
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

O VYMAZÁVACÍCH PRAVIDLECH V ŘÍZENÝCH
GRAMATIKÁCH
ON ERASING RULES IN REGULATED GRAMMARS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. PETR ZEMEK
AUTHOR

VEDOUCÍ PRÁCE Prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2010

Abstrakt

V této práci je diskutován vliv vymazávaćıch pravidel na generativńı śılu ř́ızených gramatik,
což je velký otevřený problém teorie ř́ızeného přepisováńı. Tato práce studuje možnost od-
straněńı vymazávaćıch pravidel z těchto gramatik tak, že shromažd’uje aktuálńı výsledky na
toto téma a přináš́ı novou podmı́nku, nazvanou k-limitované vymazáváńı, která zaručuje, že
jsme bez vlivu na generovaný jazyk schopni odstranit všechna vymazávaćı pravidla z libo-
volné bezkontextové gramatiky ř́ızené regulárńım jazykem splňuj́ıćı tuto podmı́nku. Tento
výsledek je částečným řešeńım výše zmı́něného problému. Mimoto je prezentován nový algo-
ritmus k odstraněńı vymazávaćıch pravidel z bezkontextových gramatik, který nepotřebuje
předurčovat tzv. epsilon-neterminály (na rozd́ıl od standardńıho algoritmu použ́ıvaného
v učebnićıch). V závěru je zhodnocen př́ınos těchto výsledk̊u pro syntaktickou analýzu.

Abstract

This work discusses the effect of erasing rules to the generative power of regulated gram-
mars, which is a big open problem in the theory of regulated rewriting. It studies the
possibility of removal of erasing rules from regulated grammars by aggregation of current,
up-to-date results concerning this elimination and by presentation of a new condition, called
k-limited erasing, under which all erasing rules can be always removed from regularly con-
trolled context-free grammars without affecting their generative power. This result partially
solves the abovementioned problem. Moreover, a new algorithm for elimination of erasing
rules from context-free grammars is presented. This algorithm does not require any prede-
termination of so called epsilon-nonterminals (in contrast to the standard algorithm used in
textbooks). In the conclusion, a significance of these results concerning syntactical analysis
is discussed.

Kĺıčová slova

bezkontextová gramatika, ř́ızené gramatiky, bezkontextová gramatika ř́ızená regulárńım
jazykem, odstraňováńı vymazávaćıch pravidel, limitované vymazáváńı

Keywords

context-free grammar, regulated grammars, regularly controlled context-free grammar, re-
moval of erasing rules, limited erasing

Citace

Petr Zemek: On Erasing Rules in Regulated Grammars, diplomová práce, Brno, FIT VUT
v Brně, 2010

On Erasing Rules in Regulated Grammars

Declaration

I hereby declare that this thesis is my own work that has been created under the supervision
of prof. Alexander Meduna. Where other sources of information have been used, they have
been duly acknowledged.

. .
Petr Zemek

May 4, 2010

Acknowledgements

Sections 4.2 and 5.2 are based on two upcoming papers which have been written jointly with
prof. Alexander Meduna. I wish to thank prof. Alexander Meduna for his support during
his supervision of this work, for valuable and inspiring consultations, and for his advice and
recommendations from which I have benefited greatly. I also wish to thank ing. Jǐŕı Koutný
for his comments and suggestions towards my paper published on a student conference,
which is a shortened version of Section 5.2. Last, but certainly not least, I wish to thank
my parents for their constant support and patience during my work on this thesis.

c© Petr Zemek, 2010.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 2

1.1 Chapter Survey . 3

2 Preliminaries and Basic Definitions 4

2.1 Sets, Relations, Closures, and Functions . 4

2.2 Alphabet, Strings, and Languages . 7

2.3 Grammars and Language Families . 8

2.4 Derivation Trees . 12

3 Regulated Grammars 15

3.1 Regularly Controlled Grammar . 15

3.2 Matrix Grammar . 19

3.3 Programmed Grammar . 21

3.4 Random Context Grammar . 23

3.5 Scattered Context Grammar . 25

3.6 Other Types of Regulation . 28

4 Removal of Erasing Rules from Context-Free Grammars 31

4.1 Standard Algorithm . 31

4.2 New Algorithm . 33

5 Removal of Erasing Rules from Regulated Grammars 39

5.1 Present Results . 40

5.1.1 Limited Erasing in Scattered Context Grammars 41

5.1.2 Recursive Erasing in Programmed Grammars 42

5.1.3 Generation of Extended Languages by ε-Free Grammars 43

5.1.4 Erasing in Petri Net Languages and Matrix Grammars 46

5.2 New Result: Limited Erasing in Regularly Controlled Grammars 47

5.3 Significance to Syntactical Analysis . 57

6 Conclusion 60

6.1 Open Problems . 61

1

Chapter 1

Introduction

Two of the most used and investigated formal models are indisputably regular and context-
free grammars, because these types of grammars and the corresponding families of languages
have a lot of nice properties [29, 50, 69], which make them very suitable for the purpose of
parsing and compilation [3, 54]. However, these types of grammars are not able to cover all
aspects which occur in modelling of phenomena by means of formal languages, like some
common features of natural and programming languages [44, 57].

Obviously, one can consider using more powerful classical models to handle these aspects,
like context-sensitive grammars, but this model is too complex and has some bad properties,
like it can not be used as easily as context-free grammars (due to unnatural way how to
model using context-sensitive rules [57]) and even some basic problems, like the emptiness
problem, are undecidable [66]. Therefore, there has been a tendency to create models
based on context-free rules (because they are simple and easy to use), but which have
higher generative power than context-free grammars.

As one of the approaches, many regulated grammars were introduced [1, 2, 12, 24, 26, 30,
40, 64, 71, 72]. These grammars are mostly based on context-free rules and to achieve higher
generative power, they control the derivation process. For example, it can be controlled by
prescribing sequences of rules (if a rule from some sequence is applied, a rule following the
applied rule in that sequence has to be used) or by placing context conditions on rules and
sentential forms (with a rule, we associate some restrictions for sequential forms that have
to be satisfied to apply the rule) [44].

In case of context-free grammars, it is possible to remove all erasing rules, i.e. rules with
the empty string on their right-hand side, from any context-free grammar while preserving
the generated language [50]. However, whether erasing rules can be eliminated from regu-
lated grammars in general, is an open problem. While this question was answered for some
types of regulated grammars (for example, one can remove erasing rules from indexed gram-
mars without affecting their generative power [67]), it still remains unanswered1 for some
other types of regulated grammars, like regularly controlled grammars, matrix grammars,
programmed grammars, and random context grammars [44].

1In [67, Theorem 2.15], it is claimed that this is impossible in case of regularly controlled grammars,
matrix grammars, and programmed grammars. However, the given references do not contain a proof for
this and in more recent publications, like [44] and [76], this is still considered to be an open problem.

2

The goals of this work are (1) to present current, up-to-date results concerning the exact
effect of erasing rules to the generative power of regulated grammars and the possibility of
elimination of such rules from these grammars, (2) to study new results in this area, and
(3) to discuss a significance of these results concerning syntactical analysis. Thereby, this
work contributes to the theory of regulated rewriting, which is an important field of the
formal language theory.

1.1 Chapter Survey

This work is organized as follows. First, Chapter 2 gives preliminaries and basic definitions,
including used notation. Then, in Chapter 3, some classical types of regulated grammars are
defined along with their modifications. These grammars are of our special interest. Also,
their generative power with regard to the presence or absence of erasing rules is mentioned
in there.

Since many regulated grammars are based on context-free grammars, Chapter 4 reviews
the standard algorithm for elimination of erasing rules from context-free grammars, which
is based on a predetermination of so-called ε-nonterminals. It then presents a new algo-
rithm for this task that does not need this predetermination. It formally verifies the new
algorithm.

Chapter 5 first discusses why is the removal of erasing rules from regulated grammars
different from the removal of erasing rules from context-free grammars. Then, it presents
known results regarding elimination of erasing rules from regulated grammars. Apart from
these results, it presents a new result: a condition, called k-limited erasing, under which all
erasing rules can be always removed from regularly controlled grammars without affecting
their generative power. This elimination is presented in the form of a transformation whose
correctness is formally verified. In the last section of this chapter, a significance of these
results concerning syntactical analysis is discussed.

In the conclusion of this work, given in Chapter 6, obtained results are summarized, some
final remarks are made, and possible further research is discussed. It also states several
open problems closely related to this work.

Relation to the Term Project

As this work is a direct continuation of my term project, the following parts of the term
project are (in a modified and corrected form) used in this work:

• First part of Chapter 1,

• Sections 2.1, 2.2, and 2.3 in Chapter 2,

• Section 3.1 in Chapter 3,

• Chapter 4 (without the verification of correctness of Algorithm 4.1.2),

• Introduction to Chapter 5 and Section 5.2 (without the verification of correctness of
Algorithm 5.2.1 and without examples).

3

Chapter 2

Preliminaries and Basic Definitions

In this chapter, the used terminology, notation, and fundamental terms from the area of
mathematics and formal language theory are reviewed. However, the reader is assumed
to have basic mathematical knowledge regarding elementary algebra and proof techniques,
such as a proof by induction. In particular, Section 2.1 reviews sets, relations, functions,
and closures. Then, in Section 2.2, the meaning of basic elements of the formal language
theory is given, such as an alphabet, strings, languages, and operations over them. Section
2.3 reviews the basics of grammars, derivations, and classical language families. Finally,
Section 2.4 describes a graphical representation of the structure of derivations—derivation
trees. It also establishes a notation to simplify definitions and proofs. This chapter is based
on [41, 50, 58, 66, 69].

2.1 Sets, Relations, Closures, and Functions

A set, Q, is a collection of differentiable elements taken from some universe, U, without
any structure other than membership. To indicate that x is an element (a member) of Q,
we write x ∈ Q. The statement that x is not in Q is written as x /∈ Q. If Q has a finite
number of members, then Q is a finite set. Otherwise, Q is an infinite set. The set that has
no members is the empty set, denoted by ∅. The cardinality of Q, denoted1 by card(Q), is,
for finite sets, the number of members of Q. If Q is infinite, then we assume card(Q) > k
for every integer, k. Note that card(∅) = 0.

Sets can specified by enclosing some description of its elements in curly brackets; for exam-
ple, the set Q of three consecutive integers (1, 2 and 3) is denoted by

Q = {0, 1, 2}.

Ellipses can be used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for all
the lower-case letters of the English alphabet. When the need arises, we use more explicit
notation, in which a set, Q, is specified by a property, σ, so Q contains all elements satisfying
σ.

1In the literature, there is an alternative denotation of the cardinality of a set: |Q|. In this work, this
notation is exclusively used to denote the length of a sequence.

4

This specification has the following format:

Q = {x | σ(x)}.

Let N denote the set of all nonnegative integers. Then, for example, the set of all even
nonnegative integers can be defined as Neven = {i | i ∈ N, i is even}.

The usual set operations are union (∪), intersection (∩), and difference (−), whose defini-
tion is given next.

Definition 2.1.1. Let Q1 and Q2 be two sets. Then

Q1 ∪Q2 = {x | x ∈ Q1 or x ∈ Q2},
Q1 ∩Q2 = {x | x ∈ Q1 and x ∈ Q2},
Q1 −Q2 = {x | x ∈ Q1 and x /∈ Q2}.

For n sets, Q1, Q2, . . . , Qn, instead of Q1 ∪Q2 ∪ · · · ∪Qn and Q1 ∩Q2 ∩ · · · ∩Qn, we usually
write

⋃
1≤i≤nQi and

⋂
1≤i≤nQi, respectively. If there are infinitely many sets, we omit the

upper bound, n.

Definition 2.1.2. Let Q be a set. A set, P , is said to be a subset of Q if every element of
P is also an element of Q; we write this as

P ⊆ Q.

If P ⊆ Q, but Q contains one or more elements that are not in P , we say that P is a proper
subset of Q; this is written as

P ⊂ Q.

If two sets, Q1 and Q2, have no common element, then they are said to be disjoint. If
Q1 ⊆ Q2 and Q2 ⊆ Q1, then Q1 and Q2 are said to be identical and we write Q1 = Q2

(they coincide). Otherwise, they are said to be nonidentical and we write Q1 6= Q2. Using
intersection and identity, we can write Q1∩Q2 = ∅ to indicate that Q1 and Q2 are disjoint.

Definition 2.1.3. Let Q be a set. The power set of Q, denoted by 2Q, is the set of all
subsets of Q. In symbols,

2Q = {U | U ⊆ Q}.

Observe that 2Q is a set of sets and sets of this kind are customarily called families of sets,
rather than sets of sets.

For a finite set, Q ⊆ N, let max(Q) denote the smallest integer, m, such that m is greater
or equal to all other members of Q. Similarly, min(Q) denotes the greatest integer, n, such
that n is lesser or equal to all other members of Q.

An (ordered) sequence is a list of elements. Contrary to a set, a sequence can contain an
element more than once and the elements appear in a certain order. Elements in sequences
are usually separated by a comma. As sets, sequences can be either finite or infinite. Finite
sequences are also called tuples. More specifically, sequences of two, three, and four elements
are called pairs, triplets, and quadruples, respectively.

5

Definition 2.1.4. A Cartesian product of two sets, Q1 and Q2, denoted by Q1 ×Q2, is a
set of pairs defined as

Q1 ×Q2 = {(x1, x2) | x1 ∈ Q1 and x2 ∈ Q2}.

Definition 2.1.5. A binary relation (or, simply, a relation), ρ, from a set, Q1, to a set,
Q2, is any subset of their Cartesian product. That is,

ρ ⊆ Q1 ×Q2.

Instead of (x, y) ∈ ρ, we often write xρy; in other words, (x, y) ∈ ρ and xρy are used
interchangeably. If Q1 = Q2, then we say that ρ is a relation on Q1 or relation over Q1. As
relations are sets, all common operations over sets apply to relations as well. For a relation,
ρ, if ρ is a finite set, then ρ is a finite relation; otherwise, ρ is an infinite relation.

Definition 2.1.6. Let ρ be a relation over a set, Q. ρ is a partial order if for all x, y, z ∈ Q,
ρ satisfies the following three conditions:

(1) xρx, (reflexivity)
(2) if xρy and yρx, then x = y, (antisymmetry)
(3) if xρy and yρz, then xρz. (transitivity)

Definition 2.1.7. Let ρ be a relation over a set, Q. For every k ≥ 1, the k-fold product of
ρ, denoted by ρk, is recursively defined as

(1) xρ1y if and only if xρy,
(2) xρky if and only if xρz and zρk−1y for some z ∈ Q.

Definition 2.1.8. Let ρ be a relation over a set, Q. The transitive closure of ρ, denoted by
ρ+, is defined as xρ+y if and only if xρky for some k ≥ 1, and the reflexive and transitive
closure of ρ, denoted by ρ∗, is defined as xρ∗y if and only if xρ+y or x = y.

Definition 2.1.9. A function (mapping), ψ, from Q1 to Q2, denoted by ψ : Q1 → Q2, is a
relation from Q1 to Q2 such that for every x ∈ Q1,

card({y | y ∈ Q2 and (x, y) ∈ ψ}) ≤ 1.

If for every y ∈ Q2, card({x | x ∈ Q1 and (x, y) ∈ ψ}) ≤ 1, ψ is an injection. If for every
y ∈ Q2, card({x | x ∈ Q1 and (x, y) ∈ ψ}) ≥ 1, ψ is a surjection. If ψ is both an injection
and a surjection, ψ represents a bijection.

Definition 2.1.10. Let ψ : Q1 → Q2 be a function. The domain of ψ, denoted by
domain(ψ), and the range of ψ, denoted by range(ψ), are defined as

domain(ψ) = {x | x ∈ Q1 and (x, y) ∈ ψ for some y ∈ Q2}

and

range(ψ) = {y | y ∈ Q2 and (x, y) ∈ ψ for some x ∈ Q1}.

If domain(ψ) = Q1, ψ is total ; otherwise, ψ is partial. Instead of (x, y) ∈ ψ, we usually
write ψ(x) = y.

6

2.2 Alphabet, Strings, and Languages

Definition 2.2.1. An alphabet, Σ, is a finite, nonempty set of elements called symbols.

Definition 2.2.2. Let Σ be an alphabet. A string (a word) over Σ is any finite sequence
of symbols from Σ.

We omit all separating commas in strings; that is, for a string, a1, a2, . . . , an, for some
n ≥ 1, we write a1a2 . . . an instead. The empty string, denoted by ε, is the string that is
formed by no symbols, i.e. the empty sequence. Σ∗ denotes the set of all strings over Σ
(including ε). Set Σ+ = Σ∗ − {ε}. Let x be a string over Σ, i.e. x ∈ Σ∗, and express x as
= a1a2 . . . an, where ai ∈ Σ, for all 1 ≤ i ≤ n, for some n ≥ 0 (x = ε if and only if n = 0).
Then, |w| = n denotes the length of x and alph(x) = {a1, a2, . . . , an} denotes the set of
symbols occurring in x (note that |ε| = 0 and alph(ε) = ∅).

Definition 2.2.3. Let x and y be two strings over an alphabet, Σ. Then, xy is the
concatenation of x and y.

Note that xε = εx = x.

Definition 2.2.4. Let x be a string over an alphabet, Σ. If x can be written in the form
x = uv for some strings u, v ∈ Σ∗, then u is called a prefix of x and v is called a suffix of
x. If 0 < |u| < |x|, then u is called a proper prefix of x; similarly, if 0 < |v| < |x|, then v is
called a proper suffix of x.

Definition 2.2.5. Let n be a nonnegative integer and x be a string over an alphabet, Σ.
Then, the nth power of x, denoted by xn, is a string over Σ recursively defined as

(1) x0 = ε,
(2) xn = xxn−1.

Definition 2.2.6. Let x = a1a2 . . . an be a string over Σ for some n ≥ 0. The set of all
permutations of x, perm(x), is defined as

perm(x) = {b1b2 . . . bn | bi ∈ alph(x), for all 1 ≤ i ≤ n, and
(b1, b2, . . . , bn) is a permutation of (a1, a2, . . . , an)}.

Note that perm(ε) = ε. Now, the important notion of a language is introduced.

Definition 2.2.7. Let Σ be an alphabet. A language, L, over Σ is any set of strings over
Σ, i.e. L ⊆ Σ∗.

Σ∗ is called the universal language, because it consists of all strings over Σ. If L is a finite
set, then it is a finite language; otherwise, it is an infinite language. The empty language is
denoted by ∅. As all languages are sets, all common operations over sets can be applied to
them.

Definition 2.2.8. Let L1 and L2 be two languages over Σ. Then

L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2},
L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2},
L1 − L2 = {x | x ∈ L1 and x /∈ L2}.

7

There are also some special operations which apply only to languages.

Definition 2.2.9. Let L1 and L2 be two languages over Σ. The concatenation of L1 and
L2, denoted by L1L2, is the set

L1L2 = {x1x2 | x1 ∈ L1 and x2 ∈ L2}.

Note that L{ε} = {ε}L = L.

Definition 2.2.10. For a nonnegative integer, n, and a language, L, the nth power of L,
denoted by Ln, is recursively defined as

(1) L0 = {ε},
(2) Ln = Ln−1L.

Definition 2.2.11. The star (Kleene closure) of a language, L, denoted by L∗, is the set

L∗ =
⋃
i≥0

Li.

Definition 2.2.12. The positive closure of a language, L, denoted by L+, is the set

L+ =
⋃
i≥1

Li.

Note that L+ = L∗ − {ε} if and only if ε /∈ L.

Definition 2.2.13. Let Σ and Γ be two alphabets and let ϕ : Σ∗ → 2Γ∗ be a function. ϕ
is said to be a substitution if it satisfies the following two conditions:

(1) ϕ(ε) = {ε},
(2) ϕ(xy) = ϕ(x)ϕ(y), for every x, y ∈ Σ∗.

ϕ is said to be regular if ϕ(a) is a regular language (see Section 2.3), for all a ∈ Σ.

Definition 2.2.14. Let Σ and Γ be two alphabets and let ϕ : Σ∗ → Γ∗ be a function. ϕ is
said to be a homomorphism if it satisfies the following two conditions:

(1) ϕ(ε) = ε,
(2) ϕ(xy) = ϕ(x)ϕ(y), for every x, y ∈ Σ∗.

Note that a homomorphism is a special case of a substitution where each substituted lan-
guage contains only one string.

2.3 Grammars and Language Families

In the theory of formal languages, the basic model for the description of a language is a
grammar.

8

Definition 2.3.1. An (unrestricted) grammar, G, is a quadruple,

G = (N,T, S, P),

where

• N is an alphabet of nonterminals,

• T is an alphabet of terminals such that N ∩ T = ∅,

• S ∈ N is the start nonterminal, and

• P is a finite relation from (N ∪ T)∗N(N ∪ T)∗ to (N ∪ T)∗.

Pairs (u, v) ∈ P are called productions or rewriting rules (abbreviated rules) and are written
as u → v. Accordingly, P is called the set of rules. V = N ∪ T is the total alphabet of G.
A rewriting rule u→ v ∈ P , where v = ε, is called an erasing rule. If there is no such rule
in P , then we say that G is an ε-free (or non-erasing) grammar.

Definition 2.3.2. Let G = (N,T, S, P) be a grammar. The direct derivation relation
induced by G is a relation between strings over V , denoted by ⇒G, and defined as

x⇒G y,

if and only if x = x1ux2, y = y1vy2, and u→ v ∈ P , where x1, x2, y1, y2 ∈ V ∗.

Since ⇒G is a relation, ⇒k
G is the k-fold product of ⇒G for k ≥ 1, ⇒+

G is the transitive
closure of ⇒G, and ⇒∗G is the reflexive and transitive closure of ⇒G. Furthermore, we
extend ⇒k

G to k = 0: x⇒0
G y if and only if x = y. If S ⇒∗G x for some x ∈ V ∗, x is called

a sentential form. If x ∈ T ∗, then x is called a sentence.

Definition 2.3.3. Let G = (N,T, S, P) be a grammar. The language generated by G,
denoted by L(G), is the set of all sentences defined as

L(G) = {w | w ∈ T ∗, S ⇒∗G w}.

Definition 2.3.4. Let G and H be two grammars. If L(G)− {ε} = L(H)− {ε}, then we
consider G and H to be equivalent grammars.

When no confusion exists, we simplify x⇒G y to x⇒ y. If P contains rules u→ v1, u→ v2,
. . . , u→ vn for some n ≥ 1, we use a more condensed notation u→ v1 | v2 | . . . | vn.

For brevity, we often denote u → v with a unique label, r, as r : u → v, and instead of
u → v ∈ P , we simply write r ∈ P . For a rule, r : u → v ∈ P , u and v represent the
left-hand side of r, denoted by lhs(r), and the right-hand side of r, denoted by rhs(r),
respectively. The notion of rule labels is formalized in the following definitions.

Definition 2.3.5. Let G = (N,T, S, P) be a grammar. Let Ψ be a set of symbols called
rule labels such that card(Ψ) = card(P), and ψ be a bijection from P to Ψ.

9

For simplicity and brevity, to express that ψ maps a rule, u → v ∈ P , to r, where r ∈ Ψ,
we write r : u → v ∈ P ; in other words, r : u → v means ψ(u → v) = r. Let P ∗ and Ψ∗

denote the set of all sequences of rules from P and the set of all sequences of rule labels
from Ψ, respectively. Set P+ = P ∗ − {ε} and Ψ+ = Ψ∗ − {ε}. As with strings, we omit all
separating commas in these sequences.

Definition 2.3.6. Let G = (N,T, S, P) be a grammar and Ψ be its set of rule labels. We
extend ψ from P ∗ to Ψ∗ as

(1) ψ(ε) = ε,
(2) ψ(r1r2 . . . rn) = ψ(r1)ψ(r2) . . . ψ(rn),

for any sequence of rules, r1r2 . . . rn, where ri ∈ P , for all 1 ≤ i ≤ n, for some n ≥ 1.

Let w0, w1, . . . , wn be a sequence of strings, where wi ∈ V ∗, for all 0 ≤ i ≤ n, for some
n ≥ 0. If wj−1 ⇒ wj in G according to a rule, rj ∈ P , for 1 ≤ j ≤ n, then we write
w0 ⇒∗ wn [ψ(r1r2 . . . rn)] (w0 ⇒∗ w0 [ε] if n = 0). ψ(r1r2 . . . rn) is called the sequence of
rules (rule labels) used in the derivation of wn, or, more briefly, the parse2 of wn.

For any grammar, G, we automatically assume that V , N , T , S, P , and Ψ denote its total
alphabet, the alphabet of nonterminal symbols, the alphabet of terminal symbols, the start
symbol, the set of rules, and the set of rule labels, respectively. If there exists a danger of
confusion, we mark V , N , T , S, P , Ψ with G as VG, NG, TG, SG, PG, ΨG, respectively,
to clearly relate these components to G (in particular, we make these marks when several
grammars are simultaneously discussed).

Chomsky Hierarchy of Language Families

Noam Chomsky, the founder of the formal language theory, provided an initial classification
of grammars according to the language families they generate, denoted by type 0 through
type 3 [7]. Each grammar type has a different restriction placed on its set of rules.

Definition 2.3.7. A phrase-structure (type 0) grammar is a grammar,

G = (N,T, S, P),

with no additional restriction placed on P .

The family of all languages generated by this type of a grammar is the family of all
recursively-enumerable languages, denoted by RE.

Definition 2.3.8. A context-sensitive (type 1) grammar is a grammar,

G = (N,T, S, P),

2Let us note that the notion of a parse represents a synonym to some other notions, including a derivation
word, a Szilard word, and a control word [57].

10

such that each rule, u→ v ∈ P , satisfies either

u = x1Ax2, v = x1yx2, where x1, x2 ∈ V ∗, A ∈ N , y ∈ V +,

or

u = S, v = ε, and S does not appear on any right-hand side of any rule.

The family of all languages generated by this type of a grammar is the family of all context-
sensitive languages, denoted by CS.

Definition 2.3.9. A context-free (type 2) grammar is a grammar,

G = (N,T, S, P),

such that each rule u→ v ∈ P satisfies u ∈ N .

The family of all languages generated by this type of a grammar is the family of all context-
free languages, denoted by CF.

Definition 2.3.10. A regular (type 3) grammar is a grammar,

G = (N,T, S, P),

such that each rule u→ v ∈ P satisfies u ∈ N and v ∈ T (N ∪ {ε}).

The family of all languages generated by this type of a grammar is the family of all regular
languages, denoted by REG.

For the families of languages generated by regular, context-free, context-sensitive, and
phrase-structure grammars, respectively, the following theorem holds.

Theorem 2.3.1. (See [50, Theorem 8.4.1]) REG ⊂ CF ⊂ CS ⊂ RE.

Thus, each language family of type i is a proper subset of the family of type i− 1.

A Note on the Presence of the Empty String

As outlined in Definition 2.3.4, ε-free grammars are not able to generate the empty string.
To enable an ε-free grammar to generate the empty string, sometimes a single rule of the
form S → ε is allowed (S then cannot appear on the right-hand side of any rule, as in
Definition 2.3.8). Another approach is to state that the generated language is equal up to
the presence of the empty string—this approach is used in this work.

For this reason, we consider two languages to be equal if and only if they differ only in the
presence of the empty string. Inclusions between languages and between language families
are understood in the same manner. However, sometimes the absence of the empty string
is explicitly expressed to emphasize this fact.

11

2.4 Derivation Trees

A derivation tree graphically represents the structure of a derivation in a context-free gram-
mar and suppresses the order in which individual rules are used (in case of context-free
grammars, this piece of information is often irrelevant3). To define derivation trees, we first
review the needed basics of the graph theory (for more information, see [17]).

Definition 2.4.1. Let V be a finite set. A directed graph is a pair, G = (V, ρ), where ρ is
a relation over V .

For brevity, we omit the adjective “directed” and write just graph. Members of V are called
nodes and pairs in ρ are called edges. If e = (a, b) ∈ ρ, then e leaves node a and enters
node b; at this point, a is a direct predecessor of b and b is a direct descendant of a. A
sequence of nodes, a0, a1, . . . , an, where n ≥ 1, forms a walk from a0 to an if (ai−1, ai) ∈ ρ
for all 1 ≤ i ≤ n; if, in addition, a0 = an, then a0, a1, . . . , an is a cycle. If there is no cycle
in G, then G is an acyclic graph.

Definition 2.4.2. Let Q be a nonempty set. An ordered labelled tree is an acyclic graph,
G = (V, ρ), satisfying the following four conditions:

(1) there is exactly one specific node, called the root, which no edge enters,

(2) for each node a ∈ V other than the root, there is exactly one walk from the root to a,

(3) every node is labelled with a member of Q (there is a total function from V to Q),
and

(4) each node a ∈ V has its direct descendants, b1, b2, . . . , bn, ordered from the left to the
right, so b1 is the leftmost descendant of a and bn is the rightmost descendant of a.

As with graphs, for brevity, we omit both adjectives and write just tree. If there is no
danger of confusion, we use nodes and their labels interchangeably. Let G = (V, ρ) be a
tree and a ∈ V a node. If no edges leaves a, then a is a leaf. The frontier of G is the
sequence of G’s leaves ordered from the left to the right.

Definition 2.4.3. Let G = (V, ρ) be a tree. A tree, G′ = (V ′, ρ′), is a subtree of G if it
satisfies these three conditions:

(1) V ′ ⊆ V and V ′ 6= ∅,

(2) ρ′ = (V ′ × V ′) ∩ ρ, and

(3) in G, no node in V − V ′ is a direct descendant of a node in V ′.

Let G = (V, ρ) be a tree, G′ = (V ′, ρ′) be its subtree, and r ∈ V ′ be the root of G
′
. Then

we say that G
′

is rooted at r.

Definition 2.4.4. Let G = (N,T, S, P) be a context-free grammar and S ⇒∗ w be a
derivation of the form S = w1 ⇒ w2 ⇒ . . .⇒ wn = w, where wi ∈ V ∗, for all 1 ≤ i ≤ n, for
some n ≥ 1. A derivation tree corresponding to this derivation is denoted by ∆(S ⇒∗ w)
and defined as a tree with the following properties:

3One notable exception is syntactical analysis [54].

12

(1) nodes of the derivation tree are labelled with members of V ∪ {ε},

(2) the root of the derivation tree is labelled by S,

(3) for a direct derivation wi−1 ⇒ wi, for all 1 ≤ i ≤ n, where

• wi−1 = xAz, x, z ∈ V ∗, A ∈ N ,

• wi = xyz, and

• A→ y ∈ P , where y = Y1Y2 . . . Yk, Yj ∈ N , for all 1 ≤ j ≤ k, for some k ≥ 0 (if
k = 0, then y = ε),

if y 6= ε, then there are exactly k edges, (A, Yj), 1 ≤ j ≤ k, leaving A, which are
ordered from the left to the right in order (A, Y1), (A, Y2), . . . , (A, Yk). If y = ε, then
there is only one edge leaving A, (A, ε).

A derivation subtree whose frontier is ε is called an ε-subtree. A derivation subtree whose
frontier is different from ε is called a +-subtree.

Example 2.4.1. Let G = (N,T, S, P) be a context-free grammar, where N = {S,A,B,C},
T = {a, b, c, d} and P consists of the following rules:

S → ABC,

A→ a | ε,

B → BbAc | CC,

C → Cd | d | ε.

Let S ⇒ ABC ⇒ ABbAcC ⇒ ABbcC ⇒ ACCbcC ⇒ ACbcC ⇒ AbcC be a derivation in
G. The corresponding derivation tree for this derivation is pictured in Figure 2.1.

S

A B

B

C

ε

C

ε

b A

ε

c

C

Figure 2.1: Graphical Representation of the Derivation From Example 2.4.1.

∆(A ⇒ ε) and ∆(B ⇒ CC ⇒ C ⇒ ε) are two examples of ε-subtrees. ∆(B ⇒ BbAc ⇒
Bbc⇒ CCbc⇒ Cbc⇒ bc) is an example of a +-subtree.

13

To simplify a definition in Section 5.1.1 and to make proofs in Sections 4.2 and 5.2 more
readable, we formally introduce the following notation. This notation is then referenced
from every place where it is used.

Notation 2.4.1. Let G = (N,T, S, P) be a context-free grammar. Let S ⇒∗ w in G be of
the form S ⇒∗ x0X1x1X2x2 . . . Xnxn ⇒∗ w, where xi ∈ N∗, Xj ∈ V ∗, and w ∈ T ∗, for all
0 ≤ i ≤ n, 1 ≤ j ≤ n, for some n ≥ 0. We write S ⇒∗ εx0X1

εx1X2
εx2 . . . Xn

εxn ⇒∗ w to
express that

(1) either xi = ε or the |xi| subtrees in ∆(S ⇒∗ w) rooted at the symbols in xi are all
ε-subtrees (informally, it means that xi is erased in the rest of the derivation),

(2) either Xj ∈ T or Xj ∈ N and there is a +-subtree rooted at Xj in ∆(S ⇒∗ w)
(informally, it means that Xj is not erased in the rest of the derivation),

for all 0 ≤ i ≤ n, 1 ≤ j ≤ n.

This notation in also used in rules, where it has the same meaning. For example, a rule of the
form A→ εxBεy, where x, y ∈ V ∗ andB ∈ N , indicates that x and y are erased in the rest of
the derivation andB is not erased. If we omit w from S ⇒∗ εx0X1

εx1X2
εx2 . . . Xn

εxn ⇒∗ w,
as in S ⇒∗ εx0X1

εx1X2
εx2 . . . Xn

εxn, we automatically assume that there is one (we care
only about the information which symbols are erased and which are not erased in the rest
of the derivation).

14

Chapter 3

Regulated Grammars

The main idea behind regulated rewriting is to pick a simple model, which is not powerful
enough (in terms of generative power), and somehow regulate the derivation process to
increase its power. For this reason, regulated grammars are also known as “grammars with
controlled derivations” [67]. Regulated grammars presented in this chapter use context-
free grammars as the underlying model, but there also have been studies of other types of
underlying models, see [19, 35, 74] and [11, Chapter 8].

This chapter defines different types of regulated grammars, including their modifications
and their generative power. Since there are many regulated grammars, only those that are
of our special interest are defined or mentioned (for other regulated grammars, refer to [11],
[44], [67], or [69, Chapter 5]). Definitions of these grammars are roughly based on [44] and
[67] and are defined in a unified way as context-free grammars with additional regulations.
Bibliographical and historical remarks are mostly adopted from [67] and [69, Chapter 5].

Note: Majority of regulated grammars discussed in this chapter were introduced by their
respective authors in special forms (for example, a programmed grammar, as it was orig-
inally introduced in [64], required that a rule is applied to the leftmost occurrence of its
left-hand side). However, all models have been eventually studied in more general forms,
like with the possibility of rewriting any occurrence of a nonterminal in a sentential form,
with the presence of erasing rules, and with appearance checking (discussed later in this
chapter). For brevity, regulated grammars in this chapter are presented in their most gen-
eral forms and special cases are derived from these general definitions (except for regularly
controlled grammars, where, to introduce and illustrate new concepts, we go in the opposite
direction).

3.1 Regularly Controlled Grammar

First type of regulation is based on the prescription of a set of allowed sequences of rules.
A generated sentence, x, belongs to the generated language only if there is a derivation of
x matching a sequence from this set. In other words, we restrict the order in which rules
can be applied. Note that in context-free grammars, there is no restriction on the order of
rules. Every rule that is applicable can be applied. The idea of this type of regulation was
introduced by Ginsburg and Spanier in [25].

15

Definition 3.1.1. A regularly controlled (context-free) grammar, see [44], is a pair,

H = (G,Ξ),

where

• G = (N,T, S, P) is a context-free grammar, called core grammar, and

• Ξ ⊆ Ψ∗ is a regular language, called control language.

The language generated by H, denoted by L(H), is defined as

L(H) = {w | w ∈ T ∗, S ⇒∗ w [α] with α ∈ Ξ}.

In other words, L(H) consists of all strings w ∈ T ∗ such that there is a derivation,

S ⇒ w1 [r1]⇒ w2 [r2]⇒ . . .⇒ wn [rn],

with

w = wn and r1r2 . . . rn ∈ Ξ, for some n ≥ 1.

Note that if Ξ = Ψ∗, then there is no regulation, and thus L(H) = L(G) in this case.

Example 3.1.1. LetH = (G,Ξ) be a regularly controlled grammar, whereG = (N,T, S, P)
is a context-free grammar with N = {S,A,B,C}, T = {a, b, c}, P consists of the following
rules:

r1 : S → ABC, r2 : A→ aA,

r3 : B → bB,

r4 : C → cC,

r5 : A→ ε,

r6 : B → ε,

r7 : C → ε,

and Ξ = {r1}{r2r3r4}∗{r5r6r7}.

First, r1 has to be applied. Then, r2, r3, and r4 can be sequentially applied any number
of times. The derivation is finished by applying r5, r6, and r7. As a result, this grammar
generates the language L(H) = {anbncn | n ≥ 0}, which is not context-free [50, Example
6.1.2].

For example, the sentence aabbcc is obtained by the following derivation:

S ⇒ ABC [r1]⇒ aABC [r2]⇒ aAbBC [r3]⇒ aAbBcC [r4]⇒ aaAbBcC [r2]⇒
aaAbbBcC [r3]⇒ aaAbbBccC [r4]⇒ aabbBccC [r5]⇒ aabbccC [r6]⇒ aabbcc [r7].

Now, let H = (G,Ξ) be an arbitrary regularly controlled grammar and assume that we
want to apply some sequence of rules, s1s2 . . . sn ∈ Ξ, for some n ≥ 1, and we have
successfully applied rules s1s2 . . . sk for some k < n. What happens when there is no
rewritable nonterminal in the current sentential form, i.e. sk+1 : D → y, but there is no
D in the sentential form? The derivation is blocked. And, according to the definition of
a regularly controlled grammar, there is nothing we can do. We are forced to use the rule
sk+1 independently of the symbols appearing in the sentential form. This brings us to the
idea of appearance checking.

16

Definition 3.1.2. A regularly controlled grammar with appearance checking, see [44], is a
triplet,

H = (G,Ξ, F),

where

• G and Ξ are defined as in a regularly controlled grammar and

• F ⊆ Ψ is the appearance checking set.

We say that x ∈ V + directly derives y ∈ V ∗ in appearance checking mode by application of
r : A→ w ∈ P , written as x⇒ac y [r], if one of the following conditions hold:

x = x1Ax2 and y = x1wx2

or

A /∈ alph(x), i.e. A does not appear in x, r ∈ F , and x = y.

Let ⇒∗ac be the reflexive and transitive closure of ⇒ac. The language generated by H,
denoted by L(H), is defined as

L(H) = {w | w ∈ T ∗, S ⇒∗ac w [α] with α ∈ Ξ}.

So, the only difference between a regularly controlled grammar with and without appearance
checking is the derivation mode (⇒ versus ⇒ac). Note that when F = ∅, these two modes
coincides, so a regularly controlled grammar (without appearance checking) is a special case
of a regularly controlled grammar with appearance checking.

Example 3.1.2. (From [67]) Let H = (G,Ξ, F) be a regularly controlled grammar with ap-
pearance checking, where G = (N,T, S, P) is a context-free grammar with N = {S,A,X},
T = {a}, P consists of the following rules:

r1 : S → AA,

r2 : S → X,

r3 : A→ S,

r4 : A→ X,

r5 : S → a,

Ξ = ({r1}∗{r2}{r3}∗{r4})∗{r5}∗, and F = {r2, r4}.

Assume that we have the sentential form S2m for some m ≥ 0, obtained by using a sequence
from ({r1}∗{r2}{r3}∗{r4})∗. This holds for the start nonterminal (m = 0). Now, we can
either repeat this sequence or finish the derivation by using r5 until we have a2m . In the
former case, we might apply r1 any number of times. However, if we apply it only k many
times, where k < m, then we have to use r2, which blocks the derivation (there is no rule
with X on its left hand side). This rule guarantees that every S is eventually rewritten to
AA. Since r2 ∈ F , after there are no S symbols in the sentential form, we can skip it (it

17

is not applicable), so we get S2m ⇒∗ac (AA)2m = A2m+1
. Then, by the same reasoning, we

have to rewrite each A to S, so we get A2m+1 ⇒∗ac S2m+1
, which is of the same form as the

sentential form we started with. Therefore, this grammar generates the non-context-free
language L(H) = {a2n | n ≥ 0} [67, Example 2.1].

For example, the sentence aaaa is obtained by the following derivation:

S ⇒ac AA [r1]⇒ac AS [r3]⇒ac SS [r3]⇒ac AAS [r1]⇒ac AAAA [r1]⇒ac

AASA [r3]⇒ac AASS [r3]⇒ac SASS [r3]⇒ac SSSS [r3]⇒ac SSSa [r5]⇒ac

aSSa [r5]⇒ac aaSa [r5]⇒ac aaaa [r5].

We can disallow erasing rules in the underlying core grammar. This is formalized in the
following definition.

Definition 3.1.3. Let H = (G,Ξ) (H = (G,Ξ, F)) be a regularly controlled grammar
(with appearance checking). If G is ε-free, then H is said to be an ε-free regularly controlled
grammar (with appearance checking).

By rCε
ac, rCac, rCε, and rC, we denote the families of all languages generated by regu-

larly controlled grammars with appearance checking, ε-free regularly controlled grammars
with appearance checking, regularly controlled grammars, and ε-free regularly controlled
grammars, respectively.

Theorem 3.1.1. (See [44, Theorem 1])

(1) CF ⊂ rC ⊂ rCac ⊂ CS

(2) CF ⊂ rC ⊆ rCε ⊂ rCε
ac = RE.

These relations are pictured in Figure 3.1. If two families are connected by a dashed arrow
(solid arrow), then the upper family includes (includes properly) the lower family; if two
families are not connected then they are not necessarily incomparable.

RE

CS

CF

rCε
ac

rCac

rCε

rC

=

Figure 3.1: Graphical Representation of Theorem 3.1.1.

18

3.2 Matrix Grammar

Instead of complete sequences of rules (in the sense that each sequence of rules either lead
to a sentence or not), which forms the type of regulation in regularly controlled grammars,
we can consider shorter sequences. First, we can choose any sequence we want. However,
after we pick some sequence, we have to apply every rule from it in the prescribed order
(up to the application of appearance checking). Then we choose again and continue until
we obtain a sentence and finish applying all rules from the last sequence we chose. Matrix
grammars were introduced by Abraham in [1].

Contrary to the definition of a regularly controlled grammar, for brevity, in the following
definition of a matrix grammar, we consider matrix grammars with appearance checking
and define matrix grammars as matrix grammars without appearance checking.

Definition 3.2.1. A matrix grammar with appearance checking, see [44], is a triplet,

H = (G,M,F),

where

• G = (N,T, S, P) is a context-free grammar, called core grammar,

• M ⊆ Ψ∗ is a finite language, whose elements are called matrices, and

• F ⊆ Ψ is the appearance checking set.

For m = m1m2 . . .mn ∈M , for some n ≥ 1, and x, y ∈ V ∗, we define x m⇒H y as

x = x0 ⇒ac x1 [m1]⇒ac x2 [m2]⇒ac . . .⇒ac xn = y [mn],

where xi ∈ V ∗, for all 1 ≤ i ≤ n, and the application of rules in the appearance checking
mode is defined as in Definition 3.1.2.

The language generated by H, denoted by L(H), is defined as the set of all strings w ∈ T ∗
such that there is a derivation

S m1⇒H w1 m2⇒H w2 m3⇒H . . . mn⇒H wn = w,

where mi ∈M , wi ∈ V ∗, for all 1 ≤ i ≤ n, for some n ≥ 1.

Note that if M = Ψ, then there is no regulation, and thus L(H) = L(G) in this case.

Definition 3.2.2. Let H = (G,M,F) be a matrix grammar with appearance checking. We
say that H is a matrix grammar without appearance checking (abbreviated matrix grammar)
if and only if F = ∅.

Example 3.2.1. (From [44]) Let H = (G,M, ∅) be a matrix grammar (without appearance
checking), where G = (N,T, S, P) is a context-free grammar with N = {S,A,B}, T =
{a, b}, P consists of the following rules:

19

r1 : S → AB,

r2 : A→ aA,

r3 : B → aB,

r4 : A→ bA,

r5 : B → bB,

r6 : A→ a,

r7 : B → a,

r8 : A→ b,

r9 : B → b,

and M = {r1, r2r3, r4r5, r6r7, r8r9}.

We start with the only applicable rule, r1, from matrix r1 and we get AB. Now, we can
either

• terminate the derivation using the matrix r6r7 and obtain aa, or

• terminate the derivation using the matrix r8r9 and obtain bb, or

• rewrite AB to aAaB by using the matrix r2r3, or

• rewrite AB to bAbB by using the matrix r4r5.

If the derivation is not terminated, we can continue by the same reasoning. Clearly, this
grammar generates the language L(H) = {ww | w ∈ {a, b}+}, which is not context-free [50,
Example 6.2.3]. For example, the sentence aabaab is obtained by the following derivation:

S r1⇒H AB r2r3⇒H aAaB r2r3⇒H aaAaaB r8r9⇒H aabaab.

As with regularly controlled grammars, we can disallow erasing rules in the underlying core
grammar.

Definition 3.2.3. Let H = (G,M,F) be a matrix grammar (with appearance checking).
If G is ε-free, then H is said to be an ε-free matrix grammar (with appearance checking).

The families of all languages generated by matrix grammars with appearance checking,
ε-free matrix grammars with appearance checking, matrix grammars, and ε-free matrix
grammars, respectively, are denoted by Mε

ac, Mac, Mε, and M, respectively. There is an
interesting relation between matrix grammars and regularly controlled grammars.

Theorem 3.2.1. (See [44, Theorem 2])

(1) Mε
ac = rCε

ac

(2) Mac = rCac

(3) Mε = rCε

(4) M = rC

So, the relations among families of languages generated by matrix grammars are the same
as among languages generated by regularly controlled grammars. They are pictured in
Figure 3.2, which, due to Theorem 3.2.1, corresponds to Figure 3.1. Again, if two families
are connected by a dashed arrow (solid arrow), then the upper family includes (includes
properly) the lower family; if two families are not connected then they are not necessarily
incomparable.

20

RE

CS

CF

Mε
ac

Mac

Mε

M

=

Figure 3.2: Relations Among Families of Languages Generated by Matrix Grammars.

3.3 Programmed Grammar

In preceding sections the allowed derivations were given in the form of prescribed sequences
of rules. We now give a grammar, called programmed grammar, which differs from the
preceding ones in the way it is regulated—the derivation is accompanied by computation
which selects the allowed derivations. Informally, every context-free rule, r, has assigned
two sets of rules. If r is applied successfully, then in the next step, a rule from the first set
has to be applied. On the other hand, if r is not applicable, a rule from the second set has
to be applied. Programmed grammars were introduced by Rosenkrantz in [64].

Definition 3.3.1. A programmed grammar with appearance checking, see [44], is a triplet,

H = (G, σ, ϕ),

where

• G = (N,T, S, P) is a context-free grammar, called core grammar,

• σ : Ψ→ 2Ψ is a total function, called success field, and

• ϕ : Ψ→ 2Ψ is a total function, called failure field.

For a nonterminal, A ∈ N , and a string, w ∈ V ∗, we write A⇒+
H w if

A = w0 ⇒ w1 [r1]⇒ w2 [r2]⇒ . . .⇒ wn = w [rn] in G,

for some n ≥ 1, where for each ri : Ai → vi ∈ P , vi ∈ V ∗, for all 1 ≤ i ≤ n, one of the
following hold:

wi−1 = xi−1Aiyi−1, wi = xi−1viyi−1,
for some xi−1, yi−1 ∈ V ∗ and if i < n, then ri+1 ∈ σ(ri),

21

or

Ai /∈ alph(wi), wi−1 = wi, and if i < n, then ri+1 ∈ ϕ(ri).

The language generated by H, denoted by L(H), is then defined as L(H) = {w | w ∈
T ∗, S ⇒+

H w}.

Note that if for each r ∈ Ψ, σ(r) = Ψ, then there is no regulation and L(G) = L(H) in this
case.

Definition 3.3.2. Let H = (G, σ, ϕ) be a programmed grammar with appearance checking.
If for each r ∈ Ψ, ϕ(r) = ∅, then we say thatH is a programmed grammar without appearance
checking (abbreviated programmed grammar).

Definition 3.3.3. Let H = (G, σ, ϕ) be a programmed grammar (with appearance check-
ing). If G is ε-free, then H is said to be an ε-free programmed grammar (with appearance
checking).

Let H = (G, σ, ϕ) be a programmed grammar (with appearance checking), where G =
(N,T, S, P). For brevity, for a rule r : A→ v ∈ P , v ∈ V ∗, we write br : A→ v, σ(r), ϕ(r)c ∈
P .

Example 3.3.1. (From [11]) Consider the programmed grammar, H = (G, σ, ϕ), with
G = ({S,A}, {a}, S, P), where P consists of the rules:

br1 : S → AA, {r1}, {r2, r3}c,

br2 : A→ S, {r2}, {r1}c,

br3 : A→ a, {r3}, ∅c.

Since σ(ri) = {ri}, for each i ∈ {1, 2, 3}, the rules r1, r2, and r3 have to be used as many
times as possible. Therefore, starting from Sn for some n ≥ 1, we have to pass to A2n and
then, using r2, to S2n, or using r3, to a2n. Each such cycle consisting of the use of r1 and
r2 doubles the number of symbols. In conclusion, we obtain the non-context-free language
L(H) = {a2n | n ≥ 1} [11, Example 1.1.5]. Notice the similarity between H from this
example and H from Example 3.1.2.

For example, the sentence aaaa is obtained by the following derivation:

S ⇒ AA [r1]⇒ AS [r2]⇒ SS [r2]⇒ AAS [r1]⇒ AAAA [r1]⇒ AASA [r2]⇒
AASS [r2]⇒ SASS [r2]⇒ SSSS [r2]⇒ SSSa [r3]⇒ aSSa [r3]⇒ aaSa [r3]⇒ aaaa [r3].

The families of all languages generated by programmed grammars with appearance check-
ing, ε-free programmed grammars with appearance checking, programmed grammars, and
ε-free programmed grammars, respectively, are denoted by Pε

ac, Pac, Pε, and P, respec-
tively. Programmed grammars are related to matrix grammars as matrix grammars are
related to regularly controlled grammars.

22

Theorem 3.3.1. (See [44, Theorem 5])

(1) Pε
ac = Mε

ac

(2) Pac = Mac

(3) Pε = Mε

(4) P = M

So, the relations among families of languages generated programmed grammars are the
same as among languages generated by matrix grammars and regularly controlled grammars
(follows from Theorem 3.2.1 and from Theorem 3.3.1). They are pictured in Figure 3.3.
Again, if two families are connected by a dashed arrow (solid arrow), then the upper family
includes (includes properly) the lower family; if two families are not connected then they
are not necessarily incomparable.

RE

CS

CF

Pε
ac

Pac

Pε

P

=

Figure 3.3: Relations Among Families of Languages Generated by Programmed Grammars.

3.4 Random Context Grammar

Up to now, we considered only regulation by prescribed or computed sequences of rules.
The next possible type of regulation is based on sentential forms. With any rule, we
associate some restrictions for sentential forms which have to be satisfied to apply that
rule. More specifically, in the following type of a regulated grammar, we associate two sets
of nonterminals with each rule. A rule can be applied only if the current sentential form
contain some nonterminal from the first set and no nonterminal from the second set. This
type of a regulated grammar is called a random context grammar and was introduced by
van der Walt in [72].

Definition 3.4.1. A random context grammar with appearance checking, see [67], is a
triplet,

H = (G,Per, For),

23

where

• G = (N,T, S, P) is a context-free grammar, called core grammar,

• Per : Ψ→ 2N is a total function, called permitting context, and

• For : Ψ→ 2N is a total function, called forbidding context.

The language generated by H, denoted by L(H), is defined as the set of all strings w ∈ T ∗
such that there is a derivation

S = w0 ⇒ w1 [r1]⇒ w2 [r2]⇒ . . .⇒ wn = w [rn],

for some n ≥ 1, where for each wi ∈ V ∗ and ri ∈ Ψ, for all 1 ≤ i ≤ n, the following two
conditions hold:

Per(ri) ⊆ alph(wi−1)

and

For(ri) ∩ alph(wi−1) = ∅.

Note that if for each r ∈ Ψ, Per(r) = ∅ (or Per(r) = {lhs(r)}) and For(r) = ∅, then there
is no regulation and L(G) = L(H) in this case.

Definition 3.4.2. Let H = (G,Per, For) be a random context grammar with appearance
checking. If for each r ∈ Ψ, For(r) = ∅, then we say that H is a random context grammar
without appearance checking (abbreviated random context grammar or permitting random
context grammar).

Definition 3.4.3. Let H = (G,Per, For) be a random context grammar (with appearance
checking). If G is ε-free, then H is said to be an ε-free random context grammar (with
appearance checking).

Let H = (G,Per, For), be a random context grammar (with appearance checking), where
G = (N,T, S, P). For brevity, for a rule, r : A → v ∈ P , v ∈ V ∗, we write br : A →
v, Per(r), For(r)c ∈ P .

Example 3.4.1. (From [58]) Consider the random context grammar H = (G,Per, For)
with G = ({S,A,B,C,A′, B′, C ′}, {a, b, c}, S, P), where P consists of the rules:

br0 : S → ABC, ∅, ∅}c,

br1 : A→ aA′, {B}, ∅}c,

br2 : B → bB′, {C}, ∅}c,

br3 : C → cC ′, {A′}, ∅}c,

br4 : A′ → A, {B′}, ∅}c,

br5 : B′ → B, {C ′}, ∅}c,

br6 : C ′ → C, {A}, ∅}c,

br7 : A→ a, {B}, ∅}c,

br8 : B → b, {C}, ∅}c,

br9 : C → c, ∅, ∅}c.

24

Since only r0 has S on its left-hand side, r0 has to be applied first. Then, we can either
use r7, r8, and r9 to finish the derivation, thus obtaining abc, or continue with r1, r2, and
r3. In either case, these rules have to be applied in this specific order (for example, if we
apply r9 before r8, we are not be able to finish the derivation, because r8 can be applied
only if there is some C in the sentential form). Rules r5, r6, and r7 are used to rewrite
primed nonterminals to their respective non-primed versions. In conclusion, we obtain the
non-context-free language L(H) = {anbncn | n ≥ 1} [58, Example 1].

Consider the sentence aabbcc. H generates this sentence in the following way:

S ⇒ ABC [r0]⇒ aA′BC [r1]⇒ aA′bB′C [r2]⇒ aA′bB′cC ′ [r3]⇒ aAbB′cC ′ [r4]⇒
aAbBcC ′ [r5] ⇒ aAbBcC [r6]⇒ aabBcC [r7]⇒ aabbcC [r8]⇒ aabbcc [r9].

The families of all languages generated by random context grammars with appearance
checking, ε-free random context grammars with appearance checking, random context gram-
mars, and ε-free random context grammars, respectively, are denoted by RCε

ac, RCac, RCε,
and RC, respectively1.

Theorem 3.4.1. (See [67, Theorem 2.7])

(1) CF ⊂ RC ⊂ RCac ⊂ CS

(2) CF ⊂ RC ⊆ RCε ⊂ RCε
ac = RE

Also, four relations to the families of languages generated by matrix grammars (and thus
also to the families of languages generated by regularly controlled grammars and pro-
grammed grammars, see Theorem 3.2.1 and Theorem 3.3.1) were established.

Theorem 3.4.2. (See [67, Theorem 2.7])

(1) RCε
ac = Mε

ac

(2) RCac = Mac

(3) RC ⊆ M

(4) RCε ⊆ Mε

Relations among language families generated by random context grammars and matrix
grammars are pictured in Figure 3.4. If two families are connected by a dashed arrow (solid
arrow), then the upper family includes (includes properly) the lower family; if two families
are not connected then they are not necessarily incomparable.

3.5 Scattered Context Grammar

Up to now, only a single rule was applied during a derivation step. A natural approach is
to allow more than one rule to be applied in a single step. However, compared to formal

1Notice that the families of languages generated by regularly controlled grammars are denoted by rC
(contrary to RC), which is a usual denotation in the literature [11, 44, 67].

25

RE

CS

CF

RCε
ac

RCac

RCε

RC

Mε
ac

Mac

Mε

M

==

=

Figure 3.4: Relations Among Families of Languages Generated by Random Context Gram-
mars and Matrix Grammars.

models with full parallelism (like L systems [65]), we obtain only partial parallelism (not
all symbols are rewritten, especially not terminals).

The following type of a regulated grammar, called scattered context grammar, introduces
compound rules of the form (A1 → w1, A2 → w2, . . . , An → wn), where all Ai → wi
are context-free rules, for some n ≥ 1. This compound rule can be applied only if the
current sentential form is of the form x0A1x1A2x2 . . . xn−1Anxn . . . , where every xj is an
arbitrary string. In a single derivation step, every Ai is rewritten wi. As the name suggests,
the context is scattered, rather than being completely random (as in a random context
grammar). Also note that since all xj are arbitrary strings, their length is not limited and
they can contain any symbol (for example, x0 can contain A1). The only thing that matters
is the context—every Ak has to appear before every Ak+1. Finally, the difference between
matrix grammars and scattered context-grammars is that in matrix grammars, all rules in a
sequence are applied sequentially, rather than in parallel, and there is no directly prescribed
context between occurrences of nonterminals in consecutive applications of rules. Scattered
context grammars were introduced by Greibach and Hopcroft in [26].

Definition 3.5.1. A scattered context grammar, see [67], is a pair,

H = (G,R),

where

• G = (N,T, S, P) is a context-free grammar, called core grammar, and

• R ⊆ P ∗ is a finite language.

For x, y ∈ V ∗, we say that x directly derives y in H according to a compound rule, r ∈ R,
written as x⇒H y [r] (or, more briefly, x⇒H y), if and only if all of the following conditions
are satisfied:

26

(1) x = x0A1x1A2x2 . . . Anxn, where xi ∈ V ∗, Aj ∈ N , for all 0 ≤ i ≤ n, 1 ≤ j ≤ n, for
some n ≥ 1,

(2) y = x0w1x1w2x2 . . . wnxn, where wi ∈ V ∗, for all 1 ≤ i ≤ n,

(3) r = (A1 → w1, A2 → w2, . . . , An → wn) ∈ R.

Let ⇒∗H be the reflexive and transitive closure of ⇒H . The language generated by H,
denoted by L(H), is defined as L(H) = {w | w ∈ T ∗, S ⇒∗H w}.

Note that if R = P , then there is no regulation and L(G) = L(H) in this case. Also note
that there is no appearance checking in scattered context grammars.

Definition 3.5.2. Let H = (G,R) be a scattered context grammar. If G is ε-free, then H
is said to be an ε-free scattered context grammar2.

Example 3.5.1. (Modified example from [57]) Consider the non-context-free language
L = {anbncn | n ≥ 0}. This language can be generated by the scattered context grammar
H = (G,R), where G = ({S,A}, {a, b, c}, S, P) is a context-free grammar with P containing
the following rules:

S → AAA,

A→ aA | bA | cA | ε,

and R contains the following three sequences:

(S → AAA),

(A→ aA,A→ bA,A→ cA),

(A→ ε,A→ ε,A→ ε).

Clearly, the first sequence (containing only one rule) is the only applicable sequence to the
start nonterminal. After three As are generated, the second and third sequence can be used
to obtain any string of the form anbncn, for some n ≥ 0. For example, the sentence aabbcc
can be generated by the following derivation:

S ⇒H AAA⇒H aAbAcA⇒H aaAbbAccA⇒H aabbcc.

The families of all languages generated by scattered context grammars and ε-free scattered
context grammars, respectively, are denoted by SCε and SC, respectively.

Theorem 3.5.1. (See [67, Theorem 2.12]) CF ⊂ SC ⊆ CS ⊂ SCε = RE

These relations are pictured in Figure 3.5. If two families are connected by a dashed arrow
(solid arrow), then the upper family includes (includes properly) the lower family.

2Let us note that sometimes the term propagating is used instead of ε-free [49, 55, 56, 57].

27

RE

CS

CF

SCε

SC

=

Figure 3.5: Graphical Representation of Theorem 3.5.1.

3.6 Other Types of Regulation

Previous sections covered some classical types of regulation. They also covered grammars
that are discussed in Chapter 5 in further detail. However, there are many more types of
regulation, so this section briefly mentions some of them. Since these grammars are not of
our main interest, only informal description is given. Results regarding the possibility of
erasing rules elimination from these grammars are also mentioned.

Tree and Path Controlled Grammars

Instead of requiring for the parse of a sentence to be in a control language (like in a regularly
controlled grammar), we can control derivations by putting restrictions on derivation trees.
The following two restrictions belong among the studied ways of derivation control regarding
derivation trees.

(1) (Horizontal control) For a sentence, x, we require that there is a derivation of x and
the corresponding derivation tree such that each string obtained by concatenating
all symbols at any level (except the last one) from the left to the right is in the
control language. Informally, a level in a derivation tree is a sequence of nodes that
have the same distance from the root of the derivation tree. For example, there five
levels in the derivation tree in Example 2.4.1 (one of them is B, b, A, c)3. Regulated
grammars using this type of a restriction are called tree controlled grammars and were
introduced by Culik and Maurer in [30].

(2) (Vertical control) For a sentence, x, we require that there is a derivation of x and the
corresponding derivation tree such that there is a path (or more paths [37]) which,
when we concatenate all symbols in this path, is in a control language. Informally, a
path in a derivation tree is a sequence of nodes that begins in the root of the derivation
tree and ends in a leaf marked with a terminal symbol. For example, there are two
paths in the derivation tree in Example 2.4.1 (S, B, b and S, B, c). Regulated
grammars using this type of a restriction are called path controlled grammars and
were introduced by Marcus, Mart́ın-Vide, Mitrana, and Păun in [42].

3Note that this derivation tree does not correspond to a sentence, but to a string, since its frontier
contains nonterminal symbols.

28

It was proved that tree controlled grammars with erasing rules are more powerful than
tree controlled grammars without them [11, Theorem 2.3.3]. However, the impact of the
presence of erasing rules in path controlled grammars has not been studied by knowledge
(in [42] and [43], core grammars of path controlled grammars are ε-free).

Ordered Grammar

Rather than prescribing sequences of rules (like in regularly controlled grammars or matrix
grammars), one may consider to impose priorities on the set of rules so we can say whether
one rule has greater, lower, or the same priority as some other rule. Then, when deciding
which rules are applicable to some sentential form, these priorities are taken into account.
A rule, r : A → x, is applicable only if there is some A in the current sentential form and
there is no other rule, s : B → y, where B is also in the sentential form and s has a higher
priority than r. According to this observation, we can order rules using these priorities and
base the applicability on this ordering. Strictly speaking, we impose a partial order 4 on
the set of rules, and we can apply a rule r only if there is no other applicable rule s such
that r 6= s and r 4 s.

Regulated grammars using this type of regulation are called ordered grammars and were
introduced by Frǐs in [24]. It is not known whether we can eliminate erasing rules from
these grammar without affecting the generated language [44, Theorem 9].

Indian and Russian Parallel Grammars

In scattered context grammars, we have compound rules of the form (A1 → w1, A2 →
w2, . . . , An → wn), for some n ≥ 1, where every Ai → wi, for all 1 ≤ i ≤ n, is an ordinary
context-free rule. In a single derivation step, we rewrite A1 to w1, A2 to w2, and so on,
where every Ai+1 has to appear on the right from Ai, for all 1 ≤ i < n, and all nonterminals
A1, A2, . . . , An are rewritten at once.

Another semi-parallel approach is to take a single context-free rule, A → w, and rewrite
all occurrences of A in the sentential form to w in a single step. A grammar using this
type of regulation is called an Indian parallel grammar and was introduced by Siromoney
and Krithivasan in [71]. If we split the set of rules, P , into two disjoint sets, P1, P2 ⊆ P ,
and require that all rules from P1 have to be applied in a standard context-free way and
all rules from P2 have to be applied as in an Indian parallel grammar, we obtain a Russian
parallel grammar, introduced by Levitina in [40].

Regarding erasing rules, we are able to convert any Indian parallel with erasing rules to
an equivalent Indian parallel grammar without erasing rules [67, Theorem 2.9]. However,
it is not known whether we can always remove all erasing rules from any Russian parallel
grammar without affecting the generated language [11, Open Problem 2.4.2].

Indexed Grammar

Yet another way of derivation control is to have an additional set—the set of indices—
where each index is a set of context-free rules. Then, every occurrence of a nonterminal in a
sentential form is followed by a sequence of indices (in certain sense, this sequence describes

29

the history of the nonterminal), and an index can only be erased by rules contained in the
index (where the erasing is done in the reversed order of the appearance) [67]. For example,
if the current sentential form is aaBgfcc, where a, b, c are terminals, B is a nonterminal,
and f = {B → b}, g = {B → bB} are two indices, then we can erase the index g by
an application of a rule from g (in this case, there is only one), thus obtaining aabBfcc.
Then, we erase f in the same manner (again, in this case, there is only one rule in f), thus
obtaining the sentence aabbcc.

An indexed grammar was introduced by Aho in [2] and it was proved that the family of
all languages generated by indexed grammars with erasing rules coincides the family of all
languages generated by indexed grammars without erasing rules [67, Theorem 2.9].

Petri Net Controlled Grammar

Consider regularly controlled grammars. Instead of a regular grammar, we can consider
other types of formalisms to control the derivation process. One of such formalisms is a
Petri net [63]. A Petri net is a modeling language for the description of distributed (parallel)
systems. Visually, Petri nets are represented by a bipartite graph, which is a graph where
the set of nodes, V , can can be divided into two disjoint sets, V1 and V2, such that every
edge connects either a vertex in V1 to one in V2 or vice versa. Basically, a Petri net consists
of places (first type of nodes, drawn as circles), transitions (second type of nodes, drawn as
boxes), directed arcs (edges, drawn as arrows from places to transitions and from transitions
to places), and tokens (drawn as small solid dots inside places). The behaviour of a Petri
net is defined in terms of transition of tokens between places. Figure 3.6 shows an example
of a Petri net (there are four places, A,B,C,D, three transitions, T1, T2, T3, and three
tokens).

A •

B ••

C

D

T2

T3

T1

Figure 3.6: An Example of a Petri Net.

Essentially, a Petri net controlled grammar is a context-free grammar equipped with a Petri
net and a function which maps transitions of the net to rules of the grammar [16]. Petri
net controlled grammars have been intensively studied in the last three years [12, 13, 14,
15, 16, 76, 77]. One of the results concerns the presence of erasing rules in these grammar:
it was proved that Petri net controlled grammars with and without erasing rules generate
the same family of languages [76, Theorem 3].

30

Chapter 4

Removal of Erasing Rules from
Context-Free Grammars

It is very well known that one can remove all erasing rules from any context-free grammar
by converting such grammar into an equivalent ε-free context-free grammar, thus without
affecting the generated language [50, Theorem 5.1.3.2.4]. From Chapter 3 it is clear that
many regulated grammars are based on context-free grammars (in the sense that they use
context-free rules), but they regulate the application of these rules. So, it is desirable to
know algorithms that can be used to remove erasing rules from context-free grammars and
try to apply them to regulated grammars. To this end, this chapter presents two algorithms
for the purpose of elimination of erasing rules from context-free grammars: a standard one
(used in textbooks), described in Section 4.1, and a new one, presented in Section 4.2.

4.1 Standard Algorithm

The standard algorithm is based on a predetermination of so-called ε-nonterminals. These
are nonterminals from which the empty string can be derived.

Definition 4.1.1. Let G = (N,T, S, P) be a context-free grammar. A nonterminal, A ∈ N ,
is said to be an ε-nonterminal if and only if A⇒∗ ε in G.

The following algorithm determines the set of all ε-nonterminals in a given context-free
grammar.

Algorithm 4.1.1. (See [50, Algorithm 5.1.3.2.1]) Determination of ε-nonterminals in a
context-free grammar.

Input: A context-free grammar, G = (N,T, S, P).

Output: The set of all ε-nonterminals in G, Nε = {A | A ∈ N and A⇒∗ ε}.

Method: Initially, set Nε = {A | A → ε ∈ P}. Now, apply the following step until Nε

cannot be extended:

If A→ X1X2 . . . Xn ∈ P , where Xi ∈ Nε, for all 1 ≤ i ≤ n, for some n ≥ 1

then Nε = Nε ∪ {A}.

31

Main Idea. Nε is first initialized to nonterminals from which the empty string can be
derived in a single step. Then, if there is a rule which have only nonterminals from Nε on
its right-hand side, include the left-hand side of this rule to Nε. This step is repeated until
Nε cannot be extended.

Example 4.1.1. Let G = (N,T, S, P) be a context-free grammar, where N = {S,A,B,C},
T = {b, c}, and P consists of the following rules:

S → AB | BC,

A→ ε,

B → A | b,

C → c.

With G on its input, Algorithm 4.1.1 produces the following set of ε-nonterminals: Nε =
{S,A,B}.

Lemma 4.1.1. (See [50, Lemma 5.1.3.2.2]) Algorithm 4.1.1 is correct, i.e. with a context-
free grammar, G, on its input, it halts and correctly produces the set of all ε-nonterminals
in G.

Now, using Algorithm 4.1.1, we can define the standard algorithm for elimination of erasing
rules from context-free grammars.

Algorithm 4.1.2. (See [29, Section 7.3.1]) Standard elimination of erasing rules from
context-free grammars.

Input: A context-free grammar, G = (N,T, S, PG).

Output: An ε-free context-free grammar, H = (N,T, S, PH), such that L(H) = L(G) −
{ε}.

Method: Use Algorithm 4.1.1 to compute Nε from G. Initially, set PH = ∅. Now, to
compute PH , apply the following step until PH cannot be extended:

If A → x0X1x1X2x2 . . . Xnxn ∈ PG, where xi ∈ N∗ε , Xj ∈ V , for all 0 ≤ i ≤ n,
1 ≤ j ≤ n, for some n ≥ 1

then add A→ X1X2 . . . Xn to PH .

Main Idea. Consider the context-free grammar, G = (N,T, S, P), where A→ aAbB,A→
ε,B → ε ∈ P , A,B ∈ N , and a, b ∈ T ∗. Notice that A,B ∈ Nε. The idea behind Algorithm
4.1.2 is that if some nonterminal, A, is erased during a derivation (in arbitrary number of
steps), then it does not need to be present in the sentential form, so why derive it in the
first place. Hence, the corresponding ε-free context-free grammar additionally has rules
A → abB, A → aAb and A → ab in its set of rules (additionally, because it also has to
contain the original rule, A → aAbB, in case there are some non-erasing rules, A → x
and B → y, in P , which can lead into a derivation of a string of terminal symbols). This
procedure is done for all rules in P .

32

Also, notice that if we transform a rule, A→ BB, with B ∈ Nε, then H has only A→ BB
and A→ B in its set of rules, because it does not make a difference if the first occurrence of
B is erased, or the second one. We also do not want to include the erasing rule A→ ε (by
the if condition, there has to be at least one symbol that is chosen as a not-to-be-erased
symbol).

Example 4.1.2. Let G = (N,T, S, PG) be a context-free grammar, where N = {S,A,B,
C}, T = {a, b, c} and PG consists of the following rules:

S → ABC,

A→ a | BB,

B → bB | ε,

C → cBcC | ε.

With G on its input, Algorithm 4.1.2 produces an ε-free context-free grammar, H =
(N,T, S, PH), where PH contains these rules:

S → ABC | AB | BC | AC,

A→ a | BB | B,

B → bB | b,

C → cBcC | cBc | ccC | cc.

Lemma 4.1.2. (See [29, Theorem 7.9]) Algorithm 4.1.2 is correct, i.e. with a context-free
grammar, G, on its input, it halts and correctly produces an ε-free context-free grammar,
H, such that L(H) = L(G)− {ε}.

Theorem 4.1.1. Let G be a context-free grammar. Then, there is an ε-free context-free
grammar, H, such that L(H) = L(G)− {ε}.

Proof. This theorem follows from Algorithm 4.1.2 and Lemma 4.1.2.

4.2 New Algorithm

In this section, we describe an alternative elimination of erasing rules without any prede-
termination of ε-nonterminals.

Algorithm 4.2.1. Elimination of erasing rules from context-free grammars without any
predetermination of ε-nonterminals.

Input: A context-free grammar, G = (NG, T, SG, PG).

Output: An ε-free context-free grammar, H = (NH , T, SH , PH), such that L(H) = L(G)−
{ε}.

33

Method: Let us note that in what follows, symbols 〈 and 〉 are used to clearly unite more
symbols into a single compound symbol. Initially, set:

NH = {〈X,U〉 | X ∈ VG, U ⊆ NG};
SH = 〈SG, ∅〉;
PH = {〈a, ∅〉 → a | a ∈ T}.

Now, apply the following steps until PH cannot be extended:

(1) If A→ x0X1x1X2x2 . . . Xnxn ∈ PG, where xi ∈ N∗G, Xj ∈ VG, for all 0 ≤ i ≤ n,
1 ≤ j ≤ n, for some n ≥ 1

then for all U ⊆ NG, add 〈A,U〉 → 〈X1, U ∪ alph(x0x1 . . . xn)〉〈X2, ∅〉 . . . 〈Xn,
∅〉 to PH .

(2) If 〈X,U〉 ∈ NH and A→ x ∈ PG, where A ∈ U and x ∈ N∗G
then add 〈X,U〉 → 〈X, (U − {A}) ∪ alph(x)〉 to PH .

Main Idea. Let G = (NG, T, SG, PG) be a context-free grammar and A ∈ NG a be non-
terminal which derives ε. This derivation can be expressed in the following, step-by-step
way:

A⇒ x1 ⇒ x2 ⇒ . . .⇒ xn ⇒ ε,

where xi ∈ N∗G, for all 1 ≤ i ≤ n, for some n ≥ 0 (n = 0 means A ⇒ ε). If there is more
than one occurrence of A in a sentential form, every occurrence of A can be erased in a
similar way—the form of xi is not important. Based on this observation, the algorithm
introduces compound nonterminals of the form 〈X,U〉, where X ∈ VG is a single symbol
that is not erased during the rest of the derivation and U ⊆ NG is a set of nonterminals,
which are going to be erased during the rest of the derivation (these are chosen strongly
nondeterministically). During a derivation, the algorithm simulates the erasure of nonter-
minals in U within the compound nonterminal in the way sketched above. Observe that as
U is a set, U contains no more than one occurrence of any nonterminal, because there is
no need to record several occurrences of the same nonterminal; indeed, as already pointed
out, all these occurrences can be erased in the same way.

So, for a rule, B → aAb ∈ PG, a, b ∈ T , A ∈ NG, the following two new rules are introduced:

〈B,U〉 → 〈a, U〉〈A, ∅〉〈b, ∅〉

and

〈B,U〉 → 〈a, U ∪ {A}〉〈b, ∅〉,

for every U ⊆ NG. Then, if there is a rule, A → x ∈ PG, where x ∈ N∗G, we can either
rewrite the A in 〈A, ∅〉 by a rule introduced in (1) or the A in 〈a, U ∪ {A}〉, introduced in
(2). In the first case, this is the same as the case with B → aAb above; it also covers the
situation where x ∈ V ∗G. In the latter case, A is rewritten inside the second component.

Since even terminals are at first enclosed in angle brackets (they are part of a compound
nonterminal, too), to derive terminals from these nonterminals, PH contains rules of the
form 〈a, ∅〉 → a, for every a ∈ T , introduced in the initialization part of the algorithm.
Note that in this case the second component of the compound nonterminal has to be the
empty set; otherwise, there are still some nonterminals to be erased.

34

Example 4.2.1. Consider the context-free grammar, G = (NG, T, SG, PG), where NG =
{SG}, T = {a, b}, and PG consists of the following rules:

SG → aSGb,

SG → ε.

The generated language is clearly L(G) = {anbn | n ≥ 0}. Algorithm 4.2.1 produces an
ε-free context-free grammar H = (NH , T, SH , PH), where NH = {〈SG, ∅〉, 〈a, ∅〉, 〈b, ∅〉, 〈SG,
{SG}〉, 〈a, {SG}〉, 〈b, {SG}〉}, SH = 〈SG, ∅〉, and PH contains these rules:

〈SG, ∅〉 → 〈a, ∅〉〈SG, ∅〉〈b, ∅〉,

〈SG, ∅〉 → 〈a, {SG}〉〈b, ∅〉,

〈a, {SG}〉 → 〈a, ∅〉,

〈b, {SG}〉 → 〈b, ∅〉,

〈a, ∅〉 → a,

〈b, ∅〉 → b.

For example, for

SG ⇒ aSGb⇒ aaSGbb⇒ aabb in G,

there is

〈SG, ∅〉 ⇒ 〈a, ∅〉〈SG, ∅〉〈b, ∅〉 ⇒ 〈a, ∅〉〈a, {SG}〉〈b, ∅〉〈b, ∅〉 ⇒
〈a, ∅〉〈a, ∅〉〈b, ∅〉〈b, ∅〉 ⇒∗ aabb in H.

Lemma 4.2.1. Algorithm 4.2.1 is correct, i.e. with a context-free grammar, G, on its
input, it halts and correctly produces an ε-free context-free grammar, H, such that L(H) =
L(G)− {ε}.

Proof. Clearly, the algorithm always halts. Since PH does not contain any erasing rules, H
is ε-free. To prove that L(H) = L(G) − {ε}, we first prove the following claim, where we
use Notation 2.4.1

Claim 4.2.1.

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh in G

if and only if

〈SG, ∅〉 ⇒n 〈X1, U1〉 〈X2, U2〉 . . . 〈Xh, Uh〉 in H,

where xi ∈ N∗G, Xj ∈ VG, for all 0 ≤ i ≤ h, 1 ≤ j ≤ h, and
⋃

1≤i≤h Ui ⊆
⋃

0≤i≤h alph(xi),
for some m,n ≥ 0 and h ≥ 1.

Proof. Only If : This is established by induction on the length m of derivations.

Basis: Let m = 0. For SG ⇒0 SG in G there is 〈SG, ∅〉 ⇒0 〈SG, ∅〉 in H, so the basis holds.

Induction Hypothesis: Suppose that the Only If part of Claim 4.2.1 holds for all derivations
of length m or less, for some m ≥ 0.

35

Induction Step: Consider any derivation of the form

SG ⇒m+1 w in G,

where w ∈ V +
G . Since m+ 1 > 0, this derivation can be expressed as

SG ⇒m x⇒ w,

where x ∈ V +. Let x = εx0X1
εx1X2

εx2 . . . Xh
εxh, where xi ∈ N∗G, Xj ∈ VG, for all

0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 1, so

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh in G.

Then, by the induction hypothesis,

〈SG, ∅〉 ⇒n 〈X1, U1〉〈X2, U2〉 . . . 〈Xh, Uh〉 in H,

where
⋃

1≤i≤h Ui ⊆
⋃

0≤i≤h alph(xi), for some n ≥ 0. Now, let us consider all possible forms
of x⇒ y in G:

(i) Let Xj → εy0Y1
εy1 . . . Yq

εyq ∈ PG, where yi ∈ N∗G, for all 0 ≤ i ≤ h, Yi ∈ VG, for all
1 ≤ i ≤ h, for some 1 ≤ j ≤ h and q ≥ 1, so

εx0X1
εx1X2

εx2 . . . Xj
εxj . . . Xh

εxh ⇒
εx0X1

εx1X2
εx2 . . . Xj−1

εxj−1
εy0Y1

εy1 . . . Yq
εyq

εxjXj+1
εxj+1 . . . Xh

εxh in G.

By (1) in Algorithm 4.2.1, there is 〈Xj , Uj〉 → 〈Y1, Uj ∪ alph(y0y1 . . . yq)〉〈Y2, ∅〉 . . .
〈Yq, ∅〉 ∈ PH , so

〈X1, U1〉〈X2, U2〉 . . . 〈Xj , Uj〉 . . . 〈Xh, Uh〉 ⇒
〈X1, U1〉〈X2, U2〉 . . . 〈Xj−1, Uj−1〉〈Y1, Uj ∪ alph(y0y1 . . . yq)〉

〈Y2, ∅〉 . . . 〈Yq, ∅〉〈Xj+1, Uj+1〉 . . . 〈Xh, Uh〉 in H.

Clearly, (
⋃

1≤i≤h Ui) ∪ (
⋃

0≤i≤q alph(yi)) ⊆ (
⋃

0≤i≤h alph(xi)) ∪ (
⋃

0≤i≤q alph(yi)).

(ii) Let xj = x′jAx
′′
j and A→ εy ∈ PG, where y ∈ N∗G and x′j , x

′′
j ∈ N∗G, so

εx0X1
εx1X2

εx2 . . . Xj
εxj . . . Xh

εxh ⇒
εx0X1

εx1X2
εx2 . . . Xj−1

εxj−1Xj
εx′j

εyεx′′jXj+1
εxj+1 . . . Xh

εxh in G.

If A /∈
⋃

1≤i≤h Ui, then

〈X1, U1〉〈X2, U2〉 . . . 〈Xh, Uh〉 ⇒0

〈X1, U1〉 〈X2, U2〉 . . . 〈Xh, Uh〉 in H

and clearly
⋃

1≤i≤h Ui ⊆ (
⋃

0≤i≤h,i 6=j alph(xi)) ∪ alph(x′jyx
′′
j), so assume that A ∈⋃

1≤i≤h Ui. By (2) in Algorithm 4.2.1, there is 〈Xk, Uk〉 → 〈Xk, (Uk−{A})∪alph(y)〉 ∈
PH , where Uk = U ′k ∪ {A}, U ′k ⊆ NG, for some 1 ≤ k ≤ h, so

36

〈X1, U1〉〈X2, U2〉 . . . 〈Xk, Uk〉 . . . 〈Xh, Uh〉 ⇒
〈X1, U1〉〈X2, U2〉 . . . 〈Xk, (Uk − {A}) ∪ alph(y)〉 . . . 〈Xh, Uh〉 in H.

Clearly, (
⋃

1≤i≤h,i 6=k Ui) ∪ (U ′k ∪ alph(y)) ⊆ (
⋃

0≤i≤h,i 6=j alph(xi)) ∪ alph(x′jyx
′′
j).

Observe that these two cases cover all possible derivations of the form x⇒ w in G. Thus,
the Only If part of Claim 4.2.1 holds.

If : This is also established by induction, but in this case on n.

Basis: Let n = 0. For 〈SG, ∅〉 ⇒0 〈SG, ∅〉 in H there is SG ⇒0 SG in G, so the basis holds.

Induction Hypothesis: Suppose that the If part of Claim 4.2.1 holds for all derivations of
length n or less, for some n ≥ 0.

Induction Step: Consider any derivation of the form

〈SG, ∅〉 ⇒n+1 w in H,

where w ∈ N+
H . Since n+ 1 > 0, this derivation can be expressed as

〈SG, ∅〉 ⇒n x⇒ w,

where x ∈ N+
H . Let x = 〈X1, U1〉〈X2, U2〉 . . . 〈Xh, Uh〉, where Xi ∈ VG, Ui ∈ N∗G, for all

1 ≤ i ≤ h, for some h ≥ 1. By the induction hypothesis, there is

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh in G,

where xi ∈ N∗G, for all 1 ≤ i ≤ h, such that
⋃

1≤i≤h Ui ⊆
⋃

0≤i≤h alph(xi), for some m ≥ 0.
Now, let us consider all possible forms of x⇒ w in H:

(i) Let 〈Xj , Uj〉 → 〈Y1,W 〉〈Y2, ∅〉 . . . 〈Yq, ∅〉 ∈ PH , where W ⊆ NG and Yi ∈ NG, for all
1 ≤ i ≤ q, for some q ≥ 1, so

〈X1, U1〉〈X2, U2〉 . . . 〈Xj , Uj〉 . . . 〈Xh, Uh〉 ⇒
〈X1, U1〉〈X2, U2〉 . . . 〈Xj−1, Uj−1〉〈Y1,W 〉〈Y2, ∅〉

. . . 〈Yq, ∅〉〈Xj+1, Uj+1〉 . . . 〈Xh, Uh〉 in H.

By (1) in Algorithm 4.2.1, W is of the form W = Uj∪alph(y0y1 . . . yq), where yi ∈ N∗G,
for all 1 ≤ i ≤ q, so there is Xj → εy0Y1

εy1 . . . Yq
εyq ∈ PG, so

εx0X1
εx1X2

εx2 . . . Xj
εxj . . . Xh

εxh ⇒
εx0X1

εx1X2
εx2 . . . Xj−1

εxj−1
εy0Y1

εy1 . . . Yq
εyq

εxjXj+1
εxj+1 . . . Xh

εxh in G.

Clearly, (
⋃

1≤i≤h Ui) ∪ (
⋃

0≤i≤q alph(yi)) ⊆ (
⋃

0≤i≤h alph(xi)) ∪ (
⋃

0≤i≤q alph(yi)).

(ii) Let 〈Xj , Uj〉 → 〈Xj ,W 〉 ∈ PH for some 1 ≤ j ≤ h, where W ⊆ NG, so

〈X1, U1〉〈X2, U2〉 . . . 〈Xj , Uj〉 . . . 〈Xh, Uh〉 ⇒
〈X1, U1〉〈X2, U2〉 . . . 〈Xj ,W 〉 . . . 〈Xh, Uh〉 in H.

37

By (2) in Algorithm 4.2.1, W is of the form W = (Uj − {A}) ∪ alph(z), where
A ∈ NG and z ∈ N∗G, such that there is A → εz ∈ PG. Recall that

⋃
1≤i≤h Ui ⊆⋃

0≤i≤h alph(xi) by the induction hypothesis. Since A ∈
⋃

1≤i≤h Ui, some xk has to
be of the form xk = x′kAx

′′
k, where x′k, x

′′
k ∈ N∗G, so

εx0X1
εx1X2

εx2 . . . Xk
εxk . . . Xh

εxh ⇒
εx0X1

εx1X2
εx2 . . . Xk−1

εxk−1Xk
εx′k

εzεx′′kXk+1
εxk+1 . . . Xh

εxh in G.

Clearly, (
⋃

1≤i≤h,i 6=j Ui)∪ (Uj −{A})∪ alph(z) = (
⋃

1≤i≤h,i 6=k alph(xi))∪ (alph(xk)−
{A}) ∪ alph(z).

Observe that these two cases cover all possible derivations of the form x⇒ w in H. Thus,
the If part of Claim 4.2.1 also holds. Hence, Claim 4.2.1 holds.

Now, consider a special case of Claim 4.2.1 when xi = ε, Xj ∈ TG, for all 0 ≤ i ≤ h,
1 ≤ j ≤ h. Then,

SG ⇒m X1X2 . . . Xh in G

if and only if

〈SG, ∅〉 ⇒n 〈X1, ∅〉〈X2, ∅〉 . . . 〈Xh, ∅〉 in H,

for some m,n ≥ 0 and h ≥ 1. By the initialization part of Algorithm 4.2.1, there are rules
〈Xi, ∅〉 → Xi ∈ PH , for all 1 ≤ i ≤ h, so

〈X1, ∅〉〈X2, ∅〉 . . . 〈Xh, ∅〉 ⇒h X1X2 . . . Xh in H.

Therefore, Lemma 4.2.1 holds.

Using results from this section, we obtain another way how to prove Theorem 4.1.1.

Theorem 4.2.1. Let G be a context-free grammar. Then there is an ε-free context-free
grammar, H, such that L(H) = L(G)− {ε}.

Proof. This theorem follows from Algorithm 4.2.1 and Lemma 4.2.1.

38

Chapter 5

Removal of Erasing Rules from
Regulated Grammars

From Chapter 4, we know that we can always eliminate erasing rules from any context-free
grammar. In Chapter 3, we see that most regulated grammars are based on context-free
grammars, so one might think that we can use the same approach in regulated gram-
mars. However, there is a slight difference between context-free grammars and regulated
grammars—the regulation. The reason why these techniques work in case of context-free
grammars is that there is no restriction in regard which rule we should apply and when we
should apply. When we introduce regulation, the order of rules become crucial. Also, the
number of occurrences of a nonterminal that are erased in the rest of the derivation may
be important. With incautious changes to the grammar, one could end up with a grammar
generating a different language.

The type of problems we might run into depends on the type of a regulated grammar. For
the purpose of this introduction, let us consider regularly controlled grammars. Neverthe-
less, since regularly controlled grammars, matrix grammars, and programmed grammars
are somewhat similar (see Chapter 3), the same kind of reasoning apply to these grammars
as well. Let H = (G,Ξ) be a regularly controlled grammar, where G = (N,T, S, P), and let
us consider the following idea. We run Algorithm 4.1.2 or Algorithm 4.2.1 from Chapter 4
on the core grammar G and, at the same time, we accordingly modify the control language.
Depending of the algorithm we use, there are two cases:

(1) We use the standard algorithm. Recall that this algorithm works by introducing more
rules for a single rule, depending on the number of ε-nonterminals present on the
right-hand side of that rule. Let r : A→ bBcC ∈ P and B,C ∈ Nε, so the algorithm
introduces rules r1 : A → bBcC, r2 : A → bcC, r3 : A → bBc, and r4 : A → bc.
Then, we substitute the use of r in the original control language with {r1, r2, r3, r4}.
However, if we use r2 and, later on, the control language prescribes us to use a rule
with B on its left-hand side, there might be no B in the sentential form. If we use
r2, we should also substitute (or remove) rules with B on their left-hand side from
the control language and so on. But, as you can see, this is not really an easy thing
to formalize and to proof, because we have to be certain that the generated language
of the resulting ε-free grammar is the same as the language generated by the original
grammar.

39

(2) We use the new algorithm which introduces nonterminals of the form 〈X,U〉, where
X ∈ V and U ⊆ N . Since U is a set, several occurrences of a nonterminal are stored
as only one occurrence. Let r : A→ BBBB and s : B → ε be rules in P and 〈C, {A}〉
be a nonterminal in the resulting ε-free grammar. If we rewrite A in 〈C, {A}〉 by using
r, 〈C, {A}〉 ⇒ 〈C, {B}〉 [r], there might be a sequence of four s rules in the control
language, but we have only one B in the second component. By the same reasoning
as in the first case, with incautious changes to the control language, we might end up
with a different language.

So, there are problems in both cases. It is not known whether these approaches can be
made working (Chapter 3 or [44]).

Section 5.1 contains present results regarding the elimination of erasing rules from regulated
grammars. Then, a new result on this topic is presented in Section 5.2. Finally, Section 5.3
discusses a significance of these results concerning syntactical analysis.

5.1 Present Results

To summarize the results regarding elimination of erasing rules from regulated grammars
from Chapter 3,

• we are able to eliminate erasing rules from all indexed grammars and all Indian parallel
grammars,

• there exist scattered context grammars and tree controlled grammars with erasing
rules which do not have their equivalent ε-free versions, and

• it is not known whether we are able to remove all erasing rules from regularly con-
trolled grammars, matrix grammars, programmed grammars, random context gram-
mars, ordered grammars, and Russian parallel grammars.

Of course, all eliminations have to be done without any affection of the generated language.
Also, from Theorem 3.2.1 and Theorem 3.3.1, we obtain the following corollary.

Corollary 5.1.1.

(1) rC = rCε if and only if M = Mε,

(2) M = Mε if and only if P = Pε.

(3) P = Pε if and only if rC = rCε.

Thus, by solving one of these inclusions, we solve them all. The next sections present known
techniques, results, and consequences regarding the possibility of elimination of erasing rules
from regulated grammars.

40

5.1.1 Limited Erasing in Scattered Context Grammars

As stated in Chapter 3 (more precisely, in Theorem 3.5.1), there are scattered context
grammars with erasing rules which cannot be converted to equivalent ε-free scattered con-
text grammars. However, there is a condition, called k-limited erasing in scattered context
grammars, introduced by Meduna and Techet in [56] (see also [57, Section 4.2]), which guar-
antees that we can eliminate all erasing rules from any scattered context grammar which
satisfies this condition. Informally, a scattered context grammar erases its nonterminals in
a k-limited way, where k ≥ 0, if for every sentence there exists a derivation such that in
every sentential form of that derivation, each of its substrings consisting of nonterminals
from which the grammar derives empty strings later in the derivation is of length k or less
[56].

To define the condition formally, an auxiliary notion of the underlying derivation by a core
grammar is needed.

Definition 5.1.1. LetH = (G,R) be a scattered context grammar, whereG = (N,T, S, P),
and let

v ⇒H w [r]

be a derivation in H, where v = u1A1u2A2 . . . unAnun+1, w = u1x1u2x2 . . . unxnun+1, and
r = (A1 → x1, A2 → x2, . . . , An → xn), ui ∈ V ∗, for all 1 ≤ n + 1, for some n ≥ 1. The
partial m-step context-free simulation of this derivation step by G is denoted by cfm(v ⇒H

w) and defined as an m-step derivation in G of the form

u1A1u2A2 . . . unAnun+1

⇒G u1x1u2A2 . . . unAnun+1

⇒m−1
G u1x1u2x2 . . . umxmum+1Am+1 . . . unAnun+1,

where m ≤ n. The context-free simulation of a derivation step of H, denoted by cf(v ⇒H

w), is the partial n-step context-free simulation of this step. Let v = v1 ⇒∗H vn = w be of
the form

v1 ⇒H v2 ⇒H . . .⇒H vn.

The context-free simulation of v ⇒∗H w by G is denoted by cf(v ⇒∗H w) and defined as

v1 ⇒∗G v2 ⇒∗G . . .⇒∗G vn

such that for all 1 ≤ i ≤ n− 1, vi ⇒∗G vi+1 is the context-free simulation of vi ⇒H vi+1.

To make the following definition more readable, we use Notation 2.4.1.

Definition 5.1.2. LetH = (G,R) be a scattered context grammar, whereG = (N,T, S, P),
and let k ≥ 0. H erases its nonterminals in a k-limited way, if for every y ∈ L(H) − {ε},
there exists a derivation

S ⇒∗H y

41

such that every sentential form x in cf(S ⇒∗H y) can be expressed in the form x =
εx0X1

εx1X2
εx2 . . . Xn

εxn, xi ∈ N∗, Xj ∈ V , which satisfies |xi| ≤ k, for all 0 ≤ i ≤ n,
1 ≤ j ≤ n, for some n ≥ 1.

Example 5.1.1. Consider the scattered context grammar H from Example 3.5.1. Observe
that every derivation leading to a nonempty sentence, anbncn, for some n ≥ 1, is of the
form

S ⇒H AAA⇒H aAbAcA⇒H . . .⇒H anAbnAcnA⇒H anbncn.

From this observation it is clear that H erases its nonterminals in a 1-limited way (the only
sentential form, where some nonterminals are started to be erased, is anAbnAcnA, where
all three As are erased, and since n ≥ 1, the condition from Definition 5.1.2 is satisfied).

For a more complex example regarding this condition, refer to [56] or [57, Section 4.2].

Theorem 5.1.1. (See [57, Theorem 4.15]) For every scattered context grammar, H, that
erases its nonterminals in a k-limited way, there exists an ε-free scattered context grammar,
O, such that L(O) = L(H)− {ε}.

5.1.2 Recursive Erasing in Programmed Grammars

Křivka in [39] placed a condition on rules in programmed grammars, called recursively
nonterminal-erasing set, and proved that all erasing rules satisfying this condition, called
recursively erasing rules, can be removed from such a programmed grammar. Informally,
a recursively erasing rule is a rule that if we start to erase some nonterminal with it, then
we have to erase all occurrences of this nonterminal in the current sentential form [39].

Before we introduce this condition formally and give an example, we need the following
auxiliary definition.

Definition 5.1.3. Let H = (G, σ, ϕ) be a programmed grammar (with appearance check-
ing), where G = (N,T, S, P). If there is a sequence of rules, α = br1 : A1 → w1, σ(r1), ϕ(r1)c
. . . brn : An → wn, σ(rn), ϕ(rn)c ∈ P+, for some n ≥ 1, such that A1 ⇒+

H ε [α], then α is
called A1-erasing sequence of rules.

Definition 5.1.4. Let H = (G, σ, ϕ) be a programmed grammar (with appearance check-
ing), where G = (N,T, S, P). For every A1-erasing sequence of rules, α = br1 : A1 →
w1, σ(r1), ϕ(r1)c . . . brn : An → wn, σ(rn), ϕ(rn)c ∈ P+, for some n ≥ 1, let QA1 ⊆ P be a
set of rules such that

(1) br1 : A1 → w1, σ(r1), ϕ(r1)c ∈ QA1 ,

(2) there is no derivation, A1 ⇒+
H x [r1β], where x ∈ V ∗TV ∗, β ∈ P ∗, and

(3) s ∈ σ(rn) imply bs : A1 → y, σ(s), ϕ(s)c ∈ QA1 .

QA1 is called recursively A1-erasing set of rules.

42

Set1

rec-εQH =
⋃
A∈(N−{S})QA,

rec-εΘH = {r1 . . . rn | r1 ∈ rec-εQH , rhs(rn) = ε, and r1, . . . , rn ∈ P for some n ≥ 1},

rec-εPH =
⋃
α∈rec-εΘH

alph(α).

Example 5.1.2. (Modified example from [39]) Consider the programmed grammar with
appearance checking, H = (G, σ, ϕ), where G = (N,T, S, P) is a context-free grammar with
N = {S,A,B}, T = {a}, and P consisting of the following rules:

br1 : S → ABAB, {r1}, {r2, r3}c,

br2 : A→ S, {r2}, {r1}c,

br3 : B → ε, {r3}, {r4}c,

br4 : A→ a, {r4}, ∅c.

Clearly, L(H) = {a2n | n ≥ 1} (observe the similarity with Example 3.3.1). Since only r3

satisfies the condition of recursive erasing (once we use it, we have to erase all occurrences
of B in the current sentential form), rec-εPH = {br3 : B → ε, {r3}, {r4}c}.

Theorem 5.1.2. (See [39, Theorem 2]) Let H be programmed grammar with appearance
checking. Then, there is a programmed grammar with appearance checking, O, such that
L(H) = L(O) and rec-εPO = ∅.

The same result holds also for programmed grammars without appearance checking (see [39,
Corollary 3]). In the proof of Theorem 5.1.2 in [39], a similar idea to the one of Algorithm
4.2.1 is used.

5.1.3 Generation of Extended Languages by ε-Free Grammars

In addition to the result presented in Section 5.1.1, there is another way how to transform
scattered context grammars to ε-free scattered context grammars. Let H be a scattered
context grammar. We can replace the empty string in H’s rules with a special terminal
symbol, usually denoted by $ or #, which does not appear in any string that H generates,
thus obtaining an ε-free scattered context grammar H ′. However, the strings generated by
H ′ have to be of some special form so the new symbol is not placed randomly in generated
sentences. For example, one may consider to generate sentences followed by a sequence of
$s. If we then remove this sequence of $s from the end of the extended sentence, we obtain
the original sentence. Generated languages containing strings of these special forms are
called extended languages throughout this section2.

1Let us note that we use a slightly different notation than the one used in [39] to avoid confusion with
our denotation of the set of rule labels by Ψ.

2Let us note that our notion of extension is not related to so-called extended scattered context grammars
(see [49] or [57, Section 5.6]) in any way.

43

Two types of generation of extended languages are presented in this section: coincidental
extensions and quotients of languages generated by ε-free scattered context grammars.
However, note that this concept is more general and can be applied to other grammars as
well.

Coincidental Extension

For a symbol, #, and a string, x = a1a2 . . . an−1an, any string of the form #ia1#ia2#i . . .#i

an−1#ian#i, where i ≥ 0, represents a coincidental #-extension of x. A language, K, is
a coincidental #-extension of L if every string in K represents a coincidental #-extension
of a string in L and the deletion of all #s in K results in L. This type of extension was
introduced by Meduna in [52] (see erratum [53]).

The notion of a coincidental extension is formalized in the following definition.

Definition 5.1.5. Let V be an alphabet and # /∈ V a symbol. A coincidental #-
extension of ε is any string of the form #i, where i ≥ 0. A coincidental #-extension
of a1a2 . . . an−1an ∈ V + is any string of the form #ia1#ia2#i . . .#ian−1#ian#i, where
n ≥ 1, aj ∈ V , for all 1 ≤ j ≤ n, for some i ≥ 0. For any language, L ⊆ V ∗, #CE(L)
denotes the set of all coincidental #-extensions of strings in L. Define the homomorphism,
ω : (V ∪ {#})∗ → (V ∪ {#})∗, as ω(a) = a for every a ∈ (V − {#}) and ω(#) = ε. Let
K ⊆ (V ∪ {#})∗. K is a coincidental #-extension of L, symbolically written as L#J K, if
K ⊆ #CE(L) and L = {ω(x) | x ∈ K}.

Example 5.1.3. (From [52]) Consider three languages, K = {#ia#ib#i | i ≥ 5} ∪
{#icn#idn#i | n, i ≥ 0}, L = {ab} ∪ {cndn | n ≥ 0}, and M = {#ia#ib#i | i ≥
5} ∪ {#icn#idn#i+1 | n, i ≥ 0}. Observe that L#J K, but there exists no language,
N , satisfying N #JM .

Theorem 5.1.3. (See [52, Corollary 2]) Let K ∈ RE. Then, there exists an ε-free scattered
context grammar, H, such that K #J L(H).

Since SCε = RE (from Theorem 3.5.1), we obtain the following corollary.

Corollary 5.1.2. For every scattered context grammar, G, there is an ε-free scattered
context grammar, H, such that L(G) #J L(H).

Quotients

Instead of placing special symbols in between other symbols (like a coincidental extension
does), one can place them in front of or in back of a sentence. For example, the sentence
aaabbb can be extended to aaabbb$$$$ by a special symbol, $. When we omit the suffix
$$$$, we get a so-called symbol-exhaustive right quotient of aaabbb$$$$.

The notion of quotients is formalized in the next two definitions.

Definition 5.1.6. Let L1 and L2 be two arbitrary languages. The right quotient of L1

with respect to L2, denoted by L1/L2, is defined as

L1/L2 = {w | wx ∈ L1 for some x ∈ L2}.

44

Similarly, the left quotient of L1 with respect to L2, denoted by L1\L2, is defined as

L1\L2 = {w | xw ∈ L2 for some x ∈ L1}.

Definition 5.1.7. Let L1 and L2 be two arbitrary languages. The exhaustive right quotient
of L1 with respect to L2, denoted by L1//L2, is defined as

L1//L2 = {w | w ∈ L1/L2 and w is not a proper prefix of any string in L1/L2}.

Similarly, the exhaustive left quotient of L1 with respect to L2, denoted by L2\\L1, is
defined as

L2\\L1 = {w | w ∈ L1\L2 and w is not a proper suffix of any string in L1\L2}.

Let L2 = {$}∗, where $ is a symbol. Then L1//L2 is the symbol-exhaustive right quotient
of L1 with respect to $ and L2\\L1 is the symbol-exhaustive left quotient of L1 with respect
to $.

Example 5.1.4. Consider two languages, K = {anbncn | n ≥ 0} and L = {anbncn$m | m,n
≥ 0}. Observe that K is the symbol-exhaustive right quotient of L with respect to $, i.e.
K = L//{$}∗.

The following result was first proved by Ehrenfeucht and Rozenberg in [18]. Later, it was
improved by Meduna in [49] in terms of the number of nonterminals needed in the resulting
grammar.

Theorem 5.1.4. (See [49, Theorem 4]) Let K ∈ RE and let $ be a symbol such that
$ /∈ alph(w) for all w ∈ K. Then, there is an ε-free scattered context grammar, H, such
that K = L(H)//{$}∗.

Again, since SCε = RE (from Theorem 3.5.1), we obtain the following corollary.

Corollary 5.1.3. For every scattered context grammar, G, and a symbol, $ /∈ alph(w)
for all w ∈ L(G), there is an ε-free scattered context grammar, H, such that L(G) =
L(H)//{$}∗.

Similar results hold also for the symbol-exhaustive left quotient [49, Theorem 4].

In [55] and [57, Chapter 7], instead of an insignificant symbol, $, Meduna and Techet con-
sidered generation of sentences followed by their parses. For example, let G = (N,T, S, P)
by a context-free grammar. For a successful derivation in G, S ⇒ y [α], where y ∈ L(G),
yα is the sentence y followed by its parse. These languages consisting of sentences followed
by their parses are referred to as extended Szilard languages in [11, Section 7.2]. Meduna
and Techet managed to prove similar result to Theorem 5.1.4 in terms of generation of
sentences followed by their parses (let us note that Dassow and Păun in [11, Section 7.2]
did not considered generation of extended Szilard languages of grammars with erasing rules
by ε-free grammars; they only considered generation of Szilard languages of grammars with
erasing rules by ε-free grammars, i.e. only rule labels were generated, no original terminals).

45

5.1.4 Erasing in Petri Net Languages and Matrix Grammars

As Petri nets are related to specific models from the formal language theory [28], one can
use particular results from the theory of Petri nets and apply them in the formal language
theory. For example, using deep results of the theory of Petri nets and a relation between
matrix grammars and Petri nets, it was shown that all languages generated by matrix
grammars over one-symbol alphabets are regular [28, Theorem 5.3].

Recently, Zetche in [76] and [77] proved two results concerning Petri nets and Petri net
controlled grammars, which are related to the topic of this work. The first one sheds a
new light on the question whether it is possible to eliminate erasing rules from any matrix
grammar (and thus also from any regularly controlled grammar and from any programmed
grammar). The second one shows that if a particular conjecture regarding decidability of a
Petri nets problem holds, then we obtain an interesting property of the family of all matrix
languages. These two results are briefly discussed in the two following sections.

Petri Net Controlled Grammars and Matrix Grammars

Let PN and PNε denote the family of all languages generated by Petri net controlled
grammars without erasing rules and with erasing rules, respectively. In [12], it is shown
that Petri net controlled grammars with erasing rules generate the same language family
as matrix grammars with erasing rules and without appearance checking.

Theorem 5.1.5. (See [12]) PNε = Mε

For completeness, in [76], as stated in Section 3.6, it is shown that Petri net controlled
grammars have the same generative power regardless of the presence of erasing rules.

Theorem 5.1.6. (See [76, Theorem 3]) PNε = PN

It is also shown there that when we restrict to so-called linear Petri net controlled gram-
mars3, their language class coincides with M. Let LinPN denote the family of all languages
generated by linear Petri net controlled grammars.

Theorem 5.1.7. (See [76, Theorem 2]) M = LinPN

Since every linear Petri net controlled grammar is a special case of a Petri net controlled
grammar, i.e. LinPN ⊆ PN [76, Definition 4], from Theorems 5.1.5, 5.1.6, and 5.1.7, we
obtain the following corollary.

Corollary 5.1.4. M = Mε if and only if LinPN = PN.

Thus, by proving the exact relation between LinPN and PN, we also prove the exact rela-
tion between M and Mε. Note that by Corollary 5.1.1, we can straightforwardly reformulate
Corollary 5.1.4 in terms of regularly controlled grammars and programmed grammars.

3Since this is beyond the scope of this work, please refer to [76] for details.

46

Parikh Images of Matrix Languages

First, we make some notions and definitions to facilitate the upcoming discussion. For a
string, w, over some arbitrary alphabet, Σ, let |w|a denote the number of occurrences of a
symbol, a ∈ Σ, in w. Informally, a Parikh image of a string is a string in which we consider
only the relative number of occurrences of symbols, not the order in which they appear in
the string. This idea, which is due to Parikh [61], is formalized in the following definition.

Definition 5.1.8. Let Σ = {a1, a2, . . . , an} be an alphabet, where n ≥ 1 and the order
of a1, a2, . . . , an is arbitrary, but fixed (i.e. one order is chosen, but which one does not
matter). For a string, w ∈ Σ∗, the Parikh image of w, denoted by Φ(w), is defined as

Φ(w) = (|w|a1 , |w|a2 , . . . , |w|an).

When referring to the Parikh image of a language (language family), this should be taken
to mean the image applied to all the strings in that language (to all the languages in that
family). This idea is expressed in the next definition.

Definition 5.1.9. Let Σ be an alphabet. For a language, L ⊆ Σ∗, let Φ(L) = {Φ(w) | w ∈
L}. For a language family, L , let Φ(L) = {Φ(L) | L ∈ L }.

Example 5.1.5. Let Σ = {a, b, c} be an alphabet and let the order of a, b, and c be lexico-
graphical, i.e. (a, b, c). For a string, x = ccbbbbc, and two languages, K = {anbncn | n ≥ 0}
and L = {ww | w ∈ Σ∗}, we have Φ(x) = (0, 4, 3), Φ(K) = {(i, i, i) | i ≥ 0}, and
Φ(L) = {(2i, 2j, 2k) | i, j, k ≥ 0}.

Zetche proved that if so-called Hack’s Conjecture (see [27]) holds, then the families Φ(M)
and Φ(Mε) coincides. This conjecture says that the reachability problem for Petri nets is
decidable4.

Theorem 5.1.8. (See [77, Theorem 7]) If Hack’s Conjecture holds, then Φ(M) = Φ(Mε).

Note that Φ(M) = Φ(Mε) does not imply M = Mε nor M 6= Mε. It just shows a property
of the family of all matrix languages, regardless of the presence of erasing rules.

5.2 New Result: Limited Erasing in Regularly Controlled
Grammars

The main problem with the second approach from the introduction to this chapter is that
several occurrences of the same nonterminal are reduced into a single occurrence. One
way to solve this problem is to record every occurrence of the same nonterminal, thus
keeping strings of nonterminals rather than sets of nonterminals. However, since there can
potentially be an infinite number of occurrences of nonterminals in a sentential form and
we only consider finite alphabets, we need to place some limit on the number of occurrences
of nonterminals which are erased during the rest of the derivation. Then, we are able to

4Again, since this is beyond the scope of this work, for more information about decidability, please refer
to [75, Chapter 10], and for more information about the reachability problem in Petri nets, refer to [27].

47

remove erasing rules from regularly controlled grammars meeting this limit. The following
definition is a formalization of such a limit.

Throughout this section, for any nonnegative rational number, i, ℵ(i) denotes the greatest
nonnegative integer smaller or equal to i.

Definition 5.2.1. Let k be a nonnegative integer and H = (G,Ξ) be a regularly controlled
grammar, where G = (N,T, S, P). H erases its nonterminals in a k-limited way provided
that it satisfies this implication: if S ⇒∗ y in G is a derivation of the form S ⇒∗ x ⇒∗ y,
where x ∈ V + and y ∈ L(H)− {ε}, then in ∆(S ⇒∗ y), there are at most ℵ(k|x|/(k + 1))
ε-subtrees rooted at the symbols of x.

Note that when k = 0, then in any derivation leading to a nonempty sentence, no nonter-
minals are erased.

Example 5.2.1. Consider the regularly controlled grammar H from Example 3.1.1. H
erases its nonterminals in a 1-limited way, because for every sentential form, x, in any
successful derivation of the form S ⇒∗ x⇒∗ y leading to a nonempty sentence, y, ∆(S ⇒∗
y) contains at most ℵ(|x|/2) ε-subtrees rooted at the symbols of x. In other words, no more
than half of all symbols in any sentential form are erased.

Example 5.2.2. LetH = (G,Ξ) be a regularly controlled grammar, whereG = (N,T, S, P)
is a context-free grammar with N = {S,A,B}, T = {a, b,#}, P consisting of the following
rules:

r1 : S → A#B,

r2 : A→ aA,

r3 : B → aB,

r4 : A→ bA,

r5 : B → bB,

r6 : A→ ε,

r7 : B → ε,

and Ξ = {r1}{r2r3, r4r5}∗{r6r7}. Clearly, the generated language is L(H) = {w#w |
w ∈ {a, b}∗}. Observe that H does not erase its nonterminals in a 1-limited way, because
there is a successful derivation,

S ⇒ A#B [r1]⇒ #B [r6]⇒ # [r7],

leading to a nonempty sentence, #, where ℵ(|A#B|/2) = 1, but both A and B represent
ε-subtrees in ∆(S ⇒∗ #). However, it is easy to verify that H erases its nonterminals in a
2-limited way.

Example 5.2.3. Let G = (N,T, S, P) be a context-free grammar with N = {S}, T = {a},
and P consisting of the following three rules:

r1 : S → SS, r2 : S → a, r3 : S → ε.

Now, consider two regularly controlled grammars, H1 = (G,Ξ1) and H2 = (G,Ξ2), where
Ξ1 = {r1}∗{r2}∗{r3}∗ and Ξ2 = {r1}∗{r2r3}∗. Notice that L(H2) = L(H1)− {ε}. H1 does
not erase its nonterminals in a k-limited way for any k ≥ 0, because there is a successful
derivation of the form

48

S ⇒∗ Sm+n+1 ⇒ SmaSn ⇒∗ a [α],

where α ∈ Ξ1, m,n ≥ 0, with no limit on m and n. On the other hand, H2 erases its
nonterminals in a 1-limited way, because every application of the erasing rule r3 is preceded
by the application of r2.

The following algorithm shows how to eliminate erasing rules from regularly controlled
grammars meeting the condition from Definition 5.2.1. It uses the idea outlined in the
beginning of this section.

Algorithm 5.2.1. Elimination of erasing rules from any regularly controlled grammar that
erases its nonterminals in a k-limited way.

Input: A context-free grammar, G = (NG, TG, SG, PG), and a regular grammar, H =
(NH , TH , SH , PH), such that the regularly controlled grammar I = (G,L(H)) erases
its nonterminals in a k-limited way.

Output: An ε-free context-free grammar, O = (NO, TO, PO, SO), and a regular grammar,
Q = (NQ, TQ, PQ, SQ), such that L(M) = L(I) − {ε} for the regularly controlled
grammar M = (O,L(Q)).

Method: Let us note that in what follows, symbols 〈, 〉, b, c, d, and e are used to clearly
unite more symbols into a single compound symbol. Without any loss of generality,
assume that Z /∈ (VH ∪ΨO). Initially, set:

k′ = k +max({|rhs(r)| | r ∈ ΨG});
TO = TG;
VO = TO ∪ {〈X, y〉 | X ∈ VG, y ∈ N∗G, 0 ≤ |y| ≤ k′};
SO = 〈SG, ε〉;
ΨO = {b〈a, ε〉 → ac | a ∈ TG};
PO = {b〈a, ε〉 → ac : 〈a, ε〉 → a | a ∈ TG};
TQ = ΨO;
VQ = TQ ∪NH ∪ {Z};
SQ = SH ;
PQ = {Z → b〈a, ε〉 → acB | B ∈ {Z, ε}, a ∈ TG}.

Repeat (1) through (3), given next, until none of the sets ΨO, PO, TQ, NQ, PQ can be
extended in this way.

(1) If r : A → x0X1x1X2x2 . . . Xnxn ∈ PG and 〈A,w〉, 〈X1, wx0x1 . . . xn〉 ∈ NO,
where w ∈ N∗G, xi ∈ N∗G, Xj ∈ VG, for all 0 ≤ i ≤ n, 1 ≤ j ≤ n, for some
n ≥ 1

then add s = br, x0, X1x1, X2x2, . . . , Xnxnc to ΨO and to TQ;
add s : 〈A,w〉 → 〈X1, wx0x1 . . . xn〉〈X2, ε〉 . . . 〈Xn, ε〉 to PO;
for each B → r ∈ PH , add B → sZ to PQ;
for each B → rC ∈ PH , C ∈ NH , add B → sC to PQ.

(2) If r : A→ w ∈ PG and 〈X,uAv〉, 〈X,uwv〉 ∈ NO, where X ∈ VG, u, v, w ∈ N∗G
then add s = bX,uAv, uwv, rc to ΨO and to TQ;

add s : 〈X,uAv〉 → 〈X,uwv〉 to PO;
for each B → r ∈ PH , add B → sZ to PQ;
for each B → rC ∈ PH , C ∈ NH , add B → sC to PQ.

49

(3) If 〈X,uAv〉, 〈Y,w〉, 〈Y,wA〉 ∈ NO, where X,Y ∈ VG, A ∈ NG, u, v, w ∈ N∗G
then add r = bX,u,A, v, Y, wc and s = bX,u,A, v, Y, w,Ac to ΨO and to TQ;

add r : 〈X,uAv〉 → 〈X,uv〉 and s : 〈Y,w〉 → 〈Y,wA〉 to PO;
for each B ∈ NH , add C = dB, r, se to NQ and add B → rC and C → sB
to PQ.

Main Idea. The resulting grammar M uses compound nonterminals of the form 〈X, y〉,
where X is a symbol that is not erased in the rest of derivation and y is a string of
nonterminals that are erased in the rest of the derivation (contrary to Algorithm 4.2.1,
where the second component is a set). The length of y is limited to k′ = k + p, where p
is the length of the longest right-hand side of a rule from PG (to allow application of rules
which have more than k nonterminals on their right-hand sides).

Rules introduced in (1) are used to simulate a derivation step in I in which one nonter-
minal is rewritten to a string of symbols, where at least one of them is not erased in rest
of the derivation. Since these symbols are chosen strongly nondeterministically during a
derivation, every possible combination is considered. On the other hand, rules introduced
in (2) are used to simulate a derivation step in I in which some to-be-erased nonterminal
is rewritten to a string of to-be-erased nonterminals or to the empty string (this rewrite is
done in the second component). Since there might not be enough space to do such rewrite,
rules introduced in (3) are used to move nonterminals between the second components. In-
deed, M can move the nonterminals between the second components at will because these
nonterminals are to be erased anyway, so it is completely irrelevant where they occur in
the sentential forms (this is the key idea behind this algorithm). In addition, as I erases
its nonterminals in a k-limited way, there is always enough space to accommodate all these
to-be-erased nonterminals.

At the very end of any successful derivation, rules of the form 〈a, ε〉 → a, for all a ∈ TG,
introduced in the initialization part of the algorithm, are used to obtain terminal symbols
from compound nonterminals, just like in Algorithm 4.2.1. This can be done only if the
rightmost nonterminal in Q is the new nonterminal, Z. This nonterminal indicates that
M is at the end of a derivation simulation of I, so, in the sentential form, there should be
only nonterminals of the form 〈a, ε〉, a ∈ T . When the very last nonterminal is about to be
rewritten to a terminal, Z → r ∈ PQ, r ∈ ΨO, introduced in the initialization part of the
algorithm, is used to finish the simulation by “getting rid of” Z.

Example 5.2.4. Consider again the regularly controlled grammar from Example 3.1.1.
We repeat its definition with regard to Algorithm 5.2.1. Let G = (NG, TG, SG, PG) be a
context-free grammar with NG = {S,A,B,C}, TG = {a, b, c}, and PG consisting of the
following rules:

r1 : S → ABC, r2 : A→ aA,

r3 : B → bB,

r4 : C → cC,

r5 : A→ ε,

r6 : B → ε,

r7 : C → ε.

Now, let H = (NH , TH , SH , PH) be a regular grammar with NH = {SH , X,X1, X2, Y1, Y2},
TH = {r1, r2, r3, r4, r5, r6, r7}, and PH consiting of the following rules:

50

SH → r1X, X → r2X1,

X1 → r3X2,

X2 → r4X,

X → r5Y1,

Y1 → r6Y2,

Y2 → r7.

From Example 5.2.1, we know that the regularly controlled grammar I = (G,L(H)) erases
its nonterminals in a 1-limited way. With G and H on its input, Algorithm 5.2.1 produces
an ε-free context-free grammar, O, and a regular grammar, Q, such that L(M) = L(I)−{ε}
for a regularly controlled grammar M = (O,L(Q)). Due to a high number of nonterminals
and rules in O and Q, their definitions are omitted5.

For example, for the following derivation of abc in I,

SG ⇒ ABC [r1]⇒ aABC [r2]⇒ aAbBC [r3]⇒ aAbBcC [r4]
⇒ abBcC [r5]⇒ abcC [r6]⇒ abc [r7],

one of the corresponding derivations in M is

〈SG, ε〉 ⇒ 〈A, ε〉〈B, ε〉〈C, ε〉 [br1, ε, A,B,Cc]
⇒ 〈a,A〉〈B, ε〉〈C, ε〉 [br2, ε, aAc]
⇒ 〈a,A〉〈b, B〉〈C, ε〉 [br3, ε, bBc]
⇒ 〈a,A〉〈b, B〉〈c, C〉 [br4, ε, cCc]
⇒ 〈a, ε〉〈b, B〉〈c, C〉 [ba,A, ε, r5c]
⇒ 〈a, ε〉〈b, ε〉〈c, C〉 [bb, B, ε, r6c]
⇒ 〈a, ε〉〈b, ε〉〈c, ε〉 [bc, C, ε, r7c]
⇒ a〈b, ε〉〈c, ε〉 [b〈a, ε〉 → ac]
⇒ ab〈c, ε〉 [b〈b, ε〉 → bc]
⇒ abc [b〈c, ε〉 → cc].

Lemma 5.2.1. Algorithm 5.2.1 is correct, i.e. with a context-free grammar, G, and a
regular grammar, H, on its input, such that the regularly controlled grammar I = (G,L(H))
erases its nonterminals in a k-limited way, it halts and produces an ε-free context-free
grammar, O, and a regular grammar, Q, such that L(M) = L(I) − {ε} for the regularly
controlled grammar M = (O,L(Q)).

Proof. Clearly, the algorithm always halts. Since PO does not contain any erasing rules, O
is ε-free. To show that L(O,L(Q)) = L(G,L(H)) − {ε}, we first introduce some notions
needed later in the proof.

Consider (1) and (2) in Algorithm 5.2.1. To briefly express that the rule labeled by s is
constructed from a rule labeled by r in (1) or (2), we just write sr. Let Ω ⊆ ΨO be the
set of all rule labels introduced in (3) in Algorithm 5.2.1. Define the regular substitution σ
from Ψ∗G to 2Ψ∗O as σ(r) = Ω∗{s | s ∈ ΨO and sr}, for all r ∈ ΨO.

Define the mapping δG,H from Ψ∗G to 2NH∪{Z} as follows (note that ΨG = TH):

• δG,H(ε) = {ε};
5There are 2387 nonterminals in NO.

51

• if SH ⇒+ αB in H, where α ∈ Ψ+
G, B ∈ NH , then B ∈ δG,H(α);

• if SH ⇒+ αr in H, where α ∈ Ψ∗G, r ∈ ΨG, then Z ∈ δG,H(αr).

Define the mapping δO,Q from Ψ∗O to 2NQ by analogy with δG,H .

Claim 5.2.1. Let SG ⇒+ x [α] in G and 〈SG, ε〉 ⇒+ y [γ] in O, where x ∈ V +
G , y ∈ N+

O ,
α ∈ Ψ+

G, and γ ∈ Ψ+
O such that γ ∈ σ(α), αβ1 ∈ L(H), and γβ2 ∈ L(Q) for some β1 ∈ Ψ∗G

and β2 ∈ Ψ∗O. Then, δO,Q(γ) = δG,H(α).

Proof. Since α ∈ Ψ+
G and γ ∈ Ψ+

O, α and γ can be expressed as α = α′r and γ = γ′s,
respectively, where α′ ∈ Ψ∗G, γ′ ∈ Ψ∗O, r ∈ ΨG, and s ∈ ΨO. From γ′s ∈ σ(α′r) and by the
definition of σ, sr, so by (1) and (2), we see that for every A → rB ∈ PH , B ∈ NH , there
is A→ sB ∈ PQ, and for every C → r ∈ PH , there is C → sZ ∈ PQ, so δO,Q(γ) = δG,H(α).
Rigorous proof by induction is left to the reader.

In the following claim, we use Notation 2.4.1.

Claim 5.2.2.

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh [α] in G

if and only if

〈SG, ε〉 ⇒n 〈X1, u1〉〈X2, u2〉 . . . 〈Xh, uh〉 [γ] in O,

where xi ∈ N∗G, Xj ∈ VG, for all 0 ≤ i ≤ h, 1 ≤ j ≤ h, u1u2 . . . uh ∈ perm(x0x1 . . . xh),
α ∈ Ψ+

G, γ ∈ Ψ+
O, γ ∈ σ(α), αβ1 ∈ L(H), and γβ2 ∈ L(Q) for some β1 ∈ Ψ∗G, β2 ∈ Ψ∗O,

and h,m, n ≥ 1.

Proof. Only If : This is established by induction on the length m of derivations.

Basis: Let m = 1. The only applicable rule to SG in G is r : SG → εy0Y1
εy1Y2

εy2 . . . Yh
εyh,

where yi ∈ N∗G, Yj ∈ VG, for all 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 1, so

SG ⇒ εy0Y1
εy1Y2

εy2 . . . Yh
εyh [r] in G

and there is SH → rB ∈ PH , where B ∈ (NH ∪{ε}). By (1), there are s = br, y0, Y1y1, Y2y2,
. . . , Yhyhc ∈ ΨO and s : 〈SG, ε〉 → 〈Y1, y0y1 . . . yh〉〈Y2, ε〉 . . . 〈Yh, ε〉, so

〈SG, ε〉 ⇒ 〈Y1, y0y1 . . . yh〉〈Y2, ε〉 . . . 〈Yh, ε〉 [s] in O

and there is SQ → sC ∈ PQ, C ∈ {B,Z} (recall that SQ = SH). Clearly, y0y1 . . . yh ∈
perm(y0y1 . . . yh), and since sr, s ∈ σ(r), so the basis holds.

Induction Hypothesis: Suppose that the Only If part of Claim 5.2.2 holds for all derivations
of length m or less, for some m ≥ 1.

Induction Step: Consider any derivation of the form

SG ⇒m+1 y in G,

52

where y ∈ V +
G . Since m+ 1 > 1, there is some x ∈ V +

G and r ∈ ΨG such that

SG ⇒m x [α]⇒ y [r] in G,

for some α ∈ Ψ+
G. Let A ∈ δG,H(α) such that there is some A → rA′ ∈ PH , where

A′ ∈ (NH ∪ {ε}). Note that A 6= Z, because there is no rule with Z on its left-hand side in
PH .

Let x = εx0X1
εx1X2

εx2 . . . Xh
εxh, where xi ∈ N∗G, Xj ∈ VG, for all 0 ≤ i ≤ h, 1 ≤ j ≤ h,

for some h ≥ 1, so

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh [α] in G.

Then, by the induction hypothesis,

〈SG, ε〉 ⇒n 〈X1, u1〉〈X2, u2〉 . . . 〈Xh, uh〉 [γ] in O,

where u1u2 . . . uh ∈ perm(x0x1 . . . xh) and γ ∈ Ψ+
O such that γ ∈ σ(α). By Claim 5.2.1,

δO,Q(γ) = δG,H(α).

The initialization part of Algorithm 5.2.1 sets k′ = k + p, where p = max({|rhs(t)| | t ∈
ΨG}). Clearly, p > 0; otherwise, there is no possible derivation

〈SG, ε〉 ⇒+ 〈X1, u1〉〈X2, u2〉 . . . 〈Xh, uh〉 [γ] in O,

for any h ≥ 1 (observe that p = 0 if and only if either PG = ∅ or every rule in PG is an
erasing rule). Since G with control language L(H) erases its nonterminals in a k-limited
way, |x0x1 . . . xh| ≤ kh, and since k′ = k + p and p > 0, |x0x1 . . . xh| < k′h. Recall that
u1u2 . . . uh ∈ perm(x0x1 . . . xh), so |u1u2 . . . uh| < k′h as well. Hence, there has to be at
least one nonterminal 〈Xe, ue〉 with |ue| < k′ for some 1 ≤ e ≤ h. By (3), there are
rules t1 : 〈Xg, d1Dd2〉 → 〈Xg, d1d2〉, t2 : 〈Xe, ue〉 → 〈Xe, ueD〉 ∈ PO and rules A → t1C,
C → t2A ∈ PQ, where d1, d2 ∈ N∗G, D ∈ NG, t1, t2 ∈ Ω, C = dA, t1, t2e ∈ NQ, for some
1 ≤ g ≤ h, by which it is possible to consecutively derive

〈X1, u1〉〈X2, u2〉 . . . 〈Xh, uh〉 ⇒∗ 〈X1, v1〉〈X2, v2〉 . . . 〈Xh, vh〉 [χ] in O

for any v1v2 . . . vh ∈ perm(u0u1 . . . uh) such that |vi| ≤ k, for all 1 ≤ i ≤ h (recall that
|ui| ≤ k, for all 1 ≤ i ≤ h). Clearly, χ = ε if and only if either u1u2 . . . uh = ε or
v1v2 . . . vh = u1u2 . . . uh. Since all rules from χ are introduced in (3), χ ∈ Ω∗. Furthermore,
A ∈ δO,Q(γχ) by (3) (recall that A ∈ δO,Q(γ)).

Now, let us consider all possible forms of x⇒ y [r] in G:

(i) Let r : Xf → εy0Y1
εy1Y2

εy2 . . . Yq
εyq ∈ PG, where yi ∈ N∗G, Yj ∈ VG, for all 0 ≤ i ≤ q,

1 ≤ j ≤ q, for some q ≥ 1 and 1 ≤ f ≤ h, so

εx0X1
εx1X2

εx2 . . . Xf
εxf . . . Xh

εxh ⇒ εx0X1
εx1X2

εx2 . . . Xf−1
εxf−1

εy0Y1
εy1Y2

εy2 . . . Yq
εyq

εxfXf+1
εxf+1 . . . Xh

εxh [r] in G.

53

By (1), there are s = br, y0, Y1y1, Y2y2, . . . , Yqyqc ∈ ΨO and s : 〈Xf , vf 〉 → 〈Y1, vfy0y1

. . . yq〉〈Y2, ε〉 . . . 〈Yq, ε〉 ∈ PO. Now, recall that there are A→ rA′ ∈ PH and δO,Q(γχ)
= δG,H(α). Then, by (1), there is A → sC ∈ PQ, where C = Z if and only if A′ = ε
and C = A′ otherwise, so

〈X1, u1〉〈X2, u2〉 . . . 〈Xf , uf 〉 . . . 〈Xh, uh〉 ⇒∗
〈X1, v1〉〈X2, v2〉 . . . 〈Xf , vf 〉 . . . 〈Xh, vh〉 [χ]⇒
〈X1, v1〉〈X2, v2〉 . . . 〈Xf−1, vf−1〉〈Y1, vfy0y1 . . . yq〉
〈Y2, ε〉 . . . 〈Yq, ε〉〈Xf+1, vf+1〉 . . . 〈Xh, vh〉 [s] in O.

Let w = y0y1 . . . yq and recall that v1v2 . . . vf . . . vh ∈ perm(u1u2 . . . uf . . . uh) and
u1u2 . . . uf . . . uh ∈ perm(x0x1 . . . xf . . . xh). Clearly, v1v2 . . . vfw . . . vh ∈ perm(x0x1

. . . wxf . . . xh). Since χ ∈ Ω∗ and sr, χs ∈ σ(r). Now, recall that γ ∈ σ(α) by the
induction hypothesis. Therefore, γχs ∈ σ(αr) and the induction step is completed
for this case.

(ii) Let r : D → εw ∈ PG, where w ∈ N∗G, and let xf = d1Dd2, where d1, d2 ∈ N∗G, for
some 0 ≤ f ≤ h, so

εx0X1
εx1X2

εx2 . . . Xf
εd1

εDεd2 . . . Xh
εxh ⇒

εx0X1
εx1X2

εx2 . . . Xf
εd1

εwεd2 . . . Xh
εxh [r] in G.

By (2), there are s = bXg, z1Dz2, z1wz2, rc ∈ ΨO and s : 〈Xg, z1Dz2〉 → 〈Xg, z1wz2〉 ∈
PO, where vg = z1Dz2 and z1, z2 ∈ N∗G, for some 1 ≤ g ≤ h. Now, recall that there is
A→ rA′ ∈ PH and δO,Q(γχ) = δG,H(α). Then, by (2), there is A→ sC ∈ PQ, where
C = Z if and only if A′ = ε and C = A′ otherwise, so

〈X1, u1〉〈X2, u2〉 . . . 〈Xg, ug〉 . . . 〈Xh, uh〉 ⇒∗
〈X1, v1〉〈X2, v2〉 . . . 〈Xg, z1Dz2〉 . . . 〈Xh, vh〉 [χ]⇒
〈X1, v1〉〈X2, v2〉 . . . 〈Xg, z1wz2〉 . . . 〈Xh, vh〉 [s] in O.

Recall that v1v2 . . . vg−1z1Dz2vg+1 . . . vh ∈ perm(u1u2 . . . uh) and u1u2 . . . uh ∈ perm(
x0x1 . . . xf−1d1Dd2xf+1 . . . xh). Clearly, v1v2 . . . vg−1z1wz2vg+1 . . . vh ∈ perm(x0x1

. . . xf−1d1wd2xf+1 . . . xh). Since χ ∈ Ω∗ and sr, χs ∈ σ(r). Now, recall that γ ∈ σ(α)
by the induction hypothesis. Therefore, γχs ∈ σ(αr), which completes the induction
step for this case.

Observe that these two cases cover all possible derivations of the form x⇒ y [r] in G. Thus,
the Only If part of Claim 5.2.2 holds.

If : This is also established by induction, but in this case on n.

Basis: Let n = 1. The only applicable rule to SO = 〈SG, ε〉 in O is s : 〈SG, ε〉 →
〈X1, w〉〈X2, ε〉 . . . 〈Xh, ε〉 ∈ PO, where w ∈ N∗G, Xi ∈ VG, for all 1 ≤ i ≤ h, for some
h ≥ 1, and there is SQ → sB ∈ PQ, where B ∈ NQ, so

〈SG, ε〉 ⇒ 〈X1, w〉〈X2, ε〉 . . . 〈Xh, ε〉 [s] in O.

Since s is introduced in (1), there is r : SG → εx0X1
εx1X2

εx2 . . . Xh
εxh ∈ PG, where

xi ∈ N∗G, for all 1 ≤ i ≤ h, such that w = x0x1 . . . xh and there is SH → rC ∈ PH for some
C ∈ ({B, ε} − {Z}), so

54

SG ⇒ εx0X1
εx1X2

εx2 . . . Xh
εxh [r] in G.

Clearly, w ∈ perm(w), and since sr, s ∈ σ(r), so the basis holds.

Induction Hypothesis: Suppose that the If part of Claim 5.2.2 holds for all derivations of
length n or less, for some n ≥ 1.

Induction Step: Consider any derivation of the form

〈SG, ε〉 ⇒n+1 y in O,

where y ∈ N+
O . Since n+ 1 > 1, this derivation can be expressed as

〈SG, ε〉 ⇒n x [γ]⇒ y [s] in O,

where x ∈ N+
O , γ ∈ Ψ+

O, and s ∈ ΨO. Let B ∈ δO,Q(γ) such that there is B → sB′ ∈ PQ,
where B′ ∈ NQ. Note that B 6= Z; otherwise, there is no possible derivation x ⇒ y [s] in
O with y ∈ N+

O (if B = Z, the only applicable rules in O are of the form 〈a, ε〉 → a, where
a ∈ TO, but a /∈ NO).

Let x = 〈X1, u1〉〈X2, u2〉 . . . 〈Xh, uh〉, where Xi ∈ VG, ui ∈ N∗G, for all 1 ≤ i ≤ h, for some
h ≥ 1. By the induction hypothesis, there is

SG ⇒m εx0X1
εx1X2

εx2 . . . Xh
εxh [α] in G

such that u1u2 . . . uh ∈ perm(x0x1 . . . xh) and γ ∈ σ(α), for some m ≥ 1. Now, let us
consider all possible forms of x⇒ y [s] in O:

(i) Let s : 〈Xf , uf 〉 → 〈Y1, ufw〉〈Y2, ε〉 . . . 〈Yq, ε〉 ∈ PO be a rule introduced in (1), where
w = y0y1 . . . yq, s = br, y0, Y1y1, Y2y2, . . . , Yqyqc, yi ∈ N∗G, Yj ∈ VG, for all 0 ≤ i ≤ q,
1 ≤ j ≤ q, for some 1 ≤ f ≤ h and q ≥ 1. Therefore,

〈X1, u1〉〈X2, u2〉 . . . 〈Xf , uf 〉 . . . 〈Xh, uh〉 ⇒
〈X1, u1〉〈X2, u2〉 . . . 〈Xf−1, uf−1〉〈Y1, ufw〉〈Y2, ε〉
. . . 〈Yq, ε〉〈Xf+1, uf+1〉 . . . 〈Xh, uh〉 [s] in O.

Since δO,Q(γ) = δG,H(α) by Claim 5.2.1 and sr, by (1), there has to be some r : Xf →
εy0Y1

εy1Y2
εy2 . . . Yq

εyq and B → rC ∈ PH , where C = ε if and only if B′ = Z and
C = B′ otherwise, so

εx0X1
εx1X2

εx2 . . . Xf−1
εxf−1Xf

εxfXf+1
εxf+1 . . . Xh

εxh ⇒
εx0X1

εx1X2
εx2 . . . Xf−1

εxf−1
εy0Y1

εy1Y2
εy2

. . . Yq
εyq

εxfXf+1
εxf+1 . . . Xh

εxh [r] in G.

Recall that u1u2 . . . uf . . . uh ∈ perm(x0x1 . . . xf . . . xh). Clearly, u1u2 . . . ufw . . . uh ∈
perm(x0x1 . . . wxf . . . xh). Now, recall that γ ∈ σ(α) by the induction hypothesis and
sr. Therefore, γs ∈ σ(αr), and the induction step is completed for this case.

(ii) Let s : 〈Xf , d1Dd2〉 → 〈Xf , d1wd2〉 ∈ PO be a rule introduced in (2), where s = bXf ,
d1Dd2, d1wd2, rc, d1, d2 ∈ N∗G, andD ∈ NG such that uf = d1Dd2 for some 1 ≤ f ≤ h.
Therefore,

55

〈X1, u1〉〈X2, u2〉 . . . 〈Xf , d1Dd2〉 . . . 〈Xh, uh〉 ⇒
〈X1, u1〉〈X2, u2〉 . . . 〈Xf , d1wd2〉 . . . 〈Xh, uh〉[s] in O.

By the induction hypothesis, xg = z1Dz2, where z1, z2 ∈ N∗G, for some 0 ≤ g ≤ h.
Since δO,Q(γ) = δG,H(α) by Claim 5.2.1 and sr, by (2), there has to be some r : D →
w ∈ PG and B → rC ∈ PH , where C = ε if and only if B′ = Z and C = B′ otherwise,
so

εx0X1
εx1X2

εx2 . . . Xg
εz1

εDεz2 . . . Xh
εxh ⇒

εx0X1
εx1X2

εx2 . . . Xg
εz1

εwεz2 . . . Xh
εxh [r] in G.

Recall that u1u2 . . . uf−1d1Dd2uf+1 . . . uh ∈ perm(x0x1 . . . xg−1z1Dz2xg+1 . . . xh).
Clearly, u1u2 . . . uf−1d1wd2uf+1 . . . uh ∈ perm(x0x1 . . . xg−1z1wz2xg+1 . . . xh). Now,
recall that γ ∈ σ(α) by the induction hypothesis and sr. Therefore, γs ∈ σ(αr), and
the induction step is completed for this case.

(iii) Let s : 〈Xf , d1Dd2〉 → 〈Xf , d1d2〉 ∈ PO be a rule introduced in (3), where d1, d2 ∈ N∗G
and D ∈ NG such that uf = d1Dd2 for some 1 ≤ f ≤ h. Therefore,

〈X1, u1〉〈X2, u2〉 . . . 〈Xf , d1Dd2〉 . . . 〈Xh, uh〉 ⇒
〈X1, u1〉〈X2, u2〉 . . . 〈Xf , d1d2〉 . . . 〈Xh, uh〉 [s] in O.

By (3), the only applicable rule is now t : 〈Xg, w〉 → 〈Xg, wD〉, where w ∈ N∗G, for
some 1 ≤ g ≤ h, so

〈X1, u1〉〈X2, u2〉 . . . 〈Xf , d1d2〉 . . . 〈Xh, uh〉 ⇒
〈X1, v1〉〈X2, v2〉 . . . 〈Xh, vh〉 in O,

where v1v2 . . . vh ∈ perm(u1u2 . . . uh). Since st ∈ Ω∗, δO,Q(γst) = δO,Q(γ), and
v1v2 . . . vh ∈ perm(x1x2 . . . xh) (recall that u1u2 . . . uh ∈ perm(x1x2 . . . xh)), we can
now reconsider cases (i) through (iii).

Observe that these three cases cover all possible derivations of the form x ⇒ y [s] in O.
Thus, the If part of Claim 5.2.2 also holds. Hence, Claim 5.2.2 holds.

Now, consider a special case of Claim 5.2.2 when xi = ε, Xj ∈ TG, for all 0 ≤ i ≤ h,
1 ≤ j ≤ h. Then,

SG ⇒m X1X2 . . . Xh [α] in G

if and only if

〈SG, ε〉 ⇒n 〈X1, ε〉〈X2, ε〉 . . . 〈Xh, ε〉 [γ] in O,

where α ∈ Ψ+
G, γ ∈ Ψ+

O, γ ∈ σ(α), αβ1 ∈ L(H) and γβ2 ∈ L(Q) for some β1 ∈ Ψ∗G, β2 ∈ Ψ∗O,
and h,m, n ≥ 1.

Since α ∈ Ψ+
G and γ ∈ Ψ+

O, α and γ can be expressed as α = α′r and γ = γ′s, respectively,
where α′ ∈ Ψ∗G, γ′ ∈ Ψ∗O, r ∈ ΨG, and s ∈ ΨO. Furthermore, from γ′s ∈ σ(α′r) and by the
definition of σ, sr. Since Xi ∈ TG, for all 1 ≤ i ≤ h, no rule from PG is now applicable in

56

G. To fulfill αβ1 ∈ L(H), β1 = ε, so there has to be A→ r ∈ PH , where A ∈ δG,H(α′). By
Claim 5.2.1, δO,Q(γ) = δG,H(α), and by the definition of δG,H , Z ∈ δG,H(α′r) = δG,H(α),
so Z ∈ δO,Q(γ).

By the initialization part of Algorithm 5.2.1, PO contains b〈X1, ε〉 → X1c : 〈X1, ε〉 → X1,
b〈X2, ε〉 → X2c : 〈X2, ε〉 → X2, . . . , b〈Xh, ε〉 → Xhc : 〈Xh, ε〉 → Xh and PQ contains
Z → b〈X1, ε〉 → X1cZ, Z → b〈X1, ε〉 → X2cZ, . . . , Z → b〈Xh, ε〉 → Xhc. As a result,
there is a derivation

〈X1, ε〉〈X2, ε〉 . . . 〈Xh, ε〉 ⇒ X1〈X2, ε〉 . . . 〈Xh, ε〉 [b〈X1, ε〉 → X1c]
X1〈X2, ε〉 . . . 〈Xh, ε〉 ⇒ X1X2 . . . 〈Xh, ε〉 [b〈X2, ε〉 → X2c]

. . .
X1X2 . . . 〈Xh, ε〉 ⇒ X1X2 . . . Xh [b〈Xh, ε〉 → Xhc]

in O. Therefore, γb〈X1, ε〉 → X1cb〈X2, ε〉 → X2c . . . b〈Xh, ε〉 → Xhc ∈ L(Q) and since Xi ∈
TO, for all 1 ≤ i ≤ h, X1X2 . . . Xh ∈ L(O,L(Q)), so we have X1X2 . . . Xh ∈ L(G,L(H)) if
and only if X1X2 . . . Xh ∈ L(O,L(Q)). Hence, Lemma 5.2.1 holds.

Theorem 5.2.1. Let I be a regularly controlled grammar that erases its nonterminals
in a k-limited way. Then, there is an ε-free regularly controlled grammar, M , such that
L(M) = L(I)− {ε}.

Proof. This theorem follows from Algorithm 5.2.1 and Lemma 5.2.1.

Observe that Definition 5.2.1, Algorithm 5.2.1, Lemma 5.2.1, and Theorem 5.2.1 can be
easily reformulated in terms of regularly controlled grammars with appearance checking.
Reconsider Algorithm 5.2.1. Observe that during the simulation of a derivation in I, in the
two-component nonterminals, M records all the symbols that occur in the corresponding
sentential form of I. As a result, M has all the necessary information concerning the
appearance checking mechanism available, so it can simply apply the same appearance
checking mechanism just like in I. Leaving a fully rigorous description of Algorithm 5.2.1
modified in this straightforward way to the reader, we next reformulate Theorem 5.2.1 in
terms of appearance checking.

Theorem 5.2.2. Let I be a regularly controlled grammar with appearance checking that
erases its nonterminals in a k-limited way. Then, there is an ε-free regularly controlled
grammar with appearance checking, M , such that L(M) = L(I)− {ε}.

5.3 Significance to Syntactical Analysis

Most current compilers use parsers based on context-free grammars, because there is a well-
researched underlying theory (for details and/or all unexplained notions, please refer to [3, 4,
8, 9, 54, 59, 62]), which includes top-down parsing based on LL(k) grammars and pushdown
automata (recursive decent, table-based/predictive parsers) and bottom-up parsing based on
LR(k) grammars and extended pushdown automata (SLR or LALR parsers).

From a practical point of view, erasing rules are often very useful. When designing a
grammar for a programming language, like authors of programming languages or compilers
do, one can with advantage use erasing rules for optional parts in that language. For

57

example, consider the fragment of a grammar for some hypothetical C-like [31] programming
language in Figure 5.1, which describes a function definition. Aside from implementation
limits, a function can have arbitrary number of parameters, including no parameters. The
same holds for the number of statements in function bodies. The easiest way how to cope
with this is to use erasing rules. For example, params can either contain a list of parameters
or no parameters at all.

function-def → type-specifier ID (params) { statements }

params → param-list | ε

statements → statement-list | ε

Figure 5.1: Fragment of a C-like Language Grammar.

On the other hand, the presence of erasing rules has also a few drawbacks. Three of them
are discussed next.

I. Erasing rules can cause ambiguities and conflicts [54]. For example, consider the fragment
of a grammar in Figure 5.2. This grammar is certainly not LL(1), because if the top
nonterminal is statement and the input token is ID, the parser has no way how to determine
what rule it should apply (both label and assign-statement begin with ID and label is
optional).

statement → label statement-type

statement-type → assign-statement | return-statement | . . .

label → ID : | ε

assign-statement → ID = expression ;

Figure 5.2: Fragment of a C-like Language Grammar Which is Not LL(1).

II. The presence of erasing rules can result into more complex parser construction. For
example, consider the table-driven (or predictive) LL parser. If the input grammar does
contain any erasing rules, to construct the LL table it only suffices to compute the FIRST
set. Otherwise, more sets have to be computed (like EMPTY and FOLLOW) [54].

III. There are parsing techniques which do not work with grammars containing erasing
rules. For example, consider the operator-precedence parser, which is a simple parser suit-
able for the parsing of expressions. This parser cannot be—by design—used to parse sen-
tences generated by grammars with erasing rules [54].

So, while erasing rules are nice during grammar design, they might cause problems when
building a parser for such grammars. Here is where elimination of erasing rules might help.
However, as you will see, problems arise. Since this work studies regulated grammars and
previous paragraphs deal mainly with parsers based on classical context-free grammars, we
also discuss parsing of regulated grammars and relevance of the presented results regarding
elimination of erasing from regulated grammars.

58

I. If we eliminate erasing rules from a grammar of some type, the resulting grammar might
not be of that type or might not be suitable for parsing. For example, consider LL(k)
grammars. If we eliminate all erasing rules from an LL(k) grammar, the consequent ε-free
grammar might not be LL(k) [54].

II. As far as we were able to determine, there has been no systematic research in the di-
rection of parsing methods based on regulated grammars in general. Several papers and
theses on this topic were written, but there is no complete and usable parsing theory based
on regulated grammars by knowledge. Moreover, proposed methods sometimes lack deter-
mination of wanted properties, like their computational complexity6 and precise generative
power, i.e. what they can actually parse (if such methods parse only some restricted subset
of regulated grammars).

In [5], [36], and [60], parsing algorithms based on regulated grammars are proposed. In
[38], Křivka discusses a use of regulated grammars (especially programmed grammars) in
programming languages. In [11], a sketch of a parser based on programmed grammars is
described. Bravo and Neto in [6] proposed a method for building context-sensitive parsers
from regularly controlled grammars. Rußmann in [68] introduced a dynamic LL(k) parser
based on so-called dynamic context-free grammars and managed to characterize LR(1)
grammars by a grammar model involving leftmost derivations which can be seen as the de-
terministic counterpart of matrix grammars with strong leftmost derivations [10]. Recently,
Jirák [32, 33] and Kolář [34] considered parsing of restricted scattered context grammars.

III. Transformations of grammars to equivalent ε-free grammars often result into a large
number of nonterminals and rules, i.e. in a high syntactic complexity7. For example, if
the input regularly controlled grammar of Algorithm 5.2.1 contains n nonterminals, t ter-
minals, the length of the longest right-hand side of a rule is p, and the grammar erases its
nonterminals in a k-limited way, the output grammar contains (n+t)

∑k+p
i=0 n

i nonterminals
(recall how the total alphabet of the resulting grammar is computed). Other transforma-
tions presented in Section 5.1, like elimination of recursively erasing rules from programmed
grammars, suffer from the same problem as well.

In recent years, there has been a trend to study regulated grammars in terms of their
syntactic complexity, see [20, 21, 22, 23, 45, 46, 47, 48, 51, 73] and [57, Chapter 6]. However,
there is often a trade-off between the number of nonterminals and the number or form of
rules (the less nonterminals are required, the more and complicated rules are required and
vice versa). What we need are (1) transformations that remove useless nonterminals and
rules and (2) transformations that simultaneously reduce the number of nonterminals and
rules.

To conclude the significance of elimination of erasing rules from regulated grammars to syn-
tactical analysis, the two main problems are the lack of advanced, throughly examined, and
generally usable parsing methods based on regulated grammars and high syntactic com-
plexity of resulting ε-free grammars. Further research is these two directions is necessary.

6By computational complexity we mean time and space complexity, see [70, Part 3].
7By syntactic complexity of a grammar we mean the size of the description of the grammar, e.g. the

number of nonterminals, the number of rules, and the form of rules. Other widely used synonyms are
descriptive complexity or Kolgomorov complexity.

59

Chapter 6

Conclusion

In this work, the elimination of erasing rules from regulated grammars and its consequences
are studied. The goal is to gather current results and present new results on the impact of
the presence of erasing rules to the generative power of regulated grammars. As Chapter
3 shows, many regulated grammars are based on context-free grammars. Thus, it is of our
interest to study algorithms used to remove erasing rules from context-free grammars and
try to apply them on regulated grammars. To this end, Chapter 4 presents a standard
algorithm and a new, alternative algorithm, which has the advantage that is does not
need any predetermination of ε-nonterminals. Both of these algorithms prove that we are
always able to remove erasing rules from context-free grammars. However, in the case of
regulated grammars, the usage of these algorithm is not that simple, because, as outlined
in the beginning of Chapter 5, there is another element, which is not present in context-free
grammars—the regulation.

Whereas the (im)possibility of erasing rules elimination from some types of regulated gram-
mars was proven, there are still some regulated grammars where the possibility of erasing
rules removal is still an open problem (the summary is given below). Apart from current
results presented in Chapter 3 and in Section 5.1, Section 5.2 presents a new result: elimi-
nation of erasing rules from regularly controlled grammars which erase their nonterminals
in a k-limited way.

As outlined in Section 5.3, until there is more underlying theory regarding parsing tech-
niques based on regulated grammars and algorithms for syntactic complexity reduction, the
value of the results concerning the elimination of erasing rules from regulated grammars is
mainly theoretical. However, the alternative Algorithm 4.2.1 might be interesting from a
pedagogical point of view because one does not need to introduce ε-nonterminals and their
computation.

Finally, let us make five remarks regarding the new results proved in this work.

I. Algorithm 5.2.1 and Lemma 5.2.1 represent a partial solution to the problem concern-
ing the effect of erasing rules to the generative power of regularly controlled grammars
grammars. Indeed, if these grammars erase their nonterminals in a k-limited way, they
are equally powerful with or without erasing rules. Consequently, to solve this problem
completely, the formal language theory can narrow its attention only to these grammars
that do not erase their nonterminals in this way because if they do, this work has answered
the problem.

60

II. By analogy with regularly controlled grammars that erase their nonterminals in a k-
limited way, we can reconsider the study given in this work in terms of other regulated
grammars. Specifically, this study and its results can be straightforwardly reformulated in
terms of matrix, programmed, or random-context grammars that erase their nonterminals
in a k-limited way.

III. Consider regularly controlled grammars and scattered context grammars, both erasing
their nonterminals in a k-limited way. Apart from a different type of regulation (in scattered
context grammars, more context-free rules are applied in a single step, there is no prescribed
order in which rules have to be applied, and there are contextual dependencies between
symbols in a sentential form), there is a main difference between these two types of limited
erasing. While the k-limiting condition in scattered context grammars requires that between
any two symbols that are not erased, there are at most k occurrences of nonterminals that
are erased (regardless of the length of the sentential form), the k-limiting condition in
regularly controlled grammars requires that there are is a certain balance between the
number of to-be-erased nonterminals and not-to-be-erased symbols in the entire sentential
form, so the position of to-be-erased nonterminals does not matter. Moreover, this balance
depends on k and on the length of the sentential form.

IV. Consider regularly controlled grammars that erase their nonterminals in a k-limited way
and recursive erasing in programmed grammars. On the one hand, the recursive erasing
condition requires that all occurrences of the same nonterminal are erased, while this is
not required by the k-limiting condition. On the other hand, using the idea of recursive
erasing, we are able to remove erasing rules from regularly controlled grammars like H1

from Example 5.2.3 that does not erase its nonterminals in a k-limited way.

Thus, both ideas are orthogonal in the sense that the recursive erasing condition can be
straightforwardly reformulated in terms of regularly controlled grammars and vice versa, see
the second remark in this section and [39, Section 4]. By combining these two approaches,
we are able to eliminate more erasing rules from these grammars.

V. Consider the new Algorithm 4.2.1 for elimination of erasing rules from context-free
grammars. It can be shown that this algorithm can be used even if the input context-free
grammar derives in a so-called semi-parallel derivation mode (in a single derivation step,
any number of occurrences of nonterminals might be rewritten at once, like in scattered
context grammars, but without any contextual dependencies) or in a so-called parallel
derivation mode (in every derivation step, all symbols have to be rewritten at once, like in
EOL systems [65]). Since this is beyond the scope of this work, the proof of this claim is
omitted1.

6.1 Open Problems

This section summarizes open problems related to this work, where most of them are
outlined in Chapters 3 and 5. These problems are suggested for further research.

• One of the main open problems in the theory of regulated rewriting remains unre-
solved. Is the inclusion between rC and rCε, M and Mε, P and Pε, RC and RCε,

1Curious reader is advised to use the approach used to establish Lemma 4.2.1.

61

respectively, proper? In other words, are we able to remove all erasing rules from
any regularly controlled grammar, matrix grammar, programmed grammar, and ran-
dom context grammar, respectively, without affecting the generated language? Is this
possible in Russian parallel grammars?

• What is the relation between CS and rCε, Mε, Pε, or RCε? Is the inclusion between
RC and M, RCε and Mε, SC and CS, respectively, proper?

• Section 5.1 shows that we can transform any scattered context grammar, H, to an
ε-free scattered context grammar, O, such that O either generates a coincidental
extension of L(H) or L(H) represents the symbol-exhaustive left (right) quotient of
L(O). Can any of these result be proved in terms of other regulated grammars, like
regularly controlled grammars, matrix grammars, or programmed grammars?

• In Section 5.2, it is shown that we are able to eliminate all erasing rules from any regu-
larly controlled grammar which erases its nonterminals in a k-limited way. Is there an
algorithmic way how to determine whether a regularly controlled grammar erases its
nonterminals in a k-limited way? In other words, is it decidable whether a given regu-
larly controlled grammar erases its nonterminals in a k-limited way? Similar question
is uttered in terms of scattered context grammars that erase their nonterminals in a
k-limited way in [57, Chapter 4]. If it is decidable, what is the computational complex-
ity of such determination2? What are the computational complexities of Algorithm
5.2.1 and Algorithm 4.2.1?

• As Section 5.3 outlined, the transformation of a regularly controlled grammar or a
scattered context grammar that erases its nonterminals in a k-limited way into an
equivalent ε-free grammar results into a large number of nonterminals and rules,
where many of them are useless, i.e. they are never used. Also, there is the same
problem with the new Algorithm 4.2.1 and elimination of recursively erasing rules
from programmed grammars. Can these transformations be improved in terms of
syntactic complexity? Is there an algorithm that can remove useless nonterminals
and rules from transformed regulated grammars?

2For a highlight of the complexity checking of some basic decidability properties of regulated grammars,
see [44, Page 269].

62

Bibliography

[1] S. Abraham. Some questions of language theory. In Proceedings of the 1965
conference on Computational linguistics, pages 1–11, Morristown, NJ, USA, 1965.
Association for Computational Linguistics.

[2] A. V. Aho. Indexed grammars—an extension of context-free grammars. Journal of
the ACM, 15(4):647–671, 1968.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd ed.). Addison-Wesley, 2006. ISBN 0-201-10088-6.

[4] H. Bal, D. Grune, C. Jacobs, and K. Langendoen. Modern Compiler Design. John
Wiley & Sons, Inc., 2000. ISBN 0-471-97697-0.

[5] P. Blatný. Syntaktická analýza založená na gramatikách s rozptýleným kontextem.
Master’s thesis, Vysoké učeńı technické v Brně, Fakulta informačńıch technologíı,
2004.

[6] C. Bravo and J. J. Neto. Building context-sensitive parsers from CF grammars with
regular control language. In Implementation and Application of Automata 8th
International Conference, pages 306–308. Springer, 2003.

[7] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

[8] K. D. Cooper and L. Torczon. Engineering a Compiler. Elsevier, 2004.
ISBN 1-55860-699-8.

[9] R. Cytron, C. Fischer, and R. LeBlanc. Crafting a Compiler. Addison-Wesley, 2009.
ISBN 0-13-606705-0.

[10] J. Dassow, H. Fernau, and G. Păun. On the leftmost derivation in matrix grammars.
International Journal of Foundations of Computer Science, 10(1):61–80, 1999.

[11] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer,
New York, 1989. ISBN 0-38751-414-7.

[12] J. Dassow and S. Turaev. Arbitrary Petri net controlled grammars. In ForLing ’08:
Proceedings of the 2nd International Workshop

”
Non-Classical Formal Lanuages in

Linguistics“, pages 27–39, Tarragona, Spain, 2008.

[13] J. Dassow and S. Turaev. k-Petri net controlled grammars. In LATA ’08:
Proceedings of the 2nd International Conference on Language and Automata Theory
and Applications, pages 209–220. Springer, 2008.

63

[14] J. Dassow and S. Turaev. Grammars controlled by special Petri nets. In LATA ’09:
Proceedings of the 3rd International Conference on Language and Automata Theory
and Applications, pages 326–337. Springer, 2009.

[15] J. Dassow and S. Turaev. Petri net controlled grammars: the case of special Petri
nets. Journal of Universal Computer Science, 15(14):2808–2835, 2009.

[16] J. Dassow and S. Turaev. Petri net controlled grammars: the power of labeling and
final markings. Romanian Journal of Information Science and Technology,
12(12):191–207, 2009.

[17] R. Diestel. Graph Theory (3rd ed.). Springer, 2005. ISBN 3-540-26182-6.

[18] A. Ehrenfeucht and G. Rozenberg. An observation on scattered grammars.
Information Processing Letters, 9(2):84–85, 1979.

[19] B. Farwer, M. Jantzen, M. Kudlek, H. Rölke, and G. Zetzsche. Petri net controlled
finite automata. Fundamenta Informaticae, 85(1–4):111–121, 2008.

[20] H. Fernau. Nonterminal complexity of programmed grammars. Theoretical Computer
Science, 296(2):225–251, 2003.

[21] H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refining the nonterminal
complexity of graph-controlled, programmed, and matrix grammars. Journal of
Automata, Languages and Combinatorics, 12(1–2):117–138, 2007.

[22] H. Fernau and A. Meduna. A simultaneous reduction of several measures of
descriptional complexity in scattered context grammars. Information Processing
Letters, 86(5):235–240, 2003.

[23] R. Freund and G. Păun. On the number of non-terminal symbols in graph-controlled,
programmed and matrix grammars. In MCU ’01: Proceedings of the Third
International Conference on Machines, Computations, and Universality, pages
214–225. Springer, 2001.

[24] I. Frǐs. Grammars with partial ordering of the rules. Information and Control,
12(5/6):415–425, 1968.

[25] S. Ginsburg and E. H. Spanier. Control sets on grammars. Theory of Computing
Systems, 2(2):159–177, 1968.

[26] S. A. Greibach and J. E. Hopcroft. Scattered context grammars. Journal of
Computer and System Sciences, 3(3):233–247, 1969.

[27] M. Hack. Decidability questions for Petri nets. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1976.

[28] D. Hauschildt and M. Jantzen. Petri net algorithms in the theory of matrix
grammars. Acta Informatica, 31(8):719–728, 1994.

[29] J.E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd ed.). Addison-Wesley, 2006. ISBN 0-321-45536-3.

64

[30] K. Culik II and H. A. Maurer. Tree controlled grammars. Computing, 19(2):129–139,
1977.

[31] ISO/IEC 9899:1999. Programming Languages – C (ISO and ANSI C99 Standard).
Technical Report WG14 N1124, ISO/IEC, 1999. Available on URL:
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf (April 2010).

[32] O. Jirák. Delayed execution of scattered context grammar rules. In Proceedings of
the 15th Conference and Competition STUDENT EEICT 2009 Volume 4, pages
405–409, Brno, CZ, 2009. Faculty of Information Technology BUT.

[33] O. Jirák. Table-driven parsing of scattered context grammar. In Proceedings of the
16th Conference Student EEICT 2010 Volume 5, pages 171–175, Brno, CZ, 2010.
Faculty of Information Technology BUT.

[34] D. Kolář. Scattered context grammars parsers. In Proceedings of the 14th
International Congress of Cybernetics and Systems of WOCS, pages 491–500,
Wroclaw, PL, 2008. Wroclaw University of Technology.

[35] D. Kolář and A. Meduna. Regulated pushdown automata. Acta Cybernetica,
2000(4):653–664, 2000.

[36] M. Kot. Ř́ızené gramatiky. Master’s thesis, VŠB – Technická univerzita Ostrava,
Fakulta elektrotechniky a informatiky, Katedra informatiky, 2002.

[37] J. Koutný. On n-path-controlled grammars. In Proceedings of the 16th Conference
and Competition STUDENT EEICT 2010 Volume 5, pages 176–180, Brno, CZ, 2010.
Faculty of Information Technology BUT.

[38] Z. Křivka. Využit́ı ř́ızených gramatik v programovaćıch jazyćıch [online]. Projekt do
předmětu Teorie programovaćıch jazyk̊u doktorského studijńıho programu, Brno, CZ,
2002. Fakulta informačńıch technologíı VUT. Available on URL:
http://www.fit.vutbr.cz/study/courses/TJD/public/0506TJD-Krivka.pdf

(April 2010).

[39] Z. Křivka. Recursive erasing in programmed grammars. In Pre-Proceedings of the 1st
Doctoral Workshop on Mathematical and Engineering Methods in Computer Science,
pages 139–144, Znojmo, CZ, 2005. Faculty of Informatics MU.

[40] M. K. Levitina. On some grammars with rules of global replacement (in Russian).
Scientific-Technical Information, 2(3):32–36, 1972.

[41] P. Linz. An Introduction to Formal Languages and Automata (4th ed.). Jones and
Bartlett Publishers, 2006. ISBN 0-7637-3798-4.

[42] S. Marcus, C. Mart́ın-Vide, V. Mitrana, and G. Păun. A new-old class of
linguistically motivated regulated grammars. In Computational Linguistics in the
Netherlands, pages 111–125, 2000.

[43] C. Mart́ın-Vide and V. Mitrana. Further properties of path-controlled grammars. In
FG-MoL ’05: The 10th Conference on Formal Grammar and The 9th Meeting on
Mathematics of Language, pages 221–232, 2005.

65

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.fit.vutbr.cz/study/courses/TJD/public/0506TJD-Krivka.pdf

[44] C. Mart́ın-Vide, V. Mitrana, and G. Păun, editors. Formal Languages and
Applications, chapter 13, pages 249–274. Springer, 2004. ISBN 3-540-20907-7.

[45] T. Masopust. On the descriptional complexity of scattered context grammars.
Theoretical Computer Science, 410(1):108–112, 2009.

[46] T. Masopust and A. Meduna. Descriptional complexity of grammars regulated by
context conditions. In LATA ’07 Pre-proceedings. Reports of the Research Group on
Mathematical Linguistics 35/07, Universitat Rovira i Virgili, pages 403–411,
Tarragona, Spain, 2007.

[47] T. Masopust and A. Meduna. On descriptional complexity of partially parallel
grammars. Fundamenta Informaticae, 87(3):407–415, 2008.

[48] T. Masopust and A. Meduna. Descriptional complexity of three-nonterminal
scattered context grammars: An improvement. In Proceedings of 11th International
Workshop on Descriptional Complexity of Formal Systems, pages 235–245.
Otto-von-Guericke-Universität Magdeburg, 2009.

[49] A. Meduna. Syntactic complexity of scattered context grammars. Acta Informatica,
1995(32):285–298, 1995.

[50] A. Meduna. Automata and Languages: Theory and Applications. Springer, 2000.
ISBN 1-85233-074-0.

[51] A. Meduna. Generative power of three-nonterminal scattered context grammars.
Theoretical Computer Science, 2000(246):279–284, 2000.

[52] A. Meduna. Coincidental extention of scattered context languages. Acta Informatica,
39(5):307–314, 2003.

[53] A. Meduna. Erratum: Coincidental extension of scattered context languages. Acta
Informatica, 39(9):699, 2003.

[54] A. Meduna. Elements of Compiler Design. Auerbach Publications, 2007.
ISBN 1-4200-6323-5.

[55] A. Meduna and J. Techet. Canonical scattered context generators of sentences with
their parses. Theoretical Computer Science, 2007(389):73–81, 2007.

[56] A. Meduna and J. Techet. Scattered context grammars that erase nonterminals in a
generalized k-limited way. Acta Informatica, 45(7):593–608, 2008.

[57] A. Meduna and J. Techet. Scattered Context Grammars and their Applications. WIT
Press, 2010. ISBN 1-84564-426-3.

[58] A. Meduna and M. Švec. Grammars with Context Conditions and Their
Applications. Wiley, 2005. ISBN 0-471-71831-9.

[59] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997. ISBN 1-55860-320-4.

[60] P. Navrátil. Syntaktická analýza založená na ř́ızených gramatikách. Master’s thesis,
Vysoké učeńı technické v Brně, Fakulta informačńıch technologíı, 2004.

66

[61] R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

[62] T. W. Parsons. Introduction to Compiler Construction. Computer Science Press,
Inc., 1992. ISBN 0-7167-8261-8.

[63] W. Reisig. Petri Nets: An Introduction. Springer, 1985. ISBN 0-387-13723-8.

[64] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal
of the ACM, 16(1):107–131, 1969.

[65] G. Rozenberg and A. Salomaa. Mathematical Theory of L Systems. Academic Press,
1980. ISBN 0-12-597140-0.

[66] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 1:
Word, Language, Grammar. Springer, 1997. ISBN 3-540-60420-0.

[67] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 2:
Linear Modeling: Background and Application, chapter 3, pages 101–154. Springer,
1997. ISBN 3-540-61486-9.

[68] A. Rußmann. Dynamic LL(k) parsing. Acta Informatica, 34(4):267–289, 1997.

[69] A. Salomaa. Formal Languages. Academic Press, 1973. ISBN 0-12-615750-2.

[70] M. Sipser. Introduction to the Theory of Computation (2nd ed.). Course Technology,
2006. ISBN 0-534-95097-3.

[71] R. Siromoney and K. Krithivasan. Parallel context-free languages. Information and
Control, 24(2):155–162, 1974.

[72] A. P. J. van der Walt. Random context grammars. In Proceedings of Symposium on
Formal Languages, pages 163–165, 1970.

[73] G. Vaszil. On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theoretical Computer Science, 330(2):361–373, 2005.

[74] D. Wätjen. Regulation of k-limited ETOL systems. International Journal of
Computer Mathematics, 47(1):29–41, 1993.

[75] D. Wood. Theory of Computation: A Primer. Addison-Wesley Longman Publishing
Co., Inc., 1987. ISBN 0-06-047208-1.

[76] G. Zetzsche. Erasing in Petri net languages and matrix grammars. In DLT ’09:
Proceedings of the 13th International Conference on Developments in Language
Theory, pages 490–501. Springer, 2009.

[77] G. Zetzsche. A note on Hack’s conjecture, Parikh images of matrix languages and
multiset grammars. Bericht des Fachbereichs Informatik FBI-HH-B-289/09,
Universität Hamburg, Germany, 2009.

67

	Introduction
	Chapter Survey

	Preliminaries and Basic Definitions
	Sets, Relations, Closures, and Functions
	Alphabet, Strings, and Languages
	Grammars and Language Families
	Derivation Trees

	Regulated Grammars
	Regularly Controlled Grammar
	Matrix Grammar
	Programmed Grammar
	Random Context Grammar
	Scattered Context Grammar
	Other Types of Regulation

	Removal of Erasing Rules from Context-Free Grammars
	Standard Algorithm
	New Algorithm

	Removal of Erasing Rules from Regulated Grammars
	Present Results
	Limited Erasing in Scattered Context Grammars
	Recursive Erasing in Programmed Grammars
	Generation of Extended Languages by -Free Grammars
	Erasing in Petri Net Languages and Matrix Grammars

	New Result: Limited Erasing in Regularly Controlled Grammars
	Significance to Syntactical Analysis

	Conclusion
	Open Problems

