
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

AUTOMATED GENERATION OF PROCESSING
ELEMENTS FOR FPGA

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ONDŘEJ LENGÁL
AUTHOR

BRNO 2008

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

GENEROVÁNÍ PROCESNÍCH ELEMENTŮ PRO FPGA
AUTOMATED GENERATION OF PROCESSING ELEMENTS FOR FPGA

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ONDŘEJ LENGÁL
AUTHOR

VEDOUCÍ PRÁCE Ing. MARTIN ŽÁDNÍK
SUPERVISOR

BRNO 2008

Abstrakt
Některé aplikace zpracovávaj́ıćı informace, jako je např́ıklad monitorováńı poč́ıtačových
śıt́ı, vyžaduj́ı nepřetržité zpracováváńı dat přicházej́ıćıch vysokou rychlost́ı. S t́ım, jak
tato rychlost vývojem stále stoupá, je žádoućı, aby bylo zpracováváńı dat prováděno po-
moćı hardwarové implementace. Tato práce navrhuje konfiguračńı systém transformuj́ıćı
uživatelem poskytnutou definici procesńıch funkćı na VHDL definici hardwarové imple-
mentace těchto funkćı. Systém je zaměřen na monitorováńı śıt’ového provozu ve vysoko-
rychlostńıch śıt́ıch.

Kĺıčová slova
pokročilé metody syntézy, plánováńı, zpracováńı tok̊u, generovańı firmwaru, FPGA, moni-
torováńı śıt́ı

Abstract
Some information processing applications, such as computer networks monitoring, need to
continuously perform processing of rapidly incoming data. As the speed of the incoming
data increases, it is desirable to perform the processing in the hardware. This work proposes
a configuration system that generates a VHDL specification of a hardware data processing
circuit based on a user-provided definition of data and computation operations. The system
focuses on network traffic monitoring in multi-gigabit computer networks.

Keywords
high-level synthesis, scheduling, flow processing, firmware generation, FPGA, network mon-
itoring

Citace
Ondřej Lengál: Automated Generation of Processing Elements for FPGA, bakalářská práce,
Brno, FIT VUT v Brně, 2008

Automated Generation of Processing Elements for
FPGA

Prohlášeńı
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedeńım pana
Ing. Martina Žádńıka. Daľśı informace mi poskytli kolegové z projektu Liberouter. Uvedl
jsem všechny literárńı prameny a publikace, ze kterých jsem čerpal.

. .
Ondřej Lengál

14. května 2008

Poděkováńı
V prvé řadě bych rád poděkoval vedoućımu své bakalářské práce panu Ing. Martinu Žádńıkovi
za odborné vedeńı a konzultace. Dále bych chtěl poděkovat panu Ing. Janu Kořenkovi za
podnětné připomı́nky a koleg̊um z projektu Liberouter za vytvořeńı přátelské tv̊urč́ı at-
mosféry. Své milé mamince vyjadřuji srdečný d́ık za dobroty, které mi připravovala po
dobu mého jinošstv́ı.

c© Ondřej Lengál, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 3

2 Theoretical Background 5
2.1 Hardware Description Languages . 5
2.2 Parsing . 5
2.3 Code Generation Patterns . 6
2.4 OSI Reference Model . 7
2.5 Data Link Layer and Ethernet . 9
2.6 Network Layer and Internet Protocol . 9
2.7 Transport Layer . 11

2.7.1 Transmission Control Protocol . 11
2.7.2 User Datagram Protocol . 12

2.8 Network Flow Monitoring . 12

3 Current Approaches to High-Level Synthesis 13
3.1 Scheduling . 14
3.2 Time-Constrained Scheduling . 14

3.2.1 Integer Linear Programming Method 14
3.2.2 Force-Directed Heuristic Method . 15

3.3 Other Approaches to High-Level Synthesis 15
3.4 Analysis of High-Level Synthesis Methods 15

4 Design and Architecture 16
4.1 Design . 16

4.1.1 Operation Definition Language . 16
4.1.2 Configuration . 17

4.2 Architecture . 17
4.3 Firmware Generation . 18

4.3.1 High-Level Language Parsing . 18
4.3.2 Complete Abstract Syntax Tree . 19
4.3.3 Operations Graph . 20
4.3.4 Data-Flow Graph . 21
4.3.5 Pipelined Data-Flow Graph . 22
4.3.6 Control/Data-Flow Graph . 27
4.3.7 VHDL Source Code Generation . 27

1

5 Evaluation 28
5.1 Application . 28
5.2 Flow Processing Unit . 29
5.3 Properties . 30

6 Conclusion 32

A Storage Medium 36

2

Chapter 1

Introduction

As the volume and speed of electronic communication increase, the demand for processing
of communication at top speed occurs. The current speed of communication disables its
processing in the computer processor, due to the limited system bus throughput of data
to computer memory and processing of the data by a generic processor. High speed data
processing may be conducted by application-specific integrated circuits (ASICs), which are
chips optimized for certain data processing. The main disadvantages of ASICs are: (i) once
designed and manufactured, the configuration options of the chip are restricted very much,
and (ii) the price of the chip manufacturing process is high, which makes the production
of a smaller amount of these chips uneconomical.

Nevertheless, in practice there are applications that require both high data processing
speed and high degree of configurability. Field-programmable gate arrays (FPGAs) appear
to be a convenient platform for such applications. These chips are composed of an array
of configurable elements, which can be programmed to perform a specific data processing
function at a given time. If a different function is needed later, it is possible to erase the
chip configuration and replace it with another one performing the new function.

Despite the high level of FPGA chip configurability, developing an application-specific
configuration of a chip requires an experienced hardware designer and a considerable amount
of their time. This may be inefficient for the same family of applications where usually a
minor deviation from the standard design is made. However, there is a possibility to create
a higher-semantic level engine that automatically generates optimized lower level hardware
description from the user’s definition, which is then synthesized and downloaded into the
reconfigurable chip. This allows a hardware-design inexperienced user to define the data
processing function in a friendly way, either through a graphical user interface or simple
definitions in configuration files.

An example of such a family of applications is computer networks monitoring — the
speed of current computer networks exceeds 10 Gb/s, which results in the maximum packet
rate in the order of ten million packets per second, while commodity PCs are able to
process network traffic in the order of hundred thousand packets per second. Moreover,
the requirements of network administrators on the monitoring process may vary greatly.
Another example may be monitoring of a computer system bus, processing of data extracted
from audio or video streams or processing of data provided by a large number of very fast
sensors (such as those used in nuclear physics experiments).

This work proposes a system for automated generation of synthesizable VHDL descrip-
tion of processing elements according to the user’s definition. The focus is placed on the
generation of a processing element for a network monitoring probe intended for flexible

3

monitoring in high-speed networks (10 Gb/s and more).
The text is divided into several chapters. Chapter 2 focuses on hardware description

languages and means of high-level language analysis through parsing; code generation pat-
terns are also discussed. Further, OSI network reference model and network flow monitoring
are introduced. In chapter 3, current high-level synthesis approaches are analysed and com-
pared to the developed platform. Chapter 4 outlines the design of the firmware generation
system and proceeds with the description of the architecture of the system, followed by
detailed description of the algorithms developed for firmware generation. Chapter 5 de-
scribes the application of the designed platform in a flexible network monitoring probe and
evaluates important properties of the solution. Finally, chapter 6 summarizes the status of
the work and proposes possibilities of further development.

4

Chapter 2

Theoretical Background

The task of this thesis is transformation of a high-level language into VHDL code of syn-
thesizable firmware description. For this purpose, chapter 2 first analyses current hardware
description languages (section 2.1), which is followed by the description of programming
language parsing (section 2.2). Approaches to code generation are described in section 2.3.
With the intended focus of this work on the use in network monitoring, section 2.4 de-
scribes the OSI network reference model. Further, sections 2.5, 2.6 and 2.7 provide deeper
insight into the layers of the model, which are important for network monitoring. Finally,
in section 2.8, the principles of network monitoring are described.

2.1 Hardware Description Languages

There are many hardware description languages (HDL), each of them suitable for a differ-
ent task. Some examples of currently used HDLs are: VHDL [1], Verilog [2], Handel-C [3]
and SystemVerilog [4]. The older HDLs, such as VHDL or Verilog, were originally devel-
oped for the description of the behaviour of the marketed ASICs and their verification, and
only later they were also employed for the synthesis of hardware. The advantage of using
these languages for hardware design is good control over the resulting synthesized hard-
ware; however, it is difficult to maintain the code which needs to be optimized for target
architecture.

Newer languages (Handel-C, SystemVerilog, . . .), on the other hand, provide higher-
level abstraction for easier design of synthesizable hardware evaluating complex functions.
The code written in these languages is better maintainable, and higher abstraction allows
for optimized use of hardware resources. In spite of such variety of available HDLs, their
application still requires an experienced hardware designer. Therefore, these languages are
not a feasible solution for the applications in which a hardware-design inexperienced user
should be able to define processing functions. The solution may be to develop languages
that provide higher-semantic level of data processing definition.

2.2 Parsing

The analysis of a complex user input is usually done by means of a parser, which is a
program that reads the user input and determines whether it conforms to the given formal
grammar. During this process, it also extracts semantic information and constructs abstract
syntax tree (AST), which contains all necessary information from the user input [5].

5

A stage preceding the parsing itself is lexical analysis of the input. The task of the lexical
analysis is to read the user input, strip unnecessary parts (such as whitespaces or comments)
and transform it into a string of lexical elements (lexemes), which are then passed to the
parser. Lexemes are usually defined using regular expressions. A lexical analyzer is then
implemented using the deterministic finite automaton, which has the power to accept the
set of languages denoted by regular expressions.

Programming languages are very often deterministic context-free languages; therefore,
they are possible to be analyzed by parsers based on context-free grammars. LR parsers
are powerful enough to process the family of deterministic context-free languages [6] and
are used in most cases. A language is described using a language grammar G, which is a
4-tuple G = (N,T, R, S), where

• N is a finite set of nonterminals,

• T is a finite set of terminals, N ∩ T = ∅,

• R is a finite set of rules in the form of A→ b, where A ∈ N and b ∈ (N ∪ T)∗,

• S is the start nonterminal, S ∈ N .

Language L(G) defined by grammar G is a set of strings of terminals which can be
generated from the start nonterminal, L(G) = {a : a ∈ T ∗, S →∗ a}.

The following solutions are possible for parsing expressions:

LL parser — does not provide the power to parse all deterministic context-free languages;
the grammar needed for parsing expressions is complicated and not intuitive (new
meaningless symbols are introduced, etc.).

Operator precedence parser — is limited to a subset of LR grammars where there are
not two consecutive nonterminals in the right-hand side of any rule.

LR parser — has the power to parse all deterministic context-free languages [6]. The LR
parser is the most complex one for this family of languages. Nonetheless, there are
also parser generators (such as [7]) that generate the result parser from the definition
of LR grammar. This solution provides a high degree of power and maintainability.

2.3 Code Generation Patterns

Many programming tasks require or may benefit from on-line generation of the program
source code. The code generation may be described as the transformation of a higher-level
language model description (including graphical language models, such as UML) into a
lower-level (usually directly compilable or interpretable) language. Some of the reasons for
the use of code generation are these [8]:

• requirements of a high degree of flexibility without the usage of the object-oriented
paradigm,

• minimization of the program executable size,

• generation of a program code that is easier to be statically analyzed,

6

• providing a higher level of abstraction for easier programming, and

• bypassing the limitations of the target programming language.

There are several code generation patters, each suitable for a different situation. Some
of them are described by Völter [8]:

1. Templates and Filtering — the result code is generated by applying templates to
the model specification in the text format (often XML). Example: XSLT transforma-
tion of XML into HTML.

2. Templates and the Metamodel — the metamodel based on the model data is first
instantiated. Afterwards, the templates are applied to this metamodel. Example:
PHP web page that consists of HTML code with embedded PHP commands.

3. Frame Processing — this pattern uses frames, which are basically parametrizable
programs or functions that generate the code as the result of their evaluation. Ex-
ample: PHP web page that sequentially calls functions which generate HTML tags
according to the functions’ parameters.

4. API-based Generators — provide API for generating the result code. These APIs
are usually based on the syntax of the target language. Example: libxml2 [9] API for
XML tree generation.

5. Inline Code Generation — in this case, additional constructions are incorporated
directly into the program source code. These constructions may be used e.g. to
compile a different code for different operating systems, or for querying the language
standard applied and using proper keywords conforming to the standard. In this
case, the source code is typically modified prior to the compilation. Example: C99
preprocessor.

6. Code Attributes — an additional code may be generated in the runtime according
to the metadata stored in a separate part of the program executable. Example: Java
annotations.

7. Code Weaving — independent code blocks (often of orthogonal functionality) are
joined together according to the defined join specification. Example: pool of static
libraries with different implementation of functions with the same interface; at the
compile-time, one of the implementations is selected and linked to the executable.

HDL code generation may exploit most of the abovementioned patterns. However,
FPGA chips may also use some other techniques, such as on-line swapping of Configurable
Logic Blocks (CLBs) or application of evolvable components [10].

2.4 OSI Reference Model

OSI (Open Systems Interconnection) reference model [11] is a layered model of network ar-
chitecture created by the International Organization for Standardization (ISO). It contains
7 layers; each layer is a collection of related functions that provides services to the layer
above it and receives services from the layer below. The hierarchy of layers is depicted in
figure 2.1.

7

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data Link layer

Physical layer

Figure 2.1: OSI reference model

The reference model precisely defines the interfaces between different computers; how-
ever, due to its complexity, the model is nowadays used mostly as a reference. A brief
description of the layers follows:

Physical layer defines logical signals and the transfer medium at the lowest level, the
task of this layer is to transfer bits between adjacent network nodes. This layer also
provides functions for line encoding, signal modulation, detection of carrier signal and
collisions.

Data Link layer creates data connection above the physical layer. Usually, the connec-
tion is created between two adjacent network nodes. The data link layer assembles
stream of the physical layer bits into frames with well-defined structure. In general,
the frame includes the source and destination addresses and a correction code for the
detection and retransmission of corrupted frames.

Network layer carries out the routing of data packets from the sender to the recipient,
who may not be in the same network. A unique node identification is therefore needed,
independent on the data link layer addressing. This identification is called network
address and is assigned to every node in the network. The network layer services may
be either connection-oriented of connectionless.

Transport layer provides transparent transfer of the data between end elements in indi-
vidual network nodes. These elements may be processes or user sessions. The data
is transferred in segments with identification of the source and destination communi-
cating elements in the nodes. The Transport layer may use both connection-oriented
and connectionless services. The former perform connection establishment and reli-
able data delivery.

Session layer allows the processes or users in different network nodes to create a session
that maintains the context of the communication.

Presentation layer delivers and formats information between systems of a different syn-
tax and semantics.

Application layer provides services for application processes, such as mail transfer, file
transfer, instant messaging, etc. This layer includes the processes which implement
the functionality.

8

2.5 Data Link Layer and Ethernet

One of the most prevalent data link layer protocols is Ethernet [12]. The protocol maintains
communication between two adjacent network nodes and defines the protocol for data
transmission over a single link. The data link layer also defines the methods for medium
sharing — Ethernet uses the CSMA/CD method [12].

The data from upper layers are grouped into frames, the beginning and end of which
are delimited by special marks. The frame structure is outlined in Figure 2.2 and described
further.

Preamble SFD
Destination

address address
Source Length

/Type MAC client data PAD sequence
Frame check

Figure 2.2: Ethernet frame structure

Preamble (7 bytes) — a field that allows the physical layer signaling circuitry to reach its
steady-state synchronization with the received frame’s timing. The content of each
byte of this field is 10101010.

Start Frame Delimiter (SFD) (1 byte) — indicates the beginning of a frame. The
content of this field is 10101011.

Destination address (6 bytes) — a field that specifies the destination addressee(s) for
which the frame is intended. This may be either an individual or group address.

Source address (6 bytes) — a field that specifies the station from which the frame was
initiated.

Length/Type (2 bytes) — this field takes one of two meanings, depending on its numeric
value. If the value is greater than 1536 (600h), then it indicates the nature of the
MAC client protocol (Type interpretation). Otherwise, it indicates the number of
MAC client data octets contained in the subsequent data field of the frame (Length
interpretation).

Data and PAD (46–1500 bytes) — a field that contains the higher layer data. A minimum
frame size is required for correct CSMA/CD protocol operation. If necessary, the data
field is extended by appending extra bits (i.e. a pad) in units of octets after the data
field.

Frame check sequence (4 bytes) — 32-bit-wide cyclic redundancy check (CRC) for de-
tection of corrupted frames. It is computed from the abovementioned fields except
for the Preamble and SFD.

2.6 Network Layer and Internet Protocol

Internet Protocol (IP) belongs to the network layer of the OSI reference model. It is a
datagram protocol for packet-switched networks transferring data from the source to the
destination node [13]. The most prevalent protocol used today is IP version 4 (IPv4). Each
node in IPv4 network has a unique IP address, which is composed of the address of the

9

network and the address of the node in the network. The structure of the IPv4 header is
presented in Figure 2.3.

Version IHL Type of Service Total Length

Identification

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Flags Fragment Offset

0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1
0 1 2 3

Figure 2.3: IPv4 header structure

The individual elements have the following meaning:

Version (4 bits) — indicates the format of the header. For IPv4 header, this field has the
value 4.

Internet Header Length (IHL) (4 bits) — the length of the header in 32-bit words.

Type of Service (8 bits) — a field that provides an indication of the abstract parameters
of the quality of the service desired.

Total Length (16 bits) — the length of the datagram, measured in octets, including
Internet header and data.

Identification (16 bits) — an identifying value assigned by the sender to aid in assembling
the fragments of a datagram.

Flags (3 bits) — various control flags controlling fragmentation of the packet.

Fragment Offset (13 bits) — a field indicating where in the datagram this fragment
belongs. The fragment offset is measured in units of 8 octets.

Time to Live (8 bits) — this field was originally supposed to define the maximum time in
seconds that the datagram was to remain in the network. The contemporary purpose
of this field is to define the maximum number of network layer elements through which
the packet is allowed to go. At each element, the value in this field is decremented by
one and when the value reaches 0, the packet is discarded.

Protocol (8 bits) — the number of the next layer protocol used in the data portion of the
Internet datagram.

Header Checksum (16 bits) — checksum of the IPv4 header.

Source Address (32 bits) — the address of the source.

Destination Address (32 bits) — the address of the destination.

Options (variable size) — various optional data.

Padding (variable size) — this field ensures that the Internet header ends on a 32-bit
boundary. The padding value is zero.

10

2.7 Transport Layer

2.7.1 Transmission Control Protocol

Transmission Control Protocol (TCP) provides reliable, in-order stream of bytes. It is a
connection-oriented protocol that implements congestion avoidance mechanisms [14]. The
structure of TCP header is shown in Figure 2.4.

0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Off. Reserved Control Bits Window

Checksum Urgent Pointer

Options Padding

0 1 2 3

Figure 2.4: TCP header structure

Source Port (16 bits) — the source port number.

Destination Port (16 bits) — the destination port number.

Sequence Number (32 bits) — the sequence number of the first data octet in this seg-
ment.

Acknowledgment Number (32 bits) — if the ACK control bit is set, this field contains
the value of the next sequence number which the sender of the segment is expecting
to receive.

Data Offset (4 bits) — the number of 32-bit words in the TCP header. This field indicates
where the data begins.

Reserved (6 bits) — reserved for future use. This field is filled with zeros.

Control Bits (6 bits) — a control flags array. The flags relating to this work are: ACK
(Acknowledgment Number field is valid), RST (reset the connection), SYN (synchro-
nize sequence numbers) and FIN (no more data from sender).

Window (16 bits) — the number of data octets beginning with the one indicated in the
Acknowledgment Number field which the sender of this segment is willing to accept.

Checksum (16 bits) — checksum of certain IP header and TCP header fields and data.

Urgent Pointer (16 bits) — communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. This field is only interpreted
if the URG control bit is set.

Options (variable size) — various optional data.

Padding (variable size) — this field ensures that the TCP header ends on a 32-bit bound-
ary. The padding value is zero.

11

2.7.2 User Datagram Protocol

User Datagram Protocol (UDP) [15] is a connectionless datagram transfer protocol without
the guarantee of reliable and in-order data delivery. The UDP header structure is outlined
in Figure 2.5 and explained further.

0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1 2 3 7 8 94 5 6 0 1

Source Port Destination Port

ChecksumLength

0 1 2 3

Figure 2.5: UDP header structure

Source Port (16 bits) — may indicate the port of the sending process to which the reply
should be addressed. If it is not used, zero value is inserted.

Destination Port (16 bits) — the destination port number.

Length (16 bits) — the length of this user datagram including the header and the data.

Checksum (16 bits) — a checksum of certain IP header and UDP header fields and data.

2.8 Network Flow Monitoring

Network flow is defined in [16] as a set of IP packets passing an observation point in the
network during a certain time interval. All packets belonging to a particular flow have a
set of common properties. Each property is defined as the result of applying a function to
the values of:

1. one or more packet header fields (e.g. destination IP address), transport header field
(e.g. destination port number), or application header field (e.g. RTP header field);

2. one or more characteristics of the packet itself (e.g. number of MPLS labels);

3. one or more of the fields derived from packet treatment (e.g. next hop IP address, the
output interface).

A packet is defined to belong to a flow if it completely satisfies all the defined properties
of the flow. The observation point is often a probe or a router interface. The information
about a specific flow which was metered at the observation point are exported to collectors
in the format of flow records, which contain the measured properties of the flow (e.g. the
total number of bytes of all packets of the flow) and usually also characteristic properties
of the flow (e.g. source IP address).

In recent years the flow monitoring technology application has become widespread in
the form of Cisco NetFlow and IPFIX. While the set of possible flow key definitions and
measured properties of the mostly used NetFlow v5 version is fixed, newer versions (such as
NetFlow v9) and IPFIX [17] allow flexible definition of both the flow key and the measured
properties. The flexible definition is very important for higher semantic level protocol
analysis [18]. For some applications, such as traffic classification, application protocol
detection or anomaly detection, it is necessary to measure different properties.

12

Chapter 3

Current Approaches to High-Level
Synthesis

The task of high-level synthesis is to simplify the hardware design process allowing the
hardware designer to use higher-semantic level constructs while performing functionality-
independent optimization, which is too complex or error-prone to be done by a hardware
designer. This optimization may be done:

• in the physical domain in the form of optimized placement of transistors, wire
networks and floorplan creation in ASIC chip or optimized placement and routing for
FPGA;

• in the structural domain as optimized partitioning, scheduling of registers, multi-
plexers and functional units usage, scheduling of bus usage, allocation of registers and
functional units, etc.;

• in the behavioral domain in the form of Boolean expression minimization, algorithm
optimization, loop unrolling, death code elimination, etc.

Optimization in the physical domain is performed by synthesis tools and depends on the
target technology. The first optimization computer-aided design (CAD) tools usually per-
form is in the behavioral domain. This process is very similar to the machine-independent
optimization done in software programming languages compilers [19]. In this case, good
practices (such as constant propagation or death code elimination) are able to decrease
both resource usage and propagation delay of the design.

The structural domain optimization works on the register-transfer logic (RTL) level
and is focused on the instantiation of registers, multiplexers and functional units and their
partitioning, scheduling and allocation. The task of partitioning is to cluster related objects
together, especially to minimize the layout area and propagation delay. In case of FPGAs
this is part of the physical domain optimization and is done by the synthesis tool. Scheduling
maps operations into separate clock cycles, while allocation defines for each clock cycle
which register and which functional unit is taken by which operand. Scheduling plays a key
role in the optimization in the structural domain for high-speed FPGA applications.

13

3.1 Scheduling

The task of hardware scheduling is to partition the control/data-flow graph (CDFG) into
subgraphs, each of which is executed in a single control step [20]. Every step corresponds to
one state of the controlling finite-state machine (FSM). There are two possible goals for the
scheduling problem: (i) minimization of the number of functional units for the fixed number
of control steps, and (ii) minimization of the number of control steps for a given design cost
(e.g. number of functional units). Good scheduling algorithms create designs that reuse
expensive components, such as adders and multipliers, while retaining high throughput.

An important concept in scheduling is the data-flow graph (DFG). This is defined [20]
as a directed acyclic graph G(V,E), where V is a set of nodes and E is a set of edges.
Each element vi ∈ V represents an operation (oi) in the behavioral description of the
hardware. A directed edge eij from vi ∈ V to vj ∈ V — denoted as (vi, vj) — exists in
case that data produced by oi (represented by vi in the DFG) is an input operand of the
operation oj (represented by vj). The set of all immediate predecessors of vj is defined
as Predvj = {vi : (vi, vj) ∈ E}; the set of all immediate successors of vi is defined as
Succvi = {vj : (vi, vj) ∈ E}.

Using the DFG, we are able to detect which operations can be carried out in parallel
and which need sequential processing. This information is crucial for scheduling algorithms.

Two fundamental algorithms are ASAP (as soon as possible) and ALAP (as late as
possible) scheduling [20]. The ASAP algorithm assigns an ASAP value Ei (denoting the first
clock cycle in which it is possible to execute the operation) to each operation oi according
to the following equation:

Ei = max(W) + 1, W =
{
{Ej : j ∈ Predvi} for Predvi 6= ∅
{0} for Predvi = ∅ (3.1)

The ALAP algorithm generates an ALAP value Li (which is the last clock cycle in
which it is possible to execute the operation) to every operation oi in a way very similar to
the previous algorithm:

Li = min(W)− 1, W =
{
{Lj : j ∈ Succvi} for Succvi 6= ∅
{T + 1} for Succvi = ∅ (3.2)

where T is the given constraint of control steps. If there exist Li such that Li < 1, the
desired function cannot be executed in T steps.

From the output of ASAP and ALAP algorithms for every operation oi, it is possible
to define the range of control steps < Ei, Li >, into which the operation can be scheduled.

In general, there are two fundamental approaches to scheduling: time-constrained and
resource-constrained. The former operates over a given number of clock cycles in which the
operation needs to execute and the later works with a limited silicon area. For the purpose
of this work, the time-constrained scheduling is relevant.

3.2 Time-Constrained Scheduling

3.2.1 Integer Linear Programming Method

This method finds an optimal schedule for a given constant time using a branch and bound
search algorithm with backtracking. The ASAP and ALAP values are used to determine
the mobility range of operation. The algorithm then finds a schedule which meets the

14

constrained time while consuming minimum resources. Because this solution is NP-hard,
it is not suitable for larger descriptions.

3.2.2 Force-Directed Heuristic Method

This method attempts to uniformly distribute the operations of the same type (e.g. addition)
into all available states. The algorithm works with the expected operator cost (EOC) value
for each operator and each clock cycle. The process tries to balance the EOC value for each
operation type by restructuring the operation graph with regard to the cost function.

3.3 Other Approaches to High-Level Synthesis

Oh and Ha in [21] propose a method for VHDL code generation from the data-flow graph
for the use in digital signal processing applications. The paper is focused on generation of
coarse-grained pipelined design for signal-related applications. The framework assumes the
use of large high-latency processing blocks (such as multipliers or Fast Fourier transform
blocks).

Another approach [22] deals with the application of genetic algorithms to scheduling
instructions in a compiler targeted towards parallel architectures. The algorithm works
upon data dependency directed acyclic graph and provides good results in scheduling;
nonetheless, due to its focus on machine language generation, it does not incorporate the
means for fine-grained hardware units allocation.

Paxson et al. [18] argue that current network elements do not provide satisfactory high-
level processing of network traffic — features like TCP stream reassembly and semantic
processing of application data at line speed are missing. High-level definition of semantic
processing with compilation into FPGA design is proposed, however, no further details are
given.

3.4 Analysis of High-Level Synthesis Methods

None of the studied high-level synthesis methods cope with the problem of transformation of
high-level language expressions to pipelined high-speed low-latency fine-grained hardware
description. Studied approaches are limited to generation of coarse-grained high-latency
designs, which are not convenient for network traffic processing, due to the fine granularity
of network protocols header fields.

In the light of these findings, we argue that it is essential to develop an approach that
creates an optimized high-speed low-latency fine-grained description of hardware defined by
the user employing high-level language constructs. The design of such approach is outlined
in the following chapter.

15

Chapter 4

Design and Architecture

4.1 Design

The task of the processing unit is high-speed processing of data. The structure of the
input data is assumed to have the form of several fields each of which may be of different
width and each may be associated with different operation (this comes from the analysis of
network protocols in 2). Since the input is continuous and the delay of the unit is needed to
be as low as possible, we cannot use a single ALU to process the data. Thus, a fine-grained
processing pipeline is needed to be generated according to the user definition of operations.

4.1.1 Operation Definition Language

High level language based on C99 [23] syntax has been proposed for the definition of user
operations. A user operation is defined by a single expression. However, various functions
may be used in the expression; the language may therefore be considered to be functional.
The language syntax includes:

• common arithmetic operators (+, -, *, /, %),

• logical operators (&&, ||, !),

• bit manipulation operators (&, |, ^, ~, >>, <<),

• relation operators (==, !=, <, <=, >, >=),

• ternary conditional operator (?:),

• the parenthesis ((and)),

• the assignment operator (=),

• the assignment operator combined with an arithmetic or bit manipulation operator
(+=, -=, *=, /=, %=, &=, |=, ^=, >>=, <<=),

• bit addressing operator ([,]), and

• concatenation operator (.).

16

The language includes two data types: unsigned and signed; expressions can be cast
using the cast operators: (unsigned) and (signed). The precedence of operators remains
the same as in C99. However, semantics of the operators is not strictly given — during
parsing, they are transformed into ordinary functions which are defined in the configura-
tion. The language is described using an LR grammar in order to enable processing of the
expressions by a LR parser, which was described in section 2.2.

There are two types of operations: (i) the update operations, and (ii) the control
operations. The former type is used for transformation of input data blocks into the result
block, and the later type is used for providing control operations over the input blocks; these
usually consist of a single bit expressing the state of the control operation (succeeded/failed)
and may be used e.g. as interrupt request signals.

4.1.2 Configuration

The configuration is composed of definitions of user functions and operators (see 4.1.1).
The operators are basically a special type of a function with the name operatorXX, where
XX is the operator sign, such as operator+ or operator?:. There are two possible types of
functions:

• Hardware-mapped functions — these functions define the mapping of the operands
onto component ports and generics and also other hardware related parameters, such
as propagation delay, maximum width of a block etc.

• Macro functions — these functions are defined using other functions, i.e. they serve
as macros which are expanded during the generation process.

The usage of both function types is uniform. However, it needs to be ensured that the
configuration does not contain cyclic definitions, i.e. recursion (either direct or indirect) is
not used; in case it were used, it would not be possible to determine the pipeline length
statically during firmware generation.

4.2 Architecture

The data processing takes place in a processing unit. The processing unit is a pipelined
computational unit the interface of which can be seen in Figure 4.1.

Z

X

Y

PARAMS

X−Frame

2 1 03

Y−Frame

2 1 03

Z−Frame

2 1 03

Processing

Unit

A
D

D
R

C
E

Figure 4.1: The interface of the processing unit

The input operands are passed to the unit via ports X and Y. The input data are in the
form of a frame with well-defined structure. The frame is split into words of equal width,
each of them with an address. The words are passed to the unit consecutively from the one

17

with the lowest address (i.e. zero) together with the address of the word (port ADDR) for
every stage of the pipeline and the clock enable signal (port CE) that indicates valid values
on the input. The address is provided for every stage of the pipeline to enable processing
more frames at once. PARAMS is a port with parameters, i.e. data that changes scarcely,
regardless of the input data frames. Port Z is the output port with the resulting frame.

4.3 Firmware Generation

The process of firmware generation is composed of several parts. The task of the process
is the transformation of user definition of processing functions in the form of high-level
programming language expressions into optimized description of the processing unit in
VHDL. The output of the process is therefore the control/data-flow graph of the components
used in the processing unit and also the definition of structure of the input and output
frames. This definition may be used for the generation of the extractor unit that prepares
the input data to the form the processing unit expects, and for the generation of another
unit that transforms the structure of the output data to the structure expected by the
following element on the data route.

4.3.1 High-Level Language Parsing

The parsing of the expressions defining the user operation written in the language proposed
in section 4.1.1 is done using a C++ LR parser generated from the language grammar
description by the Flex [24] and Bison [7] tools.

Let us consider the following example of operation definitions for describing the gener-
ation process:

x = max(x, a - b);
y += sqr(a - b);

and the definition of macro functions max, sqr and of the + operator. Other functions are
supposed to have a proper hardware mapping.

signed max(signed first , signed second)
{

return (first > second)? first : second;
}

signed sqr(signed value)
{

return value * value;
}

signed operator +=(signed lhs , signed rhs)
{

return lhs = lhs + rhs;
}

Parsing of these expressions creates two abstract syntax trees (ASTs) — one for each
expression (see Figure 4.2). Fields used in the left-hand side of the expression are labeled
as new and fields in the right-hand side of the expression are labeled as old.

18

a b

−

newx

max

=

oldx anewy

+=

sqr

−

b

x = max(x, a − b) y += sqr(a − b)

Figure 4.2: Example ASTs

4.3.2 Complete Abstract Syntax Tree

Complete abstract syntax tree (CAST) is an AST containing only atomic operations,
i.e. only the functions which are in the configuration (see 4.1.2) defined as hardware-mapped
functions. All ASTs from the parser are transformed to CASTs using Algorithm 1. The
algorithm expands the tree root node operation until it is hardware-mapped. Then, it con-
tinues to recursively expand all children of the node, until only hardware-mapped operations
are present in the tree.

The output of the algorithm for the example expressions is in Figure 4.3.

?:

>

oldx a

−

b

=

newx newy oldy

*

a b

−

+
=

x = (x > (a − b))? x : a − b y = y + (a − b)*(a − b)

Figure 4.3: Complete ASTs inferred from the example ASTs using Algorithm 1

Algorithm 1: Abstract syntax tree completion
Input: IN TREE: AST from the parser;

IN OPERATIONS: Set of operations description;
Output: OUT TREE: Complete AST

begin1

OUT TREE ← expand node(IN TREE.Root, IN OPERATIONS);2

end3

19

Function expand node(IN NODE, IN OPERATIONS)
Input: IN NODE: Input node;

IN OPERATIONS: Set of operations description;
Result: Expanded node;

begin1

if IN NODE is a hardware-mapped function then2

foreach child ∈ IN NODE.Children do3

child ← expand node(child, IN OPERATIONS);4

endfch5

return IN NODE6

else7

operation ← IN OPERATIONS.GetOperationAST(IN NODE.Operation);8

foreach i ∈ N ∩ 〈1; |operation.Operands|〉 do9

operation.Operands[i] ← IN NODE.Children[i];10

endfch11

return expand node(operation.Root, IN OPERATIONS);12

endif13

end14

4.3.3 Operations Graph

When the CASTs are generated, they are transformed into the operations graph. The
operations graph is a directed acyclic graph G = {N,E}, where the set of nodes is N =
I ∪R ∪O with I being the set of input fields, R being the set of result fields and O being
the set of operations. The set of edges is defined as E = {(a, b) : a ∈ I ∪O, b ∈ R ∪O}.

The operation graph expresses relations between operations and their operands. It
does not contain redundant operations (i.e. operations that repeatedly appear in different
CASTs) — these are merged into a single instance in order to be evaluated only once. The
bottom row of the operations graph contains nodes with the input fields while the top row
contains the result fields. The nodes in between represent data transformation operations.

The transformation process is described in Algorithm 2. The algorithm draws a node
from a CAST and searches whether the operation of the node is already in the operation
graph. In case it is not, the algorithm inserts it and creates edges in the operation graph
that correspond to the children of the node. The output of the algorithm for the CASTs
from Figure 4.3 is in Figure 4.4. Note the merged common subexpression (a - b).

Algorithm 2: Complete ASTs to operations graph transformation
Input: IN TREES: Set of complete ASTs;
Output: OUT NODES: Nodes of the operations graph;

OUT EDGES: Edges of the operations graph;
begin1

OUT NODES ← ∅ ; OUT EDGES ← ∅;2

foreach ast ∈ IN TREES do3

get node(ast.Root, OUT NODES, OUT EDGES);4

endfch5

end6

20

Function get node(IN NODE, OG NODES, OG EDGES)
Input: IN NODE: CAST node;

ref OG NODES: Nodes of the operations graph;
ref OG EDGES: Edges of the operations graph;

Result: The operation graph node for the root node of the input CAST node;

begin1

if IN NODE is a leaf then2

if IN NODE is in the left-hand side of an assignment then3

return OG NODES.AddResultField(IN NODE);4

else if IN NODE ∈ OG NODES.InputFields then5

return OG NODES.GetReferenceTo(IN NODE);6

else7

return OG NODES.AddInputField(IN NODE);8

endif9

else10

child refs ← ∅;11

foreach i ∈ N ∩ 〈1; |IN NODE.Children|〉 do12

child refs[i] ← get node(IN NODE.Children[i], OG NODES, OG EDGES);13

endfch14

op nodes ← {x : x ∈ OG NODES ∧ x .Operation = IN NODE.Operation};15

foreach node ∈ op nodes do16

if node.Children = child refs then return node;17

endfch18

operation ← OG NODES.AddOperation(IN NODE);19

foreach i ∈ N ∩ 〈1; |child refs|〉 do20

if child refs[i] is in the left-hand side of an assignment then21

OG EDGES.AddEdge(operation, child refs[i].InputPorts[1]);22

else23

OG EDGES.AddEdge(child refs[i], operation.InputPorts[i]);24

endif25

endfch26

return operation;27

endif28

end29

4.3.4 Data-Flow Graph

When the operations graph is created, the next task is to generate components for evaluation
of individual operations. The structure that contains the set of components and their
interconnection is called the data-flow graph (DFG). The process of transformation is shown
in Algorithm 3. The transformation process works in two stages: first, components are
generated inside each operations graph node independently on other nodes — this is done
by the gen comps() procedure. The procedure generates a set of components and wires
(i.e. an independent data-flow graph) with respect to the type of operation of the node (a

21

a b

−

oldx

> *

?: +

oldy

newy

=

newx

=

common subexpression

Figure 4.4: Output from Algorithm 2: operations graph for example CASTs

comparison operation is being constructed in a different way than a logical sum operation)
and width of the operation input and output. The second stage joins all these independent
data-flow graphs into a single one. Figure 4.5 shows the output data-flow graph when the
algorithm is applied on the example operations graph.

Algorithm 3: Operations graphs to data-flow graph transformation
Input: IN NODES: Set of operations graph nodes;

IN EDGES: Set of operations graph edges;
Output: OUT COMPS: Components of the data-flow graph;

OUT WIRES: Wires of the data-flow graph;

begin1

OUT COMPS ← ∅;2

OUT WIRES ← ∅;3

foreach node ∈ IN NODES do4

gen comps(node, OUT COMPS, OUT WIRES);5

endfch6

foreach edge ∈ IN EDGES do7

OUT WIRES.AddWire(edge.BeginNode.OutputPort,8

edge.EndNode.InputPorts[edge.PortNumber]);
endfch9

end10

4.3.5 Pipelined Data-Flow Graph

With the data-flow graph showing the flow of data through components, the next step in
order to achieve high processing throughput is creating a pipeline. This process also includes
allocation of hardware resources and scheduling of operations. The process is dependent
on the structure of the input and output data blocks.

As stated in 3.2.1, finding the optimal schedule is difficult for larger descriptions, because
the problem is NP-hard. However, the optimal schedule is not always necessary, the search

22

a b

*

+ +

oldy

>

+ + +

newy

>

x old

x new

1

0

0

su
bt

ra
ct

io
n

ad
di

tio
n

m
ul

tip
lic

at
io

n

co
m

pa
ris

on
se

le
ct

io
n

Figure 4.5: Output data-flow graph from Algorithm 3 for example operations graph

may be therefore conducted using a heuristic. The analysis of [22] in section 3.3 showed that
genetic algorithms provide good results for the problem of scheduling. The nature of the
problem for hardware makes the application of genetic algorithms even more convenient,
as was argued in [25].

Because the scheduling depends on the structure of the input and output data, the
search algorithm looks for such a structure that can be scheduled into the given number
of clock cycles and consumes as few resources on the chip as possible. The algorithm for
construction of the structure is described later. The genetic search algorithm works as
follows [10]:

1. Generate a population of random chromosomes.

2. Calculate fitness of each chromosome.

3. Use roulette selection to select pairs of parents.

4. Generate offspring with crossover and mutation. If a new population has not been
produced yet, go to 3.

5. If the best solution is not good enough yet, go to 2.

The data block is a sequence of integers (genes) X = [x1, x2, · · · , xn], where x1 through
xn are pointers into a structure that contains information about the fields of the data block.
All the data blocks are grouped into a matrix T

T =

X
Y
...
Z

 =

x1 x2 · · · xn

y1 y2 · · · yn
...

...
. . .

...
z1 z2 · · · zn

23

Grouping the data blocks into a matrix and operating over this matrix is supported by
the fact that good pairs of fields of different data blocks can be preserved using this scheme.
Chromosome C representing the matrix T is encoded in this way:

T =

x1 x2 · · · xn

y1 y2 · · · yn
...

...
. . .

...
z1 z2 · · · zn

 ←→ C = [x1, y1, · · · , z1, x2, y2, · · · , z2, · · · , xn, yn, · · · , zn]

The suggested crossover operator creates a vertical cut through matrices of two parents’
chromosomes and exchanges right-hand sides of the cut between the parents to create their
offspring:

x1 x2

y1 y2
...

...
z1 z2

∣∣∣∣∣∣∣∣∣
x3

y3
...
z3

There are two mutation operator proposed: the first one creates a vertical cut in the

chromosome matrix and exchanges the left-hand side for the right-hand side of the matrix.
The other one creates two vertical cuts in the matrix and inverts the order of the fields
between those cuts. These operators are also defined for individual data blocks of the matrix
in the same way — the difference is that only those fields that are in a randomly selected
row of the matrix are changed. The currently used mutation operator during generation
of new offspring is selected randomly. Resulting offspring must be checked and invalid
members discarded — these are the members that does not contain all the fields for every
data block exactly once.

The fitness function is evaluated by constructing the pipelined data-flow graph and
computing the amount of resources (as described in 4.3.6) the resulting design consumes
— lower numbers get higher fitness values.

During the search, the genetic algorithm generates proper attributes derived from the
given data block for the set of input ports and output ports. These attributes for all
components are: TimeStart for the earliest moment when all the input data are available
on the input of the component, TimeReady for the earliest moment when the component
yields the result, and Stage for the number of the pipeline stage the component is in.
For the functional components, these attributes are evaluated inside the algorithm. All
components also have another attribute — Delay, which is the propagation delay of the
combinatorial path inside the component.

The data-flow graph pipelining algorithm (Algorithm 4) starts with generation of the
list of the components which are connected directly to the input ports. The list is used
throughout the process and comprises those components which has at least one scheduled
predecessor component and has not been scheduled yet. The components are successively
drawn from the front of the list and checked if all of their predecessors have been scheduled.
In case they have not, the component is appended back to the end of the list to be processed
later. When all of the component’s predecessors have been scheduled, the component can be
scheduled too. First, the component is checked if it does not create critical path (procedure
remove critical paths()), that would violate the target clock cycle constraint (constant
CLK TIME). If the possibility of a critical path occurs, registers are inserted into those input

24

Input Frame

Output Frame

1 2 3 4 5 6 7O

1

2

3

4

st
ag

e

[CLK_CYCLE]
time

unregistered path

registered paths

(no move in time)

(move in time)

a) Permitted paths
Input Frame

Output Frame

1 2 3 4 5 6 7O

1

2

3

4

st
ag

e

[CLK_CYCLE]
time

returning in time

returning in pipeline

b) Forbidden paths

Figure 4.6: Permitted and forbidden paths in the pipeline

paths which are time-critical (using function pipeline wire()). When the critical paths
are identified and eliminated, values of TimeStart, TimeReady and Stage attributes are
assigned to the component. To avoid race condition and similar problems, only the forward
direction of flow of data through the pipeline is permitted — this means that the data can
progress through the pipeline one stage per clock cycle, that the data can be stored in the
stage where it was computed in order to be used later, or that the data can directly “jump
over” several stages forward without actually going through the pipeline. Other directions
of flow — i.e. going back in the pipeline or in time — are forbidden (see example for 4-stage
pipeline in Figure 4.6). The following step processes the input paths of the component
to fulfill this condition. At this moment, the component is properly scheduled and its yet
unscheduled successors are appended to the list.

Procedure remove critical paths(IN COMP, REF COMPS, REF WIRES)
Input: IN COMP: Input component;

ref REF COMPS: Components;
ref REF WIRES: Wires;

begin1

wires ← {w : w ∈ REF WIRES ∧ w.To ∈ IN COMP.InputPorts};2

pred comps ← {x : x ∈ REF COMPS ∧ ∃w ∈ wires : w.From = x};3

foreach pred ∈ pred comps do4

if cycle(pred.TimeReady) 6= cycle(pred .TimeReady + IN COMP.Delay)5

then
ws ← {w : w ∈ wires ∧ w.From = pred};6

reg ← pipeline wire(x : x ∈ ws);7

REF WIRES ← REF WIRES− ws;8

trg ports ← {w.To : w ∈ ws};9

REF WIRES ← REF WIRES ∪ {w : w.From = reg ∧ w.To ∈ trg ports};10

endif11

endfch12

end13

25

Algorithm 4: Algorithm for data-flow graph pipelining
Input: ref REF COMPS: Components of the data-flow graph;

ref REF WIRES: Wires of the data-flow graph;

begin1

unsched comps ← REF COMPS ;2

list ← empty list;3

foreach port ∈ {x : x ∈ unsched comps ∧ x is an input port} do4

wires ← {w : w ∈ REF WIRES ∧ w.From = port};5

comps ← {c : c ∈ unsched comps ∧ ∃w ∈ wires : w.To ∈ c.InputPorts};6

foreach c ∈ comps do list .PushBack(c);7

unsched comps ← unsched comps − {port};8

endfch9

while list is not empty do10

comp ← list .PopFront();11

wires ← {w : w ∈ REF WIRES ∧ w.To ∈ comp.InputPorts};12

pred comps ← {x : x ∈ REF COMPS ∧ ∃w ∈ wires : w.From = x};13

if ∃c ∈ pred comps : c ∈ unsched comps then14

list .PushBack(comp);15

else16

remove critical paths(comp, REF COMPS, REF WIRES);17

wires ← {w : w ∈ REF WIRES ∧ w.To ∈ comp.InputPorts};18

pred comps ← {x : x ∈ REF COMPS ∧ ∃w ∈ wires : w.From = x};19

if comp is not an output port then20

comp.TimeStart ← max({x.TimeReady : x ∈ pred comps});21

comp.TimeReady ← comp.TimeStart + comp.Delay;22

comp.Stage ← max({x.Stage : x ∈ pred comps});23

endif24

foreach w ∈ wires do25

while cycle(w.From.TimeReady) 6= cycle(w.To.TimeStart) do26

reg ← pipeline wire(w);27

reg .Stage ← min({reg .Stage,w .To.Stage});28

REF WIRES ← REF WIRES− {w};29

w ← x : x.From = reg ∧ x.To = w.To;30

REF WIRES ← REF WIRES ∪ {w};31

endw32

endfch33

unsched comps ← unsched comps − {comp};34

out wires ← {w : w ∈ REF WIRES ∧ w.From = comp};35

succ comps ← {c : c ∈ unsched comps − {x : x is in list} ∧36

∃w ∈ out wires : w.To ∈ c.InputPorts};37

foreach c ∈ succ comps do list .PushBack(c);38

endif39

endw40

end41

26

Function cycle(IN TIME)

Input: IN TIME: Input time;
Result: Number of the clock cycle the input time falls into;

begin1

return bIN TIME/CLK TIMEc;2

end3

Function pipeline wire(IN WIRE, REF COMPS, REF WIRES)
Input: IN WIRE: Input wire to be pipelined;

ref REF COMPS: Components;
ref REF WIRES: Wires;

Result: The result register reference;

begin1

reg ← register component;2

reg .Stage ← IN WIRE.From.Stage + 1;3

reg .TimeStart ← IN WIRE.From.TimeReady ;4

reg .TimeReady ← (cycle(reg.TimeStart) + 1) · CLK TIME;5

REF COMPS ← REF COMPS ∪ {reg};6

wire to reg ← w : w.From = pred ∧ w.To = reg .InputPorts[1];7

REF WIRES ← REF WIRES ∪ {wire to reg};8

return reg ;9

end10

4.3.6 Control/Data-Flow Graph

The process of control/data-flow graph creation deals with allocation of functional units for
all stages of the pipeline in the pipelined data-flow graph. For each stage of the pipeline and
each component type, the number of these components of this type for every clock cycle is
computed. The maximum value is used as the number of instantiated components. These
components are reused for various inputs (depending on the clock cycle), so they need to be
multiplexed and a mapping between the clock cycle number and the value on the selection
ports of the multiplexers established. A string with this mapping for all multiplexers in the
stage constitutes the program of the stage.

4.3.7 VHDL Source Code Generation

When the control/data-flow graph is generated, the result needs to be transformed into a
form expected at the input of synthesis tools. Because VHDL language enables high degree
of control over the synthesis output and is supported by the majority of synthesis tools, it
has been chosen as the result of the generation process.

From the code generation patterns described in 2.3, the hierarchical Templates and the
Metamodel pattern has been chosen: premade code blocks at different structural levels
are made with special marks in the places where the metamodel-dependent code shall be
placed.

27

Chapter 5

Evaluation

5.1 Application

The application of this framework is for generation of the Flow Processing Unit in the
Flexible FlowMon network monitoring probe [26]. A rough outline of the probe can be seen
in Figure 5.1. The captured packet is processed in the preprocessing block, where the packet
headers are extracted and combined into the unified header [27]. The FlowContext [28]
stores the context for every network flow (see 2.8) and binds proper context to an input
packet; it can also load-balance incoming stream of data among several context update
blocks. When packet data are received by the FlowContext, the data (unified header,
payload and packet flow context) are sent to the context update block (CUB) to be processed.
Expired contexts are released from the CUB in the form of flow records to be further
processed by the host PC, which is in turn able to set the monitoring process parameters.

FlowContext

flow record flow record

Further processing

Control program

updated context

CUB

CUB

payload
headers

preprocessing

Packet
packet

headers payload context

PC

parameters

FPGA

Figure 5.1: Architecture of the Flexible FlowMon probe

The context update block is outlined in Figure 5.2. It consists of these five elements:

Fetch Block decodes the command that is sent together with the packet information in
DATA and determines how the packet will be processed. This block also checks
for collisions, i.e. it ensures that the context bound to the packet is correct, and
arbitrary other things. The result are separated data and control paths — the data
are sent to the Endpoint via FLOW DATA, and the control signals are sent through
USER DATA.

Return Block combines the command sent from the endpoint in USER DATA with the
data FLOW DATA into DATA frame which is to be stored in the memory.

28

payloadheaders

updated
context

headers payload context

flow record
FLOW_DATA

USER_DATA

FLOW_DATA

USER_DATA

CTRL

CONTEXT

CTRL

PAYLOAD

CONTEXT

HEADER

DATA

DATA

FlowPU

E
n

d
p

o
in

tBlock

Fetch

Block

Return

Flow
Context

Decoder

Application

Figure 5.2: Detail of the context update block

Endpoint divides the header, payload and context into separate memory banks in order to
make these fields available in parallel; this unit also serves as a cache for the FlowPU —
it stores the context of the flow to avoid FlowContext overhead that would otherwise
limit throughput of the whole system for large flows. Control commands are also
stored in the endpoint’s memory.

Flow Processing Unit (FlowPU) contains the computational pipeline that is config-
ured to perform the user-defined update and control operations. The result of the
update is also checked in this block and if a control condition is violated, the result
context is exported for further processing to the host PC.

Application Decoder performs various analysis of the packet’s payload [29].

The purpose of the Flow Processing Unit is to update flow context fields according to
the user definition of the monitoring process. The update operations are carried out using
a tailor-made computational engine generated by a core generator program. Expired flow
contexts are sent to the PC in the form of flow records for further processing.

5.2 Flow Processing Unit

The Flow Processing Unit architecture is outlined in Figure 5.3. The interface of this unit
consists of the following ports: set of ports for the input (IN ENDPOINT INTERFACE)
and output (OUT ENDPOINT INTERFACE) interface to the Endpoint (the detailed de-
scription of this interface is beyond the scope of this thesis). Ports TX APP DEC and
RX APP DEC constitute the interface to the Application Decoder. Port DO is used for
export of flow records to the host PC and port MI is a memory interface that enables setting
unit’s parameters and reading the debug register from the host PC. The FrameLink proto-
col used for marked ports is a high-speed frame-oriented protocol that has been developed
as a part of the Liberouter [30] project.

The core of the unit is ALU, which is a computational pipeline generated using the
process described in 4.3. The inputs of the unit are context of the flow and packet header,
the output consists of updated context and control signals. The Address Counter generates
proper address for each stage of the pipeline and also for the Masking Unit, which is used to
update the Reg Valid register by the correct value. This register maintains the state of the

29

Decoder

HEADER

CTRL

CONTEXT

COMMITEncoder

UPDATED
CONTROL

CONTEXT
UPDATED

UPD_CON_WR

PAYLOAD

Adapter

T
X

_A
P

P
_D

E
C

@
F

ra
m

eL
in

k

PCKT_START

PLD_END
Adapter

R
X

_A
P

P
_D

E
C

@
F

ra
m

eL
in

k

FIFO

F
IF

O

Binder

Adapter

@
F

ra
m

eL
in

k

D
O

PCKT_END

IN
_E

N
D

P
O

IN
T

_I
N

T
E

R
F

A
C

E

O
U

T
_E

N
D

P
O

IN
T

_I
N

T
E

R
F

A
C

E

use_current

release

first

void

defaults

M
I

Control

ALU

Address
Counter

Masking
Unit

Reg

Valid

Control

Merger

FrameLink FrameLink

FrameLink
Parameters Debug

ad
dr

es
s

M
U

X

Figure 5.3: Flow Processing Unit architecture

currently processed frame — whether it has violated any of the control operations or not.
In the former case, the output frame is released via the FIFO and Binder to the DO port
for further processing in the host PC. In the later one, the frame is dropped from the FIFO
and is stored back to the Endpoint after being merged with the data from the Application
Decoder. The Control Decoder and Control Encoder encode and decode, respectively, the
metadata that maintain the state of the flow context.

The feedback route from the output of ALU to the input multiplexer MUX enables
processing of two consecutive packets belonging to the same context. If this route were
not present, the input would need to be stopped (because the atomicity of the context
update must be ensured) and throughput of the unit would drop significantly for large
flows. The feedback path is activated by a special command on the CTRL port. Other
control commands are: release the context (in this case, the context is sent directly to FIFO
and the ALU is not used), no operation, release the context and create a new one (this
deals with the problem of hash collision detected in the Fetch Block), and others.

5.3 Properties

The properties of the application of the platform in the flexible network flow monitoring
probe has been studied and the results are following: the flexibility of the solution is satis-
factory for NetFlow and IPFIX [31]. Moreover, the solution provides extended possibilities.
An example may be measuring of interpacket gaps of a flow and providing the mean value
and standard deviation of the parameter for the detection of application protocol.

30

The throughput of the Flow Processing Unit depends on two factors:

1. Complexity of desired operations — this factor directly affects the number of
pipeline stages. More precisely, it is the complexity of the most complex operation,
that determines the pipeline length LP .

2. Size of the context and header — because of the demand for atomicity of context
updates, there can be a maximum of a single “full” frame with the size SF bits, or
parts of two frames with the same size as a single frame, in the unit.

Considering both aforementioned factors, the resulting throughput T of the unit can be
expressed by the following equation:

T =
SF bits

LP clock cycles
(5.1)

The unit is designed to be used in the Xilinx Virtex-II Pro and Xilinx Virtex-5 FPGAs
and work in in a 100 MHz clock domain, the resulting throughput TR in Gb/s is therefore

TR = 108 · SF

LP
Gb/s (5.2)

Table 5.1 shows the resulting throughput for the most common context sizes and pipeline
lengths.

Context size [bytes] Pipeline length [stages] Throughput [Gb/s]
64 2 25.6Gb/s
64 4 12.8Gb/s
128 2 51.2Gb/s
128 4 25.6Gb/s

Table 5.1: The throughput of the processing unit for various parameters

Analysis of the firmware generation process showed that the most time-critical part is
the generation of the pipelined data-flow graph (section 4.3.5). This part uses global search
engine which in each step needs to generate complete description of the processing pipeline
and compute the number of resources the pipeline consumes. This is done by a complex
algorithm; nevertheless, its complexity has not been properly studied yet. However, analysis
showed that effective implementation is crucial for the performance of the algorithm. We
also believe that devising a heuristic used for the generation of initial population of the
genetic algorithm used for global search instead of random generation could significantly
increase the convergence speed of the algorithm.

We are also interested in the results that would be yielded by exchanging line 3 in func-
tion pipeline wire() (see section 4.3.5):
| reg .Stage ← IN WIRE.From.Stage + 1;
by the following line:
| reg .Stage← max(IN WIRE.From.Stage, cycle(IN WIRE.From.TimeReady) - STAGES);
where STAGES is the number of stages of the pipeline. In this case, the data would not be
implicitly propagated through the pipeline (nonetheless, it would still be ensured that the
operations are in the permitted window) and thus more complex operations could be sched-
uled into less stages.

31

Chapter 6

Conclusion

The task of this work was the design and implementation of a firmware generation platform
focused on the use in flexible network monitoring. Only the design and part of the imple-
mentation has been done so far, the reason being the complexity and multi-domain nature
of the task. Several architectures has been proposed, however, their evaluation showed
that the desired throughput (10 Gb/s) is obtainable only with the architecture which is
described in this thesis.

To complete the task, it was necessary to study literature about hardware description
languages [1, 2, 3, 4], high-level language parsing [6, 5, 19] and code generation patterns [8].
The focus of the platform also demanded to study details of the OSI reference model [11, 12,
13, 14, 15] and the principles of network flow monitoring [16, 17]. The obtained information
are summarized in the theoretical background (chapter 2) of this thesis. Furthermore,
current high-level synthesis methods [20, 21] were also studied; their description can be
found in chapter 3.

The proposed framework is focused on providing higher-semantic level for the definition
of flexible network monitoring in multi-gigabit networks. Design of the firmware generation
process considers this — the process therefore generates optimized high-speed fine-grained
computational pipeline for aggregation of flow information into flow records. The firmware
generation and network probe aggregation unit are described in chapters 4 and 5 respec-
tively. Chapter 5 also evaluates the properties of the proposed platform.

The future work will be focused on an effective implementation of the framework and
further evaluation of the properties of the firmware generation algorithms and their refine-
ment. A challenging task would be to conduct formal verification of the algorithms to prove
that they yield correct results for all inputs.

32

Bibliography

[1] Peter J. Ashenden. VHDL Tutorial, 2004.
Available at URL http://www.tutground.net/Files/VHDL_TUTORIAL.pdf (April
2008).

[2] Open Verilog International. Verilog-A Language Reference Manual, 1996.
Available at URL http://www.eda.org/verilog-ams/htmlpages/public-docs/
lrm/VerilogA/verilog-a-lrm-1-0.pdf (April 2008).

[3] Matthew Bowen. Handel-C Language Reference Manual. Embedded Solutions.
Available at URL http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF
(April 2008).

[4] IEEE Computer Society. IEEE Std 1800-2005: IEEE Standard for SystemVerilog —
Unified Hardware Design, Specification, and Verification Language, 2008.

[5] Alexander Meduna. Elements of Compiler Design. Taylor & Francis Informa plc,
2008.

[6] Alexander Meduna. Automata and Languages: Theory and Applications. Springer
Verlag, 2005.

[7] Bison — GNU parser generator. URL http://www.gnu.org/software/bison/
(April 2008).

[8] Markus Völter. A Catalog of Patterns for Program Generation. In EuroPLoP 2003,
2003. Available at
URL http://www.voelter.de/data/pub/ProgramGeneration.pdf (April 2008).

[9] libxml2: Web pages of the libxml2 library. URL http://xmlsoft.org (April 2008).

[10] Lukáš Sekanina. Evolvable Components — From Theory to Hardware
Implementations. Natural Computing Series. Springer Verlag, 2003.

[11] ISO/IEC 7498-1. Information technology — Open Systems Interconnection — Basic
Reference Model: The Basic Model, June 1996.
Available at URL http://standards.iso.org/ittf/
PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip (April
2008).

[12] IEEE Computer Society. IEEE Std 802.3-2005: Carrier Sense Multiple Access With
Collision Detection (CSMA/CD) Access Method And Physical Layer Specification,
2005. Available at URL http://standards.ieee.org/getieee802/ (April 2008).

33

http://www.tutground.net/Files/VHDL_TUTORIAL.pdf
http://www.eda.org/verilog-ams/htmlpages/public-docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf
http://www.eda.org/verilog-ams/htmlpages/public-docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf
http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF
http://www.gnu.org/software/bison/
http://www.voelter.de/data/pub/ProgramGeneration.pdf
http://xmlsoft.org
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.ieee.org/getieee802/

[13] The Internet Engineering Task Force. RFC 791: Internet Protocol, September 1981.
Available at URL http://www.ietf.org/rfc/rfc791.txt (April 2008).

[14] The Internet Engineering Task Force. RFC 793: Transmission Control Prototol,
September 1981. Available at URL http://www.ietf.org/rfc/rfc793.txt (April
2008).

[15] The Internet Engineering Task Force. RFC 768: User Datagram Prototol, August
1980. Available at URL http://www.ietf.org/rfc/rfc768.txt (April 2008).

[16] J. Quittek, T. Zseby, B. Claise, and S. Zander. RFC 3917: Requirements for IP Flow
Information Export (IPFIX). The Internet Engineering Task Force, October 2004.
Available at URL http://www.ietf.org/rfc/rfc3917.txt (April 2008).

[17] The Internet Engineering Task Force. RFC 5101: Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow
Information, January 2008.
Available at URL http://www.ietf.org/rfc/rfc5101.txt (April 2008).

[18] V. Paxson, K. Asanović, S. Dharmapurikar, J. Lockwood, R. Pang, R. Sommer, and
N. Weaver. Rethinking Hardware Support for Network Analysis and Intrusion
Prevention. In First USENIX Workshop on Hot Topics in Security (HotSec ’06),
pages 63–68, July 2006.
Available at URL http://www.icir.org/vern/papers/hotsec06.pdf (April 2008).

[19] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 2006.

[20] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve Y-L Lin. High-Level
Synthesis — Introduction to Chip and System Design. Kluwer Academic Publishers,
1992.

[21] Moonwook Oh and Soonhoi Ha. Synthesizable VHDL Code Generation from Data
Flow Graph. In 5th Asia Pacific Conference on Hardware Description Languages,
1998. Available at URL http://citeseer.ist.psu.edu/211167.html (April 2008).

[22] Steven J. Beaty. Genetic Algorithms and Instruction Scheduling. In Proceedings of
the 24th Annual International Symposium on Microarchitecture (MICRO-24),
November 1991.
Available at URL http://citeseer.ist.psu.edu/beaty91genetic.html (April
2008).

[23] ISO/IEC 9899:TC3. WG14/N1256, September 2007. Available at URL http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf (April 2008).

[24] Flex. URL http://www.gnu.org/software/flex/ (April 2008).

[25] E. Bonsma and S. Gerez. A Genetic Approach to the Overlapped Scheduling of
Iterative Data-Flow Graphs for Target Architectures with Communication Delays. In
ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

34

http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc5101.txt
http://www.icir.org/vern/papers/hotsec06.pdf
http://citeseer.ist.psu.edu/211167.html
http://citeseer.ist.psu.edu/beaty91genetic.html
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.gnu.org/software/flex/

[26] Martin Žádńık, Jan Kořenek, Petr Kobierský, and Ondřej Lengál. Network Probe for
Flexible Flow Monitoring. In 2008 IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, pages 213–218. IEEE Computer Society, April 2008.

[27] Tomáš Dedek, Tomáš Marek, and Tomáš Mart́ınek. High Level Abstraction
Language as an Alternative to Embeded Processors for Internet Packet Processing in
FPGA. In 2007 International Conference on Field Programmable Logic and
Applications, pages 648–651. IEEE Computer Society, 2007.

[28] Martin Košek and Jan Kořenek. FlowContext: Flexible Platform for Multigigabit
Stateful Packet Processing. In 2007 International Conference on Field Programmable
Logic and Applications, pages 804–807. IEEE Computer Society, 2007.

[29] Petr Kobierský. Hardware acceleration of protocol identification. Master’s thesis,
FIT Brno University of Technology, 2008.

[30] Liberouter. URL http://www.liberouter.org (April 2008).

[31] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer. RFC 5102: Information
Model for IP Flow Information Export. The Internet Engineering Task Force, January
2008. Available at URL http://www.ietf.org/rfc/rfc5102.txt (April 2008).

35

http://www.liberouter.org
http://www.ietf.org/rfc/rfc5102.txt

Appendix A

Storage Medium

A storage medium (CD) containing an electronic version of the technical report and source
codes of the part of the framework that has been implemented is enclosed to this thesis.

36

	Introduction
	Theoretical Background
	Hardware Description Languages
	Parsing
	Code Generation Patterns
	OSI Reference Model
	Data Link Layer and Ethernet
	Network Layer and Internet Protocol
	Transport Layer
	Transmission Control Protocol
	User Datagram Protocol

	Network Flow Monitoring

	Current Approaches to High-Level Synthesis
	Scheduling
	Time-Constrained Scheduling
	Integer Linear Programming Method
	Force-Directed Heuristic Method

	Other Approaches to High-Level Synthesis
	Analysis of High-Level Synthesis Methods

	Design and Architecture
	Design
	Operation Definition Language
	Configuration

	Architecture
	Firmware Generation
	High-Level Language Parsing
	Complete Abstract Syntax Tree
	Operations Graph
	Data-Flow Graph
	Pipelined Data-Flow Graph
	Control/Data-Flow Graph
	VHDL Source Code Generation

	Evaluation
	Application
	Flow Processing Unit
	Properties

	Conclusion
	Storage Medium

