivation restrictions. The second restriction ensures that
each sentential form contains at most m continuous blocks of nonterminals by defining the
m◦⇒ derivation relation. The third derivation restriction considered extends the second
restriction by another requirement, namely that each continuous block of nonterminals
must be of length h or less. Derivation relation reflecting this restriction is denoted as
h
m◦⇒.

Two sets used for the definition of restrictions are defined first.

15

Definition 3.2. Let G = (N,T, S, P) be a Ginsburg grammar. Let m,h ≥ 1. W (m)
denotes the set of all strings x ∈ V ∗ satisfying 1 given next. W (m,h) denotes the set of all
strings x ∈ V ∗ satisfying 1 and 2 given next.

1. x ∈ (T ∗N∗)mT ∗;

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Informally, the W (m) set contains all potential sentential forms that satisfy the second
restriction. The W (m,h) set contains all potential sentential forms that satisfy the third
restriction. The first condition ensures that a sentential form has at most m continuous
blocks of nonterminals. The second condition limits the length of each nonterminal block
by saying that when we take any substring of a sentential form whose length is greater than
h, then this substring contains some terminal symbol.

Now, both restrictions limiting number of nonterminal blocks are defined.

Definition 3.3. Let G = (N,T, S, P) be a Ginsburg grammar. Let u, v ∈ V ∗ and u⇒ v.

u h
m◦⇒ v if u, v ∈W (m,h), and

u m◦⇒ v if u, v ∈W (m).

Let h
m◦⇒k and m◦⇒k denote k-fold product of h

m◦⇒ and m◦⇒, respectively, where k ≥ 0.
Furthermore, let h

m◦⇒∗ and m◦⇒∗ denote the transitive-reflexive closure of h
m◦⇒ and m◦⇒,

respectively.

Finally, an extension of the third restriction is defined. The extension consists in a re-
quirement that each derivation is leftmost with respect to the set of productions currently
used.

Definition 3.4. Let G = (N,T, S, P) be a Ginsburg grammar. Let x0, x1 ∈ V ∗, and
α → β ∈ P . Then, x0αx1

h
m◦⇒ x0βx1 [α → β] is a left-most with respect to the set

of productions P ′ if for each α′ → β′ ∈ P ′, x0αx1 = x′0α
′x′1 implies |x0| ≤ |x′0|, where

x′0, x
′
1 ∈ V ∗.

3.3 Further Definitions

This section contains further definitions that are used in proofs in following chapters.

Definition 3.5. Let P be a set of productions of a grammar G = (N,T, S, P). We define
Nleft(P) = {α ∈ N+ : α→ β ∈ P, β ∈ (N ∪ T)∗}.

Informally, Nleft(P) is a set of all left-hand sides of rules in P .

16

Chapter 4

Grammar Systems

Informally, a grammar system is a set of grammars which work together in order to generate
one language. Two types of grammar systems are distinguished:

• cooperating distributed (CD) grammar systems

• parallel communicating (PC) grammar systems

The main difference between these two classes is that component grammars of a CD gram-
mar system have a common sentential form, while in the case of PC grammar systems each
component has its own sentential form. This thesis deals with CD grammar systems only
and only this type is considered hereafter. Therefore, each use of the term grammar system
will refer to CD grammar system hereafter. Definitions used in this chapter are based on
those in [3] and [13].

4.1 Grammar Systems

Definition 4.1. A grammar system is a (n+ 3)-tuple Γ = (N,T, S, P1, . . . , Pn), where

• N is an alphabet of nonterminal symbols,

• T is an alphabet of terminal symbols such that N ∩ T = ∅; V = N ∪ T

• S ∈ N is the start nonterminal symbol,

• Gi = (N,T, S, Pi), 1 ≤ i ≤ n is a Ginsburg grammar (called a component).

The following definition introduces derivation relations of grammar systems with respect
to derivation restrictions which have been defined in the previous chapter.

Definition 4.2. Let u, v ∈ V ∗, k ≥ 0. Then, we write

u l�⇒k
Pi
v, u h

m◦⇒k
Pi
v, and u m◦⇒k

Pi
v

to denote that
u l�⇒k v, u h

m◦⇒k v, and u m◦⇒k v,

17

respectively, was performed by Pi. Analogously, we write u l�⇒∗Pi
v, u h

m◦⇒∗Pi
v, u m◦⇒∗Pi

v,
u l�⇒

+
Pi
v, u h

m◦⇒+
Pi
v, and u m◦⇒+

Pi
v.

As it has been already mentioned, components of a grammar system work together on
a common sentential form and generate one language. A grammar system starts a derivation
with the common start nonterminal S. At each moment, only one grammar is active and
is the only one that is allowed to rewrite the current sentential form at that moment. It is
necessary to specify two things:

• which component can become active at a given moment

• when an activated grammar becomes inactive

Firstly, we define various modes of derivation relation of a PC grammar system with respect
to restricted derivations defined in previous chapter. These modes specify the latter—when
an activated grammar becomes inactive. One of possible derivation modes, k-mode, has
been already defined in the definition 4.2 and refers to a situation where a component has to
perform exactly k derivation steps. Following definition introduces another four derivation
modes.

Definition 4.3. Let Γ = (N,T, S, P1, . . . , Pn) be a grammar system. For each i ∈ {1, . . . , n}
derivation modes are defined:

1. (≤k-mode) u l�⇒
≤k
Gi

v ⇐⇒ u l�⇒k′
Gi
v for some k′ ≤ k

2. (≥k-mode) u l�⇒
≥k
Gi

v ⇐⇒ u l�⇒k′
Gi
v for some k′ ≥ k

3. (∗-mode) u l�⇒∗Gi
v ⇐⇒ u l�⇒k′

Gi
v for some k′ ≥ 0

4. (t-mode) u l�⇒t
Gi
v ⇐⇒ u l�⇒

≥1
Gi

v and there is no w such that v l�⇒Gi
w

Analogically, we define h
m◦⇒

≤k
Gi

, hm◦⇒
≥k
Gi

, hm◦⇒∗Gi
, hm◦⇒t

Gi
, m◦⇒

≤k
Gi

, m◦⇒
≥k
Gi

, m◦⇒∗Gi
, m◦⇒t

Gi
.

Informally, the ≤k-mode requires an active component to perform at most k derivation
steps. Similarly, the ≥k-mode requires an active component to perform at least k derivation
steps. The ∗-mode allows an active component to perform arbitrary number of derivation
steps. The t-mode requires an active component to perform at least one derivation steps
and also to work as long as it can—until no left-hand side of rules of the component is
present in the sentential form.

Secondly, we deal with the first specification—which component can become active at
a given moment. Either no limitation is given and then, we refer to such grammar systems
as unregulated grammar systems. One can also decide to regulate an activation of compo-
nents by a control language. Such grammar systems are called regulated grammar systems.
These approaches are described in the two following sections.

18

4.2 Unregulated Grammar Systems

This section deals with unregulated grammar systems where no specification of which com-
ponent may become active is given. Therefore, an arbitrary component can become active
when an activation takes place.

The following definition of languages generated by unregulated grammar systems is generic
(for an arbitrary derivation mode f and a control language L).

Definition 4.4. Let D = {∗, t} ∪ {≤k,=k,≥k : k ≥ 0}. For a grammar system Γ =
(N,T, S, P1, . . . , Pn), derivation mode f ∈ D and a control language L, we set

l-leftLLf (Γ) = {w ∈ T ∗ : S l�⇒
f
Pi1

w1 l�⇒
f
Pi2

. . . l�⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p}

nonterLLf (Γ,m, h) = {w ∈ T ∗ : S h
m◦⇒

f
Pi1

w1
h
m◦⇒

f
Pi2

. . . hm◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p}

nonterLLf (Γ,m) = {w ∈ T ∗ : S m◦⇒
f
Pi1

w1 m◦⇒
f
Pi2

. . . m◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p}.

Additionally, we set
left-most

nonterLLf (Γ,m, h) = {w ∈ T ∗ : S h
m◦⇒

f
Pi1

w1
h
m◦⇒

f
Pi2

. . . hm◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p,
and all h

m◦⇒Pik
are left-most wrt. Pik}

4.3 Regulated Grammar Systems

This section deals with regulated grammar systems where an order of activated components
is given by a control language. Informally, the control language is defined over an alphabet
of grammatical components of a grammar system; then, the grammar system must activate
its components in such way that the sequence of components (as they are activated) must
belong into that control language.

The following definition of languages generated by regulated grammar systems is generic
(for an arbitrary derivation mode f and a control language L).

Definition 4.5. Let D = {∗, t} ∪ {≤k,=k,≥k : k ≥ 1}. For a grammar system Γ =
(N,T, S, P1, . . . , Pn), derivation mode f ∈ D and a control language L, we set

l-leftLLf (Γ) = {w ∈ T ∗ : S l�⇒
f
Pi1

w1 l�⇒
f
Pi2

. . . l�⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}

nonterLLf (Γ,m, h) = {w ∈ T ∗ : S h
m◦⇒

f
Pi1

w1
h
m◦⇒

f
Pi2

. . . hm◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}

nonterLLf (Γ,m) = {w ∈ T ∗ : S m◦⇒
f
Pi1

w1 m◦⇒
f
Pi2

. . . m◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L}.

19

Additionally, we set

left-most
nonterLLf (Γ,m, h) = {w ∈ T ∗ : S h

m◦⇒
f
Pi1

w1
h
m◦⇒

f
Pi2

. . . hm◦⇒
f
Pip

wp = w,

p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ p, i1i2 . . . ip ∈ L,
and all h

m◦⇒Pik
are left-most wrt. Pik}

It is obvious that unregulated grammar systems are a special case of regulated grammar
systems where a control language contains all strings over given alphabet.

4.4 Language Families

In this section, language families of grammar systems are defined. The definition is generic
(for an arbitrary derivation mode f and a family of control languages X).

Definition 4.6. Let GSs denote the family of all grammar systems. Let l,m, h ≥ 1. Define
the following language families:

l-leftGS
X
f = {l-leftLLf (Γ) : Γ ∈ GSs, L ∈ X}

nonterGS
X
f (m,h) = {nonterLLf (Γ,m, h) : Γ ∈ GSs, L ∈ X}

nonterGS
X
f (m) = {nonterLLf (Γ,m) : Γ ∈ GSs, L ∈ X}

left-most
nonterGS

X
f (m,h) = {left-most

nonterLLf (Γ,m, h) : Γ ∈ GSs, L ∈ X}

20

Chapter 5

Results

This chapter presents the main results of this thesis—a study of the generative power of
regulated grammar systems whose derivation relation is limited by restrictions introduced
in previous chapters.

5.1 Prefix Restriction

In this section, we prove a theorem which says that the family of languages generated
by grammar systems which have type-0 components, are regulated by regular languages
and their derivation is restricted by the prefix restriction, is equivalent to the family of
context-free languages. The proof follows the pattern described in section 2.2.2.

This section begins with with a proof of generative power for the t-mode. In its end, it
discusses other derivation modes.

5.1.1 Study of the t-mode

Firstly, we deal with the l-leftGS
REG
t ⊆ CF inclusion.

Proof of CF ⊆ l-leftGS
REG
t

This inclusion is obvious. Every context-free language L can be modelled by a context-free
grammar G. Clearly, G is a grammar system with one component. Moreover, leftmost
derivation doesn’t change the generative power of context-free grammars. Leftmost deriva-
tion satisfies the prefix restriction. Let the control language be {1}∗. Then, the inclusion
holds.

Now, the l-leftGS
REG
t ⊆ CF inclusion is proved.

21

Proof of CF ⊇ l-leftGS
REG
t

This section proves the second inclusion, which is formulated through the following lemma.

Lemma 5.1. For every grammar system Γ, every finite automaton M̄ and every l ≥ 1,
there is a pushdown automaton M , such that L(M) = l-leftL

L(M̄)
t (Γ).

Proof. Let Γ = (N,T, S, P1, . . . , Pn), M̄ = (Q̄, Σ̄, δ̄, s̄0, F̄), and l ≥ 1. Consider the following
pushdown automaton M = ({s0, f} ∪ {[γ, s, s̄, i] : γ ∈ N∗, |γ| ≤ l, s ∈ {q, r, e}, s̄ ∈ Q̄, i ∈
{1, . . . , n}}, T, T ∪ N ∪ {Z}, δ, s0, Z, {f}), where Z 6∈ T ∪ N and δ contains rules of the
following forms:

1. s0 → [S, q, s̄0, i]
2. [γ, q, s, i]→ (γ′)R[ε, r, s, i] if γ ∈ N∗, |γ| ≤ l s.t. γ l�⇒1

Pi
γ′

3. a[ε, r, s, i]a→ [ε, r, s, i]
4. Z[ε, r, s, i]→ f if si→ s′ ∈ δ̄ for some s′ ∈ F̄
5. A[A1 . . . Ao, r, s, i]→ [A1 . . . AoA, r, s, i] if A ∈ N, o < l
6. [A1 . . . Al, r, s, i]→ [A1 . . . Al, e, s, i]
7. a[A1 . . . Ao, r, s, i]→ [A1 . . . Ao, e, s, i] if o < l, a ∈ T
8. Z[A1 . . . Ao, r, s, i]→ [A1 . . . Ao, e, s, i] if o < l
9. [γ, e, s, i]→ [γ, q, s′, i′] if sub(γ) ∩Nleft(Pi) = ∅,

si→ s′ ∈ δ̄
10. [γ, e, s, i]→ [γ, q, s, i] if sub(γ) ∩Nleft(Pi) 6= ∅

We prove that L(M) = l-leftL
L(M̄)
f (Γ).

Proof idea. M simulates t-mode derivations of Γ regulated by M̄ in its state which is
composed of 4 elements. The first element contains first l symbols from the first continuous
block of nonterminals. Third and fourth elements store a state of M̄ and an index of
an active component of Γ determined by M̄ . The second element describes a stage of
a simulated derivation step; symbols in this element have the following meaning:

• q – M is ready for an application of a production of the active component,

• r – a production was applied and the first element of the state has to be updated,

• e – the first element of the state is updated and a switch to a next component of Γ
can be made if the t-mode derivation of the active component is completed.

Rules ofM are constructed by rule patterns 1-10. The function of these patterns is following.

Pattern 1 creates rules of M that initiate the simulation by setting the first element of state
to the start nonterminal symbol, second to the stage q (ready to make a derivation step),
third to the initial state of the control automaton and the fourth to an arbitrary component
index.

Pattern 2 generates rules which simulate derivation steps of the grammar system. So, for
arbitrary values of the third and the fourth element, the pattern creates rules which alter

22

first element according to production set Pi. Given a string w in the first element and
a component index i in the fourth element, a rule is created for each substring of w which
can be rewritten according to some production in Pi. After making a move according to
one of the rules constructed in this step, third state element changes to r.

Pattern 3 generates standard popping rules of the pushdown automaton.

Pattern 4 creates rules which enable the automaton M to enter the final state provided M
contains no symbols except for the special pushdown symbol Z—neither on the pushdown
nor in the first state element—and provided the active component can be a suffix of a string
accepted by the control automaton M̄ .

Pattern 5 generates rules which enable to load nonterminals (as many as it is possible when
not exceeding the prefix limitation of l symbols) to update the monitored nonterminal
sequence.

Patterns 6, 7 and 8 generate rules which enable the automaton to get to the e-stage of
the simulation. Pattern 6 generates rules which allow this switch of simulation stage when
the monitored nonterminal sequence is full (of length l). Pattern 7 generates rules which
allow this switch of simulation stage when a terminal symbol appears on the pushdown.
Pattern 8 generates rules which allow this switch of simulation stage when a special symbol
Z appears on the pushdown.

Patterns 9 and 10 generate rules which allow the automaton to get to the q-stage of the
simulation. Pattern 9 generates rules which allow this switch of simulation stage when an
active component has completed the t-mode derivation. Rules of this type also set new
active component. Pattern 10 generates rules which allow this switch of simulation stage
when an active component has not completed the t-mode derivation yet. Therefore, such
a component remains active.

Patterns 2 and 5 enforce the prefix restriction. The pattern 5 enables to load at most
l nonterminals to the first state element and the pattern 2 creates rules which simulate
derivation steps based on the content of the first element.

By this construction, simulation stages (the second state element) of the constructed au-
tomaton M can alter only in the following schematic way.

1. M makes a move according to a rule of pattern 1. M proceeds by step 2.

2. M makes a move according to a rule of pattern 2. M proceeds by step 3.

3. M makes moves according to rules of patterns 3, 4 and 5 as long as it can. If the last
rule used was one constructed in 4, the simulation terminates. Otherwise, M proceeds
by step 4.

4. M makes a move according to a rule of pattern 6, 7, or 8. M proceeds by step 5.

5. M makes a move according to a rule of pattern 9 or 10. M proceeds by step 2.

This simulation process can be put in more descriptive words: M monitors the first contin-
uous block of nonterminals. If the block is longer than l symbols, it monitors only l leftmost
symbols. After making a move that simulates an application of a production of a grammar

23

system, it has to update the monitored block. This is done by reading (popping) the ter-
minal prefix of a string generated on the pushdown, then by adding nonterminals to the
monitored prefix in the hope of extending it to the lenght l. The update ceases either when
the monitored block if full (all l nonterminals have been loaded), or when a terminal occurs
on pushdown (a terminal that splits the nonterminal block), or when a special pushdown
symbol Z occurs. Then, when the update is finished, a possible switch in the activity of
components of the grammar system is simulated. If all conditions necessary for a success-
ful completion of the t-mode derivation are fulfilled, the switch is made. Otherwise, the
activity is held by the same component.

In accordance with the section 2.2.2, it is requisite to show that the input model of the
construction describe the same language as the output model. This includes showing that
every derivation in an input model has its counterpart in an output model (⊇ inclusion)
and vice versa (⊆ inclusion).

(⊆:) The inclusion is proved by two claims. First, we prove the following claim.

Claim 5.2. If ZδR[γ, q, s, i1]w ⇒∗ f in M , then γδ l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w,
p ≥ 0 in Γ and i1 . . . ip ∈ suf(L(M̄)).

Proof. By induction on the number of rules constructed in 2 used in a sequence of moves.

Basis: Only one rule constructed in 2 is used. Then,

ZδR[γ, q, s, i0]w ⇒ Z(γ′δ)R[ε, r, s, i0]w ⇒|γ′δ| Z[ε, r, s, i0]⇒ f,

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , γ ∈ N+, γ′δ ∈ T ∗. Therefore, γ0 = γ1 = ε,
γ′δ = w. Then,

αδ l�⇒Pi0
w.

By a rule constructed in 4 i0 ∈ suf(L(M̄)) and the basis holds.

Induction hypothesis: Suppose that the claim holds for all sequences of moves containing
no more than j rules constructed in 2.

Induction step: Consider a sequence of moves containing j + 1 rules constructed in 2:

ZδR[γ, q, s, i0]w
⇒ Z(γ′δ)R[ε, r, s, i0]w (by a prod. constructed in 2)
⇒∗ Z(δ′)R[ε, r, s, i0]w′ (by prod. constructed in 3)
⇒∗ Z(δ′′)R[γ′′, r, s, i0]w′ (by prod. constructed in 5)
⇒ Z(δ′′)R[γ′′, e, s, i0]w′ (by a prod. constructed in 6, 7 or 8)
⇒ Z(δ′′)R[γ′′, q, s′, i1]w′ (by a prod. constructed in 9 or 10)
⇒∗ f

where γ = γ0αγ1, γ′ = γ0βγ1, α → β ∈ Pi0 , δ′ ∈ NV ∗ ∪ {ε}, v ∈ T ∗, γ′δ = vδ′, vw′ = w,
δ′ = γ′′δ′′, either si→ s′ or s = s′, and one of the following holds:

24

• |γ′′| = l, or

• |γ′′| < l and δ′′ ∈ TV ∗ ∪ {ε}.

Then, by the rule α→ β,
γ0αγ1δ l�⇒Pi0

γ0βγ1δ,

where |γ0αγ1| ≤ l, γ0βγ1δ = vδ′ = vγ′′δ′′ and, by the induction hypothesis,

vγ′′δ′′ l�⇒t
Pi1

vw1 l�⇒t
Pi2

vw2 . . . l�⇒t
Pip

vwp = vw and

i1 . . . ip ∈ suf(L(M̄)),

where p ≥ 0.

If a rule constructed in 9 was used, γ0αγ1δ l�⇒t
Pi0

γ0βγ1δ is a t-mode derivation,
i0i1i2 . . . ip ∈ suf(L(M̄)) and the claim holds.

If a rule constructed in 10 was used, i0 = i1, γ0αγ1δ l�⇒t
Pi1

vw1, i1i2 . . . ip ∈ suf(L(M̄))
and the claim holds.

Now, based on the previous claim we show that the first inclusion holds.

Claim 5.3. If Zs0w ⇒∗ f in M , then S l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w, p ≥ 0 in
Γ and i1 . . . ip ∈ L(M̄).

Proof. Let Zs0w ⇒ Z[S, q, s̄0, i1]w, by a rule constructed in 1. By the previous claim,
Z[S, q, s̄0, i1]w ⇒∗ f implies S l�⇒t

Pi1
w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp = w, p ≥ 0 in Γ and

i1 . . . ip ∈ suf(L(M̄)). From the construction of 1, i1 ∈ pref(L(M̄)). As i1 ∈ pref(L(M̄))
and i1 . . . ip ∈ suf(L(M̄)) implies i1 . . . ip ∈ L(M̄), the claim holds. As a result, the
inclusion holds.

(⊇:) The inclusion is proved by two claims. First, we prove the following claim.

Claim 5.4. If τ0x0 l�⇒t
Pi1

w1 l�⇒t
Pi2

w2 . . . l�⇒t
Pip

wp = w in Γ, where p ≥ 0, τ0 ∈ N+,
x0 ∈ TV ∗ ∪ {ε}, wi ∈ V ∗, i ∈ {1, . . . , p − 1}, wp, w ∈ T ∗ and i1 . . . ip ∈ suf(L(M̄)), then
Z(τ2

0x0)R[τ1
0 , q, s, i1]w ⇒∗ f , for some s ∈ Q̄, where τ0 = τ1

0 τ
2
0 , |τ0| ≤ l implies τ1

0 = τ0,
and |τ0| > l implies |τ1

0 | = l.

Proof. By induction on the length of derivations.

Basis: Let τ0x0 l�⇒Pi0
τ ′0x0 = w, where τ1

0 = γ0αγ1, τ ′0 = γ0βγ1τ
2
0 , α → β ∈ Pi0 ,

τ ′0x0 ∈ l-leftL
L(M̄)
f (Γ). Therefore, γ0 = γ1 = τ2

0 = ε. M simulates this derivation step in the
following way:

25

Z(τ2
0x0)R[τ1

0 , q, s, i0]w
⇒ Z(τ ′0x0)R[ε, r, s, i0]w (by a prod. constructed in 2)
⇒|τ ′

0x0| Z[ε, r, s, i0] (by prod. constructed in 3)
⇒ f (by a prod. constructed in 4)

for some s ∈ Q̄ (follows from construction of 4). Therefore, the basis holds.

Induction hypothesis: Suppose that the claim holds for all derivations of length j or less.

Induction step: Consider a derivation of length j + 1:

τ0x0 l�⇒Pi0
τ ′0x0 = v1τ1x1 l�⇒t

Pi1
v1w1 l�⇒t

Pi2
w2 . . . l�⇒t

Pip
wp = w = v1w

′,

where p ≥ 0, v1 ∈ T ∗, τ0, τ1 ∈ N+, τ ′0 ∈ V ∗, x0, x1 ∈ TV ∗ ∪{ε}, wi ∈ V ∗, i ∈ {1, . . . , p− 1},
wp, w

′ ∈ T ∗. Then, M simulates this derivation as follows:

Z(τ2
0x0)R[τ1

0 , q, s, i0]w
⇒ Z(τ ′0x0)R[ε, r, s, i0]w (by a prod. constructed in 2)
= Z(v1τ1x1)R[ε, r, s, i0]v1w

′

⇒|v1| Z(τ1x1)R[ε, r, s, i0]w′ (by prod. constructed in 3)
⇒|τ1

1 | Z(τ2
1x1)R[τ1

1 , r, s, i0]w′ (by prod. constructed in 5)
⇒ Z(τ2

1x1)R[τ1
1 , e, s, i0]w′ (by a prod. constructed in 6, 7, or 8)

⇒ Z(τ2
1x1)R[τ1

1 , q, s
′, i1]w′ (by a prod. constructed in 9 or 10)

⇒∗ f (by the induction hypothesis)

If τ0x0 l�⇒Pi0
τ ′0x0 is a t-mode derivation, a rule of type 9 is used during the simulation.

Otherwise, a rule of type 10 is used (and therefore i0 = i1). Hence, the claim holds.

Now, based on the previous claim we show that the second inclusion holds. Validity of the
lemma 5.1 is then a direct consequence.

Claim 5.5. If S l�⇒Pi0
uτ0x0 l�⇒t

Pi1
uϕ1 . . . l�⇒t

Pip
uϕp = uw, where p ≥ 0, u, ϕp, w ∈ T ∗,

τ0 ∈ N+ ∪ {ε}, x0 ∈ TV ∗ ∪ {ε}, ϕi ∈ V ∗, i ∈ {1, ..p − 1} in Γ and i1 . . . ip ∈ L(M̄), then
Zs0w ⇒∗ f in M .

Proof. If uτ0x0 6∈ T ∗, M simulates this derivation in the following way:

Zs0uw
⇒ Z[S, q, s, i0] (by a prod. constructed in 1)
⇒ Z(uτ0x0)R[ε, r, s, i0]uw (by a prod. constructed in 2)
⇒|u| Z(τ0x0)R[ε, r, s, i0]w (by prod. constructed in 3)
⇒|τ1

0 | Z(τ2
0x0)R[τ1

0 , r, s, i0]w (by prod. constructed in 5)
⇒ Z(τ2

0x0)R[τ1
0 , e, s, i0]w (by a prod. constructed in 6, 7, or 8)

⇒ Z(τ2
0x0)R[τ1

0 , q, s
′, i1]w (by a prod. constructed in 9 or 10)

⇒∗ f (by the previous claim)

26

If uτ0x0 ∈ T ∗, M simulates this derivation in the following way:

Zs0uw
⇒ Z[S, q, s, i0] (by a prod. constructed in 1)
⇒ Z(uτ0x0)R[ε, r, s, i0]uw (by a prod. constructed in 2)
⇒|uτ0x0| Z[ε, r, s, i0]w (by prod. constructed in 3)
⇒ f (by a prod. constructed in 4)

Hence, the claim holds. As a result, the inclusion holds.

From the previous claims, it follows that the lemma holds.

Theorem 5.6. Let l be a positive integer. Then, CF = l-leftGS
REG
t .

Proof. One inclusion follows from Lemma 5.1, the other is clear (the argument is given in
section 5.1.1).

5.1.2 Study of Other Derivation Modes

This section concerns with a discussion of the generative power of regulated grammar
systems with the prefix restriction on its derivation for the rest of possible modes of grammar
system. Analogically to the discussion of t-mode, the rule patterns are given. Unlike the
t-mode discussion, the full formal proof is omitted as it would be very similar to the t-mode
proof. The reason for such a similarity is that only some rule patterns have to be altered.
The semantics of rules is nearly the same, so the structure of the proof would also be the
same. The following sections discuss rule patterns for various derivation modes briefly.

Notes on k-mode

For the purposes of k-mode, the fifth element of a pushdown state must be added. Its task
is to count number of simulated derivation steps performed by an active component (i.e.
number of moves according to pattern 2). For clarity, the full list of rule patterns is given.

1. s0 → [S, q, s̄0, i, 0]
2. [γ, q, s, i, h]→ (γ′)R[ε, r, s, i, h+ 1] if γ ∈ N∗, |γ| ≤ l s.t. γ l�⇒1

Pi
γ′

3. a[ε, r, s, i, h]a→ [ε, r, s, i, h]
4. Z[ε, r, s, i, h]→ f if si→ s′ ∈ δ̄ for some s′ ∈ F̄ , h = k
5. A[A1 . . . Ao, r, s, i, h]→ [A1 . . . AoA, r, s, i, h] if A ∈ N, o < l
6. [A1 . . . Al, r, s, i, h]→ [A1 . . . Al, e, s, i, h]
7. a[A1 . . . Ao, r, s, i, h]→ [A1 . . . Ao, e, s, i, h] if o < l, a ∈ T
8. Z[A1 . . . Ao, r, s, i, h]→ [A1 . . . Ao, e, s, i, h] if o < l
9. [γ, e, s, i, h]→ [γ, q, s′, i′, 0] if sub(γ) ∩Nleft(Pi) = ∅,

si→ s′ ∈ δ̄, h = k
10. [γ, e, s, i, h]→ [γ, q, s, i, h] if sub(γ) ∩Nleft(Pi) 6= ∅ and h 6= k

27

Only rules constructed in 1, 2 and 9 alter the new element. Rules of pattern 1 initiate it
to zero, rules of pattern 2 increment it by one, rules of pattern 9 reset it to zero. There
are two moments when it is necessary to ensure that the mode is respected. First is when
passing the activity from one component to another (rules of pattern 9), second when the
simulation is about to terminate (rules of pattern 4).

Notes on ≥k-mode

When dealing with the ≥k-mode, conditions on the fifth element used in rule patterns for
the k-mode must be altered:

• pattern 4 – for h ≥ k instead of h = k

• pattern 9 – for h ≥ k instead of h = k

• pattern 10 – for arbitrary h instead of h 6= k

Notes on ≤k-mode

Similarly to the ≥k-mode, dealing with the ≤k-mode involves few alteration of conditions
on the fifth element used in rule patterns:

• pattern 4 – for h ≤ k instead of h = k

• pattern 9 – for h ≤ k instead of h = k

• pattern 10 – for arbitrary h instead of h 6= k

Notes on ∗-mode

The ∗-mode, which is normally considered, does not make so much sense when considering
grammar systems which are regulated. If this mode was applied to regulated grammar sys-
tems, components which were activated by a finite automaton could perform zero derivation
steps and they would fulfill the definition of ∗-mode. As this would be slightly unusual way
of understanding the work of an active component, this mode has not been considered. On
the contrary, +-mode perfectly makes sense. +-mode is a special case of ≥ k-mode (namely
≥ 1-mode) which has been already described.

Summary

We conclude this chapter by stating that when an prefix restriction is applied on regulated
grammar systems, their generative power decreases to family of context-free languages for
the following modes of derivation: t-mode, k-mode, ≥k-mode and ≤k-mode.

In brief, we can summarize these statements in one theorem.

Theorem 5.7. Let l be a positive integer. Then, CF = l-leftGS
REG
f for all f ∈ {t} ∪ {≤

k,=k,≥k : k ≥ 1}.

28

5.2 Restriction on Number of Nonterminal Blocks

We show that the restriction studied in this section does not decrease the generative power
of regulated grammar systems and so they are still able to generate all type-0 languages.
The proof shows that every type-0 language can be generated by a grammar which ensures
that each sentential form contains only one continuous nonterminal block and therefore
it is a special case of a grammar system with restricted derivation which proves the first
inclusion. The second inclusion—which states that a language generated by any regulated
grammar is a type-0 language—is obvious and is omitted in the proof. Indeed, by the
Church-Turing thesis, any regulated grammar system can be simulated by a Turing machine.

Theorem 5.8. RE = nonterGS
REG
t (1).

Proof. It is well-known (see [4]) that any recursively enumerable language L is generated
by a grammar G in the Geffert normal form, i.e., by a grammar of the form

G = ({S,A,B,C}, T, P ∪ {ABC → ε}, S) ,

where P contains context-free productions of the form

S → uSa
S → uSv
S → uv

where u ∈ {A,AB}∗, v ∈ {BC,C}∗, and a ∈ T .

In addition, any terminal derivation in G is of the form S ⇒∗ w1w2w by productions
from P , where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w ∈ T ∗, and w1w2w ⇒∗ w is derived by
ABC → ε.

Clearly, G is a grammar system with only one component. Set the control language to be
{1}∗. Then, the theorem holds.

Study of Other Derivation Modes

The situation is analogical when regarding other derivation modes. Similar argumentation
could be used for all modes f ∈ {≤k,=k,≥k : k ≥ 1}. Therefore, the following theorem
holds.

Theorem 5.9. RE = nonterGS
REG
f (1) for all f ∈ {t} ∪ {≤k,=k,≥k : k ≥ 1}.

29

5.3 Restriction on Number of Nonterminal Blocks of Limited
Length

The following example shows that, in contrast with the prefix restriction, restriction studied
in this section does not decrease the generative power of regulated grammar systems to the
family of context-free languages.

Example 5.10. Consider a grammar system Γ = (N,T, S, P1, P2, P3, P4), where

1. N = {S,A,A′, B,B′, C, C ′},

2. T = {a, b, c},

3. P1 = {S → ABC},

4. P2 = {A→ aA′, B → bB′, C → cC ′},

5. P3 = {A′ → A,B′ → B,C ′ → C}, and

6. P4 = {A→ ε,B → ε, C → ε}.

Observe that for C = {1}{2, 3}∗{4}, nonterLCt (Γ, 3, 3) = {anbncn : n ≥ 0}, which is not
context-free.

We show that the family of languages generated by grammar systems, when a derivation
restriction studied in this chapter is applied, is a subset of the family of state languages.
More precisely, we show that any grammar system whose sentential forms are regulated by
constant m can be also generated by a state grammar of index m. This implies that such
a state grammar is also of degree m. As a result, an infinite hierarchy of language families
is established (follows from the theorem 2.36). The proof shows these facts by a chain of
inclusions.

Firstly, we show that for any regulated grammar system which is limited by a constant h,
we can construct a regulated grammar system which will generate the same language in the
way that all sentential forms during derivation will contain nonterminal blocks of length
one.

Next, as we are able to construct a grammar system which generates sentential forms where
each nonterminal block is of length one, we can consider only derivations which are leftmost
with respect to the set of productions currently used. This follows from the fact that
components of a grammar system now contain only context-free productions and therefore,
by analogy with context-free grammars, we can consider only left-most derivations without
loss of generality.

Therefore, after showing these inclusions, we can prove the theorem by considering only
grammar systems

• which generate sentential forms only with nonterminal blocks of length one and

• whose components perform only leftmost derivations

30

Lemma 5.11. Let m, h be positive integers. Then,

nonterGS
REG
t (m,h) = nonterGS

REG
t (m, 1).

Idea. All strings in the sequence of derivation steps contain only a finite number of blocks
of nonterminals and these blocks are also of a finite length. Hence, it is possible to represent
each possible block by a single nonterminal and create an equivalent grammar system, which
contains only context-free productions.

Lemma 5.12. Let m be a positive integer. Then,

nonterGS
REG
t (m, 1) = left-most

nonterGS
REG
t (m, 1).

Idea. A sequence of derivation steps in such a grammar system can be split into several
subsequences, where each subsequence corresponds to a derivation using one component of
the GS in the t-mode. The derivation steps are performed in the same manner as with an
ordinary context-free grammar in each subsequence, so it is possible to take into account
only the cases which consist exclusively of the left-most derivation.

Lemma 5.13. Let m be positive integer. Then, left-most
nonterGS

REG
t (m, 1) ⊆ SGm.

Proof. Let α = x0A1x1 . . . Anxn, where xi ∈ T ∗, for all 0 ≤ i ≤ n, Ai ∈ N , for all 1 ≤ i ≤ n.
Define f(α) = A1 . . . An.

Let Γ = (N,T, S, P1, P2, . . . , Pn) be grammar system, where Pi contains only context-free
productions for all 1 ≤ i ≤ n, and Lc = L(M) be a control language, where
M = (Q,Σ, δ, q0, F) is a finite automaton. Introduce a state grammar
Gs = (N ∪ T,W, T, P ′, s0, S), where W = {[p, q, i, α] : p ∈ {5,4}, q ∈ Q, i ∈ Σ ∪ {ε}, α ∈
N∗, 0 ≤ |α| ≤ m}, and s0 = [4, q0, ε, S]. Then, P ′ is constructed as follows:

1. for each uAv ∈ N+, where 1 ≤ |uAv| ≤ m, and occur(u,Nleft(Pi)) = 0, for each
A→ β ∈ Pi, and p ∈ Q, add

[5, p, i, uAv]A→ [4, p, i, uf(β)v]β

[4, p, i, uAv]A→ [4, p, i, uf(β)v]β

to P ′, if the following conditions are met:

(a) |uf(β)v| ≤ m
(b) uf(β)v 6= ε or p ∈ F

2. for each state [4, p, i, uAv] (p ∈ Q, i ∈ Σ ∪ {ε}, uAv ∈ V + and 1 ≤ |uAv| ≤ m) such
that there is no rule generated by 1. with [4, p, i, uAv] on its left-hand side, for each
pi′ → q ∈ δ, add:

[4, p, i, uAv]A→ [5, q, i′, uAv]A

to P ′

First, we prove that L(Γ) ⊆ L(Gs) by induction on the number of productions used in the
derivation of the sentential form in Γ.

31

Claim 5.14. Let S 1
m◦⇒t . . . 1

m◦⇒t 1
m◦⇒∗Gi

ω [τi] be a left-most derivation containing k
productions in Γ, where ω ∈ (N + T)∗, τi ∈ Σ∗, q0τi ⇒∗ q in M . Then, [4, q0, ε, S] m⇒∗
[4, q, i, f(ω)]ω in Gs.

Proof. By induction on k = 0, 1,

Basis: Let k = 0, so S 1
m◦⇒0 S in Γ and q0 ⇒∗ q0 in M . Then, [4, q0, ε, S]S m⇒0

[4, q0, ε, S]S in Gs.

Induction hypothesis: Suppose that the claim holds for all 0 ≤ m ≤ k, where k is a non-
negative integer.

Induction step: Let S 1
m◦⇒t . . . 1

m◦⇒t 1
m◦⇒∗Gi

uAv 1
m◦⇒Gi′

uβv [τij] (left-most) using k + 1
productions in Γ, q0τij ⇒∗ qj ⇒∗ r in M , and the last production applied during the
derivation is A → β ∈ Pi′ , where u, v ∈ (N ∪ T)∗, occur(u,Nleft(Pi′)) = 0, and τij ∈ Σ∗.
By induction hypothesis,

[4, q0, ε, S]S m⇒k [4, q, i, f(uAv)]uAv.

If i 6= i′, then, there exists

[4, q, i, f(uAv)]A→ [5, r, i′, f(uAv)]A

introduced in 2. Hence,

[4, q, i, f(uAv)]uAv ⇒ [5, r, i′, f(uAv)]uAv.

Otherwise, r = q. Since occur(u,Nleft(Pi′)) = 0, we can use the production

[p, r, i′, f(uAv)]A→ [4, r, i′, f(uβv)]β

introduced in 1. (p ∈ {5,4}) to obtain

[p, r, i′, f(uAv)]uAv m⇒ [4, r, i′, f(uβv)]uβv.

Therefore,
[4, q0, ε, S]S m⇒k+1 [4, r, i′, f(uβv)]uβv,

which completes the induction step.

Now, we prove that L(Gs) ⊆ L(Γ) by induction on the number of productions constructed
in 1. used in the derivation of the sentential form in Gs.

Claim 5.15. Let [4, q0, ε, S]S m⇒∗ [4, q, i, f(ω)]ω in Gs, where ω ∈ (N ∪ T)∗. Then,
S 1
m◦⇒t . . . 1

m◦⇒t 1
m◦⇒∗Gi

ω [τi] using k productions in Γ, and q0τi⇒∗ q in M , where k ≥ 0.

Proof. By induction on k = 0, 1,

Basis: Let k = 0, so [4, q0, ε, S]S m⇒0 [4, q0, ε, S]S in Gs. Then S 1
m◦⇒0 S in Γ, and

q0 ⇒∗ q0 in M .

32

Induction hypothesis: Suppose that the claim holds for all derivation sequences containing
no more than k productions.

Induction step: Consider a derivation

[4, q0, ε, S]S m⇒k [4, q, i, f(uAv)]uAv m⇒∗ [4, r, i′, f(uβv)]uβv

in Gs, and the last production used during the derivation is

[4, r, i′, f(uAv)]A→ [4, r, i′, f(uβv)]β,

where u, v ∈ (N + T)∗. By the induction hypothesis,

S 1
m◦⇒t . . . 1

m◦⇒t 1
m◦⇒∗Gi

uAv [τ ′i]

using k productions in Γ, and
q0τ
′i⇒∗ q

in M . There exists A→ β ∈ Pi′ by 1. of the construction. Moreover, occur(u,Nleft(Pi′)) =
0. Then,

uAv 1
m◦⇒ uβv

in Γ and
qj ⇒∗ r

in M , where j ∈ Σ∗. If the previous production was constructed in 1., then i′ = i and
j = ε, else j = i′. In either case, τ ′ij = τi′, where τ ∈ Σ∗. Therefore

S 1
m◦⇒t . . . 1

m◦⇒t 1
m◦⇒∗ uβv [τi′]

using k + 1 productions in Γ and
q0τi

′ ⇒∗ r

in M , and the induction holds for k + 1.

Now consider, that the terminal string can be generated by Gs only in those cases, where
M reaches a final state in Γ. Then, as a result of the previous claims, the lemma 5.13
holds.

Theorem 5.16. Let m, h be positive integers. Then, SGm ⊇ nonterGS
REG
t (m,h).

The theorem 5.16 is a direct consequence of the lemmata 5.11–5.13.

Study of Other Derivation Modes

Situation is analogical to prefix restriction regarding other derivation modes. Minor al-
terations of construction rules ensure correct simulation of restricted grammar system.
Therefore, the following theorem holds.

Theorem 5.17. Let m, h be positive integers. Then, SGm ⊇ nonterGS
REG
f (m,h) for all

f ∈ {t} ∪ {≤k,=k,≥k : k ≥ 1}.

33

Chapter 6

Conclusion

Three types of derivation restrictions of grammar systems have been studied in this thesis.
We dealt with grammar systems whose components were type-0 grammars. Moreover,
grammar systems were allowed to be regulated by regular languages. Such grammar systems
can generate all type-0 languages. However, we proved that only one of these restrictions
does not change the generative power at all, while the other two restrictions do.

The first restriction studied, which restricts derivations to finite prefix of the first continuous
block of nonterminals, decreases the generative power to the power of context-free languages.
A formal proof shows this by a construction of a pushdown automata which simulates a given
grammar system restricted in that way.

Second restriction prevents the generation of sentential forms which would contain more
than a given number of blocks of nonterminals. This restrictions does not decrease the
generative power. This is proved by showing that each phrase-structure grammar can be
transformed to a grammar that will never generate a sentential form which has more than
one continuous block of nonterminals.

Last restriction forbids a generation of sentential forms which contain more than m non-
terminal blocks and where the length of each block is not greater than h. The proof shows
that the generative power of grammar systems decreases when applying this kind of restric-
tion, namely to the power which is no greater than the generative power of state languages.
This is done by showing that we are able to construct a state grammar of index m for any
grammar system restricted in that way—by constants m and h.

When considering practical issues, the third result is perhaps the most interesting. One of
the main purposes for an introduction of new models and restrictions is to find a model
which would make capturing of context properties of programming languages possible.
Therefore, models whose generative power is between context-free and context-sensitive
languages have been most desired. From this point of view, the third result is the most
promising. The question what exactly the generative power of grammar systems with the
third derivation restriction is remains an open problem.

34

Bibliography

[1] B. S. Baker. Context-sesitive grammars generating context-free languages. In
M. Nivat, editor, Automata, Languages and Programming, pages 501–506.
North-Holland, Amsterdam, 1972.

[2] R. V. Book. Terminal context in context-sensitive grammars. SIAM Journal of
Computing, 1:20–30, 1972.

[3] G. Paun E. Csuhaj-Varju, J. Kelemen and J. Dassow, editors. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., Newark, NJ, USA, 1994.

[4] V. Geffert. Context-free-like forms for the phrase-structure grammars. In M. Chytil,
L. Janiga, and V. Koubek, editors, Mathematical Foundations of Computer Science,
volume 324 of Lecture Notes in Computer Science, pages 309–317. Springer-Verlag,
1988.

[5] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., New York, NY, USA, 1975.

[6] S. Ginsburg and S. Greibach. Mappings which preserve context-sensitive languages.
Information and Control, 9:563–582, 1966.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[8] T. Kasai. An hierarchy between context-free and context-sensitive languages. J.
Comput. Syst. Sci., 4(5):492–508, 1970.

[9] G. Matthews. A note on symmetry in phrase structure grammars. Information and
Control, 7:360–365, 1964.

[10] G. Matthews. Two-way languages. Information and Control, 10:111–119, 1967.

[11] A. Meduna. Automata and languages: theory and applications. Springer-Verlag,
London, UK, 2000.

[12] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1.
Springer-Verlag, Berlin, 1997.

[13] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 2.
Springer-Verlag, Berlin, 1997.

35

