VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGII
USTAV INFORMACNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

SUPPORT FOR XML IN ORACLE DATABASE SERVER

DIPLOMOVA PRACE
MASTERS'S THESIS

AUTOR PRACE DAVID SAN LEON GRANADO
AUTHOR

BRNO 2007

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

N\

FAKULTA INFORI\/!A(VZNI'CH TECHNOLOGII
USTAV INFORMACNICH SYSTEMU

N\
FACULTY OF INFORMATION TECHNOLOGY

:[II DEPARTMENT OF INFORMATION SYSTEMS

7

SUPPORT FOR XML IN ORACLE DATABASE SERVER

DIPLOMOVA PRACE
MASTERS’S THESIS

AUTOR PRACE DAVID SAN LEON GRANADO
AUTHOR

VEDOUCI PRACE DR. ING. JAROSLAV ZENDULKA
SUPERVISOR

BRNO 2007

Abstract

This Mcs Thesis studies some XML technologies, $esuin the XML Databases. The XML
databases are studied in general and are centf@cabe 10g. Oracle 10g provides a lot of feattwes
manage retrieve and process the XML data. To shmwesfeatures to manage XML in Oracle
Database Server is made a simple application #racoeate XML DB with structure and without it
and to show the search features, in a particulat XDAtabase (recipes for meals). Also is able to

make different queries using Xpath to find recipgstitle, by ingredients, by preparation and by
nutritional information.

Keywords

Oracle, XML, database, query, XSchema, XMLType, SRQuery,UML.

SUPPORT FOR XML IN ORACLE DATABASE SERVER

Declar ation

| declare that | have solved this Masters’s Thegimyself.

| have mentioned all information resources usetiénthesis.

David San Ledn Granado
10-6-2007

Acknowledgement

| would like to thank my supervisooc. Ing. Jaroslav Zendulka, for his
supervision and his help with me and this MSc. &hes

Thanks to all people that make the days of stayzech Republic more comfortable,
especially to Erasmus people. Thanks to all friandsther countries who have been with me

in the good times and the bad.

Finally, thanks to my family that has looking aftee all my life with affection and
confidence.

© David San Leén Granado, 2007.

| ndex

15T 1= P 1
Table Of IMAGES ..o 4
Table Of @XAMPIES.......coe e 4
Yoo [8ox 1 o] o RO PSPPSR OPPPPPRPPPRN 5
Y O OSSP PRSPPI 7.
R [11 0T [T 1o o 1RO T PSP PPPPPPRRPPRN 8
12 1Y | PR 9
2.1 WAL IS XML ..ttt et e ettt e e e e s esnn et e e e e e e e e abbeee e 9
2.2 [1151 (0) Y PSPPSR 9
2.3 FEALUIES OF XML ..ttt ettt ettt e e e s e e e e e e e e 10
2.4 XML does NOt DO ANYENINGuuuuiiiiiiiiiitceeeeiiieeiiieiiiieieeineeeeeeeeaeee e emmmneeeeeennnees 12
241 XMLis Free and EXtensibleooooiiiii oo 12
242 XML isa Complement t0 HTIMLuuiiiiiiiiimm e eee e e eee et eeeenns 13
2.4.3 XML in Future Web DevelopmeNntoo e e e e ee et 13
2.4.4 XML can separate Data from HTMLoooimmmmmeeeeniiiiiieeeecee e 13
245 XML is Used to EXChange Datauuuvimmmmmmiiieiieeeeeeeeeeeeeeeeeeee e 13
2.4.6 XML and B2B (BUSINESS TO BUSINESS)mmmmerreennnnnnnnnnneinnnnnnnnnnaaaaesennns 14
247 XML Can be Used to Share Data...........cccoeeeieeeiiiiieeeeeeeeeeeeee 14
2.4.8 XML Can be Used t0 StOre Datacccooiiicece oo 14
2.4.9 XML Can Make your Data More Useful ... 14
2.4.10 XML Can be Used to Create NeW LanQUagES.ccceeeriieeeiiiiiiiiiiiieeeieeeieeeeaaeaaenn 14
2.5 XML dOCUMENT STFUCTUIE ..ottt a e e e e e e st e e e e nnnnbnnn e e eeeas 14
2.5.1 Standards, extensions and SCEMAS........ . eeeeeriiiiirreerieeeeeesnniiiieeeeesesssieees 1D
R B - - o T 1T PP PRSPPI 17
3.1 (D= 11 011 (o] o HO PR PP PPPPR 17
3.2 RelAtioN@l MOUEIeeiiiiiii i e e e e e e e e e e e e 17
4 XML DABDASESceviieiiiiiieei ittt ettt e e e e e e e ettt e e e e e e s s e bbb et e e e e e bbb e e e e e e e e e e annananees 19
4.1 Native XML Databasesccooiiiiiiiiiiiiiieeeee et 19
LI O 1= Tod (=3, | I 5 = P 21
51 FEALUIES ..ttt ettt e e e e et et et bt a e e e e e e e ae b e e aaeeaeae 21
5.2 FEALUIES ..ttt ettt e e e e et et et bt a e e e e e e e ae b e e aaeeaeae 22
5.2.1 XMLTYPE DatalyPe .. ettt ettt e e e e e e et e e e e e e eenes 22
5.2.2 The XMLTYPE APl ettt e e et e e e e ettt e e e e et e e e nnnnne e e s nnnaeeens 22
5.2.3 XML SChemMa SUPPOIT ...cceiiiiiiiiieiiie et e e rmmrne e e e 23

5.2.4 XML/SQL DUAILYcceviiiiiiiiiiiiiiiiieiiiit s eeee ettt eeeeeeee et eaeeaaassaaseeeessssrneeenseeeeeeeeeeees 23

5.25 SQL/XML INCITS Standard SQL FUNCLIONS........coeeeeeiiaeeiaaeiieeeeeeeeeeeeeeeeeeeee 23.
5.2.6 XPAth REWIITE ..ottt e+ 222t e et e e e e et e e et e et e et e et ettt e e eeeeeaeaaeaaaaaaaaaaaaaeaees 24
53 Storing and retrieving XML Data in Oracle XML DB..........ccccooiiiiiiiiiiiiiieeeeeeie 24
5.3.1 XMLTYPE OPEIALIONSceeieiiiieiiiiiiiiiieeireeeeeeeeeee e e s s st e e e e e e e e e s s eeaeeesnnnneeeeas 24
54 XML Schema Storage and QUETYoocuiiiiiireeeeiiriiie et e e mnreee e 27
L0 0t R /| Y od 1= o - PP 27
5.4.2 XML Schema-Related Methods of XMLTYPEcommeiiiiiiiiiieeiiiiieeeee e 29
5.4.3 XMLType Tables and Columns Based on XML SChema cue....ccccvviieiiieiinniniiinnnee. 30
5.4.4 Oracle XML Schema ANNOtatiONS..........coooieeeeeeeeeeeee e 30
5.4.5 Generating XML Schemas with DBMS_XMLSCHEMA.GENERASEHEMA 31
5.4.6 Creating CONSIIAINTSuiiiiiieeiie s immmmme e e ee e ee et ee e e eeeeeeeeesaeaesssssrereneeeeeeeeeeeeeeeees 32
I A O 1| o) o [g =TS (o] = Vo [1 PP 32
5.4.8 Fully Qualified XML Schema URLSuuuummmmmriiiiiiiiiiiieee e eeeee, 33
5.4.9 Mapping XML Fragments to Large Objects (LOBS).......cccooeevviiviiiiiiiie e 33
5.4.10 ComplexType Extensions and Restrictions in OraddlDB................ccooevveeeeee. 34
5.4.11 Circular Schema DependencCi€s..........coovi e eeeeieeeeeeeee e, 34
55 Oracle XPath EXIENSIONc..uiiiiiiiiii e cmmmmmi et eneeee e 36
5.5.1 Functions to examine Type Information........cccccceeooeeiiiieeee, 36
5.5.2 Using XML Schema with Oracle XML DBccmmeeeiiieiiiiiiiiieeieeee e 36.
5.6 Da = 1 T Y (= 37
5.6.2 Checking XPath reWrite.........cooviiiiiiiiii e 43
5.6.3 Examples of Rewrite of SQL FUNCLONScccomiiiiiiiiiiiiiee e 44
5.6.4 BiNA VANIADIESouiiiiiiiiiiii e 45
5.7 XML SChemMa EVOIULION.uuuiiiiiiiiiiiiiiice ettt e e meneeeeeeeeeeeeees 45
5.7.1 Style Sheet to update existing instance documents.............ccceeevvvveeiieeiieeeeeeeeenn. 46
5.8 Full-Text Search OVer XMLcoooiiiiii e e e 48
5.8.1 The function CONTAINScoiiiiteiee e eeree e e e e e e e e e eeeeeeessseeeees 49
5.8.2 The score sgl fuUNCLON........ccoooiiiiii i, 49
5.8.3 SUIUCIUIE OPEIALOIS iiiieiiitti e e et o sttt a s e e e e e eeataaas s e eeeeeeessenreasseeeeeesssnnnnnes 49
5.8.4 CONIEXE INUEX ..iiiiiiiiiiiiiitieeeeeee e e s sttt ettt e e e e s s st e et e e e e e e e s s samnnee e e e e e e s annnaeneees 50
Y = I | RSO RR 51
LG (01100 [UT{ 1o o I PP SO PPPPPPRRPPR 52
A A g T 1) YA TS 3E= T g T o L= o o PP 52
7.1 (€1 0] 0 T= TRV] o] o ST OPPPPPPPRRPRR 52
7.2 L0 [LT (=T 1= €O 52
7.2.1 Functional reqUIrEMENTS..........oiiiiiiii ettt eee e eee e b rerrrnreeeeeeeeeeees 52

7.3 LY ST o= 1Y SN 54

7.3.1 USE CASE AIAGIAIMeuiiiiiiiiieeieeiit e e e e e et e et e e e e e s e e e e e e e e e e mmneee e e e e s annreeees 54
7.3.2 USe CASES SPECIFICALIONoeeeieiiiiiiiiie et e e 54
7.3.3 The structure of the database 58
7.3.4 XML Schema selected for the database...........cccco oo 58
ARG T T Y {03 011 =T 0! (1] = 63
7.3.6 SErUCUral dIAGIaIM.......oiiiiiiieiee e ereeee e e e e e e e e e e 63
RS T A U L= g (=T = o = 65
7.3.8 USEA tECNNOIOGY.....cciiiiiiiiiei ittt e e e e e e 68
8 Conclusions and fULUIE WOTKSoooe oo 70
S T 1 [0 11T 1 Y 72
10 Bibliography and REfEreNCES............oii ittt eeaaneeeeseseesssesrernrnne 73
L1 APPENAICES. ... ————————————————————— 75
11.1 Installation of the appliCatioNeveeeeeeieeiiii e, 75
112 CD CONLAINS ..ttteiiiiieee ittt ettt e e e mmmeee ettt e e e e e e sttt e e e e e e e s s s bbb e e e e e e abbbeseeeeeeeeeaaannn 75

Table of images

Figure 1 Example of out-of-line@ Storage [6] ..cccce v ooiieeiiiiii e 33
Figure 2 Example of mapping XML fragments to LOBE.[......uuuuurruurimiiiiiiiiiiiiee e eeeee e 34
Figure 3 Crossed schema dependencCies [6].......cccuurerieeeaiiiiiiiiiiiiie e e e 35
Figure 4 Self referenCing [B]...........ouut et e e s e e e e s e e e e e e e e e aanes 35
Figure 5 Circular schema dependencCies [6]...ccaaaaaeiiioirrriiiiiieeee e 35
Figure 6 USe CASES TIAQIameieiiiiiee et ettt ee ettt eee ettt eaeeaeeet e e e meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 54
Figure 8 Structure of the reCipe SCNEME ... oo 61
Figure 9 Description of collection @lement.. 61
Figure 10 Description Of reCipe €leMENT. ... o eieiiiieiiiiiiiiiiei et eeeeeeeeeeeeeneennees 62
Figure 11 Description of ingredient @leMENT ..cccaac. .. ueeei e 62
Figure 12 Description of preparation elementooiiiiiiiiiiiiiiiiiiieee e eeeeeeeeeeeeeeees 62
Figure 13 Communication with the RDBIMS [L]....cceeervrrrrrurmimriiiniinieiiiissee s ssmmsssnnnssnnnennne 63
Figure 14 Class diagram of the Simple AppliCatioN............cccoovvviiiiiiiieeeeeee e, 64
Figure 15 Manage XML databases...........oi oottt e e eeee e e e e e e e e e eeeeeeeeeeeeees 66
FIgUre 16 Add ElEMENTS.........cooi i 67
FIQUIE 17 SEAICH RECIPESuuuuiii e s e s e e s e a e e e e e e e e s eee s e s e a e e e e e e aas 68

Table of examples

Example 1 Simple XML dOCUMENt @XAMPIE........ommmeeeeeiieeieeeiieeeeee et eee e e e 12
Example 2 XML Schema @XamPIEuuuuutceeeeeeiiiiiiiiiiiiiiiiieiine s enaaassssesesssennssnnnennnes 15
Example 3 Use of DBMS_SCHEMA.REGISTER SCHEMA [B] caurvvvvvvvvviiriiiiiiiiiiiiiiiiininennnnnnns 29
Example 4 Use of DELETESCHEMALB]ccoii oot s nnnennnes 29
Example 5 Use of GENERATESCHEMA ... 32
Example 6 Use of REGISTERSCHEMA [6]oiocmmeiieiiiiiiee ettt semee e 41
Example 7 Rewrite of query with XPath ... 43
Example 8 Use Of COPYEVOIVE.........oco et e e 48
Example 9 Fragment of the XML Schema that des@ibecipe for meal.............ccccciiiiviiieennnn. 60

| ntroduction

Nowadays, a lot of standards of the structure aludeents and data are appearing, and this is a
big problem when it is necessary to export from etructure to another one. But among those
standards, XML appears and it solves some of thegd#ems and it is widely used because it is open
source. For a lot of people, XML is the future fime structured data; a lot of companies are

developing XML applications for this reason.

For a long time the humans want to store thermétion that they get. With the new
technologies, the quantity of information is bigged it was necessary to find some place to put it
without to use the traditional support (paper, sto). To solve this, the databases appeared using

informatics technologies.

At the beginning, text and numbers was stored endiditabases, but nowadays they store a lot
of kinds of information, for example images, audimeos or binary files. Due to this, a lot of kind
of databases appeared and of course, one of thenfosased to XML data. Those databases are
focused in the interchange of information using XML characteristics. And after this, thanks to
XML structure, in the text databases (databasesstioae text documents) the search is easier and
faster. Now it is possible to find a XML databaaesl do queries like for example, find the books tha
contain a specific word in the preface. With theditional text databases, it was very difficult and
very slow, and then for instance, a lot of virtlilataries follow this way and translate the docutsen

to specific XML structure to improve the searches.

Relational databases are the dominant data storgrbyiding storage and processing
mechanisms that offer both efficient techniques dtmring structured data and high-performance
query evaluation. On the other hand, XML is a newsmrtable data format to exchange semi-
structured data between disparate systems or apphs. Businesses today require both XML and

relational storage for easy exchange of data adddaflexibility.

At present, the XML databases are not ‘true’ XMltadmses, the native databases. Oracle is
near this; the Oracle 10g has native XML storage retrieval technology. It fully absorbs the W3C
XML data model into the Oracle Database, and pewidew standard access methods for navigating

and querying XML.

With the new database structure it is necessdipdcanother ways to make queries. For this, a
lot of extensions appeared, like XPath and XQuéhgse extensions helped to search and restrict the

information. It is very important, for example,time full text search. Other problem is the struetofr

5

the XML, because XML only determines some rulestfigr document but not for the structure; at the
beginning, it was not nothing to control this; besa this, it was developed DTD, Schema and
another extensions that create a specificatiomictsns and rules for the document. For the XML

databases it is very important to create dependsrimtween the different parts of the data and to

validate the added elements in the database.

With the different formats it appears the probldnthe difficulty of exchange data, XML solve
this in a lot of situations. For instance, if sodaabases have to exchange data but the datalaeses c
have different structures and the data can haverelift formats, they have to have an intermediate
structure for the data; normally is a XML structamed each database transforms their data in this

format (all of them have to know this structure).

The actual databases have packages to transformiXMthers formats, like HTML, XHTML
or PDF. It is necessary if you want to show yodormation in net technologies like Internet. You
can have the information in XML, create a XML stgleeet and transform it to HTML, for instance,
to put it on the web easily. This is very good heseaall web applications can have the same steictur

and only change the style sheet.

The structure of the document has two parts, ttedart is for study deeply the different
characteristics previously mentioned. The secontl gentains information about the design of the
application, the engineering and specification.tid¢ end of the thesis, the glossary, conclusions,

references and bibliography and appendices (instatiual and CD contains) appear.

PART |

Background

1 Introduction

This first part is divided in several chapters, fingt one is the introduction, the second chapter
is an overview of XML and XML extensions, XPath,h8ma, XSLT, DTD... The third chapter
contains talks about the databases in generalfolindh chapter talks about XML databases and their
different kind of databases. Also, in the XML daaes talks about natives XML databases and
enabled XML databases.

The fifth chapter contains the studies over thecleraML DB features and explains the before

chapter focused in Oracle Database Server.

2 XML

= The information presented in this chapter s bas¢#]j [9], and [11]

2.1What isXML?

* XML stands for EXtensible Markup Language.

e XML is a markup language much like HTML.

« XML was designed to describe data.

* XML tags are not predefined. You must define youndags.

* XML uses a Document Type Definition (DTD) or an XMichema to describe
the data.

« XML with a DTD or XML Schema is designed to be sadfscriptive.

* XML is a W3C Recommendation.

2.2History

The versatility of SGML for dynamic information @iay was understood by early digital

media publishers in the late 1980s prior to the osthe Internet.

By the mid-1990s some practitioners of SGML hadhediexperience with the then-new
World Wide Web, and believed that SGML offered $iols to some of the problems the Web was
likely to face as it grew. Dan Connolly added SGMLthe list of W3C'’s activities when he joined
the staff in 1995; work began in mid-1996 when Rwsak developed a charter and recruited
collaborators. Bosak was well connected in the somethmunity of people who had experience both

in SGML and the Web. He received support in hisrgffrom Microsoft.

XML was designed by a working group of eleven mersbsupported by an (approximately)
150-member Interest Group. Technical debate toa&epbn the Interest Group mailing list and issues
were resolved by consensus or, when that failegpnihavote of the Working Group. The decision
record was compiled by Michael Sperberg-McQueemenember 4 1997. James Clark served as
Technical Lead of the Working Group, notably cdmiting the empty-element “<empty/>" syntax
and the name “XML". Other names that had been gutdrd for consideration included “MAGMA”

(Minimal Architecture for Generalized Markup Apmiions), “SLIM” (Structured Language for
Internet Markup) and “MGML” (Minimal Generalized Map Language). The co-editors of the
specification were originally Tim Bray and Mich&gberberg-McQueen. Halfway through the project
Bray accepted a consulting engagement with Netsqapeoking vociferous protests from Microsoft.
Bray was temporarily asked to resign the editorshipis led to intense dispute in the Working

Group, eventually solved by the appointment of Eéaft's Jean Paoli as a third co-editor.

The XML Working Group never met face-to-face; thesign was accomplished using a
combination of email and weekly teleconference® ajor design decisions were reached in twenty
weeks of intense work between July and Novemb&®86, when the first Working Draft of an XML
specification was published. Further design workticwed through 1997, and XML 1.0 became a
W3C Recommendation on February 10, 1998.

XML 1.0 achieved the Working Group’s goals of Imetr usability, general-purpose
usability, SGML compatibility, facilitation of eagjevelopment of processing software, minimization

of optional features, legibility, formality, coneisess and ease of authoring.

Clarifications and minor changes were accumulatgaublished errata and then incorporated
into a Second Edition of the XML 1.0 RecommendatimnOctober 6, 2000. Subsequent errata were
incorporated into a Third Edition on February 4020

Also published on the same day as XML 1.0 ThirdtiBdiwas XML 1.1, a variant of XML
that encourages more consistency in how charaatenepresented and relaxes restrictions on names,

allowable characters, and end-of-line represemtatio

On August 16, 2006, XML 1.0 Fourth Edition and XML1 Second edition were published

to incorporate the accumulated errata.

Both XML 1.0 Fourth Edition and XML 1.1 Second Hdiit are considered current versions of XML.

2.3 Featuresof XML

If we speak about XML we have to speak about HTMbth are connected. We use XML
and HTML in Web technology but we use them foratiét tasks.

XML and HTML are mark-up languages but are venfedént; the main difference is that
XML was designed to carry data. Because of this Xisllnot a replacement for HTML, XML and
HTML were designed with different goals:

« XML was designed to describe data and to focus loat wata is.

« HTML was designed to display data and to focus @m Hata looks.

10

« HTML is about displaying information, while XML &bout describing information.

XML provides a text-based means to describe anty @ppee-based structure to information.
At its base level, all information manifests asttarterspersed with mark-up that indicates the
information’s separation into a hierarchy of chéeadata, container-like elements, and attribufes o
those elements. In this respect, it is similah®LISP programming language’s S-expressions, which

describe tree structures wherein each node mayitsaoen property list.

The fundamental unit in XML is the character, afrdel by the Universal Character Set. Characters
are combined to form an XML document. The docunsamsists of one or more entities, each of

which is typically some portion of the document®racters, stored in a text file.

XML files may be served with a variety of Media &g RFC 3023 defines the types
“application/xml” and “text/xml”, which say only #t the data is in XML, and nothing about its
semantics. The use of “text/xml” has been critidizs a potential source of encoding problems but is
now in the process of being deprecated. RFC 30&3 r@icommends that XML-based languages be
given media types beginning in “application/” andndmg in “+xml”; for example

“application/atom+xml” for Atom. This page discusdarther XML and MIME.

The ubiquity of text file authoring software fatalies rapid XML document authoring and
maintenance. Prior to the advent of XML, there wezgy few data description languages that were
general-purpose, Internet protocol-friendly, andyveasy to learn and author. In fact, most data
interchange formats were proprietary, special-psgpdbinary” formats (based foremost on bit
sequences rather than characters) that could neadily shared by different software applications o

across different computing platforms, much les§@ae@d and maintained in common text editors.

By leaving the names, allowable hierarchy, and nmggnof the elements and attributes open
and definable by a customizable schema, XML pravidesyntactic foundation for the creation of
custom, XML-based mark-up languages. The generdaxyof such languages is rigid — documents
must adhere to the general rules of XML, assurirag &ll XML-aware software can at least read
(parse) and understand the relative arrangemetmfafmation within them. The schema merely
supplements the syntax rules with a set of comdéraEchemas typically restrict element and atteibu
names and their allowable containment hierarchéegh as only allowing an element named
‘birthday’ to contain 1 element named ‘month’ andatléEment named ‘day’, each of which has to
contain only character data. The constraints ioh&ma may also include data type assignments that
affect how information is processed; for examphe tmonth’ element’s character data may be
defined as being a month according to a partickdhema language’s conventions, perhaps meaning
that it must not only be formatted a certain wayt &lso must not be processed as if it were some

other type of data.

11

In this way, XML contrasts with HTML, which has aiflexible, single-purpose vocabulary
of elements and attributes that, in general, cabaoepurposed. With XML, it is much easier to @rit
software that accesses the document’s informagioog the data structures are expressed in a formal

relatively simple way.

XML makes no prohibitions on how it is used. AltlghuXML is fundamentally text-based,
software quickly emerged to abstract it into othigher formats, largely through the use of dapety
oriented schemas and object-oriented programmirgdpans (in which the document is manipulated
as an object). Such software might treat XML asabeed text only when it needs to transmit data
over a network, and some software doesn’t evernaiorhiuch. Such uses have led to “binary XML”,
the relaxed restrictions of XML 1.1, and other msgls that run counter to XML'’s original spirit and

thus garner criticism.

2.4 XML doesnot DO Anything

XML was not designed to DO anything, XML was crelate structure, store and to send

information.
The following example is a note to John from Totored as XML:

<note>

<to>John</to>
<from>Tom</from>
<heading>Reminder</heading>
<body>Send me an email!</body>

</note>

Example 1 Simple XML document example

The note has a header and a message body. Itadssehder and receiver information. But
still, this XML document does not DO anything. dtjust pure information wrapped in XML tags.

Someone must write a piece of software to senéjveor display it.

2.4.1 XML isFreeand Extensible

The tags used to mark up HTML documents and thectstre of HTML documents, are
predefined. The author of HTML documents can orglg tags that are defined in the HTML standard
(like <p>, <h1>, etc.).

12

XML allows the author to define his own tags ansldivh document structure.

The tags in the example above (like <to> and <frpare not defined in any XML standard.

These tags are “invented” by the author of the Xdécument.

2.4.2 XML isaComplement toHTML

It is important to understand that XML is not a lemgment for HTML. In future Web
development it is most likely that XML will be uséaldescribe the data, while HTML will be used to

format and display the same data.

2.4.3 XML in Future Web Development

XML is going to be everywhere.

We have been participating in XML development siitsecreation. It has been amazing to
see how quickly the XML standard has been devel@metihow quickly a large number of software

vendors have adopted the standard.

We strongly believe that XML will be as importauwt the future of the Web as HTML has
been to the foundation of the Web and that XML wi# the most common tool for all data

manipulation and data transmission.
2.4.4 XML can separate Datafrom HTML

When HTML is used to display data, the data isestanside your HTML. With XML, data
can be stored in separate XML files. This way yan concentrate on using HTML for data layout
and display, and be sure that changes in the wagrdata will not require any changes to your
HTML.

XML data can also be stored inside HTML pages aatdDslands”. You can still concentrate

on using HTML only for formatting and displayingetidata.
2.4.5 XML isUsed to Exchange Data

In the real world, computer systems and databas@sio data in incompatible formats. One
of the most time-consuming challenges for develppgws been to exchange data between such

systems over the Internet.

Converting the data to XML can greatly reduce ttosmplexity and create data that can be

read by many different types of applications.

13

2.4.6 XML and B2B (Business To Business)

XML is going to be the main language for exchangfitancial information between

businesses over the Internet. A lot of interesB&8 applications is under development.
2.4.7 XML Can be Used to Share Data

Since XML data is stored in plain text format, XMirovides a software- and hardware-

independent way of sharing data.

This makes it much easier to create data thatrdifteapplications can work with. It also
makes it easier to expand or upgrade a systemwiooperating systems, servers, applications, and

new browsers.

2.4.8 XML Can be Used to Store Data

XML can also be used to store data in files or atabases. Applications can be written to

store and retrieve information from the store, gaderic applications can be used to display the. dat
2.4.9 XML Can Makeyour Data M or e Useful

Since XML is independent of hardware, software apglication, you can make your data

available to other than only standard HTML browsers

Other clients and applications can access your XiN#s as data sources, like they are
accessing databases. Your data can be made agditabll kinds of agents, and it is easier to make

your data available for blind people, or peoplenvather disabilities.

2.4.10 XML Can be Used to Create New Languages

XML is the mother of WAP and WML.

The Wireless Markup Language (WML), used to markuernet applications for handheld

devices like mobile phones, is written in XML.

2.5 XML document structure

14

A XML document has several defined parts and thgesés are composed from other parts

called elements that are signed with tags.

2.5.1 Standards, extensions and schemas

There are a lot of languages to manipulate XML datacreate schemas. The oldest schema

format for XML is the Document Type Definition (DJDinherited from SGML.

25.1.1 DTD Document Type Definition

A DTD is a set of rules that define the allowabdieicture of an XML document. DTDs are

text files that derive their format from SGML anaihcbe associated with an XML document either by

using the DOCTYPE element or by using an exteiteatlirough a DOCTYPE reference.

2512 XML Schema

The most used language is XML Schema. XML Schemabeaused to define a schema: a set

of rules to which an XML document must conform nder to be considered ‘valid’ according to that
schema. However, unlike most other schema languaddk Schema was also designed with the
intent of validation resulting in a collection efformation adhering to specific data types, whiah c

be useful in the development of XML document preoes software.
A simple XML Schema Definition:

<xs:schema
xmins:xs="http://www.chanle.org/XMLSchema ">
<xs:element name="country” type="Country”/>
<xs:complexType name="Country”>
<xs:sequence>

<xs:element name="name” type="xs:string"/>

<xs:element name="population” type="xs:decimal’/>

</xs:sequence>
</xs:complexType>
</xs:schema>

Example 2 XML Schema example

25.1.3 Extensions

XML was created to structure, store and to senaorindtion, but sometimes it is not enough,
we can need to find some information or leak it. IXMon't support this and we need some

extensions. Some extensions are: XPath, XQuery...

25.1.3.1 XPath (XML Path Language)

15

XPath is an expression language for addressingopsrtof an XML document, or for

computing values (strings, numbers, or Booleanes)lbased on the content of an XML document.

The XPath language is based on a tree representdtibe XML document, and provides the

ability to navigate around the tree, selecting sduea variety of criteria.

The most common kind of XPath expression is a mgagbression. A path expression is
written as a sequence of steps to get from one Xbftle (the current ‘context node’) to another node

or set of nodes. The steps are separated byé/"ath) characters.

25132 XQuery

XQuery is a query language (with some programmarggliage features) that is designed to

query collections of XML data. It is semanticallyngar to SQL.

The mission of the XML Query project is to provitlexible query facilities to extract data
from real and virtual documents on the World Widel)therefore finally providing the needed
interaction between the Web world and the databaskl. Ultimately, collections of XML files will

be accessed like databases

XQuery provides the means to extract and manipwata from XML documents or any data

source that can be viewed as XML, such as reldtiatabases or office documents.

XQuery uses XPath expression syntax to addressifispearts of an XML document. It
supplements this with a SQL-like “FLWOR expressidor’ performing joins. A FLWOR expression
is constructed from the five clauses after whiclsithamed: FOR, LET, WHERE, ORDER BY,
RETURN.

The language also provides syntax allowing new Xdlelcuments to be constructed. Where the
element and attribute names are known in advamcgMlL-like syntax can be used; in other cases,
expressions referred to as dynamic node constsiateravailable. All these constructs are defirged a

expressions within the language, and can be aribyjtreested.

The language is based on a tree-structured modeheofinformation content of an XML
document, containing seven kinds of node: docummeades, elements, attributes, text nodes,

comments, processing instructions, and namespaces.

The type system of the language models all valaesegquences (a singleton value is considered
to be a sequence of length one). The items in aes®g can either be nodes or atomic values. Atomic
values may be integers, strings, Booleans, anchsthe full list of types is based on the primitive

types defined in XML Schema.

16

3 Databases

= The information presented in this chapter s basédl]i

3.1 Definition

A database is an organized collection of data. irssible definition a database can be defined
as a structured collection of records or dataithstored in a computer so that a program can ¢onsu
it to answer queries. The records retrieved in @ansavqueries become information that can be used
to make decisions. The computer program used t@gegand query a database is known as a
database management system (DBMS).

The term "database" originated within the computiisgipline. Database-like records have been
in existence since well before the industrial retioh in the form of ledgers, sales receipts ameiot
business related collections of data.

The central concept of a database is that of a&dadh of records, or pieces of knowledge.
Typically, for a given database, there is a stmattdescription of the type of facts held in that
database: this description is known as a schema. sidnema describes the objects that are
represented in the database, and the relationahpsg them. There are a number of different ways
of organizing a schema, that is, of modelling tla¢abase structure: these are known as database
models (or data models). The model in most commam taday is the relational model, which in
layman's terms represents all information in thenfef multiple related tables each consisting of
rows and columns (the true definition uses mathie@aterminology). This model represents
relationships by the use of values common to mbemn tone table. Other models such as the
hierarchical model and the network model use a rarpdicit representation of relationships but were

given up because the relational model is better.

3.2 Relational M odel

The relational model was introduced in an acadgraper by E. F. Codd in 1970 as a way to
make database management systems more indepentdeaty oparticular application. It is a
mathematical model defined in terms of predicaggcland set theory.

The products that are generally referred to adioela databases in fact implement a model
that is only an approximation to the mathematicadet defined by Codd. The data structures in
these products are tables, rather than relatiatsatie how it must be if we follow Codd's modeek th

main differences being that tables can containidatg rows, and that the rows (and columns) can be

17

treated as being ordered. SQL language which iptineary interface to these products treats Codd
relations as tables as well. There has been caabigecontroversy, mainly due to Codd himself, as
to whether it is correct to describe SQL implemgaies as "relational”: but the fact is that the \dor
does so, and the following description uses thma tarits popular sense.

A relational database contains multiple tableshesamilar to the one in the "flat" database
model. Relationships between tables are not defenguicitly; instead, keys are used to match up
rows of data in different tables. A key is a cdiie of one or more columns in one table whose
values match corresponding columns in other talit@sexample, an Employee table may contain a
column named Location which contains a value thetcires the key of a Location table. Any column
can be a key, or multiple columns can be groupgdtteer into a single key. It is not necessary to
define all the keys in advance; a column can bd asea key even if it was not originally intended t
be one if it was the correct properties like begurifor example. This property obeys to all valoies
this column to be different so it is possible teritlfy a row with the value to this column. Thisws
called unique key. If we use this column to referaw it is called primary key. A key that has an
external, real-world meaning (such as a persomtsereand surname , a book's ISBN, or a car's serial
number), is sometimes called a "natural" key. Ifnadural key is suitable (think of the many people
named Brown), an arbitrary key can be assignedh(siscby giving employees ID numbers). In
practice, most databases have both generated amdnkeys, because generated keys can be used
internally to create links between rows that carmmetik, while natural keys can be used, less fgliab
for searches and for integration with other datebagFor example, records in two independently
developed databases could be matched up by seciality number, except when the social security

numbers are incorrect, missing, or have changed.)

XML database is a data persistence software systatallows data to be imported, accessed and

exported in the XML format.

18

4 XML Databases

= The information presented in this chapter s bas¢d]j [4] and [5].

XML database is a data persistence software sytatallows data to be imported, accessed and
exported in the XML format. For the creation ofstlkind of database O'Connell gives one reason for
the use of XML in databases: the increasingly commse of XML for data transport, which has
meant that "data is extracted from databases anthfjuXML documents and vice-versa". It may
prove more efficient (in terms of conversion costis)l easier to store the data in XML format.

There are two kinds of XML Databases:

* XML enable database.

* Native XML database.

The XML enabled databases are databases that htddird some format other than XML. An
interface is provided, however, so that XML canpbesented to an application even though the data
is stored in some other format. Often, these daedbhmay have existing data that is now needed to be
presented using XML. An XML-enabled database mighta relational database, object-relational
database, or an object-oriented database. Somet-objational mapping tools are also designed to
work with XML.

The native XML databases are a type of databasesmlKML data to be stored directly. Usually
these mean populating a new database with the Xkiia.dNative XML databases are likely to
perform better than XML-enabled databases sincee tiselittle need for converting the data or that
the conversion is minor. The data conversion ireaabled database is almost always going to be
more significant and time consuming than with aiveatlatabase.(for more information see 4.1
Native XML Databases)

The difference between XML-enabled and native ggres that XML-enabled storage uses

schema-specific structures that must be mappeldeteXML document at design time. Native XML

storage uses generic structures that can contgiXlelih document.

4.1 Native XML Databases

The formal definition from the XML, DB consortiunteses that a native XML database:

19

« Defines a (logical) model for an XML document (asposed to the data in that document)
and stores and retrieves documents according tartbdel. At a minimum, the model must
include elements, attributes, PCDATA, and documermer. Examples of such models
include the XPath data model, the XML Infoset, &melmodels implied by the DOM and the
events in SAX 1.0.

¢ Has an XML document as its fundamental unit of ida) storage, just as a relational

database has a row in a table as its fundamernitadfuthogical) storage.

It does not need to have any particular underlyphgsical storage model. For example,
NXDs can use relational, hierarchical, or objedtwted database structures, or use a proprietary

storage format (such as indexed, compressed files).

Additionally, many XML databases provide a logicabdel of grouping documents, called
“collections”. Databases can set up and manage nw@ollections at one time. In some
implementations, a hierarchy of collections cansexmuch in the same way that an operating

system'’s directory-structure works.

All XML databases now support at least one fornguérying syntax. Minimally, just about
all of them support XPath for performing queriesiagt documents or collections of documents.
XPath provides a simple pathing system that alloges's to identify nodes that match a particular set

of criteria.

In addition to XPath, many XML databases supporl. K&s a method of transforming
documents or query-results retrieved from the deteb XSLT provides a declarative language
written using an XML grammar. It aims to defineed sf XPath filters that can transform documents
(in part or in whole) into other formats includiRgpin text, XML, HTML, or PDF.

Not all XML databases support XQuery to performrguey. Some XML databases support
an API called the XML: DB API (or XAPI) as a fornf omplementation-independent access to the
XML data store. In XML databases, XAPI resemblesB@as used with relational databases.

20

5 Oracle XML DB

= The information presented in this chapter s bas¢@]j [10], [12], [13] and [14]

Oracle XML DB is a feature of the Oracle Databdsg@rovides a high-performance, native XML

storage and retrieval technology. It fully absaties W3C XML data model into the Oracle Database,

and provides new standard access methods for nenggand querying XML. Oracle XML DB gets

all the advantages of relational database techygihg the advantages of XML.

5.1 Features

In general, the features of Oracle XML DataBases ar

Support for the World Wide Web Consortium (W3C) XMind XML Schema data
models and standard access methods for navigatohgjaerying XML. The data models

are incorporated into Oracle Database.

Ways to store, query, update, and transform XMla adtile accessing it using SQL.

Ways to perform XML operations on SQL data.

A simple, lightweight XML repository where you camganize and manage database
content, including XML, using a file/folder/URL nagthor.

A storage-independent, content-independent andramoging language-independent
infrastructure for storing and managing XML dathisTprovides new ways of navigating
and querying XML content stored in the database. &mample, Oracle XML DB
Repository facilitates this by managing XML docurbierarchies.

Industry-standard ways to access and update XMle 3tandards include the W3C
XPath recommendation and the ISO-ANSI SQL/XML stmdd FTP, HTTP(S), and
WebDAV can be used to move XML content into and @fuDracle Database. Industry-
standard APIs provide programmatic access and miatipn of XML content using

Java, C, C++ and PL/SQL.

21

» XML-specific memory management and optimizations.

» Enterprise-level Oracle Database features for XMintent: reliability, availability,

scalability, and security.

5.2 Features

The major features of Oracle XML DB are these:

5.2.1 XML Type Datatype

XMLType is a native server datatype that lets theadase understand that a column or table
contains XML information. Datatype XMLType also prdes methods that allow operations such

as XML validation and XSL transformations on XMLmtent.

The datatype that Oracle uses to store the coofetite document as XML is the Character
Large Object (CLOB). This datatype allows flexityilto stqgore XML structures in a single table

or column.

An important point in the features of XMLTypeData®as XMLType tables or columns can be
constrained and conform to a XML schema. This ipdrtant because the database will ensure
that only XML documents that validate against thdLXschema can be stored in the column or
table moreover Oracle XML DB with the informatiohtbe schema can provide more intelligent

gquery and update processing of the XML.

522TheXMLTypeAPI

Datatype XMLType provides the following:

5221 Constructors
These allow creating XMLType from a VARCHAR, CLOBI.OB or BFILE value.

5.2.2.2 Methods

« Extract(): Extract a subset of nodes from an XMLType.
« existsNode(): check whether or not node exist in the XMLType.
« schemaValidate(): Validate the contents of the XMLType against ailXschema.

22

e Transform(): XLS Transformation.

5.2.3 XML Schema Support

Oracle XML DB support for the Worldwide Web Consam XML Schema Recommendation.

XML Schema unifies both document and data modellingOracle XML DB, you can create
tables and types automatically using XML Schemae Tser can create XML schema-based
XMLType tables and columns and specify. This spesitonform to pre-registered XML schemas

and are stored in structured storage format sgecify the XML schema (this maintains DOM).

Oracle XML DB can store an XMLType object as an XMlhject that is based on an XML schema

(LOBs or structure storage) or not based on an Xghema (LOBS).

5.2.4 XML/SQL Duality

XML/SQL duality means that the XML programmer caseuhe power of the relational model when
working with XML content and the SQL programmer agse the flexibility of XML when working

with relational content.

Oracle XML DB allows the relational and XML metapbhdecome interchangeable, the same data
can be showed as rows in a table and manipulatied) QL or showed as nodes in an XML
document and manipulated using DOM or XSL trans&drom, moreover access and processing
techniques are independent of the underlying stofagmat. This allows that relational data can
quickly and easily be converted into HTML pagesget all of the information in XML documents
without the overhead of converting black betweefiedint formats or text, spatial data, and

multimedia operations can be performed on XML Cotte

5.25 SQL/XML INCITS Standard SQL Functions

SQL/XML functions:

« existNode: Return true or false depending on whether or netdbcument contains a node
that matches the XPath expression.

« Extract: Return the nodes that match the expression. Ifghen is multiple, the result will
be a document fragment.

e extractValue: This operation takes an XPath expression and retheleaf node.

e updateXML: This operation allows partial updates to be madearioXML document,

moreover allows multiple updates to be specifigcafeingle XML document.

23

e XML Secuence: This allow expose the members of a collection dstaal table.

5.2.6 XPath Rewrite

Oracle XML DB can rewrite SQL statements that condéPath expressions to purely relational
SQL statements. The database optimizer simply peesethe rewritten SQL statement in the same

manner as other SQL statements.

XPath rewrite is not possible in all situationsjyois possible when a SQL statement contains
SQL/XML SQL functions or XMLType methods that us®ath expressions to refer to one or more
nodes within a set of XML documents, an XMLTypeuwuh or table containing the XML document
is associated with a registered XML schema, an XWfel column or table uses structured storage

techniques to provide the associated storage model.
If possible using the XPath, the process will hineefollowing steps:

0 Identify the set o XPath expressions included en$IQL statement.

o Translate each XPath expression into an objedioal SQL expression than references
the tables, types, and attributes of the underlaQu.

0 Rewrite the SQL statement to an equivalent objgletional SQL statement.

0 Take the new SQL statement to the database optirfozeplan generation and query

execution.

5.3Storing and retrieving XML Datain Oracle
XML DB

5.3.1 XML Type Operations

53.1.1 Selectingand querying XML Data

Oracle allows getting XML data from XMLType columimsdifferent ways:

* Select XMLType columns in SQL, PL/SQL.

e Query XMLType columns directly or using XMLType rheds extract() and
existsNode().

e Use Oracle Text operators.

¢ Use the XQuery language.

24

5.3.1.2 Searching XML Documentswith XPath Expressions

XPath Construct

Description

Denotes the root of the tree in an XPath

expression. Also used as a path separatc

identify the children node of any given nodg.

1

Used to identify all descendants of the curr

node.

Used as a wildcard to match any child nods.

[]

Used to denote predicate expressions. X
supports a rich list of binary operators sucl
OR, AND, and NOT.

Brackets are also used to denote an index

a list.

Functions

XPath supports a set of built-in funcienich
as substring(), round(), and

not(). In addition, XPath allows extensi
functions through the use of namespaces.
In the Oracle namespac

http://xmins.oracle.com/xdlOracle XML DB

additionally supports the functig
ora:contains(). This function behaves like

equivalent SQL function.

Dr to

ent

Path

as

into

he

53.1.3 Selecting XML Data

Oracle allows selecting XMLType using the XMLTypetinods, the methods are the following:

» getClobVal(): retrieve XML data as a CLOB value.

e getStringVal(): retrieve XML data as a VARCHAR value.
e getNumerVal(): retrieve XML data as a NUMBER value.
» getBlobVal(csd): retrieve XML data as a BLOB value.

25

5.3.1.4 Querying XML Type Datawith SQL Functions

Existnode(xmIType instance, XPath_string,[namespace string]): This function return 1
whether the given XPath path references at least XL element node or text node,
otherwise, it returns O.
extract(XMLType instance, XPath_string, [namespace string]): This extracts the node
(element, attribute or text node) or a set of ndda® the document identified by the XPath
expression.
extractValue (XML Type instance, XPath_expresson,[namespace string]): It returns a
scalar value corresponding to the result of thetl@galuation on the XMLType instance.

e Updating XML Instancesand XML Datain Tables
updateXML (XML Type instance[XPath_string,value expr], [namespace string])
Replace XML nodes of any kind.
insertChildXML (XML Type instance, XPath_string,child_expr,value_expr,[namespace
string]): Insert XML element or attribute nodes as childoéa given element node.
insertXMLbefore(XMLType instance,
XPath_expression,value_expr,[namespace_string]): Insert XML nodes of any kind
immediately before a given node.
appendChildXML(XMLType_instance,
XPath_expression,value_expr,[namespace_string]): Insert XML nodes of any kind as the
last child nodes of a given element node.
deleteXML (XML Type_instance XPath_expression,[namespace string]): Delete XML

nodes of any kind.

5.3.15 Indexing XML Type Columns

5.3.15.1 XPath Rewrite for indexes on singleton elements or attributes

Oracle XML DB attempts to rewrite the XPath expiass provided to SQL function
extractValue into CREATE_INDEX statements that apedirectly on the underlying objects.

5.3.1.5.2 Creating Function-Based Indexes on XML Type Tables and Columns

A function-based index is created by evaluatingsirecified functions for each row in the table.

It can be useful when the XML content is not mamwiagsing structured storage. In this case,
instead of CREATE INDEX statement being rewrittéine index is created by invoking the

function on the XML content and indexing the result

5.3.1.5.3 CTXXPATH Indexes on XMLType Columns

26

CTXXPATH index is based on Oracle Text technologyd ahe functionality provided in the
HASPATH and INPATH operators provided by the OraEéxt contains function. The HASPATH

and INPATH operators allow high performance
XPath-like searches to be performed over XML conten

The CTXXPATH index is designed to rewrite the XPatkpression supplied to SQL function
existsNode into HASPATH and INPATH operators, whicdn use the underlying text index to
quickly locate a superset of the documents thatimtite supplied XPath expression. Each document
identified by the text index is then checked, uanQOM-based evaluation, to ensure that it is @ tru
match for the supplied XPath expression. Due toathachronous nature of the underlying Oracle
Text technology, the CTXXPATH index will also penfio a DOM-based evaluation of all un-indexed

documents, to see if they also should be includdté result set.

The creation of the CTXXPATH indexes follows thergaway the creation of the Oracle Text
indexes, using the following syntax:

CREATE INDEX [schema.]index

ON [schema.]table(XMLType column)

INDEXTYPE IS CTXSYS.ctxxpath [PARAMETERS(paramstrin Ql;

Paramstring: [storage storage_pref] [memory memsize] [populate
| nopopulate]

5.4 XML Schema Storage and Query

5.4.1 XML Schema

Oracle XML DB uses annotated XML Schemas as metadhtt is, the standard XML Schema
definitions along with several Oracle XML DB-defthettributes. These attributes control how
instance XML documents get mapped to the datalBeseause these attributes are in a different
namespace from the XML Schema namespace, suchaato{ML Schemas are still legal XML

Schema documents.

The XML schema URL in Oracle is associated withapasterschemaurl of PL/SQL procedure
DBMS_XMLSCHEMA registerSchema, the XML schema URlentifies the XML schema in the

database.
Oracle XML DB provides XML Schema support for tledldwing tasks:

Registering any W3C-compliant XML schemas.

27

e Validating your XML documents against registered IXBthema definitions.

* Registering local and global XML schemas.

e Generating XML schemas from object types.

« Referencing an XML schema owned by another user.

* Explicitly referencing a global XML schema whenoadl XML schema exists with the same
name.

e Generating a structured database mapping from ¥dlic schemas during XML schema
registration.

* Specifying a particular SQL type mapping when treeemultiple legal mappings.

* Creating XMLType tables, views and columns basedegistered XML schemas.

e Performing manipulation (DML) and queries on XMlhema-based XMLType tables.

* Automatically inserting data into default tables emhschema-based XML instances are
inserted into Oracle XML DB Repository using FTF, HP(S)/WebDAYV protocols and other

languages.

If we speak about the XML Schema we have to spbakitaDTD, Oracle XML DB have supports it.
In addition, to supporting XML Schema, which praesda structured mapping to object- relational
storage, Oracle XML DB also supports DTD specifarag in XML instance documents. Though

DTDs are not used to derive the mapping, XML preoes can still access and interpret the DTDs.

An important point in management of XML schemathet before an XML schema can be used by
Oracle XML DB, it must be registered with Oraclet@lzase. It is possible register an XML schema
using the PL/SQL package DBMS_XMLSCHEMA. In thisckage, there are two important

methods:

* register Schema: this registers XML Schema. The main arguments are
0 schemaURL: Identifier for the XML schema within ©le@ XML DB.
o schemaDoc: the XML schema source document. (VARCHAROB, BLOB,
BFILE, XMLType or URIType).
0 CSID: the character-set ID of the source-documanbding, when schemaDoc is a
BFILE or BLOB value.

An example of registering an XML Schema with
DBMS_XMLSCHEMA.REGISTERSCHEMA:

BEGIN

DBMS_XMLSCHEMA registerSchema(

SCHEMAURL =>

‘http://xmins.oracle.com/xdb/documentation/purchase Order.xsd’,
SCHEMADOC => bfilename(‘XMLDIR’,’purchaseOrder.xsd’),

28

CSID => nls_charset_id(‘AL32UTF8));
END;
/
Example 3 Use of DBMS SCHEMA.REGISTER SCHEMA [6]

« deleteSchema: The first one registers one XML Schema and thersdelete a previously
created XML Schema.

Example:

BEGIN
DBMS_XMLSCHEMA.deleteSchema(
SCHEMAURL =>

‘http://xmins.oracle.com/xdb/documentation/purchase Order.xsd’,
DELETE_OPTION => dbms_xmlschema.DELETE_CASCADE_FORE);
END;

/
Example 4 Use of DELETESCHEMA[6]

e copyEvolve: Update a registered XML schema.

After XML schema is registered, is possible man#gstoring, accessing and manipulating XML

instances that conform to the XML schema, thenganucreate types or default tables.

Also you can register a XML schema as local or globhe local XML schema is visible only to the
owner and global schema is visible by all datahas®s. In the registerSchema method there is a

parameter where you can choose the kind of schemargefer.

5.4.2 XML Schema-Related Methods of XML Type

¢ isSchemaBased(): Returns TRUE if the XMLType instais based on an XML schema,
FALSE otherwise.

» getSchemaURL(), getRootElement(), getNamespaceurR the XML schema URL, name
of root element, and the namespace for an XML sehleased XMLType instance,
respectively.

« schemaValidate(),isSchemaValid(),isSchemaValidyted(setSchemaValidated(): An
XMLType instance can be validated against a regidtXML schema using these validation

methods.

29

543 XMLType Tablesand Columns Based on XML Schema

Using Oracle XML DB, developers can create XMLTyables and columns that are constrained to a
global element defined by a registered XML schemfter an XMLType column has been
constrained to a particular element and a particXilML schema, it can only contain documents that
are compliant with the schema definition of thaneént. An XMLType table column is constrained
to a particular element and a particular XML schdmadding the appropriate XMLSCHEMA and
ELEMENT clauses to the CREATE TABLE operation.

Syntax:

CREATE [GLOBAL TEMPORARY] TABLE [schena.] tabl e OF XMLType

[(obj ect _properties)] [XM.Type XM.Type_storage] [XM.Schema_spec]

[ON COMMIT {DELETE | PRESERVE} ROWS][O D _cl ause][O D_i ndex_cl ause]

[physi cal _properties] [table_properties];

The data associated with an XMLType table or coldhat is constrained to an XML schema can be

stored in two different ways:

e Shared the contents of the document and store & ast of objects. This is known as
structured storage.
» Stored the contents of the document as text, wsiaggle LOB column. This is known as

unstructured storage.

5.4.4 Oracle XML Schema Annotations

The schema annotation of Oracle XML DB gives agtian developers the ability to influence
the objects and tables that are generated by the Xdhema registration process. Annotation
involves adding extra attributes to tbemplexType, element, and attribute definitions that are

declared by the XML schema. The attributes use®@tacle XML DB belong to the namespace

http://xmins.oracle.com/xdb

The most commonly used annotations are the follgwin

« defaultTable: Used to control the name of the default tableegated for each global element
when the GENTABLES parameter is FALSE. Setting thithe empty string “” will prevent

a default table from being generated for the eld@rimequestion.

* SQLName: Used to specify the name of the SQL attribute dearesponds to each element

or attribute defined in the XML schema.

30

SQL Type: For complexType definitions, SQLType is used pedfy the name of the SQL
object type that corresponds to the complexTypenitieins. For simpleType definitions,
SQLType is used to override the default mappingvbeh XML schema datatypes and SQL
datatypes. A very common use of SQLType is to @efulmen unbounded strings should be
stored as CLOB values, rather than VARCHAR(4000ABH/alues (the default).

SQL CallType: Used to specify the name of the varray type wiitmanage a collection of

elements.

maintainDOM: Used to determine whether or not DOM fidelity gslitbbe maintained for a

given complexType definition.

storeVarrayAsTable: Specified in the root element of the XML scherdaed to force all
collections to be stored as nested tables. A nesial@ is created for each element that

specifies maxOccurs > 1. The nested tables aréeck@ath system- generated names.

5.4.5 Generating XML Schemaswith

DBMS XMLSCHEMA.GENERATESCHEMA

Oracle in the package DBMS_XMLSCHEMA, offers us thenctions generateSchema and

generateSchemas, with those functions it is pasdiblgenerate a XML schema from an object-

relational type automatically using a default magpi

generateSchema: This function returns an XMLType containing an X&thema. It can
optionally generate XML schema for all types refieed by the given object type or
restricted only to the top-level types.

generateSchemas: It returns an XMLSequenceType value. This is aasyiof XMLType
instances, each of them is an XML schema that sporeds to a different namespace. It also
takes an additional optional argument, specifyihg toot URL of the preferred XML

schema location

The following example shows the use of the gen8itema:

If we have the object type:

CREATE TYPE employee AS OBJECT(id NUMBER(10), name
VARCHARZ2(200), salary NUMBER(10,2)):

Using generateSchema:

31

SELECT DBMS_XMLSCHEMA.generateSchema('EM’EMPLOYE’ FROM
DUAL,

This returns a schema for the type employee. ThHema declares an element named
EMPLOYEE and a complexType called EMPLOYEEType auts other information from

http://xmins.oracle.com/xdb

DBMS_XMLSCHEMA.GENERATESCHEMA('T’, ‘EMPLOYEE’)
<xsd:schema targetNamespace=" http://ns.oracle.com/xdb/T
xmlns="http://ns.oracle.com/xdb/T1 "

xmlns:xsd=" http://www.w3.0rg/2001/XMLSchema ”
xmlns:xdb=" http://xmIns.oracle.com/xdb "

xmlns:xsi=" http://www.w3.0rg/2001/XMLSchema-instance "
xsi:schemalocation="http://xmlIns.oracle.com/xdb
http://xmlIns.oracle.com/xdb/XDBSchema.xsd ">

<xsd:element name="EMPLOYEE" type="EMPLOYEEType”
xdb:SQLType="EMPLOYEE" xdb:SQLSchema="T"/>
<xsd:complexType name="EMPLOYEEType">
<xsd:sequence>

<xsd:element name="EMPNOQ” type="xsd:double” xdb:SQL Name="id"
xdb:SQLType="NUMBER"/>

<xsd:element name="ENAME" type="xsd:string” xdb:SQL Name="name”
xdb:SQLType="VARCHAR2"/>

<xsd:element name="SALARY” type="xsd:double” xdb:SQ LName="salary”

xdb:SQLType="NUMBER"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
Example 5 Use of GENERATESCHEMA

5.4.6 Creating constraints

After creating an XMLType table based on an XML extia it is possible to create constraints, for
instance, to create constraints on elements thatranore than once, it stores the varray as a table

(Ordered Collections in Tables (OCT)) and aftawilt create the constraints.

5.4.7 Out-of-line Storage

In some scenarios the out-of-line storage offeteeb@erformance than the default storage. In those
scenarios the SQLInline attribute can be to falsen Oracle XMLDB generates an object type with
embedded REF attribute. REF points to a XML fragntieat gets stored out-of-line.

For example:

32

celement.na me = "Addr" xdb : SQLInLine = "falsa"=

[|
[|
[|
Employee_tab of type OBJ_T2 This XML fragment is
MName |Agg | Addr REF XMLType stored out-of-line
I
S |
Addr_tab of type OBJ T1
Street | City
> | Street |
REF pointz
to ancther
XMLTypa
Instance HMLType table

Figure 1 Example of out-of-line storage [6]

It shows the mapping complexType to SQL for Out-nfe Storage, the attribute Addr is a REF
XMLType and points to another XMLType that is arstbout-of-line XML fragment.

The advantage of this model is that it lets yourgudlee out-of-line table (addr_tab) directly, tmko

up the address information. Also if it has a listns to be stored out of line, instead of a sifj-
column, the parent elements will contain a varrdyR&F values that pint to the items. If it hasrgda
number of items is a good idea use this technigumglan intermediate table (The intermediate table

can be created by setting xdb:storeVarrayAsTabtae"tin the XMLSchema definition).

5.4.8 Fully Qualified XML Schema URLSs

Oracle supports fully qualified XML Schema URLsistimeans that the name of the database user
owning the XML schema is also specifies as pathefschema URL, except that such XML schema

URLs belong to the Oracle XML DB namespace:

http://xmins.oracle.com/xdb/schemas/<database-lxssrhemaURL-minus-protocel

5.4.9 Mapping XML Fragmentsto Large Objects (LOBS)

In Oracle is possible to specify the SQLType faomplex element as CLOB or BLOB value. This is
useful when parts of the XML document are seldorarigal but are mostly retrieved and stored as

single pieces.

33

<element name = "Addr" xdb SQLType = "CLOB">

¥

Employee_tab of type OBJ_T
Mame |Age | Adelr

| ‘CLDEW

Straet and
city are stored
in the CLOE

Figure 2 Example of mapping XML fragmentsto LOBs[6]

5.4.10 ComplexType Extensions and Restrictionsin Oracle
XML DB

In XML Schema, complexType values are declareddase
» simpleContent: is declared as an extension of plsifiype.

« complexContent: is declared as Base type, or cotfgl®e extension on complex restriction.

With ComplexType, Oracle allows handling inheritanfor example to extend other complextypes or

to restrict other complexTypes.

54.11 Circular Schema Dependencies

Oracle XML DB supports XML schemas that define tieular schema structure (with recursive
references). This detects the cycles, breaks tmehst@res the recursive elements as rows in separat
XMLType table. For this, is important that the gebles parameter is set to TRUE when registering
an XML schema that defines this kind of structure.

Examples of circular schema structure are:

Cross Referencing Between Different complexTypdahénSame XML Schema

34

XML schema, emp. xsd

<¥g:complexType name= <ascomplexType name=

"CT1" "CTE
-c;:-:s,:elemém name= -c;xs:elemént name=

"a2" type = "CT2%= "e2" type="CT1"/=

Figure 3 Crossed schema dependencies[6]
complexType self referencing within an XML Schema

XML schema, emp. xsd

<¥s:complexType name=
"SactionT"...=

<Xs:element name="section’ type =
"SectionT "=

Figure 4 Self referencing [6]
Another kind of structure is the structure where tbferences are between different schemas. In this

case sometimes Oracle XML DB can't to break thdasyand give a fail.

XML schema 1, 51 XML schema 2, 52
< Refarences

53 =1

XML schema 3, 53
Refarences References

S52

Figure5 Circular schema dependencies[6]

35

5.5 0Oracle XPath Extension

5.5.1 Functionsto examine Type I nfor mation

The functions instanceof and instanceof-only areamespace http:// xmins.oracle.com/xdb and they
have the prefix “ora”.

e ora: instanceof-only: it is used to restrict the result set to nodes oértain datatype.

Syntax: ora:instanceof-only(nodeset-expr, typengraehema-url])
e nodeset-expr: XPath expression.
e Typename: string.

e Schema-url: indicates the schema location URL for the dat&Typbe matched.
On XML schema-based data, the function evaluatesttXBxpression nodeser-expr and determines
the XML Schema datatype for each of the resultades. It returns true if the datatype of any of the

nodes exactly matches datatype typename, and feismin otherwise.

e ora instanceof: it is used to restrict the result set to nodesaofertain datatype or its
subtypes.
Syntax:

ora:instanceof(nodeset-expr, typename [, schema-url 1

This function returns true if the datatype of afifhe matching nodes exactly matches a subtype of

datatype typename.

5.5.2Using XML Schema with Oracle XML DB

When you use a bind variable, Oracle Database teswthe queries for the cases where the bind
variable is used in place of a string literal valMeu can also use the CURSOR_SHARING set to

force Oracle Database to always use bind varidbteall string expressions.

36

5.6 XPath Rewrite

The XPath expressions that are rewritten by Orgbie DB are a subset of those that are supported
by Oracle XML DB. Whenever you can do so withowihg functionality, use XPath expressions

that can be rewritten.
For example:
We have a query that obtains the Book element amgbare it with the literal ‘1980’

SELECT OBJECT_VALUE FROM mybooks b
WHERE extractValue(OBJECT_VALUE, ‘/Library/Book’) = 1980’;

If the tablemybooks was created with XML schema-based structured gégrextract value will be

rewritten to the relational column that storeslibek information. The final query will be:
SELECT VALUE(b) FROM mybooks b WHERE b.xmldata.Book ='1980’;

XPath rewriter can change other kinds of queridsobly an XPath expression can be rewritten if all

of the following are true:

* The XML function or method is rewritable. SQL fuiucts extract, existsNode, extractValue,
updateXML, insertChildXML, deleteXML, and XMLSequem are rewritten. Except method
existsNode(), none of the corresponding MLTypehuods are rewritten.

« The XPath expression uses only the descendent Bxggessions involving axes (such as
parent and sibling) other than descendent areewattten. Expressions that select attributes,
elements, or text nodes can be rewritten. XPattigaites are rewritten to SQL predicates.

» The XML Schema constructs for the XPath expressaoa rewritable. XML Schema
constructs such as complex types, enumerated vdlats inherited (derived) types, and
substitution groups are rewritten. Constructs sashrecursive type definitions are not
rewritten.

e The storage structure chosen during XML-schemastegdion is rewritable. Storage using the
object-relational mechanism is rewritten. Storagecamplex types using CLOBs is not

rewritten.

With those guidelines, this is a list with XPatmstyucts that can be rewritten:

* Simple XPath traversals

37

Predicates and index accesses

Oracle-provided extension functions on scalar \&lue

SQL Bind variables

Descendant axis (XML schema-based data only): Resvdver the descendant axis (//) are
supported if:

There is at least one XPath child or attribute ssdéellowing the //

Only one descendant of the children can potentialgch the XPath child or attribute name
following the //. If the XML schema indicates thatultiple descendants of the children
potentially match, and there is no unique path that/ can be expanded to, then no rewrite
is done.

None of the descendants have an element of typsny3iype

There is no substitution group that has the sasmeit name at any descendant.

Wildcards (XML schema-based only). Rewrites ovddeard axis (/*) are supported if:
There is at least one XPath child or attribute ssdellowing the /*

Only one of the grandchildren can potentially mathke XPath child or attribute name
following the /*. If the XML schema indicates thaiultiple grandchildren potentially match,
and there is no unique path that the /* can beredg@ to, then no rewrite is done.

None of the children or grandchildren of the no@éoke the /* have an element of type
xsi:anyType

There is no substitution group that has the sammeait name for any child of the node
before the /*.

And the not supported list:

XPath functions other than those listed earliere Tited functions are rewritten only if the
input is an element with scalar content.

XPath variable references.

All axes other than the child and attribute axes.

Recursive type definitions with descendent axes.

UNION operations.

The following Scheme constructs are supported:

Collections of scalar values where the scalar \&adure used in predicates.
Simple type extensions containing attributes.
Enumerated simple types.

Boolean simple type.

38

Inheritance of complex types.

Substitution groups.

And no supported Scheme constructs:

XPath expressions accessing children of elementsaiting open content, namely any
content. When nodes contain any content, then xpeession cannot be rewritten, except
when the any targets a namespace other than thespace specified in the XPath. The any
attributes are handled in a similar way.

Datatype operations that cannot be coerced, suchddsion of a Boolean value and a

number.

The following storage constructs are supported:

Simple numeric types mapped to SQL RAW datatype.

Various date and time types mapped to the SQL TIVESP_WITH_TZ datatype.
Collections stored inline, out-of-line, as OCTsg @s nested tables.

XML functions over schema-based and non-schemadbdbH Type views and SQL/XML

views also get rewritten.

And not supported:

CLOB storage

5.6.1.1 Xpath rewrite can change comparison semantics

In XPath 1.0, the operators,<,>,<= and >, use angiyeric comparison and if we use it

and one of the operands fails the comparison retiaise because before the comparison

the operands are converted to numeric values. ddrathappen with for instance if we

manage dates. With XPath rewrite, however, thiglipege is translated to a SQL date

comparison.

5.6.1.2 Exampleabout how XPath expressionsare rewritten

Creating XML Schema-Based Purchase-Order Data

DECLARE

doc VARCHAR2(2000) :=

‘<schema

targetNamespace=" http://xmins.oracle.com/xdb/documentation/purchaseO

rder.xsd

xmins:po=" http://xmlins.oracle.com/xdb/documentation/purchaseO rder.xs

d”

xmins="http://www.w3.0rg/2001/XMLSchema ”

39

elementFormDefault="qualified">
<complexType name="PurchaseOrderType”>
<sequence>

<element name="PONum” type="decimal”/>
<element name="Company”>

<simpleType>

<restriction base="string">

<maxLength value="100"/>

</restriction>

</simpleType>

</element>

<element name="Item” maxOccurs="1000">
<complexType>

<sequence>

<element name="Part">

<simpleType>

<restriction base="string">

<maxLength value="20"/>

</restriction>

</simpleType>

</element>

<element name="Price” type="float"/>
</sequence>

</complexType>

</element>

</sequence>

</complexType>

<element name="PurchaseOrder” type="po:PurchaseOrde rType”/>
</schema>’;

BEGIN

DBMS_XMLSCHEMA registerSchema(
‘http://xmins.oracle.com/xdb/documentation/purchase Order.xsd’, doc);
END;

/

The registration creates the internal types. Werzam create a table to store the XML values and

also create a nested table to store the items.

CREATE TABLE mypurchaseorders OF XMLType

XMLSchema
“ http://xmIns.oracle.com/xdb/documentation/purchaseO rderxsd ”

ELEMENT “PurchaseOrder”
VARRAY xmldata.”ltem” STORE AS TABLE item_nested;

Now, we insert a purchase order into this table.

INSERT INTO mypurchaseorders
VALUES(XMLType(‘<PurchaseOrder
xmins="http://xmins.oracle.com/xdb/documentation/purchaseO rder.xsd

xmlns:xsi=" http://'www.w3.0rg/2001/XMLSchema-instance "
xsi:schemalocation

= “http://xmIns.oracle.com/xdb/documentation/purcha seOrder.xsd
ghttp://xmins.oracle.com/xdb/documentation/purchaseO rder.xsd ">
<PONum>1001</PONum>

40

<Company>Oracle Corp</Company>
<ltem>
<Part>9i Doc Set</Part>
<Price>2550</Price>
</ltem>
<ltem>
<Part>8i Doc Set</Part>
<Price>350</Price>
</ltem>
</PurchaseOrder>");
Example 6 Use of REGISTERSCHEMA [6]
Because the XML schema did not specify anythingualgaintaining the ordering, the default is to
maintain the ordering and DOM fidelity. Hence tgpds have the SYS_XDBPDS$ (PD) attribute to
store the extra information needed to maintainattering of nodes and to capture extra items such

as comments, processing instructions and soon.

The SYS_XDBPD$ attribute also maintains the exi&énnformation for the elements (that is,
whether or not the element was present in the imjmasument). This is needed for simpleType
elements, because they map to simple relationalnawd. In this case, both empty and missing
simpleType elements map to NULL values in the coluand the SYS_XDBPD$ attribute can be
used to distinguish the two cases. The XPath revmiéchanism takes into account the presence or

absence of the SYS_XDBPDS$ attribute, and rewritesigs appropriately.

This table has a hidden XMLDATA column of type psseorder_t that stores the actual data.
5.6.1.3 Mapping typesand Path expressions

5.6.1.3.1 Mapping for a Single XPath:

XPath Expression Mapsto

/PurchaseOrder column XMLDATA

/PurchaseOrder/@PurchaseDate column XMLDATA."Puselmte”

/PurchaseOrder/PONum column XMLDATA.”PONum”

/PurchaseOrder/Item/Part attribute “Part” in the llembion
XMLDATA."Item”

5.6.1.3.2 Mapping for a ssimpleType Elements

An XPath expression can contain a text() node tebich targets the text node (content) of an

element. When rewriting, this maps directly to thalerlying relational columns. For example, the

41

XPath expression “/PurchaseOrder/PONum/text()” magsectly to the SQL column
XMLDATA.”"PONum”.

A NULL in the PONum column implies that the texiwe is not available: either the text() node test

IS not present in the input document or the elentself is missing.
If the column is NULL, there is no need to checktfe existence of the element in the
SYS_XBDPD$ attribute.

The XPath “/PurchaseOrder/PONum” also maps to tQ® Gttribute XMLDATA.”PONum”.
However, in this case, XPath rewrite must checklierexistence of the element itself, using attebu
SYS_XDBPD$ in column XMLDATA.

5.6.1.3.3 Mapping predicades

Predicates are mapped to SQL predicate expresssamse the predicates are rewritten to SQL, the
comparison rules of SQL are used instead of thettKP® semantics. The following example shows

this (using the previous schema example) :

The predicate in the XPath expression:

/PurchaseOrder[PONum=1001 and Company = “OracleCor

maps to the SQL predicate:

(XMLDATA.”"PONum” = 20 AND XMLDATA."Company” = “Orade Corp”)

XPath expressions can involve relational collectxpressions. In Xpath 1.0, these are treated as
existential checks: if at least one member of tldection satisfies the expression, then the

expression is true.

5.6.1.4 Document ordering with collection traversals

Most of the rewrite preserves the original documerttering. However, because SQL does not
guarantee ordering on the results of sub queriessbklecting elements from a collection using SQL
function extract, the resultant nodes may not bdaoument order. To fix this problem it can use

collection traversals, for instance:

SELECT extract(OBJECT_VALUE,
‘/PurchaseOrder/ltem[Price>2100]/Part’)

FROM mypurchaseorders p;

This query is rewritten to use a sub query:

SELECT (SELECT XMLAgg(XMLForest(x."Part” AS “Part”))

42

FROM table(XMLDATA."Item”) x WHERE x.”Price” > 2100)
FROM mypurchaseorders p;
Example 7 Rewrite of query with XPath

In most cases, the result of the aggregation ikénsame order as the collection elements, buighis

not guaranteed. So, the results may not be in dentiorder.

Collection position
An Xpath expression can also access an elemeriagition of a collection. If the collection is std
as a varray, this operation retrieve the nodekensame order as in the original document butef th

collection as a nested table, it is impossiblertovk the order.

Xpath expressions that can not be satisfied

An XPath expression can contain references to ntidgscannot be present in the input document.

Such parts of the expression map to SQL NULL vathweing rewrite.

Namespace handling
Namespaces are handled in the same way as furaied evaluation. For schema-based documents,

if the function (such as existsNode or extract)sdoet specify any namespace parameter, then the

target namespace of the schema is used as thdtdefmespace for the XPath expression.

Data Format conversions

Date datatypes such as DATE, gMONTH, and gDATE hdifferent format in XML Schema and
SQL. If an expression has a string value for colsiminsuch datatypes, then the rewrite automatically
provides the XML format string to convert the syivalue correctly. Thus, the string value specified
for a DATE column must match the XML date formait the SQL DATE format.

5.6.2 Checking XPath rewrite

There are some ways to check if your XPath exprassare rewritten:

« Using Explain Plan whit XPath rewrite: With the explained plan, if the plan does not pick
applicable indexes and shows the presence of tHe f8Qction (such as existsNode or
extract), then you know that the rewrite has natuoed. You can then use the events
described later to understand why the rewrite didhappen.

« Using events with XPath Rewrite: Events can be set in the initialization file ondae set
for each session using the ALTER SESSION stateridr@. XML events can be used to turn

off functional evaluation, turn off the XPath reterimechanism and to print diagnostic traces.

43

5.6.3 Examples of Rewrite of SQL Functions
We use the following XPath expression:

/PurchaseOrder[PONum =2100])/@PurchaseDate

5.6.3.1 EXISTSNODE:

e Mapping for EXISTSNODE with Document Ordering Pmesel SYS XDBPD$
exists and maintainDOM="true” is present in theesola document):
Maps to:

CASE WHEN XMLDATA.”"PONum”=2100
AND node_exists1(XMLDATA.SYS_XDBPD$, ‘PurchaseDate’)

THEN 1 ELSE 0 END

* Mapping for EXISTSNODE without Document OrderingeBerved (SYS_XDBPD$
not exists and maintainDOM="false” is present ia #thema document):
Map to:
CASE WHEN XMLDATA.”"PONum” = 2100

AND XMLDATA."PurchaseDate” NOT NULL
THEN 1 ELSE 0 END

56.32 EXTRACTVALUE

Maps to:

(SELECT x.XMLDATA."PurchaseDate”) FROM DUAL
WHERE x.”"PONum” = 2100)

56.3.3 EXTRACT

* With Document Order Maintained

Maps to:

SELECT CASE WHEN node_exists1(XMLDATA.SYS XDBPDS$,
‘PurchaseDate’)

THEN XMLElement(*”, XMLDATA.”PurchaseDate”)

ELSE NULL END
FROM DUAL WHERE XMLDATA."PONum” = 2100

* Without Maintaning Document Order

44

Maps to:

SELECT XMLForest(XMLDATA."PurchaseDate” AS “Purchas eDate)
FROM DUAL WHERE XMLDATA.”PONum” = 2100

5.6.4 Bind Variables

When bind variables are used as string literalXRath, the expression can be rewritten to use the
bind variables. The bind variable must be usedlace of the string literal using the concatenation
operator (||), and it must be surrounded by siggletes (") or double-quotes (") inside the XPath

string.

5641 Setting CURSOR_SHARING to FORCE

With XPath rewrite, Oracle Database changes thetiPath expression to use the underlying
columns. This means that for a given XPath thera fgrticular set of columns or tables that is
referenced underneath. This is a compile-time djperabecause the shared cursor must know
exactly which tables and columns it referencess thnnot change with each row or instantiation of
the cursor.

Hence if the XPath expression is itself a bind atalé, Oracle Database cannot do any rewrites,
because each instantiation of the cursor can loaakytdifferent XPaths.

This is similar to binding the name of the colunmriable in a SQL query.

When CURSOR_SHARING is set to FORCE, by defaultheatring constant including XPath
becomes a bind variable. When Oracle Database énmeounters SQL functions extractValue,
existsNode, and so on, it looks at the XPath bewiables to check if they are really constantsolf

it uses them and rewrites the query. Hence theeelasge difference depending on where the bind

variable is used.

5.7 XML Schema Evolution

XML schema evolution is the process of updatingegistered XML schema. Oracle XML DB
supports XML schema evolution by providing PL/SQtogedure copyEvolve as part of PL/SQL

45

package DBMS_XMLSCHEMA. With that procedure you @uolve a registered XML schema is
such a way that existing XML instance documentdinae to be valid. But this procedure has some
limitations, for instance: the indexes, triggemnstraints, and other metadata related are dedeteéd
these must be re-created after evolution. Othdtdtian is that it can’t be used if there is a &bilith

an object-type column that has an XMLType attribihi&t is dependent on any of the schemas to be

evolved.
To use DBMS_XMLSCHEMA.COPYEVOLVE, it necessary tmlls the next steps:

1. Identify the XML schemas that are dependent orXiilie schema that is to be evolved. You can
acquire the URLs of the dependent XML schemas udimg following query, where
schema_to_be evolved is the schema to be evolnddpwner of schema_to_be evolved is its
owner (database user).

In many cases, no changes may be necessary inefpendent XML schemas. But if the
dependent XML schemas need to be changed, youatsasprepare new versions of those XML

schemas.

2. If the existing instance documents do not confasrthe new XML schema, you must provide an
XSL style sheet that, when applied to an instarauchent, will transform it to conform to the
new schema. This needs to be done for each XMLnsaheentified in the first step. The
transformation must handle documents that confarrallt top-level elements in the new XML

schema.

3. Call procedure DBMS_XMLSCHEMA.copyEvolve, specifgithe XML schema URLs, new

schemas, and transformations.

5.7.1 Style Sheet to update existing instance documents

After it modifies a registered XML schema, it mugdate any existing XML instance documents that
used the old version of the schema. It does itdphyéng an XSLT style sheet to each of the instance

document. The style sheet represents the differiesiveeen the old and new schemas.

Syntax:

procedure copyEvolve(schemaURLSs IN XDB$STRING_LIST _ T,
newSchemas IN XMLSequenceType,
transforms IN XMLSequenceType := NULL,
preserveOldDocs IN BOOLEAN := FALSE,

46

mapTabName IN VARCHAR2 := NULL,
generateTables IN BOOLEAN := TRUE,
force IN BOOLEAN := FALSE,

schemaURLs: Varray of URLs of XML schemas to be he@ (varray of
VARCHARZ2(4000). This should include the dependesttesnas as well. Unless the force
parameter is TRUE, the URLs should be in the depecyl order, that is, if URL A comes
before URL B in the varray, then schema A shouldl m® dependent on schema B but
schema B may be dependent on schema A.

newSchemas: Varray of new XML schema documents (Xiiple instances). Specify this in
exactly the same order as the corresponding URLS0 Ichange is necessary in an XML
schema, provide the unchanged schema.

Transforms: Varray of XSL documents (XMLType instag) that will be applied to XML
schema based documents to make them conform teetheschemas. Specify these in exactly
the same order as the corresponding URLSs. If nstoamations are required, this parameter
need not be specified.

preserveOldDocs: If this is TRUE the temporary eéaltholding old data are not dropped at
the end of schema evolution. See also "Using Proeed
DBMS_XMLSCHEMA.COPYEVOLVE".

mapTabName: Specifies the name of table that miapsMLType table or column names to
names of corresponding temporary tables.

generateTables: By default this parameter is TRiUEis is FALSE, XMLType tables or
columns will not be generated after registering nsshemas. If this is FALSE,
preserveOldDocs must be TRUE and mapTabName mubsendULL.

Force: If this is TRUE errors during the registratiof new schemas are ignored. If there are
circular dependencies among the schemas, setdbisd TRUE to ensure that each schema
is stored even though there may be errors in ragjish.

schemaOwners Varray of names of schema ownersifgpieese in exactly the same order

as the corresponding URLSs.

An example of using DBMS_XMLSCHEMA.COPYEVOLVE to dgte an XML Schema:

This example evolves XML schema purchaseOrderxsd t

revisedPurchaseOrder.xsd using XSL style sheeveRarchaseOrder.xsl.

DBMS_XMLSCHEMA.copyEvolve(

a7

xdb$string_list_t(‘http://localhost:8080/source/sch emas/
poSource/xsd/purchaseOrder.xsd’),

XMLSequenceType(XDBURIType('/source/schemas/poSourc elrevi
sedPurchaseOrder.xsd').getXML()),
XMLSequenceType(XDBURIType('/source/schemas/poSourc e/evol
vePurchaseOrder.xsl").getXML()));

END;

SELECT extract(object_value, '/PurchaseOrder/Linelt ems/Lineltem[1]’)

LINE_ITEM

FROM purchaseorder

WHERE existsNode(object_value, '/PurchaseOrder[@Ref erence="SBELL-

2003030912333601PDT"]) =1

/

Example 8 Use of CopyEvolve

5.8 Full-Text Search Over XML

To use XML documents it is very important when yeant to do full-text search since you can use

the XML structure of the document to restrict tleareh. Also if these XML documents are of type

XMLType, then you can project the results of themyuwsing the XML structure of the document.

This kind of search differs from structured seasckubstring search in the following ways:

The substring search looks for whole words rathan tsubstrings. For example if we search
the string “neighbour” it might return “neighbowdd”, however a full-text search will not,
because search words.

A full-text search supports some language-based veordl-based searches, the substring
searches can't. For example you can use it todymbnymous (language-based search) or to
find all the comments that contain the word “lawvithin 5 words of “wild”.

A full-text search generally involves some notidnmelevance.

To do a search that includes full-text search aktlL)structure, you can:

Include the structure inside the full-text predéatsingcontains SQL function:

... WHERE contains(doc, 'electric INPATH

(/purchaseOrder/items/item/comment)’) > 0

Or to include the full-text predicate inside theusture, using the ora:contains XPath Function.

... 'IpurchaseOrder/items/item/comment[ora:contains (text(),

"electric")>0]' ...

48

5.8.1 Thefunction CONTAINS

SQL function contains returns a positive number fows where [schema.]Jcolumn matches
text_query, and zero otherwise. It is a user-ddfifumction, a standard extension method in SQL. It
requires an index of type CONTEXT. If there is NONCTEXT index on the column being searched,

then contains throws an error.

Syntax:
contains([schema.]column, text_query VARCHAR?2 [,lab el NUMBERY])
RETURN NUMBER

The argument text_query support combinations of AR, and NOT.

5.8.2 The score sgl function

SQL functioncontains has a related functioscore , which can be used anywhere in the query.
It is a measure of relevance, and it is especiadlgful when doing full-text searches across large
document setsscore is typically returned as part of the query resuked in theORDER BY

clause, or both.

Syntax:
score(label NUMBER) RETURN NUMBER

5.8.3 Structure operators

Also Oracle has 3 structure operators to restaontains queries using XML structure:

5831 Within

The WITHIN operator restricts a query to some sectiithin an XML document. Section names are

case-sensitive; alsmu can search within attributes, with others opésa
An example of use of within:

SELECT id FROM purchase_orders
WHERE contains(doc, 'lawn AND electric WITHIN comme nt) > 0;

49

That query return the comments that has insidevtirds “lawn” and “electric”

5832 INPATH

Operator INPATH takes a text_query on the left afitext Path, enclosed in parentheses, on the right

For example:

SELECT id FROM purchase_orders

WHERE contains(doc, ‘electric INPATH

(/purchaseOrder/items/item/comment)’) > O;

The query finds purchaseOrders that contain the wor d “electric” in
the path.

5833 HASPATH

This operator finds documents that contain a pagicsection in a particular path, possibly with an

"=" predicate.

SELECT id FROM purchase_orders

WHERE contains(doc, 'HASPATH

(/purchaseOrder//item/EUPrice="120.5")") > 0O;

This query finds purchaseOrders that have a iteitisarEUPTrice that text-equal to “120.5”

5.8.4 Context index

Context index is a full-text index. To create aadgf full-text index, use the regular SQL CREATE
INDEX command, and add the clause INDEXTYPE IS CY$SCONTEXT. This index is

necessary to use the function contains. If it iss&d, Oracle returns error.

50

PART |1

Sample application

51

= The information presented in this part is basd@]in[8], [14], and [15].

6 Introduction

This part contains the documentation for a simglplieation that shows some features from
Oracle 10g for management, store and retrieve XMtudhents. In that documentation appear the
analysis, design UML documentation, a user manuadl some important information about the
application.

The designed application is a simple applicatioshow the different features of Oracle XML
DB. The application has different parts, one enthshows the possibilities of the XMLSCHEMA in
general, it can create, delete and register schatsascreates tables with this schemas or without
them. Moreover the application can add new elemerits XML structure to the selected tables. At
the last, the application contains a searcher tovghe search features in XML Documents, in this
part it is used a specific XML database, this dasalis related with a XML Schema that describe the
structure of recipes for meals or drinks, als@ ppassible to add recipes through the form . Mageov
the user can choose different options of searchaav the use of XPath features and search feature i
text from oracle.

In resume, the application has two parts, one efmtlis a schema independent and other is

schema dependent (dependent of the XML schemaipe®.

7 Analysisand design
7.1 Global vision

This point starts showing the most important regmients for the application. After it will
appear the use case diagram with the use casdicgemn. Also it will appear the structure diagram

and behaviour diagrams.

7.2 Requirements

7.2.1 Functional requirements

7211 Rqg.l

Description

52

The system must show the support of Oracle DatdloaséMIL structures.

7212 Rq.2

Description

The system must manage XML documents.

7213 Rqg.3

Description

The application must allow connecting with a DBIT(IPB server)

7214 Rq4

Description

The application must create XML documents.

7215 Rq.5

Descriptiom

The system must allow searching in XML DataBase.

7216 Rq.6

Description

The system must allow inserting elements in a XMVdtdBase.

53

7.3 Use cases

7.3.1 Use case diagram

<~:extend=-=f & Store structured data

-

£

Create XML
fatahase

i “=gifenis»
{Ezegaelement N

Delete OB

sealth recipe

show recipe

Figure 6 Use cases diagram

TheFigure 6 shows the use case diagram, it is possible se¢hiapplication
7.3.2 Use cases specification

7.3.21 Create XML Database

Preconditions
e The user has to be introduced in the system.
Basic course of events
1. The use case starts when the user wants to créditeDB.
2. The user selects the option “Create XML DB”.

3. The system shows a form for the options for the DB.

54

4. The user selects the action to Boint of extension.
5. The system stores the changes.

6. The case use finish.

Postconditions
« A database or table is created.

« The database or table created appears in the pondant list.

7.3.2.2 Create Structured DataBase

Precondition
Basic course of events

1. The case use starts when the user wants to cr@gtahase using Document XSD
(schema).
The system show a dialog where the user can cleorsé file (XML Schema Definition)
The user selects the file.
The system checks it.

The system validates and registers the Schema.

S T

The system creates the correspondent XML tabldsadit XMLType column for the
data.

7. The use case finishes.
Postcondition

« A new DB is created.

7.3.2.3 CreateaNo Structured XML DataBase

Precondition
Basic course of events

1. The use case starts when the user wants to stréndanon structured XML Database.
The system shows a dialog where the user can chioeseme of the table to create.
The system creates a XML table with an XMLType oafufor the element.

The system shows a dialog to choose the xml fith thie data.

a > w DN

The system stores the file like a GLOB type.
6. The use case finishes.
Postconditions.

« The DB contains the new data.

55

7.3.24 |Insert dement

Preconditions

« It might exist a database.
Basic course of events

1. The case use starts when the user wants to imsefement in a XML DB.

The system shows the available XMLDBint of extension.
The user selects a XMLDB.
The system shows the tables of the XMLDB.
The user selects the table where he wants to adeléiment (document XML).

The system checks the element.

N o g bk~ w DN

The use case finishes.

Alternative course
Postconditions

*« The element is added to the database.

7.3.25 Insertrecipe

Preconditions
e It might exist the database XMLRECIPE.

Basic course of events

1. The case use starts when the user wants to inseripe in the database XMLRECIPE.

2. The system shows a form to write the necessaryrnrbon. Title, ingredients,
preparation and nutritional information.

The user introduces the information.

The user selected the option add recipe.

The system checks the introduced data.

The system adds the element to the database.

N o o b~ o

The use case finishes.
Postconditions

« The database is modified with the selected changes.

*« The database contains an element with the intrabudermation.

56

7.3.2.6 Search Recipe

Preconditions
« It might exist a database (XMLRECIPE).

e It might exist at least one element in the database

Basic course of events
1. The case use starts when the user wants to actessnaent in a XML DB.
2. The system shows a form where the user can inteothecword or words to search.
3. The user selects the different options (searclitley by ingredients, by preparation, by
nutritional contains).
The user selects the option search.
The system shows the titles of the recipes of theryg

The use case finishes.

Alternative course
Postconditions

« The system shows the elements required.

7.3.2.7 Show recipe

Preconditions
e It might exist a XML database (XMLRECIPE).
* It might exist at least one element in the database
» The user has to do a search.
Basic course of events
1. The case use stars when the user wants to sempe.rec
2. The user selected a recipe.
3. The system transforms a XML document with the elesiéo readable format.
4. The system shows the recipe.
5. El use case finishes.
Postconditions

¢ The system shows the element required.

57

7.3.3 Thestructure of the database

Oracle to store the XMLDatabase needs to storer@glational database, in this case the database
of recipes will be the next structure:
« The database of recipes only contains one tables. fBble is related with a XML schema
with the structure of a recipe for meals. The fokad code shows the creation.
CREATE TABLE xmirecipes OF XMLTYPE
XMLSCHEMA recipes.xsd
ELEMENT collection;
The type of data base is XMLTYPE, it is relatedhite schema “recipes.xsd” and it is associated

to the global element, collection in this case.

7.3.4 XML Schema selected for the database

This is the schema selected for the databaseethges not only contains information about the
ingredients or preparation but nutritional inforroattoo. In the next fragmenExample 9) of the
schema is possible to see the different elementiseofecipe (The elements are between <element>
and </element> marks). Also it appears informatdaout the multiplicity, for example <element
ref="r:ingredient” minOccurs="0" maxOccurs="unboedt/>, it means that the element ingredient

can be reference to 0 o more ingredients.

< Title: contains a string with the recipe title.
« Date: contains information about the date of éo@adf the recipe
* Ingredient: contains the information about the@utients, it has information like:
o Name: name of the ingredient.
0 Amount: The necessary quantity, it has a restrictibnot possible to put a negative
number.
0 Unit: Type of unit of amount. For example, gramsgpg litres..It is an optional
attribute (use= “optional”).
Also an ingredient can be composed, and contaiothaningredients and preparation.
« Preparation: Contains the information to prepaeerdtipe. Can be composed by a several
steps.
* Nutrition: contains nutritional information like epcentage of calories, of carbohydrates, of
fat, of proteins or of alcohol. The last one ibjgtional, only if the recipe is for a alcoholic
drink.

58

<element name="recipe">
<complexType>
<sequence>
<element name="title" type="string"/>
<element name="date" type="string"/>
<element ref="r:ingredient" minOccurs="0ax®Occurs="unbounded"/>
<element ref="r:preparation"/>
<element name="comment" type="string" min@s="0"/>
<element ref="r:nutrition"/>
<element ref="r:related" minOccurs="0" maa0rs="unbounded"/>
</sequence>
<attribute name="id" type="NMTOKEN"/>
</complexType>

</element>

<element name="ingredient">
<complexType>
<sequence minOccurs="0">
<element ref="r:ingredient" minOccurs="0ax®ccurs="unbounded"/>
<element ref="r:preparation"/>
</sequence>
<attribute name="name" use="required"/>
<attribute name="amount" use="optional">
<simpleType>
<union>
<simpleType>
<restriction base="r:nonNegativeDealitt»
</simpleType>
<simpleType>
<restriction base="string">
<enumeration value="*"/>
<[restriction>
</simpleType>
</union>
</simpleType>
</attribute>

<attribute name="unit" use="optional"/>

59

</complexType>
</element>
<element name="preparation">
<complexType>
<sequence>
<element name="step" type="string" minOseli®" maxOccurs="unbounded"/>
</sequence>
</complexType>

</element>

<element name="nutrition">

<complexType>
<attribute name="calories" type="r:nonNegabecimal" use="required"/>
<attribute name="protein" type="r:percentageé="required"/>
<attribute name="carbohydrates" type="r:pptage" use="required"/>
<attribute name="fat" type="r:percentage"ztisequired"/>
<attribute name="alcohol" type="r:percentagse&="optional"/>

</complexType>

</element>

Example 9 Fragment of the XML Schema that describe arecipefor meal.

The full description is in the CD, in the file rpeis.xsd but to better understand it is showed the
diagram presented in Jdeveloped and describel¢heiipes.xsd.
The full structure is represented in fiigure 8, to explain this figure it is necessary know
which is the mean of the different rectangles, syimind other notations:
« The blue rectangles represent an element fromahensa, if appear ¥ symbol, it
means the element it is composed by others, alsellbw a white rectangle appears,

means the element has attributes (* if is opti@malo for required attribute).

It can be appeari@, this means the element reference other element.

Other element that appears . It means sequence of elements

60

|
wschema=

targetNamespace|http:ﬁrecipes.nrg

collection

recipe
¥

ingredient
¥ name

amount
Linit

preparation

calories

protein

i carbohydrates
* fat

alcahol

related

minlnclusive | 0

pattern I:[EI-EI]I[1-!§I][I:I-!§I]|1EIEI]I%

Figure 7 Structure of therecipe schema
Also in the structure appear some restrictions aititai data (green squares in frigure 8),
for example not used negative decimal or that #regntage of the nutritional information only can
be a number between 0 and 100.
This structure allows create a collection of resifeigure 9) where each recipe contains
ingredients, a preparation, and nutritional infatiora (Figure 10). In the followed figures is possible

to see the different elements of the Schema andtthbutes.

description
trpestring

. Freci]E'
i
O:ca

T

collection = m

Figure 8 Description of collection element

61

recipe:

T

Title
tepe. String

date
type-string

ringredient B} :
1 narme

aE arnount

sl

comment
typ e string

r:nutrition

#® calories

#® protein

carbobydrates
#* fat

alcohol

Figure 11 Description of preparation element

The ingredients can be composite by other ingreésliand a preparatiorrigure 11). This

allows more flexibility because a lot of ingredigmontain others and sometimes is important store

this information. The preparation element is conagoby several step§igure 12) to differentiate

the parts of the cooking method.

The XML file with the recipes has to have the follbead:
<?xml version="1.0" encoding="UTF-8"?>

<?dsd href="recipes.dsd"?>

62

<collection xmIns="http://recipes.org"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchem a-instance"
xsi:schemalocation="http://recipes.org rec ipes.xsd">
<description>
A description.

</description>

7.3.5 Architecture

The architecture selected is 3 layers one: Apptinat Business, and DB access. The
communication with the database is realized throdiDBC. The client is a java application that
makes a JDBC connection with thin drivelfsgure 13). Oracle's JDBC Thin driver uses Java sockets
to connect directly to Oracle. It provides its oWiCP/IP version of Oracle's Net8 (SQL*Net)
protocol. Because it is 100% Java, this driverladfgprm independent and can also run from a Web

Browser (applets) if the platform changes in theife.

Java Application with |t
SOLXML Query

1 T Result Set
(ML Typel
2

¥

SO LML IDEC Diriver 5

Cratalrirect
JOEC Criver

sy 14
1

R OE RS

Figure 12 Communication with the RDBM S[1]

7.3.6 Structural diagram

The structural diagram shows the class diagranibites and methods are not shown in the diagram

to make easy to understand.

63

Application XMLFilter
Screen

1 1.* Filter i::l

="|— SOQLFilter

1

Control

1 Utils

XMLRecipe }—— |

1 1

0.7 DBAcCCess TextSearcher
Ingredient
[e
| e~ -
I T
_I\#’ o=
Oracle XML

Figure 13 Class diagram of the Simple Application

Class Application: It executes the application.

Class Screen: It contains the elements and furdalttprof the user interface.

Class Filter: It filters the files in the dialogrfohoose a file.

Class XMLFilter: It filters the list of files in ahoose dialog and only allows XML files.
Class SQLFilter: It filters the list of files ina@oose dialog and only allows SQL files.
Class Control: It manages the introduced infornmabip the user and the database
information.

Class DBAccess: It contains the functionality toess to DB.

Class TextSearcher: It contains the functionatitgearch in the DB.

Class XMLRecipe: It models a recipe element.

Class Ingredient: It models an ingredient element.

64

« Class Utils: It contains several adjacent functimsianage the data.

* Package Oracle.XML: It contains the functions tanage, store and retrieve XML.

7.3.7 User interface

The user interface was implemented with JAVA (Swirgut the application is designed so
that the 1U is independent of the rest of applaratithen in the future for example it is possibée u
JSP or another languages to implement.
The user interface structure has three parts, iegglkement in a tab panel:
* First pane (Manage XML Databases): contains tHeviobptions.
o Create a structured XML Database: The user canecr@astructured XML
Database choosing a schema.
o Create a no structured XML Database: The user caate a no structured
XML Database.
Register Schema: The user can register a new schema
Delete Schema: The user can delete a selected achem
Delete XML Database: The user can delete a selediddatabase.

Show schemas: With this option the user can shevatailable schemas.

O O O o o

Show XMLDataBases: This option shows the availdbl@bases.

The figure 15 shows the first parts of the application, in tlpisture, the option Show

Registered schemas has been selected, and the sysie/s the available schemas:

65

~= Simple application

Manage XML databases i_.ﬂ;.cici.éiemeng_;_éearch rec-il-:-e_;__

L Shiow Registered schemas] [Register Schema] [Delete Schema
Delets DataBase Create Mon Struckured DE] [Create Structured DB] [Show available databases
lorder.xsd
Irecipes. xsd

|bype_Streethanne, xsd

Figure 14 Manage XM L databases

e Second pane (Add Element): It contains the optioadd elements to an
XMLDataBase choosing a XML Document or writing &ipe.
0 Add element: The system allows select an XMLDatalzasl a XML file to
add her.

The user has to follow the next steps user todhice a recipe:

1.
2.

Write the title of the recipe.

Write the name of the ingredient, the quantity #redunit and click in Add ingredient. The
user can insert all of the ingredients that he want

Write the preparation.

Write the nutritional information. Quantity of caies, of fat, of proteins, of carbohydrates
and of alcohol if the recipe has alcohol.

Click in the Add recipe button.

66

Thefigure 16 shows the second pane, a recipe is been createpthe form.

2 Simple application

| Ménﬁgg&i"ﬁl_' da.tailjlases-g Add element ;_E;earch rec.i_.pe_;__

fidd a element | |DOD |

rl-fggs 4.0 Uit
Cpion 1.0 Unit
Olive il 100.0 ml.
Salk 1.0 Pinch

Title: :-Spanish omelette Ingredients: E-Salt [1 -| nchl add ingredient | |

'en colowr, remove from the pan and put the potato mixture either in a sieve or A
kitchen paper, sa that as much il as possible drains away of is absorbed,

21 Beat the eggs well with a pinch of salt, and add to the potatoss, Mix well.

3 Put bwo small spoonfuls of olive oilin the frying pan, so that the bottom of b
pan is covered wikh a thinlaver of oill. Once the il is hat, add the potato and &
riizbure. Tip: shake the pan gently as you move the mixkure, so that none skicl

to the botkom, Once the omelette seems to be cooked, use the lid of the Frying

an {or a large plate) ko tip the omelette out of the pan, add a little more oil and

de the omelette in again, this time putting the less cooked side first into the par

If vou need to repeat this step, so that the omelette is perfectly cooked and gi—|
en onboth sides, wou mayw do so. This omelette is delicious hat ar cald. wil
| £ - |

Mutrition: iCalories | ‘Fat (CarbioHydrates | talcohiol | ‘Proteins Add Recipe

Preparation:

Figure 15 Add elements

e Third pane (search recipe): It is the pane withsisgrch options, the user can search
recipes by:
o Title
o0 Preparation
0 Nutritional information
0

Ingredients.

If the user wants to search some recipe, he hiatidey the next steps:
1. Write the word or words to search using the commagadd”, “or” if necessary.
2. Click in Search button.
3. Click the required recipe from the list that theteyn shows.

Thefigure 17 shows the third pane, in this case, the userdotted the word “beef”, the
option Search by ingredients is selected and tpécagpion show the available recipe “Beef Parmesan

with Garlic Angel Hair Pasta” and the preparation.

67

& Simple application

| Ménﬁgg&i"ﬁl_' databases _Addelement Search recipe '

| beef | Search
(%) Search by Title () Search by preparation () Search by ingredients (") Search by nutritional cantain %calories ¥ . Oz= O=

ome recipes used in the ZML tutorial.
Parmesan with Garlic ingel Hair Pasta
Preheat owen to 350 degrees F (175 degrees C).

Cut cube steak into serving size pieces. Coat

and parmesan cheese. Heat olive il in a large
teaspoon of the garlic for 3 minutes. Quick fr
meat. Place meat in a casserole baking dish, =
Flace onion rings and peppers on top of wmweat,

owver all.

Eake at 350 degrees F (175 degrees ©C) for 30 ¢
the thickness of the meat. 3prinkle mozzarells
owven till hubbly.

Eoil pasta al dente. Drain, and toss in butter
stronger garlic taste, sSeason with garlic powd
and parsley for color. 3erve meat and sauce at

| Make the meat shead of time, and refrigerate ove
tomato sauce will tenderize the meat even more.

mozzarella t©ill the last minute.

(4l ' J &

Figure 16 Search Recipes

7.3.8 Used technology

To implement this application was used some Schdeaures from the package
DBMS_SCHEMA (Section 5.4), using some function® llkegisterSchema, and deleteSchema with
several options to show some features of XML Schien@racle. Also to the search information was
necessary use XPath (Section 5.5) with XType fonstiand full text functions like contains,
ora:contains or extractValue (Section 5.8) andtEide. That functions are necessary to make the
correct queries. To show the recipes ,it was nacgseo, XSL functions like XMLTransform that
use a XSL (XML Stylesheet) to show the informatwath a specific style.

Not all important features that were named in Beckground could be used in the
application, for example the characteristics of ¥iath rewrite (Section 5.5) can’'t be showed with
this application, so you need use sqlplus of amdt to see the transformations that Oracle niake

the queries with XPath.

68

During the implementation appeared the problemstthe function createSchema, it needed
administration privileges to use the option “CREADEFAULT TABLE”, that create the XML
tables related with the Schema automatically. ®oaittion to create the XML tables is making the
tables in a second step using CREATE TABLE withapgon XMLSCHEMA to refer to schema.

69

8 Conclusions and futureworks

Since the XML Databases appeared, with the enaMd Databases, it is developing in the
native XML databases, several databases are neatiye but it is necessary improved the
technology.

But now the question appears, are the native XMialukses the future? About this, in the Arun
Gaikad's article [4], he said: “An XML database tgys is something which you may think is
unnecessary but once you start using it, you wohder you would survive without it", maybe is

true, because nowadays to store, search and mhgés very important in the actual information

technologies.

At present, the XML databases are mixed with thatiomal databases, this generates several
problems because different packages appear to satcethe different elements of the database,
making difficult the application developing. One tbie future works is to solve this; for example
Oracle is developing XQS (Oracle XML Query ServicéRS is an OC4J service built upon XQuery
to provide a simplified, declarative mechanism @oeating integrated views of enterprise data.
Without a service like XQS, XQuery is limited tocassing XML documents. With XQS you can
also retrieve another kind of data (non-XML docutsemelational databases...) through access
mechanisms such as JDBC or Web services.

Working in the simple application gave me the opyaty of test the several features and
functions to store and retrieve of XML data. Thiws me to know how Oracle can manage this
kind of databases. The XML data is easily stored,ifyou have a schema, the system can create the
database from the schema automatically (only watimiaistrator privileges), so that the user only
needs to develop the schema and after that, thensydoes the rest. This is only if you have schema,
without schema it is more difficult, because thstegn doesn’'t make the database, don't validate the
elements to insert, however is a good option if galy want to store elements like CLOB and not to
access to specific parts of the documents. Totieements in XML database with schema is easier,
the system before to insert uses the schema tatalfirst the element to insert, the problem & th
problems appear when the schema has some recafsiments, the system don’t solve automatically
this, and the user have to solve manually, and Somag aren’t a good solution.

The search in the XML documents is very importard ¢he system has a lot of options and
functions but sometimes you have to use CONTEX INDE you need velocity in the search
(function contains) and to use SQL package fordestch, it is the best option if the user doesaitt
a lot of times because in each added the index tawe rebuilt. The other used option was the
ora:contains function. This option is slower th&e bther option but it isn't necessary create an

index. With the database that | created for thdiegipon the differences don't exist because itasy

70

small, with small elements and small number of elets. But for example in digital libraries where
the number of elements and information is hugeeteetion of the type of search is critical.

In my opinion it is necessary to continuous impngyithis kind of databases, because the
problem about to store information in differentrf@t is big and transforming this information to
XML is fast and allows having only one format. Whéat problem (to have different standard data
format) disappears and appear only one standantbfothe XML databases can be a good point to
store the information, since XML databases areblatto search in this information.

In my point of view, it is necessary increaseftimectionality of these databases because there
are a lot of options for text but not for otheraciof data. For instance, you have functions tockea
in text but if you want to relate the text with ideo (for example subtitles) there isn’t functiatyal

A good future work will be having more functiortglto integrate the different types of data.

71

9 Glossary

JDBC: Java Database Connectivity. An application prograterface specification for

retrieving and manipulating data in a databasds@a¢ used to execute SQL operations.

SQL (Structured Query Language): It is a computer language used to create, ketrie

update and delete data from relational databasegeament systems.

UML (Unified Modelling Language): It is a standardized specification language édject
modelling. UML is a general-purpose modelling laage that includes a graphical notation used to

create an abstract model of a system, referred &goldML model.

XML: The Extensible Markup Language (XML) is a generalppse markup language. Its primary
purpose is to facilitate the sharing of data acahfferent information systems, particularly viaeth

Internet.

XPath: It is an expression language for addressing @ustof an XML document, or for computing

values (strings, numbers, or boolean values) bagdtie content of an XML document. The XPath
language is based on a tree representation of Mie document, and provides the ability to navigate
around the tree, selecting nodes by a variety ibdér@. In popular use (though not in the official

specification), an XPath expression is often ref@to simply as an XPath.

XQuery: It is a query language (with some programming legg features) that is designed to query

collections of XML data. It is semantically similar SQL.

XSLT (Extensible Stylesheet Language Transformations): It is an XML-based language used for
the transformation of XML documents. XSLT is desidrno transform XML documents into other

XML documents.

72

10 Bibliography and References

Digital Bibliography

* [1] Base de datos en castelladpi para Bases de datos. Last access (20-5-2007). Available

at http://www.programacion.net/bbdd/articulo/xmlapisdéxmlapisbasico

» [2] Java Technology; Last access (1-6-2007). Aldglat http://java.sun.com/

* [3] Lopez Sanz, MarcosBases de datos XML [PDF Document]. Last access (20-5-2007)
Available at : kybele.escet.urjc.es/MIGIRV/GIJIRVBA&RHIRV-2006-2007%5DTema2-
Bases%20de%20Datos%20l L .pdf

e [4] Gaikkad, Arun.Introduction to Xindice. An Open source native XML database system.
Last access (4-6-2007). Available at http://www.ibom/developerworks/web/library/wa-

xindice.html

e [5] Moller, Anders; Schwartzbach Michael The XML Revolution, Technologies for the
future Web. Last revision October 2003. Last access (20-5-R00Kvailable at
http://www.brics.dk/~amoeller/XML/index.html

e [6] Oracle 10g Database Online Documentation, Estess (20-5-2007). Available at
http://www.oracle.com/pls/db102/portal.portal _db@sted=7

* [7] PSOUG Oracle Morgan’s Library SQL PL/SQL. Lastcess (1-6-2007).Available at
http://www.psoug.org/library.html

e [8] The Code Project-Free Source Code and Tutoriast access (1-6-2007). Available at

http://www.codeproject.com

¢ [9] XML documentation, last access (20-5-2007). alde athttp://www.w3.org/ XML/

e [10] Oracle® XML Developer's Kits Guide — XDK Release 2 (9.}t access (20-5-2007).

Available athttp://www.lc.leidenuniv.nl/awcourse/oracle/app@0/a96621/index.htm

73

e [11] W3Schools Online Web Tutorials. Last access0-§2007). Available at

http://www.w3schools.com/

Bibliography

¢ [12] Chandran, Sharatiniversity Oracle XML:Develop Applications Instructor Guide. First
Edition 2001.

e [13] Lapis,GeorgeXTech 2005: XML, the Web and beyond. XML and relational Sorage.

* [14] Muench, SteveBuilding Oracle XML Applications. First Edition September 2000. Ed.
O'Reilly.

¢ [15] Roy-Faderman, Avrom; Koletzke, Peter; Dorsdé3aul. Oracle Jdeveloper 10g

Handbook, First edition 2004 Ed. Mc Graw Hill.

74

11 Appendices

11.1 Installation of the application

The information about the installation appeara €D, in Readme.txt file

- Before to install the application it is necessastall Oracle Database with XML packages to
manage the XML. The Oracle database server andfitrenation to install it appear in:
http://www.oracle.com/pls/db102/homepage
It is necessary to register in that page to dowhtba Oracle database server.

Other way to use it is use the Database of FITfgtuit.vutbr.cz:1521:stud (only if the user
have a account).

11.2 CD Contains

The information in this section appears in the GEhe Readme.txt file.
The CD contains several directories:
« Documentation: contains this document in electremision. McThesis.pdf
e Sample application: contains the application (aggpion directory), the code source

(source directory) .

75

